
Dynamical Control of Many-Body Interactions in Driven
Quantum Matter

Thesis by
Christopher Kai-Chen Yang

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2025
Defended May 14th, 2025



ii

© 2025

Christopher Kai-Chen Yang
ORCID: 0000-0002-9462-9074

All rights reserved



iii

ACKNOWLEDGEMENTS

I would like to thank my advisor, Gil Refael, for his guidance and encouragement
on this journey into the quantum world of electrons. Gil has a remarkable ability
to explain quantum physics from a bird’s eye view—without compromising on any
precision or accuracy. From his unique perspective of the quantum world, Gil
taught me to look further into the horizons of physics, identify the boundaries of
our knowledge, and establish unlikely connections with seemingly distant research
topics. Most importantly, Gil taught me that research was a responsibility in the
greater context of things: a commitment to guide the broader scientific community—
and the general public—with honest results rooted in a fundamental respect for
scientific integrity.

Caltech’s Bridge Hall of Physics is an inspiring place where numerous brilliant
physicists have visited and worked over the years. I thank Jason Alicea, Lesik
Motrunich, and David Hsieh for always encouraging me, sharing their wisdom
during daily condensed matter lunch meetings, and providing me with concrete
advice on my research. I’ve also had the great pleasure of working with former
Caltech postdocs Cyprian Lewandowski, Iliya Esin, and Frederik Nathan.

Cyprian was my first postdoctoral mentor at Caltech. He always encouraged me to
take the lead in meetings, even when he understood the research topics better than I
did. He taught me how to navigate the academic world and build a network in the
community. During my nearly annual trips to Tallahassee, Florida, Cyprian and his
wife, Marilena, would invite me to their home for board games and dinner. I thank
him for teaching me much of what I know about solid-state systems and for making
my PhD journey possible. He is a true friend and mentor.

I feel deeply fortunate to have worked with Iliya over the past five years. I increasingly
find that my approach to physics and research is influenced by Iliya’s example
as a scientist. From my perspective, Iliya’s research abilities are analogous to
conducting an orchestra—he has a remarkable intuition for what details of which
components to tune and perfect, an effort that pays off when the components play
together in a beautiful symphony. His commitment to scientific rigor complements
his enthusiasm for quantum dynamics, which is always grounded in solid factual
evidence. Iliya also taught me how to communicate science effectively, patiently
leaving hundreds of suggestions on my early drafts and referee replies, even though



iv

I knew it would’ve been easier for him to edit the paper directly. I am particularly
grateful for his belief in me throughout my PhD—for reminding me to celebrate
small progress and focus on putting forth solid results, even if they may not seem to
lead anywhere at first. I thank him for teaching me how to produce quality work as
a scientist.

Frederik has been an equally exceptional mentor. Despite living thousands of
miles away and across multiple time zones, he involved me in his projects on Weyl
semimetals, for which I am deeply grateful. Frederik has a remarkable ability to
simplify complex results, and he’d often predict results that would typically require
extensive calculations. His excitement for research is contagious, inspiring me to
think visually about electronic physics.

I would also like to thank the condensed matter theory group at Caltech, including
the members of the institute I’ve had the pleasure of knowing: Loly Ekmekjian,
Liam O’Brien, Andrew Ivanov, Swati Chaudhary, Nandu Manoj, Sara Vanovac,
Yue Liu, Yinan Chen, Stephen Naus, Valerio Peri, Étienne Lantagne-Hurtubise,
Gal Shavit, Federica Surace, and others. The greatest gift they gave me was their
genuine deep interest in my research.

Beyond Caltech, I feel grateful for the quantum experts with whom I’ve interacted.
I remember, in particular, meeting Mikael Rechtsman during one of Caltech’s col-
loquium lunches at the Athenaeum. Mikael asked me why I hadn’t attempted to
realize my theoretical work experimentally and offered some new angles to pursue.
In retrospect, his encouragement played an important role at the start of my first
theory-experiment collaboration a few years later.

Speaking of the experimental collaboration, I would like to thank Yijing Liu and the
Paola Barbara and Nikolai Kalugin groups for the privilege of working with them on
experimental Floquet physics. I met Yijing by chance at the APS exhibition hall in
Minnesota in 2024, having previously attended his talk. The resulting collaboration
has been a true delight. I am grateful to the Georgetown University and New Mexico
Tech groups for giving me a real-world view of the quantum world. Paola has also
been incredibly supportive of my postdoc and career endeavors.

Beyond quantum physics, I have many people to thank. I thank the DOE for
its fellowship support during my PhD and for inspiring me early on through its
internship program. I thank my early mentors—Robin Rehagen, Jay Salmonson,
Christopher Young, and Aritoki Suzuki for teaching me how to become a researcher



v

and showing me the beauty of science on all length scales—from the galaxies in
the skies to atoms at ultra-low temperatures. I also want to acknowledge my friends
at Caltech, especially Jerry Zhang, who introduced me to photography. Without
Jerry, I wouldn’t have discovered the beauty of California and explored its stunning
landscapes and wildlife. I am thankful to Jerry for the encouragement and laughter
that helped me overcome the challenging aspects of my PhD. His kindness and
generosity define what it means to be a genuine friend.

My parents have been the source of my strength and motivation. I thank my mom
for packing my childhood days with every possible creative activity to spark my
imagination. I thank her for sharing laughter and tears and ensuring I never weather
the storms alone. She made great sacrifices for my career on the unconditional basis
of love. I thank my dad for inspiring my interest in science. He shows his care for
me in unique ways–taking me on bike trips, adding new accessories to my bike and
car, and teaching me how to build and fix things. I thank my grandmother for taking
care of every aspect of my life and for bravely coming to this country as a single
mother. She could not speak much English, yet she navigated this country better
than I ever could, working until age 77 and building a remarkable life and family for
her children.

I thank Tzu Chi and Dharma Master Cheng Yen for shaping how I see the world
and teaching me to hold love and care for others close to my heart. I thank Mr.
Joe Wang and Mrs. Shiu-Yun Tsai for taking care of me just like their own child
and inspiring me to go to Tijuana for charity missions. During my near-weekly
trips to Tijuana with Tzu Chi, I’ve gotten to know children living in houses made of
cardboard and styrofoam. It makes me reflect on how lucky I am and how challenges
make us stronger. In both Floquet physics and Buddhism, periodicity appears as a
common theme. It may not be possible to comprehend the periodicity if you stand
on just one trough of the wave. Nevertheless, the gift of persistence gives you a new
perspective, revealing remarkable phenomena that only emerge on long timescales.



vi

ABSTRACT

Strongly driven Floquet systems have emerged as promising platforms for exotic
non-equilibrium physics, but their instability to heating motivates practical questions
about how Floquet engineering can be useful. Although drive-induced heating is
often attributed to interactions, this thesis adopts a different perspective, identifying
regimes where dissipative many-body dynamics can stabilize Floquet physics and
define remarkable new drive-tunable properties. This principle enables highly
tunable many-body steady states with minimal heating, leading to a novel regime
where drive control over single-particle Floquet states can extend to many-body
interactions. Our theoretical and experimental results in Parts II and III center
around two themes. The first theme focuses on discovering controllable and stable
many-body Floquet states. The second explores further into what the future holds—
envisioning the prospects for unconventional Floquet physics with nontraditional
driving fields and three-dimensional materials.

Part II of this thesis leverages kinematic constraints on low-dimensional many-
body scattering as new principles for tuning and stabilizing Floquet phases. First,
we predict that a circularly polarized laser can drive slow electrons of moiré sys-
tems into a subsonic regime where they decouple from the intrinsic 2D acoustic
phonons of the system. This “slow-electron regime” enables optical control over
the steady-state occupation of topological Floquet states and the resulting anoma-
lous Hall conductivity. Second, we present experimental transport signatures of
steady Floquet physics in graphene irradiated by a continuous-wave laser. Our ex-
periment, performed at 3-4 K lattice temperatures with lasers off-resonant to optical
phonons, creates electron-phonon scattering bottlenecks that stabilize persistent low-
temperature phases with light-induced longitudinal transport characteristics. The
long-lived many-body phase represents the first experimental signatures of steady
Floquet physics in a metallic solid.

Part III presents emerging opportunities for many-body Floquet engineering beyond
traditional optically-driven, low-dimensional materials. We first explore beyond-
optical driving fields, revealing the emergence of quantized charge transport in 1D
systems driven by coherent phonons. Incoherent phonons relax electrons into a
topological spatiotemporal Floquet state with quantized group velocity set by the
coherent phonon, realizing topological charge pumping in a highly non-adiabatic
setting. Finally, we address the topological effects of time-periodic drives beyond
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low-dimensional systems, revealing that THz-frequency, circularly polarized light
can induce topological chiral plasmons in Weyl semimetals with band anisotropy,
broken time-reversal symmetry, and broken inversion symmetry.

The theoretical and experimental work in this thesis represent key progress towards
realizing persistent Floquet physics for diverse applications in quantum device en-
gineering.
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on the unfolded bands [see panels (b-d)], it is clear that the scattering
relies on an absorption or emission of a single photon (squiggly blue
lines) to conserve energy and momentum. . . . . . . . . . . . . . . . 43



xiv

4.4 Sketch of electron-electron Floquet-Umklapp scattering processes
that absorb or emit a single photon, categorized as Floquet-Auger
I and II which transfer a single or pair of electrons across distinct
Floquet bands. We sketch the scattering processes in the folded
picture in panels (a) and (c) and the unfolded picture in panels (b)
and (d). In the unfolded picture, it is clear that the scattering relies
on an absorption or emission of a single photon (squiggly blue lines)
to conserve energy and momentum. . . . . . . . . . . . . . . . . . . 44

4.5 Sketch of an electron-electron collision process (green arrows) facil-
itating interband electronic scattering across the Floquet gap. . . . . . 46

5.1 (a) Schematic experimental design. Circularly polarized laser induces
non-trivial Berry-curvature in the narrow bands (see Figure 5.2(b-
c)), resulting in an anomalous Hall conductivity 𝜎𝑥𝑦. TBG lies on
top of a dielectric and metallic gate that screen electron-electron
interactions. (b) Anomalous Hall conductivity vs. drive amplitude
E for 𝜁 ≈ 0.5 and various values of 𝜒 indicated on the scale (see
below Eqs. 5.4 and 5.7 for definitions of 𝜁 and 𝜒). The 𝜎𝑥𝑦 features
a rapid drop with E below the critical amplitude E∗ (dashed line).
Here, E0 = ℏ𝑣𝐹/(𝑒𝐿2

𝑀
) ≈ 7.2 × 104 V/m. (c) Critical amplitude vs.

𝑐ph/𝑣0
eff, where 𝑣0

eff = 𝑣eff(0) is an effective electron velocity defined
in the text. Enlarged red circle: E∗ in (b). . . . . . . . . . . . . . . . 50

5.2 (a) Zoom-in on schematic narrow bands in a moiré system. Drive
with angular frequency Ω resonantly couples states along resonance
rings (green curves). (b) Undriven spectrum of TBG along a line
in the Brillouin Zone indicated by the orange curve in (c). Dashed
frame encloses optically-active, narrow central bands 𝜈 = ±1. (c)
Berry curvature B (𝜉)

𝒌+ in the upper Floquet band, with blue color
intensity proportional to tanh

(
2B (𝜉)

𝒌+ /𝐿
2
𝑀

)
(color bar) so B (𝜉)

𝒌+ peaks

are more visible. Dashed lines indicate areas enclosing B (𝜉)
𝒌+ peaks at

the Dirac points and resonance ring. (d) Periodic quasienergy Floquet
spectrum of the driven system, having two central bands shown in
(a). The Floquet spectrum exhibits the upper (UFB, 𝛼 = +) and lower
(LFB, 𝛼 = −) Floquet bands, separated by off-resonant gaps Δ𝐾 at
the Dirac 𝐾 , 𝐾′ points and a Rabi-like gap Δ𝑅 along the resonance
ring [130, 236, 239]. . . . . . . . . . . . . . . . . . . . . . . . . . . 51
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5.3 (a) Schematics of the Floquet spectrum and one of the phonon light-
cones originating from the area S𝐾 in the UFB. The intersection
between the UFB (LFB) and all cones centered in S𝐾 form Sin (Sout).
As E → E∗, the area of Sin vanishes. (b-d) Numerical verification
of the phenomenological model. (b) Area of Sin, Ain, vs. E for three
values of 𝑐ph/𝑣0

eff. (c) Average occupation in S𝐾 . (d) Anomalous
Hall conductivity 𝜎𝑥𝑦 for same parameters as (b, c). At E∗ (dashed
lines), Ain, 𝐹 (𝜉)

𝐾+ , and 𝜎𝑥𝑦 sharply change. . . . . . . . . . . . . . . . 55
5.4 (a) Left column: steady-state occupation of the UFB when 𝜒 = ∞

(calculated on a 163 × 163 momentum grid). Right column: steady-
state occupation when 𝜒 = 0.24 (calculated on a 73 × 73 momentum
grid). Bottom row: strong-drive case (E = 4.3E0 > E∗). Top
row: weak-drive case (E = 0.97E0 < E∗). Zoom-in boxes: the 𝐾 ,
𝐾′ points have reduced occupation when E > E∗ relative to when
E < E∗. (b) Visibility V vs. 𝜒. (c) Value of 𝜒 for various 𝜖 and gate
distances 𝑑. (d) Value of 𝜂 for various 𝜖 and deformation potentials
𝐷, with 𝑑 = 4 nm. Points in (b, d): parameters used in Figure 5.1(b). 57

A.1 (a) The quasienergy band structure of the toy model with for the
parameters used in the main text. (b) The quasienergy band structure
of the continuum model at valley 𝜉 = +1. In both panels, the first
Floquet Brillouin zone is shaded. See Section A.2 for details and
justification for the parameters we have used. . . . . . . . . . . . . . 61

A.2 (a) Left: the steady-state occupation of the lower Floquet band in
valley 𝜉 = +1 of the continuum model [25, 149]. Right: the Berry
curvature of the same band, which peaks near the Dirac points and
the resonance ring. (b) The anomalous Hall conductivity 𝜎𝑥𝑦 as a
function of drive strength E. . . . . . . . . . . . . . . . . . . . . . . 64

A.3 Anomalous Hall conductivity of the toy model as a function of the
ratio 𝑐ph/𝑣0

eff for three different drive field strengths E/E0. The same
electron-phonon decoupling process is visible as 𝜎𝑥𝑦 plateaus. . . . . 65

A.4 Comparing the Berry curvature distribution in the upper Floquet band
in the (a) continuum model and (b) toy model at a drive amplitude of
E/E0 ≈ 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
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A.5 The occupation 𝐹 (𝜉)
𝐾+ as predicted by the phenomenological model in

Section A.6 for different ratios 𝜒 ≡ 𝜏el
𝐾
/𝜏ph
𝐾

. Note that for large 𝜒,
the occupation is lower than the non-interacting case at weak drive
amplitudes, an effect of reduced Pauli blocking in the electron-phonon
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A.6 (a) The intersection S𝐾 (Figure 3(a)) as viewed on the Brillouin zone.
The outer radius along the path 𝐾𝑅 is ℎ𝑏 (E). (b) Quasienergy (pink)
along the path 𝐾𝑅, with the phonon light cone (grey) that determines
the outer radius of Ain. The intersections 𝑘+ and 𝑘− between the
cone and the upper Floquet band determines ℎ𝑏 (E) = 𝑘+ − 𝑘−. . . . . 72

A.7 (a) Width of the intersection S𝐾 , 𝑤𝑏 (E). (b) Circular coordinate
system with arc length 𝑤 (increasing counterclockwise) that we use
to determine 𝑤𝑏 (E) = 𝑤+ − 𝑤−. . . . . . . . . . . . . . . . . . . . . 73

A.8 Comparing numerical evaluation of E∗ (points) to an analytic fit to
Eq. A.65. We use the same fitting parameters 𝑓2 = 0.778, 𝑓1 = 0,
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A.9 Comparing the dependence of 𝜎𝑥𝑦 on E for (a) the frequency con-
sidered in the main text and (b) a lower frequency where Floquet-
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A.10 Comparison of the fitted Δ𝑅 and predicted Δ𝐾 in Equations A.72 and
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ℏΩ = 5 meV in the toy model. Here, we fit Δ𝑅 with factors of
𝑓 𝑅1 = 0.04 and 𝑓 𝑅2 = 0.0184 (see Eq. A.72). . . . . . . . . . . . . . . 77

A.11 Comparing the average toy and continuum model form factorsW𝜉𝜈′𝜈
𝒌,𝒒+𝑮 ,

with |𝒒+𝑮 | measured in units of 108 m−1. (a-c) The intraband (𝜈 = 𝜈′)
form factors at the 𝐾 , 𝑀 , and Γ points. (d-f) The interband (𝜈 ≠ 𝜈′)
form factors at the 𝐾 , 𝑀 , and Γ points. . . . . . . . . . . . . . . . . 80

A.12 The color represents the ratio ℏ/(𝜏tot
𝒌
Δ𝜀𝒌) at different points in mo-

mentum space (a) for the upper Floquet band and (b) for the lower
Floquet band for the case 𝜒 ≈ 2.8 and 𝜁 ≈ 0.5. . . . . . . . . . . . . 82
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A.13 Convergence of anomalous conductivity with grid size for (a)𝑁 (mod 3) =
1 and (b) 𝑁 (mod 3) = 2. Due to the positioning of grid points near
the 𝐾 point, the results at low grid resolutions show significant dis-
agreement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.14 The requirement that the laser drive strength E is perturbative, i.e. a
fraction of electron bandwidth 𝑒E𝐿𝑀 < 𝑊 , narrows the range of E
values that can be used. As a result, the range of 𝑐ph whose E∗ is
visible is limited as well - we postulate that they are pushed to higher
drive strengths E. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 (a) Device layout with two contacts for longitudinal bias, 𝑉Bias, and
two contacts for measurements of the transverse voltage, 𝑉𝑦. The
device has a square geometry with a 5-𝜇m side and an indium tin
oxide (ITO) top gate with an Al2O3 dielectric sublayer, for applying a
gate voltage𝑉Gate. (b) Drive-modified Floquet bands of the graphene
Dirac cone, which exhibits a Floquet gaps of size at the resonance
energies 𝜀 = ±ℏΩ/2, where ℏ is the reduced Planck constant and Ω is
the angular frequency of the laser. (c) Density of states of the Floquet
bands calculated numerically for a circularly and linearly polarized
laser of power density 𝑃 = 3 mW/𝜇m2. (d) Photo-induced change
of source-drain current (Δ𝐼) as a function of Fermi energy 𝐸𝐹 for
circularly and linearly polarized laser irradiation, as measured at a
constant source-drain voltage of 6 mV. Δ𝐼 is measured with a lock-in
amplifier using a chopper modulation as a reference. The circles
represent data points and the solid lines are obtained by adjacent
point averaging. The dotted lines mark the 𝐸𝐹 values corresponding
to ±ℏΩ/2, with the related uncertainty indicated by the gray stripes.
The uncertainty is attributed to the gate efficiency calibration and
the detail is described in Appendix B. The dips in Δ𝐼 at energies
±ℏΩ/2 are much broader than the Floquet gap Δ(see c) and arise
from the non-equilibrium steady-state distribution of electrons. The
measurements were performed on sample A at a cryostat temperature
of ∼ 3.5 K, laser photon energy of 117 meV, and laser power density
of 1.1 mW/𝜇m2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
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6.2 (a) Key scattering processes between the graphene 𝐾 and 𝐾′ valleys
facilitated by photons (arrow 1), surface acoustic phonons (arrows
2, 3), and graphene acoustic phonons (arrow 4) that contribute to
the steady state. (b) Steady state distribution (black solid curve) for
𝑃 = 1.9 mW/𝜇m2 and equilibrium distribution (blue dashed curve) of
electrons at doping 𝐸𝐹 = 0, where the longitudinal photoconductivity
is enhanced relative to equilibrium. Here, 𝜀 denotes the quasienergy
and 𝐹𝒌𝛼 denotes the electronic occupation. (c) Steady state distri-
bution (black solid curve) of electrons at doping 𝐸𝐹 = 0.35ℏΩ and
𝑃 = 0.8 mW/𝜇m2, where the photoconductivity is suppressed rela-
tive to an equilibrium distribution expectation (blue dashed curve).
(d) Same as (c) but for a larger power density 𝑃 = 1.9 mW/𝜇m2,
where the steady state distribution exhibits additional electron den-
sity above the Floquet gap. e Steady state distribution (black solid
curve) of electrons for 𝑃 = 1.9 mW/𝜇m2 at doping 𝐸𝐹 = 0.75ℏΩ,
where the photoconductivity is approximately identical to that of an
equilibrium distribution (blue dashed curve), with a slightly raised
effective temperature due to multi-photon heating processes. The
horizontal dotted lines in (b–e) mark 𝜀 values corresponding to ±ℏΩ/2. 90
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6.3 (a) Photo-induced change of source-drain current (Δ𝐼) as a function
of 𝐸𝐹 under irradiation at various peak power densities, as measured
on sample C at a constant source-drain voltage of 6 mV and a cryo-
stat temperature of 3.2 K. The photon energy is ℏΩ = 117 meV. The
laser beam is circularly polarized. The circles represent data points
and the solid lines are the fitted curve by a Gaussian-like function
described in the Methods. The dotted line marks the 𝐸𝐹 value cor-
responding to −ℏΩ/2, with the related uncertainty indicated by the
gray stripes. (b) Theoretically predicted Δ𝐼 as calculated from the
Floquet Boltzmann equation. The dotted line marks the 𝐸𝐹 value
corresponding to −ℏΩ/2. (c) Depth 𝑎0 of the photocurrent dip and
associated error, as calculated from a Gaussian-like fit (see details in
the Methods section). For both the theoretical and experimental data,
𝑎0 decreases with the power density 𝑃 for large 𝑃 due to enhanced
heating processes in the Floquet steady state. (d) Experimental and
theoretical FWHM of the photocurrent dip and the Floquet gap size
(red dotted line), Δ, as a function of the power density. The FWHM
exceeds Δ, indicating the emergence of photoexcited electrons in the
non-equilibrium Floquet steady state. The detailed error analysis of
FWHM is described in Appendix B. The uncertainty in the laser
power density due to power fluctuation in (c) and (d) are estimated
by the change in the laser power before and after each transport
measurement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
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6.4 (a) Longitudinal photocurrent as a function of at a fixed source-drain
voltage of 6 mV, with laser spot in focus and defocused. For all three
curves, the laser power is ∼ 3.6 W, corresponding to a peak power
density of 0.6 mW/𝜇m2 at focus. Under defocused irradiation, with
the laser spot slightly moved to the side, the power density drops
by ∼ 3 times (gray curves). Circular polarization of 10.6 𝜇m wave-
length laser radiation. The cryostat temperature stabilized at ∼ 3.4 K.
b Theoretically calculated photocurrent for weak drives, exhibiting
shallower dips near resonance as a function of decreasing driving
power, in agreement with (a). (c) Temperature dependence of the
longitudinal photocurrent as a function of 𝐸𝐹 . The photocurrent de-
creases, and the dips at 𝐸𝐹 = ±ℏΩ/2 disappear at high temperatures.
The laser beam is circularly polarized. (d) Theoretically calculated
photocurrent for laser power density 1.4 mW/𝜇m2, the photocurrent
dip becomes less visible at higher temperatures. The dotted lines in
(a)–(d) mark the 𝐸𝐹 value corresponding to±ℏΩ/2, where the related
uncertainty is indicated by the gray stripes in (a) and (c). . . . . . . . 93

B.1 Scheme of the sample illumination system. Schematic illustration of
the optical setup used for delivering and focusing the mid-infrared
irradiation. The beamsplitters are used only during the preliminary
alignment of optical elements. The inset image shows the visible
laser spot on the sample used for the preliminary alignment of the
molybdenum mirrors and the ZnSe focusing lens. . . . . . . . . . . . 99

B.2 Measurement sequence in time. Experimentally measured cryostat
temperature (top panel) and longitudinal current (bottom panel) with
laser blocked and unblocked intervals. Note that the actual graphene
lattice temperature, 𝑇 (𝑡), is expected to be further elevated relative
to the cryostat temperature. When the laser is blocked, the sample
cools down to 𝑇bg, giving rise to a strong bolometric effect in the lon-
gitudinal current. The laser illumination is blocked/unblocked in the
optical path between the chopper and the sample (light coral stripes
indicate when laser is unblocked), the average laser power density
is 0.125 mW/𝜇m2 and the peak power density is 1.25 mW/𝜇m2,
ℏΩ = 117 meV (10.6 𝜇m wavelength). . . . . . . . . . . . . . . . . . 100
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B.3 Laser intensity and temperature dependence of the longitudinal con-
ductance. Gate voltage dependence of the source-drain current at
different temperatures with laser blocked (gray) and under irradia-
tion at the base temperature (red), with 𝑃 = 0.6 mW/𝜇m2 and with
source-drain voltage fixed at 50 mV. . . . . . . . . . . . . . . . . . . 101

B.4 Mid-Infrared transmission spectrum of ITO. Example of spectrum
measured from our typical 110-nm thick ITO layer in the range around
10.6 𝜇m wavelength (corresponding to the wavenumber 943 cm−1). . 102

B.5 Longitudinal photoresponse vs. carrier density at different B fields.
Longitudinal voltage photoresponse as a function of magnetic field
and carrier density, under chopper-modulated irradiation with circular
polarization, at a laser intensity of 20 𝜇W/𝜇m2 and photon energy
ℏΩ = 117 meV. The sample is biased at a fixed current 𝐼𝑥 of 1 𝜇A, and
the photoinduced change in source-drain voltage Δ𝑉𝑥𝑥 is measured
with a lock-in amplifier. . . . . . . . . . . . . . . . . . . . . . . . . 103

B.6 Gate efficiency calibration. (a) (Black) Source-drain voltage and
(blue) transverse voltage from the Hall effect measurements for 𝑉𝑔 =
7 V and a constant bias (source-drain) current 𝐼sd = 1 𝜇A. The
green and red lines are examples of the set of “4 points” used for
extracting the actual transverse voltage. (b) (Black) Conductance at
different gate voltages. (Blue) Carrier density at different 𝑉𝑔 from
Hall measurements. (Red) Linear fitting of carrier density at different
𝑉𝑔. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

B.7 Scheme of key steps in top-gated graphene device fabrication. (a)
Patterning of graphene Hall bars with a thin Pd/Au protection layer.
(b) Optical image of the graphene devices prior to removing the metal
protection layer and the top gate fabrication. (c) Illustration of top
gate fabrication using Al2O3 as the dielectric layer and ITO as the
gate contact. (d) Optical image of the top-gated devices. The dashed
line marks the area of devices shown in (b). . . . . . . . . . . . . . . 107
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B.8 Characteristics of the single-particle quasienergy spectrum. (a) Single-
particle quasienergy bandgap Δ𝐸1 opening at 𝜀𝑘𝛼 = ±ℏΩ/2, with
𝜀𝑘𝛼 = 0 corresponding to the Dirac point. The axes indicate the
laser power density and photon energy. (b) Predicted light-induced
modifications of the time-averaged density of states of graphene (see
section J for definition) as a function of Fermi energy shift from the
Dirac point for different power densities, with circular polarization
(top) and linear polarization (bottom). Notice that the laser-induced
gap at the Dirac point, which is a second-order process, is not resolved
in the experiment for the chosen laser intensities. (See the main text
for details.) The vertical dotted lines mark the 𝐸𝐹 , value at ±ℏΩ/2. . 109

B.9 Temperature dependence of the longitudinal conductivity at 𝐸𝐹 = 0
without irradiation, which indicates charge puddle effects. . . . . . . 111

B.10 Transverse voltage response under different conditions. Transverse
voltage as a function of 𝐸𝐹 , under light irradiation (ℏΩ = 117 meV)
with left-hand circular polarization. The dotted lines mark the values
corresponding to 𝐸𝐹 = ±ℏΩ/2, with the related uncertainties indi-
cated by the gray stripes. (a) Transverse voltage measured at different
bias voltage values. The cryostat temperature is 3.1 K, and the laser
beam is circularly polarized. (b) Transverse voltage measured under
different irradiation power. The curves are vertically shifted for clar-
ity. The cryostat temperature ranges from 3.0-3.3 K depending on
laser intensity. The laser beam is circularly polarized. The circles
represent data points, and the solid lines are obtained by adjacent
point averaging. (c) Transverse voltage measured at different temper-
atures. For both (a) and (c), the laser intensity is 0.8 mW/𝜇m2 and
for (b) and (c) the bias voltage is 50 mV. The measurements are from
sample C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
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B.11 Transverse voltage response under different conditions. (a) Trans-
verse voltage as a function of 𝐸𝐹 , under light irradiation (ℏΩ =

117 meV) with different polarizations of the laser. (b) helicity-
dependent Hall voltage in Sample A. (c) Hall conductivity in Sample
A. Here, the laser intensity is 1.4 mW/𝜇m2, bias source-drain volt-
age is 6 mV, and cryostat temperature is 3.4 K. (d) Theoretically
calculated Floquet Hall conductivity with nontrivial 𝐸𝐹-dependence
arising from the tunable electronic steady state. The dotted lines in
(a)-(d) mark the values corresponding to 𝐸𝐹 = ±ℏΩ/2, with the re-
lated uncertainties indicated by the gray stripes in (a)-(c). In (a)-(c),
the circles represent data points, and the solid lines are obtained by
adjacent point averaging. . . . . . . . . . . . . . . . . . . . . . . . . 114

B.12 Floquet signatures in the longitudinal photocurrent in additional de-
vices. The dotted lines mark the 𝐸𝐹 values corresponding to ±ℏΩ/2,
with the related uncertainty described by the gray stripes. (a) Lon-
gitudinal photocurrent as a function of 𝐸𝐹 under different polar-
ization illumination in sample B. Parameters: Laser power density
1.4 mW/𝜇m2 and bias voltage 6 mV. (b) Longitudinal photocurrent
as a function of 𝐸𝐹 , under different polarization illumination in sam-
ple C. Parameters: Laser power density 1.6 mW/𝜇m2, bias voltage
6 mV, and cryostat temperature 3.4 K. . . . . . . . . . . . . . . . . . 115

B.13 Transverse voltage response in additional devices. Transverse volt-
age as a function of 𝐸𝐹 , under irradiation with different polarizations
in sample C [panel (a)] and the difference between the transverse
voltage response from circular polarizations of the laser beam with
opposite chirality extracted from the curves in panel (a) [see panel
(b)], and upon reversing the source-drain bias 𝑉sd. Laser power den-
sity 0.5 mW/𝜇m2, cryostat temperature 3.1 K. The dotted lines mark
the 𝐸𝐹 values corresponding to ±ℏΩ/2, with the related uncertainty
described by the gray stripes. . . . . . . . . . . . . . . . . . . . . . . 116
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B.14 Effect of Hall contacts misalignment. (a) (Red) 𝑉Misalignment and
(black) 𝑉sd measured at the same source-drain current. Room tem-
perature. (b) Misalignment contribution to the measured transverse
voltage for (top) circular and (bottom) linear irradiation. Solid lines
represent the transverse voltages measured by the lock-in amplifier;
dotted lines represent the contribution resulting from misalignment
in the Hall contacts. The experimental data from Figure B.11 are
shown for reference. . . . . . . . . . . . . . . . . . . . . . . . . . . 117

B.15 Bias dependence of sample response. (a) I-V curve from sample C
at different values of 𝑉𝑔. (b) Photo-induced current change Δ𝐼 as
a function of bias voltage at different values of 𝑉𝑔. (c) Normalized
longitudinal photoresponse Δ𝐼 as a function of 𝐸𝐹 at different bias
voltages, under circularly polarized irradiation, with a power density
of 1.5 mW/𝜇m2. The curves are vertically shifted for clarity. The
cryostat temperature is 3.4 K. The dotted lines mark the 𝐸𝐹 values
corresponding to ±ℏΩ/2, with the related uncertainty described by
the gray stripes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

B.16 Longitudinal photoresponse as a function of chopper frequency.
Photo-induced current change measured in sample C under 1.5 mW/𝜇m2

of circularly polarized irradiation. The sample is biased at a fixed
6 mV. The cryostat temperature is 3.4 K. Error bars indicate the
maximum deviation in the lock-in amplifier reading during the mea-
surement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
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7.1 (a) Schematic experimental setup. A THz-frequency coherent phonon
wave (with atomic displacements sketched by orange arrows) of mo-
mentum 𝑞 and angular frequency 𝜔 propagates from the phonon
source on the right to the absorbing material on the left. A screening
material of dielectric constant 𝜖 is placed below the CNT. Black sinu-
soid represents the coherent phonon potential. Electrons (black dots)
generate quantized current 𝐽 = 𝑒𝜔/𝜋 when confined to the troughs
of the potential, achieved when incoherent phonon relaxation (ep)
is much faster than electron-electron heating (ee). (b) Current 𝐽 vs.
Floquet gap Δ/ℏ𝜔 for different 𝜖 (see inset). Vertical line denotes
Δ = ℏ𝜔. Inset: Δ∗ vs. 𝜖 , where Δ∗ is the minimal Floquet gap at
which 𝐽 is nearly quantized, set as 0.96𝑒𝜔/𝜋. (c) Band structure of a
(10, 0) armchair CNT. Inset: Fermi energy lies near the band bottom
of the lowest positive-energy band, and the electronic density 𝑛𝑒 is
chosen to be commensurate to 𝑞. (d) Quasienergy spectrum of the
driven system. Blue shading on the 𝛼 = 0 band indicates the optimal
filling resulting in quantized current. Incoherent phonon scattering
transitions (black arrows) relax electrons into the 𝛼 = 0 band. . . . . 122

7.2 (a) Floquet bands upon driving by a coherent phonon wave. Dashed
light purple arrows (1-3): dominant electron-phonon intraband and
cooling processes relaxing electrons into the 𝛼 = 0 band. Solid red
arrows (4-5): electron-phonon heating processes exciting electrons
into the 𝛼 = 1 band, which are kinematically suppressed when Δ ≫
𝛿𝜀. (b) Pairs of zigzag and squiggly red arrows: electron-electron
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arrow: electron-phonon process relaxing excited electrons into S+.
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7.3 (a) Steady state occupation of the phonon-driven CNT for a weak
phonon drive (Δ < Δ∗), dielectric constant 𝜖 = 80, and optimal
doping 𝑛𝑒 = 𝑞. Inset shows excitations in the 𝛼 = 1 band near the
Floquet gap. (b) Same as (a) but for a strong drive amplitude (Δ > Δ∗)
where the occupation of the 𝛼 = 1 band is negligible, and the 𝛼 = 0
band is fully occupied. (c)-(d) Same as (b), but with two different
electronic densities 𝑛𝑒 away from optimal doping. (e) Steady state
current vs 𝑛𝑒 evaluated at Δ = 0.8ℏ𝜔 > Δ∗ for 𝜖 = 80. . . . . . . . . 128

C.1 Phonon transfer mechanism when a phonon source (grey block) is
placed under the right end of the carbon nanotube [see Figure 1(a)
in the main text for the complete, proposed experimental setup]. A
carbon atom of mass𝑀𝑐 (grey circle in magnified picture) experiences
a Van der Waals force across the interface, with effective spring
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C.2 The ratio 𝜁 of the maximum interband scattering rate to the Floquet
band energy separation vs. Floquet gap Δ for various dielectric con-
stants 𝜖 . Note that 𝜁 ≪ 1, so steady state coherences are suppressed.
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C.3 Simplified model of the quantized acoustoelectric Floquet effect. The

black curve represents the moving coherent phonon potential𝑉 (𝑥, 𝑡),
and the grey dashed curve sketches the potential at a slightly later time.
Electrons (green dots) generate quantized current when confined to
the troughs of the potential, which is achieved when the incoherent
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C.4 Steady state current 𝐽 as calculated from the Lindblad master equation
[Eq. (C.33)]. (a) Steady state current in the regime ℏ/(𝜏Δ) ≪ 1
analyzed in the main text using the Floquet Boltzmann equation.
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(
ℏ𝜔/Δ

)
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(
ℏ𝜔/Δ

)
> 0,
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(
ℏ𝜔/Δ

)
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8.1 Light-induced charge pumping and chiral plasmons. (a) We con-
sider the optical response of a noncentrosymmetric WSMs, where
opposite-chirality Weyl nodes (WNs) can have distinct effective chem-
ical potentials (𝜇±) and tilts (𝜒±). We show that circularly polarized
driving in the near-adiabiatic regime can induce a topological charge
pumping effect leading to a strong photocurrent 𝑗 𝑧𝜂 along the beam
axis, where 𝜂 =⟲,⟳ denotes the helicity of the laser. (b) Numeri-
cally computed photocurrent, 𝑗 𝑧⟲, for 𝜇− = 15 m𝑒𝑉 , 𝜇+ = 30 m𝑒𝑉 ,
and ℎ 𝑓 = 5 meV, with 𝜒± = ±𝜒. (c) Maximal 𝑗 𝑧𝜂, denoted 𝑗 𝑧max,
attained numerically (scatter points) and predicted semiclassically
(dashed line) [Eq. (8.7)]. Discrepancies arise as ℎ 𝑓 is raised beyond
the adiabatic limit. (d) Plasmon enhancement factor 𝐺𝜂 ≡ 𝐸/𝐸ext vs
ℎ 𝑓 and 𝐸 , where 𝐸ext (𝐸) denotes the drive-field amplitude outside
(inside) the WSM. Dashed curve indicates plasmon resonance pre-
dicted semiclassically. (e) Same as (d), but for a WSM with broken
TRS and a pair of WNs with opposite chirality and tilt. Here, the
chiral plasmon resonance differs for left (left panel) and right (right
panel) circular polarizations. . . . . . . . . . . . . . . . . . . . . . . 146

8.2 Topological photocurrent as quantized charge pumping. (a) Bril-
louin zone region (purple) surrounding a single WN (bright yellow)
at 𝜇 = 0. Under illumination by circularly polarized light, all elec-
tronic states with a given 𝑘𝑥 and 𝑘𝑦 (yellow vertical line) traces out
a cylinder (pink) in momentum space during a period of the drive.
This generates a quantized charge transfer per cycle along the 𝑧 di-
rection, given by −𝑒 times the total flux of Berry curvature through
the surface of the cylinder (differential area element indicated by
dark purple). When the cylinder encloses the WN, this integral is
nonzero and given by ±1. (b) Total time-averaged current I𝑧⟳(𝒌⊥)
in the system generated by electrons with a fixed in-plane momen-
tum 𝒌⊥ = (𝑘𝑥 , 𝑘𝑦). Left and right panels depict 𝑣𝐹𝑒𝐴/ℏ ≈ 5ℎ 𝑓
and 𝑣𝐹𝑒𝐴/ℏ ≈ 0.2ℎ 𝑓 , respectively, corresponding to adiabatic and
nonadiabatic driving. The dashed curve indicates the trajectory of
the WN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
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8.3 Photoresponse from doped and tilted WNs, with parameters 𝐸 =

1.5 MV/m, ℎ 𝑓 = 5 meV and 𝜏 = 5 ps, corresponding to 𝜏 𝑓 ≈ 6.
(a) Photocurrent 𝑗 𝑧𝜂 vs. 𝜇 for an isolated, untilted WN. The orange
curve indicates semiclassical prediction [see discussion below Eq.
(8.6)]. (b)-(c) Photocurrent 𝑗 𝑧𝜂 from a pair of opposite-chirality WNs
with opposite tilts, 𝜒 ≡ 𝜒+ = −𝜒− under left (b) and right (c) laser
polarization. In the limit 𝜒 → 0, the photoresponse is dominated
by the chirality-dependent component generated by the anomalous
velocity. (d) Chirality-independent component 𝑗 𝑧

𝐺
= ( 𝑗 𝑧⟲ + 𝑗 𝑧⟳)/2 of

𝑗 𝑧𝜂. Dashed line indicates prediction from semiclassical analysis [Eq.
(8.6)]. (e) Steady state occupation function 𝑔1(𝒌, 0) at time 𝑡 = 0
in the 𝜈 = 1 band, for the same parameters as panel (a). Black dot
indicates the position of the WN, and vectors indicate the oscillating
current components generated parallel 𝑗∥ and perpendicular 𝑗⊥ to the
internal electric field 𝑬 (𝑡) and the resulting polarization 𝑷𝜂 (𝑡), along
with induced field 𝑬ind(𝑡). . . . . . . . . . . . . . . . . . . . . . . . 151

D.1 (a) Topological current produced by conduction band (𝜈 = 1) states
in an isolated Weyl node, calculated by numerically integrating
the semiclassical equations of motion [see Eq. (D.14)]. Here,
𝑗top = −𝑒 𝑓 (𝑒𝐴/ℏ)2/(4𝜋) denotes the topological current magnitude
produced by a fully-occupied valence band [see Eq. (1) in the main
text], and 𝑥𝐹 = ℏ𝑘𝐹/(𝑒𝐴). (b) Log-scale plot of panel (a), with fits
(solid lines) to the numerical data. . . . . . . . . . . . . . . . . . . . 160

D.2 Illustration of the coordinate system used to calculate the saturation
value of 𝑗 𝑧1,𝜂 for 𝑘𝐹 ≫ 2𝑒𝐴/ℏ. Here, 𝒌′ = 𝒌 + 𝑒𝑨(𝑡)/ℏ is the shifted
coordinate system, which fixes the WN at the origin. Purple sphere
indicates the Fermi volume in the conduction band, which is centered
at the WN (center white dot). Under illumination by circularly po-
larized light, populated electronic states with a given 𝒌⊥ = (𝑘𝑥 , 𝑘𝑦)
traces out a cylinderS𝑡 (𝒌⊥) (dark purple) in momentum space during
a period of the drive. Due to the finite Fermi momentum 𝑘𝐹 , finite
Berry curvature 𝛀1 penetrates the “caps” S𝑡 (𝒌⊥) (light green) of the
cylinder located at 𝑘𝑧 = ±

√︃
𝑘2
𝐹
− |𝒌⊥ |2. The Berry flux through the

capsS𝑡 (𝒌⊥) produces a saturation value of 𝑗 𝑧1,𝜂 in the limit 𝑘𝐹 ≫ 2𝑒𝐴/ℏ.160
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D.3 (a) Illustration of the characteristic in-plane momentum dynamics
relevant for analyzing the photocurrent. Solid black circle indicates
the edge of the instantaneous equilibrium Fermi volume of 𝐻 (𝒌, 𝑡)
as a function of in-plane momentum, 𝒌⊥ = (𝑘𝑥 , 𝑘𝑦), for an arbitrary,
fixed value of 𝑘𝑧. Black dot indicates the instantaneous location of the
Weyl node, which is located at an azimuthal angle of 2𝜋 𝑓 𝑡 from the
𝑘𝑥 axis (red arrow). We approximate the instantaneous equilibrium
occupation 𝑓

eq
1 (𝒌, 𝑡) [Eq. (D.30)] to be given by 1 if 𝒌⊥ is located

within the annulus segment (shaded blue) and between the two angles
indicated by green lines, and 0 otherwise. (For the choice of 𝒌⊥

sketched in the figure, 𝒌⊥ is positioned such that 𝑓 eq
1 (𝒌, 𝑡) = 0.) Such

an approximation is accurate in the limit where the Fermi momentum
𝑘𝐹 is much less than the vector potential 𝑒𝐴/ℏ. (b) Occupation
function 𝑔1(𝒌, 𝑡) as a function of the in-plane momentum magnitude
𝑘⊥ =

√︃
𝑘2
𝑥 + 𝑘2

𝑦 in the slow relaxation time limit 𝜏 𝑓 ≫ 1, plotted for
several values of the 𝑧-momentum 𝑘𝑧. . . . . . . . . . . . . . . . . . 164

D.4 Origin of the laser helicity-independent photocurrent in a tilted WN.
In the limit 𝜏 𝑓 ≫ 1, the steady state occupation of bands at any given
time 𝑡 is the time average of the instantaneous equilibrium occupation
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C h a p t e r 1

GENERAL INTRODUCTION

The length scales and timescales in the quantum and macroscopic worlds differ
by many orders of magnitude, inspiring questions about how quantum degrees of
freedom can be manipulated in a laboratory. Efforts to control quantum phenomena
have set the stage for highly tunable platforms to study quantum information and
matter. Time-periodic fields, in particular, offer versatile methods for controlling
quantum systems, with wide-ranging applications across condensed matter physics.
For example, ultra-low-frequency driving fields can unveil the adiabatic topological
dynamics of quantum matter, such as the Thouless charge pumping effect [7, 29,
32, 47, 71, 82, 111, 126, 133, 154, 159, 173, 201, 201, 221, 234, 278, 279, 302].
Low-amplitude time-periodic fields can also serve as a probe of quantum phases
by inducing perturbative responses through optical spectroscopy [53, 195, 303].
While these examples already illustrate some practical applications of time-periodic
fields, this thesis primarily focuses on the strong and non-adiabatic driving regime
far beyond linear response theory, where Floquet engineering can fundamentally
design nonequilibrium quantum phases with exotic properties [15, 36, 45, 64, 74–
76, 80, 81, 83, 99, 131, 140, 152, 165, 167, 169, 189, 214, 235, 239, 258, 260, 281,
291–294, 304].

