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ABSTRACT

Along with recent breakthroughs in relativistic astrophysics and multi-messenger
astronomy, theoretical studies on compact objects and the dynamics of relativistic
matter surrounding them have a growing significance. General relativistic ap-
proaches are required to properly describe astrophysical phenomena taking place in
a strong gravity regime, yet the high complexity and nonlinearity of the equations
governing those systems compel numerical approaches. In this thesis, we develop
a computational method for and present global numerical simulations of relativistic
plasma around compact objects, particularly focusing on high-energy electromag-
netic transients originating from black holes and neutron stars. Our works include a
new hybrid numerical scheme for modeling force-free magnetospheres of compact
objects, large-scale simulations of a spinning black hole immersed in a magnetized
wind, and magnetospheric transients from a merging black hole–neutron star binary.
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C h a p t e r 1

PROLOGUE: ASTROPHYSICAL PLASMAS IN STRONG
GRAVITY

Compact objects such as black holes and neutron stars can harbor the strongest
magnetic field in the Universe. When a compact object interacts with astrophysical
plasma surrounding it, this extreme magnetic field can trigger a variety of observable
electromagnetic bursts. Deciphering these electromagnetic transient signals provide
a unique window for probing an unknown realm of physics in strong gravity and of
dense matter, which cannot be reproduced in any terrestrial laboratories.

Following the first detection of gravitational waves from a merging binary black hole
(B. P. Abbott et al., 2016), the past decade has witnessed unprecedented advances in
relativistic astrophysics, including the first multi-messenger observation of a binary
neutron star merger (B. P. Abbott et al., 2017) and the first direct imaging of a black
hole (Akiyama et al., 2019). However, many aspects of the high-energy astrophysical
phenomena, such as fast radio bursts and gamma ray bursts, which are thought to be
associated with compact objects and their interactions with the surrounding plasma
via hydrodynamic or magnetic processes, still remain unclear.

As we expect a larger number of and more precise observations of such electromag-
netic bursts from upcoming next-generation detectors and space missions, improved
theoretical models are required in order to properly interpret the observed features
and to understand physical properties of compact objects and their host environment.
Since the physics underlying these systems — general relativity, electromagnetism,
hydrodynamics — are described with highly complex and nonlinear governing equa-
tions, numerical simulations on supercomputers are often drawn to study a particular
scenario of our interest. Numerical relativity and computational relativistic astro-
physics, products of scientific efforts to accurately and efficiently immitate those
physical systems on computers, provides an ideal set of toolkits for this purpose.

This thesis collects three independent studies on numerical modeling of astrophysical
plasmas around compact objects. We develop a new computational method for and
present two global, large-scale numerical simulations particularly focusing on high-
energy electromagnetic transients originating from black holes and neutron stars.

In Chapter 2, we present a new numerical method for relativistic electrodynamics.
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The key idea is hybridizing the discontinuous Galerkin method with the shock-
capturing finite difference method to selectively combine the merits of each ap-
proaches. This hybrid method achieves spectral convergence in smooth regions
while robustly resolving sharp dissipative features such as current sheets and recon-
nection points. Our new approach can perform two to three times better efficiently
than conventional simulation techniques, potentially up to ten times in an ideal
setting.

A black hole flying through a magnetized medium can be related to many astro-
physical contexts, including common envelope phase, wind-fed X-ray binaries, or
a recoiled remnant of a binary black hole merger in a gaseous environment. In
Chapter 3, we present 3D general relativistic magnetohydrodynamics simulations of
the Bondi-Hoyle-Lyttleton accretion onto a spinning black hole when the magnetic
field of the incoming wind is inclined relative to the spin of the black hole. This
study brings a detailed 3D picture of an accreting black hole in a magnetized wind,
and sheds light on electromagnetic transients from compact binary merger remnants
in a gaseous environment.

When a compressive mode is excited within a compact object magnetosphere, the
resulting outgoing waves can evolve into strongly radiative shockwaves. This par-
ticular mechanism is thought to produce monster shocks, the strongest shockwaves
in the Universe, which can power electromagnetic bursts in various wavelengths.
In Chapter 4, we show that strong disturbances in the circumbinary magnetosphere
during a neutron star–black hole merger develop into monster shocks within mil-
liseconds following the merger. The remnant black hole dissipates the post-merger
magnetosphere via magnetic reconnection and launches a magnetized wind resem-
bling that of pulsars. This study is the first self-contained demonstration of the
monster shock formation as well as the emergence of a transient ‘black hole pulsar’
state from a compact binary merger, unveiling a novel type of shock-powered and
reconnection-driven transient associated with merging compact objects.
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C h a p t e r 2

A HYBRID NUMERICAL METHOD FOR GENERAL
RELATIVISTIC FORCE-FREE ELECTRODYNAMICS

Kim, Yoonsoo et al. (2024). “General relativistic force-free electrodynamics with a
discontinuous Galerkin-finite difference hybrid method”. In: Physical Review D
109.12, p. 123019. doi: 10.1103/PhysRevD.109.123019. arXiv: 2404.01531.
url: https://journals.aps.org/prd/abstract/10.1103/PhysRevD.
109.123019.

Relativistic plasmas around compact objects can sometimes be approximated as
being force-free. In this limit, the plasma inertia is negligible and the overall
dynamics is governed by global electric currents. We present a novel numerical
approach for simulating such force-free plasmas, which allows for high accuracy in
smooth regions as well as capturing dissipation in current sheets. Using a high-
order accurate discontinuous Galerkin method augmented with a conservative finite-
difference method, we demonstrate efficient global simulations of black hole and
neutron star magnetospheres. In addition to a series of challenging test problems,
we show that our approach can — depending on the physical properties of the system
and the numerical implementation — be up to 10× more efficient than conventional
simulations, with a speedup of 2–3× for most problems we consider in practice.

2.1 Introduction
Compact objects such as neutron stars and black holes can feature some of the
strongest magnetic fields in the universe. Under these conditions, the environments
surrounding them can be filled with a highly conducting plasma. The plasma dy-
namics of these magnetospheres are thought to be responsible for several observable
transients in the radio (Bochenek et al., 2020; Lyubarsky, 2020; Mahlmann, Philip-
pov, Levinson, et al., 2022) and X-ray (Thompson and Duncan, 1995; Kaspi et al.,
2003; Beloborodov, 2013; Archibald et al., 2017; Tavani et al., 2021) bands. While
the description of emission processes fundamentally necessitates modeling the rel-
evant kinetic scales (Philippov, Cerutti, et al., 2015; A. Y. Chen and Beloborodov,
2017), the available energy budget as well as the presence of any dissipative or
emitting region inside the magnetosphere is a result of the bulk dynamics. It is this
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latter aspect that our present work aims to advance. Since these scenarios are highly
nonlinear, their effective description requires numerical approaches.

The global dynamics of the plasma is usually modeled under several simplifying as-
sumptions. In a very strongly magnetized magnetosphere, the inertia of the plasma
can approximately be neglected (Uchida, 1997; Gruzinov, 1999). In this force-free
electrodynamics (FFE) state, the evolution of the system is governed largely by
bulk currents, obtained via an effective closure of the Maxwell equations. It is
important to point out that the main assumption—neglecting plasma inertia—can
break down, e.g., during shock formation, as well as the absence of physically
meaningful dissipation in reconnection regions. In this regime, the closest ex-
tension of force-free electrodynamics is magnetohydrodynamical (MHD) models,
retaining a single-component plasma rest-mass density. MHD studies of relativistic
magnetospheres are not commonly employed.1 Instead, most studies adopt an FFE
approach.

Recent examples include applications to magnetar quakes (Bransgrove, Beloborodov,
and Y. Levin, 2020), nonlinear steepening of Alfvén waves (Yuan, Beloborodov,
A. Y. Chen, and Y. Levin, 2020; Yuan, Beloborodov, A. Y. Chen, Y. Levin, et al.,
2022), magnetar giant flares (Parfrey, Beloborodov, and Hui, 2013; Mahlmann,
Akgün, et al., 2019; Carrasco, Viganò, et al., 2019; Mahlmann, Philippov, Mewes,
et al., 2023), outbursts from gravitational collapse of a neutron star (Lehner et
al., 2012),2 and black hole and neutron star magnetospheres (Komissarov, 2004a;
Spitkovsky, 2006; McKinney, 2006b; A. Y. Chen, Yuan, and Vasilopoulos, 2020;
Carrasco and Shibata, 2020). Apart from isolated compact objects, force-free elec-
trodynamics has also been employed in the context of jets from massive black
hole mergers (Palenzuela, Garrett, et al., 2010; Palenzuela, Lehner, and Liebling,
2010) and potential electromagnetic precursor to gravitational wave events involv-
ing merger of compact objects (Alic et al., 2012; Palenzuela, Lehner, and Yoshida,
2010; Carrasco, Shibata, and Reula, 2021; Most and Philippov, 2020; Most and
Philippov, 2022; Most and Philippov, 2023a; Most and Philippov, 2023b).

Several approaches have been adopted in the literature for numerically solving the
FFE equations. Most commonly, either unlimited finite-difference (Spitkovsky,
2006; Kalapotharakos and Contopoulos, 2009; Palenzuela, Garrett, et al., 2010;

1See, e.g. Tchekhovskoy and Spitkovsky (2013) for a notable exception in neutron star magne-
tospheres.

2See also Nathanail, Most, and Rezzolla (2017) and Most, Nathanail, and Rezzolla (2018) for
related studies in electrovacuum.
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A. Y. Chen, Yuan, and Vasilopoulos, 2020; Carrasco and Reula, 2017) or conser-
vative finite-volume schemes (Komissarov, 2002; Cho, 2005; Asano, Uchida, and
Matsumoto, 2005; McKinney, 2006a; Yu, 2011; Etienne, Wan, et al., 2017; Most
and Philippov, 2020; Mahlmann, Aloy, et al., 2021a) have been employed. These
methods are robust, can easily capture strong gradients inside the magnetosphere,
and work well with commonly employed mesh refinement techniques (Dubey et al.,
2014). However, they come with a major drawback. Properly capturing wave so-
lutions over long integration times, e.g., Alfvén waves (Yuan, Beloborodov, A. Y.
Chen, and Y. Levin, 2020), requires a large number of grid points, especially when
less accurate versions of finite-difference/volume schemes are being used. This pro-
hibitively increases computational costs, especially for applications such as compact
binary magnetospheres in which scale separations can span two orders of magnitude.

On the other hand, spectral-type methods such as the pseudospectral method offer
exponential convergence for smooth solutions, providing a maximum in accuracy
over computational cost. Several studies have made use of spectral schemes to solve
the FFE equations (Parfrey, Beloborodov, and Hui, 2012; Petri, 2012; Cao, L. Zhang,
and Sun, 2016). One serious limitation of spectral methods is the appearance of
unphysical oscillations (Gibbs phenomenon) near a discontinuity or a large gradient
e.g. current sheets, which are naturally present in compact object magnetospheres.
Remedying these numerical instabilities requires special treatments such as filtering
or a limiting procedure (Hesthaven and Warburton, 2007). In addition, globally
spectral methods are not easily parallelizable, making it difficult to simulate physical
scenarios with large scale separations.

To counteract this shortcoming, popular approaches in the literature focus on spectral
element methods in which the computational domain is divided into non-overlapping
spectral elements, communicating only with the directly neighboring elements
through the element boundaries. This approach allows for highly parallelizable
implementations while retaining the exponential convergence property for smooth
solutions. A concrete example of this approach, a discontinuous Galerkin (DG)
method, is gaining its popularity in computational fluid dynamics and astrophysics
(e.g. Bugner et al., 2016; Zanotti, Fambri, Dumbser, and Hidalgo, 2015; Zanotti,
Fambri, and Dumbser, 2015; Fambri et al., 2018; Reinarz et al., 2020; Deppe et al.,
2022; Tichy et al., 2023; Dumbser, Zanotti, Gaburro, et al., 2024; Cernetic et al.,
2024), as well as in FFE (Petri, 2015; Petri, 2016).

While a DG scheme naturally permits a discontinuity at the element boundary,
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without special care to suppress unphysical oscillations, it suffers from the same fate
as globally spectral methods described above. Several strategies have been proposed
in the DG literature, which are frequently referred to as limiters. Common types
of DG limiters are implemented as direct manipulations on spectral coefficients,
addition of artificial viscosity, or a flattening correction of the solution with respect
to its average value within an element. We refer the reader to Zanotti, Fambri,
Dumbser, and Hidalgo (2015) and Deppe, Hébert, et al. (2022) and references
therein for the available types of DG limiters and related discussions.

DG limiters currently are not particularly accurate or reliable compared with corre-
sponding finite-volume or finite-difference techniques, especially for curved meshes
or relativistic applications (Deppe, Hébert, et al., 2022). A recently developed alter-
native strategy is to supplement the DG evolution with a more robust sub-element
discretization, which has been mostly chosen to be finite volume (e.g. Dumbser,
Zanotti, Loubère, et al., 2014; Zanotti, Fambri, Dumbser, and Hidalgo, 2015; Zan-
otti, Fambri, and Dumbser, 2015; Fambri et al., 2018; Vilar, 2019; Núñez-de la
Rosa and Munz, 2018; Rueda-Ramírez, Pazner, and Gassner, 2022; Maltsev et al.,
2023). Motivated by the idea of the a posteriori finite-volume limiting approach of
Dumbser, Zanotti, Loubère, et al. (2014), the discontinuous Galerkin-finite differ-
ence (DG-FD) hybrid method was introduced by Deppe, Hébert, et al. (2022); see
also Deppe et al. (2022) and Legred et al. (2023) for applications to relativistic fluid
dynamics simulations.

Here we present a new numerical scheme and code for general-relativistic FFE
simulations based on a discontinuous Galerkin discretization. Our motivation is
twofold. First, we explore the suitability of the DG-FD hybrid approach to enable
large-scale, parallel yet accurate numerical simulations, especially of compact bi-
nary magnetospheres. Second, since FFE on physical grounds has very localized
regions of non-smoothness such as current sheets, these simulations serve as an
ideal testbed to calibrate and assess the usefulness of the DG-FD hybrid approach.
Our hybrid scheme also incorporates previously developed implicit-explicit time
integration schemes by Pareschi and Russo (2005), which allows us to enforce a set
of algebraic constraints present in the FFE system. This joint approach achieves
high-order convergence in smooth regions while capturing discontinuous features
such as magnetic reconnection points and current sheets.

This chapter is organized as follows. In Sec. 2.2, we briefly review Maxwell’s
equations in general relativity and introduce the formulation we adopt in this work.
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We also discuss our strategy for maintaining the force-free conditions in simulations.
In Sec. 2.3, we describe the numerical implementation of spatial discretization, time
stepping, and the discontinuous Galerkin-finite difference hybrid solver. We present
results from a set of test problems in Sec. 2.4, and conclude with a discussion of
result in Sec. 2.5.

In this chapter, we adopt geometrized (𝑐 = 𝐺 = 1) Heaviside-Lorentz units, where
electric and magnetic fields have been rescaled by 1/

√
4𝜋 compared to Gaussian

units. We use the abstract index notation using latin indices (𝑎, 𝑏, · · · ) for spacetime
tensors, but reserve {𝑖, 𝑗 , 𝑘, . . .} for spatial tensors. We follow the sign convention
of the Levi-Civita tensor from Misner, Thorne, and Wheeler (1973),

𝜀𝑎𝑏𝑐𝑑 =
√−𝑔 [𝑎𝑏𝑐𝑑] , (2.1)

where 𝑔 is the determinant of spacetime metric and [𝑎𝑏𝑐𝑑] = ±1 with [0123] = +1
is the flat-space antisymmetric symbol.3

2.2 General relativistic force-free electrodynamics
We begin by outlining the mathematical description used to numerically study
magnetospheric dynamics. This includes a general relativistic formulation of elec-
trodynamics in a curved spacetime, which is then specialized to the force-free case:
general relativistic force-free electrodynamics (GRFFE).

2.2.1 Electrodynamics
The dynamics of electric and magnetic fields is governed by the Maxwell equations.
In covariant form, they are given by

∇𝑏𝐹𝑎𝑏 = J 𝑎 (2.2)

∇𝑏 ∗𝐹𝑎𝑏 = 0 (2.3)

where 𝐹𝑎𝑏 and ∗𝐹𝑎𝑏 = 𝜀𝑎𝑏𝑐𝑑𝐹𝑐𝑑/2 are the electromagnetic field tensor and its dual,
and J 𝑎 is the electric 4-current density.

For the standard 3+1 decomposition of the spacetime metric

𝑑𝑠2 = −𝛼2𝑑𝑡2 + 𝛾𝑖 𝑗 (𝑑𝑥𝑖 + 𝛽𝑖𝑑𝑡) (𝑑𝑥 𝑗 + 𝛽 𝑗𝑑𝑡), (2.4)

where 𝛼 is lapse, 𝛽𝑖 is the shift vector, and 𝛾𝑖 𝑗 is the spatial metric, the normal to
spatial hypersurfaces is given by

𝑛𝑎 = (1/𝛼,−𝛽𝑖/𝛼), 𝑛𝑎 = (−𝛼, 0). (2.5)
3Note that an opposite sign convention is sometimes adopted in the literature (e.g. Palenzuela,

Lehner, and Yoshida, 2010; Palenzuela, 2013)
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In terms of the normal vector 𝑛𝑎, electromagnetic field tensor 𝐹𝑎𝑏 and its dual ∗𝐹𝑎𝑏

can be decomposed as

𝐹𝑎𝑏 = 𝑛𝑎𝐸𝑏 − 𝑛𝑏𝐸𝑎 − 𝜀𝑎𝑏𝑐𝑑𝐵𝑐𝑛𝑑 , (2.6)
∗𝐹𝑎𝑏 = −𝑛𝑎𝐵𝑏 + 𝑛𝑏𝐵𝑎 − 𝜀𝑎𝑏𝑐𝑑𝐸𝑐𝑛𝑑 , (2.7)

where
𝑛𝑎𝐸

𝑎 = 𝑛𝑎𝐵
𝑎 = 0. (2.8)

𝐸𝑎 = (0, 𝐸 𝑖) and 𝐵𝑎 = (0, 𝐵𝑖) are electric and magnetic fields in the frame of
an Eulerian observer. One can read off 𝐸𝑎 and 𝐵𝑎 from 𝐹𝑎𝑏 using the following
relations

𝐸𝑎 = 𝐹𝑎𝑏𝑛𝑏, (2.9)

𝐵𝑎 = −1
2
𝜀𝑎𝑏𝑐𝑑𝑛𝑏𝐹𝑐𝑑 = − ∗𝐹𝑎𝑏𝑛𝑏 . (2.10)

While analytically complete, Maxwell equations cannot be directly evolved numeri-
cally, as any violation of the divergence constraints (Eqs. (2.2) and (2.3) with 𝑎 = 0)
will break strong hyperbolicity of the system (Schoepe, Hilditch, and Bugner, 2018;
Hilditch and Schoepe, 2019). This can be avoided by either using constrained
transport approaches (Evans and J. F. Hawley, 1988) or extending the system us-
ing effective Lagrange multipliers (Dedner et al., 2002). We here adopt the latter
approach. The extended (or augmented) Maxwell equations (Komissarov, 2007;
Palenzuela, 2013) are

∇𝑎 (𝐹𝑎𝑏 + 𝑔𝑎𝑏𝜓) = −J 𝑏 + 𝜅𝜓𝑛𝑏𝜓 (2.11)

∇𝑎 ( 𝐹∗ 𝑎𝑏 + 𝑔𝑎𝑏𝜙) = 𝜅𝜙𝑛𝑏𝜙 (2.12)

∇𝑎J 𝑎 = 0 (2.13)

where auxiliary scalar fields 𝜓 and 𝜙 propagate divergence constraint violations of
electric field and magnetic field. 𝜅𝜓 and 𝜅𝜙 are damping constants, leading to an
exponential damping of the constraints in the characteristic timescales 𝜅−1

𝜓,𝜙
.

Performing a standard 3+1 decomposition of the extended Maxwell’s equations
(2.11)–(2.13) using the normal vector 𝑛𝑎 and the spatial projection operator ℎ𝑎

𝑏
≡

𝛿𝑎
𝑏
+ 𝑛𝑎𝑛𝑏, we get

(𝜕𝑡 − L𝛽)𝐸 𝑖 − 𝜀𝑖 𝑗 𝑘(3)𝐷 𝑗 (𝛼𝐵𝑘 ) + 𝛼𝛾𝑖 𝑗𝐷 𝑗𝜓 = −𝛼𝐽𝑖 + 𝛼𝐾𝐸 𝑖, (2.14a)
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(𝜕𝑡 − L𝛽)𝐵𝑖 + 𝜀𝑖 𝑗 𝑘(3)𝐷 𝑗 (𝛼𝐸𝑘 ) + 𝛼𝛾𝑖 𝑗𝐷 𝑗𝜙 = 𝛼𝐾𝐵𝑖, (2.14b)

(𝜕𝑡 − L𝛽)𝜓 + 𝛼𝐷𝑖𝐸 𝑖 = −𝛼𝜅𝜓𝜓 + 𝛼𝑞, (2.14c)

(𝜕𝑡 − L𝛽)𝜙 + 𝛼𝐷𝑖𝐵𝑖 = −𝛼𝜅𝜙𝜙, (2.14d)

(𝜕𝑡 − L𝛽)𝑞 + 𝐷𝑖 (𝛼𝐽𝑖) = 𝛼𝑞𝐾, (2.14e)

where 𝐷𝑖 = ℎ𝑎
𝑖
∇𝑎 is the spatial covariant derivative, 𝐾 is the trace of extrinsic

curvature, 𝑞 = −𝑛𝜇J 𝜇 is the electric charge density measured by an Eulerian
observer, and 𝐽𝑖 = ℎ𝑖𝑎J 𝑎 is the spatial electric current density. Here we also
defined the spatial Levi-Civita tensor associated with the spatial metric as

𝜀𝑎𝑏𝑐(3) ≡ 𝑛𝑑𝜀𝑑𝑎𝑏𝑐 . (2.15)

The Lie derivative along the shift vector applied to a spatial vector 𝐸 𝑖 is

L𝛽𝐸
𝑖 = 𝛽 𝑗𝜕𝑗𝐸

𝑖 − 𝐸 𝑗𝜕𝑗 𝛽
𝑖,

and same for 𝐵𝑖 on the left hand side of Eq. (2.14), while it is simply a directional
derivative (e.g. L𝛽 (𝑞) = 𝛽𝑖𝜕𝑖𝑞) when applied to a scalar variable.

Evolution equations (2.14) can be cast into conservative form

𝜕𝑡U + 𝜕𝑗F 𝑗 = S, (2.16)

with evolved variables

U =
√
𝛾



𝐸 𝑖

𝐵𝑖

𝜓

𝜙

𝑞


≡



�̃� 𝑖

�̃�𝑖

�̃�

𝜙

𝑞


, (2.17)

fluxes

F 𝑗 =



−𝛽 𝑗 �̃� 𝑖 + 𝛼(𝛾𝑖 𝑗 �̃� − 𝜀𝑖 𝑗 𝑘(3) �̃�𝑘 )

−𝛽 𝑗 �̃�𝑖 + 𝛼(𝛾𝑖 𝑗𝜙 + 𝜀𝑖 𝑗 𝑘(3) �̃�𝑘 )

−𝛽 𝑗 �̃� + 𝛼�̃� 𝑗

−𝛽 𝑗𝜙 + 𝛼�̃� 𝑗

𝐽 𝑗 − 𝛽 𝑗𝑞


, (2.18)
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and source terms

S =



−𝛼√𝛾𝐽𝑖 − �̃� 𝑗𝜕𝑗 𝛽
𝑖 + �̃�(𝛾𝑖 𝑗𝜕𝑗𝛼 − 𝛼𝛾 𝑗 𝑘Γ𝑖

𝑗 𝑘
)

−�̃� 𝑗𝜕𝑗 𝛽𝑖 + 𝜙(𝛾𝑖 𝑗𝜕𝑗𝛼 − 𝛼𝛾 𝑗 𝑘Γ𝑖
𝑗 𝑘
)

�̃� 𝑘𝜕𝑘𝛼 + 𝛼𝑞 − 𝛼�̃�(𝐾 + 𝜅𝜓)

�̃�𝑘𝜕𝑘𝛼 − 𝛼𝜙(𝐾 + 𝜅𝜙)

0


, (2.19)

where Γ𝑖
𝑗 𝑘

are the Christoffel symbols associated with the spatial metric. A pre-
scription for the electric current density 𝐽𝑖 (Ohm’s law) needs to be supplied to close
the system.

2.2.2 Force-free limit
In the magnetospheres of neutron stars and black holes, we expect copious produc-
tion of electron-positron pairs (Goldreich and Julian, 1969). The resulting plasma
will be highly conductive, effectively screening electric field components parallel to
the magnetic field. In addition, the magnetization of the plasma will be very high,
allowing us to consider the limit in which the Lorentz force density vanishes and
the plasma becomes force-free.

The force-free conditions are given as

𝐹𝑎𝑏J𝑏 = 0, (2.20)
∗𝐹𝑎𝑏𝐹𝑎𝑏 = 0, (2.21)

𝐹𝑎𝑏𝐹𝑎𝑏 > 0. (2.22)

In terms of 𝐸 𝑖, 𝐵𝑖, 𝑞 and 𝐽𝑖, these conditions are

𝑞𝐸 𝑖 + 𝜀𝑖 𝑗 𝑘(3) 𝐽 𝑗𝐵𝑘 = 0, (2.23)

𝐸𝑎𝐵𝑎 = 𝐸
𝑖𝐵𝑖 = 0, (2.24)

𝐵2 − 𝐸2 > 0, (2.25)

where 𝐸2 = 𝐸𝑎𝐸
𝑎 = 𝐸𝑖𝐸

𝑖 and 𝐵2 = 𝐵𝑎𝐵
𝑎 = 𝐵𝑖𝐵

𝑖. The first condition (2.23)
corresponds to the vanishing Lorentz force density, and the second one (2.24) shows
the screening of electric field along magnetic field lines. The third condition (2.25)
is called magnetic dominance, and violation of this constraint flags the breakdown
of force-free electrodynamics; characteristic speeds associated with Alfvén modes
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become complex and Maxwell equations are no longer hyperbolic (Pfeiffer and Mac-
Fadyen, 2013). Physically, 𝐸2 ≈ 𝐵2 means that the plasma drift speed approaches
the speed of light, beyond which the FFE approximation breaks down.

The force-free conditions also give constraints on the electric current density.
Eq. (2.23) gives 𝐽𝑖 in the form

𝐽𝑖 = 𝑞
𝜀
𝑖 𝑗 𝑘

(3)𝐸 𝑗𝐵𝑘

𝐵2 + (𝐽𝑙𝐵𝑙)
𝐵2 𝐵𝑖, (2.26)

which leaves the parallel component 𝐽𝑙𝐵𝑙 undetermined. The first term on the
right hand side of (2.26), the drift current, is perpendicular to both electric and
magnetic fields and shows that electric charge moves collectively with the drift
velocity 𝑣𝑑 = 𝜀𝑖 𝑗 𝑘(3)𝐸 𝑗𝐵𝑘/𝐵

2.

Requiring Eq. (2.24) to always be satisfied, we obtain a closed form expression of
the parallel current 𝐽𝑙𝐵𝑙 as (McKinney, 2006a; Paschalidis and Shapiro, 2013)

𝐽𝑙𝐵
𝑙 = 𝜖

𝑖 𝑗 𝑘

(3)
(
𝐵𝑖𝐷 𝑗𝐵𝑘 − 𝐸𝑖𝐷 𝑗𝐸𝑘

)
− 2𝐸 𝑖𝐵 𝑗𝐾𝑖 𝑗 , (2.27)

which reduces to
𝐽𝑙𝐵

𝑙 = 𝐵𝑖 (∇ × 𝐵)𝑖 − 𝐸 𝑗 (∇ × 𝐸) 𝑗 (2.28)

in the special relativistic limit (Gruzinov, 1999).

The parallel current Eq. (2.27) contains the spatial derivatives of 𝐸 and 𝐵, the
dynamical variables that we evolve. Including these derivatives in the source terms
changes the principal part of the Maxwell PDE system, and the resulting system of
equations is not strongly hyperbolic (Pfeiffer and MacFadyen, 2013).

A straightforward way to keep the force-free conditions satisfied in numerical sim-
ulations is to algebraically impose Eq. (2.24) and (2.25) in the time evolution
(Spitkovsky, 2006; Palenzuela, Garrett, et al., 2010; Petri, 2012; Parfrey, Be-
loborodov, and Hui, 2012; Cao, L. Zhang, and Sun, 2016; A. Y. Chen, Yuan, and
Vasilopoulos, 2020; Mahlmann, Aloy, et al., 2021a). This commonly employed ap-
proach exactly ensures the force-free conditions, but reduces the numerical accuracy
to first-order convergence in time.