Floquet-engineered systems exhibit dynamics that roughly separate into “micro-
motion” and “stroboscopic dynamics,” with frequencies faster and slower than the
driving frequency, respectively [216, 239, 241, 290]. Micromotion can underlie ex-
otic magnetic properties [204], reveal anomalous Floquet topological phases [240],
and be detected with high-resolution time-resolved probes [65]. On the other hand,
the coarse-grained stroboscopic dynamics can be modeled by a time-independent
Floquet Hamiltonian that captures the time-averaged dynamics of the system on
timescales much longer than the driving period. The Floquet Hamiltonian could
generally differ significantly from the Hamiltonian of the equilibrium system and
even exhibit drive-induced topology [167, 215, 216]. Additionally, the Floquet
Hamiltonian governs the low-frequency stroboscopic dynamics, allowing its prop-
erties to be probed with conventional DC or low-frequency measurements as long
as the drive pulse duration is sufficiently long. These properties highlight a key
motivation for pursuing Floquet engineering: the Floquet Hamiltonian behaves like
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a tunable static Hamiltonian, with potentially exotic phases that can be manipulated
in situ.

Despite the promising opportunities for Floquet engineering to control and manip-
ulate quantum matter, the statistical mechanics of Floquet systems is a challenging
problem that poses several issues [195, 196]. First, experimental observables depend
not just on the single-particle electronic dynamics governed by the Floquet Hamil-
tonian but also on how the Floquet states are populated. In particular, the chemical
potential of Floquet systems is ill-defined because Floquet states are coherent su-
perpositions of distinct energy levels, potentially above and below the chemical
potential of the equilibrium system [74, 76, 196, 239, 257, 258]. The resulting
highly-nonequilibrium distribution of electrons are also susceptible to absorption of
energy from the driving field, facilitated by electronic interactions, that could heat
the distribution to a high-temperature state [54, 138, 158]. Lastly, in any heated
system, incoherent scattering processes facilitated by electron-phonon and electron-
electron scattering are also enhanced, drawing questions about whether Floquet
states can remain coherent in the presence of rapid incoherent scattering processes
[6, 257, 258]. These problems have become such a concern that the uncontrolled
heating of Floquet systems is sometimes referred to as the “heat death” of Floquet
physics [238].

The field of Floquet engineering has introduced several potential solutions to
stabilize low-temperature driven phases. The umbrella term for these solutions
is sometimes called the “non-thermal pathway” to Floquet engineering, which
manipulates quantum properties not through heating but by accessing and con-
trolling low-temperature degrees of freedom through coherent coupling to the
driving field [59]. One promising opportunity for non-thermal Floquet engi-
neering is to drive systems with ultra high-frequencies, which can produce a
long-lived, low-temperature Floquet phase known as the Floquet pre-thermal state
[1, 3, 4, 155, 223]. On the other hand, ultrafast laser pulses with frequencies reso-
nant with the level spacing of the system can also produce transient Floquet effects
at high driving intensities while minimizing heating due to its short pulse duration
[143, 174, 185, 187, 260, 263, 301, 329].

In this thesis, we seek to use the intrinsic coupling of low-dimensional Floquet
solid-state systems to their surrounding environment—the phonons in the lattice
and the screening from surrounding dielectrics—as a primary mechanism for stabi-
lizing low-temperature Floquet physics under continuous-wave (CW) driving. The
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dissipation of energy to a low-temperature bath of phonons, combined with the
CW driving, leads electrons to relax into a steady-state electronic distribution with
stable transport effects. Furthermore, we show that Pauli blocking in the steady
state can suppress scattering rates between Floquet states, enabling Floquet states
to remain coherent even with driving amplitudes much weaker than those used in
ultrashort-pulsed laser experiments. Our theoretical and experimental results pro-
vide key principles to realize Floquet physics in CW-driven solid-state systems and
enhance their controllability with many-body interactions.

This thesis is organized as follows. Part I reviews Floquet engineering and the
incoherent dynamics of Floquet systems. In Chapter 2, we provide an overview of
the connection between topology in solid-state quantum systems and its response to
adiabatic driving fields. The topological adiabatic dynamics inspire questions about
whether similar universal topological signatures of quantum matter can also emerge
when the driving source is non-adiabatic. In Chapter 3, we relax the assumptions of
adiabaticity by introducing Floquet theory, which describes the quantum dynamics
of systems driven by time-periodic fields. We discuss the emergence of fast mi-
cromotion and slow stroboscopic dynamics in Floquet systems and introduce the
time-independent Floquet Hamiltonian to model the stroboscopic dynamics. We
derive the effective Floquet Hamiltonian for gapless systems such as graphene and
semiconducting systems such as TMDs, characterize the topology of the Floquet
Hamiltonian, and discuss how its band geometry can be probed through transport
measurements. In Chapter 4, we discuss the effects of weak many-body interactions
in Floquet systems and introduce the Floquet-Boltzmann equation.

The remainder of the thesis, Parts II and III, are centered around two key themes.

Part II: Tunability and Stability of Many-Body Floquet Topological Phases
Part II of this thesis presents theoretical and experimental results centered around
two primary goals. The first objective is to optically control many-body interactions
in Floquet systems, and the second is to stabilize Floquet physics on long timescales
by leveraging dissipative dynamics.

Optical Control of Many-Body Interactions

To understand how periodic drives can manipulate many-body interactions, it is
helpful to review how optical drives can control single-particle electronic physics.
A notable example of this is drive-induced topology in Floquet systems. In 2009,
Takashi Oka and Hideo Aoki predicted that monolayer graphene systems irradiated
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by a circularly polarized laser drive could be described by an effective Floquet
Hamiltonian with a topological Haldane gap and a drive-induced DC anomalous
Hall conductivity [215]. This drive-induced Haldane gap was a first demonstration
of an off-resonant topological Floquet gap—where the gap opening (centered at the
zero-energy Dirac point between the conduction and valence bands) was energeti-
cally far-separated from the single-photon resonance in the bands. In 2011, Netanel
Lindner, Gil Refael, and Victor Galitski noticed that nontrivial band topology could
also be induced in trivial bands by resonantly-driving the bands with a laser field
[167]. The drive-induced topological system was named the “Floquet topological in-
sulator” (FTIs). Further work formalized the topological characterization of Floquet
states and elucidated its transport properties [139, 152]. Importantly, these works
presented Floquet engineering as a novel method to optically control single-particle
electronic physics on demand.

While the single-particle dynamics of Floquet systems already present remarkable
opportunities to engineer new quantum matter, an accurate modeling of Floquet
systems must also consider many-body interactions. In driven quantum matter,
many-body collisions only conserve energy up to an integer multiple of the driving
frequency, enabling a dramatically different population distribution from equilib-
rium. In 2015, Seetharam et al. inroduced a microscopic modeling of many-body
interactions in optically-driven semiconducting systems through the Floquet Boltz-
mann equation (FBE) approach [257, 258], which built on previous theoretical
works studying interacting driven open quantum systems [90, 144]. The FBE lever-
aged Fermi’s golden rule for driven states to microscopically model perturbative
many-body collisions. Crucially, it demonstrated that low-temperature steady states
under continuous-wave irradiation could be induced by coupling the Floquet system
to a low-temperature bosonic bath and suppressing heating processes via external
leads. Further work by Esin et al. [74–76, 78] elucidated how many-body interac-
tions in Floquet systems could be engineered to produce finite, and even quantized,
topological transport characteristics and symmetry broken phases. Overall, these
groundbreaking examples extended optical control over single-particle dynamics in
continuously-driven Floquet systems to many-body interactions.

This thesis seeks to leverage many-body interactions in low-dimensional systems
as new principles for controlling Floquet topological insulators. Previous works
that analyzed Floquet systems with the FBE (mentioned above) considered low-
dimensional systems coupled to 3D phononic baths, where energy-momentum
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constraints on electron-phonon scattering were relaxed. Chapter 5 of this thesis
considers a new regime where phonons and electrons are both low-dimensional.
Here, kinematic bottlenecks on electron-phonon scattering are highly constrained in
phase space and can become highly sensitive to driving parameters. We identify a
tunable kinematic constraint uniquely possible in moiré materials, where electronic
and phononic speeds are comparable. In particular, we show that variations in
the laser amplitude can drive Floquet states into a slow regime where their group
velocity is subsonic to acoustic phonons, weakening electron-phonon coupling. In
this regime, the drive-induced topological transport signatures are sharply modified,
providing a novel example of optically-controllable topological electronic physics.

Stabilizing Persistent Floquet Physics

Having discussed theoretical proposals for Floquet topological insulators, we now
discuss the experimental feasibility of Floquet engineering. Most experimental re-
alizations of Floquet physics in solid-state systems thus far have utilized ultrafast
lasers with pulse times in the range of femto to picoseconds to limit the effect of heat-
ing and leverage the intense laser amplitudes achievable by ultrafast laser sources.
Notably, Floquet modifications to the single-particle electronic bandstructure have
been confirmed by ARPES experiments [174, 187, 301, 329]. ARPES experiments
have also offered some insights into the stability of Floquet states under many-body
scattering in solid-state systems, establishing that large Floquet gaps, combined
with low lattice temperatures, could be a necessity for Floquet-Bloch states to sur-
vive in the presence of the scattering of photoexcited carriers [6]. While ARPES
experiments have provided direct probes of the hallmark Floquet bandstructure of
periodically-driven systems, the signatures of Floquet bands have also been detected
through optical signatures such as second-harmonic generation [260] and transport
experiments such as the light-induced anomalous Hall effect in graphene [185].

Ultrafast laser experiments have been remarkably successful in producing transient
Floquet effects, but stabilizing long-living signatures of Floquet physics in solids
remains a long-sought goal. A truly continuous-wave (CW) irradiated Floquet
system could increase the accessibility of Floquet effects and extend its tunability and
utility. However, the heating and stability of continuously-driven Floquet systems
seem to pose serious problems to its experimental realization. In this thesis, we seek
to understand what experimental considerations are necessary to leverage dissipation
dynamics to stabilize CW irradiated Floquet systems. Chapter 6 presents the first
experimental signatures of Floquet steady states in a CW irradiated solid-state
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metallic system. The frequency of the drive and temperature of the lattice were
deliberately chosen to maintain low-temperature phonons, providing principles for
cooling the system to a low-temperature steady state. We show that the longitudinal
transport signatures are consistent with the predictions of the Floquet-Boltzmann
equation and that Pauli blocking in the steady state can preserve the coherence of
Floquet-Bloch states in the presence of scattering.

Part III: Floquet Topological Physics Beyond Optical Driving Fields and Low-
Dimensional Systems
While Part II of this thesis primarily addresses the stability and topological char-
acteristics of low-dimensional driven systems under continuous optical driving,
Part III of this thesis seeks to extend persistent topological Floquet physics to (i)
beyond-optical drives and (ii) 3D systems.

The intense theoretical and experimental research on Floquet engineering has mo-
tivated new efforts to realize Floquet physics with novel driving sources, such as
angular-momentum carrying light [8, 137], spatially-patterned light fields [255],
multi-tone laser drives [180, 205], and spatiotemporal drives such as coherent
phonon lasers [77, 224]. The remarkable topological signatures of these effects ex-
tend far beyond the predictions of Floquet topological physics driven by single-tone
optical lasers. For example, a simultaneous application of incommensurate driving
frequencies can produce the topological frequency conversion effect [180, 205]. Co-
herent phonon lasers, which transfer both energy and momentum, can also produce
exotic topological bands with spatiotemporal symmetries [40, 91, 114, 224].

A notable new category of driving sources consists of high-frequency coherent
phonon sources in the THz range. Historically, coherent phonon sources have been
limited to ultra-low frequencies around the MHz or GHz range. While MHz and
GHz frequency phonon sources are suitable for producing adiabatic dynamics, the
more recent emergence of THz-frequency phonon sources offers exciting potential
for Floquet engineering. These THz-frequency coherent phonon waves can be
generated optically, by directly driving an IR-active phonon mode [68], by excitation
of electrons that produce coherent phonons through electron-phonon coupling [67,
274, 317], or by biasing metals to produce the acoustic Cerenkov [10, 151, 213, 327],
Klein-Zehner [5, 104], or phaser effect [77]. Chapter 7 of this thesis establishes new
Floquet engineering applications for these high-frequency coherent phonon laser
sources. In particular, we introduce a new type of Floquet phase with quantized
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transport driven by THz-frequency coherent phonons. We use Floquet-Boltzmann
theory to show that incoherent phonon dissipation in the system can relax electrons
into a topological spatiotemporal Floquet band with a quantized group velocity. The
resulting topological charge pumping effect remains remarkably robust in a highly
non-adiabatic regime, producing currents orders of magnitude stronger than those in
an adiabatic Thouless pump setup [7, 29, 32, 47, 71, 82, 111, 159, 201, 201, 278, 279].

Finally, Chapter 8 discusses the emergence of topological plasmons and photocur-
rents in Weyl semimetals irradiated by THz-frequency circularly-polarized lasers. In
contrast with the works in other chapters of this thesis, the phenomenon is adiabatic
in nature, but importantly highlights the interplay between time-periodic driving
fields and transport phenomena beyond low-dimensional systems.

In summary, this thesis presents key progress towards realizing persistent Floquet
physics with optical and beyond-optical driving fields, addressing critical questions
about the role of many-body interactions in the stability and tunability of Floquet
quantum matter.
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C h a p t e r 2

TOPOLOGY IN ADIABATIC DYNAMICS

We begin by reviewing some of the earliest demonstrations of topology in solid-
state systems. These examples establish the intricate connection between topology
and the adiabatic evolution of quantum systems. Section 2.1 defines when the
dynamics of a time-dependent Hamiltonian can be classified as adiabatic. Section
2.2 reveals the connection between adiabatic electronic dynamics, Berry curvature,
and topology. Section 2.3 derives explicit relations between the Berry curvature and
electronic transport dynamics. Finally, Section 2.4 closes with discussions of the
topology of 2-level systems and edge states, all of which will be extended to Floquet
topological systems in Chapter 3.

2.1 Adiabatic Evolution
The following section is based on Refs. [97, 287, 307, 330].

In this section, we model the adiabatic evolution of quantum systems and define the
adiabatic condition.

To study the dynamics produced by a time-dependent Hamiltonian, we consider a
Hamiltonian 𝐻𝝀(𝑡) parameterized by a time-dependent vector of parameters, 𝝀(𝑡).
By diagonalizing the instantaneous Hamiltonian at each time 𝑡, we obtain the in-
stantaneous eigenstates |𝑛𝝀(𝑡)⟩ and eigenenergies 𝐸𝑛

𝝀(𝑡) , which satisfy the eigenvalue
relation

𝐻𝝀(𝑡) |𝑛𝝀(𝑡)⟩ = 𝐸𝑛𝝀(𝑡) |𝑛𝝀(𝑡)⟩, (2.1)

where 𝑛 indexes the eigenstates. In our analysis, we assume that the instantaneous
eigenenergies are non-degenerate at all times. To find the solutions to the time-
dependent Schrodinger equation, given by

𝑖ℏ𝜕𝑡 |Ψ(𝑡)⟩ = 𝐻𝝀(𝑡) |Ψ(𝑡)⟩, (2.2)

we expand the solution |Ψ(𝑡)⟩ in terms of the instantaneous eigenstates:

|Ψ(𝑡)⟩ =
∑︁
𝑛

𝑐𝑚 (𝑡)𝑒
𝑖
ℏ

∫ 𝑡
0 𝐸𝑚

𝝀 (𝑡′ )𝑑𝑡
′
|𝑛𝝀(𝑡)⟩, (2.3)

where the form of the coefficients 𝑐𝑚 (𝑡) is chosen for convenience. The Schrodinger
equation, Eq. (2.2), can now be written as a matrix equation in terms of the
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coefficients 𝑐𝑛 (𝑡), described by the rate equations

𝜕𝑡𝑐𝑚 (𝑡) = −
∑︁
𝑛

⟨𝑚𝝀(𝑡) |𝜕𝑡𝑛𝝀(𝑡)⟩𝑐𝑛 (𝑡)𝑒
𝑖
ℏ

∫ 𝑡
0 (𝐸𝑚

𝝀 (𝑡′ )−𝐸
𝑛
𝝀 (𝑡′ ) )𝑑𝑡

′
. (2.4)

Eq. (2.4) indicates that the time-dependence of the Hamiltonian generates transitions
between distinct pairs of eigenstates |𝑛𝝀(𝑡)⟩ and |𝑚𝝀(𝑡)⟩, with a transition rate of
magnitude |⟨𝑚𝝀(𝑡) |𝜕𝑡𝑛𝝀(𝑡)⟩𝑐𝑛 (𝑡) |.

We will now prove that the probability of tunneling transitions is suppressed if
the parameters 𝝀(𝑡) are varied slowly. To simplify the analysis, we consider the
time evolution of a system initialized at time 𝑡 = 0 in the 𝑛-th eigenstate of the
instantaneous Hamiltonian, i.e., |Ψ(0)⟩ = |𝑛𝝀(0)⟩. We focus on a regime where
𝝀(𝑡) is varied slowly such that ⟨𝑚𝝀(𝑡) |𝜕𝑡𝑛𝝀(𝑡)⟩ and 𝑐𝑚 (𝑡) vary with frequencies
much slower than the level spacing (𝐸𝑚

𝝀(𝑡) − 𝐸
𝑛
𝝀(𝑡))/ℏ between eigenstates of the

instantaneous Hamiltonian. In this limit, Eq. (2.4) can be integrated by parts to
obtain

𝑐𝑚 (𝑡) ≈ −𝑖ℏ
⟨𝑚𝝀(𝑡) |𝜕𝑡𝑛𝝀(𝑡)⟩
𝐸𝑚
𝝀(𝑡′) − 𝐸

𝑛
𝝀(𝑡′)

𝑒

∫ 𝑡
0 (𝐸𝑚

𝝀 (𝑡′ )−𝐸
𝑛
𝝀 (𝑡′ ) )𝑑𝑡

′
𝑐𝑛 (𝑡) (2.5)

for 𝑛 ≠ 𝑚. The solution to the time-dependent Schrodinger equation can therefore
be written as

|Ψ(𝑡)⟩ ∝ |𝑛𝝀(𝑡)⟩ − 𝑖ℏ
∑︁
𝑚≠𝑛

⟨𝑚𝝀(𝑡) |𝜕𝑡𝑛𝝀(𝑡)⟩
𝐸𝑚
𝝀(𝑡′) − 𝐸

𝑛
𝝀(𝑡′)

|𝑚𝝀(𝑡)⟩, (2.6)

where we have dropped the normalization factor for clarity.

The adiabatic limit is realized when 𝝀(𝑡) varies sufficiently slowly that the second
term in Eq. (2.6) is negligible, and |Ψ(𝑡)⟩ ∝ |𝑛𝝀(𝑡)⟩ at all times. To quantify the
adiabatic limit, we note that differentiation of Eq. (2.1) yields

⟨𝑚𝝀(𝑡) |𝜕𝑡𝑛𝝀(𝑡)⟩ =
⟨𝑚𝝀(𝑡) |𝜕𝑡𝐻𝝀(𝑡) |𝑛𝝀(𝑡)⟩

𝐸𝑛
𝝀(𝑡) − 𝐸

𝑚
𝝀(𝑡)

. (2.7)

Upon substitution into Eq. (2.6), we find that the adiabatic condition is given by

|⟨𝑚𝝀(𝑡) |ℏ𝜕𝑡𝐻𝝀(𝑡) |𝑛𝝀(𝑡)⟩| ≪ (𝐸𝑛𝝀(𝑡) − 𝐸
𝑚
𝝀(𝑡))

2. (2.8)

2.2 Berry Curvature and Chern Number
The following section is based on Refs. [307].

As we showed in Section 2.1, an adiabatically-evolved system initialized in an
instantaneous eigenstate of the Hamiltonian remains in the eigenstate at all times,
satisfying |Ψ(𝑡)⟩ ∝ |𝑛𝝀(𝑡)⟩. However, the state vector |Ψ(𝑡)⟩ can acquire a nontrivial
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modulus-1 phase factor during the evolution. To restore the phase factor, we note
that the matrix equation given in Eq. (2.4) contains only one nonzero element in
the adiabatic limit, 𝜕𝑡𝑐𝑛 (𝑡) = −⟨𝑛𝝀(𝑡) |𝜕𝑡𝑛𝝀(𝑡)⟩𝑐𝑛 (𝑡). The solution to this equation is
given by

|Ψ(𝑡)⟩ = 𝑒𝑖𝛾𝑛 (𝑡) |𝑛𝝀(𝑡)⟩, (2.9)

where 𝛾𝑛 (𝑡) = 𝑖
∫ 𝑡

0 ⟨𝑛𝝀(𝑡′) |𝜕𝑡𝑛𝝀(𝑡′)⟩𝑑𝑡
′. This phase 𝛾𝑛 (𝑡) can be expressed in terms

of the Berry connection,

𝑨𝑛 (𝝀) = ⟨𝑛𝝀(𝑡) |∇𝝀 |𝑛𝝀(𝑡)⟩, (2.10)

using the relation
𝛾𝑛 = 𝑖

∫
C
𝑨𝑛 (𝝀) · 𝑑𝝀, (2.11)

where C defines the path traced out by 𝝀(𝑡) as a function of time. Furthermore, if
C is a closed loop in 3D parameter space, then 𝛾𝑛 (𝑡) is called the Berry phase. For
such a closed path, C encloses a closed surface, denoted S, and Stokes’ theorem
implies that

𝛾𝑛 =

∫
S
𝛀𝝀𝑛 · 𝑑𝑺, (2.12)

where 𝑑𝑺 is a differential area element on the surface S, and

𝛀𝝀𝑛 = ∇𝝀 × 𝑨𝑛 (𝝀) = 𝑖⟨∇𝝀𝑛𝝀(𝑡) | × |∇𝝀𝑛𝝀(𝑡)⟩ (2.13)

is the Berry curvature. A special case worth noting is that of a closed surface S,
where 𝑒𝑖𝛾𝑛 (𝑡) is singled value, so 𝛾𝑛 = 2𝜋𝐶, and 𝐶 ∈ Z is known as the Chern
number.

Example: two-level system. Throughout this thesis, we will primarily focus on the
dynamics and topological properties of low-temperature quantum matter, whose
electronic physics can often be captured by a two-level Hamiltonian. In its most
generic form, the Hamiltonian for a 2-level system is given by 𝐻 = 𝒅 · 𝝈, where
𝝈 = (𝜎𝑥 , 𝜎𝑦, 𝜎𝑧) is the vector of Pauli matrices and 𝒅 is parameterized by three
variables, 𝜃, 𝜙, and 𝑟 as follows:

𝒅 = 𝑟 (cos 𝜃 cos 𝜙, cos 𝜃 sin 𝜙, sin 𝜃). (2.14)

The eigenstates of the Hamiltonian are given by

|𝜓0⟩ =
(
−𝑒−𝑖𝜙 sin

(
𝜃/2

)
cos

(
𝜃/2

) )
and |𝜓1⟩ =

(
𝑒−𝑖𝜙 cos

(
𝜃/2

)
sin

(
𝜃/2

) )
, (2.15)
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with eigenenergies 𝐸0 = −𝑟 and 𝐸1 = 𝑟, respectively. In the cartesian coordinates
defined by 𝑥 = 𝑟 cos 𝜃 cos 𝜙, 𝑦 = 𝑟 cos 𝜃 sin 𝜙, and 𝑧 = 𝑟 sin 𝜃, explicit calculation
yields the Berry curvature given by

𝛀𝒅𝑛 = 𝑖⟨∇𝒅𝜓𝑛 | × |∇𝒅𝜓𝑛⟩ = (−1)𝑛 𝒅

|𝒅 |3
. (2.16)

where 𝑛 = 0, 1 indexes the eigenstates |𝜓𝑛⟩. The Chern number of the system
emerges when considering the Berry curvature along a closed surfaceS in parameter
space, which is quantized with an integer value given by

𝐶𝑛 =
1

2𝜋

∮
S
𝛀𝒅𝑛 · 𝑑𝑺, (2.17)

where 𝑑𝑺 is a differential element on the surface S. To prove the quantization of𝐶𝑛,
note that ∇𝒅𝛀𝒅𝑛 = (−1)𝑛𝛿(𝒅), where 𝛿(𝒅) is the Dirac-Delta function. Therefore,
applying the divergence theorem yields 𝐶𝑛 = (−1)𝑛 if S encloses the origin 𝒅 = 0,
and 𝐶𝑛 = 0 otherwise.

2.3 Manifestations of Topology in Adiabatic Transport Dynamics
The Berry curvature can be detected in systems evolving adiabatically in time,
producing robust topological transport signatures in electronic systems. Below, we
provide two examples.

Thouless Pumping in a Slow-Moving Turnstile
The following section is based on Ref. [232].

The Thouless pump provides a simple example of topological transport in a 1D
system. The system consists of electrons in a slowly-propagating wave potential,
described by the Hamiltonian

𝐻̂ =
ℏ2 𝑘̂2

2𝑚
+ 2𝑉 cos

(
𝑞𝑥 − 𝜔𝑡

)
, (2.18)

where 𝑘̂ = −𝑖𝜕𝑥 is the momentum operator, 𝑚 is the mass of the electron, 𝑉 is the
energy scale of the potential wave, 1/𝑞 is the wavelength of the wave, and 𝜔 is its
frequency. Because the moving wave potential is periodic in space, the electronic
band structure can be folded into a Brillouin zone covering the crystal momenta
𝑘 ∈ [0, 𝑞]. We will focus on the effective Hamiltonian of the system surrounding
𝑞/2, given by

𝐻eff =
©­­«

1
2𝑚

(
𝑞

2 + 𝑘
)2

𝑉𝑒−𝑖𝜔𝑡

𝑉𝑒𝑖𝜔𝑡 1
2𝑚

(
− 𝑞

2 + 𝑘
)2

ª®®¬ . (2.19)
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Up to a constant energy offset, 𝐻eff can be expressed in the form 𝐻eff = 𝒅 ·𝝈, with 𝒅

given in Eq. (2.14) and 𝑟 =
√︁
(𝑘𝑞/2𝑚)2 +𝑉2, cos 𝜃 = (𝑘𝑞/2𝑚)/

√︁
(𝑘𝑞/2𝑚)2 +𝑉2

and 𝜙 = 𝜔𝑡. The Hamiltonian has two instantaneous eigenstates, given by

|𝜓−⟩ =
(
−𝑒−𝑖𝜙 sin

(
𝜃/2

)
cos

(
𝜃/2

) )
and |𝜓+⟩ =

(
𝑒−𝑖𝜙 cos

(
𝜃/2

)
sin

(
𝜃/2

) )
(2.20)

with energy 𝐸− = −𝑟 and 𝐸+ = 𝑟, respectively. We assume that the system is
initialized in the state |𝜓−⟩ at 𝑡 = 0 and consider the current produced by the
adiabatic evolution of the system as a function of 𝑡.

To calculate the current, we consider the solution |Ψ(𝑡)⟩ to the time-dependent
Schrodinger equation 𝑖ℏ𝜕𝑡 |Ψ(𝑡)⟩ = 𝐻eff(𝑡) |Ψ(𝑡)⟩ to the first order non-adiabatic
correction, given by

|Ψ(𝑡)⟩ ≈ |𝜓−⟩ − 𝑖ℏ
⟨𝜓+ |𝜕𝑡𝜓−⟩
𝐸+ − 𝐸−

|𝜓+⟩ (2.21)

up to an overall phase factor [see Eq. (2.6)]. The time-averaged total current
therefore is given by

𝐽 =
𝑒𝜔

2𝜋

∫ 2𝜋/𝜔

0
𝑑𝑡

∫ 𝑞/2

−𝑞/2
𝑑𝑘 ⟨Ψ(𝑡) |1

ℏ

𝜕𝐻eff
𝜕𝑘

|Ψ(𝑡)⟩, (2.22)

where 𝑒 is the electron charge. Using Eq. (2.21), we find that

⟨Ψ(𝑡) |1
ℏ

𝜕𝐻eff
𝜕𝑘

|Ψ(𝑡)⟩ = ⟨𝜓− |
1
ℏ

𝜕𝐻eff
𝜕𝑘

|𝜓−⟩ −Ω(𝑘, 𝑡), (2.23)

where Ω(𝑘, 𝑡) = 𝑖
[
⟨𝜕𝑘𝜓− |𝜕𝑡𝜓−⟩ − ⟨𝜕𝑡𝜓− |𝜕𝑘𝜓−⟩

]
is the Berry curvature in (𝑘, 𝑡)-

space. The first term on the right side of Eq. (2.23) is the group velocity contribution
to the current, and the second term is the quantum geometric contribution—the
anomalous velocity.

To calculate 𝐽, we note that the group velocity [first term in Eq. (2.23)], is zero
after integration, because 𝐸− |𝑘=𝑞/2 − 𝐸− |𝑘=−𝑞/2 = 0. Therefore, only the anomalous
velocity remains:

𝐽 = −𝑒𝜔
2𝜋

∫ 2𝜋/𝜔

0
𝑑𝑡

∫ 𝑞/2

−𝑞/2
𝑑𝑘 Ω(𝑘, 𝑡). (2.24)

Already, we can see that the current should be quantized in integer multiples of
𝑒𝜔/2𝜋, because the integral over 𝑡 and 𝑘 traces out a curve in 𝒅-space fully enclosing
the origin. We can arrive at the same result by performing the calculation explicitly,
first through computation of the Berry connection

A(𝑘, 𝑡) = ⟨𝜓−(𝜃, 𝜙) |𝜕𝑘 |𝜓−(𝜃, 𝜙)⟩ 𝑘̂ + ⟨𝜓−(𝜃, 𝜙) |𝜕𝑡 |𝜓−(𝜃, 𝜙)⟩𝑡, (2.25)
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where 𝑘̂ and 𝑡 are unit vectors in the (𝑘, 𝑡) phase space. Using Eq. (2.20), we find
that

A(𝑘, 𝑡) = 1 − cos 𝜃
2

(
𝜕𝜃

𝜕𝑘
𝑘̂ + 𝜕𝜙

𝜕𝑡
𝑡

)
and Ω(𝑘, 𝑡) = 𝑑

𝑑𝑘

(
1 − cos 𝜃

2

)
. (2.26)

Upon substitution into Eq. (2.24), we find that

𝐽 =
𝜔

2𝜋

[
1 − cos 𝜃

2
|𝑘=𝑞/2 −

1 − cos 𝜃
2

|𝑘=−𝑞/2

]
=
𝑒𝜔

2𝜋
, (2.27)

implying that a single electron is pumped across the system per driving period.

Weak Electric Field and Quantized Hall Conductivity
The following section is based on Refs. [97, 232, 307].

The Berry curvature of electronic states in a 2D lattice can be detected from the
current response to a weak, DC electric field 𝑬. We consider a Bloch Hamilto-
nian 𝐻 (𝒌) parameterized by the crystal momentum 𝒌. The weak electric field is
equivalent to a slowly-varying vector potential 𝑨(𝑡) = 𝑬 (𝑡)𝑡, which produces adi-
abatic electronic dynamics via minimal coupling 𝒌 → 𝒌′ = 𝒌 + 𝑒𝑨(𝑡)/ℏ, yielding
the time-dependent Hamiltonian 𝐻 (𝒌′) with instantaneous eigenstates |𝑢𝒌′𝑛⟩ and
eigenenergies 𝐸𝒌′𝑛 indexed by the integer 𝑛, which satisfy the eigenvalue relation

𝐻 (𝒌′) |𝑢𝒌′𝑛⟩ = 𝐸𝒌′𝑛 |𝑢𝒌′𝑛⟩. (2.28)

Here, we have absorbed the time dependence into 𝒌′ for simplicity of the nota-
tion. We consider the solution |𝜓𝒌𝑛 (𝑡)⟩ to the time-dependent Schrodinger equation
𝑖ℏ𝜕𝑡 |𝜓𝒌𝑛 (𝑡)⟩ = 𝐻 (𝒌′) |𝜓𝒌𝑛 (𝑡)⟩ initialized in the 𝑛-th instantaneous eigenstate at time
𝑡 = 0. To the first order non-adiabatic correction,

|𝜓𝒌𝑛 (𝑡)⟩ ≈ |𝑢𝒌′𝑛⟩ − 𝑖ℏ
∑︁
𝑚≠𝑛

⟨𝑢𝒌′𝑚 |𝜕𝑡𝑢𝒌′𝑛⟩
𝐸𝒌′𝑚 − 𝐸𝒌′𝑛

|𝑢𝒌′𝑚⟩ (2.29)

up to an overall phase factor. The group velocity, given by

𝒗𝒌𝑛 = ⟨𝜓𝒌𝑛 (𝑡) |
1
ℏ

𝜕𝐻 (𝒌)
𝜕𝒌

|𝜓𝒌𝑛 (𝑡)⟩, (2.30)

can be evaluated by using the relation 𝜕/𝜕𝑡 = −(𝑒/ℏ)𝑬 · ∇𝒌 and noting that
⟨𝜓𝒌𝑚 (𝑡) | (𝜕𝐻 (𝒌)/𝜕𝒌) |𝜓𝒌𝑛 (𝑡)⟩ = (𝐸𝒌𝑚 − 𝐸𝒌𝑛)⟨𝜓𝒌𝑚 (𝑡) |∇𝒌 |𝜓𝒌𝑛 (𝑡)⟩ [as determined
by differentiating both sides of Eq. (2.28) with respect to 𝒌]. Combining these
results, we find that

𝒗𝒌𝑛 =
1
ℏ

𝜕𝐸𝒌𝑛

𝜕𝒌
− 𝑒

ℏ
𝑬 ×𝛀𝒌𝑛, (2.31)
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where
𝛀𝒌𝑛 = 𝑖⟨∇𝒌𝑢𝒌𝑛 | × |∇𝒌𝑢𝒌𝑛⟩ (2.32)

is the Berry curvature. Eq. (2.31) is the semiclassical equations of motion for
electrons under weak electric fields, and the second term in Eq. (2.31) is known as
the anomalous velocity.

The semiclassical equations of motion enable us to estimate the current flowing
through the system, given by

𝑱 = 𝑒
∑︁
𝑛

∫
BZ

𝑑2𝒌

(2𝜋)2 𝒗𝒌𝑛 𝑓𝒌𝑛, (2.33)

where 𝑛 sums over the bands of the system, the integral over 𝒌 covers the full
Brillouin zone (BZ), and 𝑓𝒌𝑛 denotes the occupation function of the state |𝑢𝒌𝑛⟩.
Without loss of generality, we can align 𝑬 = 𝐸𝑥𝑥 and compute Hall conductivity
𝜎𝑥𝑦 = 𝐽𝑦/𝐸𝑥 , given by

𝜎𝑥𝑦 =
∑︁
𝑛

𝑒2

ℏ

∫
BZ
𝑑2𝒌 𝛀𝒌𝑛 · 𝑧 𝑓𝒌𝑛. (2.34)

If the chemical potential of the system is chosen such that an integer number of
bands are fully-filled, then the Hall conductivity is proportional to the sum over the
Chern numbers 𝐶𝑛 of the fully-filled bands, where

𝜎𝑥𝑦 =
∑︁

𝑛∈filled

𝑒2

2𝜋ℏ
𝐶𝑛 and 𝐶𝑛 =

1
2𝜋

∫
BZ
𝑑2𝒌 𝛀𝒌𝑛 · 𝑧. (2.35)

In the Brillouin zone, it can be shown that 𝐶𝑛 ∈ Z by noting that

𝐶𝑛 =
1

2𝜋

∫
BZ
𝑑2𝒌 𝛀𝒌𝑛 · 𝑧 =

𝑖

2𝜋

∮
𝑑𝒌 · ⟨𝑢𝒌𝑛 |∇𝒌 |𝑢𝒌𝑛⟩ (2.36)

where the integral on the left hand side is performed along the boundary of the first
Brillouin zone (1BZ). To prove the quantization of𝐶𝑛, we leverage the periodicity of
the Brillouin zone, noting that the Bloch function |𝑢𝒌𝑛⟩ should return to itself upon
the transformation 𝒌 → 𝒌+𝑮, where 𝑮 is a reciprocal lattice vector, but only up to a
phase factor. We can account for the phase factor by defining |𝑢𝒌𝑛⟩ = 𝑒−𝑖𝜃𝑛 (𝒌) |𝑢̃𝒌𝑛⟩,
where 𝜃𝑛 (𝒌) is a real-valued phase factor and |𝑢̃𝒌𝑛⟩ is invariant upon 𝒌 → 𝒌 + 𝑮.
Noting that

∮
𝑑𝒌 · ⟨𝑢̃𝒌𝑛 |∇𝒌 |𝑢̃𝒌𝑛⟩ = 0 due to the periodicity of |𝑢̃𝒌𝑛⟩ upon the

transformation 𝒌 → 𝒌 + 𝑮, we find that

𝐶𝑛 =
1

2𝜋

∮
𝑑𝒌 · ∇𝒌𝜃𝑛 (𝒌). (2.37)
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Furthermore, because 𝑒−𝑖𝜃𝑛 (𝒌) is single-valued on a closed loop around the 1BZ, 𝐶𝑛
must be quantized.

Two-level system. In a two-level system [see definition above Eq. (2.14)], we can
derive the Chern number from a simple geometric picture. It can be shown [see Ref.
[232]] that the Chern number can be expressed as

𝐶𝑛 = (−1)𝑛 1
4𝜋

∫
BZ
𝑑2𝒌 𝒅̂ · (𝜕𝑘𝑥 𝒅̂ × 𝜕𝑘𝑦 𝒅̂), (2.38)

where 𝑛 = 0, 1 which counts the oriented solid angle swept by 𝒅̂ ≡ 𝒅/|𝒅 | upon
variation across the Brillouin zone (BZ), divided by 4𝜋. Because the BZ is a closed
manifold, 𝐶 is quantized. Thus, we can interpret 𝐶 as the number of times 𝒅̂ fully-
covers the Bloch sphere (or, equivalently, the number of times the surface traced out
by 𝒅 fully encloses the origin 𝒅 = 0) upon variation across the BZ.

2.4 Edge States and Topology in Graphene
The following section is based on Ref. [97].

To illustrate the emergence of topology in a solid-state system, we consider the
Hamiltonian of graphene modified by the addition of a mass gap. Near the 𝐾 and
𝐾′ valleys, indexed by 𝜉 = +1,−1, respectively, the system can be described by the
Dirac Hamiltonian

𝐻𝜉 (𝒌) = ℏ𝑣𝐹 (𝑘𝑥𝜎𝑥 + 𝜉𝑘𝑦𝜎𝑦) + 𝑚𝜉𝜎𝑧, (2.39)

where 𝑣𝐹 is the Fermi velocity and 𝑚𝜉 is the mass gap. The eigenergies of the
Hamiltonian are given by 𝐸𝑛 (𝒌) = (−1)𝑛

√︃
(ℏ𝑣𝐹𝑘)2 + 𝑚2

𝜉
, where 𝑘 =

√︃
𝑘2
𝑥 + 𝑘2

𝑦 and
𝑛 = 0, 1 indexes the quasienergy.

Topology
To determine the topology of the system, we consider the winding of the pseudospin

𝒅̂(𝑘, 𝜙) = (ℏ𝑣𝐹𝑘 cos 𝜙𝒌 , ℏ𝑣𝐹𝑘 sin 𝜙𝒌 , 𝑚𝜉)/
√︃
(ℏ𝑣𝐹𝑘)2 + 𝑚2

𝜉
(2.40)

within each valley, where we have used the polar coordinates 𝑘 =

√︃
𝑘2
𝑥 + 𝑘2

𝑦 and
𝜙𝒌 = arctan

(
𝑘𝑦/𝑘𝑥

)
. To count the winding of the pseudospin, we track the evolution

of 𝒅̂(𝑘, 𝜙) as a function of of 𝑘 , starting at 𝑘 = 0. At 𝑘 = 0, 𝒅̂(𝑘, 𝜙) = sign(𝑚𝜉)𝑧 is
aligned with the 𝑧-axis, with an orientation determined by the sign of the mass term
𝑚𝜉 . As 𝑘 is increased, the pseudospin begins to approach the 𝑘𝑥-𝑘𝑦 plane, winding
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clockwise as a function of increasing 𝜙𝒌 if 𝜉 = +1, or counterclockwise if 𝜉 = −1.
Thus, the pseudospin covers half of the Bloch sphere, tracing out a solid angle of
2𝜋 sign(𝑚𝜉)𝜉 and contributing a Chern number of 𝐶𝜉𝑛 = (−1)𝑛sign(𝑚𝜉)𝜉/2 to the
band indexed by 𝑛 = 0, 1.

In order to calculate the total Chern number 𝐶𝑛 of the electronic bands in the
Brillouin zone, we add the contributions from the 𝐾 and 𝐾′ valleys, using the
relation 𝐶𝑛 = 𝐶+1

𝑛 + 𝐶−1
𝑛 . For a regular mass term, given by 𝑚𝜉 = 𝑚, the bands

are trivial (𝐶𝑛 = 0) because 𝐶+1
𝑛 = −𝐶−1

𝑛 . For a Haldane (topological) mass
term, given 𝑚𝜉 = 𝜉𝑚 with opposite signs in the 𝐾 and 𝐾′ valleys, we find that
𝐶𝑛 = (−1)𝑛sign(𝑚), giving rise to topologically-nontrivial Chern bands.

Edge States
An important consequence of topologically-nontrivial bands is the emergence of
edge states localized to the spatial interfaces between topologically-distinct phases.
Let us consider a slab of graphene with a Haldane mass gap, extending infinitely
along the 𝑦-direction but with a finite length along the 𝑥-direction, terminating at the
right and left edges positioned at 𝑥 = 𝑥𝑅 and 𝑥 = 𝑥𝐿 , respectively, where 𝑥𝐿 < 𝑥𝑅.
The edges in the 𝑥-direction are interfaced with graphene with a regular mass gap.

To understand the emergence of edge states, we analyze the Schrodinger equation
near the right edge for different values of 𝑘𝑦, first for a single valley indexed by 𝜉.
Starting at 𝑘𝑦 = 0, we find that the Schrodinger equation is given by(

𝑚𝜉 (𝑥) −𝑖ℏ𝑣𝐹𝜕𝑥
−𝑖ℏ𝑣𝐹𝜕𝑥 −𝑚𝜉 (𝑥)

) (
𝜓1

𝜓2

)
= 𝜀

(
𝜓1

𝜓2

)
(2.41)

where 𝑚𝜉 = 𝜉𝑚 (corresponding to a Haldane gap) in the region 𝑥𝐿 < 𝑥 < 𝑥𝑅,
and 𝑚𝜉 = 𝑚 elsewhere. To determine the energy 𝜀 of the edge mode, we focus
on the Hamiltonian 𝐻𝜉 evaluated at 𝑘𝑦 = 0, which anticommutes with 𝜎𝑦, i.e.,
{𝐻𝜉 , 𝜎𝑦} = 0. This symmetry relation implies that an eigenstate |𝜓⟩ with energy
𝜀 must come in a pair with an eigenstate 𝜎𝑦 |𝜓⟩ with energy −𝜀, except if 𝜀 = 0,
implying that the edge mode must have zero energy, 𝜀 = 0. Solving Eq. (2.45) for
the zero-energy state, we find that

−𝑖ℏ𝑣𝐹𝜕𝑥𝜓2 = −𝑚𝜉𝜓1 and − 𝑖ℏ𝑣𝐹𝜕𝑥𝜓1 = 𝑚𝜉𝜓2, (2.42)

whose solutions are given by(
𝜓1

𝜓2

)
=

1
√

2

(
−𝑖 sign(𝑚𝜉)

1

)
𝑒−|𝑚 | |𝑥−𝑥𝑅 |/(ℏ𝑣𝐹 ) , (2.43)
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and (
𝜓1

𝜓2

)
=

1
√

2

(
𝑖 sign(𝑚𝜉)

1

)
𝑒−|𝑚 | |𝑥−𝑥𝐿 |/(ℏ𝑣𝐹 ) (2.44)

near the right and left edges, respectively. Notice that the edge states are localized
to the edges of the system, located at 𝑥 = 𝑥𝐿 , 𝑥𝑅. We can now generalize the analysis
to nonzero values of 𝑘𝑦, where the Schrodinger equation now reads

(
𝑚𝜉 (𝑥) −𝑖ℏ𝑣𝐹𝜕𝑥
−𝑖ℏ𝑣𝐹𝜕𝑥 −𝑚𝜉 (𝑥)

)
+ 𝜉ℏ𝑣𝐹𝑘𝑦𝜎𝑦


(
𝜓1

𝜓2

)
= 𝜀

(
𝜓1

𝜓2

)
. (2.45)

The wave vectors given in Eqs. (2.43)-(2.44) remain solutions to the Eq. (2.45),
except with an energy shifted to 𝐸𝑅 (𝑘𝑦) = 𝜉 sign(𝑚𝜉)ℏ𝑣𝐹𝑘𝑦 at 𝑥 = 𝑥𝑅 and 𝐸𝐿 (𝑘𝑦) =
−𝜉 sign(𝑚𝜉)ℏ𝑣𝐹𝑘𝑦 at 𝑥 = 𝑥𝐿 . Importantly, when combining the results for the 𝐾
and 𝐾′ valleys, the edge states are chiral, because the edge states exhibit opposite
group velocity in the 𝑦-direction on the right and left edges.
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C h a p t e r 3

COHERENT DYNAMICS AND TOPOLOGY OF FLOQUET
SYSTEMS

The topological transport properties of adiabatically driven systems, reviewed in
Chapter 2, motivate questions about how topology could play a role in the universal
properties of non-adiabatically driven systems. Floquet theory leverages a common
feature of many driving fields—time-periodicity—to model its effects on quantum
systems without assumptions of adiabaticity. A remarkable prediction of Floquet
theory is the emergence of drive-induced band topology, which leads to transport
signatures such as an anomalous Hall conductivity. We provide an overview of these
predictions in this chapter.

Before discussing the topological properties of Floquet systems, we begin with a
broad overview of the key results of Floquet theory. Floquet theory provides a
framework to solve the time-dependent Schrodinger equation,

𝑖ℏ𝜕𝑡 |Ψ(𝑡)⟩ = 𝐻 (𝑡) |Ψ(𝑡)⟩, (3.1)

when the Hamiltonian is time-periodic: 𝐻 (𝑡) = 𝐻 (𝑡 + 𝑇). In particular, the
Schrodinger equation is solved by computing the unitary evolution operator

𝑈 (𝑡, 𝑡0) = T 𝑒−
𝑖
ℏ

∫ 𝑡
𝑡0
𝐻 (𝑡′)𝑑𝑡′ (3.2)

relating the state |Ψ(𝑡)⟩ = 𝑈 (𝑡, 𝑡0) |Ψ(𝑡0)⟩ at arbitrary times 𝑡 to the initial state
|Ψ(𝑡0)⟩ at time 𝑡0, where T denotes time-ordering. The key result of Floquet
theory is that a time-independent effective Floquet Hamiltonian 𝐻𝐹 [𝑡0] can fully
capture the dynamics of the system at stroboscopic times 𝑡 = 𝑡0 +𝑚𝑇 , where 𝑚 ∈ Z

[196, 241, 290]. In particular, we can write

𝑈 (𝑡0 + 𝑚𝑇, 𝑡0) = 𝑒−𝑖𝐻𝐹 [𝑡0]×𝑚𝑇/ℏ. (3.3)

Furthermore, the set of eigenvectors |𝑢𝑛⟩ and eigenvalues 𝜀𝑛 (“quasienergy”) of the
Floquet Hamiltonian 𝐻𝐹 [𝑡0], indexed by the integer 𝑛, provides a simple expression
for |Ψ(𝑡)⟩ at stroboscopic times,

|Ψ(𝑡0 + 𝑚𝑇)⟩ =
∑︁
𝑛

𝑎𝑛𝑒
−𝑖𝜀𝑛𝑚𝑇 |𝑢𝑛⟩, (3.4)
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where 𝑎𝑛 are time-independent coefficients dependent only on the initial state
|Ψ(𝑡0)⟩. The Floquet Hamiltonian 𝐻𝐹 [𝑡0] therefore provides a simple descrip-
tion of the coarse-grained, slow dynamics of the system on stroboscopic timescales
longer than the period of the drive. These slow dynamics are often sufficient to de-
scribe the salient properties of Floquet systems. For instance, many-body scattering
processes and low-frequency transport measurements of optically-driven systems,
which are the primary focus of this thesis, occur on timescales much longer than the
period of most laser drives [74, 258]. Importantly, under certain conditions, 𝐻𝐹 [𝑡0]
can also possess topological properties [167, 215].

The rest of the chapter is structured as follows. In Section 3.1, we introduce the
Floquet Hamiltonian 𝐻𝐹 and the micromotion operator 𝐾𝐹 , which respectively
describe the dynamics of Floquet systems on timescales longer and shorter than
the period of the drive. Section 3.2 seeks to find approximate analytic forms
for 𝐻𝐹 using the high-frequency expansion and the rotating wave approximation,
respectively applicable when the driving frequency is off-resonant and resonant
to the energy level spacing of the equilibrium system. Section 3.3 describes a
numerical scheme to solve for |Ψ(𝑡)⟩ using a frequency-space expansion when
the approximation methods in Section 3.2 may not apply. Section 3.4 provides
an example of the Floquet Hamiltonian for graphene-based systems. Section 3.5
describes the emergence of topology in Floquet systems. And, finally, Section 3.6
describes how drive-induced topology can emerge in the transport properties of
Floquet systems.

3.1 Floquet Theory: Separating Stroboscopic Dynamics from Micromotion
The following section is based on Refs. [196, 241, 290].

In this section, we seek to separate the evolution operator

𝑈 (𝑡, 𝑡0) = T 𝑒−
𝑖
ℏ

∫ 𝑡
𝑡0
𝐻 (𝑡′)𝑑𝑡′ (3.5)

into components that dictate the dynamics of Floquet systems on timescales longer
and shorter than the period of the drive. As we will see in Section 3.3 of this
chapter, the slow dynamics can often be approximated in analytic form and provide
key insights into the behavior of Floquet systems on long timescales.

Slow and Fast Dynamics
The evolution of a Floquet system from time 𝑡0 to time 𝑡 can be separated into two
steps: a stroboscopic evolution from time 𝑡0 to time 𝑡0 + 𝑛𝑇 , where 𝑛 ∈ Z, and a
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Figure 3.1: Schematic illustration of slow (stroboscopic-timescale) dynamics and
fast (micromotion) dynamics of a Floquet system with a time-periodic Hamiltonian
𝐻 (𝑡) = 𝐻 (𝑡 +𝑇). A system is initialized at time 𝑡0 in the state |Ψ(𝑡0)⟩. We compare
the time-dependence of the expectation value of an operator 𝑂̂ under evolution
by the full time-dependent Schrodinger equation |Ψ(𝑡)⟩ = 𝑈 (𝑡, 𝑡0) |Ψ(𝑡0)⟩ (orange
curve), where 𝑈 (𝑡, 𝑡0) = T exp

[
−(𝑖/ℏ)

∫ 𝑡

𝑡0
𝐻 (𝑡′)𝑑𝑡′

]
, and under the effective time-

independent Floquet Hamiltonian |Ψ̃(𝑡)⟩ = 𝑒𝑖𝐻𝐹 (𝑡−𝑡0) |Ψ(𝑡0)⟩ (blue curve). The
Floquet Hamiltonian 𝐻𝐹 captures the slow course-grained dynamics of the system
on timescales longer than the period of the drive 𝑇 (see blue curve), while the full
solution to the time-dependent Schrodinger equation captures the fast dynamics
(micromotion) within each time period (see orange curve). The orange and blue
curves agree at stroboscopic times given by 𝑡0 + 𝑛𝑇 , where 𝑛 ∈ Z, where |Ψ(𝑡0 +
𝑛𝑇)⟩ = |Ψ̃(𝑡0 + 𝑛𝑇)⟩. Figure based on Ref. [290].

sub-cycle evolution from the stroboscopic time 𝑡0 + 𝑛𝑇 to the final time 𝑡 = 𝑠 + 𝑛𝑇 ,
where 𝑛 is chosen such that 0 ≤ 𝑠 − 𝑡0 < 𝑇 . The evolution operator 𝑈 (𝑡, 𝑡0) can
therefore be written as

𝑈 (𝑡, 𝑡0) = 𝑈 (𝑠 + 𝑛𝑇, 𝑡0 + 𝑛𝑇)𝑈 (𝑡0 + 𝑛𝑇, 𝑡0). (3.6)

Noting that𝑈 (𝑠 + 𝑛𝑇, 𝑡0 + 𝑛𝑇) = 𝑈 (𝑡, 𝑡0), we find that

𝑈 (𝑡, 𝑡0) = 𝑈 (𝑠, 𝑡0)𝑈 (𝑡0 + 𝑛𝑇, 𝑡0). (3.7)

The operators𝑈 (𝑠, 𝑡0) and𝑈 (𝑡0 + 𝑛𝑇, 𝑡0) capture the micromotion and stroboscopic
time evolution, respectively, which we now analyze separately:

• Stroboscopic dynamics and the Floquet Hamiltonian. The stroboscopic evo-
lution operator𝑈 (𝑡0+𝑛𝑇, 𝑡0) can be separated into 𝑛 single-period evolutions:
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𝑈 (𝑡0 + 𝑛𝑇, 𝑡0) = [𝑈 (𝑡0 +𝑇, 𝑡0)]𝑛. By definition, the evolution operator across
each period is given by

𝑈 (𝑡0 + 𝑇, 𝑡0) = 𝑒−𝑖𝐻𝐹 [𝑡0]𝑇/ℏ (3.8)

where the time-dependent operator 𝐻𝐹 [𝑡0] is called the Floquet Hamiltonian.

• Micromotion and micromotion operator. If we wish to determine the state
|Ψ(𝑡)⟩ at an arbitrary time 𝑡 = 𝑠 + 𝑛𝑇 , it would be incorrect to evolve the state
with the Floquet Hamiltonian 𝐻𝐹 [𝑡0], i.e., |Ψ(𝑡)⟩ ≠ 𝑒−𝑖𝐻𝐹 [𝑡0]×(𝑡−𝑡0)/ℏ |Ψ(𝑡0)⟩.
Instead, another operator 𝐾𝐹 [𝑡0] (𝑠) is needed to restore information about the
sub-cycle micromotion of the system from time 𝑡0 to 𝑠, such that

|Ψ(𝑡)⟩ = 𝑒−𝑖𝐾𝐹 [𝑡0] (𝑠)/ℏ𝑒−𝑖𝐻𝐹 [𝑡0]×(𝑡−𝑡0)/ℏ |Ψ(𝑡0)⟩. (3.9)

The operator 𝐾𝐹 [𝑡0] (𝑠) is called the micromotion (or kick) operator.

The definitions of 𝐻𝐹 [𝑡0] and 𝐾𝐹 [𝑡0] can be used to rewrite the evolution operator
in the form

𝑈 (𝑡, 𝑡0) = 𝑒−𝑖𝐾𝐹 [𝑡0] (𝑠)/ℏ𝑒−𝑖𝐻𝐹 [𝑡0]×(𝑡−𝑡0)/ℏ. (3.10)

State Vector
With knowledge of the Floquet Hamiltonian 𝐻𝐹 [𝑡0] and the micromotion operator
𝐾𝐹 [𝑡0], we can now find an explicit form for |Ψ(𝑡)⟩ using the eigenstates |𝑢𝑛⟩
and quasienergies 𝜀𝑛 of the Floquet Hamiltonian 𝐻𝐹 , which satisfy the eigenvalue
relation

𝐻𝐹 [𝑡0] |𝑢𝑛⟩ = 𝜀𝑛 |𝑢𝑛⟩. (3.11)

We assume that the system is initialized in the state |Ψ(𝑡0)⟩ at time 𝑡 = 𝑡0, which
can be expanded in terms of |𝑢𝑛⟩ as follows:

|Ψ(𝑡0)⟩ =
∑︁
𝑛

𝑎𝑛 |𝑢𝑛⟩. (3.12)

Using Eq. (3.10) to evaluate |Ψ(𝑡)⟩ = 𝑈 (𝑡, 𝑡0) |Ψ(𝑡0)⟩ yields

|Ψ(𝑡)⟩ =
∑︁
𝑛

𝑎𝑛𝑒
−𝑖𝜀𝑛 (𝑡−𝑡0)/ℏ |Φ𝑛 (𝑡)⟩, (3.13)

where
|Φ𝑛 (𝑡)⟩ = 𝑒−𝑖𝐾𝐹 [𝑡0] (𝑡)/ℏ |𝑢𝑛⟩ (3.14)
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is periodic in time, i.e., |Φ𝑛 (𝑡)⟩ = |Φ𝑛 (𝑡 + 𝑇)⟩. The primary result here is that
solutions to the time-dependent Schrodinger equation, |Ψ(𝑡)⟩, [see Eq. (3.13)] can
be expanded in the complete basis given by the Floquet states

|𝜓𝑛 (𝑡)⟩ = 𝑒−𝑖𝜀𝑛𝑡/ℏ |Φ𝑛 (𝑡)⟩, (3.15)

where 𝜀𝑛 is the quasienergy of the Floquet state.

Coarse-Grained Dynamics
When only the coarse-grained dynamics of the system on timescales much longer
than the driving period are relevant, we can approximate the expectation values of
observables by using the state

|Ψ̃(𝑡)⟩ =
∑︁
𝑛

𝑎𝑛𝑒
−𝑖𝜀𝑛 (𝑡−𝑡0) |𝑢𝑛⟩, (3.16)

which is exact at stroboscopic times, i.e., |Ψ̃(𝑡0 + 𝑚𝑇)⟩ = |Ψ(𝑡0 + 𝑚𝑇)⟩, where
𝑚 ∈ Z. This can be deduced from Eq. (3.14) by noticing that |Φ𝑛 (𝑡0 +𝑚𝑇)⟩ = |𝑢𝑛⟩,
because 𝐾𝐹 [𝑡0] (𝑡0) = 0 by definition [see Eq. (3.10)].

In Figure 3.1, we provide a schematic illustration of how the expectation values
of an operator 𝑂̂ may differ when evaluated with |Ψ̃(𝑡)⟩ and |Ψ(𝑡)⟩. Notice that
the two results agree at stroboscopic times and |Ψ̃(𝑡)⟩ can capture the coarse-
grained dynamics on slow timescales. Only knowledge of the Floquet Hamiltonian
𝐻𝐹 [𝑡0] is necessary to solve for |Ψ̃(𝑡)⟩. In Figure 3.1, we have schematically
illustrated micromotion oscillations with amplitudes weaker than the stroboscopic
dynamics. This can be justified more rigorously with the frequency space expansion,
introduced in Section 3.3, which predicts a Wannier-Stark like localization of the
Fourier harmonics of Floquet states that suppresses the amplitude of micromotion
with frequencies much higher than the driving frequency [241].

Gauge Choice
In the discussion above, we implicitly chose a gauge given by 𝐾𝐹 [𝑡0] = 0. The
gauge choice is not unique. For instance, a choice of a different initial time 𝑡′0 gives
rise to a different Floquet Hamiltonian and micromotion operator given by

𝐻𝐹 [𝑡′0] = 𝑈 (𝑡′0, 𝑡0)𝐻𝐹 [𝑡0]𝑈
†(𝑡′0, 𝑡0) and 𝑒𝑖𝐾𝐹 [𝑡

′
0] (𝑡) = 𝑈 (𝑡′0, 𝑡0)𝑒

𝑖𝐾𝐹 [𝑡0] (𝑡) ,

(3.17)
respectively. Alternatively, the gauge defined by

𝐻𝐹 = 𝑒𝑖𝐾𝐹 (𝑡0)𝐻𝐹 [𝑡0]𝑒−𝑖𝐾𝐹 (𝑡0) and 𝑒𝑖𝐾𝐹 (𝑡) = 𝑒𝑖𝐾𝐹 (𝑡0)𝑒𝑖𝐾𝐹 [𝑡0] (𝑡) (3.18)
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can be chosen to obtain a Floquet Hamiltonian 𝐻𝐹 and micromotion operator 𝐾𝐹 (𝑡)
with no initial time dependence. In the latter gauge choice, the evolution operator
also takes a form𝑈 (𝑡 𝑓 , 𝑡𝑖) = 𝑒−𝑖𝐾𝐹 (𝑡 𝑓 )𝑒−𝑖𝐻𝐹 (𝑡 𝑓−𝑡𝑖)𝑒𝑖𝐾𝐹 (𝑡𝑖) independent of 𝑡0. Note that
substitution of the evolution operator into the Schrodinger equation provides another
equivalent definition of 𝐻𝐹 and 𝐾𝐹 . In particular, the micromotion operator 𝐾𝐹 is
the operator that transforms the operator 𝑄(𝑡) = 𝐻 (𝑡) − 𝑖ℏ𝜕𝑡 , sometimes known as
the “quasienergy operator,” into a time-independent operator, which is precisely the
Floquet Hamiltonian:

𝐻𝐹 = 𝑒𝑖𝐾𝐹 (𝑡) [𝐻 (𝑡) − 𝑖ℏ𝜕𝑡]𝑒−𝑖𝐾𝐹 (𝑡) . (3.19)

This definition can sometimes be useful when the form of𝑄(𝑡) is simple and the form
of 𝑒𝑖𝐾𝐹 (𝑡) can be guessed by observation, such as in the rotating wave approximation
that will be presented in Section 3.2. Note that the form of 𝐾𝐹 (𝑡) and 𝐻𝐹 are
still not unique, and Eq. (3.19) can still be satisfied by a different set of operators
𝐻′
𝐹

= 𝑀𝐻𝐹𝑀
† and 𝑒𝑖𝐾 ′

𝐹
(𝑡) = 𝑀𝑒𝑖𝐾𝐹 (𝑡) related by the unitary operator 𝑀 . For

instance, a choice of 𝐾𝐹 (𝑡0) = 0 restores the gauge choice used at the beginning of
this section.

3.2 Analytic Approximations to the Floquet Hamiltonian
It is sometimes impossible to obtain closed analytic forms for the operators 𝐾𝐹 and
𝐻𝐹 . In this section, we discuss two limits in which approximate forms for 𝐾𝐹 ,
𝐻𝐹 , or both can be obtained. Throughout this section, we will consider a generic
time-periodic system described by the Hamiltonian

𝐻 (𝑡) = 𝐻0 + 𝐻1(𝑡), (3.20)

where 𝐻0 is the static Hamiltonian, 𝐻1(𝑡) = 𝐻1(𝑡 + 2𝜋/𝜔), and 𝜔 is the angular
frequency of the driving field.

High-Frequency Expansion
The following section is based on Refs. [196, 236].

The high-frequency expansion approximates the Floquet Hamiltonian 𝐻𝐹 when the
spectral level spacing between relevant states of the static Hamiltonian 𝐻0 is much
smaller than the frequency ℏ𝜔 of the drive. To perform the expansion, we first
rewrite

𝐻1(𝑡) =
∑︁
𝑚

𝐻
(𝑚)
1 𝑒𝑖𝑚𝜔𝑡 (3.21)
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and seek a Floquet Hamiltonian and micromotion operator of the form

𝐻𝐹 = 𝐻0 +
∞∑︁
𝑚=1

Ω𝑚

𝜔𝑚
and 𝐾𝐹 (𝑡) =

∞∑︁
𝑚=1

Λ𝑚 (𝑡)
𝜔𝑚

, (3.22)

satisfying Eq. (3.19). Depending on the gauge choice, two types of expansions can
be obtained.

Floquet-Magnus expansion. This expansion is obtained by imposing the gauge
choice 𝐾𝐹 (𝑡0) = 0. In this case, we obtain the leading order terms

Ω1 =
∑︁
𝑚≠0


[𝐻 (−𝑚)

1 , 𝐻
(𝑚)
1 ]

2𝑚
+
[𝐻 (𝑚)

1 , 𝐻0]
𝑚

𝑒−𝑖𝑚𝜔𝑡0
 , (3.23)

and

Λ1(𝑡) = 𝑖
∑︁
𝑚≠0

𝐻
(𝑚)
1
𝑚

(𝑒−𝑖𝑚𝜔𝑡 − 𝑒−𝑖𝑚𝜔𝑡0) (3.24)

by substitution of Eq. (3.22) into Eq. (3.19).

Van-Vleck expansion. This expansion removes the 𝑡0 dependence by imposing the
gauge choice

∫ 𝑇
0 𝐾𝐹 (𝑡)𝑑𝑡 = 0. In this case,

Ω1 =
∑︁
𝑚≠0

[𝐻 (−𝑚)
1 , 𝐻

(𝑚)
1 ]

2𝑚
and Λ1(𝑡) = 𝑖

∑︁
𝑚≠0

𝐻
(𝑚)
1
𝑚

𝑒−𝑖𝑚𝜔𝑡 . (3.25)

Rotating Wave Approximation
The rotating wave approximation (RWA) [86, 251] approximates the Floquet Hamil-
tonian in regions of phase space where the level spacing between states of 𝐻0 is
nearly resonant to the frequency ℏ𝜔 of the drive.

To illustrate the RWA, we consider a generic two-level Bloch Hamiltonian described
by the static Hamiltonian 𝐻0 = 𝒅 · 𝝈, where

𝒅 = 𝐸𝒌 (sin 𝜃𝒌 cos 𝜙𝒌 , sin 𝜃𝒌 sin 𝜙𝒌 , cos 𝜃𝒌) (3.26)

is parameterized by the crystal momentum 𝒌, and 𝝈 = (𝜎𝑥 , 𝜎𝑦, 𝜎𝑧) is the vector
of Pauli matrices. The Hamiltonian 𝐻0 has two eigenstates denoted |𝑣⟩ and |𝑐⟩
with energy −𝐸𝒌 and 𝐸𝒌 , respectively. We also assume that the time-dependent
Hamiltonian 𝐻1(𝑡) of the system only oscillates with a single frequency 𝜔, i.e.,

𝐻1(𝑡) = 𝑽 · 𝝈𝑒𝑖𝜔𝑡 + 𝑽∗ · 𝝈𝑒−𝑖𝜔𝑡 , (3.27)
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where 𝑽 is a 3-component vector of complex numbers. The RWA provides an
approximate Floquet Hamiltonian in the limit where ℏ𝜔 ≈ |2𝐸𝒌 |.

To perform the RWA, we transform to the diagonal basis of 𝐻0, where

𝐻̃0 = 𝑈 (𝜃𝒌 , 𝜙𝒌)𝐻0𝑈
†(𝜃𝒌 , 𝜙𝒌) =

(
−𝐸𝒌 0

0 𝐸𝒌

)
, (3.28)

and
𝑈 (𝜃𝒌 , 𝜙𝒌) = 𝑒−𝑖(𝜙𝒌/2)𝜎𝑧𝑒−𝑖(𝜃𝒌/2)𝜎𝑦 (3.29)

relates the two bases (i.e., rotates 𝒅 into a new basis where it is aligned with the
𝑧-axis). Similarly, the driven Hamiltonian in this basis is given by

𝐻̃1(𝑡) = 𝑽̃ · 𝝈𝑒𝑖𝜔𝑡 + 𝑽̃
∗ · 𝝈𝑒𝑖𝜔𝑡 , (3.30)

where 𝑽̃∗ is related to 𝑽 by a rotation [see Eq. (3.29)]. We use 𝐻̃ (𝑡) = 𝐻̃0 + 𝐻̃1(𝑡)
to denote the full Hamiltonian in the diagonal basis of 𝐻0.

Now, we perform the rotating wave approximation (RWA). In the interacting pic-
ture [115], where the Hamiltonian is given by 𝐻̃ 𝐼 (𝑡) = 𝑒𝑖𝐻̃0𝑡/ℏ𝐻̃ (𝑡)𝑒−𝑖𝐻̃0𝑡/ℏ, we
discard terms oscillating with frequency 𝜔 and 𝜔 + 2𝐸𝒌/ℏ (i.e., “counter-rotating”
terms), keeping only low frequency terms oscillating with frequency 𝜔 − 2𝐸𝒌/ℏ.
Transforming back to the Schrodinger picture yields 𝐻̃ (𝑡) ≈ 𝐻RWA(𝑡), where the
RWA-approximated Hamiltonian is given by

𝐻RWA(𝑡) ≡
(

0 (𝑉̃𝑥 − 𝑖𝑉̃𝑦)𝑒−𝑖𝜔𝑡

(𝑉̃𝑥 + 𝑖𝑉̃𝑦)𝑒𝑖𝜔𝑡 0

)
. (3.31)

The utility of the RWA is that it allows us to easily find an effective Floquet Hamilto-
nian for the system. To see this, we note that the approximate quasienergy operator

𝑄̃(𝑡) ≈ 𝐻RWA(𝑡) − 𝑖ℏ𝜕𝑡 (3.32)

[see discussion above Eq. (3.19) for the definition] can be made time-independent
by a transformation to a rotating frame, where 𝐻𝐹 = 𝑈 (𝑡)†𝑄̃(𝑡)𝑈 (𝑡) is the effective
Floquet Hamiltonian and

𝑈 (𝑡) =
(
𝑒𝑖𝜔𝑡 0
0 1

)
(3.33)

implements the transformation. Explicitly, the Floquet Hamiltonian is given by

𝐻𝐹 = (−𝐸𝒌 + ℏ𝜔/2)𝜎𝑧 + 𝑉̃𝑥𝜎𝑥 + 𝑉̃𝑦𝜎𝑦, (3.34)
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and the eigenspectrum of 𝐻𝐹 contains two quasienergies, given by

𝜀𝒌𝛼 = (−1)𝛼
√︃
(−𝐸𝒌 + ℏ𝜔/2)2 + 𝑉̃2

𝑥 + 𝑉̃2
𝑦 , (3.35)

where 𝛼 = 0, 1 enumerates the quasienergy bands. From Eq. (3.35), it is clear that
the spectrum exhibits a resonant Floquet gap of size

Δ𝐾 = 2
√︃
𝑉̃2
𝑥 + 𝑉̃2

𝑦 , (3.36)

which opens at momenta 𝒌𝑅 satisfying the resonance condition given by 2𝐸𝒌𝑅 = ℏ𝜔.

3.3 Numerical Approach: Frequency-Space Expansion
So far, we have seen that the high-frequency expansion and RWA can provide
approximate expressions for 𝐻𝐹 in certain limits. Alternatively, we can calculate the
full (stroboscopic and micromotion) time-dependence of the Floquet state |Φ𝑛 (𝑡)⟩
by solving the time-dependent Schrodinger equation numerically in Fourier space.
Here, we expand the Floquet state in a Fourier series:

|Φ𝑛 (𝑡)⟩ =
∑︁
𝑚

𝑒−𝑖𝑚𝜔𝑡 |𝜙(𝑚)𝑛 ⟩, (3.37)

where |𝜙(𝑚)𝑛 ⟩ are referred to as Floquet harmonics and 𝜔 = 2𝜋/𝑇 is the angular
frequency of the drive. Expanding the Hamiltonian

𝐻 (𝑡) =
∑︁
𝑚

𝑒−𝑖𝑚𝜔𝑡𝐻 (𝑚) , (3.38)

in terms of its harmonic components 𝐻 (𝑚) , we use the time-dependent Schrodinger
equation to obtain the matrix equation

(𝜀𝑛 + 𝑚ℏ𝜔) |𝜙(𝑚)𝑛 ⟩ =
∑︁
𝑚′
𝐻 (𝑚−𝑚′) |𝜙(𝑚

′)
𝑛 ⟩, (3.39)

which can be solved by the eigenvalue relation H𝝓𝑛 = 𝜀𝑛𝝓𝑛, where

H =

©­­­­­­­­­«

...
...

...
...

... 𝐻0 − (𝑚 − 1)ℏ𝜔 𝐻 (−1) 𝐻 (−2) 𝐻 (−3) ...

... 𝐻 (1) 𝐻0 − 𝑚ℏ𝜔 𝐻 (−1) 𝐻 (−2) ...

... 𝐻 (2) 𝐻 (1) 𝐻0 − (𝑚 + 1)ℏ𝜔 𝐻 (−1) ...
...

...
...

...

ª®®®®®®®®®¬
(3.40)
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is an infinite-dimensional matrix and

𝝓𝑛 =

©­­­­­­­­­«

...

|𝜙(𝑚−1)
𝑛 ⟩
|𝜙(𝑚)𝑛 ⟩
|𝜙(𝑚+1)
𝑛 ⟩
...

ª®®®®®®®®®¬
(3.41)

is the vector of Floquet harmonics [241]. The eigenvalue relation can be solved
numerically by restricting |𝑚 | < 𝑚𝑐 in the frequency expansion of the Floquet state
|Φ(𝑡)⟩, see Eq. (3.37), where 𝑚𝑐 ≫ 1 is a large cutoff. Such a cutoff captures the
micromotion of the system roughly up to a cutoff angular frequency of 𝑚𝑐𝜔.

3.4 Floquet Hamiltonian of Irradiated Graphene and Semiconducting Sys-
tems

This section is based on, and extends upon, the analysis in Refs. [167, 239, 284].