As we aim to implement a higher-order numerical scheme for GRFFE, we consider
an alternative strategy. We adopt the driver term approach first implemented in Alic
et al. (2012) and Moesta et al. (2012) and applied in later studies (e.g. Most and
Philippov, 2020; Most and Philippov, 2022). In this method, a stiff relaxation term
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is added to the electric current density 𝐽𝑖 to continuously damp the violation of the
force-free conditions. We adopt the following electric current density prescription
(Most and Philippov, 2022)

𝐽𝑖 = 𝑞
𝜀
𝑖 𝑗 𝑘

(3)𝐸 𝑗𝐵𝑘

𝐵2 + 𝜂
[
𝐸 𝑗𝐵

𝑗

𝐵2 𝐵𝑖 + R(𝐸2 − 𝐵2)
𝐵2 𝐸 𝑖

]
, (2.29)

whereR(𝑥) ≡ max(𝑥, 0) is the rectifier function and 𝜂 is a relaxation parameter. The
parallel current consists of the terms in the square bracket in Eq. (2.29), each being
proportional to the violation of the force-free conditions (2.24) and (2.25). They
are coupled to the evolution of electric field and drive the solution to the force-free
limit with the characteristic damping time scale 𝜂−1. The limiting case 𝜂 → ∞
corresponds to the ideal force-free limit.

A caveat to the FFE simulations with a parallel electric current is that the energy
loss from an Ohmic dissipation 𝐽𝑖𝐸 𝑖 is removed out from and no further tracked
in simulations; therefore, total electromagnetic energy is not conserved.4 While
numerical dissipation will also contribute to the energy loss, the amount of energy
dissipation in current sheets (corresponding to the rectifier term in Eq. (2.29))
dominates, albeit likely at a different rate compared to a full kinetic reconnection
model (e.g. Cerutti, Philippov, Parfrey, et al., 2015; Philippov, Cerutti, et al., 2015).

2.3 Numerical implementation
In this section, we describe the details of our numerical scheme and its implementa-
tion. We present our method of spatial discretization in Sec. 2.3.1, time integration
in Sec. 2.3.2, and the adaptive discontinuous Galerkin-finite difference hybrid solver
in Sec. 2.3.3. Our numerical scheme described here is implemented in the open
source numerical relativity code SpECTRE (Deppe, Throwe, et al., 2025).

2.3.1 Domain decomposition and spatial discretization
The computational domain typically used in astrophysics or numerical relativity
simulations is simple enough to be decomposed into a set of non-overlapping de-
formed cubes. We divide the domain into these deformed cubes, which are called
subdomain elements (hereafter simply elements). Neighboring elements share their
boundaries at an element interface between them.

Within each element, a spectral expansion can be performed to represent a field of
interest. We also need to define a prescription for handling boundary corrections

4In a MHD model, it is captured as the same amount of increase in the internal (thermal) energy
of the plasma.
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from element interfaces. This family of numerical methods is broadly called spec-
tral element methods (Kopriva, 2009). We choose to adopt the nodal discontinuous
Galerkin discretization (Hesthaven and Warburton, 2007), so our approach is for-
mally referred to as a discontinuous Galerkin spectral element method (DG-SEM),
which is often simply called a discontinuous Galerkin (DG) method.

Each element is mapped to a reference cube spanning {𝜉1, 𝜉2, 𝜉3} ∈ [−1, 1]3 in the
reference coordinate system {𝜉𝑖}. A coordinate map 𝑥𝑖 (𝜉 𝑗 ) relates the reference
coordinates 𝜉 𝑗 to physical coordinates 𝑥𝑖. A set of collocation points {𝜉1

𝑖
, 𝜉2

𝑗
, 𝜉3
𝑘
}

are chosen to represent the solution

𝑢(𝜉) =
∑︁
𝑖, 𝑗 ,𝑘

𝑢𝑖, 𝑗 ,𝑘𝜙𝑖, 𝑗 ,𝑘 (𝜉) (2.30)

where 𝑢𝑖, 𝑗 ,𝑘 = 𝑢(𝜉1
𝑖
, 𝜉2

𝑗
, 𝜉3
𝑘
) is the value of the solution at the collocation point

(𝜉1
𝑖
, 𝜉2

𝑗
, 𝜉3
𝑘
), and 𝜙𝑖, 𝑗 ,𝑘 (𝜉) is the nodal basis function

𝜙𝑖, 𝑗 ,𝑘 (𝜉1
𝑙 , 𝜉

2
𝑚, 𝜉

3
𝑛) =


1, for 𝑖 = 𝑙, 𝑗 = 𝑚, 𝑘 = 𝑛

0, otherwise

 . (2.31)

We use the tensor product basis

𝜙𝑖, 𝑗 ,𝑘 (𝜉) = 𝑙𝑖 (𝜉1) 𝑙 𝑗 (𝜉2) 𝑙𝑘 (𝜉3) (2.32)

where 𝑙𝑑 (𝑥) is the 1D Lagrange polynomial interpolating collocation points along
the 𝑑-th axis. We choose to use an isotropic DG mesh with the same polynomial
degree 𝑁 for each spatial dimension. The resulting nodal expansion of the solution
is

𝑢(𝜉) =
𝑁∑︁
𝑖=0

𝑁∑︁
𝑗=0

𝑁∑︁
𝑘=0

𝑢𝑖, 𝑗 ,𝑘 𝑙𝑖 (𝜉1)𝑙 𝑗 (𝜉2)𝑙𝑘 (𝜉3). (2.33)

The solution (2.33) can be also represented in a modal form

𝑢(𝜉) =
𝑁∑︁
𝑝=0

𝑁∑︁
𝑞=0

𝑁∑︁
𝑟=0

𝑐𝑝,𝑞,𝑟 𝐿𝑝 (𝜉1)𝐿𝑞 (𝜉2)𝐿𝑟 (𝜉3). (2.34)

where 𝐿𝑝 (𝑥) is the Legendre polynomial of degree 𝑝. See also Teukolsky (2016)
for a detailed derivation of formulating the DG scheme in a curved spacetime.

In this article, we denote a scheme using the 𝑁-th degree polynomial basis (i.e.
𝑁 + 1 collocation points) in each spatial dimension as a DG-𝑃𝑁 scheme. For
instance, a DG-𝑃5 scheme uses 63 collocation points in each element and a solution
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is approximated as a fifth degree polynomial in each spatial direction. When the
solution is smooth, a DG-𝑃𝑁 scheme exhibits O(𝐿𝑁+1) spatial convergence where
𝐿 is the spatial size of an element.

We mainly use a DG-𝑃5 scheme, although we present results for different DG orders
where necessary. We use the Legendre-Gauss-Lobatto collocation points with the
mass lumping approximation (Teukolsky, 2015a). For a reduced aliasing error, an
exponential filter is applied to rescale the modal coefficients 𝑐𝑝,𝑞,𝑟 in Eq. (2.34):

𝑐𝑝,𝑞,𝑟 → 𝑐𝑝,𝑞,𝑟

∏
𝑛={𝑝,𝑞,𝑟}

exp
[
−𝑎

( 𝑛
𝑁

)2𝑏
]

(2.35)

after every DG time (sub)step. We use 𝑎 = 36 and 𝑏 = 50, which effectively zeros
only the highest mode (𝑖 = 𝑁) and leaves other modes intact. Filtering out the
highest mode reduces expected spatial converge of a DG-𝑃𝑁 scheme from O(𝐿𝑁+1)
to O(𝐿𝑁 ). We note that this is a common practice adopted in spectral methods for
curing aliasing and has marginal effects on capturing discontinuities, since typically
a Gibbs phenomenon near a discontinuity excites not only the highest mode but
multiple high modes simultaneously.

2.3.2 Time integration
Based on the spatial discretization presented in the previous section, evolution
equations can be integrated over time using the method of lines.

The maximum admissible time step size for a DG-𝑃𝑁 scheme is (Cockburn and
Shu, 2001; Dumbser, Zanotti, Loubère, et al., 2014)

Δ𝑡 ≤ 𝐿

𝜆max(2𝑁 + 1)
𝑐

𝐷
(2.36)

where 𝐿 is the minimum (Cartesian) edge length of an element, 𝜆max is the maximum
characteristic speed inside the element, 𝑐 is a stability constant specific to a time
stepper, which is usually of order unity,5 and 𝐷 is the number of spatial dimensions.

However, usage of a nontrivial coordinate map 𝑥(𝜉) and a complex geometry of
elements deforms the spatial distribution of grid points, and an actual upper bound
can differ from Eq. (2.36). As a practical strategy, we adopt the following expression

Δ𝑡 = 𝑓
(Δ𝑥)min
𝜆max

𝑐

𝐷
(2.37)

5For example, the classic 4th-order Runge-Kutta method has 𝑐 ≈ 1.39 (Hairer, Nørsett, and
Wanner, 1993).
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for the DG time step size, where (Δ𝑥)min is the minimum grid spacing between DG
collocation points in physical coordinates and 𝑓 is the CFL factor.

In order to keep the force-free constraint violations as small as possible during
evolution, we aim to use a large value of the damping coefficient 𝜂 for the driver
term in Eq. (2.29), possibly up to 𝜂Δ𝑡 ≳ 10. This implies that the characteristic time
scale of constraint damping 𝜂−1 is smaller than the time step size, which introduces
stiffness in evolution equations and makes explicit time integration unstable unless
an unreasonably small time step is used.

To address the stiffness from rapid constraint damping, we adopt the implicit-
explicit (IMEX) time stepping technique. In particular, we make use of the IMEX-
SSP3(4,3,3) scheme by Pareschi and Russo (2005), which is third order in time.
In this IMEX approach, we evolve all quantities explicitly using a standard 3rd-
order Runge-Kutta scheme, and treat only the stiff part of the source terms (2.19)
implicitly. Specifically, in the evolution of electric fields this requires us to solve the
following nonlinear algebraic equation at all substeps,

𝐸 𝑖 = (𝐸 𝑖)∗ − 𝛼𝜂Δ𝑡′
[
𝐸 𝑗𝐵

𝑗

𝐵2 𝐵𝑖 +
R

(
𝐸2 − 𝐵2)
𝐵2 𝐸 𝑖

]
(2.38)

where (𝐸 𝑖)∗ are provided values and Δ𝑡′ is an IMEX-scheme-dependent corrector
step size. When 𝐸2 < 𝐵2, the solution to this equation is analytical whereas
in general cases we employ a three-dimensional Newton-Raphson solver with a
specific initial guess.

In addition to the stiff electric current, we also apply the IMEX time integration to
the hyperbolic divergence cleaning parts to ensure stability,

𝜓 = 𝜓∗ − 𝜅𝜓Δ𝑡′𝜓, (2.39)

𝜙 = 𝜙∗ − 𝜅𝜙Δ𝑡′𝜙, (2.40)

which are linear equations and have exact analytic inversions.

Because of the simplicity of the implicit equations in our evolution system, the cost
overhead from using an IMEX scheme is less than 5% of the total runtime. Being
able to use much larger time steps more than compensates for this.

2.3.3 The discontinuous Galerkin-finite difference hybrid method
This section describes our implementation of the DG-FD hybrid solver for GRFFE
equations. We closely follow the original implementation of Deppe, Hébert, et al.
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(2022), which was designed for GRMHD, with several improvements and adapta-
tions.

Overview of the algorithm

Consider an element performing a time step on the DG grid. After each substep of
the time integrator, the candidate solution is monitored by the troubled cell indicator
(TCI) to check if the solution is admissible on the DG grid. If it is admissible, we
continue with the updated solution on the DG grid. If the candidate solution is
inadmissible, the troubled cell indicator is flagged, we undo the DG substep, project
the DG solution onto the sub-element FD grid, then repeat the substep using the FD
solver. Evolution on the FD grid proceeds in a similar way; after every time step the
solution gets monitored by the troubled cell indicator, which determines whether
the solution needs to stay on the FD grid or it is admissible on the DG grid. If the
candidate solution looks admissible on the DG grid, the solution is projected back
to the DG grid and the evolution proceeds using the DG solver.

An optimal number of sub-element finite-difference grid points for a DG-𝑃𝑁 scheme
is 2𝑁 + 1 (Dumbser, Zanotti, Loubère, et al., 2014). We follow such a prescription,
and an element with (𝑁 + 1)𝐷 collocation points on the DG grid is switched to
(2𝑁 + 1)𝐷 FD cells with a uniform grid spacing Δ𝜉𝑖 = 2/(2𝑁 + 1) in the reference
coordinates.

At the code initialization phase, all physical quantities are evaluated on the FD grid
to avoid potential spurious oscillations arising from a spectral representation of the
initial data. Next, each element projects evolved variables onto the DG grid, then
either switches to the DG grid or stays on the FD grid depending on the decision
made by the troubled cell indicator.

The projection algorithm of scalar and tensor quantities between DG and FD grids
is described in detail in Deppe, Hébert, et al. (2022). We use a general sixth-order
accurate interpolation scheme. Since the scheme is general and does not respect the
physical constraints,6 repeated applications (i.e., switching back and forth between
DG and FD too frequently) can introduce spurious errors in the solution. To suppress
this behavior, we need to design the troubled cell indicator to apply tighter criteria
when switching back from FD to DG grid.

6For example, the interpolation scheme between the DG and FD grids does not strictly preserve
the force-free conditions or the divergence (Gauss) constraints.
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Finite difference solver

Evolution on the finite-difference grid is performed using a conservative finite-
difference scheme (Shu and Osher, 1988; Shu and Osher, 1989). For an element
using a DG-𝑃𝑁 scheme, we divide the reference coordinate interval [−1, 1] into
2𝑁 + 1 finite-difference cells and project a solution from the DG grid onto cell-
centered values {𝑈𝚤}. A flux-balanced law (2.16) is discretized as

𝑑𝑈𝚤

𝑑𝑡
+

(
𝜕𝜉𝑘

𝜕𝑥 𝑗

) �̂� 𝑗
𝚤+1/2 − �̂�

𝑗

𝚤−1/2

Δ𝜉𝑘
= 𝑆(𝑈𝚤) (2.41)

where we used hat indices to label FD cells and plain indices to label spatial
directions.

Computation of a numerical flux �̂� 𝑗
𝚤+1/2 is dimensionally split, and closely follows

that of the ECHO scheme (Del Zanna, Zanotti, et al., 2007). At the left and right
sides of the FD cell interface 𝑥𝚤+1/2, evolved variables are reconstructed using their
cell-centered values {𝑈𝚤}. In our implementation, densitized electric current density
𝐽𝑖 is also reconstructed to compute fluxes associated with 𝑞 (see also Palenzuela,
2013).

Once face-centered values 𝑈𝐿,𝑅

𝚤+1/2 are reconstructed, the interface Riemann flux
𝐹∗
𝚤+1/2 is computed using the Rusanov (local-Lax-Friedrichs) flux formula (Rusanov,

1962). Since the principal part of our equations is linear, this solver will reduce to
the exact solution (see Dedner et al., 2002).

In order to achieve high-order accuracy, a high-order derivative corrector is added
to the interface Riemann flux to obtain the final numerical flux:

�̂�𝚤+1/2 = 𝐹∗
𝚤+1/2 − 𝐺

(4)
𝚤+1/2. (2.42)

The original ECHO scheme uses the Riemann fluxes from cell interfaces (e.g.
𝐹∗
𝚤±3/2) for the higher-order correction term 𝐺

(4)
𝚤+1/2. Since we do not employ a

constrained-transport algorithm requiring a consistent and fixed stencil, we opt for
simpler cell-centered fluxes (e.g., 𝐹𝚤±1) for a more compact stencil and reduced
amount of data communications (see Nonomura and Fujii, 2013; Y. Chen, Tóth, and
Gombosi, 2016).

For the simulations presented in this work, we use the WENO5-Z reconstruction
with the nonlinear weight exponent 𝑞 = 2 (Borges et al., 2008). The high-order
finite-difference corrector is currently implemented only on Cartesian meshes. We
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therefore use it for all of our one-dimensional test problems, where we assess
numerical convergence of the scheme, and defer to future work its applications
in multi-dimensional contexts. Consistent with previous assessments, we find it
sufficient to use only a fourth-order accurate derivative correction when combined
with WENO5-Z (Most, Papenfort, and Rezzolla, 2019).

Troubled cell indicator

In order to decide when to switch between DG and FD grids, our numerical scheme
requires a robust criterion to identify regions of non-smoothness. Such an approach
somewhat shares its idea with popular adaptive-mesh-refinement criteria. These
criteria are inherently problem dependent, and an optimal design of the troubled
cell indicator is at the heart of the DG-FD hybrid method. Requirements on the
indicator include

(i) A relatively low computational cost

(ii) Early and robust detection of spurious oscillations developing on the DG grid.

(iii) Being unflagged as soon as the oscillation no longer exists, so that evolution
can be performed by a more efficient DG solver.

A solution approximated with an 𝑁-th degree polynomial on the DG grid has nodal
and modal representations where 𝐿𝑝 (𝑥) is the Legendre polynomial of degree 𝑝.
Motivated by the idea of the modal shock indicator devised by Persson and Peraire
(2006), we adopt the oscillation detection criterion√︄∑

𝑖 �̂�
2
𝑖∑

𝑖 𝑢
2
𝑖

> (𝑁 + 1 − 𝑀)−𝛼, (2.43)

where �̂� is the solution with the lowest 𝑀 modes filtered out i.e.

�̂�(𝜉) =
𝑁∑︁

𝑝=𝑀

𝑁∑︁
𝑞=𝑀

𝑁∑︁
𝑟=𝑀

𝑐𝑝,𝑞,𝑟 𝐿𝑝 (𝜉1)𝐿𝑞 (𝜉2)𝐿𝑟 (𝜉3), (2.44)

and the summations
∑
𝑖 in Eq. (2.43) with the nodal values 𝑢𝑖, �̂�𝑖 are performed over

all DG grid points. The exponent 𝛼 in the criterion (2.43) controls the sensitivity
of the indicator. Since we filter out the highest mode on the DG grid, the troubled
cell indicator needs to use 𝑀 ≥ 2. We use 𝑀 = 3 for the troubled cell indicator,
effectively monitoring power from the second and third highest modes. Empirically
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we find that 𝑀 ≲ ⌊(𝑁 + 1)/2⌋ provides robust detections of discontinuities without
the indicator being excessively triggered. We use 𝛼 = 4.0 following Deppe, Hébert,
et al. (2022) and Deppe et al. (2022).

To avoid an element switching back and forth between DG and FD grid in an
unnecessarily frequent manner, we use 𝛼′ = 𝛼 + 1 when an element is evolving on
FD grid. The tighter bound 𝛼′ ensures an extra smoothness of solution when the
grid is switched back to DG, preventing it from switching again to FD within only
a few time steps.

Depending on the specific type of an evolved system, one may consider additional
physical admissibility criteria (e.g. positivity of the mass density in the case of
hydrodynamics) for the troubled cell indicator. Since the only physical constraints
in our evolution system, the force-free conditions, are handled by the stiff parallel
electric current, we do not impose any physics-motivated criteria.

In our implementation of the DG-FD hybrid scheme for GRFFE, we adopt only one
criterion for the troubled cell indicator: application of the modal sensor (2.43) to the
magnitude of �̃�𝑖. While it looks somewhat oversimplified that the information of a
single scalar quantity is used for monitoring a system with nine evolution variables
{�̃� 𝑖, �̃�𝑖, �̃�, 𝜙, 𝑞}, we show in Sec. 2.4 that it is capable of detecting troubled elements
in a satisfactory manner.

2.3.4 Outer boundary condition
In 3D simulations, the outer boundary of the computational domain is usually placed
far out to avoid spurious boundary effects leaking into the internal evolution. Still,
in order to suppress potential unphysical noise or reflections at the outer boundary,
we implement a no-incoming Poynting flux boundary condition as follows. The
evolved variables at the outer boundary Uout = (�̃� 𝑖, �̃�𝑖, �̃�, 𝜙, 𝑞)out are prescribed as
follows. First, we copy the values of {�̃� 𝑖, �̃�𝑖, 𝑞} from the outermost grid points.
Then, if the Poynting flux is pointing inward, we set (�̃� 𝑖)out to zero. Divergence
cleaning scalar fields (�̃�)out and (𝜙)out are always set to zero.7 On the DG grid, Uout

is fed as an external state when computing the boundary correction terms. On the
FD grid, ghost zones are filled with Uout during the FD reconstruction step.

7Normally, the level of errors associated with the divergence cleaning part (𝜓, 𝜙) is much smaller
than that of the physical variables (𝐸 𝑖 , 𝐵𝑖 , 𝑞). Spurious reflections, if any, in the divergence cleaning
parts are subdominant to Poynting fluxes transmitting through the outer boundaries.
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Table 2.1: Simulation setup for 1D tests in Sec. 2.4.1. Grid resolution is increased
with 𝑛 = 0 (Low), 𝑛 = 1 (Med), and 𝑛 = 2 (High). For the FFE breakdown problem,
we use 𝑛 = 3 as a reference solution. Each resolution, if all elements are switched
to FD, is equivalent to 352 × 2𝑛 finite-difference grid points along the 𝑥 axis.

Domain size DG Grid points 𝜂 CFL factor Δ𝑡

( ×[−0.1, 0.1]2 ) ( × 62 ) (×2−𝑛)
Fast wave [−0.5, 1.5] (192 × 2𝑛) 106 0.3 9.22 × 10−4

Alfvén wave [−1.5, 1.5] 1.38 × 10−3

FFE breakdown [−0.5, 0.5] 4.61 × 10−4

2.4 Results
In this section, we test and assess our implementation of the DG-FD hybrid method
for evolving GRFFE equations with a suite of robust code validation problems.
We perform 1D tests in Sec. 2.4.1, curved spacetime tests with black holes in
Sec. 2.4.2, and pulsar magnetosphere tests in Sec. 2.4.3. We also discuss accuracy
and efficiency aspects of the DG-FD hybrid method in Sec. 2.4.4.

2.4.1 One-dimensional test problems
One-dimensional test problems evolve initial data that only has dependence in the 𝑥
direction. We use a computational domain consisting of a single element along the 𝑦
and 𝑧 axes, and impose periodic boundary condition on those directions. Our lowest
grid resolution has 32 elements along the 𝑥 axis, resulting in 192 DG grid points.
To facilitate comparisons with other results available in the literature, we note that
this resolution is equivalent to 352 grid points if all elements are switched to an FD
grid. The number of elements along the 𝑥 axis is increased by a factor of two to
run medium (64 elements) and high (128 elements) resolutions. Dirichlet boundary
conditions are applied at both ends of the 𝑥 axis. We use the CFL factor 0.3 and
parallel conductivity 𝜂 = 106. Simulation setups are summarized in Table 2.1.
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Figure 2.1: Fast wave at 𝑡 = 0.5. Top: comparison between the exact solution and
a numerical solution with the lowest grid resolution. Bottom: error of 𝐸𝑧 for three
different grid resolutions.

Fast wave

Originally due to Komissarov (2002), this test problem evolves a pure fast mode
propagating in an electrovacuum. The initial profile

𝐵𝑥 = 1.0,

𝐵𝑦 =


1.0 if 𝑥 < −0.1
−1.5𝑥 + 0.85 if − 0.1 < 𝑥 < 0.1
0.7 if 𝑥 > 0.1

 ,
𝐵𝑧 = 0,

𝐸𝑥 = 0, 𝐸 𝑦 = 0, 𝐸 𝑧 = −𝐵𝑦,

(2.45)

advects to the +𝑥 direction with the wave speed 𝜇 = 1. The analytic solution is
𝑄(𝑥, 𝑡) = 𝑄(𝑥 − 𝑡, 0) for any physical quantity 𝑄.

As shown in Figure 2.1, our scheme shows good convergence in flat regions with
increasing grid resolution. We observe that the accuracy and numerical convergence
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Figure 2.2: Stationary Alfvén wave at 𝑡 = 2.0. Same plot description as Fig. 2.1.

of the solution is substantially lost around two kinks present in the initial data
(corresponding to 𝑥 = 0.5± 0.1 in Fig. 2.1) at which spatial derivatives of fields are
discontinuous.

Alfvén wave

The stationary Alfvén wave problem (Komissarov, 2004a) has a transition layer
|𝑥 | < 0.1 that maintains a strong parallel current, and the accuracy of the test
results essentially reflects how well a numerical scheme can maintain the force-free
conditions.

In the rest frame of the wave, electric and magnetic fields are

𝐵𝑥 = 𝐵𝑦 = 1.0,

𝐵𝑧 =


1.0 if 𝑥 < −0.1
1.15 + 0.15 sin(5𝜋𝑥) if |𝑥 | < 0.1
1.3 if 𝑥 > 0.1

 ,
𝐸𝑥 = −𝐵𝑧, 𝐸𝑦 = 0, 𝐸𝑧 = 1.0.

(2.46)
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Figure 2.3: FFE breakdown problem. Top: initial data (𝑡 = 0) and a numerical
solution with the lowest grid resolution at 𝑡 = 0.02 and 𝑡 = 0.04. Bottom: Error of
𝐵𝑧 with respect to the reference solution.

The case with a nonzero wave speed −1 < 𝜇 < 1 can be tested by performing an
appropriate Lorentz boost to the initial conditions (2.46) (see e.g. Paschalidis and
Shapiro, 2013).

We show the result at 𝑡 = 2.0 in Figure 2.2. It needs to be noted that time derivatives
of fields at 𝑡 = 0, from the initial condition (2.46), vanish only if the parallel current
𝐽𝑖𝐵

𝑖 equals Eq. (2.27). In our approach, the region |𝑥 | < 0.1 initially develops a
small transient until the stiff relaxation term becomes fully active within several
time steps and effectively recovers the same value of 𝐽𝑙𝐵𝑙 . The amplitude of the
initial transient rapidly decreases at higher grid resolutions. Owing to the higher-
order accuracy of the discontinuous Galerkin discretization, our result shows good
convergence and low amounts of grid dissipation.
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FFE breakdown

The force-free electrodynamics breakdown problem, originally designed by Komis-
sarov (2002), demonstrates that a state initially satisfying the force-free conditions
can later develop into a state violating them. The initial state is

𝐵𝑥 = 1,

𝐵𝑦 = 𝐵𝑧 =


1 if 𝑥 < −0.1
−10𝑥 if − 0.1 < 𝑥 < 0.1
−1 if 𝑥 > 0.1

 ,
𝐸𝑥 = 0, 𝐸 𝑦 = 0.5, 𝐸 𝑧 = −0.5.

(2.47)

𝐵2 − 𝐸2 decreases over time toward zero in the transition layer |𝑥 | < 0.1 and the
magnetic dominance condition eventually breaks down.

Figure 2.3 shows numerical results. At 𝑡 ≳ 0.02, the rectifier term restoring the
𝐵2−𝐸2 > 0 condition is switched on and robustly maintains the magnetic dominance
at later times. Since this problem does not have a closed form solution, we perform
an additional higher resolution run using 256 elements along the 𝑥 axis and use it
as a reference solution to check the convergence. Similar to the fast wave test, we
note the loss of accuracy and numerical convergence near the kinks present in the
solution.

2.4.2 Three-dimensional tests: Black hole magnetospheres
We perform a set of 3D tests in a curved spacetime using black hole magnetosphere
problems. The grid structure of the computational domain is portrayed in Figure 2.4.
A spherical shell spanning the radius [𝑟in, 𝑟out] is split into six cubed-sphere wedges,
which are then further refined into elements. We use an equiangular coordinate map
along angular directions and a logarithmic map along the radial direction.

Exact Wald solution

Wald (1974) found a stationary electrovacuum solution of Maxwell’s equations in
the Kerr spacetime. The solution for the 4-potential is given as

𝐴𝑏 =
𝐵0
2
[(𝜕𝜙)𝑏 + 2𝑎(𝜕𝑡)𝑏], (2.48)

where 𝐵0 is the field amplitude, 𝜕𝑡 and 𝜕𝜙 are the Killing vector fields in time and
azimuthal directions, and 𝑎 = 𝐽/𝑀 is the rotational parameter of the Kerr black
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Figure 2.4: A half-cut illustration of the spherical grid used for black hole tests in
Sec. 2.4.2. Blue lines show boundaries between the cubed-sphere wedges, where
black lines show boundaries between each element (in this example, there are 8
elements in each wedge). The DG-𝑃5 mesh consisting of 63 Legendre-Gauss-
Lobatto collocation points is shown with gray lines. The total number of elements
in this example is 𝑁𝑟 × 𝑁Ω = 2 × 24.

hole. See Appendix B for the explicit expressions of the Wald solution (2.48) in the
spherical Kerr-Schild coordinates.