Having discussed numerical and analytical methods to study the dynamics of Floquet
systems, we now use Floquet theory to reveal the properties of optically-driven
graphene and semiconducting systems. In the absence of driving, the low-energy
physics of such a system near a single valley of its Brillouin zone is described by
the Hamiltonian

𝐻0 = 𝒅 · 𝝈 where 𝒅 = (ℏ𝑣𝐹𝑘𝑥 , 𝜉ℏ𝑣𝐹𝑘𝑦,Δ𝜉/2), (3.42)

and its eigenenergies are given by ±𝐸𝒌 , where 𝐸𝒌 =
√︁
(ℏ𝑣𝐹𝑘)2 + (Δ𝜉/2)2 and

𝑘 =

√︃
𝑘2
𝑥 + 𝑘2

𝑦. Here, Δ𝜉 defines the semiconducting gap size, and 𝜉 = +1,−1
indexes the 𝐾 and 𝐾′ valleys, respectively. This Hamiltonian can describe a wide
class of electronic systems. For example, the gaplessΔ𝜉 = 0 limit of the Hamiltonian
can be used to model a sheet of monolayer graphene, and a finite gap Δ𝜉 ≠ 0 can
be used to model the low-energy Hamiltonian for a single spin and valley sector of
a direct-bandgap transition metal dichalcogenide. The coupling of the system to an
optical drive is described by minimal coupling, 𝒌 = 𝒌 + 𝑒𝑨(𝑡)/ℏ, to the magnetic
vector potential 𝑨(𝑡) of the laser field. Due to the linearity of 𝐻0 in 𝒌, the driven
Hamiltonian can be written in the form 𝐻 (𝑡) = 𝐻0 + 𝐻1(𝑡), with

𝐻1(𝑡) = 𝑽 · 𝝈𝑒𝑖𝜔𝑡 + 𝑽∗ · 𝝈𝑒−𝑖𝜔𝑡 , (3.43)

where 𝑽 is a 3-component vector of complex numbers that depends on the details
of 𝑨(𝑡). Our goal is to determine the the Floquet Hamiltonian of the system for
different types of laser fields.
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Circularly Polarized Laser
A circularly polarized laser field is described by the magnetic vector potential
𝑨(𝑡) = 𝐴(cos𝜔𝑡, 𝜂 sin𝜔𝑡, 0), where 𝜂 = −1 and 𝜂 = +1 for left and right circularly
polarized lasers, respectively. By minimal coupling to the static Hamiltonian𝐻0, we
find that the driven Hamiltonian 𝐻1(𝑡) is parameterized by 𝑽 = 1

2𝑣𝐹𝑒𝐴(−𝑖, 𝜉𝜂, 0).

Off-Resonant Floquet Hamiltonian. We can use the Van Vleck high-frequency
expansion [196, 215, 236] to derive the Floquet Hamiltonian for crystal momenta
satisfying 2𝐸𝒌 ≪ ℏ𝜔. Substitution into Eqs. (3.25) and (3.22) yields

𝐻𝐹 = 𝐻0 − Δ𝐾𝜎𝑧, where Δ𝐾 = 𝜂𝜉
𝑒2𝑣2

𝐹
𝐴2

𝜔
, (3.44)

and the quasienergy

𝜀𝒌𝛼 = (−1)𝛼
√︃
𝐸2
𝒌
+ [(Δ𝜉 − Δ𝐾)/2]2. (3.45)

is obtained by diagonalizing 𝐻𝐹 . In a gapped systems, the second term in Eq.
(3.44) indicates that the drive renormalizes the bandgap in a valley and laser helicity
dependent manner. In graphene, notice that the drive-induced mass term, see Eq.
(3.44), has opposite signs in opposite valleys, indicating that the drive dynamically
produces a Haldane gap, a result first predicted by Takashi Oka and Hideo Aoki in
2009 [215].

Resonant Floquet Hamiltonian. Next, we use the RWA to estimate the Floquet
Hamiltonian in the region of momentum space characterized by 2𝐸𝒌 ≈ ℏ𝜔. Follow-
ing the RWA presented in Section 3.3, we find that the effective Floquet Hamiltonian
in the rotating frame is given by

𝐻𝐹 = (−𝐸𝒌 + ℏ𝜔/2)𝜎𝑧 + 𝑉̃𝑥𝜎𝑥 + 𝑉̃𝑦𝜎𝑦, (3.46)

where
𝑉̃𝑥 = 𝑣𝐹𝑒𝐴 sin 𝜙𝒌 [𝛿𝜉𝜂,−1 cos2(𝜃𝒌/2) − 𝛿𝜉𝜂,1 sin2(𝜃𝒌/2)], (3.47)

and
𝑉̃𝑦 = 𝑣𝐹𝑒𝐴 cos 𝜙𝒌 [𝛿𝜉𝜂,−1 cos2(𝜃𝒌/2) + 𝛿𝜉𝜂,1 sin2(𝜃𝒌/2)] . (3.48)

The quasienergy spectrum is therefore given by

𝜀𝒌𝛼 = (−1)𝛼
√︁
(−𝐸𝒌 + ℏ𝜔/2)2 + (Δ𝑅/2)2, (3.49)
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where 𝛼 = 0, 1 enumerates the Floquet bands. Note that the quasienergy spectrum
exhibits a Floquet gap along the resonance ring paramaterized by 2𝐸𝒌 ≈ ℏ𝜔, of size

Δ𝑅 =


(𝑣𝐹𝑒𝐴) cos2(𝜃𝒌/2) if 𝜉𝜂 = 1,

(𝑣𝐹𝑒𝐴) sin2(𝜃𝒌/2) if 𝜉𝜂 = −1.
(3.50)

Here, we can immediately infer the valley selection rules for transition metal
dichalcogenides. When the helicity of the laser is of opposite sign than the chi-
rality 𝜉 sign(Δ𝜉) of the valley, then the valley is more optically transparent because
Δ𝑅 is suppressed relative to the opposite valley [263].

Note that the same selection rule does not apply to graphene, where Δ = 0 and the
Floquet gap size Δ𝑅 = 𝑣𝐹𝑒𝐴 is independent of the laser helicity [284].

(a) (b)

Figure 3.2: Floquet electronic bands of graphene irradiated by a circularly-polarized
laser. (a) Energy spectrum of graphene as a function of 𝑘𝑥 for fixed 𝑘𝑦 = 0.
(b) Quasienergy spectrum of graphene under circularly polarized laser irradiation,
exhibiting an off-resonant Haldane gap of size Δ𝐾 and a resonant gap of size Δ𝑅.

Visualization of the Floquet Bands in Graphene. The quasienergy near the 𝐾 point
and near the resonance ring, presented in Eqs. (3.45) and (3.49), respectively, can
be stitched together to obtain the quasienergy spectrum for arbitrary 𝒌. To visualize
the resulting Floquet bands, we show the undriven bands of graphene (Δ = 0) in
Figure 3.2(a) and the driven Floquet bands in Figure 3.2(b). We indicate the opening
of the resonance and Haldane gaps denoted Δ𝑅 and Δ𝐾 , respectively.
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Linearly Polarized Laser
We now consider the effect of a linearly polarized laser field, described by the
magnetic vector potential 𝑨(𝑡) = (𝐴𝑥 cos(𝜔𝑡), 𝐴𝑦 cos(𝜔𝑡), 0). In this case, the
driven Hamiltonian is parameterized by 𝑽 = 1

2𝑣𝐹𝑒(𝐴𝑥 , 𝐴𝑦, 0).

Off-Resonant Floquet Hamiltonian. In the region of the Brillouin zone satisfying
2𝐸𝒌 ≪ ℏ𝜔, the Van Vleck high frequency expansion, see Eq. (3.25), yields
the Floquet Hamiltonian 𝐻𝐹 ≈ 𝐻0 to first order in 𝜔−1. Thus, the drive-induced
Haldane gap predicted by Oka and Aoki [215] does not emerge for linearly-polarized
irradiation.

Resonant Floquet Hamiltonian. Using the RWA, we derive an approximate Floquet
Hamiltonian for crystal momenta near the resonance ring parameterized by 2𝐸𝒌 ≈
ℏ𝜔. For a linearly polarized laser field, we find that

𝑉̃𝑥 =
1
2
𝑒𝑣𝐹 (𝐴𝑥 cos 𝜙𝒌 + 𝐴𝑦 sin 𝜙𝒌) cos 𝜃𝒌 , (3.51)

and
𝑉̃𝑦 =

1
2
𝑒𝑣𝐹 (𝐴𝑦 cos 𝜙𝒌 − 𝐴𝑥 sin 𝜙𝒌). (3.52)

A notable case is graphene, where 𝜃𝒌 = 𝜋/2, 𝑉̃𝑦 = 𝑣𝐹𝑒(𝐴𝑥 cos 𝜙𝒌 + 𝐴𝑦 sin 𝜙𝒌),
𝑉̃𝑥 = 0, and the Floquet gap along the resonance ring 2𝐸𝒌 = ℏ𝜔 is momentum-
dependent, given by

Δ𝐹 = 𝑣𝐹𝑒 |𝐴𝑥 cos 𝜙𝒌 + 𝐴𝑦 cos 𝜙𝒌 |. (3.53)

The Floquet gap vanishes when the polarization of the laser field (𝐴𝑥 , 𝐴𝑦) is per-
pendicular to the crystal momentum 𝒌.

3.5 The Floquet Topological Insulator
This section is based on, and extends upon, the analysis in Refs. [167, 239, 284].

In Sections 3.2 and 3.4, we discussed analytical methods to estimate the Floquet
Hamiltonian and its quasienergy spectrum. Already, we have seen some potential
signatures of topology in the Floquet Hamiltonian, such as the drive-induced Hal-
dane gap in graphene, see Eq. (3.44). In this section, we provide a more complete
discussion of the topological properties of Floquet systems.

As an example, we focus on a gapped graphene-like system driven by a circularly
polarized laser, described by the time-periodic Hamiltonian 𝐻 (𝑡) = 𝐻0 + 𝐻1(𝑡),
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(b) (c)

(d)

(e)

(a)

Figure 3.3: Pseudospin winding under circularly polarized irradiation. (a) Here we
box in orange the 𝛼 = − quasienergy band. (b) Plot of 𝛼 = − quasienergy band vs.
𝑘𝑥 and 𝑘𝑦. Red arrows indicate the orientation of the pseudospin 𝑛̂𝒌−(0). We focus
on the pseudospin along the rings sketched in green. (c) Pseudospin in the region
𝑘 < 𝑘𝑅, which is roughly aligned with the 𝑧-axis, with orientation set by the sign
of the mass gap at 𝑘 = 0. (d) Pseudospin along the resonance ring 𝑘 = 𝑘𝑅. (e)
Pseudospin in the region 𝑘 > 𝑘𝑅, which approaches the equator, parameterized by
𝑛̂𝒌−(0) = 𝒌̂.

defined in Section 3.4. In order to characterize the topology of the Floquet bands,
we consider the pseudospin of electronic states in the 𝛼-th Floquet band, defined by

𝑛̂𝒌𝛼 (𝑡) = ⟨𝜓𝒌𝛼 (𝑡) |𝝈 |𝜓𝒌𝛼 (𝑡)⟩, (3.54)

where |𝜓𝒌𝛼 (𝑡)⟩ denotes the Floquet state [see Eq. (3.15) for definition] with
quasienergy 𝜀𝒌𝛼. The Chern number counts the number of times 𝑛̂𝒌𝛼 covers the
Bloch sphere upon variation across a the Brillouin zone (BZ) [167, 239]:

𝐶𝛼 =

∫
BZ

𝑑2𝒌

(2𝜋)2 𝑛̂𝒌𝛼 (𝑡) · [𝜕𝑘𝑥 𝑛̂𝒌𝛼 (𝑡) × 𝜕𝑘𝑦 𝑛̂𝒌𝛼 (𝑡)], (3.55)

which is a generalization of the definition for a two-level static Hamiltonian, see Eq.
(2.38). For a gapped graphene system, variations of the pseudospin are confined
to regions around the 𝐾 and 𝐾′ valley, so it is easiest to compute contributions to
𝐶𝛼 from the 𝐾 and 𝐾′ valley separately. In what follows, we use 𝐶𝛼+1 and 𝐶𝛼−1 to
respectively denote the contributions to the Chern number from the𝐾 and𝐾′ valleys,
the sum of which is the total Chern number of the band 𝛼, i.e., 𝐶𝛼 = 𝐶𝛼+1 + 𝐶

𝛼
−1.

For concreteness, we begin by focusing on the 𝛼 = − Floquet band [see band boxed
in orange in Figure 3.3(a)] near the 𝐾 valley of the gapped graphene system. To
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count the winding of the pseudospin in the region near the 𝐾 valley, our approach
is to consider the pseudospin along “rings” in momentum space with radius 𝑘 and
centered around the 𝐾 point [see green curves in Figure 3.3(b) for an illustration].
We begin near the 𝐾 point and track the changes in the pseudospin configuration as
the ring radius 𝑘 is increased. It is useful to first start by considering momenta far
from the resonance ring (defined by |𝒌 | = 𝑘𝑅 and 2𝐸𝒌 = ℏ𝜔) where the pseudospin
configuration is particularly simple:

• Region 𝑘 ≪ 𝑘𝑅: near 𝑘 = 0, the pseudospin is roughly aligned with the
polar axis (𝑧-axis), with a direction set by the sign of mass gap Δ, i.e.,
𝑛̂𝒌− ≈ sign(Δ𝜉)𝑧 [see Figure 3.3(c)].

• Region 𝑘 ≫ 𝑘𝑅: in this regime, the pseudospin is roughly identical to the
pseudospin of the undriven valence band, so 𝑛̂𝒌− ≈ 𝒌̂, where 𝒌̂ = 𝒌/𝑘 [see
Figure 3.3(e)].

Thus, as the “rings” in momentum space [green curves in Figure 3.3(b)] increase
in radius, the pseudospin is initially aligned with the polar axis of the Bloch sphere
(𝑛̂𝒌− = sign(Δ𝜉)𝑧) and eventually winds to its equator (𝑛̂𝒌− = 𝒌̂) at large 𝑘 , covering a
solid angle of 2𝜋 sign(Δ𝜉). However, it would be incorrect to immediately conclude
that the Chern number is given by𝐶+1 = 1

2sign(Δ𝜉). In fact, there are multiple paths
that the pseudospin can take to wind from the polar axis to the equator, which can
in general cover the Bloch sphere an additional integer number of times. Therefore,
we expect that 𝐶+1 = 1

2sign(Δ𝜉) + 𝑛, where 𝑛 ∈ Z. Our next task is to determine 𝑛
based on the RWA Hamiltonian.

The value of 𝑛 can be determined by counting the number of times the pseudospin
winds around the polar axis along the resonance ring [see Figure 3.3(d)] [130, 167,
239]. To proceed, we use the RWA Hamiltonian,

𝐻RWA(𝑡) ≡
(

0 (𝑉̃𝑥 − 𝑖𝑉̃𝑦)𝑒−𝑖𝜔𝑡

(𝑉̃𝑥 + 𝑖𝑉̃𝑦)𝑒𝑖𝜔𝑡 0

)
, (3.56)

to calculate the pseudospin configuration on the resonance ring. We focus on the
pseudospin texture at time 𝑡 = 0, but the results can be shown to be equivalent at
all other times. We first transform 𝐻RWA(0) to the original sublattice basis of the
Hamiltonian:

𝑈†(𝜃𝒌 , 𝜙𝒌)𝐻RWA(0)𝑈 (𝜃𝒌 , 𝜙𝒌) = 𝒅RWA · 𝝈, (3.57)
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where

𝒅RWA =
1
2

©­­­«
𝑉̃𝑥 cos 𝜙𝒌 cos 𝜃𝒌 − 𝑉̃𝑦 sin 𝜙𝒌
𝑉̃𝑥 sin 𝜙𝒌 cos 𝜃𝒌 + 𝑉̃𝑦 cos 𝜙𝒌

−2𝑉̃𝑥 sin 𝜃𝒌

ª®®®¬ . (3.58)

The expression for 𝒅RWA allows us to compute the pseudospin along the resonance
ring, given by 𝑛̂𝒌−(0) = −𝒅̂RWA, where 𝒅̂RWA = 𝒅RWA/|𝒅RWA |. In Figure 3.4, we
plot the trajectory traced out by 𝑛̂𝒌−(0) (red curve) as a function of 𝜙𝒌 , with 𝜃𝒌 fixed
by the resonance condition:

𝜃𝒌 = arctan
(
Δ𝜉/2
ℏ𝑣𝐹𝑘𝑅

)
. (3.59)

Figure 3.4(a) considers the case sign(Δ𝜉𝜉𝜂) > 0 and shows that 𝒅̂RWA winds twice
around the polar axis. Whether the pseudospin winds counterclockwise or clockwise
around the polar axis is determined by 𝜂, so 𝑛 = 2𝜂. Figure 3.4(b) considers the
case sign(Δ𝜉𝜉𝜂) < 0 and shows that 𝒅̂RWA does not wind around the polar axis, in
which case 𝑛 = 0.

z z(a) (b)

Figure 3.4: Path (red curve) traced out by the pseudospin 𝑛̂𝒌−(0) upon variation
across the resonance ring [see Figure 3.3(d)]. (a) The case of sign(Δ𝜉𝜉𝜂) > 0, in
which case the pseudospin winds around the polar axis (sketched by a black line) 2
times. (b) The case of sign(Δ𝜉𝜉𝜂) < 0, in which case the pseudospin does not wind
around the polar axis.

The arguments can be generalized to the 𝐾′ valley. In general, the valley indexed by
𝜉 contributes a Chern number given by [239],

𝐶−
𝜉 =

1
2

sign(Δ𝜉𝜉) +


2𝜂 if sign(Δ𝜉𝜉𝜂) > 0

0 if sign(Δ𝜉𝜉𝜂) < 0.
(3.60)
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Case of graphene. In graphene, although there is no mass gap in the equilibrium
system, the 𝐾 and 𝐾′ points are not gapless due to the opening of the drive-induced
Haldane gap, see Eq. (3.44). In the analysis above, we therefore replace Δ𝜉 with
Δ𝐾 , defined in Eq. (3.44). Because sign(Δ𝐾) = −𝜉𝜂, substitution into Eq. (3.60)
yields

𝐶−
𝜉 = −1

2
𝜂 + 2𝜂. (3.61)

In a gapless graphene system, the circularly polarized driving field therefore induces
a Floquet band with a net Chern number of 𝐶𝛼 = −3𝜂(−1)𝛼.

3.6 Topological Transport in Floquet Systems
The following section is based on Ref. [74].

Having understood the origin of drive-induced topology in Floquet systems, we now
discuss how drive-induced topology can be detected from the transport responses
of Floquet systems to weak electric fields.

First, we introduce the anomalous velocity in the Floquet basis by defining the Berry
curvature of a Floquet state, given by

𝛀𝒌𝛼 (𝑡) = ∇𝒌 × 𝑨𝒌𝑛 (𝑡), (3.62)

where 𝑨𝒌𝑛 (𝑡) = 𝑖⟨𝜓𝒌𝑛 (𝑡) |∇𝒌 |𝜓𝒌𝑛 (𝑡)⟩ denotes the Berry connection and |𝜓𝒌𝑛 (𝑡)⟩ is
the Floquet state of a time-periodic Hamiltonian 𝐻 (𝑡). Note that the Chern number
of the Floquet band, introduced in Eq. (3.55), can equivalently be calculated via
integration of 𝛀𝒌𝛼 (𝑡) across the Brillouin zone:

𝐶𝛼 =
1

2𝜋

∫
𝑑2𝒌 𝛀𝒌𝛼 (𝑡) · 𝑧. (3.63)

For our purposes, we are interested in transport responses or many-body collision
processes on timescales much longer than the frequency of the drive [257, 258]. In
this case, we focus on the time-averaged anomalous velocity of electrons, which can
be calculated using the time-averaged Berry curvature given by

𝛀𝒌𝛼 = ∇𝒌 × 𝑨𝒌𝑛. (3.64)

Here, 𝑨𝒌𝑛 (𝑡) = 𝑖
∑
𝑛⟨𝜙𝑛𝒌𝑛 |∇𝒌 |𝜙𝑛𝒌𝑛⟩ denotes the time-averaged Berry connection and

|𝜙𝑛
𝒌𝑛
⟩ are the Floquet harmonics, obtained by expanding the Floquet state in the

harmonic series:
|𝜓𝒌𝑛 (𝑡)⟩ = 𝑒−𝑖𝜀𝒌𝑛

∑︁
𝑛

𝑒−𝑖𝑚𝜔𝑡 |𝜙𝑛𝒌𝑛⟩. (3.65)
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In the presence of a weak electric field 𝑬, the average group velocity of electrons is
therefore given by

𝒗𝒌𝛼 =
1
ℏ
∇𝒌𝜀𝒌𝛼 +

𝑒

ℏ
𝑬 ×𝛀𝒌𝛼, (3.66)

which is derived in a similar manner as Section 2.3, by assuming that the weak
electric field produces an adiabatic evolution of the Floquet states.

To determine the current produced by the electric field, we estimate the occupation
𝐹̃𝒌𝛼 of the Floquet state |𝜓𝒌𝑛 (𝑡)⟩ in the presence of the electric field. When the
occupation is spatially homogenous across the system, its time evolution can be
estimated from the Boltzmann transport equation given by

𝜕𝑡 𝐹̃𝒌𝛼 −
𝑒

ℏ
𝑬 · ∇𝒌 𝐹̃𝒌𝛼 = − 𝐹̃𝒌𝛼 − 𝐹𝒌𝛼

𝜏𝒌𝛼
. (3.67)

Here, we have used the relaxation time approximation, which assumes that the
occupation relaxes to its value 𝐹𝒌𝛼 in the absence of the electric field within a
relaxation time 𝜏𝒌𝛼. We are interested in the population distribution of electrons in
the steady state, defined by 𝜕𝑡 𝐹̃𝒌𝛼 = 0, which is given by

𝐹̃𝒌𝛼 = 𝐹𝒌𝛼 −
𝑒

ℏ
𝜏𝒌𝛼𝐸𝜕𝑘𝑥𝐹𝒌𝛼 . (3.68)

The Hall conductivity in the steady state is therefore given by

𝜎𝑥𝑦 =
𝑒2

ℏ

∑︁
𝛼

∫
𝑑2𝒌

(2𝜋)2𝛀𝒌𝛼 · 𝑧 𝐹𝒌𝛼, (3.69)

and the longitudinal conductivity is given by

𝜎𝑥𝑥 =
𝑒2

ℏ

∑︁
𝛼

∫
𝑑2𝒌

(2𝜋)2 𝜏𝒌𝛼 (𝜕𝑘𝑥𝜀𝒌𝛼) (𝜕𝑘𝑥𝐹𝒌𝛼). (3.70)

The discussion of transport signatures in Floquet systems thus far inspires questions
about what sets the steady-state occupations of Floquet states 𝐹𝒌𝛼 before the ap-
plication of the weak electric field. The steady state is governed by the incoherent
dynamics of electrons generated by many-body collisions, which will be the topic
of Chapter 4.
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C h a p t e r 4

INCOHERENT DYNAMICS OF FLOQUET SYSTEMS

In an interacting electronic Floquet system, the laws of equilibrium statistical me-
chanics that normally guarantee Fermi-Dirac statistics no longer apply [257, 258].
Photo-assisted many-body collisions sharply modify the occupation of electronic
states, producing a dramatically different population distribution from equilibrium.
In this chapter, we show that electron-phonon coupling to a low-temperature phonon
bath, in particular, can serve as a mechanism to stabilize a low-temperature “ideal
Floquet topological insulator” population distribution supporting topological trans-
port signatures.

We focus on a model of a many-body interacting system coupled to an external
phonon bath, described by the Hamiltonian

𝐻̂ = 𝐻̂0 + 𝐻̂el-ph + 𝐻̂el-el. (4.1)

Here, the single-particle Hamiltonian is given by

𝐻̂0 =
∑︁
𝒌,𝜈

𝐸𝒌𝜈𝑐
†
𝒌𝜈
𝑐𝒌𝜈, (4.2)

where 𝑐†
𝒌𝜈

creates a Bloch state |𝒌𝜈⟩ with energy 𝐸𝒌𝜈. The electron-phonon inter-
actions are described by the Hamiltonian

𝐻̂el-ph =
∑︁

𝒌,𝒒, 𝑗 ,𝜈,𝜈′

𝑀𝜈𝜈′

𝒌,𝒒𝑐
†
𝒌+𝒒,𝜈′𝑐𝒌𝜈 (𝑏̂

†
𝒒, 𝑗 + 𝑏̂−𝒒, 𝑗 ) + H.c. (4.3)

and the electron-electron interactions are modeled by

𝐻̂el-el =
∑︁

𝒌1,𝒌2,𝒒,{𝜈𝑖}
𝑉
{𝜈𝑖}
𝒌1,𝒌2,𝒒

𝑐
†
𝒌1+𝒒,𝜈1

𝑐
†
𝒌2−𝒒,𝜈2

𝑐𝒌2𝜈3𝑐𝒌1𝜈4 , (4.4)

where 𝑏̂†𝒒, 𝑗 creates a phonon of frequency 𝜔 𝑗 (𝒒) with momentum 𝒒 and mode in-
dexed by 𝑗 , and 𝑀𝜈𝜈′

𝒌,𝒒
and 𝑉 {𝜈𝑖}

𝒌1,𝒌2,𝒒
are the matrix elements for electron-phonon and

electron-electron interactions, respectively [258]. Upon driving the system with a
laser field of magnetic vector potential 𝑨(𝑡) and angular frequency Ω, the Hamilto-
nian becomes time-dependent 𝐻̂0(𝑡) via minimal coupling 𝒌 → 𝒌 + 𝑒𝑨(𝑡)/ℏ, and
the time-dependent Schrodinger equation is solved by the Floquet states |𝜓𝒌𝛼 (𝑡)⟩



38

with quasienergies 𝜀𝒌𝛼, as discussed in Chapter 3. The occupations of the Floquet
states, given by 𝐹𝒌𝛼 (𝑡) = ⟨ 𝑓 †

𝒌𝛼
(𝑡) 𝑓𝒌𝛼 (𝑡)⟩, where 𝑓 †

𝒌𝛼
(𝑡) denotes the creation operator

for |𝜓𝒌𝛼 (𝑡)⟩, are determined by the incoherent dynamics of the electrons generated
by 𝐻̂el-ph and 𝐻̂el-el. Our goal is to evaluate the occupations in the long time limit,
when the system approaches a steady state with occupation given by 𝐹𝒌𝛼, which
is time-independent, ¤𝐹𝒌𝛼 = 0, up to micromotion. In Section 4.1, we introduce
the Floquet-Boltzmann equation, which models the population dynamics of Floquet
systems when the interactions 𝐻̂el-el and 𝐻̂el-ph are weak perturbations to the single-
particle Hamiltonian 𝐻̂0(𝑡). The remainder of the chapter is concerned with solving
for the steady state and finding conditions that stabilize low-temperature phases, see
Section 4.2, and understanding the stability of Floquet-Bloch states in a steady state,
see Section 4.3.

4.1 Floquet-Boltzmann Equation
The following section is based on Refs. [257–259].

The Floquet-Boltzmann equation provides a framework to characterize the many-
body steady state of Floquet systems under the following assumptions:

1. Born-Markov approximation. We assume that the incoherent phonons ther-
malize much faster than the rate of electron-phonon scattering, such that the
incoherent phonons remain in thermal equilibrium at all times and can be
described by a Bose-Einstein distribution.

2. Diagonal ensemble and perturbative interactions. We assume that coherences
between the Floquet states are negligible, i.e., ⟨ 𝑓 †

𝒌′𝛼′
(𝑡) 𝑓𝒌𝛼 (𝑡)⟩ ≈ 0 for 𝒌′ ≠ 𝒌

or 𝛼 ≠ 𝛼′. This is an appropriate approximation when the steady state
is translation invariant and the interactions are perturbative, such that the
scattering time 𝜏scat between Floquet states is much larger than the inverse
spectral gap Δ between the Floquet states, i.e., 𝜏scat ≫ ℏ/Δ.

3. Slow scattering dynamics. We assume that the characteristic timescale for
scattering 𝜏scat is much longer than the period of the drive, i.e., 𝜏scat ≫ 2𝜋/Ω,
such that only the slow (stroboscopic-timescale) evolution of the electronic
occupations affect the incoherent scattering processes. In this limit, we can
simplify the analysis by discarding the micromotion of the population dynam-
ics.
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Explicitly, the Floquet-Boltzmann equation is given by

¤𝐹𝒌𝛼 = 𝐼
el-ph
𝒌𝛼

[{𝐹𝒌𝛼}] + 𝐼el-el
𝒌𝛼 [{𝐹𝒌𝛼}], (4.5)

where 𝐼el-ph
𝒌𝛼

[{𝐹𝒌𝛼}] and 𝐼el-el
𝒌𝛼

[{𝐹𝒌𝛼}] are respectively the collision integrals for
electron-phonon and electron-electron scattering. In the following subsections, we
provide the explicit forms for 𝐼el-ph

𝒌𝛼
[{𝐹𝒌𝛼}] and 𝐼el-el

𝒌𝛼
[{𝐹𝒌𝛼}] and provide an intuitive

explanation for the population dynamics generated by the many-body collisions.

Electron-Phonon Scattering
The electron-phonon collision integral is given by

𝐼
el-ph
𝒌𝛼

[{𝐹𝒌𝛼}] =
2𝜋
ℏ

1
𝑁

∑︁
𝒌′∈BZ

∑︁
𝛼′

∑︁
𝑗

∑︁
𝑛

|G𝒌′𝛼′

𝒌𝛼 (𝑛, 𝑗) |2

×
[ {
𝐹𝒌′𝛼′ (1 − 𝐹𝒌𝛼)N (ℏ𝜔 𝑗 (𝒌′ − 𝒌)) − 𝐹𝒌𝛼 (1 − 𝐹𝒌′𝛼′) [1 + N(ℏ𝜔 𝑗 (𝒌′ − 𝒌))]

}
× 𝛿(𝜀𝒌′𝛼′ + 𝑛ℏΩ − 𝜀𝒌𝛼 + ℏ𝜔 𝑗 (𝒒))

+
{
𝐹𝒌′𝛼′ (1 − 𝐹𝒌𝛼) [1 + N(ℏ𝜔 𝑗 (𝒌′ − 𝒌))] − 𝐹𝒌𝛼 (1 − 𝐹𝒌′𝛼′)N (ℏ𝜔 𝑗 (𝒌′ − 𝒌))

}
× 𝛿(𝜀𝒌′𝛼′ + 𝑛ℏΩ − 𝜀𝒌𝛼 − ℏ𝜔 𝑗 (𝒒))

]
,

(4.6)

where
G𝒌′𝛼′

𝒌𝛼 (𝑛, 𝑗) =
∑︁
𝑚

∑︁
𝜈,𝜈′

𝑀𝜈𝜈′

𝒌,𝒒 ⟨𝜙
𝑛+𝑚
𝒌′𝛼′ |𝜈

′𝒌′⟩⟨𝜈𝒌 |𝜙𝑚𝒌𝛼⟩ (4.7)

is the photon dressed electron-phonon matrix element in the Floquet basis, N(𝜀) =
(𝑒𝜀/𝑘𝐵𝑇 − 1)−1 is the Bose-Einstein distribution for the incoherent phonons main-
tained at temperature 𝑇 , and 𝑘𝐵 is the Boltzmann constant. To provide intuition for
the collision integral, it is useful to consider the low-temperature limit 𝑇 → 0, in
which case N(𝜀) → 0. In this limit, the collision integral, Eq. (4.6), reduces to:

lim
𝑇→0

𝐼
el-ph
𝒌𝛼

[{𝐹𝒌𝛼}] =
2𝜋
ℏ

1
𝑁

∑︁
𝒌′∈BZ

∑︁
𝛼′

∑︁
𝑗

∑︁
𝑛

|G𝒌′𝛼′

𝒌𝛼 (𝑛, 𝑗) |2

× [−𝐹𝒌𝛼 (1 − 𝐹𝒌′𝛼′)𝛿(𝜀𝒌′𝛼′ + 𝑛ℏΩ − 𝜀𝒌𝛼 + ℏ𝜔 𝑗 (𝒒))

+ 𝐹𝒌′𝛼′ (1 − 𝐹𝒌𝛼)𝛿(𝜀𝒌′𝛼′ + 𝑛ℏΩ − 𝜀𝒌𝛼 − ℏ𝜔 𝑗 (𝒒))
]
.

(4.8)

The first term in brackets represents a sink term, scattering an electron out of the state
with quasienergy 𝜀𝒌𝛼 into a state with quasienergy 𝜀𝒌′𝛼′ + 𝑛ℏΩ. Since the phonon
frequency is a positive quantity, ℏ𝜔 𝑗 (𝒒) > 0, the Dirac Delta function ensures the
process is only possible when the quasienergy is lowered during the process, i.e.,
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𝜀𝒌′𝛼′+𝑛ℏΩ < 𝜀𝒌𝛼, corresponding to a phonon emission. This kinematic constraint is
imposed because phonons can only be emitted to, and not be absorbed from, a zero-
temperature phonon bath. The second term is a source term, scattering an electron
with quasienergy 𝜀𝒌′𝛼′ + 𝑛ℏΩ into the state with quasienergy 𝜀𝒌𝛼. Once again, the
Dirac Delta function ensures that the quasienergy is lowered during the process,
i.e., 𝜀𝒌′𝛼′ + 𝑛ℏΩ > 𝜀𝒌𝛼, such that a phonon is emitted. The occupation functions
appearing in Eq. (4.8) account for Pauli blocking, ensuring that no scattering process
can be completed if the initial state is empty or the final state is full.

Electron-Electron Scattering
The electron-electron collision integral is given by

𝐼el-el
𝒌𝛼 [{𝐹𝒌𝛼}] =

4𝜋
ℏ

1
𝑁2

∑︁
𝒌2∈BZ

∑︁
𝒌3∈BZ

∑︁
𝛼2,𝛼3,𝛼4

∑︁
𝑛

∑︁
𝑮

|V (𝒌3,𝛼3),(𝒌1+𝒌2−𝒌3,𝛼4)
(𝒌,𝛼),(𝒌2,𝛼2) (𝑛,𝑮) |2×

× 𝛿(𝜀𝒌𝛼 + 𝜀𝒌2𝛼2 − 𝜀𝒌3𝛼3 − 𝜀𝒌+𝒌2−𝒌3,𝛼4 + 𝑛ℏΩ)
[
(1 − 𝐹𝒌𝛼) (1 − 𝐹𝒌2𝛼2)𝐹𝒌3𝛼3𝐹𝒌1+𝒌2−𝒌3,𝛼4

− 𝐹𝒌𝛼𝐹𝒌2𝛼2 (1 − 𝐹𝒌3𝛼3) (1 − 𝐹𝒌1+𝒌2−𝒌3,𝛼4)
]
,

(4.9)

where

V (𝒌3,𝛼3),(𝒌1+𝒌2−𝒌3,𝛼4)
(𝒌,𝛼),(𝒌2,𝛼2) (𝑛) =

∑︁
𝜈1,𝜈2

∑︁
𝜈3,𝜈4

∑︁
𝑛2,𝑛3,𝑛4

𝑉
{𝜈𝑖}
𝒌,𝒌2,𝒌4−𝒌2

⟨𝜙𝑛−𝑛2+𝑛3+𝑛4
𝒌𝛼

|𝜈1𝒌⟩⟨𝜙𝑛2
𝒌2𝛼2

|𝜈2𝒌2⟩×

× ⟨𝜈3𝒌3 |𝜙𝑛3
𝒌3𝛼3

⟩⟨𝜈4𝒌4 |𝜙𝑛4
𝒌+𝒌2−𝒌3,𝛼4

⟩
(4.10)

is the photon-dressed electron-electron matrix element in the Floquet basis. The
collision integral, Eq. (4.9), describes a two-electron scattering process. Note that,
although the total momentum is conserved, the total quasienergy is conserved only
up to an integer multiple of ℏΩ [see Dirac Delta function in Eq. (4.9)], which
accounts for photoabsorption and emission, as will be discussed in Section 4.2.

4.2 Solving for the Steady State
The following section is based on Refs. [75, 258].

To solve for the steady state condition, given by ¤𝐹𝒌𝛼 = 0, we first identify the
microscopic collision processes that enter the FBE. For concreteness, we focus
on a simple resonantly-driven semiconducting system, with the quasienergy band
structure shown in Figure 4.1. Because the quasienergy is defined modulo ℏ𝜔, we
can sketch two equivalent representations of the quasienergy bands. The first is the
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Figure 4.1: The quasienergy of the driven system is defined modulo ℏ𝜔. In our
discussion of the Floquet Boltzmann equation, it is convenient to consider two
choices of the quasienergy bands. (a) The “folded” Floquet Brillouin Zone (FBZ)
picture is analogous to the rotating frame in the rotating wave approximation, where
states with band character corresponding to the valence band of the undriven system
are shifted in energy by +ℏΩ. (b) The “unfolded” picture where the quasienergies
are shifted such that quasienergy spectrum resembles the original bands, except with
a gap opening at resonance. Dashed lines indicate ±ℏΩ/2.

“folded” Floquet Brillouin zone (FBZ) picture analogous to the rotating frame in the
rotating wave approximation, where states with band character corresponding to the
valence band of the undriven system are shifted in energy by +ℏ𝜔 [Figure 4.1(a)].
In the folded representation, we sketch the original electronic band in black and the
shifted valence band in blue. The second representation is the “unfolded” picture
where the quasienergies are shifted such that quasienergy spectrum resembles the
original bands, except with a gap opening at resonance [Figure 4.1(b)]. We will
interchange between the two equivalent representations of the quasienergy structure,
depending on which allows for a more convenient visualization the many-body
scattering process in question.

The weak electron-phonon and electron-electron interactions described by the FBE
scatter electrons between single-particle Floquet states. These collision processes
can be categorized into two types:

• Regular scattering processes, sketched in Figure 4.2 for electron-phonon in-
teractions [panel (a) and (b)] and electron-electron interactions [panel (c)
and (d)]. These processes exist even in the equilibrium setting and restore
electronic populations back to the thermal Fermi-Dirac distribution in the un-
driven bands. In the unfolded picture [panels (b) and (d)], it is clear that these
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Figure 4.2: Sketch of “regular” electron-phonon and electron-electron scattering
processes that do not rely on photoemission and photoabsorption to conserve energy
and momentum. In the folded picture [panels (a) and (c)], these scattering processes
only connect the same Floquet copies [i.e. states sketched with the same color].
When the processes are sketched on the unfolded bands [see panels (b) and (d)], it
becomes clear that no photoabsorption or emission is required to conserve energy-
momentum in the scattering processes.

scattering processes conserve energy and momentum without absorption or
emission of photons.

• Floquet-Umklapp (FU) processes (photo-assisted scattering). These processes
perturb the steady state distribution away from the equilibrium Fermi-Dirac
distribution and rely on photon absorption or emission to achieve energy-
momentum conservation. First-order FU processes are sketched in Figures 4.3
and 4.4 for electron-phonon and electron-electron interactions, respectively,
emitting or absorbing a single photon. We show the FU scattering processes
in the unfolded picture [Figures 4.3(b)-(d), 4.4(b), and 4.4(d)] to emphasize
that these first-order FU processes conserve energy and momentum only up
to ±ℏΩ, which corresponds to an absorption or emission of a single photon
(sketched by a blue squiggly line). Note that higher-order FU processes, which
absorb or emit more than one photon, occur with suppressed probability for
sufficiently weak drives [257, 258].

To approximate the electronic steady state in the presence of the scattering processes
discussed above, we consider the FBE for the average density of electrons in each
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Figure 4.3: Sketch of electron-phonon Floquet-Umklapp scattering processes that
absorb or emit a single photon. In the folded picture [panel (a)], these scattering
processes connect different Floquet copies [i.e., states sketched with different color].
When the processes are sketched on the unfolded bands [see panels (b-d)], it is clear
that the scattering relies on an absorption or emission of a single photon (squiggly
blue lines) to conserve energy and momentum.