The Wald solution with 𝑎 = 0 satisfies the force-free conditions outside the horizon.
Electric and magnetic fields in Kerr-Schild coordinates are given by

�̃�𝑥 = �̃�𝑦 = 0, �̃�𝑧 = 𝐵0,

�̃�𝑥 = −2𝑀𝐵0𝑦

𝑟2 , �̃� 𝑦 =
2𝑀𝐵0𝑥

𝑟2 , �̃� 𝑧 = 0.
(2.49)

We evolve the initial condition (2.49) to 𝑡 = 5𝑀 and measure the L2 error norm

𝐿2(𝑣𝑖) ≡

√√
1
𝑛

𝑛∑︁
𝑘=1

[
(𝑣𝑥
𝑘
)2 + (𝑣𝑦

𝑘
)2 + (𝑣𝑧

𝑘
)2

]
, (2.50)

where 𝑣𝑖 = �̃�𝑖numerical − �̃�𝑖exact and 𝑛 is the number of grid points. The inner
domain boundary is placed at 𝑟in = 1.99𝑀 , at which no specific boundary condition
is imposed. A Dirichlet boundary condition is imposed at the outer boundary
𝑟out = 20𝑀 . Conductivity of the magnetosphere is turned off by setting 𝜂 = 0.
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Table 2.2: Convergence tests of different DG-𝑃𝑁 schemes on the exact Wald solution
(Sec. 2.4.2). For each level of grid resolution, we show the number of elements
used in radial and angular directions, time step size Δ𝑡/𝑀 , L2 error norm of �̃�𝑖 at
𝑡 = 5𝑀 , and the measured order of numerical convergence.

Resolution Elements Δ𝑡/𝑀 Error(�̃�𝑖) Convergence order
(𝑁𝑟 × 𝑁Ω)

DG-𝑃5 Low 1 × 6 2.90 × 10−2 8.71 × 10−4

Medium 2 × 24 1.15 × 10−2 2.74 × 10−5 4.99
High 4 × 96 5.76 × 10−3 4.11 × 10−8 4.72

DG-𝑃7 Low 1.62 × 10−2 1.23 × 10−5

Medium 6.29 × 10−3 1.51 × 10−7 6.35
High 3.14 × 10−3 1.29 × 10−9 6.87

DG-𝑃9 Low 1.03 × 10−2 2.75 × 10−7

Medium 3.95 × 10−3 2.03 × 10−9 7.08
High 1.97 × 10−3 8.04 × 10−12 7.98

In Table 2.2, we show convergence studies for different orders of DG schemes
𝑁 = 5, 7, 9. Measured convergence of DG-𝑃5 and DG-𝑃7 schemes is consistent
with the order of DG discretization. A somewhat slower convergence of the DG-𝑃9

scheme can be attributed to other limiting factors such as the truncation error from
time integration or the sixth-order interpolation from the initial FD grid to DG grid.
In all test cases shown in Table 2.2, all elements stayed on the DG grid throughout
the evolution.

Vacuum Wald problem

A time-dependent evolution of electromagnetic fields around a Kerr black hole can
be simulated with the initial magnetic fields given by the Wald solution (2.48) where
electric fields are set to zero at 𝑡 = 0. The system reaches a steady state that depends
on the spin of the black hole and electrical conductivity of the magnetosphere.

We first simulate the electrovacuum case. The background spacetime is the Kerr
metric with 𝑎 = 0.999𝑀 in spherical Kerr-Schild coordinates. The electrical
conductivity of the magnetosphere is switched off by setting 𝜂 = 0. We use
𝑁𝑟 × 𝑁Ω = 16 × 96 elements and use CFL factor 0.25, resulting in the time step
size Δ𝑡 = 1.97 × 10−3𝑀 . The inner domain boundary is located at 𝑟in = 𝑀 , and
the no-incoming Poynting flux boundary condition (see Sec. 2.3.4) is applied at the
outer domain boundary 𝑟out = 125𝑀 .

The evolution reaches a stationary state after 𝑡 ≳ 80𝑀 . We show the structure
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Figure 2.5: Vacuum Wald problem (at 𝑡 = 125𝑀) with black hole spin 𝑎 = 0.999𝑀 .
Top: Toroidal component of the magnetic field and its in-plane field lines on the
meridional plane. We show the interior of the outer horizon 𝑟 = 𝑟+ with a black
disk and the ergosphere with black solid lines. Bottom: A three-dimensional
visualization illustrates the magnetic field lines (silver lines) expelled from the
horizon (black sphere).
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Figure 2.6: Vacuum Wald problem: total magnetic flux through the upper hemi-
sphere of the outer horizon versus the spin of the Kerr black hole. Numerical results
at 𝑡 = 125𝑀 (black dots) are shown on top of the analytic prediction (dotted line,
Eq. (2.51)).

of magnetic fields at 𝑡 = 125𝑀 in Figure 2.5. The Kerr black hole expels mag-
netic field lines, successfully demonstrating the “Meissner effect” of black hole
electrodynamics (Komissarov and McKinney, 2007).

In a stationary state, total magnetic flux through the upper hemisphere of the outer
horizon has an analytic expression (King, Lasota, and Kundt, 1975)

Φ =

∮
𝑟=𝑟+, 𝑧>0

𝐵𝑖𝑑Σ𝑖 = 𝜋𝑟
2
+𝐵0

(
1 − 𝑎4

𝑟4
+

)
, (2.51)

where 𝑎 is the rotational parameter of the Kerr black hole and 𝑟+ = 𝑀+
√
𝑀2 − 𝑎2 is

the outer horizon radius in spherical Kerr-Schild coordinates. We perform additional
simulations varying the black hole spin 𝑎 using the same grid setup, all reaching
stationary states at 𝑡 ≳ 80𝑀 . We plot the obtained magnetic flux at 𝑡 = 125𝑀 in
Figure 2.6; our numerical results are in an excellent agreement with the analytic
prediction. The troubled cell indicator is flagged at several innermost elements only
for the highly spinning cases with 𝑎/𝑀 ≥ 0.90.

Magnetospheric Wald problem

First performed by Komissarov (2004a), this problem models a highly conductive
magnetosphere around a Kerr black hole. The initial condition is the same as the
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Figure 2.7: Magnetospheric Wald problem at 𝑡 = 125𝑀 . In both panels, the interior
of the outer horizon and the ergosphere are shown with a black disk and a thick
black line, respectively. Top: toroidal component of the electric current density and
magnetic field. In-plane magnetic field lines are shown with thin black lines in the
right half. Bottom: distribution of troubled elements evolved on the FD grid.
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vacuum Wald problem but now the electrical conductivity of the magnetosphere is
switched on. Compared to the electrovacuum case, the presence of highly conductive
plasma dramatically changes the behavior of the magnetosphere, since the parallel
components of electric fields 𝐸𝑖𝐵𝑖 can be neutralized by the parallel electric current.
There is no analytic solution to the evolution of this initial value problem, where
numerical simulations (e.g. Komissarov, 2004a; Paschalidis and Shapiro, 2013;
Etienne, Wan, et al., 2017; Parfrey, Philippov, and Cerutti, 2019; Mahlmann, Aloy,
et al., 2021a) show that the system reaches a quasisteady state that resembles the
analytically derived solutions of a stationary force-free magnetosphere (Nathanail
and Contopoulos, 2014).

We perform a test with the black hole spin 𝑎 = 0.999𝑀 using 𝑁𝑟 × 𝑁Ω = 32 × 384
elements with the CFL factor 0.25 (Δ𝑡 = 9.86×10−4𝑀). At this grid resolution, if all
elements are on the FD grid, there are 176 FD grid points along the 𝜃 direction with
the minimum radial grid spacingΔ𝑟 = 0.014𝑀 at the inner boundary 𝑟 = 𝑀 . Parallel
conductivity is set to 𝜂 = 105𝑀−1. Small numerical errors and resulting constraint
violations naturally introduce electric charge density into the computational domain
via the parallel current Eq. (2.29), filling up the magnetosphere. The system reaches
a stationary state at 𝑡 ≳ 80𝑀 .

We show the result at 𝑡 = 125𝑀 in Figure. 2.7. Inside the ergosphere, magnetic field
lines are dragged by the rotation of the black hole and a thin current sheet is formed
in the equatorial plane. The overall configuration and topology of the magnetic
fields agree well with previous results reported in the literature. The troubled cell
indicator is always flagged at the elements encompassing the equatorial current
sheet, while several more elements sparsely distributed near the ergosphere are also
switched to the FD grid (bottom panel of Fig. 2.7).

In the high electrical conductivity limit, magnetic field lines entering the ergosphere
end up crossing the outer horizon (Komissarov, 2007; Parfrey, Philippov, and
Cerutti, 2019), apart from a small portion reconnecting at the equatorial current
sheet. Because of a large grid resistivity in our setup (the ergosphere is radially
∼50 FD grid points across on the equatorial plane), we see that only about half
of the magnetic field lines penetrate the horizon. Some temporal variations of the
current sheet and magnetic field lines near the ergosphere are observed, but the
details of magnetic reconnection and plasmoid formations at the equatorial current
sheet (Parfrey, Philippov, and Cerutti, 2019) are not fully resolved at the current
grid resolution.
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2.4.3 Three-dimensional tests: Pulsar magnetospheres
A conducting sphere threaded with a dipolar magnetic field and rotating in free
space serves as a toy model of pulsars. In the flat spacetime, we set the initial
dipolar magnetic field as

𝐴𝜙 = 𝜇
(𝑥2 + 𝑦2)

(𝑟2 + 𝛿2)3/2 , (2.52)

where 𝜇 is the magnetic dipole moment, 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2, and 𝛿 is a small number
to regularize the field at 𝑟 = 0. All other variables, including electric fields, are set
to zero everywhere in the initial data.

Rotation of the star is turned on at 𝑡 = 0 with a fixed angular velocity Ω𝑧. Inside the
star (𝑟 ≤ 𝑅), we enforce the perfect conductor condition

𝐸 𝑖 + 𝜀𝑖 𝑗 𝑘(3)𝑣 𝑗𝐵𝑘 = 0, (2.53)

with the (rigid) rotation velocity field 𝑣𝑖 = 𝜀𝑖𝑧 𝑗(3)Ω𝑥 𝑗 . In practice this is implemented
by overwriting electric fields 𝐸 𝑖 with those consistent with (2.53) at every substep
of time integration. By this means, the magnetic field is effectively anchored and
corotates within 𝑟 ≤ 𝑅, whereas fields at 𝑟 > 𝑅 are freely evolved. For consistent
behavior of other evolved variables, we also fix �̃� = 0 and 𝑞 = 0 inside the star.
The magnetic part of the evolution equations is freely evolved everywhere. We use
𝛿 = 0.1𝑅 for this test.

Denoting the grid refinement level by an integer 𝑙, the computational domain consists
of an inner cube (23𝑙 elements) and six cubed-sphere wedges (𝑁𝑟 × 𝑁Ω = 2𝑙−3 × 22𝑙

elements for each) surrounding it, wrapped with an outer spherical shell (𝑁𝑟 ×𝑁Ω =

2𝑙−3×(6×22(𝑙−1))). The outer shell uses a logarithmic map along the radial direction
and is fixed to stay on the DG grid. Figure 2.8 shows the grid structure for 𝑙 = 4.
The wedges and the outer shell use an equiangular map for the angular directions,
leading to non-uniform sizes of the elements in the inner cube: elements closer to the
origin have smaller sizes. Vertices of the inner cube are located at 𝑟cube = 10

√
3𝑅,

and the cubed-sphere wedges fill the region up to 𝑟in = 20𝑅. The outer shell extends
to the outer domain boundary 𝑟out = 60𝑅, at which the no-incoming Poynting flux
boundary condition is imposed. At the 𝑙 = 4 grid resolution, the total number of
grid points is 𝑛1/3

grid ≈ 120 on the DG grid, and the radius of the rotator 𝑅 is a single
element wide at the center.

We test with the angular velocity Ω = (5𝑅)−1 and use a parallel conductivity
𝜂 = 105𝑅−1. Our simulation grid is rotated along the 𝑧 axis with the same angular
speed as the rotator.
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Figure 2.8: A zoom-in view of the computational domain used for the pulsar
magnetosphere tests in Sec. 2.4.3. A sphere domain is divided into an inner cube
at the center, a layer of cubed-sphere wedges, and an outer spherical shell (not fully
shown in this figure).

Aligned rotator

An aligned rotator (𝜃 = 0) is a simple model of a rotating magnetized neutron
star with magnetic moment aligned with the axis of rotation. This problem is
relatively simple because it is axisymmetric, and has been treated in a large volume
of studies (e.g., Goldreich and Julian, 1969; Contopoulos, Kazanas, and Fendt, 1999;
Spitkovsky, 2006; Komissarov, 2006; McKinney, 2006b; Parfrey, Beloborodov, and
Hui, 2012; Cao, L. Zhang, and Sun, 2016)

We use the 𝑙 = 5 resolution, which has 22 FD grid points across the rotator radius
and 𝑛1/3

grid ≈ 240 total grid points across the DG grid, along with the CFL factor 0.25
(Δ𝑡 = 6.03 × 10−3𝑅). Following an initial numerical transient, the magnetosphere
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Figure 2.9: Aligned rotator after two rotation periods. Magnetic field lines are
shown with white solid lines on the left half and black solid lines on the right.
Electric charge density is shown with a colormap on the left, and the distribution of
troubled elements is shown with gray shades on the right. The light cylinder radius
(𝑟LC = Ω−1) is shown with magenta dashed lines.

of the rotator gradually expands and the system reaches a quasi-steady state after
one rotation period.

In Figure 2.9, we show the distribution of electric charge density and the structure
of magnetic fields after two rotation periods (𝑡 = 20𝜋𝑅). Our scheme successfully
reproduces all characteristic features of the aligned rotator magnetosphere. An
equatorial current sheet is formed outside the light cylinder radius 𝑟LC = Ω−1, and
magnetic field lines far from the equatorial plane open up to form a monopole-
like configuration. Because of the grid resistivity, magnetic field lines 𝑟 ≳ 2𝑟LC

spuriously reconnect through the equatorial current sheet. The troubled cell indi-
cator faithfully tracks the current sheet and the regions with rapid variations of the
magnetic field, which are likely to develop oscillations on the DG grid, switching el-
ements to the more robust FD grid. The widening of the distribution of the troubled
elements is observed in the outer region 𝑟 > 10. While elements near the center
of the domain has a cubic shape, the elements in this outer region are deformed
(curved) cubes that build up an outer spherical shell (see Fig. 2.8), and the Jacobian
matrix that maps logical and physical coordinates is no longer constant within an
element. Ideally, this should have marginal effects on the behavior of the troubled
cell indicator, where empirically we find that the indicator becomes slightly more
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sensitive on the elements with curved shapes.

Oblique rotator

Having a misalignment angle between the magnetic moment and the rotation axis, an
oblique rotator serves as a more realistic model of astrophysical pulsars (Spitkovsky,
2006; Kalapotharakos and Contopoulos, 2009; Petri, 2012; Petri, 2016; Carrasco,
Palenzuela, and Reula, 2018). Since the configuration is no longer axisymmetric, a
full 3D simulation is required to study this problem.

We use the same simulation setup as the aligned rotator test, but tilt the initial
magnetic field by an inclination angle 𝜃 = 𝜋/4. The system reaches a steady state
after about one rotation period.

Figure 2.10 shows simulation snapshots on the equatorial plane (left panel) and
meridional plane (right panel) after two periods of rotation. Generic features of the
solution are similar to the aligned rotator. Beyond the light cylinder radius, a current
sheet is formed and magnetic field lines are opened up. Now that the magnetic axis
is misaligned with the rotation axis, the current sheet has a periodically modulated
curved 3D geometry, appearing as a spiral pattern on the equatorial plane. It is
clearly visible that the troubled cell indicator robustly captures and tracks magnetic
reconnection points and the spiral current sheet so that the solution can be evolved
on the FD grid in those regions. The remainder of the domain keeps evolving on
the DG grid, which is computationally more efficient.

One can compute the spin-down luminosity of the rotator

𝐿 =

∮
𝑆𝑖𝑑Σ

𝑖, (2.54)

where
𝑆𝑎 =

𝐸2 + 𝐵2

2
𝑛𝑎 + 𝜀𝑎𝑏𝑐(3) 𝐸𝑏𝐵𝑐 (2.55)

is the Poynting vector. We perform simulations with a lower grid resolution 𝑙 = 4
for different inclination angles and compute the spin-down luminosity Eq. (2.54)
after two rotation periods at 𝑟 = 6𝑅. Figure 2.11 shows the measured values. The
inclination dependence of the spin-down luminosity 𝐿 is well fitted with the relation
(Spitkovsky, 2006)

𝐿 = 𝐿0(𝑘1 + 𝑘2 sin2 𝜃) (2.56)

yielding 𝑘1 = 1.04 and 𝑘2 = 1.24, where 𝐿0 is the luminosity of the aligned
configuration (𝜃 = 0).
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Figure 2.10: Oblique rotator: Simulation snapshot on the equatorial (top) and
meridional (bottom) plane after two periods of rotation. Plotted physical quantities
and their visualizations are the same as Fig. 2.9.



36

0 15 30 45 60 75 90

Inclination Angle (◦)

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50

L
/L

0

Fit

Figure 2.11: Oblique rotator: Inclination angle dependence of the spin-down lumi-
nosity. Numerical results (black dots) are fitted with the formula (2.56), shown with
a gray dashed line.

2.4.4 Performance comparison between DG and FD grids
One of the main goals of this work is to assess the performance and cost-saving poten-
tial of using a DG-FD hybrid method for global FFE simulations of compact binary
magnetospheres. We do so in two steps. First, we establish an accuracy benchmark
to identify corresponding DG and FD resolution requirements for the same level of
accuracy. Second, using this optimal choice, we estimate the cost-savings/speed-up
factor of the DG-FD hybrid methods over traditional FD approaches for the problems
presented in this work.

Accuracy comparison

Depending on which scheme is taken as the baseline, the DG-FD hybrid method
can be interpreted either as a sophisticated shock-capturing technique for the DG
method, or an FD method that compresses a group of cells into a high-order spectral
representation on smooth regions (Deppe et al., 2022). The ‘exchange ratio’ between
these two grids, namely (𝑁 +1)𝐷 DG grid points and (2𝑁 +1)𝐷 FD grid points, has
been determined by equalizing the maximum admissible time step sizes (Dumbser,
Zanotti, Loubère, et al., 2014).
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Figure 2.12: Error norm of magnetic field over time from a test evolving a sinusoidal
fast wave in a periodic box (described in Sec. 2.4.4). For the FD runs, we perform
the test without (FD2) and with (FD4) the high-order flux correction.

An important follow-up question is comparing the accuracy between the DG and
FD grids when the number of grid points is subject to the above ratio. For example,
does a compression of 113 FD grid points into a 𝑃5 DG mesh with 63 grid points in
a smooth region lead to an increase or decrease in accuracy? Clearly, the answer is
highly dependent on the details of DG (e.g. order of the polynomial, how filtering is
applied) and FD solvers (e.g. reconstruction scheme, high-order corrections), which
needs to be assessed on a case-by-case basis.

However, it is desirable that the DG and FD solvers have similar levels of accuracy
in smooth regions. For instance, coupling a low-order DG scheme with a very
high-order FD reconstruction is not ideal since the evolution on the FD grid is
computationally too expensive considering the overall achievable accuracy with such
a choice. This may possibly make adopting a low-order FD scheme and using an
increased number of elements overall more efficient. On the other hand, hybridizing
a high-order DG scheme with a low-order FD scheme introduces a relatively large
numerical diffusion on the FD grid, artificially smearing out important features,



38

especially on smooth regions close to a discontinuity. In this case, the quality of the
solution from the DG-FD hybridization, despite its algorithmic complication, might
be no better than simply applying an aggressive DG limiter.

A desired sweet spot is setting the DG and FD discretization to have the same order
of convergence. As a fiducial case, we consider the same setup used for the 1D
test problems: a DG-𝑃5 with the highest mode filtered out and a FD solver using
the WENO5-Z reconstruction with 𝑞 = 2 along with the fourth-order derivative
corrector. Both discretizations are fifth-order convergent for smooth solutions.

We perform a simple numerical experiment as follows. The 1D fast wave problem
in Sec. 2.4.1 is modified to a smooth initial profile 𝐸𝑧 = −𝐵𝑦 = sin(2𝜋𝑥/𝜆) with the
wavelength 𝜆 = 2. The computational domain [0, 𝜆]3 is split into four elements in
each spatial direction. The initial condition is evolved up to 20 wave crossing times
using periodic boundary condition.

Figure 2.12 shows the time evolution of the error norm of the magnetic field.
While both the DG and FD discretizations used in this test have the same fifth-
order convergence, the FD grid has a twice smaller grid spacing and shows better
accuracy for 𝑡 ≤ 20𝜆. We note the boundedness of the error norm on the DG
grid, demonstrating a lower numerical dissipation and its resulting suitability for
problems involving long-range wave propagation. By contrast, the error norm on
the FD grid increases monotonically with time, approaching the same level of error
as the DG grid at 𝑡 ≥ 20𝜆.

We cautiously interpret this result in the following way. In long-term magnetospheric
simulations, replacing the group of (2𝑁 + 1)𝐷 FD cells with a DG-𝑃𝑁 spectral
mesh in smooth regions likely does not harm global accuracy. In simulations with
realistic astrophysical scenarios, the solution is not smooth everywhere but will have
localized large gradients such as current sheets separated by smooth regions. The
global numerical error will then be dominated by the regions with large gradients,
since a shock-capturing FD scheme (such as WENO5-Z) will fall back to a lower
order.

As an additional example, in Fig. 2.12 we also show results from an unfiltered
DG-𝑃5 scheme and an FD scheme without the high-order flux correction. The
accuracy of the solution on the FD grid is significantly lower without the high-order
corrections, the error being even higher than the DG grid using twice fewer grid
points per spatial dimension. The unfiltered DG-𝑃5 has a sixth-order convergence
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Figure 2.13: Single-core wall-clock speedup of the 1D Alfvén wave problem for
different fractions of elements using the FD grid. An ideal scaling between all-DG
and all-FD is shown with a dashed gray line. The measured scaling (yellow dashed
line) fit shows that a DG element runs 4.4× faster on average than an FD element.
10%/20% fraction of FD elements give 3.3× (5.2×) / 2.6× (3.5×) overall (ideal)
speedup as shown by the solid (dashed) gray line.

and shows smaller error than the FD grid at 𝑡 ≳ 10𝜆. As soon as the DG grid has a
higher order of discretization than the order of FD discretization, DG shows a better
accuracy in spite of having fewer grid points.

In summary, in particular for the hybridization of a DG-𝑃5 and a WENO5-Z FD
scheme, we conclude that switching from the FD to the DG grid results in a marginal
loss of local accuracy in smooth regions, which is unlikely to affect the global error
in actual simulations.

Efficiency

Having confirmed that the DG and FD grids show a comparable level of accuracy in
the setup we use, we now assess potential computational cost savings when using the
hybrid scheme. Since the number of grid points on the DG grid is fewer than the FD
grid by a factor of (11/6)3 = 6.2 in 3D, a similar amount of computational speedup is
naturally anticipated. In order to quantify the actual speedup in our implementation,
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we run the stationary Alfvén wave test (Sec. 2.4.1) using (𝑁𝑥 , 𝑁𝑦, 𝑁𝑧) = (8, 32, 8)
elements. We manually force elements to stay on the DG grid for 𝑦 > 0 and on the
FD grid for 𝑦 < 0.8 The fraction of elements running on the FD grid is changed
by shifting the upper and lower bounds of the 𝑦 coordinate. This allows us to
vary the fraction of FD to DG grid points in a controlled way. We additionally
disable parallelization and carry out all tests in this section on a single CPU core to
disentangle parallel scaling from algorithmic performance. Our fiducial benchmark
is then given by the overall wall-clock time of the evolution algorithm.

Figure 2.13 shows the relative speedup compared to the case when all elements are
using the FD grid. Since the DG solver does not involve computationally expensive
reconstruction steps and has less data communication, it can perform ∼50% more
grid point updates per second compared to the FD solver, which results in a combined
9.6× overall speedup. In absolute terms, the measured zone-cycles per CPU second
are 108K when all elements are on the DG grid, and 69K when all elements are on
the FD grid.

Assuming perfect scaling, the overall speedup relative to the all-FD case can be
estimated with the simple formula

1
𝑥 + (1 − 𝑥)/ 𝑓 (2.57)

where 𝑥 is the portion of elements using the FD grid and 𝑓 is the speedup factor of
the DG grid with respect to the FD grid. In Fig. 2.13, we show the ideal speedup
scaling with 𝑓 = 9.6 (gray dashed curve). However, our measurements show that
as soon as there is any portion of FD elements, the effective speedup factor drops
down to 𝑓 = 4.4, implying the presence of an algorithmic bottleneck. When half
the elements are using the FD grid, measured zone-cycles per second are 65K, even
a bit slower than the all-FD case. This somewhat unexpected drop in performance
is likely to be related to an extra interpolation step required at the interface between
DG and FD elements to convert the ghost zone data sent between the elements. As
a representative number, we quote the achievement of 3.3× (5.2×) / 2.6× (3.5×)
overall (ideal) speedup when 10% / 20% of elements are using the FD grid.

A separate, detailed profiling of the code suggests at most 10% overhead from the
controlling part of the DG-FD hybrid algorithm (applying the TCI to the solution and

8Therefore, in this controlled experiment, the overhead related to (i) execution of the TCI and (ii)
rolling back the time step on troubled elements are excluded. Each element still sends out ghost-zone
data to neighboring elements at every time step.
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undoing a time step if an element is troubled), which was excluded in the speedup
test described above. Comparing simulations of a smooth wave solution using the
DG grid on all elements with the adaptive DG-FD scheme turned on and off showed
less than 4% of difference in total runtime.

2.5 Conclusions
We have developed a new numerical scheme for general-relativistic FFE based on
a DG-FD hybrid method. The numerical scheme combines a high-order spatial
discretization with IMEX time stepping to handle stiff source terms associated with
maintaining the FFE constraints. We have further implemented a troubled cell
indicator capable of flagging spurious features in the DG evolution, allowing the
associated elements to transition to a more dissipative conservative FD scheme. In
this way, the scheme achieves high-order convergence for smooth problems while
robustly tracking and capturing large gradients present in solutions such as current
sheets. Our implementation is based on the open-source SpECTRE code and suc-
cessfully passes and reproduces a suite of standard test problems in one- and three-
dimensions. In particular, we achieve up to eighth-order numerical convergence in
smooth vacuum problems. A quantitative measure of the numerical resistivity in our
scheme, in particular using the approaches by (Rembiasz et al., 2017; Mahlmann,
Aloy, et al., 2021b), will be explored in future works.

In order to assess potential cost savings of this approach over more traditional FD-
only schemes, we have performed a quantitative assessment of its accuracy and
efficiency. We find that our approach has a potential to speed up FD simulations
by the factor of 2–3 with little to no loss of accuracy. We further demonstrate an
additional optimization potential of (in some cases) up to a factor 2, when compared
to the ideal speed up of the code. Similar or even larger performance gains have been
reported when adopting GPU-based parallelization strategies (e.g. Liska et al., 2022;
Del Zanna, Landi, et al., 2024; Grete, Glines, and B. W. O’Shea, 2021). Additional
improvements may come from a more optimal set of troubled cell indicator criteria or
a dynamic power monitor (e.g. see Szilágyi, 2014), which can potentially facilitate
a more economical grid switching between DG and FD.

The DG-FD hybrid scheme presented here is particularly well suited to study wave
propagation as well as accuracy-limited problems, such as steady-state twists or
magnetospheric explosion dynamics that evolve on long timescales (e.g. Parfrey,
Beloborodov, and Hui, 2013; Yuan, Spitkovsky, et al., 2019; Yuan, Y. Levin, et al.,
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2021). Such studies will be the subject of future work.
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C h a p t e r 3

GENERAL RELATIVISTIC MAGNETIZED
BONDI-HOYLE-LYTTLETON ACCRETION

Kim, Yoonsoo and Elias R. Most (2025). “General relativistic magnetized Bondi-
Hoyle-Lyttleton accretion with a spin-field misalignment: Jet nutation, polarity
reversals, and Magnus drag”. In: Physical Review D 111 (8), p. 083025. doi:
10.1103/PhysRevD.111.083025. url: https://link.aps.org/doi/10.
1103/PhysRevD.111.083025.

The dynamics of a black hole traveling through a plasma – a general relativistic
extension of the classic Bondi-Hoyle-Lyttleton accretion problem – can be related
to a variety of astrophysical contexts, including the aftermath of binary black hole
(BBH) mergers in gaseous environments. We perform three-dimensional general
relativistic magnetohydrodynamics simulations of Bondi-Hoyle-Lyttleton accretion
onto a spinning black hole when magnetic field of the incoming wind is inclined to
the spin axis of the black hole. Irrespective of inclination but dependent on the wind
speed, we find that the accretion flow onto the black hole can become magnetically
arrested, launching an intermittent jet whose formation is assisted by a turbulent
dynamo-like process in the inner disk. The upstream ram pressure of the wind bends
the jet, and confines the angular extent into which the magnetic flux tubes ejected
from quasi-periodic eruptions are released. Recoil from magnetic flux eruptions
drives strong oscillations in the inner accretion disk, resulting in jet nutation at the
outer radii and occasionally ripping off the inner part of the accretion disk. When the
incoming magnetic field is perpendicular to the spin axis of the black hole, we find
that the magnetic polarity of the jets can undergo a stochastic reversal. In addition to
dynamical friction, the black hole experiences a perpendicular drag force analogous
to the Magnus effect. Qualitative effects of the incoming magnetic field orientation,
the strength of the magnetization, and the incoming wind speed are investigated as
well.