Floquet band, given by

𝑛𝛼 = 𝐴

∫
𝑑2𝒌

(2𝜋)2𝐹𝒌𝛼 (4.11)

where 𝐴 denotes the area of the unit cell and 𝛼 = +,− indexes the upper (UFB) and
lower Floquet bands (LFB), respectively, in the folded picture [see Figure 4.1(a)].
To further simplify the analysis, we focus on a charge neutral system, where a single
variable, 𝑛 ≡ 𝑛+ = 1− 𝑛−, parameterizes the density of electrons (holes) in the LFB
(UFB). To construct a rate equation for 𝑛, we consider the collisions sketched in
Figures 4.2, 4.3, and 4.4 that connect different Floquet bands.

Electron-Phonon Scattering
The occupation function 𝑛 is modified by interband electron-phonon scattering
processes in the folded picture, sketched by vertical lines in Figures 4.2 and 4.3.
Scattering processes connecting the UFB band to the LFB band are proportional
to the density of electrons in the UFB and holes in the LFB, both given by 1 − 𝑛.
Therefore, such a process occurs with a rate given by ¤𝑛|ph

in = 𝑊
ph
in (1 − 𝑛)2, where

𝑊
ph
in is an occupation-independent intrinsic scattering rate set by the electron-phonon

matrix element [see Eq. (4.6)]. Similarly, we define an intrinsic scattering rate𝑊ph
out

for collision processes from the LFB to the UFB, which occur with a rate given by
¤𝑛|ph

out = −𝑊ph
out𝑛

2.
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Figure 4.4: Sketch of electron-electron Floquet-Umklapp scattering processes that
absorb or emit a single photon, categorized as Floquet-Auger I and II which transfer
a single or pair of electrons across distinct Floquet bands. We sketch the scattering
processes in the folded picture in panels (a) and (c) and the unfolded picture in
panels (b) and (d). In the unfolded picture, it is clear that the scattering relies on an
absorption or emission of a single photon (squiggly blue lines) to conserve energy
and momentum.

Electron-Electron Scattering
Electron-electron scattering processes facilitate collision processes changing (inter-
band) or preserving (intraband) the total particle density within each Floquet band.
The interband scattering processes primarily arise from photo-assisted FU pro-
cesses, which can be divided into two types: Floquet-Auger I (or “single” Floquet-
Auger) collisions, transferring a single electron between distinct Floquet bands; and
Floquet-Auger II (or “double” Floquet-Auger) collisions, transferring two electrons
between distinct Floquet bands, see Figure 4.4. These Floquet-Auger processes are
the primary electron-electron scattering processes affecting the LFB occupation 𝑛.

Electron-electron scattering processes of the Floquet Auger I and II type sketched
in Figure 4.4 excite electrons from the LFB band to the UFB band, and therefore
contribute the sink rates to the LFB occupation given by ¤𝑛|ee

1−+ = −𝑊ee
1 𝑛

3(1−𝑛) and
¤𝑛|ee

2−+ = −𝑊ee
2 𝑛

4, where 𝑊ee
1 and 𝑊ee

2 are intrinsic scattering rates independent of
the occupation function. Owing to the particle-hole symmetry of the Floquet bands,
reverse processes can be constructed that facilitate a net transfer of electrons from
the UFB band to the LFB band, which contribute source rates ¤𝑛|ee

1+− = 𝑊ee
1 𝑛(1− 𝑛)

3

and ¤𝑛|ee
2+− = 𝑊ee

2+−(1 − 𝑛)4 to the LFB occupation.
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Phenomenological Rate Equation
Combining the electron-phonon and electron-electron scattering rates, the full rate
equation for the average LFB occupation function 𝑛 is given by

¤𝑛 = ¤𝑛|ph
in + ¤𝑛|ph

out + ¤𝑛|ee
1−+ + ¤𝑛|ee

2−+ + ¤𝑛|ee
1+− + ¤𝑛|ee

2+−

= 𝑊
ph
in (1 − 𝑛)2 −𝑊ph

out𝑛
2 +𝑊ee

1 [𝑛(1 − 𝑛)3 − 𝑛3(1 − 𝑛)] +𝑊ee
2 [(1 − 𝑛)4 − 𝑛4] .

(4.12)

To elucidate the role of the different processes on the steady state, we consider
several limits

• Without electron-phonon interactions𝑊ph
in ,𝑊

ph
out → 0, the steady state is given

by 𝑛 = 1/2, which corresponds to an infinite-temperature state. This limit
highlights the importance of phonon cooling in stabilizing steady states.

• In the limit of strong phonon cooling, where 𝑊ph
out ≫ 𝑊

ph
in ,𝑊

ee
1 ,𝑊

ee
2 , the

steady state is roughly given by 𝑛 ≈ 0. This corresponds to an “ideal Floquet
topological insulator (FTI) state” where the LFB is nearly fully-occupied.
The drive-induced Berry curvature of Floquet systems is usually isolated
near regions of the Brillouin zone surrounding the resonant Floquet gap, with
opposite signs of Berry curvature above and below the gap [74]. Thus, because
the ideal FTI state creates an imbalance of occupations of states above and
below the Floquet gap, it gives rise to a finite anomalous Hall conductivity.

4.3 Survival of Floquet-Bloch States Under Continuous-Wave Driving
So far, we have discussed how many-body scattering processes determine the occu-
pation of Floquet states. However, for the Floquet states to remain coherent in the
presence of these collision processes, the interband scattering rate of many-body col-
lisions, denoted ℏ/𝜏inter, must be much smaller than the Floquet gap Δ [see condition
2 in Section 4.1]. Here, we show that steady states produced by continuous-wave
(CW) irradiation can give rise to a Pauli-blocking effect suppressing the magnitude
of ℏ/𝜏inter. Such a Pauli blocking effect enables CW lasers to induce coherent Flo-
quet states, even though such CW laser sources are typically incapable of achieving
the ultra-strong field amplitudes produced by ultrafast lasers (see, e.g., Ref. [1]).

To provide an estimate of the interband scattering rate near a resonant Floquet
gap, we cannot use the simplified analysis in Section 4.2, which only captures the
momentum-averaged scattering processes across the Brillouin zone (BZ). Instead,
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Figure 4.5: Sketch of an electron-electron collision process (green arrows) facilitat-
ing interband electronic scattering across the Floquet gap.

we need to consider the collision processes in regions of the BZ close to the Floquet
gap, sketched in Figure 4.5. Because electron-electron collisions typically occur on
timescales much faster than electron-phonon scattering [258], we focus on interband
electron-electron Auger collisions near the Floquet gap, sketched in Figure 4.5. Here,
electrons in the initial Floquet states denoted 𝑠1 and 𝑠2 are scattered into the final
states 𝑠3 and 𝑠4. The resulting rate of electronic scattering out of the state 𝑠1 can be
estimated as

𝜏−1
inter ≈

1
ℏ
|𝑉𝑞 ⟨𝜙0

𝑠1 |𝜙
0
𝑠4⟩⟨𝜙

0
𝑠2 |𝜙

0
𝑠3⟩|

2𝐹𝑠2 (1 − 𝐹𝑠4) (1 − 𝐹𝑠3), (4.13)

where |𝜙𝑛𝑠 ⟩ denotes the 𝑛-th Floquet harmonic corresponding to the Floquet state 𝑠,
𝐹𝑠 denotes the steady state occupation, and𝑉𝑞 denotes the bare electron-electron ma-
trix element corresponding to the process with momentum transfer 𝑞. The electronic
states near the Floquet gap are superpositions of the conduction and valence bands,
and therefore have reduced spectral weight, i.e., |⟨𝜙0

𝑠 |𝜙0
𝑠⟩| ≈ 0.5. Additionally, pho-

toexcitation processes, see Figure 4.3, produce densities of electronic occupations
near the gap, which are relaxed by regular electron-phonon collision processes, see
Figure 4.2. When these photoexcitation and phonon relaxation processes are bal-
anced in a steady state, we can roughly estimate that the occupation functions 𝐹𝑠
are approximately half-filled near the gap, which can be more rigorously justified
by numerical calculations, see Ref. [1]. Overall, we can estimate that

|⟨𝜙0
𝑠1 |𝜙

0
𝑠4⟩⟨𝜙

0
𝑠2 |𝜙

0
𝑠3⟩|

2𝐹𝑠2 (1 − 𝐹𝑠4) (1 − 𝐹𝑠3) ∼ 10−2 (4.14)
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providing a roughly 100-times reduction in the bare interband scattering rate set by
ℏ−1 |𝑉𝑞 |2. As we have demonstrated, the Pauli blocking effect due to photoexcited
population near the gap plays a key role in suppressing the scattering rate in the
steady state. Crucially, this reduced interband scattering rate enables coherent
Floquet-Bloch states to survive in continuous-wave setups, even when the laser
amplitudes are weaker than those used in ultrafast laser experiments.
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Persistent Floquet Quantum Matter
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C h a p t e r 5

OPTICAL CONTROL OF SLOW TOPOLOGICAL ELECTRONS
IN MOIRÉ SYSTEMS

Floquet moiré materials possess optically-induced flat-electron bands with steady-
states sensitive to drive parameters. Within this regime, we show that strong inter-
action screening and phonon bath coupling can overcome enhanced drive-induced
heating. In twisted bilayer graphene (TBG) irradiated by a terahertz-frequency
continuous circularly polarized laser, the extremely slow electronic states enable
the drive to control the steady state occupation of high-Berry curvature electronic
states. In particular, above a critical field amplitude, high-Berry-curvature states ex-
hibit a slow regime where they decouple from acoustic phonons, allowing the drive
to control the anomalous Hall response. Our work shows that the laser-induced
control of topological and transport physics in Floquet TBG are measurable using
experimentally available probes.

5.1 Introduction
Time-periodic fields can drive materials into exotic non-equilibrium phases [15,
36, 75, 76, 80, 81, 83, 99, 167, 169, 214, 235, 258, 293, 294], with unconventional
transport and optical characteristics [45, 64, 74, 140, 152, 189, 260, 304] controllable
by external parameters. In laser-driven twisted bilayer graphene (TBG) [131, 165,
281, 291, 292], a flat-band regime with pronounced electron-electron interaction
effects is accessible away from the magic angles [25]. Generating low-temperature
Floquet states in such a regime requires cooling processes that compensate for
strong drive-induced electron-electron heating. A common cooling solution involves
coupling Floquet systems to low-temperature phonon baths [62, 63, 258].

We demonstrate that intrinsic electron-phonon coupling in TBG and Coulomb
screening can stabilize low-temperature steady-states in Floquet TBG under ter-
ahertz (THz) frequency, circularly polarized laser drives. In this steady-state, the
drive amplitude controls the filling of electronic states with large Berry curvature,
resulting in a highly tunable anomalous conductivity 𝜎𝑥𝑦 [74, 185, 215, 253, 254]
(Figure 5.1(a-b)). The ability to tune the Floquet steady-state results from the
unique slow electron regime in TBG where phonons travel faster than—and decou-
ple from—many flat band electronic states [77, 261].



50

(c)

(a) laser

d

(b) 0.5-0.5-1.5 1.5

Figure 5.1: (a) Schematic experimental design. Circularly polarized laser induces
non-trivial Berry-curvature in the narrow bands (see Figure 5.2(b-c)), resulting in
an anomalous Hall conductivity 𝜎𝑥𝑦. TBG lies on top of a dielectric and metallic
gate that screen electron-electron interactions. (b) Anomalous Hall conductivity vs.
drive amplitude E for 𝜁 ≈ 0.5 and various values of 𝜒 indicated on the scale (see
below Eqs. 5.4 and 5.7 for definitions of 𝜁 and 𝜒). The 𝜎𝑥𝑦 features a rapid drop
with E below the critical amplitude E∗ (dashed line). Here, E0 = ℏ𝑣𝐹/(𝑒𝐿2

𝑀
) ≈

7.2×104 V/m. (c) Critical amplitude vs. 𝑐ph/𝑣0
eff, where 𝑣0

eff = 𝑣eff(0) is an effective
electron velocity defined in the text. Enlarged red circle: E∗ in (b).

5.2 The System
We begin by constructing the time-periodic, interacting Hamiltonian for laser-driven
TBG near the charge neutrality point and at a twist angle 𝜃. The single-particle
effective Hamiltonian of undriven TBG is 𝐻̂0 =

∑
𝒌𝜈𝜉 𝐸

(𝜉)
𝒌𝜈
𝑐
(𝜉)†
𝒌𝜈

𝑐
(𝜉)
𝒌𝜈

, where 𝑐(𝜉)†
𝒌𝜈

creates a Bloch state |𝜉𝜈𝒌⟩ of crystal momentum 𝒌, band 𝜈, and energy 𝐸
(𝜉)
𝒌𝜈

,
near valley index 𝜉 = ±1 of the single-layer graphene Brillouin zone [25, 149].
The index 𝜈 = ± labels the narrow central particle and hole bands (Figure 5.2(a,
b)) with total bandwidth 𝑊 , which are separated by a large energy gap from all
other bands. We consider a circularly polarized laser of vector potential 𝑨(𝑡) =

(E/Ω) [cos(Ω𝑡)𝒙̂−sin(Ω𝑡) 𝒚̂] with electric field amplitude E and angular-frequency
Ω, which couples to electrons by minimal coupling 𝒌 → 𝒌 + 𝑒𝑨(𝑡)/ℏ, resulting in
the time-periodic Hamiltonian 𝐻̂0(𝑡).

The periodic Hamiltonian 𝐻̂0(𝑡) gives rise to Floquet eigenstates |Φ(𝜉)
𝒌𝛼

(𝑡)⟩ with
quasienergies 𝜀(𝜉)

𝒌𝛼
satisfying |𝜀(𝜉)

𝒌𝛼
| < 1

2ℏΩ. We consider the regime 𝑊 ≤ ℏΩ <

2𝑊 corresponding to a single photon resonance within the central TBG bands.
Specifically, we consider Ω = 5 meV/ℏ and TBG at a near-magic twist angle of
𝜃 = 1.13◦ whose Fermi velocity 𝑣𝐹 ≈ 17 km/s (corresponding to 𝑊 = 5 meV in
the Bistritzer-MacDonald model [25, 149]) is comparable to phonon speeds in TBG
[148]. The drive mixes the two central bands 𝜈 = ±1, resulting in quasienergies 𝜀(𝜉)

𝒌𝛼
,

with upper and lower Floquet bands denoted by 𝛼 = ± (Figure 5.2(d)) [131]. The
drive opens off-resonant gaps of size Δ𝐾 ≈ 2𝑒2𝑣2

𝐹
E2/ℏΩ3 at the Dirac points 𝐾 and
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Figure 5.2: (a) Zoom-in on schematic narrow bands in a moiré system. Drive with
angular frequency Ω resonantly couples states along resonance rings (green curves).
(b) Undriven spectrum of TBG along a line in the Brillouin Zone indicated by the
orange curve in (c). Dashed frame encloses optically-active, narrow central bands
𝜈 = ±1. (c) Berry curvature B (𝜉)

𝒌+ in the upper Floquet band, with blue color intensity
proportional to tanh

(
2B (𝜉)

𝒌+ /𝐿
2
𝑀

)
(color bar) so B (𝜉)

𝒌+ peaks are more visible. Dashed

lines indicate areas enclosing B (𝜉)
𝒌+ peaks at the Dirac points and resonance ring.

(d) Periodic quasienergy Floquet spectrum of the driven system, having two central
bands shown in (a). The Floquet spectrum exhibits the upper (UFB, 𝛼 = +) and
lower (LFB, 𝛼 = −) Floquet bands, separated by off-resonant gaps Δ𝐾 at the Dirac
𝐾 , 𝐾′ points and a Rabi-like gap Δ𝑅 along the resonance ring [130, 236, 239].

𝐾′ of the moiré Brillouin zone and a Rabi-like gap of Δ𝑅 ∼ 𝑉 along the resonance
ring, which is the ring on the 𝒌-plane satisfying 𝐸 (𝜉)

𝒌+ − 𝐸 (𝜉)
𝒌− = ℏΩ (green rings in

Figure 5.2(a, d)). Here, 𝑣𝐹 is the Fermi velocity of the undriven band structure, 𝑉 is
the energy scale of the drive, and the expression for Δ𝐾 comes from the Van-Vleck
perturbative expansion [6, 130, 215, 239, 241, 284].

The key component for stabilizing Floquet many-body states is the electron coupling
to low-temperature longitudinal TBG acoustic phonons:

𝐻̂el-ph =
∑︁
𝒌,𝒒,𝑮
𝜈,𝜈′ .𝜉

𝑀
𝜈𝜈′𝜉
𝒌,𝒒,𝑮

𝑐
(𝜉)†
𝒌+𝒒+𝑮,𝜈′𝑐

(𝜉)
𝒌𝜈

(𝑏̂†𝒒 + 𝑏̂−𝒒) + h.c. (5.1)

Here, 𝑮 is a moiré Brillouin zone reciprocal lattice vector, and

𝑀
𝜈𝜈′𝜉
𝒌,𝒒,𝑮

= 𝐷
√︁
ℏ𝑐ph𝑞/(

√︁
2𝐴𝑀𝜌𝑐ph)W𝜉𝜈𝜈′

𝒌,𝒒+𝑮 (5.2)

is the matrix element with deformation potential 𝐷, moiré unit cell area 𝐴𝑀 =√
3𝐿2

𝑀
/2, lattice vector length 𝐿𝑀 = 𝑎/[2 sin

(
𝜃/2

)
], monolayer graphene density

𝜌, and monolayer lattice vector length 𝑎 = 0.246 nm. The operator 𝑏̂†𝒒 creates an
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acoustic phonon mode of momentum 𝒒 with amplitude 𝑞, speed 𝑐ph, and energy
ℏ𝑐ph𝑞. The speed of sound 𝑐ph in TBG is roughly the same as that in monolayer
graphene, but the small Brillouin zone in TBG folds the acoustic phonon dispersion
into many branches [148]. The form-factor W𝜉𝜈𝜈′

𝒌,𝒒+𝑮 ≡⟨𝜉𝜈′𝒌 + 𝒒 + 𝑮 |𝜉𝜈𝒌⟩ captures
the decreasing coupling of electrons to folded phonon branches with large 𝑮 [119].
We also include electron-electron interactions:

𝐻̂el-el =
∑︁
𝒌1,𝒌2
𝒒,𝑮
{𝜈𝑖},𝜉

𝑉
{𝜈𝑖}𝜉
𝒌1,𝒌2,𝒒,𝑮

𝑐
(𝜉)†
𝒌1+𝒒,𝜈1

𝑐
(𝜉)†
𝒌2−𝒒,𝜈2

𝑐
(𝜉)
𝒌2,𝜈3

𝑐
(𝜉)
𝒌1,𝜈4

, (5.3)

where𝑉 {𝜈𝑖}𝜉
𝒌1,𝒌2,𝒒,𝑮

= 𝑉𝒒+𝑮W𝜉𝜈1𝜈4
𝒌1,𝒒+𝑮W

𝜉𝜈2𝜈3
𝒌2,−𝒒−𝑮 , with 𝑖 = 1, . . . , 4, contains the screened

Coulomb potential 𝑉𝒒 = 𝑒2/(2𝜖0𝑞𝐴𝑀) (1 + 𝜖 coth
(
𝑞𝑑

)
)−1 for a gate separated from

TBG by a dielectric of permittivity 𝜖 and thickness 𝑑, where 𝜖0 is the vacuum
permittivity (Figure 5.1(a)).

We focus on electron dynamics in its Floquet basis, treating interactions 𝐻̂el-ph and
𝐻̂el-el as weak perturbations scattering electrons between single-particle Floquet
states [75, 76, 253, 257, 258]. The occupation probability𝐹 (𝜉)

𝒌𝛼
(𝑡) = ⟨ 𝑓 (𝜉)†

𝒌𝛼
(𝑡) 𝑓 (𝜉)

𝒌𝛼
(𝑡)⟩

is described by the Floquet-Boltzmann Equation (FBE) [93, 110, 257, 258],

¤𝐹 (𝜉)
𝒌𝛼

(𝑡) = 𝐼el-ph
𝒌𝛼

[{𝐹 (𝜉)
𝒌𝛼

(𝑡)}] + 𝐼el-el
𝒌𝛼 [{𝐹 (𝜉)

𝒌𝛼
(𝑡)}] . (5.4)

Here, 𝑓
(𝜉)†
𝒌𝛼

(𝑡) creates a single-particle electron state |Φ(𝜉)
𝒌𝛼

(𝑡)⟩, and 𝐼
el-ph
𝒌𝛼

and
𝐼el-el
𝒌𝛼

are respectively the electron-phonon and electron-electron collision integrals,
evaluated by the Fermi golden rule (see Appendix A for FBE details). The
steady-state distribution yields ¤𝐹 (𝜉)

𝒌𝛼
= 0, and ⟨ 𝑓 (𝜉)†

𝒌𝛼
(𝑡) 𝑓 (𝜉)

𝒌𝛼′ (𝑡)⟩ is supressed for
𝛼 ≠ 𝛼′ when 1/𝜏tot

𝒌
≡ 1/𝜏el

𝒌
+ 1/𝜏ph

𝒌
≪ Δ𝜀𝒌/ℏ, where 𝜏el

𝒌
and 𝜏

ph
𝒌

are the in-
terband electron-electron and electron-phonon scattering times, respectively, and
Δ𝜀𝒌 = min𝑛∈Z |𝜀𝒌+ − 𝜀𝒌− + 𝑛ℏΩ| [110, 145, 257]. Because Δ𝜀𝐾 = 2Δ𝐾 is minimal,
the condition is equivalently 𝜁 ≡ ℏ/(2Δ𝐾𝜏tot

𝐾
) ≪ 1 (see Figure 5.4(d)). In Figs.

5.1(b) and 5.4(c-d), we show the maximal 𝜁 across fields E plotted in Figs. 5.1 and
5.3.

5.3 Transport Properties
To probe the electronic dynamics induced by the laser, we study the anomalous
conductivity in the steady-state of the system [39, 61, 63, 74, 185, 215, 253, 254, 280]

𝜎𝑥𝑦 =
2𝑒2

ℏ

∑︁
𝛼,𝜉=±

∫
𝑑2𝒌B (𝜉)

𝒌𝛼
𝐹
(𝜉)
𝒌𝛼
, (5.5)
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which averages the product of Berry curvature [74, 87, 239]

B (𝜉)
𝒌𝛼

=
Ω

𝜋

∫ 2𝜋/Ω

0
𝑑𝑡 Im⟨𝜕𝑘𝑥Φ

(𝜉)
𝒌𝛼

(𝑡) |𝜕𝑘𝑦Φ
(𝜉)
𝒌𝛼

(𝑡)⟩, (5.6)

and the steady-state fillings, 𝐹 (𝜉)
𝒌𝛼

. Without the drive, TBG has fragile topology with
𝜎𝑥𝑦 = 0 at charge neutrality [212, 233, 308]. The circularly polarized laser breaks
time-reversal symmetry between the valleys 𝜉 = ±1, opens Haldane gaps in each
valley, and produces nonzero 𝜎𝑥𝑦.

Our main finding is that 𝜎𝑥𝑦 can be controlled by the field strength. It features a
rapid drop as a function of the amplitude of the drive, E, near the critical amplitude
E∗ (Figure 5.1(b)). This strong dependence on the external field indicates profound
changes in the electronic steady-state distribution as the drive amplitude changes
across E = E∗. Furthermore, this strong amplitude-dependence arises only when
the undriven effective electronic velocity 𝑣0

eff is close to 𝑐ph in TBG (Figure 5.1(c)),
a condition unique to TBG near the “slow-electron” regime [77, 261].

5.4 Phenomenological Analysis
We explain the origin of the strong dependence of 𝜎𝑥𝑦 on the drive amplitude near
E = E∗ (Figure 5.1(b)) by focusing on key processes affecting 𝜎𝑥𝑦, which involve
momentum states (the 𝐾 and 𝐾′ points and resonance ring, see Figure 5.2(c)) with
large Berry curvature B (𝜉)

𝒌𝛼
. We assume that the steady-state occupation of the upper

Floquet band (UFB, 𝛼 = +) and valley index 𝜉 near 𝐾 are uniform, 𝐹 (𝜉)
𝒌+ = 𝐹

(𝜉)
𝐾+ , for

𝒌 ∈ S𝐾 , where S𝐾 is a small circle enclosing the full-width half maximum of the
Berry curvature peak at 𝐾 (Figure 5.2(c)).

The steady-state occupation emerges as a balance between the total incoming rate
¤𝐹 (𝜉)
𝐾+ |in into S𝐾 and outgoing rate ¤𝐹 (𝜉)

𝐾+ |out from S𝐾 . Single phonon emission con-
necting the UFB Sin (see Figure 5.3(a)) with S𝐾 is the dominant contribution to
¤𝐹 (𝜉)
𝐾+ |in. The two regions are connected by the phonon light-cone (see Fig 5.3(a)).

This rate is ¤𝐹 (𝜉)
𝐾+ |ph,in ≈ Rin(1 − 𝐹 (𝜉)

𝐾+ )𝐹
(𝜉)
in , where 𝐹 (𝜉)

in is the average UFB occu-
pation in Sin, and Rin is the average intrinsic scattering rate. Importantly, Rin

is proportional to the momentum-space area of Sin, denoted Ain, estimated by
counting the UFB states that may scatter to S𝐾 by electron-phonon interactions.
Hence, Sin is the intersection between the UFB and phonon light-cones origi-
nating anywhere within S𝐾 (Figure 5.3(a)). As Δ𝑅 and Δ𝐾 widen with E, the
Floquet bands become narrower [64, 131, 165], and Ain shrinks, vanishing at
E = E∗ (Figure 5.3(b)). The critical strength E∗ is defined by 𝑣eff(E∗) = 𝑐ph, where
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𝑣eff(E) = max𝒌′ (𝜀(𝜉)𝒌′+ − 𝜀
(𝜉)
𝑲+)/|𝒌

′ − 𝑲 | is the electronic velocity near the 𝐾 point.
By estimating 𝑣eff(E), one finds that E∗ ∝ [1 − 𝑐ph/𝑣0

eff]
𝛾 for small 1 − 𝑐ph/𝑣0

eff,
where 𝛾 depends on the quasienergy structure and 𝑣0

eff ≡ 𝑣eff(0). One can also show
Ain ∝ max(E − E∗, 0) as E → E∗. (See Appendix A.)

Similarly, the phonon-mediated outgoing rate is ¤𝐹 (𝜉)
𝐾+ |ph,out ≈ Rout𝐹

(𝜉)
𝐾+ (1 − 𝐹 (𝜉)

out ),
where 𝐹 (𝜉)

out is the lower Floquet band (LFB, 𝛼 = −) average occupation in Sout, and
Rout is the average intrinsic rate, proportional to Aout =

∫
Sout

𝑑2𝒌, where Sout is
the momentum region enclosing intersections between the LFB with phonon light
cones originating from states in S𝐾 (see Figure 5.3(a)). However, unlike Ain, Aout

does not vanish as E → E∗ and instead expands as E increases.

Electron-electron interactions and photon-mediated Floquet-Umklapp (FU) pro-
cesses introduce additional terms in the rate equation depending smoothly on E and
roughly uniformly-spread in momentum. We thus include an incoming ¤𝐹 (𝜉)

𝐾+ |r,in =

Γin(1 − 𝐹 (𝜉)
𝐾+ ) and outgoing rate ¤𝐹 (𝜉)

𝐾+ |r,out = Γout𝐹
(𝜉)
𝐾+ with Γin/out ≡ Γ

ph
in/out + Γel

in/out,
where Γ

el(ph)
in/out , are rates of electron-electron (electron-phonon FU) processes. The

strength of FU processes is weaker than Rout by factors of ≈(𝑣𝐹𝑒E/Ω2)2𝑛, where
|𝑛| > 1 is the number of photons emitted or absorbed [258]. FU processes also
impart large phonon momentum transfers that the form-factor in Eq. C.6 suppresses.

In the steady-state, ¤𝐹 (𝜉)
𝐾+ |in = ¤𝐹 (𝜉)

𝐾+ |ph,in + ¤𝐹 (𝜉)
𝐾+ |r,in and ¤𝐹 (𝜉)

𝐾+ |out = ¤𝐹 (𝜉)
𝐾+ |ph,out + ¤𝐹 (𝜉)

𝐾+ |r,out

are equal, and

𝐹
(𝜉)
𝐾+ =

Rin𝐹
(𝜉)
in + Γin

Rin𝐹
(𝜉)
in + Rout(1 − 𝐹 (𝜉)

out ) + Γin + Γout
. (5.7)

Note that 𝐹 (𝜉)
in , 1 − 𝐹 (𝜉)

out ≠ 0 due to electron (hole) excitations in the UFB (LFB)
generated by FU processes. Since Rin ∝ Ain, Rin decreases as a function of E,
shrinking to zero for E ≥ E∗ (see Figure 5.3(b) for numerical verification). We
expect a similar E-dependence of 𝐹 (𝜉)

𝐾+ and 𝜎𝑥𝑦, yet smeared by additional scattering
rates appearing in Eq. 5.7, as verified numerically in Figure 5.1(b). Additionally,
Eq. 5.7 elucidates the dependence of 𝐹 (𝜉)

𝐾+ on the ratio 𝜒 ≡ 𝜏el
𝐾
/𝜏ph
𝐾

≈ Rout/Γel
out ≈

Rout/Γel
in (see Figure 5.1(b)), with 𝐹

(𝜉)
𝐾+ → 0.5 as 𝜒 → 0. In Figs. 5.1(b) and

5.4(b-c), we display 𝜒 evaluated at the amplitude E where 𝜁 is fixed.

A similar rate equation can be derived for the occupation probability of holes in
the LFB. Due to the emergent, approximate anti-unitary particle-hole symmetry
[23, 270, 271] at charge neutrality that is preserved by the drive, the transition
rates in the LFB are roughly similar to those in the UFB, leading to approximately
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Figure 5.3: (a) Schematics of the Floquet spectrum and one of the phonon light-
cones originating from the area S𝐾 in the UFB. The intersection between the UFB
(LFB) and all cones centered in S𝐾 form Sin (Sout). As E → E∗, the area of Sin
vanishes. (b-d) Numerical verification of the phenomenological model. (b) Area
of Sin, Ain, vs. E for three values of 𝑐ph/𝑣0

eff. (c) Average occupation in S𝐾 . (d)
Anomalous Hall conductivity 𝜎𝑥𝑦 for same parameters as (b, c). At E∗ (dashed
lines), Ain, 𝐹 (𝜉)

𝐾+ , and 𝜎𝑥𝑦 sharply change.

equal electron and hole occupations near the Dirac points in the UFB and LFB
(𝐹 (𝜉)
𝐾+ ≈ 1 − 𝐹 (𝜉)

𝐾 ′−). Notice that the signs of the Berry curvatures near the Dirac
points in the LFB and UFB are opposite, resulting in constructive contributions of
electron and hole populations to 𝜎𝑥𝑦. Thus, we can reproduce qualitatively the sharp
change of 𝜎𝑥𝑦 with E in Figure 5.3 [131]. Occupations in the resonance ring vicinity
(Figure 5.2(c)) yield a similar E-dependence, but with a much lower critical field
(not visible for E plotted in Figs. 5.1 and 5.3) due to different effective electronic
velocities near the resonance ring.

5.5 Numerical Analysis
The results in Figure 5.3(b-d) utilized a simplified toy model describing TBG as
a tight-binding hexagonal lattice, similar to graphene [42], but with parameters
tuned to match 𝑣𝐹 and the Brillouin zone size of TBG. This model misses some
subtle details but captures the interplay between electron and phonon velocities
and the large Berry curvature at the Dirac points and resonance ring. The model
represents only the central 𝜈 = ±1 bands of the undriven bandstructure, but since
the low drive angular frequency Ω is only resonant to these narrow bands, we can
ignore the |𝜈 | > 1 bands—valid when 𝜃 is near the magic angle where the |𝜈 | > 1
and 𝜈 = ±1 bands are well-separated. In Appendix A, we present the numerical
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analysis of a continuum model without electron-electron interactions [25, 149, 193],
which yields qualitatively similar results, demonstrating that the controllable 𝜎𝑥𝑦
is insensitive to model details. In the toy model, 𝑣0

eff = 18.9 km/s, and we vary
𝑐ph ∈ [17.9 km/s, 19.4 km/s] in Figure 5.1(c). In the range 𝑐ph < 𝑣0

eff, the drive
induces the regime 𝑐ph > 𝑣eff(E) for E > E∗. To capture the decaying overlap of
the wavefunctions for momentum Umklapp transitions, in the toy model, we take
W𝜉𝜈𝜈′

𝒌,𝒒
→ ⟨𝜉𝜈′𝒌 + 𝒒 |𝜉𝜈𝒌⟩𝑒−𝑙2𝑤𝑞2/4, with 𝑙𝑤 ≈ 𝐿𝑀/(1.5

√
3) representing the radius

of Wannier orbitals localized to TBG layer alignment sites [119].

First, we show how solving the FBE (Eq. 5.4) for the steady-state distribution
verifies the phenomenological model. Consider the non-interacting limit by solving
Eq. 5.4 for 𝐹 (𝜉)

𝒌𝛼
with 𝜒 → ∞ (𝐼el-el

𝒌𝛼
= 0). The left-half column of Figure 5.4(a)

shows the non-interacting steady-state distributions for a phonon bath temperature
of 1 K and 𝑐ph = 0.99𝑣0

eff in the E > E∗ and E < E∗ cases. When E > E∗ (left
bottom quadrant), the Dirac points have reduced occupations (see zoom-in boxes)
relative to when E < E∗ (left top quadrant), because incoming scattering rates into
S𝐾,𝐾 ′ are suppressed (verifying the phenomenological model). Figure 5.3(c) shows
the occupation near the 𝐾 point, 𝐹 (𝜉)

𝐾+ , as a function of E for three values of 𝑐ph/𝑣0
eff

and verifies Ain, 𝐹 (𝜉)
𝐾+ , and 𝜎𝑥𝑦 sharply change at the same critical field E = E∗.

Heating induced by FU processes causes 𝐹 (𝜉)
𝐾+ to slowly increase with E > E∗ (see

Eq. 5.7).

Next, we quantify the strength of Coulomb screening necessary to stabilize the
steady-state, which depends on the balance between electron-phonon cooling pro-
cesses and electron-electron heating processes. We include 𝐼el-el

𝒌𝛼
≠ 0 by taking finite

𝜒. On the right-half column of Figure 5.4(a), we show the resulting steady-state
occupations, which is slightly closer to the hot steady-state 𝐹 (𝜉)

𝒌± = 0.5 and has more
smeared occupations than the non-interacting case (left half of Figure 5.4(a)). To
quantify the effect of interactions on 𝜎𝑥𝑦, note that, in Figure 5.1(b), 𝜎𝑥𝑦 drops less
rapidly with E < E∗ as 𝜒 decreases. We capture this behavior with the visibility
parameter V ≡ −maxE<E∗ |𝜕E𝜎𝑥𝑦 |/[(𝑒2/ℎ)/E0]. Figure 5.4(b) demonstrates how
V increases with 𝜒. Lastly, we relate 𝜒 and 𝜁 to physical parameters in TBG. Fig-
ure 5.4(c) shows the necessary gate distances 𝑑 and dielectrics 𝜖 to experimentally
achieve various values of 𝜒, and Figure 5.4(d) shows the values of 𝜖 and deformation
potentials 𝐷 satisfying 𝜁 < 1 for 𝑑 = 4 nm. One suitable dielectric is SrTiO3 with
𝜖 ∼ 1600 at Ω = 5 meV/ℏ angular frequencies [69, 243, 295]; note that surface
optical phonons in SrTiO3 are of higher frequencies than Ω and would not interact



57

<latexit sha1_base64="WCdBMw0MbdqHbiiS92EsG9KdFLk=">AAAB/3icbVDLSsNAFL3xWesrKrhxM1gEVzUpRV0W3bisYB+QxDKZTtqhkwczE6HELvwVNy4UcetvuPNvnLRZaOuBgcM593LPHD/hTCrL+jaWlldW19ZLG+XNre2dXXNvvy3jVBDaIjGPRdfHknIW0ZZiitNuIigOfU47/ug69zsPVEgWR3dqnFAvxIOIBYxgpaWeeeiGWA0J5ll7glzk1Ol97Wzo9cyKVbWmQIvELkgFCjR75pfbj0ka0kgRjqV0bCtRXoaFYoTTSdlNJU0wGeEBdTSNcEill03zT9CJVvooiIV+kUJT9fdGhkMpx6GvJ/O0ct7Lxf88J1XBpZexKEkVjcjsUJBypGKUl4H6TFCi+FgTTATTWREZYoGJ0pWVdQn2/JcXSbtWtc+r9dt6pXFV1FGCIziGU7DhAhpwA01oAYFHeIZXeDOejBfj3fiYjS4Zxc4B/IHx+QONLJUo</latexit> V
[4
e2
/h

]

(a) (b)

K

K'

K' K'

K

K

1

10 2

1.00.50.0

3
0.75

1.5

0.5 -0.5

(c) (d)
500

101 5 D [eV]15
0.50 2.5 1.0

10001000

500
100

500

0.3 0.5

0.7 0.9

Figure 5.4: (a) Left column: steady-state occupation of the UFB when 𝜒 = ∞
(calculated on a 163×163 momentum grid). Right column: steady-state occupation
when 𝜒 = 0.24 (calculated on a 73×73 momentum grid). Bottom row: strong-drive
case (E = 4.3E0 > E∗). Top row: weak-drive case (E = 0.97E0 < E∗). Zoom-in
boxes: the 𝐾 , 𝐾′ points have reduced occupation when E > E∗ relative to when
E < E∗. (b) Visibility V vs. 𝜒. (c) Value of 𝜒 for various 𝜖 and gate distances 𝑑.
(d) Value of 𝜂 for various 𝜖 and deformation potentials 𝐷, with 𝑑 = 4 nm. Points in
(b, d): parameters used in Figure 5.1(b).

with electrons in TBG via direct (non-FU) scattering processes [245].

5.6 Conclusion
TBG is a remarkable system whose Fermi velocity is comparable to the speed of
sound. Upon THz-laser driving, the electronic population dynamics exhibits bot-
tlenecks for electron-phonon scattering into high-Berry curvature Floquet states,
strongly affecting the anomalous Hall transport. These bottlenecks can be sensi-
tively controlled by the drive amplitude. If the undriven effective electron speed
is faster than sound 𝑣0

eff > 𝑐ph, a drive with E > E∗ induces the opposite regime
𝑣eff(E) < 𝑐ph, weakening the electron-phonon coupling and suppressing the Hall
conductivity (Figure 5.1(b)). We also find that a strong E-dependence of 𝜎𝑥𝑦
arises for efficient Coulomb screening by a close-by gate or a strong dielectric
[49, 248, 289]. Experimental advances in Floquet engineering [185], and THz laser
sources [52, 160], show that our predicitions should be accessible experimentally.