3.1 Introduction
3.1.1 BBH merger remnant in AGN disk
The merger of a binary black hole (B. P. Abbott et al., 2016; B. P. Abbott et al.,
2019; R. Abbott et al., 2021a; R. Abbott et al., 2023) within the accretion disk
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of an active galactic nucleus (AGN) (N. C. Stone, Metzger, and Haiman, 2017;
Tagawa, Haiman, and Kocsis, 2020; Gröbner et al., 2020; Ishibashi and Gröbner,
2020; McKernan et al., 2022; Ford and McKernan, 2022; Kaaz, Schrøder, et al.,
2023) is thought to be one of major channels of the observed BBH mergers, but
is also an interesting astrophysical scenario within the context of multi-messenger
astronomy. If asymmetry is present in a black hole binary, the resulting anisotropic
emission of gravitational waves from the merger can impart a recoil onto the post-
merger remnant black hole (Gonzalez, Sperhake, et al., 2007; Campanelli et al.,
2007a). Since the kicked remnant will be moving through a gas-rich environment,
a luminous accretion flow onto or a relativistic jets from the BH may give rise to an
observable post-merger electromagnetic signal (Graham et al., 2020; K. Chen and
Z.-G. Dai, 2024).

The gaseous environment of the AGN disk can affect the long-term evolution of an
embedded BBH, often putting constraints on its orbital configuration. Newtonian
studies suggest that orbital and spin axes of a BBH embedded in a gaseous environ-
ment align over time (Bogdanovic, Reynolds, and Miller, 2007; Coleman Miller and
Krolik, 2013), and the orbit is driven to be aligned with the AGN disk plane as well
(Dittmann, Dempsey, and H. Li, 2024). These findings, put together, indicate that
both the orbital angular momentum and spin of the BBH are likely aligned with the
AGN disk. Unless anisotropic gravitational radiation induces a significant torque
on the system, the remnant would retain its prior spin direction.

Recent large-scale cosmological simulations revealed that the magnetic field of AGN
disks are predominantly toroidal (parallel to the disk plane) (Hopkins, Grudic, et al.,
2024; Hopkins, Squire, et al., 2024); see also Gaburov, Johansen, and Y. Levin
(2012) for an earlier work. The presence of mixed poloidal-toroidal configurations
is also in line with simulations of magnetized circumbinary disks around BBHs as
well (Most and H.-Y. Wang, 2024b; Most and H.-Y. Wang, 2024a). Overall, this
motivates a theoretical investigation on a recoiled black hole flying through a plasma
embedded with a magnetic field misaligned with the spin of the black hole.

3.1.2 Bondi-Hoyle-Lyttleton accretion
Bondi-Hoyle-Lyttleton (BHL) accretion (Bondi, 1952; Hoyle and Lyttleton, 1939)
is a classic problem in astrophysics involving a gravitational accretor traveling
through a uniform fluid. Despite being highly simplified, it can be applied to a
wide range of astrophysical systems including common envelope phases of binary
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star evolution (MacLeod and Ramirez-Ruiz, 2015; MacLeod, Antoni, et al., 2017;
Murguia-Berthier et al., 2017; López-Cámara, Moreno Méndez, and De Colle,
2020), wind-fed X-ray binaries (El Mellah, Sundqvist, and Keppens, 2018), star
clusters (Kaaz, Antoni, and Ramirez-Ruiz, 2019) or protoplanetary disks (Moeckel
and Throop, 2009).

Owing to its astrophysical significance, a large volume of analytical and numerical
studies exist in the literature on Newtonian (see Edgar, 2004; Foglizzo, Galletti,
and Ruffert, 2005 for a review) and relativistic regimes (Petrich, Shapiro, and
Teukolsky, 1988; Petrich, Shapiro, Stark, et al., 1989; Font and Ibanez, 1998b; Font,
Ibanez, and P. Papadopoulos, 1999; Font and Ibanez, 1998a; Dönmez, Zanotti, and
Rezzolla, 2011; Dönmez, 2012; Zanotti, Roedig, et al., 2011; Penner, 2011; Penner,
2013; Lora-Clavijo and Guzman, 2013; Koyuncu and Dönmez, 2014; Lora-Clavijo,
Cruz-Osorio, and Méndez, 2015; Blakely and Nikiforakis, 2015; Cruz-Osorio,
Lora-Clavijo, and Guzman, 2012; Cruz-Osorio and Lora-Clavijo, 2016; Tejeda and
Aguayo-Ortiz, 2019; Cruz-Osorio and Rezzolla, 2020; Gracia-Linares and Guzmán,
2015; Kaaz, Murguia-Berthier, et al., 2023; Gracia-Linares and Guzmán, 2023).

Basic physical scales associated with BHL accretion are the accretion radius1

𝑅𝑎 =
2𝐺𝑀
𝑣2
∞

, (3.1)

the accretion timescale
𝜏𝑎 =

𝑅𝑎

𝑣∞
=

2𝐺𝑀
𝑣3
∞

, (3.2)

and the Bondi-Hoyle-Lyttleton mass accretion rate

¤𝑀BHL = 𝜋𝑅2
𝑎𝜌∞𝑣∞ =

4𝜋𝐺2𝑀2𝜌∞

𝑣3
∞

, (3.3)

where 𝐺 is the gravitational constant, 𝑀 is the mass of the accreting object, 𝑣∞ is
the asymptotic relative velocity, and 𝜌∞ is the asymptotic mass density of the fluid.

A major challenge in computational approaches to this problem is its inherent multi-
scale nature, namely simultaneously resolving the size of the accreting object 𝑟0 and

1An alternate definition of the accretion radius exists in the literature

𝑅𝑎 =
2𝐺𝑀

𝑐2
𝑠,∞ + 𝑣2

∞
,

where 𝑐𝑠,∞ is the asymptotic sound speed of the incoming fluid. We adopt the definition (3.1)
throughout this chapter.
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the accretion radius 𝑅𝑎 on a single numerical grid. For example, a black hole with
mass 𝑀 has 𝑟0 ≈ 𝑟𝑔 where

𝑟𝑔 =
𝐺𝑀

𝑐2 (3.4)

is the gravitational radius of the black hole. The ratio between the two length scales
is

𝑅𝑎

𝑟𝑔
∼

(𝑣∞
𝑐

)−2
. (3.5)

Also, time integration needs to be performed at least several times of 𝜏𝑎 to reach a
steady state, which is longer than the dynamical timescale associated with the black
hole by a factor of

𝜏𝑎

(𝑟𝑔/𝑐)
∼

(𝑣∞
𝑐

)−3
. (3.6)

A large separation in both length and time scales, which is especially severe for
a compact accretor such as a black hole, rapidly increases the computational cost
for realistic values of 𝑣∞. As a result, many studies are often forced to assume an
unrealistically fast velocity of the BH relative to the fluid. Due to its high com-
putational cost, most numerical studies on general relativistic BHL accretion have
considered hydrodynamic flows on either 2D planar or 3D axisymmetric geometry.
However, inclusion of magnetic fields can dramatically alter the flow morphology,
and a restrictive nature of the assumed spatial symmetry might fail to fully capture
multi-dimensional effects. Following the first study of 2D magnetohydrodynamic
(Penner, 2011) and 3D hydrodynamic (Gracia-Linares and Guzmán, 2015) flows, the
first simulations of general relativistic magnetohydrodynamics (GRMHD) Bondi-
Hoyle-Lyttleton accretion in full 3D have been carried out only recently by Kaaz,
Murguia-Berthier, et al. (2023) and Gracia-Linares and Guzmán (2023). Each of
these studies respectively explored jet launching from the BH (Kaaz, Murguia-
Berthier, et al., 2023) and the effect of the BH spin-wind orientation on the shock
morphology (Gracia-Linares and Guzmán, 2023), which can only be properly cap-
tured in a 3D MHD simulation.

In this work, we perform GRMHD simulations of a spinning black hole traveling
through a fluid embedded with a magnetic field inclined to the spin axis of the
BH. The physical scenario is approximated by a relativistic Bondi-Hoyle-Lyttleton
accretion problem with a magnetized wind. We examine large-scale morphology
and temporal evolution of the accretion flow, both of which are closely related to
intermittent jet launching and magnetic flux eruptions from the BH. The impacts
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of magnetic field orientation, magnetization, and the wind speed are assessed by
systematically varying simulation parameters.

Another purpose of our numerical experiment is to measure the outflow luminosity
(power) and determine the efficiency with which ¤𝑀BHL𝑐

2 can be converted into an
energy outflow. The drag force exerted on the accreting BH is also measured and
its astrophysical implications are discussed.

This chapter is organized as follows. In Sec. 3.2, we describe our numerical setup
and methods. We present our results in two steps, focusing on a specific parameter
set first in Sec. 3.3, before generalizing it in Sec. 3.4. We present discussions on
the results in Sec. 3.5, then summarize our main findings along with limitations and
future perspectives in Sec. 3.6.

3.2 Methods
The background spacetime is set to the Kerr metric in (Cartesian) Kerr-Schild
coordinates (see also Appendix A). The spin of the black hole is aligned with the 𝑧
axis of the computational domain. The exact form of the spacetime metric is

𝑑𝑠2 = −𝑐2𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2 + 2𝐺𝑀𝑟3/𝑐2

𝑟4 + 𝑎2𝑧2

×
[
𝑐 𝑑𝑡 + 𝑟 (𝑥𝑑𝑥 + 𝑦𝑑𝑦) + 𝑎(𝑦𝑑𝑥 − 𝑥𝑑𝑦)

𝑟2 + 𝑎2 + 𝑧𝑑𝑧

𝑟

]2
,

(3.7)

where 𝑀 is the mass and 𝑎 is the spin parameter of the black hole (with the unit of
length). The coordinate variable 𝑟 is defined as

𝑥2 + 𝑦2

𝑟2 + 𝑎2 + 𝑧2

𝑟2 = 1 . (3.8)

We solve the equations of ideal GRMHD, which are given in terms of the rest-mass
density current

𝐽𝜇 = 𝜌𝑢𝜇 , (3.9)

and the stress-energy tensor,

𝑇 𝜇𝜈 =

(
𝜌 + 𝑒 + 𝑝 + 𝑏2

)
𝑢𝜇𝑢𝜈 +

(
𝑃 + 𝑏2

2

)
𝑔𝜇𝜈 − 𝑏𝜇𝑏𝜈 , (3.10)

with its electromagnetic component

𝑇
𝜇𝜈

EM = 𝑏2𝑢𝜇𝑢𝜈 + 𝑏2

2
𝑔𝜇𝜈 − 𝑏𝜇𝑏𝜈 , (3.11)
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where 𝜌 is the rest mass density, 𝑒 is the internal energy density, 𝑝 is the pressure, 𝑢𝜇

is the four-velocity, and 𝑏𝜇 the comoving magnetic field of the fluid, with 𝑏2 = 𝑏𝜇𝑏𝜇.
The electromagnetic field is evolved using the dual field strength tensor,

∗𝐹𝜇𝜈 = 𝑏𝜇𝑢𝜈 − 𝑢𝜇𝑏𝜈 . (3.12)

The evolution equations are

∇𝜇𝐽𝜇 = 0 , (3.13)

∇𝜇 ∗𝐹𝜇𝜈 = 0 , (3.14)

∇𝜇𝑇 𝜇𝜈 = 0 . (3.15)

We find it advantageous to define a normal magnetic field as2

�̄�𝑖 = ∗𝐹0𝑖 . (3.16)

We further model the gas dynamics using an ideal fluid equation of state

𝑝 = 𝑒 (Γ − 1) , (3.17)

where Γ = 5/3 is the adiabatic index.

3.2.1 Numerical setup
We numerically solve the ideal GRMHD system using AthenaK (J. M. Stone,
Mullen, et al., 2024), a rewrite of Athena++ code (J. M. Stone, Tomida, et al.,
2020) with a performance portability library Kokkos (Trott et al., 2022).

The computational domain [−40960𝑟𝑔, 40960𝑟𝑔]3 is discretized into a uniform
Cartesian grid with the base grid resolution 2563. 13 levels of static mesh refinement
are applied around the coordinate origin, with the innermost mesh [−5𝑟𝑔, 5𝑟𝑔]3 pro-
viding a resolution of ∼26 grid points per 𝑟𝑔. Time integration is performed using a
second order Runge-Kutta stepper, piecewise parabolic reconstruction (Colella and

2This definition of the magnetic field is not covariant, as it is different by a factor of 𝛼 (the
lapse function in 3+1 decomposition) from the Eulerian magnetic field 𝐵𝑖 commonly adopted in
numerical relativity or relativistic electrodynamics literature (e.g., Baumgarte and Shapiro, 2010;
Paschalidis and Shapiro, 2013; Komissarov, 2004a). However, we adopt the definition (3.16) here
since it simplifies the handling of the solenoidal (divergence-free) constraint on the magnetic field
as,

𝜕𝑖 �̄�
𝑖 = 0 ,

in the Kerr-Schild coordinates.
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Woodward, 1984), an HLLE Riemann solver (Harten, Lax, and Leer, 1983; Ein-
feldt et al., 1991), and a constrained transport algorithm (Gardiner and J. M. Stone,
2008). We use the mass density and internal energy floor values 𝜌floor = 10−14𝜌∞,
𝑒floor = 𝜌floor𝑐

2/3, and cap the maximum Lorentz factor of the fluid to 𝑊max = 20.
The drift frame flooring technique (Ressler, Tchekhovskoy, et al., 2017) is applied
to limit the comoving magnetization to 𝜎max = 50.

AthenaK can be compiled and run on graphics processing unit (GPU) devices at
scale, providing O(107) cell updates per second per each GPU card for large scale
GRMHD simulations. The simulations presented here overall have been performed
on 132 GPU nodes (792 NVIDIA Volta cards) at OLCF Summit cluster, costing 900
node hours per 104𝑟𝑔/𝑐 integration time on average. The total computational cost
used for all simulations is about 34,000 node hours.

3.2.2 Initial data
Over the whole computational domain, matter profile is initialized with a uniform
rest mass density 𝜌∞ and spatial velocity

𝑢𝑖
′
=

(
− 𝑣∞√︁

1 − 𝑣2
∞/𝑐2

, 0, 0

)
, (3.18)

where 𝑣∞ is the asymptotic incoming speed of the fluid, 𝑐 is the speed of light, and
𝑢𝑖

′
= 𝑢𝑖 + 𝛽𝑖𝑢0 is the normal-frame spatial velocity which is a primitive variable

used in the code.3 Given the sound speed 𝑐𝑠,∞, the fluid internal energy density

𝑒∞ =
𝑐2
𝑠,∞𝜌∞

Γ(Γ − 1 − 𝑐2
𝑠,∞/𝑐2)

, (3.19)

and pressure
𝑝∞ = 𝑒∞(Γ − 1), (3.20)

can be initialized accordingly.

The inclination between the magnetic field of the incoming wind and its velocity
can be arbitrary in general. In this study, in order to narrow down the parameter
space and focus on the misalignment between the BH spin and the magnetic field,
we assume that the incoming magnetic field is perpendicular to the wind velocity.
We initialize the magnetic field as

�̄�𝑖 = 𝐵0(0, sin 𝜃𝐵, cos 𝜃𝐵), (3.21)
3See section 4 of J. M. Stone, Tomida, et al. (2020) for the definition of GRMHD primitive

variables used in Athena++ or the section 3 of J. M. Stone, Mullen, et al. (2024) for AthenaK.
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where 𝐵0 is the field strength and 𝜃𝐵 is the inclination angle between the BH spin
and the magnetization of the incoming fluid.

In the asymptotic limit (𝑥𝑖 → ∞), the magnetic field strength 𝐵0 is related to the
magnetization of the fluid 𝜎 as

𝜎∞ =
(𝑏2)∞

(𝜌𝑐2 + 𝑒 + 𝑝)∞
=
𝐵2

0/(1 − 𝑣2
∞/𝑐2)

𝜌∞𝑐2 + Γ𝑒∞
. (3.22)

The plasma 𝛽-parameter and the magnetization 𝜎 are related via

𝛽∞ =
𝑝gas

𝑝𝑏
=

𝑝∞
(𝑏2)∞/2

=
2
Γ

(𝑐𝑠,∞/𝑐)2

𝜎∞
. (3.23)

Input parameters of our simulations are the asymptotic fluid mass density 𝜌∞,
accretion radius 𝑅𝑎, asymptotic sound speed 𝑐𝑠,∞, the plasma parameter 𝛽∞, and the
magnetic field inclination angle 𝜃𝐵. The incoming speed of the fluid 𝑣∞ is computed
from 𝑣2

∞ = 2𝐺𝑀/𝑅𝑎 and used to initialize the spatial velocity (3.18). From the sound
speed 𝑐𝑠,∞, both internal energy density and pressure can be initialized using (3.19)
and (3.20). The plasma parameter 𝛽∞ determines the relativistic magnetization 𝜎∞
via (3.23), in turn giving 𝐵0 from (3.22), which we use to initialize the magnetic
fields as (3.21). Primitive variables are initialized everywhere in the computational
domain with the values prescribed as above.

Simulation parameters are listed in Table 3.1. We particularly focus on the cases that
the magnetic field of the incoming wind is perpendicular or inclined with respect
to the BH spin (see Kaaz, Murguia-Berthier, et al., 2023 for the aligned magnetic
field configuration). For all simulations we adopt a BH spin 𝑎/𝑟𝑔 = 0.9 and the
asymptotic sound speed 𝑐𝑠,∞ = 0.05𝑐. Our representative, fiducial model assumes
𝛽∞ = 10 with a horizontal orientation of the magnetic field 𝜃𝐵 = 90◦, along with the
fluid incoming speed 𝑣∞ = 0.1𝑐 corresponding to 𝑅𝑎 = 200𝑟𝑔; this model is labeled
as 𝛽10-𝜃90-𝑅200. To explore the influence of magnetic field orientation relative to
the BH spin, we run the identical setup but varying 𝜃𝐵 = 22.5◦, 45◦, 67.5◦, each of
which is labeled with 𝜃23, 𝜃45, and 𝜃68. We perform an experiment on the effect of
a weaker magnetization 𝛽∞ = 100 while keeping other parameters fixed from the
fiducial model. Lastly, we run two more models with a smaller (𝑅𝑎 = 50𝑟𝑔) and
a larger (𝑅𝑎 = 400𝑟𝑔) accretion radius to test the influence of the fluid incoming
speed, also keeping the other parameters fixed to the same values as the fiducial
model.
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Table 3.1: List of the models and parameters considered in this work. Each column
denotes the accretion radius 𝑅𝑎, asymptotic fluid incoming speed 𝑣∞, asymptotic
Mach numberM, accretion time scale 𝜏𝑎, the plasma beta parameter of the incoming
fluid 𝛽∞, and the magnetic field inclination angle 𝜃𝐵. The spin of the BH is set to
𝑎 = 0.9𝑟𝑔 for all simulations.

Label 𝑅𝑎 𝑣∞/𝑐 M 𝜏𝑎 𝛽∞ 𝜃𝐵 Comments
[𝑟𝑔] [𝑟𝑔/𝑐]

𝛽10-𝜃90-𝑅200 200 0.1 2.0 2000 10 90◦ Fiducial setup
𝛽10-𝜃68-𝑅200 200 0.1 2.0 2000 10 67.5◦ Varying 𝜃𝐵
𝛽10-𝜃45-𝑅200 200 0.1 2.0 2000 10 45◦

𝛽10-𝜃23-𝑅200 200 0.1 2.0 2000 10 22.5◦

𝛽100-𝜃90-𝑅200 200 0.1 2.0 2000 100 90◦ High 𝛽
𝛽10-𝜃90-𝑅50 50 0.2 4.0 250 10 90◦ Faster 𝑣∞
𝛽10-𝜃90-𝑅400 400 0.07 1.4 5660 10 90◦ Slower 𝑣∞

3.2.3 Boundary conditions
At the outer boundary of the computational domain facing the +𝑥 (upstream) di-
rection, we impose a Dirichlet boundary condition injecting a constant wind profile
same as the initial data. At all other sides of the domain boundary, primitive vari-
ables at the outermost grid points are copied into the ghost zones to impose a free
streaming boundary condition.

3.2.4 Analysis
In addition to the magnetohydrodynamics variables evolved on the grid, we compute
following integral quantities from simulation data in order to monitor time evolution
of the system:

• Mass accretion rate
¤𝑀 =

∮
(−𝜌𝑢𝑟)√−𝑔 𝑑𝜃𝑑𝜙, (3.24)

where 𝜌 is the rest mass density and 𝑢𝑟 is the radial component of the four-
velocity. Note the minus sign in the integrand, which makes a positive value
indicate mass inflow.

• Total energy (in-)flux
¤𝐸 =

∮
𝑇𝑟𝑡

√−𝑔 𝑑𝜃𝑑𝜙 . (3.25)
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• Angular momentum (out-)flux

¤𝐽 =
∮
𝑇𝑟𝜙

√−𝑔 𝑑𝜃𝑑𝜙. (3.26)

• Total magnetic fluxes threading the horizon

ΦBH =
1
2

∮
horizon

|�̄�𝑟 |√−𝑔 𝑑𝜃𝑑𝜙. (3.27)

For our discussions presented here and in the following sections, we will often
refer to the dimensionless total magnetic fluxes threading the BH horizon

𝜙BH ≡ ΦBH√︃
¤𝑀𝑟2
𝑔𝑐

. (3.28)

The dimensionless magnetic flux can be used as an indicator for the accretion
state, showing that for 𝜙BH ≳ 20 jets can be launched (Tchekhovskoy, Narayan,
and McKinney, 2011). For larger values of 𝜙BH, the accretion flow will be-
come fully magnetically arrested (e.g., Tchekhovskoy, Narayan, and McKinney,
2011; McKinney, Tchekhovskoy, and Blandford, 2012; White, J. M. Stone, and
Quataert, 2019; Chatterjee and Narayan, 2022).

• Drag force exerted on the BH

𝐹𝑖 = −𝐹𝑖mom + 𝐹𝑖grav, (3.29)

where 𝐹𝑖mom is the total momentum (out-)flux through a spherical surface

𝐹𝑖mom =

∮
𝑇𝑟𝑖

√−𝑔 𝑑𝜃𝑑𝜙, (3.30)

and 𝐹𝑖grav is the gravitational drag computed with a modified Newtonian formula
(Cruz-Osorio and Rezzolla, 2020; Kaaz, Murguia-Berthier, et al., 2023)

𝐹𝑖grav =

∫
𝜌
𝑥𝑖

𝑟3 𝑑𝑉. (3.31)

A minus sign on the right hand side of Eq. (3.29) accounts for that the momentum
loss in a closed volume results in a reaction force to the opposite direction. For
example, in our simulation setup in which BH travels to +𝑥 direction, 𝐹𝑥mom > 0
corresponds to the deceleration of the BH with respect to the ambient medium,
where 𝐹𝑥grav > 0 corresponds to the acceleration.
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The flow in the vicinity of the BH is strongly magnetized in our simulations, fre-
quently triggering density and energy floors on troubled grid cells. Since the artificial
injection of mass and energy density from numerical flooring can contaminate some
of the diagnostics introduced above, we perform surface integrals around the BH at
a slightly larger radius than the outer event horizon (e.g., Kaaz, Murguia-Berthier,
et al., 2023). In our analysis, the horizon magnetic fluxes ΦBH is integrated over the
outer event horizon whereas ¤𝑀 , ¤𝐸 , ¤𝐽, and 𝐹𝑖mom are extracted at 𝑟 = 3𝑟𝑔. The gravi-
tational drag 𝐹𝑖grav is integrated over the whole volume of the computational domain
excluding 𝑟 < 3𝑟𝑔 in the same regard. We find this approach has no significant effect
our diagnostics, see Appendix 3.A for a detailed analysis.

The turbulent nature of the accretion flow leads to high-frequency fluctuations of
the time series data. For improved readability, we have averaged all time series data
over a sliding time window of 100𝑟𝑔/𝑐, unless otherwise stated.

Computations are performed in a scale-free manner by setting 𝑐 = 𝐺𝑀 = 𝜌∞ = 1.
From simulation results, physical values can be recovered as

𝑥𝑖 = 𝑟𝑔 𝑥
𝑖 (3.32)

𝑡 = (𝑟𝑔/𝑐) 𝑡 (3.33)

𝜌 = 𝜌∞ �̂� (3.34)

¤𝑀 = (𝑟2
𝑔𝜌∞𝑐) ¤̂𝑀 (3.35)

¤𝐸 = (𝑟2
𝑔𝜌∞𝑐

3) ¤̂𝐸 (3.36)

¤𝐽 = (𝑟3
𝑔𝜌∞𝑐

2) ¤̂𝐽 (3.37)

𝐵𝑖 = (𝜌1/2
∞ 𝑐)�̂�𝑖 (3.38)

ΦBH = (𝑟2
𝑔𝜌

1/2
∞ 𝑐)Φ̂BH (3.39)

𝐹𝑖 = (𝑟2
𝑔𝜌∞𝑐

2)𝐹𝑖 (3.40)

where hat variables are the results in the (scale-free) code unit.

3.3 Fiducial model: Jet launching from horizontally magnetized wind
In this section, we analyze the results from the baseline model 𝛽10-𝜃90-𝑅200 in detail
to highlight several key phenomena observed in the simulation. This model features
a wind speed 𝑣∞ = 0.1𝑐 and a magnetic field perpendicular (horizontal) to the black
hole spin axis, with its strength set by the plasma parameter 𝛽 = 10.
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Figure 3.1: Initial jet launching process in the 𝛽10-𝜃90-𝑅200 simulation. Shown
here are in-plane magnetic field lines (cyan solid lines), magnetization 𝜎, vertical
magnetic field 𝐵𝑧, and its normalized value 𝐵𝑧/|𝐵 |. Each column displays physical
quantities on the vertical (𝑦𝑧, the face-on direction with respect to the incoming
wind) and the equatorial (𝑥𝑦) plane at each simulation time.

3.3.1 Overview
Initial jet launching process

Shortly following the beginning of the simulation, a shocked region around the BH
quickly expands and forms a bow-shaped shock front, which is a common character-
istic of supersonic BHL accretion flows (e.g., Foglizzo, Galletti, and Ruffert, 2005;
Edgar, 2004; Shima et al., 1985; Font and Ibanez, 1998b). This initial accretion
phase is largely hydrodynamical. Over time, the spin of the BH drags the flow into
rotation around the horizon, starting to form an accretion disk, and magnetic flux is
accumulated around the BH.

In Figure 3.1, we show simulation snapshots at an early time (𝑡 ≲ 2.5𝜏𝑎) focusing
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on the evolution of magnetic fields near the BH. While the magnetic field is initially
perpendicular to the BH spin, turbulent fluid motion developing in the accretion
flow generate vertical (poloidal) magnetic flux, akin to an MHD dynamo. This can
be seen from the third and fourth rows of Fig. 3.1, showing the vertical magnetic
field (𝐵𝑧) on the equatorial plane. As the turbulent dynamo continues to supply
vertical magnetic fluxes into the accretion flow with various eddy sizes, we find
that a coarse large-scale magnetic flux separation emerges at 𝑡 ≈ 1.8𝜏𝑎 (the fifth
column in Fig. 3.1, appearing as a two-sided spiral shape). This serves as a reservoir
of unilateral vertical magnetic field lines attached to the BH, which enables jet
launching via the Blandford-Znajek mechanism (Blandford and Znajek, 1977).

From the time series plots in Fig. 3.3, we can see that the magnetization around the
BH quickly reaches half-MAD (𝜙𝐵 ≃ 25) levels within 𝑡 ≈ 3𝜏𝑎, as indicated by the
dimensionless magnetic flux 𝜙BH, where a magnetically arrested disk (MAD) state
is characterized by 𝜙BH ≃ 50 (Tchekhovskoy, Narayan, and McKinney, 2011). This
built-up of magnetic flux coincides with the formation of a magnetized polar funnel
region near the black hole as described above.

Large-scale flow morphology

Fig. 3.2 shows hydrodynamic and magnetic properties of the accretion flow on the
meridional (𝑥𝑧) and equatorial (𝑥𝑦) plane at 𝑡 = 20400𝑟𝑔/𝑐 ≈ 10𝜏𝑎. Relativistic
jets powered by the BH appear as low-density, highly magnetized (𝜎 ≫ 1) funnel
regions traversing the shock cone. The wind from the upstream collides with the
jets and deflect them downstream with its ram pressure. The amount of jet bending
correlates directly with the wind speed. A pair of these bent, relativistic jets are
observed from tailed radio sources such as bent-tail radio galaxies (e.g. Hardcastle
and Sakelliou, 2004; O’Dea and Owen, 1986; Miley, Wellington, and van der Laan,
1975; Giacintucci and Venturi, 2009).

An accretion disk forms around the BH with the same direction of rotation as the
BH spin, and spans out to 𝑟 ∼ 30𝑟𝑔 on the equatorial plane although its spatial
extent is varying over time. At the outermost radius of the disk, its circulatory
flow is mixed with the regular downstream flow entering the shock cone, forming
a stagnation point, as can be seen from the distribution of velocity streamlines
near (𝑥, 𝑦) = (−20,−30)𝑟𝑔 of the lower left panel of Fig. 3.2. The matter inflow
entering the shock cone on the co-rotating side (+𝑦) is smoothly connected to the
circulatory accretion flow, where that on the counter-rotating side (−𝑦) collides with
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Figure 3.2: Transient jets and magnetic flux eruptions in GRMHD Bondi-Hoyle-
Lyttleton accretion. Shown here are mass density, 𝜌, (left) and relativistic magne-
tization, 𝜎, (right) on the meridional plane (top) and the equatorial plane (bottom)
from the fiducial model 𝛽10-𝜃90-𝑅200 at 𝑡 = 20400 𝑟𝑔/𝑐. The in-plane velocity and
magnetic fields are shown with white and cyan streamlines on the left and right
panels, respectively.

the accretion flow to be pushed radially outward. This leads to the bulk motion
of the downstream flow being deflected into −�̂� direction. In contrast to accretion
simulations initialized or supplied with a finite angular momentum,4 the incoming
flow has zero net angular momentum in our setup. Spin-induced frame dragging of
the BH is the only source of angular momentum imparted onto the flow, naturally
limiting the radial size of the accretion disk.

The BH is in a near MAD state (Igumenshchev, Narayan, and Abramowicz, 2003;
Narayan, Igumenshchev, and Abramowicz, 2003). MAD states feature the built-up
of strong magnetic flux near the horizon, leading to the establishment of a mag-

4e.g., Fishbone-Moncrief torus (Fishbone and Moncrief, 1976), or BHL accretion scenarios
with a density/velocity gradient (Lora-Clavijo, Cruz-Osorio, and Méndez, 2015; Cruz-Osorio and
Lora-Clavijo, 2016)
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netically arrested flow structure near the innermost stable circular orbit. Once the
horizon magnetic flux rises above a threshold, reconnection triggers an ejection of
magnetic flux bundles from the BH magnetosphere, accompanied by decay of the
horizon magnetic flux (Ripperda, Bacchini, and Philippov, 2020; Ripperda, Liska,
et al., 2022; Chatterjee and Narayan, 2022). Shearing instabilities, such as the
Rayleigh-Taylor instability (Kulkarni and Romanova, 2008), ultimately trigger a
magnetic flux eruption with a simultaneous mass accretion inwards, via interchang-
ing magnetically buoyant low-density bubbles with less magnetized, dense parcel
of fluid (Igumenshchev, 2008). Through this process a MAD state is re-established
over the viscous timescale of the accretion flow. As a consequence, the BH does
not sustain steady outflows but exhibits fluctuations in the jet power and intermittent
flux eruptions.

The quasi-periodic MAD cycle results in two notable features in the flow morphology
compared to unmagnetized axisymmetric BHL accretion flows.

(1) Each eruption event launches a pressure wave that expands outward from
the black hole. This wavefront with a relatively higher density pushes the
boundary of the bow shock further upstream, expanding the shock cone,
before it shrinks back due to the ram pressure of the incoming fluid. As a
consequence, the bow shock exhibits a breathing motion in lockstep with each
of the magnetic flux eruptions. This results in a deformed morphology of the
shockfront, rather than a smooth parabolic shape commonly observed from
unmagnetized cases (e.g., Shima et al., 1985; Penner, 2013; Lora-Clavijo and
Guzman, 2013; Gracia-Linares and Guzmán, 2015). This eruption-driven
expansion of the bow shock and multiple pressure waves approaching the bow
shock can be seen from the left panels of Fig. 3.2 or in Fig. 3.5.

(2) A series of magnetic flux tubes with high magnetization are formed near
the BH and drift downstream on the equatorial plane as they are released, a
few of which can be identified from the region 𝑥 < 0, 𝑦 < 0 in the lower
panels of Fig. 3.2. This situation is reminiscent of unboosted MAD BH flows
(e.g., Chatterjee and Narayan, 2022; Ripperda, Liska, et al., 2022; Porth et al.,
2021). When a flux eruption event occurs, magnetic pressure pushes the matter
outward via an interchange instability and forms highly magnetized, hot, low-
density voids near the horizon (e.g., see the simulation snapshots included
in Fig. 3.3 and Fig. 3.4). The ejected flux tubes are spiralling outwards
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from the BH (Porth et al., 2021), getting sheared and ultimately reach the
stagnation point, where they are fragmented by ram pressure and released
into the downstream flow as a mushroom-shaped feature. In magnetic flux
eruptions of axially symmetric accretion flows, flux tubes would have been
launched without a preferred direction. Here, due to a preferential direction
of the ambient flow, the flux tubes can be only released toward a particular
range of angle relative to the direction of the upstream wind. The ejected flux
tubes are filled with hot non-thermal plasma produced by the near-horizon
magnetic reconnection that initially created the tubes (Ripperda, Bacchini, and
Philippov, 2020; Ripperda, Liska, et al., 2022). This plasma has the potential
to power TeV and X-ray flares (Porth et al., 2021; Hakobyan, Ripperda,
and Philippov, 2023), in a similar manner to what has been proposed as an
explanation for galactic flares near Sgr A* (Dexter et al., 2020; Antonopoulou,
Loules, and Nathanail, 2025).

Time evolution

Having described the overall properties of the accretion flow, we now focus on its
time variability. In Fig. 3.3, we provide the time series data of the dimensionless
horizon magnetic flux 𝜙BH, mass accretion rate ¤𝑀 , energy outflow efficiency 𝜂 =

( ¤𝑀 − ¤𝐸/𝑐2)/ ¤𝑀 , (outwards directed) angular momentum flux ¤𝐽, and the total drag
force 𝐹𝑖. Based on these, we examine the time evolution of our fiducial accretion
flow setup in this section.

After the initial development of relativistic polar outflows from the BH (𝑡 ∼ 3𝜏𝑎),
the accretion flow undergoes an oscillatory MAD cycle showing a transient behavior
of 𝜙BH associated with episodes of magnetic flux eruptions. In active phases, when
the jet is present, the mass accretion rate is suppressed, whereas it is enhanced
in quiet (accreting) phases when the jet is absent. The overall evolution observed
in this model is broadly consistent with previous studies on MADs (e.g. White,
J. M. Stone, and Quataert, 2019; Porth et al., 2021; Chatterjee and Narayan, 2022;
Tchekhovskoy, Narayan, and McKinney, 2011). The continued eruption cycle is
maintained until 𝑡 ∼ 10𝜏𝑎, which we hereafter refer to as the first eruption epoch.

Following the final flux eruption of the first eruption epoch at 𝑡 ∼ 10𝜏𝑎, the magnetic
flux of the BH drops and the system enters a fully quiescent period, 10𝜏𝑎 ≤ 𝑡 ≤ 12𝜏𝑎
with the jet being fully quenched. The accretion flow temporarily enters a standard
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Figure 3.3: Time evolution of physical quantities for the representative (𝛽10-𝜃90-
𝑅200) model. Each panel of the line plots, from top to bottom, presents the dimen-
sionless horizon magnetic flux 𝜙BH, mass accretion rate ¤𝑀 , energy outflow efficiency
𝜂, angular momentum flux ¤𝐽, and the total drag force 𝐹𝑖. Quiescent periods (shaded)
with a duration ∼ 2000𝑟𝑔/𝑐 are separated by an epoch of continued flux eruptions
lasting ∼ 24000𝑟𝑔/𝑐. Color plots on top of this figure show the mass density, 𝜌, on
the 𝑥𝑧 (first row) and 𝑥𝑦 (second row) plane in active states 𝑡(𝑎) = 1.8 × 104𝑟𝑔/𝑐,
𝑡(𝑐) = 2.5 × 104𝑟𝑔/𝑐 and a SANE-like quiescent state 𝑡(𝑏) = 2.15 × 104𝑟𝑔/𝑐, which
are indicated with dashed and dotted vertical lines in the line plots.
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and normal evolution (SANE, Narayan, Sadowski, et al., 2012) regime in which
magnetized polar funnel are replaced by a smooth inflow of matter toward the BH
and the accretion exhibits a relavitely laminar flow on the equatorial plane (with
only mild turbulent eddies) without a strong vertical stratification (Chatterjee and
Narayan, 2022). As a result, the mass accretion rate is notably increased and the
BH experiences a temporary spin up ( ¤𝐽 < 0) from the falling matter.

In the middle of the SANE-like quiescent period, the horizon magnetic flux and
the energy outflow efficiency rises again, mass accretion decreases, and the angular
momentum flux transitions from inflow (−) to outflow (+). The evolution of the
system in this time window is similar to the process of the first jet launching phase,
indicating the revival of it. This revival process takes roughly a viscous time
scale of the disk. The system re-enters the MAD state and the jet is launched
again at 𝑡 ∼ 12𝜏𝑎, which marks the beginning of the second eruption epoch lasting
12𝜏𝑎 ≤ 𝑡 ≤ 23𝜏𝑎.

In the upper half of Fig. 3.3, we include simulation snapshots displaying the mass
density distribution of the accretion flow at three different times 𝑡(𝑎) = 1.8×104𝑟𝑔/𝑐,
𝑡(𝑏) = 2.15 × 104𝑟𝑔/𝑐, and 𝑡(𝑐) = 2.5 × 104𝑟𝑔/𝑐, each of which corresponds to (𝑎) a
MAD-like active state by the end of the first eruption epoch, (𝑏) a quiet SANE-like
state with no jet present, and (𝑐) an active state in the second eruption epoch after
the revival. This process overall repeats periodically.

3.3.2 Magnetic flux eruptions
In the preceding sections, we have described the global dynamics leading to the
establishment of a MAD accretion state and subsequent magnetic flux eruption
events. In the following, we provide a detailed description of the flux eruption event
at 𝑡 = 16500𝑟𝑔/𝑐 as a representative example of the process, and elucidate its effect
on the jet morphology.

Near black-hole dynamics

Along with the three sections of plots comprising Fig. 3.4, we now illustrate a
comprehensive picture of a single magnetic flux eruption event.

• Evolution of the horizon magnetic flux (Fig. 3.4, top panel): The eruption cycle
begins with a magnetically relaxed state after the previous eruption has settled
down. The horizon magnetic flux 𝜙BH starts to increase from 𝑡 = 15500𝑟𝑔/𝑐,
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Figure 3.4: A magnetic flux eruption event at 𝑡 = 16500𝑟𝑔/𝑐. Top panel: change of
dimensionless magnetic flux 𝜙BH on the black hole (BH) over the eruption. Three
vertical dashed lines mark 𝑡 = 16400, 16500, 16600 𝑟𝑔/𝑐 respectively. Data points
are displayed without smoothing. Middle panels: mass density, 𝜌, (left) and radial
magnetic field 𝐵𝑟 in units ([𝜌1/2

∞ 𝑐]), (right) on a spherical surface 𝑟 = 5𝑟𝑔 are shown
with the Mollweide projection aligned with the BH spin axis. The radial component
of the magnetic field is shown in color and the angular components are shown with
black streamlines. The center of the plot corresponds to the +𝑥 direction. From top
to bottom, each row corresponds to 𝑡 = 16400, 16500, 16600 𝑟𝑔/𝑐. Bottom panels:
mass density on the equatorial plane (left), on the meridional plane (center), and
the relativistic magnetization 𝜎 on the meridional plane (right) at 𝑡 = 16500𝑟𝑔/𝑐.
In-plane velocity and magnetic field are shown with white and black streamlines.
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reaching 𝜙BH ≈ 20 at 16300𝑟𝑔/𝑐. Then it rapidly rises to 𝜙BH > 50 around
𝑡 = 16500𝑟𝑔/𝑐, and relaxes down to 𝜙BH ≈ 10 at 𝑡 = 16700𝑟𝑔/𝑐 after the
eruption.

• Nutation of the accreting plane (middle panels in the Mollweide projection in
Fig. 3.4): These panels, showing mass density and magnetic field on a spherical
surface 𝑟 = 5𝑟𝑔 at 𝑡 = 16400𝑟𝑔/𝑐, 16500𝑟𝑔/𝑐 and 16600𝑟𝑔/𝑐, visualize angular
distribution of the accretion flow and the geometry of magnetic field near the BH
during the eruption event. In the pre-eruption stage, the accretion disk develops
precession with an increasingly large amplitude over time. Left column of the
panels shows that the accretion disk is subject to a significant tilt and distortion
during the eruption (which otherwise would appear as a smooth strip along the
equator). The ejection of the magnetic flux tube during the eruption is off the
equator and exerts a strong recoil (and corresponding torque) onto the system,
which leads to a nutation of the accretion disk.

• Tearing of accretion disk (bottom panels of Fig. 3.4): The asymmetric ejection of
the magnetic flux tube (low density/high magnetization region) and the resulting
recoil strongly tilting and tearing the inner accretion flow can be clearly seen
from the figure. The dynamical time scale of the fluid at which the accretion
disk is torn can be estimated via the local Keplerian orbital period as

𝑇 ≈ 2𝜋
Ω𝐾

= 2𝜋
(
𝑟3

𝐺𝑀

)1/2

= 370𝑟𝑔/𝑐 (3.41)

for 𝑟 = 15𝑟𝑔, which is in good agreement with the disk precession period
≈ 400𝑟𝑔/𝑐, which we estimate empirically. While the inner part of the accretion
disk has a shorter dynamical timescale (𝑟 < 15𝑟𝑔) than the driving frequency
(𝑇 ≈ 400𝑟𝑔/𝑐) and is able to reorganize itself, the outer part of the disk with a
longer dynamical timescale (𝑟 > 15𝑟𝑔) cannot dynamically react (synchronize)
to the driving and is decoupled from the inner part. In a different context, highly
tilted accretion disks have been observed to suffer more tearing, precession, and
fragmentation, when the inner part of the disk is subject to torque (Liska et al.,
2021).

Jet morphology

High-resolution simulations of tilted accretion disks have shown that the motions
of the disk and the jet are coupled (Liska et al., 2018; Liska et al., 2021), and we
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(a) 𝑡 = 16500𝑟𝑔/𝑐 (b) 𝑡 = 21500𝑟𝑔/𝑐

Figure 3.5: A three-dimensional rendering of the simulation depicting an active state
(left) and a quenched state (right). Shown here are low-density, highly magnetized
outflow (filtered by 𝜌 < 0.05𝜌∞, red-white colors), accretion flow inside the bow
shock (filtered by 𝜌 > 2𝜌∞ and half-cut to vertical, blue-yellow colors), and magnetic
field lines emanating from the accretion disk. Each colormap shows the magnitude
of the spatial components of the four-velocity and the normalized mass density
𝜌/𝜌∞. A vertical tearing of the accretion disk (see Sec. 3.3.2) is visible in the left
panel.

observe a similar phenomenon in our simulations. While the structure of the jet
remains more or less aligned with the BH spin very close the horizon (𝑟 ≲ 5𝑟𝑔),
the rapid nutation of the accretion disk and a consequent wobbling of the the polar
funnels surrounded by the accretion flow results in fluctuations in the direction of the
jet at 𝑟 ≳ 10𝑟𝑔 (see also Liska et al., 2018). From a three-dimensional visualization
in Fig. 3.5, one can observe the twisted morphology of the jet associated with
the nutation of the near-BH accretion flow. This non-smooth jet morphology may
further enhance kink-like instabilities naturally present in these systems (Appl, Lery,
and Baty, 2000; L.-X. Li, 2000; Narayan, J. Li, and Tchekhovskoy, 2009; Bromberg
and Tchekhovskoy, 2016). At larger distances, the interaction with the ambient wind
gradually smooths out these features. We can also see how the jet is quenched at a
later time.

In Fig. 3.6, we show the distribution of the radially outgoing electromagnetic flux
(𝑇EM)𝑡𝑟 at 𝑟 = 100𝑟𝑔. The opening angle of the jet shows variations between 15◦
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Figure 3.6: Distribution of the radial Poynting flux, (𝑇EM)𝑡𝑟 , on the upper hemisphere
of a spherical surface 𝑟 = 100𝑟𝑔 at 𝑡 = 19600 𝑟𝑔/𝑐 (top), 𝑡 = 19800 𝑟𝑔/𝑐 (center),
and 𝑡 = 20000 𝑟𝑔/𝑐 (bottom).
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and 25◦, where the position of the peak Poynting flux (center of the jet) precesses
with an amplitude ≲ 15◦. While the jet still exhibits an oscillatory behavior at this
radius to some extent, its angular variations remain much smaller than the inner
accretion disk attached to the BH. We expect that these variations will be further
attenuated at a larger radius.

3.3.3 Drag and spin-down
Here we look into the transport of linear and angular momentum between the BH
and the accretion flow, which are responsible for the deceleration and spin-down of
the BH. A time scale which we will frequently refer to for the discussions in this
section is the mass doubling timescale 𝜏𝑀 = 𝑀/ ¤𝑀 , which can be rescaled using the
BHL mass accretion rate ¤𝑀BHL as

𝜏𝑀 = 2.8 × 104
( ¤𝑀
¤𝑀BHL

)−1 ( 𝑣∞
1000 km s−1

)3

×
(

𝜌∞
10−10 g cm−3

)−1 (
𝑀

100𝑀⊙

)−1
yr .

(3.42)

The normalized mass accretion rate is ¤𝑀/ ¤𝑀BHL ∼ 0.1 in our simulation (see
Fig. 3.3).

Drag force

An accretor traveling through a gaseous medium is subject to a dynamical friction
(Chandrasekhar, 1943). The reference scale of this drag is ¤𝑀BHL𝑣∞, which is the
drag force in the ballistic (dust) limit, and a multiplicative correction factor needs
to be included in generic cases.5 For convenience, we define the fudge factor

𝑓 𝑖BHL ≡ 𝐹𝑖/( ¤𝑀BHL𝑣∞) (3.43)

where 𝐹𝑖 is the measured drag force in each directions. Since our simulation is
performed in a fixed spacetime and does not consistently capture the slow-down of
the BH in dynamical general relativity, the drag force is estimated by means of an
approximate formula Eq. (3.29).

The bottom panel of Fig. 3.3 shows the time variation of the total drag force
normalized with the BHL drag scale ¤𝑀BHL𝑣∞, effectively displaying the factor
𝑓 𝑖BHL for each spatial directions. The tangential drag (dynamical friction) reaches a

5Newtonian studies suggest that the correction is not expected to exceed a factor of ten in
hydrodynamic BHL accretion (Edgar, 2004).
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steady value of 𝑓 𝑥BHL ∼ 2.5 around 𝑡 = 5×104𝑟𝑔/𝑐. The linear momentum accretion
rate 𝐹𝑥mom is nearly zero when time averaged, yet it is very oscillatory. It is the
gravitational drag 𝐹𝑥grav that constitutes a dominant net portion of the total drag. See
Appendix 3.A for the raw time series data of 𝐹𝑥mom and 𝐹𝑥grav. A similar trend is
observed for 𝐹𝑦 and 𝐹𝑧 as well, suggesting that the accretion flow plunging into
the BH is mostly symmetric when averaged over time. However, we note that 𝐹𝑦mom

shows a small positive average ∼ 0.1 ¤𝑀BHL𝑣∞.

The drag force results in a slow-down of the BH relative to the surrounding medium.
The deceleration time scale can be estimated by dividing the initial BH linear
momentum by the drag force

𝜏dec =
𝑀𝑣∞

𝑓BHL( ¤𝑀BHL𝑣∞)
= ( 𝑓BHL)−1 𝜏𝑀 (3.44)

where the mass doubling timescale 𝜏𝑀 is given as Eq. (3.42). Plugging in ¤𝑀/ ¤𝑀BHL ∼
0.1 and 𝑓BHL ∼ 2.5 from our fiducial simulation, we get 𝜏dec ∼ 105 yr for the
representative values of 𝑣∞, 𝜌∞, 𝑀 chosen in (3.42).

On top of the drag force 𝐹𝑥 tangential to the direction of BH motion, there exist
nonzero transverse drag (𝐹𝑦) and vertical drag (𝐹𝑧) which are perpendicular and
parallel to the BH spin. These drags can potentially induce a deflection or oscillatory
features in the trajectory of the accreting BH. The transverse drag force 𝐹𝑦 shows an
average magnitude≈ 0.5 ¤𝑀BHL𝑣∞, which is about 20% of the tangential drag 𝐹𝑥 . The
vertical drag 𝐹𝑧 has a similar magnitude as the transverse part 𝐹𝑦. The transverse
drag 𝐹𝑦 maintains a positive finite value where the vertical drag periodically flips
its sign between eruption epochs. Each of these components are intimately related
with the gravitational Magnus effect (Sec. 3.5.2) and the magnetic reversal of jets
(Sec. 3.3.4) observed in our simulations.

Spin-down

As previously noted, in our setup, the spin effect from the BH is the only physical
origin of circulation introduced in the accretion flow. From Fig. 3.3, we see that
the angular momentum transport rate from the BH into accretion flows is ¤𝐽 ≈
0.1 ¤𝑀BHL𝑟𝑔𝑐 during eruption epochs where it is reversed during quiescent periods.
Angular momentum in the disk is mainly transported in flux eruption episodes
(Chatterjee and Narayan, 2022), where the overall spin-down of the BH is largely
affected by the jet as well (Lowell et al., 2024). Since our problem setup (BHL
accretion) is different from a commonly referenced MAD configuration which is
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being reached starting from an accreting torus, it is noted that an additional feedback
mechanism might contribute to the angular momentum transport.

A systematic investigation on the spin-down of a BH in the MAD state showed that
the characteristic decaying time of the BH dimensionless spin 𝐽𝑐/𝐺𝑀2 = 𝑎/𝑟𝑔 is
about 10% of the mass doubling time scale (Lowell et al., 2024). To explore the
same aspect but for the BHL accretion, we estimate the spin-down rate of the BH
during an active phase in our simulation as follows. The angular momentum loss
timescale of the BH can be estimated as

𝜏𝐽 =
𝐽

¤𝐽
=

( ¤𝐽
¤𝑀BHL𝑟𝑔𝑐

)−1 ( ¤𝑀
¤𝑀BHL

) (
𝑎

𝑟𝑔

)
𝜏𝑀 . (3.45)

Our simulation results (Fig. 3.3) shows ¤𝐽/( ¤𝑀BHL𝑟𝑔𝑐) ≈ 0.1 and ¤𝑀/ ¤𝑀BHL ≈ 0.05,
indicating 𝜏𝐽 ∼ 𝜏𝑀/2. Then the spin-down timescale of the dimensionless spin 𝑎/𝑟𝑔
can be estimated as

𝑎

𝑟𝑔
∝ 𝐽

𝑀2 ∝ 𝑒−𝑡/𝜏𝐽

𝑒2𝑡/𝜏𝑀
∼ 𝑒−4𝑡/𝜏𝑀 , (3.46)

yielding a slightly longer spin-down timescale 𝜏𝑀/4 than ≈ 𝜏𝑀/10 from Lowell
et al. (2024). This rather lower rate of the angular momentum extraction from the
BH can be attributed to the fact that in our case the accretion flow stays in a mildly
MAD state (𝜙BH ≈ 20).

3.3.4 Magnetic reversal
Within the simulation time of the model (𝑡 ≤ 6×104 𝑟𝑔/𝑐), the BH and the accretion
flow undergo two quiescent periods at 𝑡 = 10𝜏𝑎 and 𝑡 = 24𝜏𝑎. While all other
quantities show a recurring pattern of rise and fall in every eruption epoch, the
vertical drag force 𝐹𝑧 (see the bottom line plot of Fig. 3.3) shows a distinct behavior
in that it flips its sign during a quiescent period and maintains that opposite sign
for the next eruption epoch, before coming back to the original sign after another
quiescent period.

We find that the polarity of the horizon magnetic fluxes and jets is reversed during
these quiescent periods, namely that the MAD state experiences a magnetic reversal
between eruption epochs; see Fig. 3.7. This reversal behavior is observed from all
models with a purely horizontal magnetic field (𝜃𝐵 = 90◦) of the incoming fluid.
Unfortunately, our simulation is too short to conclusively decide whether the polarity
selection always alternates or is stochastic. We postpone a detailed discussion on
the origin of this phenomena to future studies.
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Figure 3.7: Magnetic field reversal of the jets between three eruption epochs in the
fiducial model (𝛽10-𝜃90-𝑅200). The relativistic magnetization 𝜎 is shown in color
and the in-plane components of the magnetic field are shown with black streamlines.

3.4 Dependence on accretion parameters
In this section, we present a systematic survey of the accretion parameters. We
change the inclination angle 𝜃𝐵 between the incoming magnetic field and the BH
spin (Sec. 3.4.1), then explore a weakly magnetized case with 𝛽∞ = 100 (Sec. 3.4.2),
followed by different incoming speeds of the fluid 𝑣∞ (Sec. 3.4.3). Rather than
delving into the same level of detail as the previous section, here we provide a
broader overview on qualitative impacts of the physical parameter chosen to be
varied.

3.4.1 Mixed magnetic fields
Keeping other parameters fixed as the fiducial setup, the inclination angle of the
initial magnetic field was varied to 𝜃𝐵 = 22.5◦, 45◦, 67.5◦. The purpose of this
experiment is to investigate how much the inclination of the incoming magnetic
field relative to the BH spin affects jet launching and the time evolution of accretion
flow.

In Fig. 3.8, we present the time series data from the three simulations varying 𝜃𝐵.
The result from the fiducial model 𝛽10-𝜃90-𝑅200 is overlayed with a transparent



69

0 5 10 15 20 25

t [τa]

0

10

20

30

φ
B

H

0 5 10 15 20 25

t [τa]

0 5 10 15 20 25

t [τa]

0.0

0.2

0.4

Ṁ
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Figure 3.8: Time evolution of physical quantities for three models with 𝜃𝐵 = 23.5◦,
45◦ and 67.5◦, all with 𝛽 = 10 and 𝑅𝑎 = 200. See Fig. 3.3 for a description of the
quantities shown. The result from the 𝜃𝐵 = 90◦ (fiducial) model is overlayed with a
transparent line.

line in each panels to highlight deviations. While the overall correlations between
each physical quantities is similar to that of the fiducial setup, we compile several
observations below.

(i) The time it takes from the beginning of the simulation to the first successful
jet launching and transition to the MAD state is longer for smaller inclination
angle, namely when the incoming magnetic field has more vertical compo-
nent. Interestingly, the maximally misaligned case (𝜃90) launches the jet the
earliest.rm

(ii) Within the simulation time 𝑡 ≤ 5 × 104𝑟𝑔/𝑐, both 𝜃𝐵 = 45◦ and 𝜃𝐵 = 67.5◦

models did not show any quiescent period; the first eruption epoch continued
throughout the final time. In contrast, the 𝜃𝐵 = 22.5◦ model turned into a
quiescent state after a single eruption epoch of a duration 10𝜏𝑎, and did not
revive its jet activity until the end of the simulation, showing a quiescent
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Figure 3.9: Duration of a magnetically arrested accretion epoch in units of the
accretion timescale 𝜏𝑎 = 2000𝑟𝑔/𝑐 for the four models with 𝑅𝑎 = 200𝑟𝑔 and
𝛽∞ = 10.

period with the duration at least longer than 5𝜏𝑎. The BH fails to establish
a MAD state during this quiescent period, where its episodic launching of
weak outflows (𝜂 ≲ 10%) into random directions appears to be very similar
to what was observed from low angular momentum accretion flows (Ressler,
Quataert, et al., 2021; Kwan, L. Dai, and Tchekhovskoy, 2023; Lalakos et al.,
2024; Galishnikova et al., 2025).