Analysis of UV-visible or X-ray driven TBG is a subject of future work, which
must account for optically-active dispersive bands [131, 291]. High-frequency
drives could reduce heating, facilitating fewer electron-electron FU processes [258]
while activating electron-phonon Umklapp cooling processes arising from tightly-
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localized Wannier orbitals in TBG [119]. (In this work, these cooling processes
are suppressed FU processes.) Another interesting direction involves developing a
Hartree-Fock treatment for symmetry-broken phases in the steady-state of strongly
coupled TBG [76]. We leave these exciting directions to future studies.
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A p p e n d i x A

APPENDIX

A.1 Details of the Models
In both the toy and continuum models, we take the undriven Hamiltonians 𝐻 (𝒌)
and obtain the time-dependent Hamiltonian 𝐻 (𝒌, 𝑡) via minimal coupling 𝒌 →
𝒌 + 𝑒𝑨(𝑡)/ℏ. Here,

𝑨(𝑡) = 𝐴[cos(Ω𝑡)𝒙̂ − sin(Ω𝑡) 𝒚̂] (A.1)

is the magnetic vector potential of the circularly polarized laser. We can expand the
time-dependent eigenstates of the Hamiltonian in a Floquet-Bloch basis [241]:

|𝜓𝒌𝛼 (𝑡)⟩ = 𝑒−𝑖𝜀
( 𝜉 )
𝛼 𝑡/ℏ |Φ𝑚

𝒌𝛼 (𝑡)⟩, (A.2)

where |Φ𝑚
𝒌𝛼
(𝑡)⟩ is periodic in time (|Φ𝑚

𝒌𝛼
(𝑡)⟩ = |Φ𝑚

𝒌𝛼
(𝑡 + 2𝜋/Ω)⟩), 𝜀(𝜉)𝛼 are the

quasienergies plotted in Figure 5.2(d), and 𝛼 enumerates the Floquet quasienergy
bands. To determine the Floquet-Bloch basis, it is easiest to expand the time-
dependent |Φ𝑚

𝒌𝛼
(𝑡)⟩ in terms of time-independent Fourier harmonics |𝜙𝑚

𝒌𝛼
⟩,

|Φ𝑚
𝒌𝛼 (𝑡)⟩ =

∑︁
𝑚

𝑒−𝑖𝑚Ω𝑡 |𝜙𝑚𝒌𝛼⟩, (A.3)

take a Fourier transform the Hamiltonian,

𝐻 (𝒌, 𝑡) =
∑︁
𝑚

𝑒−𝑖𝑚Ω𝑡𝐻 (𝑚) (𝒌), (A.4)

and solve the Schrödinger equation in the basis of Floquet harmonics:

(𝜀(𝜉)𝛼 + 𝑚ℏΩ) |𝜙𝑚𝒌𝛼⟩ =
∑︁
𝑚′
𝐻 (𝑚−𝑚′) (𝒌) |𝜙𝑚′

𝒌𝛼⟩. (A.5)

In the following subsections, we detail the exact form of the Floquet Hamiltonians.

Tight binding Floquet toy Hamiltonian
We use a rescaled, two-band tight binding model for graphene to replicate the flat
conduction and valence bands of TBG. In the rescaled Hamiltonian

𝐻toy(𝒌) =
(

0 ℎ𝒌

ℎ∗𝒌 0

)
, (A.6)
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ℎ𝒌 =
𝑊

3

∑︁
𝑗

𝑒𝑖𝒌·𝜹 𝑗 , (A.7)

we choose long hopping vectors

𝜹 𝑗 = 𝐿𝑀/
√

3[sin
(
2𝜋𝑚/3

)
𝒙̂ + cos

(
2𝜋𝑚/3

)
𝒚̂], (A.8)

with 𝐿𝑀 = 0.246 nm/(2 sin 𝜃/2), and a narrow bandwidth 𝑊 . The corresponding
rescaled energies and Bloch states are

𝐸𝜈 (𝒌) = 𝜈 |ℎ𝒌 |, (A.9)

and

|𝜈𝒌⟩ = 1
√

2

(
𝜈𝑒𝑖arg(ℎ𝒌 )

1

)
, (A.10)

respectively, with 𝜈 = ±1 enumerating the narrow Bloch bands.

Following Ref. [42], we perform minimal coupling, which turns the functions ℎ𝒌
into time-dependent quantities with Fourier transforms

ℎ
(𝑛)
𝒌

=
1

2𝜋/Ω

∫ 2𝜋/Ω

0
ℎ𝒌+𝑒𝑨(𝑡)/ℏ𝑒

−𝑖𝑛Ω𝑡𝑑𝑡

=
∑︁
𝑗

𝑡𝑒𝑖𝒌·𝜹 𝑗 𝑒𝑖𝑛𝜙 𝑗 𝐽𝑛 (−Ẽ),
(A.11)

where Ẽ is the dimensionless drive strength

Ẽ =
𝑒𝐿𝑀√

3ℏ
𝐴 =

𝑒𝐿𝑀√
3ℏ

E
Ω

; (A.12)

the phase angles are 𝜙0 = 𝜋/2, 𝜙1 = −5𝜋/6, and 𝜙2 = −𝜋/6; and

𝐽𝑛 (𝑧) =
1

2𝜋𝑖𝑛

∫ 2𝜋

0
𝑒𝑖𝑧 cos 𝜃𝑒𝑖𝑛𝜃𝑑𝜃. (A.13)

The Fourier-transformed Hamiltonian is

𝐻
(𝑛)
toy (𝒌) =

(
0 ℎ

(𝑛)
𝒌

ℎ
∗(𝑛)
𝒌

0

)
. (A.14)

Note that
ℎ
∗(𝑛)
𝒌

=
∑︁
𝑗

𝑡𝑒−𝑖𝒌·𝜹 𝑗 𝑒𝑖𝑛𝜙 𝑗 𝐽𝑛 (Ẽ) (A.15)

is the Fourier transform of the conjugate of ℎ𝒌 . In simulations, we generally truncate
the Fourier Hamiltonian (Eq. A.5) to −12 ≤ 𝑚 ≤ 12, so that we account for a suf-
ficient number of high-order Floquet-Umklapp processes in the Floquet-Boltzmann
equation. We do not perform the gauge transformation ℎ(𝑛)

𝒌
→ 𝑖𝑒−𝑖𝒌·𝜹0ℎ

(𝑛)
𝒌

so as to
preserve the 𝐶3 symmetry of the matrix element in the Floquet-Boltzmann equation
(see Eq. C.21).
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Figure A.1: (a) The quasienergy band structure of the toy model with for the param-
eters used in the main text. (b) The quasienergy band structure of the continuum
model at valley 𝜉 = +1. In both panels, the first Floquet Brillouin zone is shaded.
See Section A.2 for details and justification for the parameters we have used.

Continuum Model Floquet Hamiltonian
The undriven continuum model for TBG [149] describes the bandstructure of TBG
near the valley 𝜉 = ±1 of the monolayer graphene Brillouin zone. Its Hamiltonian

𝐻𝜉 (𝒌) = ©­«
𝐻
𝜉

1 (𝒌) 𝑈
†
𝜉

𝑈𝜉 𝐻
𝜉

2 (𝒌)
ª®¬ (A.16)

is diagonalized in the basis 𝜓𝑛𝒌 = (𝜓𝐴1
𝑛𝒌
, 𝜓

𝐵1
𝑛𝒌
, 𝜓

𝐴2
𝑛𝒌
, 𝜓

𝐵2
𝑛𝒌
)𝑇 with

𝜓𝑋
𝑛𝒌 (𝒓) = 𝑒

𝑖𝒌mic·𝒓
∑︁
𝑮

𝐶𝑋
𝑛𝒌 (𝑮)𝑒𝑖𝑮 ·𝒓 (A.17)

where 𝑋 = 𝐴𝑙 , 𝐵𝑙 represents sublattice 𝐴 or 𝐵 degree of freedom in layer index
𝑙 = ±1, 𝒌mic = 𝒌 + (𝑲+1

𝜉 + 𝑲−1
𝜉 )/2 + 𝒙̂

√
3𝜉/2|𝑲+1

𝜉 − 𝑲−1
𝜉 | is the microscopic

momentum of the electrons, 𝒌 is the mini Brillouin zone momentum, and

𝑲𝑙𝜉 = −𝜉 4𝜋
3𝑎
𝑅(−𝑙𝜃/2)𝒙̂ (A.18)

for layer 𝑙 = ±1 and 𝑎 = 0.246 nm. In Eq. A.16, 𝐻𝜉

𝑙
are the monolayer graphene

Hamiltonians, which, in close vicinity of the 𝜉 = ±1 valleys, resemble Dirac cones:

𝐻
𝜉

𝑙
(𝒌) = −ℏ𝑣ml

𝐹

[
𝑅(𝑙𝜃/2) (𝒌mic − 𝑲𝑙𝜉)

]
· (𝜉𝜎𝑥 , 𝜎𝑦) (A.19)

where 𝑅(𝜑) is the 2 × 2 rotation matrix, and 𝑣ml
𝐹

is the monolayer Graphene Fermi
velocity. The interlayer coupling is

𝑈𝜉 =

(
𝑢 𝑢′

𝑢′ 𝑢

)
+

(
𝑢 𝑢′𝜈−𝜉

𝑢′𝜈𝜉 𝑢

)
𝑒𝑖𝜉𝑮1·𝒓

+
(
𝑢 𝑢′𝜈𝜉

𝑢′𝜈−𝜉 𝑢

)
𝑒𝑖𝜉 (𝑮2+𝑮3)·𝒓

(A.20)
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Using minimal coupling, we obtain time-dependent monolayer graphene Hamilto-
nians, with Fourier transform

𝐻
𝜉 (𝑛)
𝑙

(𝒌) = −ℏ𝑣
{
𝑅(𝑙𝜃/2)

(
[𝒌mic − 𝑲 (𝑙)

𝜉
]𝛿𝑛,0

+ 𝑒
ℏ

1
2
E[(𝛿𝑛,1 + 𝛿𝑛,−1) 𝒚̂

− 𝑖(𝛿𝑛,−1 − 𝛿𝑛,1)𝒙̂]
)}

· (𝜉𝜎𝑥 , 𝜎𝑦).

(A.21)

Then,

𝐻
(𝑛)
𝜉

=
©­«
𝐻
𝜉 (𝑛)
1 (𝒌) 𝑈

†
𝜉
𝛿𝑛,0

𝑈𝜉𝛿𝑛,0 𝐻
𝜉 (𝑛)
2 (𝒌)

ª®¬ (A.22)

is the Fourier transform of the continuum model Hamiltonian. For the continuum
model, we truncate the Floquet Hamiltonian (Eq. A.16) to −6 ≤ 𝑚 ≤ 6.

Upon diagonalizing the Floquet Hamiltonian, we obtain a large number of Floquet
states per energy interval [−ℏΩ/2, ℏΩ/2]. We select two states per 𝒌-point whose
spectral weights 𝐴0

𝛼 (𝒌) = |⟨𝜙0
𝒌𝛼
|𝜙0

𝒌𝛼
⟩|2 are large (which makes their contribution to

the Floquet-Boltzmann equation most important, see Section C).

Quasienergy Bands
In Section A.2, we provide and motivate the choices of physical parameters that we
use in the main text. In Figure A.1, we preview the quasienergy bands for our choice
of toy and continuum model parameters.

A.2 Choice of Physical Parameters
First, we present the physical parameters we use for the electronic Hamiltonian in
the TBG continuum model (see Section A.1 for the Hamiltonian). We consider the
non-interacting continuum model [25, 149] at a near-magic twist angle of 𝜃 = 1.13◦.
The bandwidth of the central bands at this angle is 𝑊 ≈ 5 meV, and a perturbative
expansion of the Hamiltonian around the Brillouin zone Dirac points [25] estimates
the Fermi velocity as

𝑣𝐹 (𝜃) = 𝑣ml
𝐹 (1 − 3𝛽2)/(1 + 3𝛽2(1 + 𝜂2)), (A.23)

where 𝛽 = 𝑢′/(ℏ𝑘𝜃𝑣ml
𝐹
) and 𝜂 = 𝑢/𝑢′ with 𝑣ml

𝐹
= 8 × 105 m/s, 𝑘𝜃 = 4𝜋/(3𝐿𝑀),

𝑢 = 0.0797 eV, and 𝑢′ = 0.0975 eV [25, 149]. Eq. A.23 predicts that the Fermi
velocity at the chosen twist angle is 𝑣𝐹 = 27 km/s. However, the derivation of
Eq. A.23 approximates that 𝐻𝜉

𝑙
is roughly 𝜃-independent and tends to overestimate

𝑣𝐹 (see Figure 4 inset in [25]). We can obtain a better estimate by numerically
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calculating the Fermi velocity along the path 𝐾-𝑀 in 𝒌-space of the 𝜈 = +1 band in
the 𝜉 = +1 valley. (This is the direction of maximum Fermi velocity.) The estimate
yields 𝑣𝐹 = 17.5 km/s, and we hereafter use this value. In our Floquet Hamiltonian,
we use a laser angular-frequency of Ω ≈ 𝑊/ℏ ≈ 5 meV/ℏ.

Second, we present the parameters we use for the electronic Hamiltonian of the
TBG two-band toy tight binding model (see Section A.1 for the Hamiltonian). We
choose our toy model Fermi velocity, frequency, and twist angle to roughly match
those of the continuum model. Specifically, we use a twist angle of 𝜃 = 1.13◦ and
choose 𝑊 = 3.1 meV so that the Fermi velocity 𝑣𝐹 = 𝑊𝐿𝑀/(2

√
3ℏ) = 17 km/s

roughly matches that of the continuum model at the same angle. In the toy model
Floquet Hamiltonian, we choose Ω ≈ 5 meV/ℏ.

Third, we discuss the parameters we use for the TBG phonons. For both the
continuum and toy models, we consider phonons speeds in the range of 𝑐ph ∈
[17.9 km/s, 19.4 km/s]. In the toy model, 𝑣0

eff = 18.9 km/s, and, in the continuum
model, 𝑣0

eff = 19.5 km/s, so the range of 𝑐ph we choose covers the regime 𝑐ph < 𝑣
0
eff,

in which the drive induces the opposite regime 𝑐ph > 𝑣eff(E) when E > E∗. We
also use the same phonon bath temperature of 𝑇ph = 1 K for the toy and continuum
model calculations.

Please see Section A.15 for details of the numerical 𝒌-point grid and Section A.12
for details of the toy model form factor.

A.3 Anomalous Hall Conductivity Calculations for the Continuum Model
In this section, we repeat the calculations in the main text on the TBG continuum
model [25, 149]. We consider the non-interacting limit, setting 𝜖 → ∞ so that
𝐼el-el
𝒌𝛼

= 0.

First, we discuss differences in the bandstructure and topology at valleys 𝜉 = + and
𝜉 = −. The circularly polarized laser opens a gap at the Dirac points, Δ𝐾 , effectively
adding a mass term 𝜉Δ𝐾𝜎𝑧 to the Hamiltonian (see Section A.1 and [131] for a
derivation) in the vicinity of the Dirac points. Because the sign of the mass term
depends on 𝜉, the 𝜉 = ±1 superlattice valley contributions to 𝜎𝑥𝑦 do not trivially
cancel to zero. In fact, in reciprocal space, the Berry curvature and occupations
near 𝜉 = +1 are simple 𝜋/3 rotations of those in 𝜉 = −1, so

𝜎𝑥𝑦 =
4𝑒2

ℎ

∑︁
𝛼=±

∫
MBZ

𝑑2𝒌

(2𝜋)2B
(+1)
𝒌𝛼

𝐹
(+1)
𝒌𝛼

. (A.24)
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(a) (b)

[km/s] 18.519.5

-

Figure A.2: (a) Left: the steady-state occupation of the lower Floquet band in valley
𝜉 = +1 of the continuum model [25, 149]. Right: the Berry curvature of the same
band, which peaks near the Dirac points and the resonance ring. (b) The anomalous
Hall conductivity 𝜎𝑥𝑦 as a function of drive strength E.

In Figure A.2, we show the steady-state and𝜎𝑥𝑦 for the continuum model calculation.
Note that we use the full form factor W𝜉𝜈′𝜈

𝒌,𝒒
= ⟨𝜉𝜈′𝒌 + 𝒒 |𝜉𝜈𝒌⟩ as calculated from

the continuum model wavefunctions (see Section A.12).

A.4 Direct Variation of the Phonon Speed 𝑐ph

Throughout the main text, we use the drive strength E to control electron speeds. We
could achieve similar results by keeping E fixed and varying 𝑐ph instead. Figure A.3
shows the variation of 𝜎𝑥𝑦 as a function of 𝑐ph. The curves resemble the dependence
of 𝜎𝑥𝑦 on E in the main text (see, for e.g., Figure 1(b)).

A.5 Symmetries and Berry Curvature Distributions of the Toy and Contin-
uum Models

In this section, we compare the symmetries of the toy and continuum models with
and without the drive, and we show that the Berry curvature distributions of the
models with the drive are consistent near the Dirac points.

Symmetries
The symmetries of the undriven BM continuum model are 𝐶2𝑧𝑇 = 𝜎𝑥K, 𝐶3 =

𝑒𝑖2𝜋/3𝜎𝑧 , and 𝐶2𝑥 = 𝜎𝑥𝜏𝑥 , where 𝜏𝑖 and 𝜎𝑖 are in the layer and sublattice degrees of
freedom, 𝑖 = 0, 𝑥, 𝑦, 𝑧, and K is conjugation. At charge neutrality, undriven TBG
also has an emergent, approximate unitary particle-hole symmetry 𝑃 = 𝑖𝜏𝑦 and anti-
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unitary particle-hole symmetry P = 𝑃𝐶2𝑧𝑇 within each superlattice valley, which
ensures 𝑃𝐻𝜉 (𝒌)𝑃−1 ≈ −𝐻𝜉 (−𝒌) and P𝐻𝜉 (𝒌)P−1 ≈ −𝐻𝜉 (−𝒌) (see Eq. A.16 for
the definition of 𝐻𝜉 (𝒌)) [23, 270, 271].

We now discuss the effect of the drive on the symmetries of the BM model. The drive
induces a dynamical Haldane mass termΔ𝐾𝜉𝜎𝑧 (see Section A.5). It also resonantly-
couples states around the resonance ring, where the effective Hamiltonian is

𝐻
𝜉

𝑅
(𝒌) = 𝑉𝑅 (𝒌) |𝜉 − 𝒌⟩⟨𝜉 + 𝒌 | +𝑉∗

𝑅 (𝒌) |𝜉 + 𝒌⟩⟨𝜉 − 𝒌 | (A.25)

as derived from degenerate perturbation theory, where𝑉𝑅 (𝒌) = ⟨𝜉−𝒌 |𝐻 (1)
𝜉

(𝒌) |𝜉+𝒌⟩
and |𝜉 ± 𝒌⟩ are the undriven single-particle Bloch states (see the main text for the
definition) [130]. We can see that the drive breaks 𝐶2𝑧𝑇 symmetry by opening the
Haldane gap. The drive also breaks 𝑃 symmetry because the drive-induced Haldane
mass term Δ𝐾𝜉𝜎𝑧 commutes with 𝑃. However, the drive preserves the anti-unitary
P symmetry. One can see this by first noting that (𝐶2𝑧𝑇)𝜎𝑧 (𝐶2𝑧𝑇)−1 = −𝜎𝑧, so
PΔ𝐾𝜉𝜎𝑧P−1 = −Δ𝐾𝜉𝜎𝑧. Secondly, since P|𝜉−,±𝒌⟩ = |𝜉+,∓𝒌⟩,

P𝐻𝑅 (𝒌)P−1 = 𝑉𝑅 (𝒌) |𝜉+,−𝒌⟩⟨𝜉−,−𝒌 |
+𝑉∗

𝑅 (𝒌) |𝜉−,−𝒌⟩⟨𝜉+,−𝒌 |.
(A.26)

Noting that P𝐻 (1)
𝜉

(𝒌)P−1 = −𝐻 (−1)
𝜉

(−𝒌) and |𝜉 + 𝒌⟩ = P−1 |𝜉−,−𝒌⟩, we find that

𝑉𝑅 (𝒌) = −⟨𝜉+,−𝒌 |𝐻 (−1)
𝜉

(−𝒌) |𝜉−,−𝒌⟩ = −𝑉∗
𝑅 (−𝒌). (A.27)

Therefore, P𝐻𝑅 (𝒌)P−1 = −𝐻𝑅 (−𝒌), and the Hamiltonian is also particle-hole sym-
metric along the resonantly-coupled states. Lastly, the drive preserves𝐶3 symmetry

3.38
3.86
4.35
4.83

Figure A.3: Anomalous Hall conductivity of the toy model as a function of the ratio
𝑐ph/𝑣0

eff for three different drive field strengths E/E0. The same electron-phonon
decoupling process is visible as 𝜎𝑥𝑦 plateaus.
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and 𝐶2𝑥 symmetry, which one can see by noting the following:

𝐶3𝐻𝜉 (𝒌)𝐶−1
3 = 𝐻𝜉 (𝒌), 𝐶2𝑥𝐻𝜉 (𝒌)𝐶−1

2𝑥 = 𝐻−𝜉 (𝒌), (A.28)

𝐶3Δ𝐾𝜉𝜎𝑧𝐶
−1
3 = Δ𝐾𝜉𝜎𝑧, 𝐶2𝑥Δ𝐾𝜉𝜎𝑧𝐶

−1
2𝑥 = −Δ𝐾𝜉𝜎𝑧, (A.29)

and
𝐶3𝐻

𝜉

𝑅
(𝒌)𝐶−1

3 = 𝐻
𝜉

𝑅
(𝒌), 𝐶2𝑥𝐻

𝜉

𝑅
(𝒌)𝐶−1

2𝑥 = 𝐻
−𝜉
𝑅
(𝒌). (A.30)

Thus, the Hamiltonian near the Dirac points and resonantly-coupled states respect
the 𝐶3 and 𝐶2𝑥 symmetries.

Now, we discuss the symmetries of the toy model. In the undriven limit, the toy
model has exact particle-hole symmetry 𝑃 = 𝜎𝑧K. It also has the symmetries
𝐶2𝑧𝑇 = 𝜎𝑥K, 𝐶 = 𝜎𝑧 (sublattice/chiral symmetry), and 𝐶3 = 𝑒𝑖2𝜋/3𝜎𝑧 . The drive
opens a Haldane mass gap Δ𝐾𝜉MBZ𝜎𝑧, where 𝜉MBZ = 1 (−1) for the mini Brillouin
zone 𝐾 (𝐾′) point. We can now see that the drive breaks 𝐶2𝑧𝑇 , 𝐶, and 𝑇 symmetry
via the Haldane mass term, while preserving 𝑃 = 𝐶𝑇 symmetry. One can see that
𝑃 is preserved by noting that 𝑃Δ𝐾𝜉MBZ𝜎𝑧𝑃

−1 = −Δ𝐾𝜉MBZ𝜎𝑧 since conjugation K
inverts the momentum and hence the sign of the mass term. Similar arguments
as the continuum model case can be made to show that the Hamiltonian near the
resonance ring respects 𝑃.

Importantly, the drive preserves the emergent particle-hole symmetry in the con-
tinuum model while preserving the exact particle-hole symmetry in the toy model.
As we note in the phenomenological analysis section of the main text, the emergent
particle-hole symmetry ensures that the electron and hole scattering rates in the UFB
and LFB are similar. Secondly, the drive breaks 𝐶2𝑧𝑇 symmetry in both models by
opening a Haldane gap. In Section A.5, we show that the Haldane gap ensures the
Berry curvature distributions of the models near the Dirac points are consistent.

Berry Curvature
The tunable conductivity 𝜎𝑥𝑦 relies only on the large Berry curvature and electron-
phonon scattering bottlenecks near the Dirac points of the mini Brillouin zone. In this
section, we detail how the Berry curvature distributions for the toy and continuum
models are consistent near the Dirac points, as the numerical calculations of Berry
curvature demonstrate in Figure A.4. We now prove the agreement analytically. The
Hamiltonian for the mini Brillouin zone Dirac cone in the toy model is given by

𝐻
toy
Dirac(𝒒) = ℏ𝑣𝐹𝒒 · (𝜉MBZ𝜎𝑥 , 𝜎𝑦), (A.31)
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where 𝒒 is the momentum measured from the 𝐾 or 𝐾′ point, 𝑣𝐹 is the Fermi velocity
of TBG, and 𝜉MBZ = + for the 𝐾 point and 𝜉MBZ = − for the 𝐾′ point in the mini
Brillouin zone. The corresponding Hamiltonian for the continuum model is

𝐻cont
Dirac(𝒒) = ℏ𝑣𝐹𝒒 · (𝜉𝜎𝑥 , 𝜎𝑦) (A.32)

where 𝜉 is the superlattice valley index. Upon applying minimal coupling and
the Van-Vleck perturbative expansion (see Section A.10 for details), one finds the
effective Floquet Hamiltonians

𝐻
toy
Dirac,eff(𝒒) = ℏ𝑣𝐹𝒒 · (𝜉MBZ𝜎𝑥 , 𝜎𝑦) + 𝜉MBZΔ𝐾𝜎𝑧 (A.33)

𝐻cont
Dirac,eff(𝒒) = ℏ𝑣𝐹𝒒 · (𝜉𝜎𝑥 , 𝜎𝑦) + 𝜉Δ𝐾𝜎𝑧 . (A.34)

We note that in both models, the Berry curvature does not alternate signs between
the 𝐾 and 𝐾′ points in mini Brillouin zone. Additionally, Eq. A.34 shows that the
drive breaks time-reversal symmetry between the superlattice valleys 𝜉 = ±1 in the
BM model, permitting nonzero 𝜎𝑥𝑦 when contributions to the conductivity from
both superlattice valleys are combined.

A.6 Full Phenomenological Model
In this section, we derive a detailed phenomenological model that qualitatively
reproduces the dependence of 𝜎𝑥𝑦 on E and the effect of interactions presented in
the main text.

Let us begin by adding more details to the phenomenological model for the 𝐾-point

(a) (b)

-100 1000-100- 1000-100 1000-100 100

Figure A.4: Comparing the Berry curvature distribution in the upper Floquet band
in the (a) continuum model and (b) toy model at a drive amplitude of E/E0 ≈ 3.1.
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occupation. We write

𝐹
(𝜉)
𝐾+ = [Rin𝐹+ + Γel

in + Γ
el,FU
in + RFU

in 𝐹−]/
[Rin𝐹+ + Rout(1 − 𝐹−)
+ Γel

in + Γ
el,FU
in + Γel

out + Γ
el,FU
out

+ RFU
in 𝐹− + RFU

out (1 − 𝐹+)],

(A.35)

where Γel
in/out, Γ

el, FU
in/out and RFU

in/out are the non-FU electron-electron, FU electron-
electron, and FU electron-phonon scattering rates, respectively. Here, 𝐹𝛼 is the
average occupation of Floquet band 𝛼 outside the resonance ring, and 𝐹+ = 1 − 𝐹−.
We drop the superscript (𝜉) on the occupations for simplicity and work within
a single superlattice valley. Let us now make the following approximations and
definitions:

Γel
in ≈ Γel

out ≡ Γ, and Γ
el,FU
in ≈ Γ

el,FU
out ≈ 𝑆Γ, (A.36)

where FU processes are suppressed by a factor of 𝑆 ≡ (𝑉/ℏΩ)2, with 𝑉 ≈ 𝑣𝐹𝑒E/Ω.
For phonon transitions, let us make the following definitions:

Rout ≡ R, and Rin = 𝑟R, (A.37)

where 𝑟 ≡ Rin/Rout. Let us also define 𝑟FU ≡ RFU
in /RFU

out, and approximate RFU
out ≈

𝑆𝑎FUR, where the factor 𝑎FU > 1 accounts for the fact that the phase space area of
states connected to the UFB 𝐾 point by FU processes is much larger than area of
states connected to the UFB 𝐾 point by non-FU processes. We therefore obtain

RFU
out = 𝑆𝑎

FUR, and RFU
in = 𝑆𝑎FU𝑟FUR. (A.38)

Now, Eq. A.35 reduces to

𝐹
(𝜉)
𝐾+ =

𝑟𝐹+R + 𝑆𝐹−𝑎FU𝑟FUR + (1 + 𝑆)Γ
(1 + 𝑟)𝐹+R + 𝑆(1 + 𝑟FU)𝐹−𝑎FUR + 2(1 + 𝑆)Γ

. (A.39)

Let us further define 𝑥 ≡ Γ/R as a ratio of electron-electron to electron-phonon
scattering rates and use 𝐹− ≈ 1 − 𝐹+ (ensured by emergent particle-hole symmetry,
see Section A.5) to obtain

𝐹
(𝜉)
𝐾+ =

𝑟𝐹+ + 𝑆(1 − 𝐹+)𝑎FU𝑟FU + (1 + 𝑆)𝑥
(1 + 𝑟)𝐹+ + 𝑆(1 + 𝑟FU) (1 − 𝐹+)𝑎FU + 2(1 + 𝑆)𝑥

. (A.40)

We will determine the dependence of 𝐹 (𝜉)
𝐾+ on interaction strength 𝑥 at strong and

weak drive amplitudes.
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Figure A.5: The occupation 𝐹 (𝜉)
𝐾+ as predicted by the phenomenological model in

Section A.6 for different ratios 𝜒 ≡ 𝜏el
𝐾
/𝜏ph
𝐾

. Note that for large 𝜒, the occupation is
lower than the non-interacting case at weak drive amplitudes, an effect of reduced
Pauli blocking in the electron-phonon interactions.

We now derive the phenomenological equation for 𝐹𝛼. The rate equation is roughly

¤𝐹+ ≈Λin𝐹−(1 − 𝐹+) − Λout𝐹+(1 − 𝐹−)
+ Γ(1 + 𝑆) (1 − 𝐹+) − Γ(1 + 𝑆)𝐹+

(A.41)

where Λin and Λout are electron-phonon scattering rates into and out of the UFB.
Note that Λin ≈ 𝑆Λout since scattering processes described by Λin are FU processes.
We also approximate Λout ≈ 𝑓𝑏R, with a factor 𝑓𝑏 > 1, because we expect R, which
is suppressed by strong electron-phonon scattering bottlenecks near the 𝐾 point, to
be smaller than Λout, the total scattering rate into the UFB. We can then find the
steady-state solution 𝐹+ in terms of 𝑥 and substitute the results into Eq. A.40.

In Figure A.5, we show the occupation 𝐹 (𝜉)
𝐾+ as a function of E for different values

of 𝜒 = 𝜏el
𝐾
/𝜏ph
𝐾

≈ 𝑥−1𝐹+ |E=E∗ (c.f. 1/𝜏ph
𝐾

∼ R𝐹+ |E=E∗ and 1/𝜏el
𝐾
∼ Γ) where 𝐹+ |E=E∗

is 𝐹+ evaluated at the drive ampltiude E∗, which we choose to be E∗ = 2.5E0. To
generate the figure, we choose 𝑓𝑏 = 3 and 𝑎FU = 28. Note that 𝑎FU estimates that the
total area of momentum states connected to A𝐾 by electron-phonon FU processes
covers roughly 1/6 of the Brillouin zone. We write the following E-dependent
phenomenological equations for the ratios 𝑟 and 𝑟FU that capture very roughly their
dependence on E, inspired by Figure 4(b) in the main text. First, we approximate

𝑟 ≈ max
[

2
𝑒(E−E∗)/(0.8E0) + 1

− 1, 0
]
. (A.42)

Note 𝑟 ∼ 1 for E ≪ E∗ and 𝑟 = 0 for E > E∗, capturing the behavior shown in
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Figure 4(b) in the main text. Second, we choose

𝑟FU ≈ 1/2
𝑒(E−E∗)/(0.5E0) + 1

+ 1
2
. (A.43)

Here, 𝑟FU ∼ 1 for E ≪ E∗ and decreases with E, but never reaches 0 (since the
electrons are never decoupled from electron-phonon FU processes).

Two features are notable in Figure A.5. First, the occupation decreases as a function
of interaction strength for weak interactions (large 𝜒) and weak drive amplitudes, a
result of interactions reducing Pauli blocking of the phonon processes from patch
Sin to S𝐾 and from S𝐾 to Sout (i.e., increasing 𝐹 (𝜉)

in in Eq. 6 of the main text,
correspondingly suppressing 𝐹 (𝜉)

𝐾+ ). When interactions are strong (small 𝜒), Γel
in/out

dominates, and 𝐹 (𝜉)
𝐾+ → 0.5. Second, the occupation increases slowly for E > E∗,

since FU processes strengthen as (𝑉/ℏΩ)2 grows with E. Both of these behaviors
are visible in Figure 3(c) in the main text.

A.7 Formal Definition, Numerical Evaluation, and Phenomenological Model
of Ain

As described in the main text, a patch Sin shaped as an elliptical annulus (see
Figure 3(a)) with area Ain in momentum space vanishes as E → E∗. Here, we
provide a formal definition of Ain and explain how we estimate its dependence on
E numerically and analytically.

Formal Definition
Let us first define Ain formally. Consider a family of phonon cones centered
throughout S𝐾 , the circular patch enclosing a 𝐾-point in the quasienergy spectrum
(see Figure 3(a)). Suppose that a subset of the phonon cones are centered throughout
a small quasienergy window 𝑑𝜀𝒌+. The 𝒌-space area of states 𝑑Ain containing
intersections of the cones with the upper Floquet band is

𝑑Ain = 𝑑𝜀𝒌+
∑︁
𝑠=±

∫
𝑑2𝒌′ 𝛿(𝜀𝒌+ − 𝜀𝒌′+ + 𝑠ℏ𝑐ph |𝒌′ − 𝒌 |). (A.44)

Next, we integrate over 𝜀𝒌+ contained in S𝐾 to obtain

Ain =

∫
𝑑A =

∫
𝒌∈S𝐾

𝑑2𝒌
1

𝐷 (𝜀𝒌+)
×

×
[∑︁
𝑠=±

∫
𝑑2𝒌′ 𝛿(𝜀𝒌+ − 𝜀𝒌′+ + 𝑠ℏ𝑐ph |𝒌′ − 𝒌 |)

]
,

(A.45)
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where
𝐷 (𝜀) =

∑︁
𝛼

∫
𝑑2𝒌

(2𝜋)2 𝛿(𝜀 − 𝜀𝒌𝛼) (A.46)

is the density of states in the quasienergy band structure. Exploiting the circular
shape of S𝐾 , ∫

𝒌∈S𝐾
𝑑2𝒌 ≈

∫
𝑑2𝒌 Θ( |𝒌 − 𝑲 | − 𝑘 𝑝) (A.47)

where 𝑘 𝑝 is the radius of the circular area A𝐾 of S𝐾 . Lastly, we calculate an
approximate expression for 𝑘 𝑝, the radius of A𝐾 . In the vicinity of the Dirac cone,
the Hamiltonian is

𝐻𝐾 (𝒌, 𝑡) = 𝒅 · 𝝈, (A.48)

where 𝒅 = ℏ𝑣𝐹𝜉𝑘𝑥 𝒙̂+ℏ𝑣𝐹𝑘𝑦 𝒚̂+𝜉Δ𝐾E2𝒛. (See Section A.10 for a detailed derivation.)
The 𝒛-component of the Berry curvature is

B𝑧
𝑘𝛼

= 𝛼
𝑑𝑧

2|𝒅 |3
= 𝛼

Δ𝐾

[(ℏ𝑣𝐹𝑘)2 + Δ2
𝐾
]3/2

(A.49)

where 𝑑𝑧 = 𝜉Δ𝐾 and 𝛼 = ±. At the half-maximum, B𝑧
𝑘 𝑝𝛼

= 0.5B𝑧
0𝛼, so

𝑘 𝑝 = (22/3 − 1)1/2 Δ𝐾
ℏ𝑣𝐹

. (A.50)

Numerical Estimate
To generate the values of Ain we present in Figure 3(b), we evaluate the integrals in
Eq. A.45 on a finite-sized grid of 𝒌-points, smearing the step function by replacing
Θ( |𝒌 − 𝑲 | − 𝑘 𝑝) → [𝑒( |𝒌−𝑲 |−𝑘 𝑝)/𝜎𝑘 + 1]−1, where 𝜎𝑘 = 2𝜋/(𝐿𝑀𝑁) is the grid
spacing between 𝒌-points on an 𝑁 × 𝑁 Monkhorst-Pack grid (see Section A.15).
Thus, we approximate

Ain ≈
∑︁
𝒌

[𝑒( |𝒌−𝑲 |−𝑘 𝑝)/𝜎𝑘 + 1]−1 1
𝐷 (𝜀𝒌+)

×

×

∑︁
𝑠=±

∑︁
𝒌′

𝛿(𝜀𝒌+ − 𝜀𝒌′+ + 𝑠ℏ𝑐ph |𝒌′ − 𝒌 |)
 .

(A.51)

For more information on how we approximate the Dirac Delta function on the grid,
please see Section A.15. Note that we numerically-estimate the 𝐾-point occupation
in a similar way, by calculating

𝐹
(𝜉)
𝐾+ ≈

∑︁
𝒌

[𝑒( |𝒌−𝑲 |−𝑘 𝑝)/𝜎𝑘 + 1]−1𝐹
(𝜉)
𝒌+ . (A.52)
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(b)(a)

Figure A.6: (a) The intersection S𝐾 (Figure 3(a)) as viewed on the Brillouin zone.
The outer radius along the path 𝐾𝑅 is ℎ𝑏 (E). (b) Quasienergy (pink) along the path
𝐾𝑅, with the phonon light cone (grey) that determines the outer radius of Ain. The
intersections 𝑘+ and 𝑘− between the cone and the upper Floquet band determines
ℎ𝑏 (E) = 𝑘+ − 𝑘−.

Phenomenological Model
In this section, we prove that the intersection area Ain ∝ max(E∗−E, 0) as E → E∗.
The shape of Ain is an elliptical annulus as shown in Figure 3(a). Let us use ℎ𝑏 (E)
and 𝑤𝑏 (E) respectively to denote the outer major and minor axis radii of the
elliptical annulus (see Figs. A.6(a) and A.7(a)). In the following sections, we begin
by generating analytical estimates of ℎ𝑏 (E) and 𝑤𝑏 (E).

Estimate of ℎ𝑏

First, let us consider a slice of the upper Floquet band in 𝒌-space from the 𝐾 to the
resonance ring (R) along the direction of ℎ𝑏 (E), as we show in Figure A.6(b). Let us
define a one-dimensional momentum component 𝑞 along the path 𝐾-𝑅. We sketch
a phonon light cone (grey) originating from a point (yellow) in S𝐾 that determines
the outer radius of Ain. The phonon cone intersects with the quasienergy at points
𝑘+ and 𝑘−, and the outer radius of Ain is therefore ℎ𝑏 (E) = 𝑘+ − 𝑘−. First, consider
the undriven limit E = 0, where the gaps Δ𝑅 = 0 and Δ𝐾 = 0. We choose some
point 𝑞𝑚 such that 𝑘− < 𝑞𝑚 < 𝑘+ and series expand the energy 𝐸 (𝑞) of the undriven
system around 𝑞𝑚:

𝐸 (𝑞) ≈ 𝐸 (𝑞𝑚) + 𝐸′(𝑞𝑚) (𝑞 − 𝑞𝑚) +
1
2
𝐸′′(𝑞𝑚) (𝑞 − 𝑞𝑚)2

= 𝑎2𝑞
2 + 𝑎1𝑞 + 𝑎0,

(A.53)
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(a) (b)

Figure A.7: (a) Width of the intersection S𝐾 , 𝑤𝑏 (E). (b) Circular coordinate
system with arc length 𝑤 (increasing counterclockwise) that we use to determine
𝑤𝑏 (E) = 𝑤+ − 𝑤−.

where 𝑎2 = 𝐸′′(𝑞𝑚)/2, 𝑎1 = 𝐸′(𝑞𝑚) − 𝐸′′(𝑞𝑚)𝑞𝑚, and 𝑎0 = 𝐸 (𝑞𝑚) − 𝐸′(𝑞𝑚)𝑞𝑚 +
𝐸′′(𝑞𝑚)𝑞2

𝑚/2. As we increase E, the gaps Δ𝐾 and Δ𝑅 widen. Let us write the
quasienergy in the vicinity of 𝑞𝑚 as

𝜀(𝑞) ≈ 𝑓 (E)𝐸 (𝑞) + Δ𝐾

2
(A.54)

where 𝑓 (E) ≤ 1 is a scaling factor that decreases as E increases and accounts for
band flattening due to Δ𝐾 and Δ𝑅. Let

𝑓 −1 = 1 − 𝑏1Ẽ − 𝑏2Ẽ2, (A.55)

where 𝑏1 ≥ 0 and 𝑏2 ≥ 0 are constants dependent on the exact bandstructure (i.e.,
how the widening of Δ𝐾 and Δ𝑅 with E affects the bandstructure near 𝑞𝑚). The
roots of the equation 𝐸 (𝑞) = Δ𝐾/2 + ℏ𝑐ph𝑞 are 𝑘±, and we may write the equation
as

𝑎2𝑞
2 + 𝑎1𝑞 + 𝑎0 = 𝑓 ℏ𝑐𝑠𝑞, (A.56)

from which we find that

ℎ𝑏 = 𝑘+ − 𝑘− =
√︁
(𝑎1 − 𝑓 ℏ𝑐𝑠)2 − 4𝑎2𝑎0. (A.57)

Solving for E∗ through the equation ℎ𝑏 = 0, and then series expanding the expression
(𝑎1− 𝑓 ℏ𝑐𝑠)2−4𝑎2𝑎0 in powers of small E−E∗, we find that (𝑎1− 𝑓 ℏ𝑐𝑠)2−4𝑎2𝑎0 ∼
E∗ − E, so ℎ𝑏 ∼

√
E∗ − E.