(iii) However, once the BH enters the eruption (MAD) state, values of 𝜙BH, ¤𝑀 ,
𝜂 and ¤𝐽 are almost same as the 𝜃𝐵 = 90◦ case for all models. This implies
that quasi-stationary properties of the MAD state in this setup do not depend
on the large scale magnetic field geometry, which only determines the time
period between eruption epochs.6 In Fig. 3.9, we plot the 𝜃𝐵 dependence of
the duration of eruption epochs we could observe from our simulations, while
we could only constrain lower bounds for 𝜃𝐵 = 45◦ and 𝜃𝐵 = 67.5◦ cases.
Our results indicate a non-monotonic behavior of the eruption epoch duration

6Kaaz, Murguia-Berthier, et al. (2023) adopts a similar parameter regime as in this work, apart
from M = 2.45 and 𝜃𝐵 = 0◦. In an active (jet) state, the mass accretion rate ¤𝑀/ ¤𝑀BHL ≈ 0.05 and
the energy outflow efficiency 1 ≲ 𝜂 ≲ 3 observed in our simulation agree with those from Kaaz,
Murguia-Berthier, et al., 2023, while the average value of 𝜙BH appears to be somewhat lower in our
study.
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Figure 3.10: Time series data for the 𝛽100-𝜃90-𝑅200 (left), 𝛽10-𝜃90-𝑅50 (center), and
𝛽10-𝜃90-𝑅400 (right) models. See Fig. 3.3 for a description of the quantities shown.
We overlay the result from the fiducial (𝛽10-𝜃90-𝑅200) model with a transparent line
only for the 𝛽100-𝜃90-𝑅200 model (first column).

with the magnetic field orientation 𝜃𝐵, but an exact functional relationship
between them is highly uncertain due to an insufficient number of data points
and limited numerical resolution surveys.

3.4.2 Lower magnetization
The first column of Fig. 3.10 shows the time series of accretion quantities for the
model 𝛽100-𝜃90-𝑅200, which has ten times weaker magnetization of the incoming
fluid compared to the fiducial model. Several peculiar features observed in this
model compelled us to perform a longer time integration up to 𝑡 = 8.7 × 104𝑟𝑔/𝑐.
We outline those below.

The evolution of the horizon magnetic flux 𝜙BH roughly follows a similar cycle.
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However, it undergoes more gradual increase and fall of 𝜙BH between eruption and
quiescent periods, exhibiting relatively short duration of eruptions and a longer
quiescent period. The BH cannot sustain the MAD state long enough as the 𝛽 = 10
case and takes longer to revive jets once it goes quiescent, which is consistent with
the upstream wind providing a smaller amount of magnetic flux per time. These
trends, along with an increased ¤𝑀/ ¤𝑀BHL ≈ 0.5 in a quiescent period and decreased
average values of 𝜙BH, 𝜂 during an active period, is similar to the results of Kaaz,
Murguia-Berthier, et al. (2023) despite a different incoming magnetic field geometry.

Another observation that can be made from the result, owing to a prolonged duration
of a quiescent period, is a reduced (or a reduced accumulation of) dynamical drag
𝐹𝑥 over an eruption period. A strong, low-density bipolar jets launched from the
BH pushes the gas outward, dropping the average mass density in the region trailing
behind the BH (X. Li et al., 2020).

The third eruption epoch (28𝜏𝑎 ≲ 𝑡 ≲ 36𝜏𝑎), though not as conspicuous as the first
two, ends up staying only in the mildly MAD regime 𝜙BH ≤ 10. We observe the
fourth round of rising magnetic fluxes at 𝑡 = 40𝜏𝑎 during which horizon magnetic
fluxes also stayed below 𝜙BH = 10. In brief, the system exhibits a periodic eruption-
quiescence cycle similar to what is observed in our fiducial model, but with a
decreasing level of activity over time. We caution that the decay we see may be
correlated with numerical resolution and scale separation between the BH and the
outer simulation domain boundary.

3.4.3 Faster/slower incoming speed
Time evolution of the models with a faster (𝑅𝑎 = 50𝑟𝑔, 𝑣∞ = 0.2𝑐) and a slower
(𝑅𝑎 = 400𝑟𝑔, 𝑣∞ = 0.07𝑐) speed of the incoming fluid are shown on the second and
third columns in Fig. 3.10. We show the mass density distribution on the meridional
plane for the two models in Fig. 3.11, highlighting differences in the shape and
radius of the bow shock, as well as the bending angle of outflows from the BH.

We first examine the case with a faster incoming speed (𝑅𝑎 = 50𝑟𝑔). The outflow
launched in the polar directions is choked by a strong ram pressure. The BH exhibits
sporadic flux eruptions and launches outflows intermittently, but fails to maintain a
continuous jet. While the horizon magnetic flux is kept below 𝜙BH ≤ 10, the mass
accretion rate shows a large oscillation between 0.3–0.9 ¤𝑀BHL, highly anti-correlated
with 𝜙BH. While the dynamical time of the accretion flow around the BH is the
same independent of the wind speed, the replenishing timescale of the flux changes
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(a) 𝑅𝑎 = 50𝑟𝑔 (at 𝑡 = 2 × 104 𝑟𝑔/𝑐)

(b) 𝑅𝑎 = 400𝑟𝑔 (at 𝑡 = 4 × 104 𝑟𝑔/𝑐)

Figure 3.11: Distribution of the mass density 𝜌 in the meridional plane for the
simulations 𝛽10-𝜃90-𝑅50 (top) and 𝛽10-𝜃90-𝑅400 (bottom). 𝑅𝑎 is the accretion radius,
𝑟𝑔 is the gravitational radius of the black hole, and 𝜌∞ is asymptotic mass density
of the wind.
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with 𝑅𝑎. For faster wind speeds, the cross section of the bow shock shrinks, with
less mass being accreted on the BH, though more relative to the changed reference
rate, ¤𝑀BHL. The BH then preferentially accretes in a SANE regime, even if the
magnetic properties of the wind at large scales remain the same. This likely implies
that questions about flux accumulation on the black hole horizon in BHL accretion
cannot be separated from the effective speed of the black hole. We also observe
that the tangential drag reaches 𝑓 𝑥BHL ≈ 6 by the end of the simulation; recall that
𝑓 𝑥BHL ≈ 2.5 in our fiducial model with 𝑅𝑎 = 200𝑟𝑔.

Next, we examine the model with a slower incoming speed of fluid (𝑅𝑎 = 400𝑟𝑔).
The accretion flow reaches the MAD state relatively early at 𝑡 ∼ 1.5𝜏𝑎. The shorter
time for the flow to become magnetically arrested is consistent with the scaling
argument presented in Kaaz, Murguia-Berthier, et al. (2023),

𝜏MAD/𝜏𝑎 ∝ 𝑅−3/4
𝑎 , (3.47)

while we note the exponent can be slightly different for an inclined magnetization of
the inflow. The accretion flow enters a quiescent period at 𝑡 ∼ 9𝜏𝑎 and revives jets
at 𝑡 ∼ 10𝜏𝑎, also showing a magnetic reversal behavior. The overall time evolution
of this model is qualitatively very similar to the fiducial model discussed in Sec. 3.3.
The dynamical friction measured by the end of the simulation was 𝑓 𝑥BHL ∼ 1.0.
However, we expect a higher value in practice as the measured value of the drag had
not fully reached a steady state during our integration time. We also observe that
the magnitude of the vertical drag is reduced to | 𝑓 𝑧BHL | ∼ 0.1 and the correlation
of its sign and the magnetic polarity of the jet has become weaker compared to
the fiducial model. The vertical drag occasionally turns to a positive value during
2.5𝜏𝑎 ≤ 𝑡 ≤ 4.5𝜏𝑎 where the direction of magnetic field threading the BH and the jet
has been steadily kept to +𝑧 during the period. Considering that the astrophysically
realistic speed of the BH is still much beyond the lower limit of 𝑣∞ explored in this
study, it follows that the vertical drag 𝐹𝑧 may be effectively uncorrelated or only
weakly correlated with the magnetic polarity of jets in realistic situations.

3.5 Discussion
3.5.1 Energy outflow
Fig. 3.12 compares the net energy outflow power 𝑃 = ¤𝑀𝑐2 − ¤𝐸 for all models. Once
the accretion enters the MAD state, the energy outflow power does not show much
dependence on the inclination angle 𝜃𝐵 of the incoming magnetic field. A slight
decrease in the power is observed when the magnetization of the incoming medium
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Figure 3.12: The energy outflow power 𝑃 = ¤𝑀𝑐2− ¤𝐸 from all simulations. The gray
line shows the result from the fiducial model. For the scaled efficiency 𝜂 ¤𝑀/ ¤𝑀BHL,
see Fig. 3.13.
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gray line shows the result from the fiducial model 𝛽10-𝜃90-𝑅200.
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is lower, which can be attributed to a reduced supply of magnetic energy to the BH
per unit time. Likewise, an increased energy outflow for a slower speed of incoming
fluid can be understood as that of a slowly moving BH with a large accretion radius,
leading to a higher mass accretion rate ( ¤𝑀BHL ∝ 𝑣−3

∞ ), and consequently a higher
rate of magnetic flux injection onto BH, resulting in a more powerful energy outflow
(and vice versa).

Our results indicate that among the accretion parameters varied in this study, the
energy outflow is most significantly influenced by the fluid speed 𝑣∞ and to a lesser
extent by the magnetization of the incoming matter (note that the BH speed is 𝑣∞
varied by a factor of two at most, where magnetization is set to be ten times weaker
in the 𝛽 = 100 model). The magnetic field inclination angle 𝜃𝐵 has a negligible
impact on the outflow power during eruption epochs. However, it largely effects the
time evolution and the intermittency of the jet activity, as previously discussed in
Sec. 3.4.1.

The finding from this comparative analysis, namely that the BH speed 𝑣∞ is a
primary factor in determining the outflow luminosity, also aligns with the fact that
basic physical scales of the BHL accretion e.g., Eq. (3.1)–(3.3) possess a strong
dependence in 𝑣∞ with the highest power exponent.

A reference scale of the energy outflow power in physical units can be written as

𝑃 = 𝜂

( ¤𝑀
¤𝑀BHL

)
¤𝑀BHL𝑐

2

= 1.0 × 1043
(
𝜂 ¤𝑀/ ¤𝑀BHL

0.05

) (
𝑀

100𝑀⊙

)2 (
𝜌∞

10−10 g cm−3

)
×

( 𝑣∞
1000 km s−1

)−3
erg s−1 .

(3.48)

The factor 𝜂 ¤𝑀/ ¤𝑀BHL corresponds to an effective energy conversion efficiency with
which the rest mass energy inflow ¤𝑀BHL𝑐

2 is converted into a net energy outflow.
Our baseline setup (𝛽10-𝜃90-𝑅200) shows the conversion efficiency ≈ 0.05 during an
eruption epoch. See Fig. 3.13 for the values of 𝜂 ¤𝑀/ ¤𝑀BHL from all models.

3.5.2 Magnus effect
As can be seen from Fig. 3.2, the downstream flow trailing the BH is deflected
to the −�̂� direction owing to the spin of the BH and a resulting circulatory flow
surrounding it. This can result in two effects on the transverse drag force 𝐹𝑦: (1) the
conservation of linear momentum requires the BH to experience a reaction force to
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Figure 3.14: The drag force to the transverse (𝑦) direction (Magnus force) in all
simulations. The gray line shows the result from the fiducial model. A negative
value corresponds to the anti-Magnus effect.



79

+�̂� direction, where (2) since a more amount of matter is deposited to 𝑦 < 0 region
of the downstream, a net gravitational pull from the flow is enhanced toward −�̂�
direction. These two effects are competing with each other, and the direction of the
net drag will be highly dependent on the nature of the accretion flow.

A nonzero transverse drag 𝐹𝑦 is the manifestation of the (general-relativistic analog
of the) Magnus effect, the phenomenon in the classical fluid dynamics that a spinning
body moving through a fluid experiencing a drag force normal to both the direction
of its motion and spin. Although its physical origin is different, a similar effect
is expected to be present in general relativity when a spinning compact object is
immersed in a mass-energy current not aligned with its spin axis (e.g., Font, Ibanez,
and P. Papadopoulos, 1999; Okawa and Cardoso, 2014; Costa, Franco, and Cardoso,
2018).

However, the precise direction of this gravitational Magnus effect has been under
debate when considering non-hydrodynamical types of matter (Okawa and Cardoso,
2014; Cashen, Aker, and Kesden, 2017; Costa, Franco, and Cardoso, 2018; Dyson
et al., 2024; Z. Wang et al., 2024). Costa, Franco, and Cardoso (2018) argues that the
gravitational Magnus force consists of two distinctive components (which they name
as ‘Magnus’ and ‘Weyl’ respectively therein) and especially the Weyl component can
be highly dependent on the specific scenario and boundary conditions of the physical
system under consideration. A recent fully relativistic analysis (Dyson et al., 2024)
has shown that the drag is always anti-Magnus for a collisionless particle-like matter
field, where a wave-like scalar field shows a mixed behavior. A numerical relativity
simulation on the BHL accretion of scalar dark matter (Z. Wang et al., 2024) has
reported an anti-Magnus effect.

Font, Ibanez, and P. Papadopoulos (1999), to the best of our knowledge, is the only
numerical study commenting on this phenomenon in the hydrodynamic regime, and
suggested that the enhanced pressure of the accretion flow on the counter rotating side
of the Kerr BH gives rise to the (pro-) Magnus effect, albeit without a quantitative
argument.

We report in here that our physical scenario—3D GRMHD BHL accretion onto a
spinning BH—yielded the positive sign of the Magnus force, analogous to the one
in classical fluid dynamics. Fig. 3.14 collects and compares the Magnus force 𝐹𝑦

from all models. For all the cases, the Magnus drag maintained a positive value
for the most of the simulation time. While the gravitational drag force Eq. (3.31)
we compute is not a fully general relativistic formula (see e.g., Costa, Franco,
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and Cardoso, 2018; Dyson et al., 2024; Z. Wang et al., 2024), it is very unlikely to
change the direction of the Magnus effect we observe from simulations. We mention
that previous numerical studies on the gravitational Magnus effect in a scalar field
(Okawa and Cardoso, 2014; Z. Wang et al., 2024) have been carried out in a boosted
metric, unlike our setup in which the black hole is fixed and the inflow is imposed
in terms of fluid velocity, potentially causing a quantitative difference in the drag
force.

It is also noteworthy that the magnitude of the Magnus force is not small, often rising
to a level comparable to the BHL drag force scale ¤𝑀BHL𝑣∞. Across all models, we
quote a conservative overall estimate that the Magnus force has been observed to
be about 10% of the dynamical friction. In the circumstances that the initial linear
momentum of the BH has been substantially lost by the dynamical friction, its
traveling trajectory could have been largely deflected from its original direction of
motion.

Our results have implications for a number of astrophysical contexts. In an extreme
mass-ratio inspiral of binary black hole, if a secondary BH has spin and is surrounded
by gaseous medium, the gravitational Magnus force on the secondary can alter its
trajectory or excite an eccentricity to the orbit. The resulting features in gravitational
waves can be potentially detectable with next generation gravitational wave detectors
e.g., LISA (Afshordi et al., 2023). In the common envelope phase of a binary star,
the drag force inside the gaseous envelope is responsible for the orbital decay and
expansion of the envelope (Livio and Soker, 1988; Taam and Sandquist, 2000;
Ivanova et al., 2013). Our findings imply that the BH orbiting within the envelope
could experience the Magnus force when spiralling around the core of the companion
star. Depending on the relative orientation of the BH spin to its direction of motion,
the Magnus force can increase orbital eccentricity or induce precession of the orbital
plane. This may have a considerable impact on the evolution of the BH orbit over long
periods and the final configuration of the binary after the common envelope phase.
We note that in this context a wind profile varying in the transverse direction needs
to be taken into consideration as well, since the nonzero gradient in mass density
or velocity leads to a misaligned, rotated shock cone geometry (Cruz-Osorio and
Lora-Clavijo, 2016; Cruz-Osorio and Rezzolla, 2020; Lora-Clavijo, Cruz-Osorio,
and Méndez, 2015) which in turn can significantly alter the direction of the total
drag force.



81

3.6 Conclusion
We have conducted three-dimensional general-relativistic magnetohydrodynamic
simulations of Bondi-Hoyle-Lyttleton accretion onto a spinning black hole when
the magnetic field of the surrounding plasma is inclined with respect to the spin
of the BH. Our primary motivation was to investigate the dynamics of a BBH
merger remnant kicked into the disk of an active galactic nucleus, but owing to
the ubiquitous applicability of the Bondi-Hoyle-Lyttleton accretion problem, our
results are also applicable to broader astrophysical contexts. We summarize our
main findings below.

• The accumulation of magnetic flux onto the BH establishes a magnetically
arrested state of the accretion flow and launches relativistic outflows to polar
directions, which are bent toward the downstream at a larger radius. The accretion
disk surrounding the BH extends up to a few tens of 𝑟𝑔 from the horizon, and is
encompassed by a large-scale downstream flow in the shock cone.

• Quasi-periodic magnetic flux eruptions from the BH launch pressure waves ex-
panding the bow-shaped shock cone, and release strongly magnetized blobs (flux
tubes)—which can potentially power flare-type electromagnetic transients (e.g.,
Hakobyan, Ripperda, and Philippov, 2023; Zhdankin, Ripperda, and Philippov,
2023) —along the equatorial plane into a narrow range of angles relative to the
wind direction.

• Anisotropic recoil from the magnetic flux eruptions drive a strong nutation on
the accretion disk, often ripping its inner region off from the outer part. Nutation
of the accretion disk is imprinted on the jet as its twisted morphology, potentially
aiding the development of a kink instability (Bromberg and Tchekhovskoy, 2016).

• For a purely horizontal magnetized wind (𝜃𝐵 = 90◦), the system periodically
undergoes a quiescent period with the duration≳ 𝜏𝑎, during which jet is quenched
and the accretion flow relaxes to the SANE state. Magnetic polarity inversion is
observed during this period.

• With an increasing inclination of the magnetic field relative to the BH spin, the
jet is launched earlier. However, the energy outflow power and efficiency did
not show significant differences once the system establishes a MAD state. The
orientation of the incoming magnetic field appears to hardly affect steady-state
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properties of the jet, but determines the temporal behavior of its active and
quiescent periods.

• The model with a lower magnetization 𝛽 = 100 shows a more gradual evolution
of 𝜙BH over active and quiescent epochs, as well as a slightly decreased energy
outflow, which can be explained by a reduced supply of magnetic fluxes from
the accretion flow.

• When subjected to a faster wind speed, a decreased dynamical cross section and
an increased ram pressure on the BH results in the suppression of jet launching.
On the other hand, the model with a slower wind speed reached the MAD
state earliest relative to the accretion timescale 𝜏𝑎, which is consistent with a
qualitative argument made in Kaaz, Murguia-Berthier, et al. (2023). Energy
outflow shows the strongest dependency in the wind speed among all parameters
considered in this work. This strong dependence of the overall flow dynamics
on the wind speed suggests that realistic values of 𝑣∞ will be a crucial element
for improved models of GRMHD BHL accretion.

• The gravitational Magnus effect is observed across all models, with the magni-
tude of a few tens of percents of the reference drag scale ¤𝑀BHL𝑣∞. The direction
of the Magnus force is the same as its classical aerodynamic counterpart.

Whereas the accretion radius 𝑅𝑎 adopted in this work has one of the largest values in
literature for the general relativistic BHL accretion, it is still considerably far from a
realistic condition. In the scenario of a kicked BBH post-merger remnant, the recoil
velocity is≲ 200 km s−1 for non-spinning binaries (Gonzalez, Sperhake, et al., 2007)
where the spin effects can at most enhance the recoil up to ≈ 4000 km s−1 for ‘su-
perkick’ configurations (Campanelli et al., 2007b; Gonzalez, Hannam, et al., 2007).
Newtonian studies suggest that when a BBH is embedded in a gaseous environ-
ment, accretion makes their orbital and spin axes aligned (Bogdanovic, Reynolds,
and Miller, 2007; Coleman Miller and Krolik, 2013), suppressing the superkick
configuration. The maximum recoil for a spin-orbit aligned binary estimated from
numerical relativity simulations is ≈ 500 km s−1 (Herrmann et al., 2007; Koppitz
et al., 2007; Healy, Lousto, and Yosef Zlochower, 2014). Another physical system
that can harbor a fast wind accreting onto a BH is an X-ray binary with a high-speed
stellar wind; for example, Cygnus X-1 binary system features 𝑣∞ ≳ 1000 km s−1

(Davis and Hartmann, 1983; Gies et al., 2008; Grinberg et al., 2015). However,
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the orbital motion of the BH and a specific geometry of the wind present in these
systems might require a deviation from the conventional BHL accretion setup.

Our present study opens up a number of different avenues for future work, with sev-
eral questions still remaining to be answered. First, the energy outflow power can
be affected by parameters other than those we have considered here: the magnitude
of the BH spin, the inclination of the magnetic field relative to the wind velocity,
the spin-wind orientation (Gracia-Linares and Guzmán, 2023), or hydrodynamic
parameters such as the adiabatic index and the Mach number which are known to
strongly influence the stability of the shock cone (Foglizzo, Galletti, and Ruffert,
2005). It would be also intriguing to investigate the inflow with a nonzero net angu-
lar momentum (Cruz-Osorio and Lora-Clavijo, 2016; Lora-Clavijo, Cruz-Osorio,
and Méndez, 2015), which provides a more appropriate scenario for the common
envelope phase. The inclusion of radiative effects (Zanotti, Roedig, et al., 2011)
will also greatly change the dynamics for super-Eddington accretion flows. Future
investigations would help constructing a more detailed physical picture of a black
hole moving through a magnetized medium, with a better bridging of the scale gaps
between currently available numerical models and realistic astrophysical scenarios.
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Figure 3.15: Mass accretion rate extracted at different radii for the 𝛽10-𝜃90-𝑅200
model. All data points are displayed without smoothing.
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3.A Extraction radius of density-related integral quantities
As discussed in Sec. 3.2.4, the drift flooring algorithm artificially injects the mass
density floor to maintain the comoving magnetization 𝜎 below an upper limit 𝜎max.
This often induces spurious increases in the fluid-related integral quantities when
computed very close to the BH, where the magnetization is very high.

In Figure 3.15, we show the mass accretion rate ¤𝑀 integrated at different radii
𝑟𝑖 = {𝑟𝐻 , 2𝑟𝑔, 3𝑟𝑔, 4𝑟𝑔, 5𝑟𝑔} from our representative model (𝛽10-𝜃90-𝑅200) where
𝑟𝐻 = 𝑟𝑔 (1+

√︁
1 − 𝑎2/𝑀2) is the outer horizon radius. It can be clearly seen that the

artificial effects from numerical flooring becomes almost absent in 𝑟𝑖 ≥ 3𝑟𝑔.

Fig. 3.16 shows, for the same set of radii, the 𝑥 component of the momentum drag
𝐹𝑥mom computed at the spherical surface 𝑟 = 𝑟𝑖 and the gravitational drag 𝐹𝑥grav
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integrated over the whole computational domain except the spherical volume 𝑟 < 𝑟𝑖.
The momentum drag settles down to near zero for 𝑟𝑖 ≥ 3𝑟𝑔. The magnitude of the
gravitational drag monotonically decreases for a larger 𝑟𝑖 since the region 𝑟 < 𝑟𝑖 is
simply excluded from the volume integral. The differences between them are not
significant, indicating that the gravitational drag is mostly contributed from 𝑟 ≥ 5𝑟𝑔.
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C h a p t e r 4

MAGNETOSPHERIC TRANSIENTS FROM BLACK
HOLE–NEUTRON STAR MERGER

Kim, Yoonsoo et al. (2024). “Black Hole Pulsars and Monster Shocks as Outcomes
of Black Hole–Neutron Star Mergers”. In: Astrophysical Journal Letters 982.2,
p. L54. doi: 10.3847/2041-8213/adbff9. url: https://iopscience.iop.
org/article/10.3847/2041-8213/adbff9.

The merger of a black hole (BH) and a neutron star (NS) in most cases is expected to
leave no material around the remnant BH; therefore, such events are often considered
as sources of gravitational waves without electromagnetic counterparts. However, a
bright counterpart can emerge if the NS is strongly magnetized, as its external mag-
netosphere can experience radiative shocks and magnetic reconnection during/after
the merger.

We use magnetohydrodynamic simulations in the dynamical spacetime of a merg-
ing BH–NS binary to investigate its magnetospheric dynamics. We find that com-
pressive waves excited in the magnetosphere develop into monster shocks as they
propagate outward. After swallowing the NS, the BH acquires a magnetosphere
that quickly evolves into a split monopole configuration and then undergoes an
exponential decay (balding), enabled by magnetic reconnection and also assisted
by the ring-down of the remnant BH. This spinning BH drags the split monopole
into rotation, forming a transient pulsar-like state. It emits a striped wind if the
swallowed magnetic dipole moment is inclined to the spin axis. We predict two
types of transients from this scenario: (1) a fast radio burst emitted by the shocks as
they expand to large radii and (2) an X/𝛾-ray burst emitted by the 𝑒± outflow heated
by magnetic dissipation.

4.1 Introduction
Merging black hole (BH)–neutron star (NS) binaries are promising sources of gravi-
tational waves (GWs) (see, e.g., R. Abbott et al., 2021b; R. Abbott et al., 2020; Abac
et al., 2024, for recent detections). Depending on the mass ratio of the system and
spin of the black hole, near-equal mass systems can feature tidal disruption of the
neutron star during merger, leading to dynamical mass ejection and the formation
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of a massive disk (Foucart, 2012; Foucart, Hinderer, and Nissanke, 2018). These
can power electromagnetic (EM) counterparts such as kilonova afterglows (Lattimer
and Schramm, 1974; L.-X. Li and Paczynski, 1998; Tanaka et al., 2014; Kawaguchi,
Kyutoku, et al., 2016; Fernández et al., 2017; Metzger, 2020; Gottlieb et al., 2023b;
Kawaguchi, Domoto, et al., 2024) and gamma-ray bursts (GRBs) (Janka et al.,
1999; Etienne, Liu, et al., 2012; Etienne, Paschalidis, and Shapiro, 2012; Pascha-
lidis, Ruiz, and Shapiro, 2015; Shapiro, 2017; Ruiz, Shapiro, and Tsokaros, 2018;
Hayashi, Fujibayashi, et al., 2022; Gottlieb et al., 2023a; Martineau et al., 2024).
However, the high mass ratio typical of such systems (R. Abbott et al., 2021b; Abac
et al., 2024) would likely result in a non-disruptive merger, leaving little or no mat-
ter surrounding the remnant BH (Foucart, 2012; Foucart, Hinderer, and Nissanke,
2018). Most BH–NS mergers are expected to fall in this latter category and be
EM-quiet (Fragione, 2021; Biscoveanu, Landry, and Vitale, 2022), supported by
the absence of EM counterparts to previous detections (e.g. Anand et al., 2021).

On the other hand, neutron stars can be equipped with strong exterior magnetic fields,
leading to potential EM counterparts from magnetospheric interactions with their bi-
nary companion. Previously studied scenarios can be broadly split into two groups.
Transients before merger (precursors) can be produced through magnetospheric in-
teractions (McWilliams and J. Levin, 2011; Lai, 2012; Piro, 2012; Paschalidis,
Etienne, and Shapiro, 2013; Carrasco, Viganò, et al., 2019; Carrasco, Shibata, and
Reula, 2021) including flares (Most and Philippov, 2023a; Beloborodov, 2021), or
through gravitationally driven resonances in the neutron star such as crustal shatter-
ing (Tsang et al., 2012; Penner et al., 2012; Most, Beloborodov, and Ripperda, 2024).
Potential transients at merger (concurrent EM counterpart) have been attributed to
either a net electric charge of the black hole (J. Levin, D’Orazio, and Garcia-Saenz,
2018; B. Zhang, 2019; Z.-G. Dai, 2019; Pan and Yang, 2019; Zhong, Z.-G. Dai,
and Deng, 2019), or magnetic flux shedding during the merger process (D’Orazio
and J. Levin, 2013; Mingarelli, J. Levin, and Lazio, 2015; D’Orazio, J. Levin, et al.,
2016; East et al., 2021).

Predicting magnetospheric dynamics of the merger is intrinsically complicated by
various competing processes, some of which can be inferred from previous numer-
ical studies of a NS gravitationally collapsing into a BH. In this related scenario,
part of the magnetic field is immediately shed during the collapse (Baumgarte and
Shapiro, 2003; Lehner et al., 2012; Palenzuela, 2013; Most, Nathanail, and Rez-
zolla, 2018). In the absence of resistive dissipation, the resulting BH can in principle
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acquire a net electric charge (Nathanail, Most, and Rezzolla, 2017). However, pair-
production in realistic environments will lead to an active magnetosphere supporting
magnetic flux decay (balding) of the BH (Lyutikov and McKinney, 2011; Brans-
grove, Ripperda, and Philippov, 2021; Selvi et al., 2024). On a technical level, most
of the studies in numerical relativity have made use of the force-free electrodynamics
or vacuum approaches to study magnetospheric dynamics. Compared to magnetohy-
drodynamic (MHD) approaches explicitly tracking matter dynamics, these crucially
miss out the formation of monster radiative shocks from fast magnetosonic waves
(Beloborodov, 2023) as was recently demonstrated by Most, Beloborodov, and Rip-
perda (2024), which could be responsible for some of the high-energy emission in
this process.