Estimate of 𝑤𝑏

To estimate 𝑤𝑏 (see Figure A.7(a)), we define a circular coordinate system shown
in Figure A.7(b) whose origin is the 𝐾 point and arc length 𝑤 is zero along the 𝐾𝑅
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slice, increasing counterclockwise. The quasienergy 𝜀(𝑤) along the circle perimeter
varies with 𝑤; let us approximate

𝜀(𝑤) ≈ ℏΩ/2 − (𝑑0 + 𝑑2𝑤
2), (A.58)

using some fitting parameters 𝑑0 and 𝑑2. (We assume that𝑤 = 0 is at local maximum
of 𝜖 (𝑤), so there is no linear term in Eq. A.58.) Roughly, 𝑤𝑏 = 𝑤+ −𝑤−, where we
find 𝑤+ and 𝑤− by finding the roots of the equation

ℏΩ/2 − Δ(𝑤) = 𝑓 ℏ𝑐𝑠𝑞𝑚 . (A.59)

Here, once again, we use the factor 𝑓 in Eq. A.55 to account for band flattening as
E increases from zero. So,

𝑤𝑏 = 𝑤+ − 𝑤− = 2
√︁
( 𝑓 ℏ𝑐𝑠𝑞𝑚 + ℏΩ/2 − 𝑑0)/𝑑2. (A.60)

Solving for E∗ by setting 𝑤𝑏 = 0 and series expanding 𝑓 ℏ𝑐𝑠𝑞𝑚 + ℏΩ/2 − 𝑑0 in
powers of E, we find that 𝑤𝑏 ∼

√
E∗ − E.

Estimate of Ain

In the limit E → E∗, the elliptical annulus with finite thickness collapses into a
filled ellipse. Thus, in the limit E → E∗, we estimate that Ain = 𝜋ℎ𝑏 (E)𝑤𝑏 (E) ∝
max(E∗ − E, 0).

A.8 Predicting E∗ for the Toy Model
Here, we use the quasienergy dispersion of the toy model to predict E∗. By writing
an approximate, analytic expression for 𝑣eff(E) (see Eq. 6), we can find E∗ using
the relation 𝑣eff(E∗) = 𝑐ph. From Eq. 6, 𝑣eff(E) = (𝜀𝒌∗+ − 𝜀𝑲+)/|𝒌∗ − 𝑲 | for
some appropriately-chosen 𝒌∗ (dropping the superlattice valley index for notational
simplicity). One can find numerically that 𝒌∗ does not shift significantly with Ω or
E. We write an ansatz

𝜀𝒌∗+ ≈ ℏ𝑣0
eff |𝒌

∗ − 𝑲 | − ℏ𝑣𝐹

𝐿𝑀

(
𝑓 ′1Ẽ + 𝑓 ′2Ẽ

2
) |𝒌∗ − 𝑲 |
Ω/(2𝑣0

eff)
, (A.61)

where 𝑓 ′1 and 𝑓 ′2 are fitting constants dependent on the quasienergy bandstructure.
Here, ℏ𝑣𝐹/𝐿𝑀 is the order of magnitude energy scale of the resonance ring gap Δ𝑅.
The dependence of 𝜀𝒌∗+ on E arises predominantly from Δ𝑅. The dependence is
stronger when 𝒌∗ is close to the resonance ring, and we encode this behavior in the
ratio |𝒌∗ − 𝑲 |/Ω/(2𝑣0

eff), where Ω/(2𝑣0
eff) is the 𝒌-space distance between the 𝐾
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(b)(a)

Figure A.8: Comparing numerical evaluation of E∗ (points) to an analytic fit to Eq.
A.65. We use the same fitting parameters 𝑓2 = 0.778, 𝑓1 = 0, and 𝛿(𝑁) = 0.006 for
both panels.

point and the resonance ring. Separately, we know that 𝜀𝑲+ = Δ𝐾/2. We use Eq. 6
to infer

𝑣0
eff(E) = 𝑣

0
eff − Δ𝐾

2ℏ|𝒌∗ − 𝑲 | −
2ℏ𝑣𝐹𝑣0

eff
𝐿𝑀Ω

(
𝑓 ′1Ẽ + 𝑓 ′2Ẽ

2
)
. (A.62)

We know that 𝑣0
eff ∝ 𝑣𝐹 . We also assume that |𝒌∗ −𝑲 | does not change significantly

with E, so it is independent of the drive and only dependent on the superlattice
scale: |𝒌∗ − 𝑲 | ∝ 𝐿−1

𝑀
. Thus, we can absorb some unknown coefficients into new

coefficients 𝑓 ′′1 and 𝑓 ′′2 to obtain

𝑣0
eff(E) = 𝑣

0
eff −

ℏ𝑣2
𝐹

𝐿𝑀Ω

(
𝑓 ′′1 Ẽ + 𝑓 ′′2 Ẽ

2
)
. (A.63)

Upon solving for Ẽ∗ from 𝑐𝑠 = 𝑣eff(E∗), we find that

Ẽ∗ ≈

√︄
𝐿𝑀Ω

3 𝑓2𝑣𝐹

(√︃
1 − 𝑐ph/𝑣0

eff + 𝑓 2
1 − 𝑓1

)
, (A.64)

where 𝑓1 and 𝑓2 are new, rescaled fitting constants. Using the relation Ẽ =

𝑒𝐿𝑀E/(
√

3ℏΩ), we find

E∗ ≈ ℏΩ3/2

𝑓2𝑒𝐿
1/2
𝑀
𝑣

1/2
𝐹

(√︃
1 − 𝑐ph/𝑣0

eff + 𝑓 2
1 − 𝑓1

)
, (A.65)

As 𝑐ph → 𝑣0
eff, E∗ ∝ (1 − 𝑐ph/𝑣0

eff)
𝛾 where 𝛾 = 1 (1/2) if 𝑓1 ≠ 0 (= 0). See Figure

A.8 for a fit for two different frequencies Ω.
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(b)(a)

0.99 0.96

Figure A.9: Comparing the dependence of𝜎𝑥𝑦 on E for (a) the frequency considered
in the main text and (b) a lower frequency where Floquet-Umklapp processes are
stronger. Note that the frequency in panel (b) is inaccessible without generating
two-photon resonances in the continuum model due to the peaked shape of the
𝜈 = ±1 bands near the Γ point.

Finite grid size effects on an 𝑁×𝑁 Monkhorst-Pack grid (see Section A.15) generate
a small numerical error 𝛿(𝑁) that enters A.65 as

E∗ ≈
ℏ𝐿

1/2
𝑀

Ω3/2

𝑓2𝑒𝐿𝑀𝑣
1/2
𝐹

(√︃
1 − 𝑐ph/𝑣0

eff + 𝛿(𝑁) + 𝑓 2
1 − 𝑓1

)
. (A.66)

To see this, let us consider the details of the finite-sized grid. We impose energy
conservation through a broadened Dirac Delta function (see Section A.15), which
we model as a Gaussian function in energy with a tiny width

√
2𝜎 ≈ 0.1 ·

√
2 · 𝑊

2𝑁/3
. (A.67)

(We motivate the choice of the prefactor of 0.1 in Section A.15.) Since we avoid
the high symmetry 𝐾 point in our grids, the 𝒌-point with largest Berry curvature is,
in fact, a point 𝒌near point shifted away from 𝐾 by a small distance in momentum
space of

|𝛿𝒌 | = |𝒌near − 𝑲 | ≈ 1
2
Ω/(2ℏ𝑣0

eff)
2𝑁/3

=
Ω

4𝑣0
eff(2𝑁/3)

. (A.68)

This point is shifted in quasienergy by ℏ𝑣𝐹 |𝛿𝒌 | relative to the actual 𝐾 point. We
can account for both of these effects by shifting 𝜀𝑲+ → 𝜀𝑲+ + 𝛿𝜀, with 𝛿𝜀 =

√
2𝜎 +

ℏ𝑣𝐹 |𝛿𝒌 | and solve 𝑣eff(E∗) = 𝑐ph to find Eq. A.66 with 𝛿(𝑁) = 𝛿𝜀/(ℏ𝑣0
eff |𝒌

∗ − 𝑲 |).
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Figure A.10: Comparison of the fitted Δ𝑅 and predicted Δ𝐾 in Equations A.72 and
A.76 (solid lines) to those obtained from numerics (points), using ℏΩ = 5 meV in
the toy model. Here, we fit Δ𝑅 with factors of 𝑓 𝑅1 = 0.04 and 𝑓 𝑅2 = 0.0184 (see Eq.
A.72).

A.9 Different Frequencies
Reducing Ω below the value considered above will increase the ratio (𝑣𝐹𝑒E/Ω2)2

and in turn strengthen Floquet Umklapp processes, modifying the shape of the
𝜎𝑥𝑦 curve. We demonstrate this in Figure A.9(b) for an angular frequency Ω =

4.135 meV/ℏ. However, such a low-frequency regime is inaccessible in the contin-
uum model (without generating two-photon resonances) due to the peaked shape of
the continuum model 𝜈 = ±1 band near the Γ point, so we do not consider this lower
(doubly-resonant) frequency regime in the main text.

A.10 Gap Sizes
In this section, we estimate the size of the Floquet-induced gaps Δ𝐾 and Δ𝑅. By the
rotating wave approximation, the Floquet-induced gap at the resonance ring, Δ𝑅, is
roughly proportional to the drive energy [239]. For a resonant drive that couples
electronic states near the Dirac points, the drive energy is roughly

𝑣𝐹𝑒𝐴/ℏ, (A.69)

as predicted by minimal coupling 𝒒 → 𝒒 + 𝑒𝑨(𝑡)/ℏ in the Dirac cone Hamiltonian

𝐻𝐾 (𝒒) = ℏ𝑣𝐹𝒒 · (𝜉𝜎𝑥 , 𝜎𝑦) (A.70)

with 𝑣𝐹 = 𝑊𝐿𝑀/(2
√

3ℏ). (We always use perturbative drives that generally fall in
the range of Ẽ < 1.) We expect that

Δ𝑅 ≈ ℏ𝑣𝐹

𝐿𝑀
Ẽ . (A.71)
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Such an approximation works well for low-frequency resonant drives that couple
states near the Dirac points. However, resonant drives with higher frequencies,
like those used in the main text, couple states closer to the Γ-points of the TBG
energy dispersion where the bands are nonlinear in 𝑞. In such a case, higher order
(e.g., O(Ẽ2)) contributions (from 𝑂 (𝑞2) contributions of the bandstructure) to Δ𝑅

become dominant. In the present example, the energy of the tight binding model for
graphene is quadratic in momentum near the Γ point, so we write an ansatz

Δ𝑅 ≈ ℏ𝑣𝐹

𝐿𝑀
( 𝑓 𝑅1 Ẽ + 𝑓 𝑅2 Ẽ2), (A.72)

and fit 𝑓 𝑅1 and 𝑓 𝑅2 to match Δ𝑅 obtained by numerically diagonalizing the Floquet
Hamiltonian, as shown in Figure A.10.

We can estimate the Floquet-induced 𝐾-point gap, Δ𝐾 , by considering the time-
dependent Dirac Hamiltonian

𝐻𝐾 (𝒒, 𝑡) = ℏ𝑣𝐹 (𝜉𝑞𝑥𝜎𝑥 + 𝑞𝑦𝜎𝑦)
+ 𝑣𝐹𝑒𝐴[𝜉 cos(Ω𝑡)𝜎𝑥 − sin(Ω𝑡)𝜎𝑦] .

(A.73)

and performing a Van Vleck expansion [140, 236, 239] to obtain an effective Floquet
Hamiltonian

𝐻𝐾,eff(𝒒) = 𝐻 (0)
𝐾

+
[𝐻 (−1)

𝐾
, 𝐻

(1)
𝐾

]
ℏΩ

= 𝐻𝐾 + 𝜉
𝑒2𝑣2

𝐹
𝐴2

ℏΩ
𝜎𝑧 (A.74)

with

𝐻
(𝑛)
𝐾

(𝒒) = 1
2𝜋/Ω

∫ 2𝜋/Ω

0
𝐻𝐾 (𝒒, 𝑡)𝑒−𝑖𝑛Ω𝑡𝑑𝑡. (A.75)

From Eq. A.74, we can extract

Δ𝐾 =
2𝑒2𝑣2

𝐹

ℏΩ
𝐴2 =

6ℏ𝑣2
𝐹

𝐿2
𝑀
Ω
Ẽ2. (A.76)

A.11 Floquet Boltzmann Equation
Here, we present the full expression for the Floquet-Boltzmann equation [258],
𝜕𝑡𝐹𝒌𝛼 (𝑡) = 𝐼el-ph

𝒌𝛼
[{𝐹𝒌𝛼 (𝑡)}] + 𝐼el-el

𝒌𝛼
[{𝐹𝒌𝛼 (𝑡)}]. The electron-phonon collision inte-

gral is
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𝐼
el-ph
𝒌𝛼

[{𝐹𝒌𝛼}] =
2𝜋
ℏ

1
𝑁

∑︁
𝒌′∈BZ

∑︁
𝛼′

∑︁
𝑗

∑︁
𝑛

|G𝒌′𝛼′

𝒌𝛼 (𝑛, 𝑗) |2

×
[ {
𝐹𝒌′𝛼′ (1 − 𝐹𝒌𝛼)N (ℏ𝜔 𝑗 (𝒌′ − 𝒌)) − 𝐹𝒌𝛼 (1 − 𝐹𝒌′𝛼′) [1 + N(ℏ𝜔 𝑗 (𝒌′ − 𝒌))]

}
× 𝛿(𝜀𝒌′𝛼′ − 𝜀𝒌𝛼 + ℏ𝜔 𝑗 (𝒒) + 𝑛ℏΩ)

+
{
𝐹𝒌′𝛼′ (1 − 𝐹𝒌𝛼) [1 + N(ℏ𝜔 𝑗 (𝒌′ − 𝒌))] − 𝐹𝒌𝛼 (1 − 𝐹𝒌′𝛼′)N (ℏ𝜔 𝑗 (𝒌′ − 𝒌))

}
× 𝛿(𝜀𝒌′𝛼′ − 𝜀𝒌𝛼 − ℏ𝜔 𝑗 (𝒒) + 𝑛ℏΩ)

]
(A.77)

G𝒌′𝛼′

𝒌𝛼 (𝑛, 𝑗) = 1
√
𝐴Moiré

𝐷√︁
2𝜌𝑐ph

√︃
ℏ𝜔 𝑗 (𝒌′ − 𝒌)

∑︁
𝑚

∑︁
𝜈,𝜈′

⟨𝜙𝑛+𝑚𝒌′𝛼′ |𝜈
′𝒌′⟩W𝜉𝜈′𝜈

𝒌,𝒌+𝑮 𝑗
⟨𝜈𝒌 |𝜙𝑚𝒌𝛼⟩

(A.78)

where 𝜌 = 7.61 × 10−7 kg/m2 is the 2D density of the graphene layers, 𝐷 is the
deformation potential, and the acoustic phonon mode 𝑗 has frequency 𝜔 𝑗 (𝒒) =

ℏ𝑐ph |𝒒 + 𝑮 𝑗 | with {𝑮 𝑗 } being the set of all possible reciprocal lattice vectors. The
function N(𝜀) = (𝑒−𝜀/𝑘𝐵𝑇ph − 1)−1 is the Bose-Einstein occupation of the phonon
bath at temperature 𝑇ph. The electron-electron collision integral is

𝐼el-el
𝒌𝛼 [{𝐹𝒌𝛼}] =

4𝜋
ℏ

1
𝑁2

∑︁
𝒌2∈BZ

∑︁
𝒌3∈BZ

∑︁
𝛼2,𝛼3,𝛼4

∑︁
𝑛

∑︁
𝑮

|V (𝒌3,𝛼3),(𝒌1+𝒌2−𝒌3,𝛼4)
(𝒌,𝛼),(𝒌2,𝛼2) (𝑛,𝑮) |2×

× 𝛿(𝜀𝒌𝛼 + 𝜀𝒌2𝛼2 − 𝜀𝒌3𝛼3 − 𝜀𝒌+𝒌2−𝒌3,𝛼4 + 𝑛ℏΩ)×
×

[
(1 − 𝐹𝒌𝛼) (1 − 𝐹𝒌2𝛼2)𝐹𝒌3𝛼3𝐹𝒌1+𝒌2−𝒌3,𝛼4 − 𝐹𝒌𝛼𝐹𝒌2𝛼2 (1 − 𝐹𝒌3𝛼3) (1 − 𝐹𝒌1+𝒌2−𝒌3,𝛼4)

]
(A.79)

V (𝒌3,𝛼3),(𝒌1+𝒌2−𝒌3,𝛼4)
(𝒌,𝛼),(𝒌2,𝛼2) (𝑛) =

∑︁
𝜈1,𝜈2

∑︁
𝜈3,𝜈4

∑︁
𝑛2,𝑛3,𝑛4

𝑉𝒌2−𝒌3+𝑮W
𝜉𝜈1𝜈4
𝒌1,𝒒+𝑮W

𝜉𝜈2𝜈3
𝒌2,−𝒒−𝑮×

× ⟨𝜙𝑛−𝑛2+𝑛3+𝑛4
𝒌𝛼

|𝜈1𝒌⟩⟨𝜙𝑛2
𝒌2𝛼2

|𝜈2𝒌2⟩⟨𝜈3𝒌3 |𝜙𝑛3
𝒌3𝛼3

⟩⟨𝜈4𝒌4 |𝜙𝑛4
𝒌+𝒌2−𝒌3,𝛼4

⟩.
(A.80)

We solve for 𝜕𝑡𝐹𝒌𝛼 = 0 using the Newton-Raphson algorithm. To ensure charge
neutrality, we add a Lagrange multiplier term 𝜆(∑𝒌𝛼 𝐹𝒌𝛼 − 𝑁) to the Floquet-
Boltzmann equation, choosing some large constant 𝜆.
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Figure A.11: Comparing the average toy and continuum model form factorsW𝜉𝜈′𝜈
𝒌,𝒒+𝑮 ,

with |𝒒 +𝑮 | measured in units of 108 m−1. (a-c) The intraband (𝜈 = 𝜈′) form factors
at the 𝐾 , 𝑀 , and Γ points. (d-f) The interband (𝜈 ≠ 𝜈′) form factors at the 𝐾 , 𝑀 ,
and Γ points.

A.12 Form Factor Details
Here, we discuss the details of the form factors W𝜉𝜈′𝜈

𝒌,𝒒+𝑮 used in the Boltzmann
equation. In the continuum model, we calculate the form factor directly from the
wavefunctions:

W𝜉𝜈′𝜈
𝒌,𝒒+𝑮 =

∑︁
𝑋,𝑮′

𝐶𝑋∗
𝜈′𝒌+𝒒 (𝑮

′ − 𝑮)𝐶𝑋
𝜈𝒌 (𝑮

′). (A.81)

For the toy model, we include, by hand, a suppression factor 𝑒−𝑙2𝑤 |𝒒+𝑮 |2/4, which
accounts for the moiré periodicity that the toy model is unable to capture [119]:

W𝜉𝜈′𝜈
𝒌,𝒒+𝑮 = ⟨𝜉𝜈′𝒌 + 𝒒 |𝜉𝜈𝒌⟩𝑒−𝑙2𝑤 |𝒒+𝑮 |2/4. (A.82)

We choose 𝑙𝑤 = 𝐿𝑀/(1.5
√

3) so that the form factor dependence on |𝒒+𝑮 | captures
that of the continuum model.

To check the agreement between the toy and continuum model form factors, we
calculate the form factors on a 𝒌-grid, with a set of reciprocal lattice vectors {𝑮},
and plot the average value of W𝜉𝜈′𝜈

𝒌,𝒒+𝑮 as a function of |𝒒 + 𝑮 |, for 𝒌 at the 𝐾 , Γ,
and 𝑀 points of the mini Brillouin zone. The results, shown in Figure A.11, show
that the toy model form factor captures the general features of that of the continuum
model.

We can show analytically that the toy and continuum model form factors agree when
𝒌 and 𝒌 + 𝒒 lie within the same 𝐾 or 𝐾′ valley in the mini Brillouin zone. These
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low-momentum transfer processes are crucial to the tunable 𝜎𝑥𝑦 presented in the
text. Let us write 𝒌 ≡ 𝑲 + 𝒑 (and 𝒌 + 𝒒 = 𝑲 + 𝒑 + 𝒒), where |𝒒 | and | 𝒑 | are small
enough such that the energy dispersion still resembles a Dirac cone at momenta 𝒌

and 𝒌 + 𝒒. By utilizing the eigenfunctions of the Dirac cone Hamiltonian, one can
show that the form factors are

W𝜉𝜈′𝜈
𝑲+ 𝒑,𝒒 =

1
2

(
1 + 𝜈𝜈′ 𝒑 · ( 𝒑 + 𝒒)

| 𝒑 | | 𝒑 + 𝒒 |

)
. (A.83)

The formula holds true regardless of the chirality of the Dirac nodes. Note that
form factors representing direct (non-FU) scattering transitions between different
𝐾 and 𝐾′ valleys in the mini Brillouin zone are not relevant since such scattering
transitions are kinematically prohibited due to the slow-electron regime.

A.13 Validity of the Diagonal Density Matrix Approximation
In general, one needs to keep track of all coherences between the Floquet states,
⟨ 𝑓 (𝜉)†

𝒌𝛼
(𝑡) 𝑓 (𝜉)

𝒌′𝛼′
(𝑡)⟩, to fully-characterize the steady-state of a Floquet system. Trans-

lation symmetry suppresses the coherences for 𝒌 ≠ 𝒌′. The 𝛼 ≠ 𝛼′ interband
coherences are suppressed for 𝜏tot

𝒌
≫ ℏ/Δ𝜀𝒌 , where 1/𝜏tot

𝒌
= 1/𝜏el

𝒌
+ 1/𝜏ph

𝒌
, 1/𝜏el

𝒌

and 1/𝜏ph
𝒌

are the interband electron-electron and electron-phonon scattering rates,
respectively, and Δ𝜀𝒌 = min𝑛∈Z |𝜀𝒌+ − 𝜀𝒌− + 𝑛ℏΩ|. In this section, we will explain
how we numerically estimate the scattering rates.

Formal Definition of Scattering Times
Following Ref. [257], we define the interband scattering rates (fixing the initial
Floquet band 𝛼) as

1
𝜏

ph
𝒌

=
2𝜋
ℏ

1
𝑁

∑︁
𝒌′∈BZ

∑︁
𝛼′≠𝛼

∑︁
𝑗

∑︁
𝑛

|G𝒌′𝛼′

𝒌𝛼 (𝑛, 𝑗) |2
[
(1 − 𝐹𝒌′𝛼′) [1 + N(ℏ𝜔 𝑗 (𝒌′ − 𝒌))]×

× 𝛿(𝜀𝒌′𝛼′ − 𝜀𝒌𝛼 + ℏ𝜔 𝑗 (𝒒) + 𝑛ℏΩ)

+ (1 − 𝐹𝒌′𝛼′)N (ℏ𝜔 𝑗 (𝒌′ − 𝒌))𝛿(𝜀𝒌′𝛼′ − 𝜀𝒌𝛼 − ℏ𝜔 𝑗 (𝒒) + 𝑛ℏΩ)
]
,

(A.84)

1
𝜏el
𝒌

=
4𝜋
ℏ

1
𝑁2

∑︁
𝒌2∈BZ

∑︁
𝒌3∈BZ

∑︁
𝛼2,𝛼3,𝛼4
𝛼3 or 𝛼4≠𝛼

∑︁
𝑛

∑︁
𝑮

|V (𝒌3,𝛼3),(𝒌1+𝒌2−𝒌3,𝛼4)
(𝒌,𝛼),(𝒌2,𝛼2) (𝑛,𝑮) |2×

× 𝛿(𝜀𝒌𝛼 + 𝜀𝒌2𝛼2 − 𝜀𝒌3𝛼3 − 𝜀𝒌+𝒌2−𝒌3,𝛼4 + 𝑛ℏΩ)𝐹𝒌2𝛼2 (1 − 𝐹𝒌3𝛼3) (1 − 𝐹𝒌1+𝒌2−𝒌3,𝛼4).
(A.85)
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Figure A.12: The color represents the ratio ℏ/(𝜏tot
𝒌
Δ𝜀𝒌) at different points in mo-

mentum space (a) for the upper Floquet band and (b) for the lower Floquet band for
the case 𝜒 ≈ 2.8 and 𝜁 ≈ 0.5.

Numerical Calculation of Scattering Rates
In Figure A.12, we show the ratio ℏ/(𝜏tot

𝒌
Δ𝜀𝒌) in the regimesE/E0 = 0.966 < E∗/E0

and E/E0 = 2.898 > E∗/E0 for the case 𝜒 = 𝜏el
𝐾
/𝜏ph
𝐾

≈ 2.8 and 𝜁 = ℏ/(2𝜏tot
𝐾
Δ𝐾) ≈

0.5, where 𝜁 is the maximum value across the range of E considered in Figure 1(b)
in the main text, and 𝜒 is evaluated at the drive amplitude at which 𝜁 is fixed. One
sees that ℏ/(𝜏tot

𝒌
Δ𝜀𝒌) ≪ 1 for most of the Brillouin zone and ℏ/(𝜏tot

𝒌
Δ𝜀𝒌) < 1 where

the interband gaps are the smallest; by analysis of the Floquet-Redfield equation in
Refs. [257, 259], the diagonal density matrix was shown to be a good approximation
in this regime. Note that the definitions in Eqs. C.24 and C.25 calculate the electron
(rather than hole) scattering times, and hence Pauli blocking results in different
scattering times for the upper and lower Floquet bands; the scattering rates quoted
in the main text take the maximum rate. Separately, we also note that the toy model
underestimates the resonance gap (see Figure A.1) relative to the continuum model,
and therefore overestimates ℏ/(𝜏tot

𝒌
Δ𝜀𝒌) around the resonance ring.

A.14 Dielectric Function of Strontium Titanate
The dielectric function for SrTiO3 is

𝜖 (Ω) = 𝜖∞
3∏
𝑗=1

𝜔2
𝐿 𝑗

−Ω2

𝜔2
𝑇 𝑗

−Ω2
(A.86)

at angular frequency Ω, with the experimentally-determined longitudinal and trans-
verse optical phonon frequencies, 𝜔𝐿 𝑗 and 𝜔𝑇 𝑗 , respectively, given in Ref. [69, 243,
295]. One finds that |𝜖 (5 meV) | = 1682.
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(a) (b)

Figure A.13: Convergence of anomalous conductivity with grid size for (a)
𝑁 (mod 3) = 1 and (b) 𝑁 (mod 3) = 2. Due to the positioning of grid points
near the 𝐾 point, the results at low grid resolutions show significant disagreement.

A.15 Monkhorst-Pack Grid, Numerical Integration, and Convergence
In this section, we describe the methods we use to discretize the momentum Brillouin
zone. We perform the Boltzmann equation integrals, introduced in Equations C.20
and C.22, over an 𝑁×𝑁 Monkhorst-Pack (MP) set of grid points [193], with 𝒌-points

𝒌𝑚,𝑛 =
𝑚𝑮1 + 𝑛𝑮2

𝑁
, (A.87)

odd 𝑁 , and 𝑚, 𝑛 = 0, . . . , 𝑁 − 1. Specifically, we avoid values of 𝑁 (mod 3) = 0
that generate a 𝒌-point exactly at the high-symmetry point of 𝐾 , because such grids
converge poorly when the drive strength is weak and Floquet-induced gap Δ𝐾 is
small.

Energy and Momentum Conservation
Here, we discuss in detail how we impose momentum and energy conservation on
this MP grid. The space of MP 𝒌 vectors are closed under addition and subtraction
(modulo a reciprocal lattice vector), so conservation of momentum (e.g., 𝒌 + 𝒌2− 𝒌3

in Eq. C.22), is simple to implement. We impose energy conservation via a smeared
Dirac Delta function

𝛿(𝜀) =


1.04766𝑒−𝜀2/2𝜎2/(2.5066283𝜎), if |𝜀 | < 2𝜎,

0, otherwise,
(A.88)

where we have chosen numerical factors so that∫ ∞

−∞
𝛿(𝜀)𝑑𝜀 = 1. (A.89)
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Figure A.14: The requirement that the laser drive strength E is perturbative, i.e. a
fraction of electron bandwidth 𝑒E𝐿𝑀 < 𝑊 , narrows the range of E values that can
be used. As a result, the range of 𝑐ph whose E∗ is visible is limited as well - we
postulate that they are pushed to higher drive strengths E.

The smearing parameter 𝜎 is one-tenth of the maximum quasienergy spacing be-
tween nearest-neighbor MP 𝒌-points

𝜎 = 0.1 max
⟨𝒌,𝒌′⟩,𝛼

|𝜀(𝜉)
𝒌𝛼

− 𝜀(𝜉)
𝒌′𝛼

|, (A.90)

where ⟨𝒌, 𝒌′⟩ restricts 𝒌′ to be a nearest-neighbor of 𝒌, and we have tuned the
prefactor of 0.1 so that upon calculating the steady-state without Floquet-Umklapp
processes, we obtain a Fermi-Dirac distribution, 𝐹 (𝜉)

𝒌𝛼
= (𝑒𝜀𝒌𝛼/𝑘𝐵𝑇ph + 1)−1 with

temperature 𝑇ph of the phonon bath [90].

Convergence of Conductivities
In Figure A.13, we show the convergence of the Hall conductivity𝜎𝑥𝑦 with grid size,
using ℏΩ = 5 meV. In the main text, we use a 163×163 MP grid for non-interacting
calculations, and a 73 × 73 grid for interacting calculations.

A.16 Berry Curvature Calculations
We follow the Berry curvature calculation presented in [87], defining U(1) link
variables

𝑈𝜇 (𝒌, 𝑡) =
⟨𝛼(𝒌, 𝑡) |𝛼(𝒌 + 𝝁̂, 𝑡)⟩
|⟨𝛼(𝒌, 𝑡) |𝛼(𝒌 + 𝝁̂, 𝑡)⟩| (A.91)
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where 𝜇 = 𝑥, 𝑦, 𝝁̂ = 𝑮𝜇/𝑁 , and |𝛼(𝒌, 𝑡)⟩ are the Bloch vectors (i.e., |𝜓𝒌𝛼 (𝑡)⟩ =

𝑒−𝑖𝒌·𝒓 |𝛼(𝒌, 𝑡)⟩). The Berry curvature is

B𝒌𝛼 (𝑡) =
(2𝜋)2

𝑁2𝐴𝑀
arg

[
𝑈𝑥 (𝒌, 𝑡)𝑈𝑦 (𝒌 + 𝒙̂, 𝑡)
𝑈𝑥 (𝒌 + 𝒚̂, 𝑡)𝑈𝑦 (𝒌, 𝑡)

]
(A.92)

and we use the time-averaged Berry curvature

B𝒌𝛼 ≡ 1
2𝜋/Ω

∫ 2𝜋/Ω

0
B𝒌𝛼 (𝑡)𝑑𝑡 (A.93)

in transport calculations.

A.17 The Drive Amplitude Perturbative Regime at Different Twist Angles
We have treated the laser drive as a perturbation to the undriven TBG Hamiltonian,
which restricts the range of field strengths E we can use to a weak perturbative
regime. This also narrows the range of phonon speeds 𝑐ph that will generate a
critical field strength E∗ in the perturbative regime, hence the narrow range of 𝑐ph

we have considered in, e.g., Figure 1(c). For various twist angles, we estimate the
range of drive strengths E that are perturbative in the unshaded region of Figure
A.14 and overlap in solid lines the predicted value of E∗ for different speeds of
sound. The shaded, non-perturbative regime corresponds to drive energy scales
𝑣𝐹𝑒E/Ω greater than a fraction, e.g., 0.3, of the bandwidth𝑊 . Here, we follow the
analysis in [25] to estimate the undriven Fermi velocity

𝑣𝐹 (𝜃) =
√︂(

(1 − 3𝛼2)/(1 + 3𝛼2(1 + 𝜂2)) × 𝑣ml
𝐹

)2
+ 𝑣2

min, (A.94)

where 𝑣min = 104 m/s is a manually set minimum Fermi velocity of the undriven
flat bands, and we use the same parameters as in Section A.2. We also adjust Ω such
that Ω/𝑣𝐹 (𝜃) is constant and equal to those considered in Figs. 1-4.
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C h a p t e r 6

SIGNATURES OF FLOQUET ELECTRONIC STEADY STATES
IN GRAPHENE UNDER CONTINUOUS-WAVE MID-INFRARED

IRRADIATION

Light-induced phenomena in materials can exhibit exotic behavior that extends be-
yond equilibrium properties, offering new avenues for understanding and controlling
electronic phases. So far, non-equilibrium phenomena in solids have been predom-
inantly explored using femtosecond laser pulses, which generate transient, ultra-fast
dynamics. Here, we investigate the steady non-equilibrium regime in graphene in-
duced by a continuous-wave (CW) mid-infrared laser. Our transport measurements
reveal signatures of a long-lived Floquet phase, where a non-equilibrium electronic
population is stabilized by the interplay between coherent photoexcitation and in-
coherent phonon cooling. The observation of non-equilibrium steady states using
CW lasers stimulates further investigations of low-temperature Floquet phenomena
towards Floquet engineering of steady-state phases of matter.

6.1 Introduction
Since the inception of quantum theory, light-matter interaction has been a significant
source of fascinating discoveries and innovative technologies. In the last few years,
Floquet engineering, the use of light to control the properties of a material, emerged
as a focus of intense research [59, 124, 140, 167, 215, 216, 225, 239, 256]. This
upsurge has been mainly driven by theoretical efforts [17, 63, 84, 153, 216, 239,
242, 253], with a few key experiments in the condensed matter realm, including the
detection of Floquet-Bloch states through time- and angle-resolved photoemission
spectroscopy [174, 187, 301, 329], second harmonic generation [260], as well as
the observation of light-induced shifts of exciton resonances in WS2 [143, 263]
and light-induced Hall effect in graphene [185]. These experiments predominantly
explored the transient phenomena induced by ultrafast pulsed lasers, uncovering
some of the physics predicted by the Floquet theory [120]. Other studies explored the
continuous-wave (CW) regime by inducing discrete Andreev-Floquet bound states
in Josephson junctions under CW microwave irradiation [108, 220]. However, so
far, solid-state experiments in the CW regime have not accessed the Floquet physics
of delocalized Bloch states due to challenges related to population transfer effects
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Figure 6.1: (a) Device layout with two contacts for longitudinal bias, 𝑉Bias, and
two contacts for measurements of the transverse voltage, 𝑉𝑦. The device has a
square geometry with a 5-𝜇m side and an indium tin oxide (ITO) top gate with an
Al2O3 dielectric sublayer, for applying a gate voltage 𝑉Gate. (b) Drive-modified
Floquet bands of the graphene Dirac cone, which exhibits a Floquet gaps of size
at the resonance energies 𝜀 = ±ℏΩ/2, where ℏ is the reduced Planck constant and
Ω is the angular frequency of the laser. (c) Density of states of the Floquet bands
calculated numerically for a circularly and linearly polarized laser of power density
𝑃 = 3 mW/𝜇m2. (d) Photo-induced change of source-drain current (Δ𝐼) as a
function of Fermi energy 𝐸𝐹 for circularly and linearly polarized laser irradiation,
as measured at a constant source-drain voltage of 6 mV. Δ𝐼 is measured with a lock-
in amplifier using a chopper modulation as a reference. The circles represent data
points and the solid lines are obtained by adjacent point averaging. The dotted lines
mark the 𝐸𝐹 values corresponding to ±ℏΩ/2, with the related uncertainty indicated
by the gray stripes. The uncertainty is attributed to the gate efficiency calibration
and the detail is described in Appendix B. The dips in Δ𝐼 at energies ±ℏΩ/2 are
much broader than the Floquet gap Δ(see c) and arise from the non-equilibrium
steady-state distribution of electrons. The measurements were performed on sample
A at a cryostat temperature of ∼ 3.5 K, laser photon energy of 117 meV, and laser
power density of 1.1 mW/𝜇m2.

and heating. In this work, we demonstrate that under intermediate intensity CW
mid-infrared (mid-IR) irradiation [see Figure 6.1(a)], the electronic population in
graphene forms a non-equilibrium steady state with signatures of the underlying
single-particle Floquet physics. In particular, the resulting electronic steady state
relies on the Rabi-like Floquet gaps and a suppressed density of states (DOS)
around electronic energies of half the photon energy in graphene’s Floquet band
structure [see Figure 6.1(b) and (c)]. Importantly, we demonstrate that photoinduced
transport can be used as a probe of the emergent Floquet steady state in the system.



88

Specifically, we report on signatures of these steady Floquet effects in the gate
voltage dependence of the laser-induced longitudinal photoresponses of graphene
samples at cryogenic temperatures ranging from 2.5 K to 50 K.

6.2 Devices and photoconductive measurements
Our graphene devices were fabricated from large-area epitaxial graphene grown
on SiC. The typical electron mobility of our material is about 5000 cm2/Vs for
the carrier concentration range studied in this work. (Figure B.7 shows an image
of a cluster with 4 devices.) Each device was a 5 𝜇m × 5 𝜇m graphene square,
with two source-drain contacts for the longitudinal electrical transport, two contacts
to measure the transverse voltage, and a separate top gate electrode, as depicted
in Figure 1a. The top gate comprised a 90-nm-thick dielectric Al2O3 layer and a
gate electrode of sputtered 110-nm-thick indium tin oxide (ITO). The properties
of our epitaxial graphene, the details of the fabrication process, and the optical
properties of the gate electrode are outlined in Appendix B. Our laser operates with
a photon energy of ℏΩ = 117 meV, deliberately chosen to be below the optical
phonon generation threshold in graphene (160-200 meV), in contrast to previous
experiments that utilized photon energies above this threshold [185]. Importantly,
this approach minimizes photo-induced phonon generation, guaranteeing acoustic
phonons remain at low cryogenic temperatures and providing cooling channels for
photoexcited electrons.