Here, we present GRMHD simulations in full numerical relativity of a merging
BH–NS binary, in which the NS is swallowed whole. While BH–NS merger sim-
ulations in GRMHD have become common recently (e.g., Chawla et al., 2010;
Etienne, Liu, et al., 2012; Etienne, Paschalidis, and Shapiro, 2012; Kiuchi et al.,
2015; Ruiz, Shapiro, and Tsokaros, 2018; Ruiz, Paschalidis, et al., 2020; Most,
Papenfort, Tootle, et al., 2021; Hayashi, Fujibayashi, et al., 2022; Hayashi, Ki-
uchi, et al., 2023; Izquierdo et al., 2024), tracking the magnetospheric evolution
requires special flooring techniques (Tchekhovskoy and Spitkovsky, 2013; Parfrey
and Tchekhovskoy, 2017). We employ such a sophisticated MHD strategy to track
the evolution of magnetosphere throughout inspiral and merger. Our simulations
identify novel types of shock-powered and reconnection-driven transients from a
BH–NS merger. Specifically, we show that monster shocks are formed during the
final phase of the inspiral, which can primarily source X-ray and radio bursts. In the
post-merger phase, we find that the magnetosphere of the remnant BH re-arranges
into a short-lived black hole pulsar state (Selvi et al., 2024), capable of powering
X-ray transients that may last for several milliseconds.

We describe the simulation setup and the configuration of the binary in Sec. 4.2. This
is followed by detailed discussions of two new transients from non-disrupting BH–
NS mergers. First, we present the formation of monster shocks in Sec. 4.3. Next, we
provide a detailed analysis of the black hole pulsar state that our simulations reveal
in Sec. 4.4. We discuss the properties of the expected EM emissions in Sec. 4.5.
Finally, we conclude by summarizing our findings in Sec. 4.6.

Unless otherwise stated, we adopt Gaussian units with 𝑐 = 𝐺 = 1 throughout this
chapter.
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4.2 Methods
We track the time evolution of a BH–NS binary as well as the common binary
magnetosphere using ideal GRMHD for dynamical spacetimes (Duez et al., 2005).
To this end, we need to specify both initial conditions and evolution parameters.

We use the Kadath/FUKA (Papenfort et al., 2021; Grandclement, 2010) initial data
framework to construct BH–NS initial data in extended conformal thin sandwich
(XCTS) form (Grandclement, 2006; Taniguchi et al., 2007; Taniguchi et al., 2008;
Foucart, Kidder, et al., 2008; Tacik et al., 2016). In order to ensure that the NS is
fully swallowed at merger,1 we adopt a non-spinning NS with mass 𝑀NS = 1.4𝑀⊙

using the APR4 equation of state (Akmal, Pandharipande, and Ravenhall, 1998),
and a BH with mass 𝑀BH = 8.0𝑀⊙ and dimensionless spin 𝑎 = 0.3 aligned with
the orbital axis (𝑧). The initial orbital separation of the binary is 60 km, resulting in
∼ 1.5 orbits before the merger. The neutron star is initially magnetized with a dipolar
field with a strength |𝐵∗ | = 1.9 × 1016 G at the magnetic poles on the surface. The
precise value of the magnetic field is unimportant for the magnetospheric dynamics
we study, since we fix the properties of the magnetosphere in terms of dimensionless
quantities such as magnetization 𝜎 = 𝑏2/𝜌, and plasma 𝛽 = 2𝑃/𝑏2, where 𝑏2 is
the magnetic energy density, 𝜌 the rest-mass density and 𝑃 the pressure. This
allows us to rescale the resulting magnetospheric dynamics to arbitrary magnetic
field strength. However, for purely numerical reasons we have found that using a
stronger field strength eases the transition to a near force-free magnetosphere near
the stellar surface in the inspiral computationally. Nevertheless, the chosen strength
of the magnetic field hardly impacts the bulk dynamics of the NS (the plasma beta
parameter is around 𝛽 ∼ 103 inside the NS during the inspiral). We simulate three
models with an initial inclination between the magnetic dipole moment and the
orbital axis 𝜃𝐵 = 0◦, 30◦, and 60◦. The initial NS magnetic field is inclined toward
the companion BH at 𝑡 = 0.

Dynamical evolutions are performed with the Einstein Toolkit framework (Lof-
fler et al., 2012), using the Frankfurt/IllinoisGRMHD (FIL) (Most, Papenfort,
and Rezzolla, 2019; Etienne, Paschalidis, Haas, et al., 2015) code for solving the
ideal GRMHD equations in a dynamical spacetime. The spacetime is evolved using
FIL’s numerical relativity solver, which implements the Z4c equations (Bernuzzi
and Hilditch, 2010; Hilditch, Bernuzzi, et al., 2013) in moving puncture gauge

1See Foucart (2012) and Foucart, Hinderer, and Nissanke (2018) for the allowed parameter space
of a non-disrupting BH–NS merger.
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(Alcubierre et al., 2003) using a fourth-order finite-difference discretization (Y. Zlo-
chower et al., 2005). The ideal GRMHD equations are solved using the ECHO
scheme (Del Zanna, Zanotti, et al., 2007) with upwind constraint transport (Lon-
drillo and Del Zanna, 2004). Similar to our previous work (Most, Beloborodov, and
Ripperda, 2024), the fourth-order derivative corrector in the ECHO scheme showed
less robust behavior at strongly magnetized shockfronts, and we have disabled it
in our runs. A key feature of our simulations is the ability to track the common
magnetospheric dynamics in full MHD as opposed to vacuum or force-free electro-
dynamics. While several studies have evolved magnetic fields in the exterior region
in the context of BH–NS mergers (Paschalidis, Ruiz, and Shapiro, 2015; Ruiz,
Shapiro, and Tsokaros, 2018; Ruiz, Paschalidis, et al., 2020), reproducing correct
(near-) force-free magnetospheric dynamics within the MHD formulation requires
the use of robust primitive inversion schemes (Kastaun, Kalinani, and Ciolfi, 2021)
and special flooring techniques (Tchekhovskoy and Spitkovsky, 2013; Parfrey and
Tchekhovskoy, 2017), unlike floors commonly used in numerical relativity sim-
ulations (e.g. Poudel et al., 2020). A detailed prescription of the floors we use
here is provided in Most, Beloborodov, and Ripperda (2024). It is precisely this
flooring scheme that allows us to correctly capture and uncover the transients we
present in this study. Similar to Most, Beloborodov, and Ripperda (2024), we have
supplemented the high-density cold equation of state used in the initial data with a
thermal equation of state, 𝑃 th = 𝜌𝜖 , which primarily governs the magnetospheric
dynamics. Here 𝑃 th is the thermal pressure, and 𝜖 the specific internal energy. We
use a three-dimensional Cartesian grid with eight levels of nested moving mesh
refinement (Schnetter, S. H. Hawley, and Hawke, 2004). The coarsest grid extends
to [−3025 km, 3025 km]3 and the finest resolution is 168 m. The finest grid level
consists of two patches covering 2–3× the size of the NS as well as of the BH, being
centered to and tracking each of them.

A detailed description of the initial evolution of non-disruptive BH–NS mergers can
be found elsewhere (see e.g. Kyutoku, Shibata, and Taniguchi, 2021, for a recent
review). Since the magnetospheric transients in our simulations are mainly driven
during and after the merger, we briefly depict the merger process in Figure 4.1,
which highlights the high degree of spatial asymmetry present in the process, and
consequently, the need for full numerical relativity not only for the spacetime evo-
lution but particularly to correctly determine the geometry of magnetic field in the
post-merger phase.
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Figure 4.1: Merger of the BH–NS binary in our simulations, where the neutron star
is swallowed whole. The entire process shown in this figure happens in less than
one millisecond.

4.3 Monster shock
The initially dipolar magnetosphere of the NS is sheared in the vicinity of the BH be-
fore and during merger. This perturbation will launch waves into the magnetosphere,
which will either be transverse (Alfvén) wave propagating along the magnetic field,
or be a compressional (fast magnetosonic) wave. In a dipole background field,
the compressional waves are expected from any non-toroidal perturbation in the
magnetosphere, as happens during the merger.

Propagation of fast magnetosonic waves to larger radii 𝑟 is not affected by the
background field as long as their wave amplitude 𝐸 = 𝛿𝐵 ∝ 𝑟−1 is much smaller than
the background dipole field 𝐵bg ∝ 𝑟−3. With increasing 𝑟, this condition becomes
broken, 𝐵2 −𝐸2 approaches zero, and the plasma drift speed in the wave approaches
the speed of light.2 Recent analytical (Beloborodov, 2023) and numerical (A. Y.
Chen, Yuan, X. Li, et al., 2022; Vanthieghem and Levinson, 2025) works have
demonstrated that this leads to the formation of monster shocks.3 In particular, in
the equatorial plane of the magnetic dipole, the shock appears when 𝛿𝐵 ≈ 𝐵bg/2,
which implies 𝐵2 − 𝐸2 touching zero at the trough of the compressional wave. Near
this point, the plasma develops a characteristic negative velocity 𝑣𝑟 < 0, which
leads to shock formation in front of the crest of the wave. In practice, searching for
zones with 𝑣𝑟 < 0 provides a simple way to identify regions of shock formation,

2Orbiting systems possess an orbital light cylinder, 𝑟LC ∼ 1/Ωorb, set by the orbital frequency
Ωorb. Steepening or distortion of the waves induced by a decreasing 𝐵 bg will only happen efficiently
on closed field lines inside the light cylinder, in turn requiring a minimum amplitude of the pertur-
bation (see, e.g., Most, Kim, et al., 2024 for a discussion in the context of non-linear steepening of
Alfvén waves).

3See also Lyubarsky (2003) for an earlier work.
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Figure 4.2: Poloidal structure (cut in the 𝑦𝑧 plane) of the perturbed magnetosphere
of the BH–NS binary 0.9 ms before merger for the aligned (𝜃𝐵 = 0◦) model. Fast
magnetosonic waves have toroidal electric fields 𝐸𝜙 (left), and Alfvén waves have
toroidal magnetic perturbations 𝛿𝐵𝜙 (right). Streamlines show fluid velocity in the
left panel and magnetic field lines in the right panel. The BH and NS are shown
with a black and blue circle, respectively.

in addition to detection of velocity jumps and localized heating spikes. A similar
analysis was performed in Most, Beloborodov, and Ripperda (2024) to demonstrate
shock formation in the magnetosphere of a collapsing magnetar.

In our simulations, the inspiral of the magnetized NS drives a continuous excitation
of magnetosonic waves in the magnetosphere, peaking around the plunge of the NS
into the BH. The final plunge of the NS injects a strong rarefaction mode into the
surrounding magnetosphere as the NS bulk velocity is maximally radially inward at
the moment. In Fig. 4.2, we show the excited magnetosphere about half an orbit
before the plunge for aligned (𝜃𝐵 = 0◦) magnetic axis. We find that the wave emitted
during the plunge leads to the development of a large 𝑣𝑟 < 0 region characteristic of
the monster shock, which we show in the top row of Fig. 4.3. This phenomenology
of a leading shock with surrounding weaker shocks resembles the results for the
collapsing magnetar (Most, Beloborodov, and Ripperda, 2024), and approximately
agrees with the analytical prediction (Beloborodov, 2023, see Fig. 7 therein).

The profile of 𝛾𝑣𝑟 across the shock region is affected by deviations of 𝐵bg from a
pure dipole due to the orbital motion of the NS. As an additional validation, we have
also confirmed that the regions with 𝑣𝑟 < 0 develop 𝐸2 ≈ 𝐵2 plateaus, corroborating
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Figure 4.3: Monster shocks launched from BH–NS mergers. Shown here are the
Lorentz factor (left panels) and the radial spatial velocity (right panels) on the
meridional (𝑥𝑧) plane. Dashed orange circles are light spheres with the radius
𝑟 = 𝑐(𝑡 − 𝑡merger). (Top) Simulation snapshot from the aligned model (𝜃𝐵 = 0◦).
A monster shock can be found near 𝑥 ≃ 250 km, with its characteristic feature
of a plasma moving radially inward (𝑣𝑟 < 0) preceding the shockfront. (Bottom)
Inclined model 𝜃𝐵 = 60◦. A similar feature can be seen near 𝑥 ≃ −400 km.

that the observed feature is the monster shock.

We have also identified monster shocks for the inclined models. One such model
with 𝜃𝐵 = 60◦ is shown in in the bottom row of Fig. 4.3. We caution that due to
the misalignment between magnetic equator and orbital plane, the strongest part of
the shock will appear off the shown 𝑦𝑧 plane, and the trough of the wave preceding
the monster shock might not strongly exhibit 𝑣𝑟 < 0. Yet, we can clearly identify a
similar leading shock structure as in the aligned case.

4.4 Transient black hole pulsar
In this section, we present a detailed analysis of the evolution of the post-merger
magnetosphere, defined as the region within the light sphere (𝑟/𝑐 ≤ 𝑡−𝑡merger), with a
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special emphasis on the near-horizon dynamics. The merger remnant settles down to
a Kerr BH with the mass𝑀 = 9.2𝑀⊙ and the dimensionless spin 𝑎 = 0.57. Relevant
length and time scales are 𝑟𝑔 ≡ 𝐺𝑀/𝑐2 = 13.6 km and 𝑟𝑔/𝑐 = 46 𝜇s, or equivalently
1 millisecond amounts to ∼ 22𝑟𝑔/𝑐. The angular velocity of the outer event horizon
is Ω𝐻 = 𝑎𝑐/2𝑟+ = 3.43 × 103s−1, where 𝑟+ = 𝑟𝑔 (1 +

√
1 − 𝑎2) ≈ 25 km is the

outer horizon radius. While we will quote values measured from our simulation
data in the following discussions, we caution that it is nontrivial to map our results
(especially time scales) in a coordinate-independent manner to those obtained from
other studies that used a fixed Kerr background, since our merger simulations are
performed using dynamically evolved coordinates.

4.4.1 Relaxation into a rotating split-monopole
The remnant BH is immersed in a dipole-like magnetic field shortly after the
merger. Since black holes cannot support closed magnetic field lines (MacDon-
ald and Thorne, 1982), the dipole gets stretched out, with the magnetic field lines
opening up near the magnetic equator. In consequence, the BH magnetosphere tran-
sitions into a split-monopole topology (Komissarov, 2004b), and begins to dissipate
the magnetic field energy at the current sheet. The inclination of the split-monopole
configuration depends on the initial inclination of the NS magnetic field. For all
simulations, the topology of magnetic field lines transitions into a split-monopole
over a timescale of 1 ms,4 which is consistent with multiple light crossing times
across the horizon (2𝑟+/𝑐 ≈ 0.2 ms).

The distribution of magnetic flux on the remnant BH is initially highly localized to
the spot through which the NS plunged into (Fig. 4.1). Over the transition period to
a split-monopole (𝑡 − 𝑡merger ≲ 1ms), the magnetic flux density on the BH horizon is
redistributed, relaxing into a relatively uniform distribution by 𝑡−𝑡merger ≈ 2 ms. The
upper panels of Fig. 4.4 show the post-merger magnetosphere at 𝑡 − 𝑡merger = 3.3 ms
for the aligned model (𝜃𝐵 = 0◦), displaying an axisymmetric split-monopole mag-
netosphere centered on the BH. Magnetic energy of the magnetosphere is partially
dissipated via reconnection in the equatorial current sheet, heating the plasma, as
can be seen from the plot of 𝑃th/𝜌 in Fig. 4.4.

The frame dragging of the remnant BH induces co-rotation of magnetic field lines
and forms a rotating split-monopole. The angular velocity of the magnetic field
lines in an axisymmetric force-free split-monopole magnetosphere around a Kerr

4A similar reordering and collimation of the post-merger magnetic field may also have been
observed in previous works (East et al., 2021).
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Figure 4.4: Post-merger magnetosphere of the remnant black hole having settled
down to a rotating split monopole. The physical quantities are shown in the 𝑥𝑧
plane. Left: fluid Lorentz factor 𝛾. Right: ratio of the thermal pressure 𝑝th to the
rest energy density 𝜌𝑐2. Black solid lines show the in-plane magnetic field lines.
An equatorial current sheet is formed at which the magnetic field lines in upper and
lower hemispheres reconnect, dissipating magnetic energy and causing a flux decay
(balding) of the BH. The inner magnetosphere is driven to co-rotate with the BH
due to frame dragging. As a result, the post-merger magnetosphere of an inclined
model (e.g. 𝜃𝐵 = 30◦, bottom panels) exhibits features similar to those of tilted
pulsars (see also Fig. 4.10). The spin axis of the BH is along 𝑧 in all models.
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Figure 4.5: Angular velocity of magnetic field lines threading the apparent BH
horizon for 𝜃𝐵 = 0◦ simulation. Shown are the distribution of Ω𝐹 for each latitude
and the stationary axisymmetric force-free solution Ω𝐹 ≃ Ω𝐻/2 (red dashed line).

BH is given as Ω𝐹 = 𝑎/8𝑀 to leading order in the spin (Komissarov, 2004a;
Armas et al., 2020). For arbitrary high spins, Ω𝐹 can be calculated either with
a perturbative analytic expansion (e.g. Armas et al., 2020) or using an iterative
numerical method (e.g. Contopoulos, Kazanas, and D. B. Papadopoulos, 2013;
Nathanail and Contopoulos, 2014). The ratio Ω𝐹/Ω𝐻 , which is 1/2 in the limit
𝑎 → 0, remains ≲ 1% different from 1/2 for the spin 𝑎 ≤ 0.7 (e.g. see Figure 1 of
Contopoulos, Kazanas, and D. B. Papadopoulos, 2013). Therefore, in the case of
our merger remnant BH with 𝑎 = 0.57, we can safely assume Ω𝐹/Ω𝐻 ≃ 0.5.

For the aligned (𝜃𝐵 = 0◦) model, we measure the rotation angular velocity of
magnetic field lines as

Ω𝐹 =
−𝑦 (𝑢𝑥/𝑢0) + 𝑥 (𝑢𝑦/𝑢0)

𝜛2 , (4.1)

where 𝑢𝜇 is the four-velocity of the plasma and 𝜛 =
√
𝑟2 − 𝑧2 is the (coordinate)

cylindrical radius. This description is appropriate for the ideal MHD limit we
consider. Fig. 4.5 shows the measured Ω𝐹/Ω𝐻 over a spherical surface 𝑟 = 2.4 𝑟𝑔
encompassing the remnant BH.5 We observe that the rotation angular velocity of
magnetic field lines converges to Ω𝐻/2 and the asymmetry present in its distribution
is decayed out over time. In addition to the magnetic field morphology shown in

5When computing the horizon angular velocityΩ𝐻 , we used the mean radius of the instantaneous
apparent horizon of the BH.
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Figure 4.6: A spacetime diagram of the approximate electric current
�� 𝑗𝜙�� on a

meridional arc 𝜙 = 0 at 𝑟 = 2.4𝑟𝑔 in three simulations with different initial in-
clinations of the NS magnetic dipole moment (𝜃𝐵 = 0◦, 30◦, 60◦), displaying the
latitude of the post-merger magnetospheric BH current sheet. For the inclined mod-
els (𝜃𝐵 = 30◦, 60◦), the periodic oscillation in the latitude represents the rotation of
the inclined current sheet. The orbital current sheet of the NS in the inspiral phase
is also visible for 𝑡 − 𝑡merger ≲ −2 ms, where 𝑡merger indicates the merger time.

Fig. 4.4, this provides solid evidence that the post-merger magnetosphere relaxes
into a rotating split-monopole.

As naturally expected, for inclined magnetic field, the remnant BH settles down to
a rotating, inclined split-monopole magnetosphere. The resulting global dynamics
of the magnetosphere closely resembles that of a tilted pulsar, akin to a recently
proposed black hole pulsar state (Selvi et al., 2024). We present detailed discussions
on this transient BH pulsar in later sections.

4.4.2 Rotation and alignment of current sheets
The spinning remnant BH induces a rotation of the magnetic field lines and the
current sheets via frame dragging with respect to its spin axis. In the following, we
would like to track the motion of current sheets. These are easily identified with
the (toroidal) electric current, 𝑗𝜙, which we here approximate via its Newtonian
expression,

𝑗𝜙 ≈ 𝜖𝜙𝑖 𝑗𝜕𝑖𝐵 𝑗 . (4.2)

We then analyze the time evolution of the current on a fixed spherical surface of
radius 𝑟 = 2.4𝑟𝑔. In Fig. 4.6, we show the distribution of | 𝑗𝜙 | on the meridional arc
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Figure 4.7: Time evolution of the current sheet inclination angle 𝜒 for the 𝜃𝐵 =

30◦, 60◦ models.

𝜙 = 0 (𝑥 > 0, 𝑦 = 0) for all simulations. The equatorial current sheet in the aligned
case (𝜃𝐵 = 0◦) does not exhibit notable modulations in its latitude, where we have
confirmed in Sec. 4.4.1 that the magnetosphere is in fact rotating with Ω𝐹 = 0.5Ω𝐻 .
For the inclined cases, rotation of the current sheet is clearly seen in Fig. 4.6. The
time interval between neighboring peaks is about 3.5 ms, revealing that the current
sheet is rotating with about half of the horizon angular velocity.

Over each meridional lines (𝜙 = const.) on the spherical surface 𝑟 = 2.4𝑟𝑔, we
collect the latitude 𝛼0(𝜙) with the maximum value of | 𝑗𝜙 |, which is effectively the
latitude of the current sheet at that azimuthal angle. Then we define the current
sheet inclination angle 𝜒 as6

𝜒 =
max[𝛼0(𝜙)] − min[𝛼0(𝜙)]

2
. (4.3)

In Fig. 4.7, we show the measured 𝜒(𝑡) from 𝜃𝐵 = 30◦, 60◦ simulations. A nonlinear
deformation of the NS during the merger is found to greatly enhance the inclination
angle of the magnetic field around the merger remnant, resulting in 𝜒 ≈ 60◦ for

6See the section 3 of Selvi et al. (2024) for an alternative method to measure 𝜒(𝑡) in terms of
the magnetic moment.
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𝜃𝐵 = 30◦. We observe a gradual decay in 𝜒(𝑡) for both models, indicating the
alignment of the current sheet with respect to the BH spin axis over time, which is
consistent with the result of Selvi et al. (2024). However, here we can only provide
a crude estimate on the alignment timescale 𝜏𝜒 ≈ 1000–2000 𝑟𝑔/𝑐, being limited by
a short simulation time and a mild spin of the BH. We also caution that the observed
alignment timescale could be affected by a high numerical dissipation (see Sec.
4.4.3).

4.4.3 Balding and ring-down of the remnant BH
In a split-monopole magnetosphere of a stationary BH, the total magnetic flux
threading the horizon

ΦB =
1
2

∮
|𝐵𝑟 |𝑑Ω, (4.4)

exponentially decays as a result of magnetic reconnection in the current sheet (Lyu-
tikov and McKinney, 2011; Bransgrove, Ripperda, and Philippov, 2021; Selvi et al.,
2024). In the top panel of Fig. 4.8, we show the decay of the horizon magnetic
flux ΦB for all simulations. Overall, the decay times shown in Fig. 4.8 are an
order of magnitude shorter than those from the MHD simulations of Bransgrove,
Ripperda, and Philippov (2021) and Selvi et al. (2024). This is likely due to artifi-
cially high numerical resistivity (i.e., low spatial grid resolution) compared to those
studies. At higher resolution than we use, our MHD solution will equally not be
able to recover the correct collisionless reconnection rate (Sironi and Spitkovsky,
2014; Bransgrove, Ripperda, and Philippov, 2021). We therefore treat our results
mainly qualitatively, in that the BH pulsar forms and balds, and defer quantitative
conclusions to an analytical model discussed in Sec. 4.4.4.

The magnetic flux decay timescale 𝜏Φ is almost identical for both of the inclined
models, while the aligned model exhibits about 30% faster decay until 𝑡 − 𝑡merger ≲

6 ms. However, in a split monopole magnetosphere of a stationary Kerr BH, the
timescale 𝜏Φ may not notably depend on the current sheet inclination angle 𝜒 (Selvi
et al., 2024). We investigate the origin of the accelerated magnetic flux decay by
examining additional physical quantities, as follows.

Electromagnetic and gravitational perturbations around a BH can be analyzed by
means of the Newman-Penrose (NP) scalars (Teukolsky, 1972; Teukolsky, 1973)

𝜓4 = −𝐶𝑎𝑏𝑐𝑑𝑛𝑎�̄�𝑏𝑛𝑐�̄�𝑑 , (4.5)

𝜙2 = 𝐹𝑎𝑏�̄�
𝑎𝑛𝑏, (4.6)
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Figure 4.8: Top: total magnetic flux extracted on a spherical surface 𝑟 = 2.4𝑟𝑔 near
the apparent horizon. The result from 𝜃𝐵 = 30◦ (cyan solid line) and 𝜃𝐵 = 60◦
(orange solid line) are lying almost on top of each other. Middle: imaginary part
of (𝑙, 𝑚) = (1, 1) mode of the Maxwell Newman-Penrose (NP) scalar 𝜙2 extracted
at 𝑟 = 4.3𝑟𝑔. Bottom: imaginary part of (𝑙, 𝑚) = (2, 2) mode of the NP scalar
𝜓4 extracted at 𝑟 = 4.3𝑟𝑔. We only show the result from 𝜃𝐵 = 0◦ since the result
is almost identical for all simulations. Exponential decays with timescales 31𝑟𝑔/𝑐,
23𝑟𝑔/𝑐 and 13𝑟𝑔/𝑐 are indicated by the black dashed, blue dotted, and red dashed
lines.
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Figure 4.9: Imaginary part of the Maxwell Newman-Penrose scalar 𝜙(𝑙=1,𝑚=1)
2 ,

corresponding approximately to outgoing fast magnetosonic waves, on the vertical
(𝑥𝑧) plane normalized with the magnitude of magnetic field for the aligned case
𝜃𝐵 = 0◦ at 𝑡 − 𝑡merger = 1.05 ms.

where𝐶𝑎𝑏𝑐𝑑 is the Weyl tensor, 𝐹𝑎𝑏 is the electromagnetic field tensor, and (𝑙𝑎, 𝑛𝑎, 𝑚𝑎, �̄�𝑎)
are orthonormal null tetrads

𝑙𝑎 = (𝑡𝑎 + 𝑟𝑎)/
√

2, (4.7)

𝑛𝑎 = (𝑡𝑎 − 𝑟𝑎)/
√

2, (4.8)

𝑚𝑎 = (𝜃𝑎 + 𝑖𝜙𝑎)/
√

2. (4.9)

We use the dominant (𝑙, 𝑚) = (2, 2) quadrupole mode of 𝜓4 to monitor the BH
ringdown, and the (𝑙, 𝑚) = (1, 1) dipole mode of 𝜙2 to monitor the electromagnetic
modulation in the magnetosphere.7 We show the imaginary part of 𝜙(𝑙=1,𝑚=1)

2 and
𝜓
(𝑙=2,𝑚=2)
4 (hereafter denoted simply as 𝜙2 and 𝜓4 for brevity) in the middle and

lower panels of Fig. 4.8. In the following discussions, we denote the exponential
decay time scale of the NP scalar 𝜙2 (𝜓4) as 𝜏NP

𝜙
(𝜏NP
𝜓

).

We compute the quasi-normal mode (QNM) frequencies of the remnant BH for
(𝑠, 𝑙, 𝑚) = (−2, 2, 2) and (𝑠, 𝑙, 𝑚) = (−1, 1, 1) fundamental modes using the qnm
package (Stein, 2019). The imaginary parts of the two QNM frequencies are both
around 12 𝑟𝑔/𝑐. From the real parts, we obtain the oscillation period 0.94 ms for 𝜙2

and 0.59 ms for 𝜓4. The damped sinusoidal oscillation of 𝜓4, shown in the bottom
panel of Fig. 4.8, agrees well with both real and imaginary parts of the computed
QNM frequency.

7The NP scalar 𝜓4 corresponds to the outgoing gravitational radiation at null infinity. The
Maxwell NP scalar 𝜙2 is proportional to the complex electric field 𝐸𝜃 + 𝑖𝐸𝜙 . In an axisymmetric
background magnetic field, 𝐸𝜃 corresponds to the Alfvénic modes and 𝐸𝜙 to the fast magnetosonic
modes.
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Inclined magnetic field (𝜃𝐵 = 30◦, 60◦) — Both simulations show 𝜏NP
𝜙

= 31𝑟𝑔/𝑐,
which is the same as their magnetic flux decaying timescale 𝜏Φ. Periodic oscillations
of 𝜙2 for 𝑡 − 𝑡merger ≳ 1.5 ms are coming from the rotation of current sheets (see
Fig. 4.6), which has a half-period of 2𝜋/Ω𝐻 ≈ 1.8 ms. From the fact that the
measured decay timescales 𝜏Φ and 𝜏NP

𝜙
not only agree with each other but also being

disparate from the QNM frequency, we deduce that 𝜏Φ = 31𝑟𝑔/𝑐 is the the flux
decay timescale of the BH pulsar due to magnetic reconnection in our setup, and the
time decay of 𝜙2 is simply a consequence of the declining magnetic field strength.

Aligned magnetic field (𝜃𝐵 = 0◦) — In the early phase of the ringdown (𝑡 − 𝑡merger ≤
5 ms), 𝜙2 exhibits a rapid decay with 𝜏NP

𝜙
≈ 𝜏NP

𝜓
. The period of the oscillations

in 𝜙2, which lasts about 2.5 cycles, is measured to be 0.9ms and shows a good
agreement with the QNM frequency (0.94ms). This indicates that the evolution
of the post-merger magnetosphere is dominated by the ringdown of the BH, which
rapidly sheds off magnetic fluxes from the horizon. We show 𝜙2 in the meridional
(𝑥𝑧) plane in Fig. 4.9. The magnetic flux shedding driven by QNMs induces
episodes of quasi-periodic modulations in the magnetosphere, which leads to a
more rapid reconnection of the field lines on the equatorial plane. The same
process has been also observed by Most, Beloborodov, and Ripperda (2024) for
the gravitational collapse of a NS with its spin axis aligned with the magnetic
moment. On the other hand, both 𝜏Φ and 𝜏NP

𝜙
are slowed down to ≈ 31𝑟𝑔/𝑐 later in

𝑡 − 𝑡merger ≥ 6 ms, implying that the balding process of the BH begins to be affected
more by resistivity. The magnetic flux shedding by QNMs becomes subdominant
as gravitational perturbations fade out, then the flux decay is governed by magnetic
reconnection afterwards. We caution that this observed behavior may change at
higher numerical resolutions, which will exhibit a better scale separation between
plasma and gravitational effects.

4.4.4 Striped wind
The rotation of an inclined split-monopole magnetosphere on a BH leads to a striped
wind (Selvi et al., 2024) which appears to be similar to those from oblique pulsars
(e.g. Michel, 1982; Petri, 2012; Tchekhovskoy and Spitkovsky, 2013; Cerutti and
Philippov, 2017), albeit without the presence of a closed zone. We illustrate this in
Fig. 4.10 for the 𝜃𝐵 = 30◦ simulation, where the sign change in the toroidal magnetic
field is clearly visible. Different from a stationary pulsar solution with 𝐵𝜙 ∼ 1/𝑟
(Michel, 1982; Bogovalov, 1999), the magnetic field here decays over time. While
this will not affect the geometry of the striped wind, its amplitude will naturally
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Figure 4.10: Pulsar-like striped wind from the remnant black hole at 𝑡 − 𝑡merger =
7.0 ms from 𝜃𝐵 = 30◦ simulation. We show the toroidal magnetic field 𝐵𝜙 with the
magnetic field lines on the equatorial (𝑥𝑦) plane in both panels. The remnant black
hole is shown with a black circle and spinning counter clockwise in this figure. In
the right panel, we show the stagnation surface (𝑢𝑟 = 0) with a black dashed line.

become a function of retarded time, 𝐵𝜙 = 𝐵𝜙 (𝑟, 𝜃, 𝑡 − 𝑟/𝑐), as can be seen from the
left panel of Fig. 4.10.

A stagnation surface at which 𝑢𝑟 = 0, separating the inflow and outflow region of
the plasma, appears in the vicinity of the BH (Bransgrove, Ripperda, and Philippov,
2021); we show it on the right panel of Fig. 4.10. Interestingly, the stagnation surface
is discontinuous across the rotating current sheet, with its radius being greater at
the upstream of the current sheet (trailing part of the striped wind), appearing as a
half-split spheroid with an offset along the current sheet.

We also find that the rotation angular velocity of the magnetic field lines is slower
(faster) at the upstream (downstream) of the rotating current sheet, exhibiting a
symmetric deviation from Ω𝐹 = Ω𝐻/2. We reserve a more detailed analysis of
these near-horizon dynamics of oblique BH pulsars for future work.

An analytic model of the toroidal magnetic field 𝐵𝜙 in the wind can be developed
as follows. For a nearly force-free wind from a rotating split-monopole, 𝐵𝜙 can be
approximated as (Michel, 1982; Bogovalov, 1999; Tchekhovskoy, Philippov, and
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Figure 4.11: Toroidal magnetic field of the striped wind |𝐵𝜙 (𝑟) | on the equatorial
plane along the 𝑥 axis. Alternating signs (polaritires) of 𝐵𝜙 in each stripes are
denoted with different colors. The dashed line shows the fit with Eq. (4.11).

Spitkovsky, 2016)

|𝐵𝜙 (𝑟, 𝜃) | ≈ Ω𝑟 sin 𝜃
𝑐

|𝐵𝑟 | =
Ω

𝑐

𝐵∗𝑟2
∗ sin 𝜃
𝑟

, (4.10)

where Ω is the rotation angular velocity, 𝐵∗ is the surface magnetic field strength,
and 𝑟∗ is the radius of the rotator. For a BH pulsar, we can replace the angular
velocity Ω with Ω𝐹 = Ω𝐻/2, the radius 𝑟∗ with 𝑟𝐻 , and the surface magnetic field
𝐵∗ with 𝐵𝐻 (𝑡) = 𝐵𝐻,0𝑒

−𝑡/𝜏Φ . The resulting extension of Eq. (4.10) for a BH pulsar
is

|𝐵𝜙 (𝑟, 𝜃, 𝑡) | = Ω𝐻

2𝑐
𝐵𝐻,0𝑟

2
𝐻
𝑒−(𝑡−𝑟/𝑐)/𝜏Φ sin 𝜃

𝑟
, (4.11)

where (𝑡 − 𝑟/𝑐) accounts for a retarded time.

Fig. 4.11 compares the 𝜃𝐵 = 30◦ simulation data with Eq. (4.11) on the equatorial
plane, using 𝜏Φ = 31𝑟𝑔/𝑐 measured from the balding process (Sec. 4.4.3) and
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shifting 𝑡 → 𝑡 − 𝑡merger. Our approximate analytic model shows a good agreement
with the simulation result. The value of 𝐵𝐻,0 fitted from the simulation data is
1.5 × 10−2𝐵∗, revealing that the split-monopole BH pulsar inherits about 1% of
the magnetic field strength from the companion NS. A separate estimate from the
BH magnetic flux Φ𝐵 = 2𝜋𝑟2

𝐻
𝐵𝐻,0 (top panel of Fig. 4.8) yields almost the same

value of 𝐵𝐻,0, reassuring the validity of the analytic model Eq. (4.11) as well as the
measured value of 𝐵𝐻,0.

4.4.5 Energetics
The wind from the BH pulsar is powered by the energy extracted from the remnant
BH through the Blandford-Znajek (BZ) process (Blandford and Znajek, 1977),
leading to a spin-down of the BH. The spin-down power of an aligned split-monopole
magnetosphere, to a leading order of the BH spin,8 is given as (Tchekhovskoy,
Narayan, and McKinney, 2010)

𝑃BZ =
(Φ2

𝐵
/4𝜋)Ω2

𝐻

6𝜋𝑐
. (4.12)

The BZ power (4.12) can be written into a form more commonly used in the pulsar
literature

𝐿 =
2
3𝑐

Ω2
𝐹𝐵

2
𝐻𝑟

4
𝐻 , (4.13)

with Ω𝐹 = Ω𝐻/2 and Φ𝐵 = 2𝜋𝑟2
𝐻
𝐵𝐻 .

This spin-down power is carried by the electromagnetic Poynting flux, which is
not a direct observable. It is the dissipation in the current sheets which converts
the electromagnetic field energy of the wind into kinetic energy of particles and
subsequent electromagnetic emissions (Philippov, Uzdensky, et al., 2019). In a
steady pulsar magnetosphere, about 10–20 percent of the spin-down power can be
dissipated within 10 light cylinder radii (e.g., Parfrey, Beloborodov, and Hui, 2012;
A. Y. Chen and Beloborodov, 2014; Philippov, Spitkovsky, and Cerutti, 2015; see
also Cerutti and Beloborodov, 2017 for a review).

Here we develop a toy model for the dissipation luminosity of a BH pulsar, closely
following the approach by Cerutti, Philippov, and Dubus (2020). From here we will
use 𝑡 to denote the time after the formation of the split monopole i.e. (𝑡−𝑡merger) → 𝑡.

8The relative correction from the next order term ∝ (Ω𝐻 )4 is less than 10−3 in our case. See
Tchekhovskoy, Narayan, and McKinney (2010) for the expansion formula up to (Ω𝐻 )6.
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The total dissipation luminosity is given by a volume integral

𝐿𝐷 =

∫
(J · E) 𝑟2 sin 𝜃𝑑𝑟𝑑𝜃𝑑𝜙

=
𝑐𝛽rec
𝜋

∫
(𝐵𝜙)2 𝑟 sin 𝜃𝑑𝑟𝑑𝜃,

(4.14)

where 𝛽rec is the dimensionless reconnection rate (Uzdensky and Spitkovsky, 2014).
A primary difference of our toy model from that of Cerutti, Philippov, and Dubus
(2020) is the exponential damping term in the Eq. (4.11) associated with the flux
decay of the BH. Substituting the expression (4.11) into (4.14) and performing
angular integration,

𝐿𝐷 =
2𝛽rec𝐿0
𝜋

𝑒−2𝑡/𝜏Φ
∫ 𝑟max

𝑟min

𝑒2𝑟/𝑐𝜏Φ

𝑟
𝑑𝑟, (4.15)

where 𝐿0 = (2/3𝑐)Ω2
𝐹
𝐵2
𝐻,0𝑟

4
𝐻

is an instantaneous BZ power of the BH pulsar at
𝑡 = 0. The upper and lower bounds of the integral in Eq. (4.15) correspond to the
radial extent of the striped wind, 𝑟min = 𝑟𝐻 and 𝑟max ≈ 𝑐𝑡, which gives

𝐿𝐷 (𝑡) =
2𝛽rec𝐿0
𝜋

𝑒−2𝑡/𝜏Φ
[
Ei

(
2𝑡
𝜏Φ

)
− Ei

(
2𝑟𝐻
𝑐𝜏Φ

)]
, (4.16)

where Ei(𝑥) =
∫ 𝑥

−∞(𝑒𝑡/𝑡)𝑑𝑡 is the exponential intergral.

We apply our toy model to the 𝜃𝐵 = 30◦ simulation. The initial spin-down power 𝐿0

can be computed from the mass and spin of the remnant BH, and using 𝐵𝐻,0/𝐵∗ =

1.5% fitted from the simulation result (see Sec. 4.4.4).9 The flux decay timescale
𝜏Φ = 31𝑟𝑔/𝑐 from our simulation is dominated by unphysical numerical resistivity,
therefore we consider 𝜏Φ = 100𝑟𝑔/𝑐 and 𝜏Φ = 500𝑟𝑔/𝑐 motivated from the high-
resolution (kinetic) simulations of Bransgrove, Ripperda, and Philippov (2021) as
a more realistic input for assessing light curves. The reconnection rate is fixed to
𝛽rec = 0.1 from kinetic plasma simulations (Sironi and Spitkovsky, 2014).

In Fig. 4.12, we show the modelled dissipation luminosity 𝐿𝐷 (𝑡) scaled with the
initial NS magnetic field strength. The time curve of the dissipation luminosity
exhibits a rapid rise to its peak value within a few milliseconds, followed by expo-
nential then power-law decay over tens of milliseconds. A magnetar can power a
burst with the luminosity ∼ 1047 erg s−1, while a NS with 𝐵∗ ∼ 1012 G will emit a

9Note that this ratio 𝐵𝐻,0/𝐵∗, namely the portion of the magnetic flux that a nascent BH pulsar
inherits from the swallowed NS, can only be probed with a full numerical relativity merger simulation
as performed here.
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Figure 4.12: The dissipation luminosity from a BH pulsar 𝐿𝐷 (𝑡) computed with an
analytic model developed in Sec. 4.4.5, normalized with 𝐿𝐷,43 ≡ 𝐿𝐷/(1043 erg s−1)
and 𝐵∗,13 ≡ 𝐵∗/(1013 G). Due to a high (unphysical) numerical resistivity in our
simulation, we construct the light curves using 𝜏Φ = 100𝑟𝑔/𝑐 (blue solid line)
and 𝜏Φ = 500𝑟𝑔/𝑐 (orange solid line) consistent with bounds from high-resolution
kinetic simulations of Bransgrove, Ripperda, and Philippov (2021).

relatively faint one with ∼ 1041 erg s−1. The exponential factor 𝑒2𝑟/𝑐𝜏Φ in Eq. (4.15)
suggests that the region 𝑟 ≈ 𝑟max is predominantly contributing to the total integral,
implying the forefront of the expanding striped wind with a thickness Δ𝑟 ≈ 𝑐𝜏Φ is
mainly powering the total dissipation luminosity.

The total dissipated energy 𝐸 =
∫
𝐿𝐷 (𝑡)𝑑𝑡 does not converge due to a 𝑡−1 asymptotic

decay of 𝐿𝐷 (𝑡). Realistically, dissipation in the current sheets would introduce a
faster decrease of 𝐵𝜙 in radius, and the decay of 𝐵𝐻 (𝑡) below a certain threshold can
halt the pair production around the BH, turning off the BH pulsar. Naively setting
the end time of the burst as when 𝐿𝐷 (𝑡) drops down to 1/10 of its peak value,
the burst lasts about 15 ms (60 ms) for 𝜏Φ = 100𝑟𝑔/𝑐 (500𝑟𝑔/𝑐), with the average
luminosity 2.6 × 1043 erg s−1 (4.2 × 1043 erg s−1) for 𝐵∗ = 1013 G.
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4.5 Electromagnetic transient
4.5.1 Radio burst
The power dissipated in monster shocks at small radii is immediately radiated in
X-rays (Beloborodov, 2023). Later, when the shock expands to larger radii, it can
become a bright source of radio emission and emit a powerful fast radio burst (FRB).
Magnetized shocks emit a radio precursor by the synchrotron maser mechanism; it
was initially proposed for termination shocks of pulsar winds (Hoshino et al., 1992;
Lyubarsky, 2014) and then for internal shocks in magnetized 𝑒± outflows to explain
repeating FRBs (Beloborodov, 2017).

Consider first the monster shock at small radii 𝑟 ∼ 107–108 cm. Kinetic plasma
simulations of magnetized shocks (Sironi, Plotnikov, et al., 2021; Vanthieghem and
Levinson, 2025) show precursor emission with frequency 𝜔pre ∼ 3�̃�𝐵 = 3𝑒�̃�/𝑚𝑒𝑐,
where �̃� is the upstream magnetic field measured in the plasma rest frame, 𝑒
is the elementary charge, and 𝑚𝑒 is the electron mass. �̃� is reduced from the
background value 𝐵bg by the strong expansion of the plasma ahead of the monster
shock (Beloborodov, 2023):

�̃� ≈ 𝜔𝑟

2𝑐𝜎bg
𝐵bg, (4.17)

where 𝜎bg = 𝐵2
bg/4𝜋𝑛bg𝑚𝑒𝑐

2 is the background magnetization parameter, and 𝜔 is
the frequency of the magnetospheric perturbation that led to shock formation (our
simulation shows 𝜔𝑟/𝑐 ∼ 10). Density 𝑛bg can be parameterized by multiplicity
M ≡ 𝑛bg/𝑛0, where 𝑛0 = ∇·𝑬/4𝜋𝑒 ∼ Ω𝐵bg/2𝜋𝑒𝑐 is the minimum density required
to support the magnetospheric rotation with drift speed ∼ Ω𝑟 (Goldreich and Julian,
1969). This gives 𝜔pre ∼ (𝑟𝜔/𝑐)MΩ ∼ 104M rad/s.

This simple estimate is, however, deficient because it neglects the deceleration
of the upstream flow by strong radiative losses. Losses dramatically change the
radio precursor from monster shocks at small radii by increasing its frequency and
suppressing its power (Beloborodov, in preparation).

Powerful radio emission is expected from the relativistic shock when it expands far
into the 𝑒± outflow, reaching 𝑟 ∼ 1013–1014 cm (Beloborodov, 2017; Beloborodov,
2020). Then, a fraction ∼ 10−4 of the blast wave power is expected to convert to
radio waves, whose frequency decreases with time (proportionally to the local 𝐵) and
passes through the GHz band, best for radio observations. In this study, we do not
follow the outflow dynamics with shocks at large radii; however, this may become
possible for future MHD simulations. Our simulation shows that shocks launched
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from NS-BH mergers are asymmetric, but not strongly collimated. Therefore, they
can produce FRBs observable for a broad range of line of sights. Note that no
baryonic ejecta are expected from BH swallowing a NS, so nothing should block
the FRB from observers.

4.5.2 Gamma-ray burst
The X-ray transient expected from the simulated merger is powered by dissipation of
magnetospheric energy. Two dissipation mechanisms are observed in the simulation:
shocks and magnetic reconnection in the split-monopole current sheet around the
BH after the merger. Dissipation occurs at small radii, which correspond to a large
compactness parameter ℓ = 𝜎T𝐿/𝑟𝑚𝑒𝑐3, where 𝐿 is the dissipation power and 𝜎T is
the Thompson cross section. Note that 𝐿 and ℓ scale as 𝐵2. For a strongly magnetized
NS, e.g. with 𝐵 ∼ 1014 G, the huge ℓ implies that the dissipated energy becomes
immediately thermalized. Thus, the merger ejects a hot “fireball” – a thermalized,
magnetically dominated 𝑒± outflow. As the outflow expands to larger radii, it
adiabatically cools, 𝑒± annihilate and release a burst of quasi-thermal radiation
similar to the GRB from the magnetar collapse described in Most, Beloborodov,
and Ripperda (2024).

An additional dissipation mechanism is expected to operate in the outflow at large
radii, and can add a nonthermal tail to the GRB spectrum. It is caused by the
striped structure of the outflow, similar to the striped winds from pulsars. The
stripes develop current sheets where magnetic reconnection gradually dissipates the
alternating magnetic flux (Lyubarsky and Kirk, 2001; Cerutti, Philippov, and Dubus,
2020). A similar mechanism was previously proposed to operate in canonical GRBs
(Drenkhahn and Spruit, 2002). It will release energy after the outflow becomes
optically thin (which happens quickly in the baryon-free outflow from BH–NS
merger). Therefore, it can generate energetic particles, emitting a nonthermal
component of the GRB.

4.6 Conclusions
We have presented a detailed numerical investigation into the magnetospheric dy-
namics of BH–NS mergers without tidal disruption. Using GRMHD simulations
capable of probing the near force-free limit, we identify two mechanisms for gener-
ating an electromagnetic transient.

First, we observe that fast magnetosonic waves are launched into the magnetosphere
of the NS before it plunges into the BH. These waves, as expanding outward with
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almost the speed of light, develop into monster shocks due to a more rapidly decaying
ambient magnetic field (Beloborodov, 2023). The full MHD simulation is essential
for tracking this effect, so it could not be captured by earlier vacuum or force-free
simulations. The launched shocks are expected to emit a bright radio transient when
they expand to large radii.

When the BH swallows the NS together with its magnetic dipole moment, its external
magnetosphere quickly rearranges itself into a split-monopole configuration with a
large-scale current sheet. Then, the BH gradually loses the acquired “magnetic hair.”
This balding is assisted by magnetic reconnection and gravitational effects (QNMs).
The relative importance of these two processes varies over time and depends on
the misalignment between the magnetic dipole moment and the BH spin. The split
monopole is dragged into rotation by the BH and forms a transient BH pulsar which
can power a post-merger EM signal in the X-ray and 𝛾-ray band.

The monster shocks and the balding BH pulsar were previously studied in symmetric
setups with a single compact object (Bransgrove, Ripperda, and Philippov, 2021;
Beloborodov, 2023; Most, Beloborodov, and Ripperda, 2024; Selvi et al., 2024).
Our ab-initio simulations demonstrate how both phenomena naturally occur in the
complex dynamical spacetime of the BH–NS merger.

The binary parameters considered in our work are representative of the BH–NS
mergers detected to date (Abac et al., 2024), implying that shock formation from
magnetosonic waves and the emergence of a BH pulsar could be a common outcome
for the BH–NS populations observable with ground-based GW detectors such as the
LIGO/Virgo/KAGRA network.
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A p p e n d i x A

SPHERICAL KERR-SCHILD COORDINATES

The line element of the Kerr spacetime (see e.g., Teukolsky, 2015b for a review) in
the Kerr-Schild coordinates is given as

𝑔𝑎𝑏 = 𝜂𝑎𝑏 + 2𝐻𝑙𝑎𝑙𝑏, (A.1)

with
𝐻 =

𝑀𝑟3

𝑟4 + 𝑎2𝑧2 , 𝑙𝑎 =

(
1,
𝑟𝑥 + 𝑎𝑦
𝑟2 + 𝑎2 ,

𝑟 𝑦 − 𝑎𝑥
𝑟2 + 𝑎2 ,

𝑧

𝑟

)
.

Here, 𝑀 is the mass and 𝑎 ≡ 𝐽/𝑀 is the rotational parameter of the black hole,
where 𝐽 is its angular momentum.1 The coordinate variable 𝑟 is defined via

𝑥2 + 𝑦2

𝑟2 + 𝑎2 + 𝑧2

𝑟2 = 1. (A.2)

For 𝑎 = 0, we see that 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2 is the usual radial coordinate.

Explicitly writing out the metric, we have

𝑑𝑠2 = −𝑑𝑡2 + 𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2

+ 2𝑀𝑟3

𝑟4 + 𝑎2𝑧2

[
𝑑𝑡 + 𝑟 (𝑥𝑑𝑥 + 𝑦𝑑𝑦) + 𝑎(𝑦𝑑𝑥 − 𝑥𝑑𝑦)

𝑟2 + 𝑎2 + 𝑧𝑑𝑧

𝑟

]2
,

(A.3)

which is often called ‘Cartesian’ Kerr-Schild coordinates. A nice feature of the
Kerr-Schild form (A.3) is that the determinant of the spacetime metric is unity, i.e.
√−𝑔 = 1, often greatly simplifying algebra for some calculations.

The singularity is at 𝑟 = 0, which is a ring 𝑥2 + 𝑦2 = 𝑎2, 𝑧 = 0. Inner and outer
horizon radii are

𝑟± = 𝑀 ±
√︁
𝑀2 − 𝑎2 (A.4)

In the spherical Kerr-Schild coordinates, the Kerr metric has a form

𝑑𝑠2 = − (1 − 𝐵) 𝑑𝑡2 + (1 + 𝐵) 𝑑𝑟2 + Σ 𝑑𝜃2

+ (𝑟2 + 𝑎2 + 𝐵𝑎2 sin2 𝜃) sin2 𝜃 𝑑𝜙2

+ 2𝐵 𝑑𝑡𝑑𝑟 − 2𝑎𝐵 sin2 𝜃 𝑑𝑡𝑑𝜙 − 2𝑎(1 + 𝐵) sin2 𝜃𝑑𝑟𝑑𝜙

(A.5)

1The dimensionless spin 𝑎 = 𝐽/𝑀2 is also frequently used in literature.
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where Σ = 𝑟2 + 𝑎2 cos2 𝜃 and 𝐵 = 2𝑀𝑟/Σ. The locations of inner and outer horizon
are given same as (A.4). Horizons appear as exact spheres in the spherical Kerr-
Schild coordinates, which is often helpful for implementing a computational domain
for numerical simulations.

The coordinate transformation between the Kerr-Schild (A.3) and the spherical
Kerr-Schild coordinates (A.5) is

𝑥 = (𝑟 cos 𝜙 − 𝑎 sin 𝜙) sin 𝜃, (A.6a)

𝑦 = (𝑟 sin 𝜙 + 𝑎 cos 𝜙) sin 𝜃, (A.6b)

𝑧 = 𝑟 cos 𝜃. (A.6c)
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A p p e n d i x B

THE WALD MAGNETOSPHERE SOLUTION

Wald (1974) derived an exact axisymmetric solution of Maxwell equations in the
Kerr spacetime, describing a magnetosphere with an asymptotically uniform mag-
netic field 𝐵0 aligned with the spin axis of the black hole. The original solution
given in terms of the vector potential is

𝐴𝑏 =
𝐵0
2
[(𝜕𝜙)𝑏 + 2𝑎(𝜕𝑡)𝑏], (B.1)

where 𝜕𝜙 and 𝜕𝑡 are Killing vector fields of the Kerr spacetime in 𝜙 and 𝑡 directions,
and 𝑎 = 𝐽/𝑀 is the rotational parameter of the black hole.

In the spherical Kerr-Schild coordinates (see Appendix A), each components of the
Wald solution (B.1) are

𝐴𝑡 =
𝐵0
2
(𝑔𝑡𝜙 + 2𝑎𝑔𝑡𝑡), (B.2a)

𝐴𝑟 =
𝐵0
2
(𝑔𝑟𝜙 + 2𝑎𝑔𝑡𝑟), (B.2b)

𝐴𝜃 = 0, (B.2c)

𝐴𝜙 =
𝐵0
2
(𝑔𝜙𝜙 + 2𝑎𝑔𝑡𝜙). (B.2d)

Computing magnetic fields from the vector potential (B.2), we get

�̃�𝑟 = 𝐵0𝑟
2 sin 𝜃 cos 𝜃

[
1 + 𝑎2

𝑟2 + 2𝑀
𝑟

(
𝑟4 − 𝑎4

(𝑟2 + 𝑎2 cos2 𝜃)2 − 1
) ]

(B.3a)

�̃�𝜃 = −𝐵0𝑟 sin2 𝜃 − 𝑎2𝑀𝐵0 sin2 𝜃

(𝑟2 + 𝑎2 cos2 𝜃)2 (𝑟
2 − 𝑎2 cos2 𝜃) (2 − sin2 𝜃) (B.3b)

�̃�𝜙 = 𝑎𝐵0 sin 𝜃 cos 𝜃
[
1 + 2𝑀𝑟 (𝑟2 − 𝑎2)

(𝑟2 + 𝑎2 cos2 𝜃)2

]
. (B.3c)

Here �̃�𝑖 = √
𝛾𝐵𝑖 where √

𝛾 =
√

1 + 𝐵 Σ sin 𝜃 is the square root of the determinant
of the spatial metric in the spherical Kerr-Schild coordinates.
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We also write out �̃�𝑖 in the Cartesian representation

𝑥 = 𝑟 sin 𝜃 cos 𝜙, (B.4a)

�̄� = 𝑟 sin 𝜃 sin 𝜙, (B.4b)

𝑧 = 𝑟 cos 𝜃, (B.4c)

which are often used for representing tensor quantities in the code (e.g. in SpECTRE).
Resulting expressions are:

�̃�𝑥 = 𝑎𝐵0𝑧

[
(𝑎𝑥 − 𝑟 �̄�)

{
1
𝑟4 + 2𝑀𝑟 (𝑟2 − 𝑎2)

(𝑟4 + 𝑎2𝑧2)2

}
+ 𝑎𝑀𝑟𝑥

{
𝑟2 − 𝑧2

𝑟4(𝑟4 + 𝑎2𝑧2)
− 4(𝑟2 + 𝑧2)

(𝑟4 + 𝑎2𝑧2)2

} ] (B.5a)

�̃� �̄� = 𝑎𝐵0𝑧

[
(𝑟𝑥 + 𝑎�̄�)

{
1
𝑟4 + 2𝑀𝑟 (𝑟2 − 𝑎2)

(𝑟4 + 𝑎2𝑧2)2

}
+ 𝑎𝑀𝑟 �̄�

{
𝑟2 − 𝑧2

𝑟4(𝑟4 + 𝑎2𝑧2)
− 4(𝑟2 + 𝑧2)

(𝑟4 + 𝑎2𝑧2)2

} ] (B.5b)

�̃�𝑧 = 𝐵0

[
1 + 𝑎2𝑧2

𝑟4 + 𝑀𝑎2

𝑟3

{
1 − 𝑧2(𝑎2 + 𝑧2) (5𝑟4 + 𝑎2𝑧2)

(𝑟4 + 𝑎2𝑧2)2

}]
. (B.5c)

from which one can check that �̃�𝑖 → (0, 0, 𝐵0) for 𝑎 → 0. We use the expressions
(B.5) for initializing the densitized magnetic fields �̃�𝑖 in Chapter 2.

Note that the barred coordinates 𝑥, �̄� are not equal to the 𝑥, 𝑦 coordinates appearing
in the original Kerr-Schild form (A.3), whereas 𝑧 = 𝑧. Barred coordinates 𝑥, �̄�, 𝑧 are
simply Cartesian projections of the spherical Kerr-Schild coordinates (A.5), where
they are related with the Kerr-Schild coordinates by

𝑥

𝑟
=

𝑥
√
𝑟2 + 𝑎2

, (B.6a)

�̄�

𝑟
=

𝑦
√
𝑟2 + 𝑎2

, (B.6b)

𝑧 = 𝑧, (B.6c)

𝑟2 = 𝑥2 + �̄�2 + 𝑧2. (B.6d)