Overall, we measured three top-gated graphene devices on two different chips:
samples A and B on the first chip, and sample C on the second chip. The devices
were cooled in a closed-cycle optical cryostat with a base temperature of 2.5 K and
were irradiated with a 10.6-𝜇m-wavelength CW CO2 laser, providing up to 25 W of
linearly polarized light. The laser polarization was controlled with a 𝜆/4 plate. The
radiation was delivered using high-power-withstanding molybdenum mirrors, and it
was focused on the sample to a spot with a waist of about 50 𝜇m using a ZnSe lens
with a focal distance of 50.8 mm. The maximum power used to irradiate the sample
was 16 W, yielding a power density P up to 2.6 mW/𝜇m2 after considering energy
attenuation in the cryostat window and in the top gate of the graphene devices.
Further details of the experimental setup are described in Appendix B.

We performed photoconductive measurements on the Floquet system by measuring
the longitudinal current using a lock-in amplifier, with the reference signal to the
lock-in provided by a chopper. The source-drain bias was mV unless otherwise
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noted. The chopper modulated the laser beam with a frequency of around 23 Hz
and a duty cycle of ∼ 10%. This procedure provided a direct measurement of
the photocurrent, denoted and defined as the difference in the source-drain current
between the irradiated and equilibrium systems. To explore the doping dependence
of the photocurrent, we also extracted the equilibrium Fermi energy, 𝐸𝐹 , as a
function of the applied gate voltage using the classical Hall effect at different gate
voltages, as described in detail in Appendix B.

The experimentally measured photocurrent Δ𝐼 [see Figure 6.1(d)] exhibits dips as
a function of near doping close to the Floquet gaps for both circular and linear
polarization of the laser beam. We note that due to the size of the sample chosen to
optimize the coupling to the incident beam [146], the circular polarization might be
distorted by the proximity to metallic electrodes [24] (see Appendix B for details).
Nonetheless, the photocurrent dips are robust to changes in polarization and are
sensitive only to the electronic photoexcitation rate set by the laser power density
and frequency. Importantly, the broadness of the dips, significantly exceeding
the width of the Floquet gaps in the graphene density of states [see Figure 6.1(d)],
cannot be explained with single-particle Floquet physics and instead indicates strong
non-equilibrium electronic population effects.

6.3 Theory of Floquet Steady States
Under CW illumination, the electronic population forms a non-equilibrium steady
state distribution predominantly stabilized by electron-phonon scattering processes
[see Figure 6.2(a)]. To understand the photo-assisted population dynamics, we focus
on the low-energy band dispersion of graphene, which exhibits two Dirac cones with
Fermi velocity corresponding to the graphene 𝐾 and 𝐾′ valleys [see Figure 6.2(a)].
Here, 𝒌 denotes the crystal momentum, and 𝛼 enumerates the energy bands. In
our theoretical analysis, we focus on circular laser polarization for concreteness.
We expect the longitudinal photocurrent to be qualitatively the same for linear
polarization parallel to the current. The primary effect of a circularly polarized
laser drive is the opening of dynamical gaps at the resonance energies with a size
[33, 140, 215]. An additional Haldane gap opens at the Dirac point1, but the gap
is too small to be resolved for the power densities used in the experiment, and is
therefore not shown in Figure 6.2(a) citation of the electron to a virtual state (arrow
1) through photon absorption followed by the phonon-emission process relaxing the
electron to the conduction band (arrow 2). The electronic population excited by
this process is subsequently spread across a small window of energies assisted by
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Figure 6.2: (a) Key scattering processes between the graphene 𝐾 and 𝐾′ valleys fa-
cilitated by photons (arrow 1), surface acoustic phonons (arrows 2, 3), and graphene
acoustic phonons (arrow 4) that contribute to the steady state. (b) Steady state distri-
bution (black solid curve) for 𝑃 = 1.9 mW/𝜇m2 and equilibrium distribution (blue
dashed curve) of electrons at doping 𝐸𝐹 = 0, where the longitudinal photoconduc-
tivity is enhanced relative to equilibrium. Here, 𝜀 denotes the quasienergy and 𝐹𝒌𝛼
denotes the electronic occupation. (c) Steady state distribution (black solid curve) of
electrons at doping 𝐸𝐹 = 0.35ℏΩ and 𝑃 = 0.8 mW/𝜇m2, where the photoconduc-
tivity is suppressed relative to an equilibrium distribution expectation (blue dashed
curve). (d) Same as (c) but for a larger power density 𝑃 = 1.9 mW/𝜇m2, where the
steady state distribution exhibits additional electron density above the Floquet gap.
e Steady state distribution (black solid curve) of electrons for 𝑃 = 1.9 mW/𝜇m2 at
doping 𝐸𝐹 = 0.75ℏΩ, where the photoconductivity is approximately identical to that
of an equilibrium distribution (blue dashed curve), with a slightly raised effective
temperature due to multi-photon heating processes. The horizontal dotted lines in
(b–e) mark 𝜀 values corresponding to ±ℏΩ/2.

the emission of low-energy acoustic phonons (arrow 3) and can be subsequently
relaxed through additional acoustic phonon emission processes (arrow 4) back into
the valence band. Ultimately, in the steady state, the excited electronic occupation in
the conduction band is set by the balance between phonon-assisted photo-excitations
(arrows 1-3) and phonon-assisted cooling processes (arrow 4). In Figure 6.2(a) and
throughout our theoretical calculations, we include two phonon branches: a slow
surface acoustic phonon branch with Rayleigh wave speed 1.3 km/s [arrows 2 and 3
in Figure 6.2(a)] and a faster graphene acoustic phonon branch with speed 11 km/s
[arrow 4 in Figure 6.2(a)] [50]. The surface acoustic phonon speed used in our
simulations captures the order of magnitude of the Rayleigh wave speed of the SiC
[210]. To find the steady state electronic population 𝐹𝒌𝛼, we solved numerically
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the full Floquet-Boltzmann equation, which includes all the microscopic electron-
phonon scatterings between Floquet-Bloch states in the laser-driven graphene (see
Appendix B for details) [74, 257, 258, 312]. The resulting steady state occupations
at various electronic dopings are plotted in Figure 6.2(b)-(e), and the photocurrent is
calculated from the steady state occupations using linear response theory in the weak
source-drain bias regime. In our theory, we also account for charge puddles and
a small, intensity-dependent lattice temperature difference between the driven and
undriven systems. We estimate the conductivity in the presence of charge puddles
using a phenomenological formula detailed in Appendix B.

Remarkably, the steady state distributions denoted by black curves in Figure 6.2(b)-
(e) exhibit multiple step-like features associated with large |𝜕𝐹𝒌𝛼/𝜕𝜀𝒌𝛼 |, resembling
effective Fermi surfaces, which significantly affect transport. The electron-like ef-
fective Fermi surfaces (𝜕𝐹𝒌𝛼/𝜕𝜀𝒌𝛼 < 0) contribute to a longitudinal current parallel
to the direction of an applied electric field, while hole-like effective Fermi surfaces
(𝜕𝐹𝒌𝛼/𝜕𝜀𝒌𝛼 > 0) suppress the overall photocurrent by contributing current antipar-
allel to the applied field. This is in strict contrast to an equilibrium distribution,
where a single Fermi surface appears in the electronic distribution [see blue dashed
curves in Figure 6.2(b)-(e)], and only electrons near the Fermi surface contribute
to the longitudinal transport. The Fermi surfaces in the distribution predominantly
arise from the scattering processes 1-4 sketched in Figure 6.2(a). Most notable is
the non-equilibrium distribution for an electron-doped system 0 < 𝐸𝐹 < ℏΩ/2 [see
Figure 6.2(c) and (d)], where the equilibrium Fermi surface located at finite density
of states (see blue dashed curve) is separated into three electron-like Fermi surfaces
(see black solid curve) which are located near the dips of the density of states and
therefore contribute very few electronic carriers. In particular, two electron-like
Fermi surfaces are centered at the Floquet gaps, where electronic group velocities
and density of states are reduced, and another is positioned at zero energy, where the
density of states vanishes. The reduced concentration of electronic carriers gives
rise to a suppressed conductivity in the driven system. This phenomenon persists for
both weak and strong driving amplitudes, as shown in Figure 6.2(c) and (d), respec-
tively. For doping above resonance 𝐸𝐹 > ℏΩ/2, processes 1–4 are Pauli-blocked,
giving rise to an equilibrium-like distribution [see Figure 6.2(e)].

6.4 Optically-controlled photoresponse
Having understood the interplay of the Floquet bands, steady state occupation, and
photocurrent Δ𝐼, we now compare the theoretically calculated and experimentally
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Figure 6.3: (a) Photo-induced change of source-drain current (Δ𝐼) as a function of
𝐸𝐹 under irradiation at various peak power densities, as measured on sample C at
a constant source-drain voltage of 6 mV and a cryostat temperature of 3.2 K. The
photon energy is ℏΩ = 117 meV. The laser beam is circularly polarized. The circles
represent data points and the solid lines are the fitted curve by a Gaussian-like func-
tion described in the Methods. The dotted line marks the 𝐸𝐹 value corresponding to
−ℏΩ/2, with the related uncertainty indicated by the gray stripes. (b) Theoretically
predicted Δ𝐼 as calculated from the Floquet Boltzmann equation. The dotted line
marks the 𝐸𝐹 value corresponding to −ℏΩ/2. (c) Depth 𝑎0 of the photocurrent
dip and associated error, as calculated from a Gaussian-like fit (see details in the
Methods section). For both the theoretical and experimental data, 𝑎0 decreases with
the power density 𝑃 for large 𝑃 due to enhanced heating processes in the Floquet
steady state. (d) Experimental and theoretical FWHM of the photocurrent dip and
the Floquet gap size (red dotted line), Δ, as a function of the power density. The
FWHM exceeds Δ, indicating the emergence of photoexcited electrons in the non-
equilibrium Floquet steady state. The detailed error analysis of FWHM is described
in Appendix B. The uncertainty in the laser power density due to power fluctuation
in (c) and (d) are estimated by the change in the laser power before and after each
transport measurement.

measured value of Δ𝐼 and discuss the tunability of the photoresponse by the laser
power. In Figure 6.3(a), we focus on the experimentally measured photocurrent
dip at negative 𝐸𝐹 and plot the photocurrent for various laser power densities. In
Figure 6.3(b), we show the theoretically calculated photocurrent for the same power
densities. Let us discuss a few salient features captured by the theoretical model.
A key feature is the broad width of the photocurrent dip, which we estimate by
fitting the photocurrent to a Gaussian-like function detailed in the Methods section.
The amplitude of the Gaussian 𝑎0 quantifies the depth of the photocurrent dip,
while the full width at half maximum (FWHM) quantifies its width. Notably, our
theoretical prediction of the decrease in 𝑎0 with the power density 𝑃, agrees with
the experimental observation [see Figure 6.3(c)], indicating a power dependence of
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Figure 6.4: (a) Longitudinal photocurrent as a function of at a fixed source-drain
voltage of 6 mV, with laser spot in focus and defocused. For all three curves, the
laser power is ∼ 3.6 W, corresponding to a peak power density of 0.6 mW/𝜇m2

at focus. Under defocused irradiation, with the laser spot slightly moved to the
side, the power density drops by ∼ 3 times (gray curves). Circular polarization of
10.6 𝜇m wavelength laser radiation. The cryostat temperature stabilized at ∼ 3.4 K.
b Theoretically calculated photocurrent for weak drives, exhibiting shallower dips
near resonance as a function of decreasing driving power, in agreement with (a). (c)
Temperature dependence of the longitudinal photocurrent as a function of 𝐸𝐹 . The
photocurrent decreases, and the dips at 𝐸𝐹 = ±ℏΩ/2 disappear at high temperatures.
The laser beam is circularly polarized. (d) Theoretically calculated photocurrent
for laser power density 1.4 mW/𝜇m2, the photocurrent dip becomes less visible at
higher temperatures. The dotted lines in (a)–(d) mark the 𝐸𝐹 value corresponding
to ±ℏΩ/2, where the related uncertainty is indicated by the gray stripes in (a) and
(c).

the steady state distribution. The reduction of 𝑎0 with 𝑃 arises due to the increase
of the photoexcited carrier density above the Floquet gap, which scales as ∼ 𝑃1/2,
effectively increasing the photocurrent [cf. the shift of the effective Fermi surface
near ℏΩ/2 in Figure 6.3(c) and (d)] [33]. The FWHM of the photocurrent dip
observed in the experiment and predicted by the theory are both broader than the
size of the Floquet gap, see Figure 6.3(d), indicating a Floquet-induced electronic
population inversion in the steady state. We note that Δ𝐼 > 0 for 0 < 𝐸𝐹 < ℏΩ/2
due to charge puddle and lattice heating effects (see Appendix B for more details).
Finally, we note that the horizontal offset in the theoretically calculated photocurrent
shown in Figure 6.3(b) relative to the experimental data in Figure 6.3(a) may arise
from changes in the total electronic carrier density in the sample during laser
illumination, which were not accounted for in the experimental assignment of the
chemical potential.

To further verify that the transport signatures observed in the experiment arise from
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photo-induced dynamics, we explore the experimentally measured photo-response
for out-of-focus lasers, which reduce the irradiation power density by roughly a factor
of three. Figure 6.4(a) demonstrates that the visibility of the photocurrent dip is
significantly suppressed as the power density is reduced. This behavior, reproduced
in theory [see Figure 6.4(b)], reflects the suppressed probability of drive-induced
photoexcitation processes under weak laser irradiation.

Next, we explore the lattice temperature dependence of the electronic steady state
and conductivity. Figure 6.4(c) and (d), respectively, show the measured and the
theoretically predictedΔ𝐼 as a function of 𝐸𝐹 , for several values of the lattice temper-
ature. At higher temperatures, the distribution of the photoexcited electrons spreads
over larger energy support, relaxing the sharp energy-momentum bottlenecks in the
steady state distribution [see processes 1-4 in Figure 6.2(a)]. As a result, the dips in
Δ𝐼 become less pronounced, virtually disappearing around 20 K. The discrepancy of
the temperature dependence around charge neutrality between the experimental and
theoretical plots is attributed to the finite-temperature physics of the charge puddles,
which could modify the relaxation time of electrons at different temperatures under
weak source-drain bias [163], which is not captured in the theory. The strong lat-
tice temperature dependence of both the theoretically calculated and experimentally
observed photocurrent, however, highlights the role of low phonon temperatures in
stabilizing low-temperature electronic phenomena of Floquet effects in our system.

6.5 Discussion
The photoconductivity dip discussed above has been reproduced for other samples,
which we present in the Appendix B. Different samples with different charge in-
homogeneities showed similar widths of the photocurrent dip. This observation is
consistent with the emergence of a Floquet steady state, which is predicted to be
weakly sensitive to disorder. The positions of the dips in the electron and hole
regions of the gate dependence are also slightly asymmetric, similar to particle-hole
asymmetric results reported in McIver et al. [185].

So far, we have not discussed the transverse photoconductivity of the system. Our
transverse voltage measurements displayed a laser helicity-dependent component on
the 𝜇𝑉 scale, which amounts to a Hall conductivity of the order of𝜎Hall

𝑥𝑦 ∼ 10−3𝑒2/ℎ,
see Figure B.11. This range of values undershoots the prediction of 𝜎Hall

𝑥𝑦 ∼ 𝑒2/ℎ,
from our theoretical model, which is mainly designed as a simple model for the
longitudinal component of the photocurrent. We believe that a key reason for this
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discrepancy is the distortion of the circular polarization by the metallic contacts,
leading to regions of the sample with nearly linear polarization [24] (see Appendix
B for details). In these regions, the Berry curvature can have large off-diagonal
elements, reducing the photoresponse. Additionally, our theoretical calculation of
the Hall voltage does not account for electron-electron interactions and charge pud-
dles. Electron-electron scattering could suppress the Hall conductivity by raising
the effective temperature of the steady-state electron-like Fermi surfaces [see Figure
6.2(b)–(e)] near the resonant Floquet gaps [258, 312]. Charge puddles could further
suppress the Hall voltage by producing regions in the sample with low conductiv-
ity, which exhibit weak longitudinal source drain current and heavily suppressed
local Hall voltage. More details of the transverse photoresponse measurements are
provided in Appendix B.

In summary, we have explored the transport properties of graphene driven by a CW
mid-infrared laser. In such metallic systems, the Floquet dressing of single-particle
bands by resonant periodic drives is intertwined with many-body effects, such as
electron scattering and population dynamics. Notably, we demonstrate that the
interplay between these processes at intermediate driving intensities and cryogenic
temperatures facilitates the formation of low-entropy electronic steady states. These
steady states emerge from a cascade of photo-assisted electron-phonon scattering
events that effectively cool the photoexcited electrons to low entropy states.

Our findings suggest that, in graphene on SiC, these processes are dominated by
the emission of surface acoustic phonons at the graphene-SiC interface, along with
acoustic phonons in the graphene itself. Furthermore, the formation of these steady
states is crucially dependent on the underlying single-particle Floquet physics, such
as the presence of Floquet gaps in the single-particle spectrum and scattering into
replica Floquet bands. We interpret the observed pronounced dip in longitudinal
conductivity in our samples as evidence of Floquet steady states. The characteristics
of this dip—its position, depth, and width as functions of doping—align closely
with predictions from Floquet many-body theory. Our results indicate a promising
approach to perform Floquet engineering in metallic systems for sustained operation,
potentially leading to the creation of Floquet steady-state phases, such as drive-
induced symmetry broken phases [76], laser-induced flat bands [3, 131, 165], and
optically-controlled topological transport [74, 312].
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6.6 Methods
Experiment
The CW source was a 10.6 𝜇m-wavelength, air-cooled Synrad J48-2 CO2 laser,
providing up to 25 W of linearly polarized light, modulated with a chopper (Scitec
Instruments 300CD) with 27 Hz modulation frequency. The circular polarization of
the laser radiation was controlled by a custom-made zero-order 𝜆/4 plate, provided
by Optogama UAB. For the delivery of the optical beam, we used molybdenum
mid-IR high power mirrors.

The samples were cooled down to 2.5 K with a closed-cycle cryostat Oxford Instru-
ments Optistat AC-V14. For optical access to our samples, we used a 2-mm thick
ZnSe window. The beam delivery was done using an Edmund Optics cage focusing
system mounted on a custom-made mechanical attachment to the cryostat. For beam
focusing, we used a 50.8-mm focal distance, 1-inch diameter, ZnSe lens. Focusing
and alignment of the mid-IR beam was controlled by a system of micrometers [127].
The estimation of the beam diameter at the lens focus is based on a Gaussian beam
with our experimental parameters (18-19 mm laser beam waist before lens and 50.8
mm lens focal distance), and it yields ∼35-38 𝜇m. Experimentally, we were able
to achieve focusing down to a 50 𝜇m spot. This was confirmed during the fine
alignment of the laser beam: the magnitude of was changing from the noise level
to a maximum signal and then back to the noise level (about 10-12-times drop of
signal magnitude) within 4-5 readout thimble divisions of in-plane alignment mi-
crometers (e.g., within 40-50 𝜇m distance). The maximum applied laser power in
our experiments was 16 W, corresponding to a peak power density ∼ 8 mW/𝜇m2 for
∼ 50 𝜇m-diameter beam spot. Taking into account the transmission coefficients of
the cryostat window and the gate electrode, we estimate the applied laser intensity
as ∼ 2.6 mW/𝜇m2.

The measurements of photoinduced currents and voltages were performed using a
home-made bias box, an HP 6177 C DC current/voltage source (for generation of
gate voltages), a National Instruments BNC-2110 junction box, an Ametek 5110
lock-in amplifier, a DL Instruments 1211 current preamplifier, and a custom-made
differential voltage preamplifier. The data collection system was controlled using a
customized LabVIEW-based program.

The calibration of gate efficiencies of our samples (calibration of gate voltage in
units of electron Fermi energy) was performed using a 9 Tesla Quantum Design
Physical Property Measurement System at the NHMFL in Tallahassee, FL. The
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details about gate efficiency calibration are provided in Appendix B.

Device Fabrication
For the device fabrication we adapted the process developed by Yang et al. [313]. to
electron-beam lithography (EBL) [73] with additional lithography steps to deposit
and pattern a top gate. The details of the device fabrication are provided in Appendix
B. The epitaxial graphene on SiC was purchased from Graphene Waves.

Fitting
We estimate the full width at half maximum (FWHM) of the photocurrent dip by
fitting the photocurrent to the function Δ𝐼fit = 𝑎0 exp

[
−(𝑉𝑔 − 𝐵)2/2𝜎2] +𝐶𝑉𝑔 + 𝐷,

where 𝑎0, 𝐵, 𝜎, 𝐶, and 𝐷 are fitting parameters, and 𝑉𝑔 is the gate voltage. We
extract the full width half maximum using the relation FWHM = 𝐸𝐹 (𝐵+

√
2 ln 2𝜎)−

𝐸𝐹 (𝐵 −
√

2 ln 2𝜎), where 𝐸𝐹 (𝑉𝑔) = ℏ𝑣𝐹
√︁
𝜋𝑘 (𝑉𝑔 −𝑉𝑑). Here, 𝑘 is estimated from

Hall measurements, and 𝑉𝑑 is estimated to be the gate voltage at which 𝜎𝑥𝑥 is
minimized (see Appendix B).
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A p p e n d i x B

APPENDIX

B.1 Sample Irradiation with a Continous-Wave Mid-Infrared Laser Beam
The optical setup, with the components described in the Materials and Methods
section, is shown in Figure B.1. A pair of molybdenum mid-infrared (Mid-IR) high-
power mirrors were used for the delivery of the laser beam. For the pre-alignment
of the orientation of the molybdenum mirrors and for the initial positioning of ZnSe
lens closer to the position in focus, we used a visible laser (𝜆 = 520 nm) collimated
with the Mid-IR irradiation, with a camera to monitor the laser spot on the sample
(see the inset in Figure B.1). After this initial alignment, the visible laser and the
beamsplitters were removed, and the fine adjustment of the beam positioning with
the Mid-IR laser was performed by using the photo-generated current in our devices
as a reference. The illumination caused a change in the source-drain current due
to the photo-generated hot electrons, as described in the main text. An example of
current change under 10.6-𝜇m-wavelength laser illumination is Figure B.2 below.
We adjust the beam position by maximizing the photocurrent response. The devices
were irradiated with a 10.6-𝜇m-wavelength CW CO2 laser, providing up to 25 W of

Figure B.1: Scheme of the sample illumination system. Schematic illustration of
the optical setup used for delivering and focusing the mid-infrared irradiation. The
beamsplitters are used only during the preliminary alignment of optical elements.
The inset image shows the visible laser spot on the sample used for the preliminary
alignment of the molybdenum mirrors and the ZnSe focusing lens.
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Figure B.2: Measurement sequence in time. Experimentally measured cryostat
temperature (top panel) and longitudinal current (bottom panel) with laser blocked
and unblocked intervals. Note that the actual graphene lattice temperature, 𝑇 (𝑡), is
expected to be further elevated relative to the cryostat temperature. When the laser
is blocked, the sample cools down to 𝑇bg, giving rise to a strong bolometric effect in
the longitudinal current. The laser illumination is blocked/unblocked in the optical
path between the chopper and the sample (light coral stripes indicate when laser is
unblocked), the average laser power density is 0.125 mW/𝜇m2 and the peak power
density is 1.25 mW/𝜇m2, ℏΩ = 117 meV (10.6 𝜇m wavelength).

linearly polarized light. The laser beam polarization was controlled with a 𝜆/4 plate.
Experimental samples were designed to maximize efficiency of the beam-sample
coupling for the mid-IR irradiation [146]. At the same time, the half-wavelength
size of the graphene devices and the attachment of the metallic electrodes to its
edges result in predominantly linear polarization of the incident electromagnetic
field near the edges of the graphene sample, regardless of the initial polarization of
the laser source [24]. The presence of linearly polarized fields in some parts of the
sample is expected to influence helicity-dependent effects.

B.2 Measurement Sequence
The laser beam was modulated by a chopper (the modulation frequencies were in
the range of 10-50 Hz) with a duty cycle of ∼ 10%. During the on period, the
system forms a non-equilibrium electronic state characterized by a photocurrent
𝐼dr that relaxes during the off period to an equilibrium state with temperature 𝑇eq

and corresponding photocurrent 𝐼eq(𝑇eq). The relaxation occurs over the phonon
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Figure B.3: Laser intensity and temperature dependence of the longitudinal conduc-
tance. Gate voltage dependence of the source-drain current at different temperatures
with laser blocked (gray) and under irradiation at the base temperature (red), with
𝑃 = 0.6 mW/𝜇m2 and with source-drain voltage fixed at 50 mV.

scattering time, typically on the picosecond scale. The measured photocurrent is,
therefore, given by Δ𝐼 = |𝐼dr − 𝐼eq(𝑇eq) |, which is detected directly using a lock-in
amplifier, with the reference signal to the lock-in provided by a chopper. Figure
B.2 shows the theoretically predicted photocurrent as a function of time, switching
between 𝐼dr and 𝐼eq(𝑇eq), within the duty cycle.

Due to the illumination, the system temperature𝑇eq is elevated above the background
temperature 𝑇bg. To test the temperature change and the corresponding bolometric
effect, we blocked the beam in the optical path between the chopper and the sample
for extended times of a few seconds. During a timescale denoted 𝜏𝑟 , the system’s
temperature relaxed back to𝑇bg corresponding a reduction of the current to the value
𝐼eq(𝑇bg). We note that the background itself is slightly heated by the laser, leading
to gradual changes in 𝑇bg. The bottom panel of Figure B.2 shows the longitudinal
(source-drain) current measured as a function of time and at constant source-drain
voltage while the laser beam was blocked or unblocked. The time dependence of
the current can be fit to the function 𝐼eq(𝑇 (𝑡)), where 𝑇 (𝑡) = 𝑇bg + (𝑇eq − 𝑇bg)𝑒−𝑡/𝜏𝑟
within one unblocking-blocking interval.

The relation of the photoresponse Δ𝐼 to effects of electron heating may be illustrated
further in the following supplementary experiment. Figure B.3 shows the current
vs. gate voltage curves of a graphene device at three different temperatures and at
a fixed source-drain bias voltage without any laser irradiation (gray curves). The
temperature dependence of the electrical resistance in graphene is determined by
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Figure B.4: Mid-Infrared transmission spectrum of ITO. Example of spectrum
measured from our typical 110-nm thick ITO layer in the range around 10.6 𝜇m
wavelength (corresponding to the wavenumber 943 cm−1).

different intrinsic and extrinsic sources of scattering, including phonons, defects
in the crystal lattice or deformation in the graphene sheet (wrinkles or steps), as
well as impurities in the substrate or on the graphene surface [26, 37, 41, 60, 266].
The presence of electron- hole puddles and quantum corrections also complicate the
dependence of the electrical resistance on carrier density and temperature, especially
at low temperature [101, 181, 184, 306]. For our graphene samples, in the whole
range of gate voltage that we measured around the Dirac point, the current increases
when the temperature increases.

B.3 Transmission property of ITO top gate for Mid-IR irradiation
The Mid-IR radiation actually delivered to the graphene is attenuated by the optical
elements. Our ZnSe focusing lens has an anti-reflective (AR) coating, while the
cryostat window has no AR coating and transmits 70% of the 10-𝜇m wavelength
laser beam. The other important source of attenuation is the Indium-Tin Oxide
(ITO) material of the top gate in the experimental samples. Depending on growth
conditions, post-treatment, and many other factors, the optical transmission of this
material may vary significantly. Measured or theoretically expected values of Mid-
IR transmission of ITO range from less than 10% to more than 50% for material
thicknesses around 100 nm, depending on the electron concentrations [48, 106].
For an accurate estimation of attenuation in our case, we fabricated and tested ITO
samples using the exact same growth conditions and thickness of the material as
those we used in our experimental graphene devices. The infrared transmission
spectra were measured using a Nicolet Nexus 8700 Fourier-Transform spectrometer
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Figure B.5: Longitudinal photoresponse vs. carrier density at different B fields.
Longitudinal voltage photoresponse as a function of magnetic field and carrier
density, under chopper-modulated irradiation with circular polarization, at a laser
intensity of 20 𝜇W/𝜇m2 and photon energy ℏΩ = 117 meV. The sample is biased
at a fixed current 𝐼𝑥 of 1 𝜇A, and the photoinduced change in source-drain voltage
Δ𝑉𝑥𝑥 is measured with a lock-in amplifier.

equipped with a KBr beamsplitter and a DTGS photodetector. A typical transmis-
sion spectrum of a 110-nm-thick ITO layer is shown in Figure B.4. Transmission
measurements were performed at multiple locations on two different samples, yield-
ing an average transmission of 45%.

B.4 Cyclotron Resonance of the Top-Gated Epitaxial Graphene Samples
We performed cyclotron resonance measurements on an epitaxial graphene sample
on SiC at 1.6 K using an 18/20 T general purpose superconducting magnet at
NHMFL in Tallahassee, FL. We used a 1 MOhm resistor connected in series with
the sample to keep the source-drain current at a constant value of about 1 𝜇A
throughout the measurements. The sample was illuminated by a CW CO2 laser and
a quarter waveplate, as described above. Unlike the zero-field measurement, the
laser was delivered through a Mid-IR fiber and focused onto the sample with a ZnSe
lens. As shown in Figure B.5, the magnetoresistance reveals a resonance magnetic
field value of 11.5 ± 0.2 T that corresponds to a transition between the 0th and the
1st Landau levels, or

Δ𝐸 = 𝑣𝐹
√︁

2ℏ𝑒𝐵/𝑐 = ℏΩ (B.1)

where ℏΩ = 117 meV and 𝐵 = 11.5 ± 0.2 T. We can, therefore, extract the Fermi
velocity in our epitaxial graphene as 𝑣𝐹 = (0.960±0.008) ×106 m/s. The cyclotron



104

Figure B.6: Gate efficiency calibration. (a) (Black) Source-drain voltage and (blue)
transverse voltage from the Hall effect measurements for 𝑉𝑔 = 7 V and a constant
bias (source-drain) current 𝐼sd = 1 𝜇A. The green and red lines are examples of
the set of “4 points” used for extracting the actual transverse voltage. (b) (Black)
Conductance at different gate voltages. (Blue) Carrier density at different 𝑉𝑔 from
Hall measurements. (Red) Linear fitting of carrier density at different 𝑉𝑔.

resonance peak is determined to have an FWHM of ∼ 8 meV, which is about two
times broader than that reported in exfoliated graphene samples [46, 244]. Such
broadening can be attributed to the charge puddles and traps in graphene introduced
during the fabrication process. We can also extract the magnetic length at the
resonance field 𝑙𝐵 ∼ 7.6 nm, which is smaller than our estimated mean free path
(𝑙MFP) for carrier density 𝑛𝑐 ∼ 2.9 × 1012 cm−2, about 𝑙MFP ∼ 30 nm.

B.5 Gate Efficiency Calibration
The Hall effect measurements were performed on sample B at 4 K to determine the
carrier density at different gate voltages using a Quantum Design PPMS® system. A
1 MOhm resistor was connected in series with the device to keep the current around 1
𝜇A throughout the measurements. The typical Hall voltage and source-drain voltage
curves as a function of the magnetic field at a fixed gate voltage are plotted in Figure
B.6(a), where the Hall voltage revealed a non-linear behavior as well as an offset.
We note that these source-drain voltages are two-terminal measurements. Unlike
four-terminal measurements, two-terminal measurements yield curves that depend
on the geometry of the samples [2]. In addition, a slight misalignment of the Hall
terminals may lead to a purely geometric (not Hall-effect-related) contribution to the
Hall voltage from the bias current that is proportional to the source-drain voltage. We
estimated this misalignment as ∼ 300 nm along the source-drain current direction in
the presented sample. To exclude the contribution from such misalignment, we used
the “four-point” approach described below to extract the linear relationship between
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the Hall voltage and the applied magnetic field: we randomly picked four data points
around the bottom of the source-drain voltage curve at different fields, but with the
same source-drain voltage value, so that the misalignment would contribute equally
to the Hall voltages among these four points, and we extracted the carrier density
from a linear fitting of those four points. For each gate voltage, three sets of the
“four points” were randomly picked. Figure B.6(a) shows two sets of four points,
in red and green, respectively, for measurements at a fixed gate voltage 𝑉𝑔 = −7 V.
For each set of 4 points the following linear fitting was performed:

𝑉Hall [V] = 𝑘 [VT−1]𝐵[T] +𝑉Hall offset [V] (B.2)

where the slope 𝑘 links to the charge carrier density 𝑛𝑐 with the following relation-
ship:

𝑛𝑐 [cm−2] = 10−4 × 𝐼 [A]
𝑒𝑘 [VT−1]

(B.3)

where 𝐼 was kept around 1 𝜇A as mentioned above and 𝑒 = 1.602 × 10−19 C. Table
B.1 summarizes the data obtained from the fittings and the carrier concentrations
obtained at different gate voltages. The extracted values of carrier concentrations at
different gate voltages are plotted in Figure B.6(b). From a linear fit of those points,
we obtained the following “calibration curve” to relate the carrier density to the gate
voltage:

𝑛𝑐 [cm−2] = −𝑘 (𝑉𝑔 −𝑉𝑑) [V] (B.4)

where 𝑘 = 1.63 × 1011 ± 𝛿𝑘 , 𝛿𝑘 = 9 × 109, 𝑉𝑑 = 𝑘𝑛0 = 10.7 V ± 𝛿𝑉𝑑 , and
𝛿𝑉𝑑 ≈ 𝑉𝑑

√︁
(𝛿𝑛0/𝑛0)2 + (𝛿𝑘/𝑘)2. Here, 𝑛0 = 1.74 × 1012 and 𝛿𝑛0 = 9.37 × 1010,

with the uncertainties estimated from the 68% confidence interval of the linear fit.
The following relationship between the carrier density 𝑛𝑐 and Fermi energy 𝐸𝐹 in
graphene was then applied to determine the corresponding 𝑉𝑔 for 𝐸𝐹 = ℏΩ/2:

𝐸𝐹 = ℏ𝑣𝐹
√
𝜋𝑛𝑐, (B.5)

where ℏ is the reduced Plank constant, 𝑣𝐹 is the Fermi velocity extracted from
the cyclotron resonance measurements as 0.96 × 106 m/s is our top-gated epitaxial
graphene samples. For the first crossings, the Fermi energy is half the photon
energy, i.e., 𝐸𝐹 = ±58.5 meV, and the corresponding gate voltage was calculated to
be about 1.6 V from the charge neutrality point, as summarized in Table B.2.

B.6 Device Fabrication
The top-gated graphene FETs were fabricated using epitaxial graphene on SiC pur-
chased from Graphene Waves. To prevent sample contamination from photoresists,
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Table B.1: Fitting results of Hall measurements at different gate voltages

Gate voltage (V)
-3 V -5 V -7 V -15 V -17 V

Slope (×10−4)/VT−1
Set 1 -5.290 -6.244 -9.074 7.458 6.294
Set 2 -5.250 -6.247 -9.024 7.521 6.369
Set 3 -5.283 -6.267 -9.029 7.412 6.281

Ave. slope (×10−4)/VT−1 -5.274 -6.252 -9.042 7.464 6.315

Table B.2: 𝑉𝑔 corresponds to 𝐸𝐹 = ℏΩ/2

−ℏΩ/2 CNP +ℏΩ/2
𝐸𝐹 /meV −58.5 0 +58.5
𝑛𝑐/cm−2 −2.51 × 1011 0 +2.51 × 1011

𝑉𝑔/V −12.2 −10.7 −9.1

a thin Pd/Au layer (5 nm Pd + 15 nm Au) was deposited on the graphene by electron-
beam evaporation before further processing [73, 313]. The contacts were fabricated
first to prevent the charging effect during the electron beam lithography (EBL)
process. Contact patterns were written following a standard EBL process using
a Zeiss SUPRA55-VP system on a methyl methacrylate/polymethyl methacrylate
(MMA/PMMA) bilayer e-beam resist, followed by magnetron sputtering deposition
of a total of 1.5 nm Ti and 400 nm Au. The graphene was then patterned into Hall
bars following a process described in Figure B.7(a), where a layer of PMMA defined
by EBL was used as the etch mask during dry etching (Ar plasma, 50 s.c.c.m., 150
W, Oxford Plasmalab 80), and the EBL pattern was designed in such a way that only
the channel area shown in Figure B.7(b) remained unexposed. Prior to the top gate
fabrication, diluted aqua regia (DAR, HNO3:HCl:H2O = 1:3:4) was used to remove
the Pd/Au protection layer. The samples were annealed in vacuum afterwards to
remove the residues from the DAR treatment as well as adsorbates from ambient
exposure (H2O, O2, etc.).

Since the graphene grown on SiC is intrinsically n-doped due to the formation of the
buffer layer during the graphene growth, before the atomic layer deposition (ALD)
growth of an Al2O3 layer, we doped the samples with nitric acid vapors in a standard
fume hood, following a procedure developed by Mhatre et al. [188]. to bring the
Fermi level closer to the charge neutrality point. As shown in Figure B.7(c), a 90-
nm Al2O3 dielectric layer was grown on top of graphene by atomic layer deposition
(Beneq TFS 200). The Al2O3 masking of the contact pads was removed by buffered
hydrofluoric acid using a layer of Shipley 1813 patterned by photolithography as
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Figure B.7: Scheme of key steps in top-gated graphene device fabrication. (a)
Patterning of graphene Hall bars with a thin Pd/Au protection layer. (b) Optical
image of the graphene devices prior to removing the metal protection layer and
the top gate fabrication. (c) Illustration of top gate fabrication using Al2O3 as the
dielectric layer and ITO as the gate contact. (d) Optical image of the top-gated
devices. The dashed line marks the area of devices shown in (b).

the etch mask. The top gate contact was patterned by photolithography, followed by
sputtering of 110-nm indium tin oxide (ITO). Figure B.7(b) shows a cluster of four
top-gated devices.

B.7 Characterization of Single-Particle Dynamics via Floquet States
We first derive the driven graphene Hamiltonian near the valleys 𝜉 = +1,−1 cor-
responding to the 𝐾 and 𝐾′ valleys of graphene. The Dirac Hamiltonian in valley
𝜉 is given by 𝐻𝜉 (𝒌) = ℏ𝑣𝐹 𝒌 · (𝜎𝑥 , 𝜉𝜎𝑦) where 𝒌 = (𝑘𝑥 , 𝑘𝑦) is the electronic mo-
mentum and 𝜎𝑥 and 𝜎𝑦 are the Pauli matrices. We include the irradiation by the
circularly polarized laser of vector potential 𝑨(𝑡) = 𝐴(cosΩ𝑡, sinΩ𝑡) via mini-
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mal coupling: 𝐻𝜉 (𝒌, 𝑡) = 𝐻𝜉 (𝒌 + 𝑒𝑨(𝑡)/ℏ). The time evolution generated by
𝐻𝜉 (𝒌, 𝑡) has a complete set of solutions of the form |𝜓𝜉

𝒌𝛼
(𝑡)⟩ = 𝑒−𝑖𝜀𝒌𝛼𝑡/ℏ |Φ𝜉

𝒌𝛼
(𝑡)⟩,

where |Φ𝜉

𝒌𝛼
(𝑡)⟩ = |Φ𝜉

𝒌𝛼
(𝑡 + 𝑇)⟩ is the Floquet-Bloch state, 𝜀𝒌𝛼 is the quasienergy,

and 𝑇 = 2𝜋/Ω denotes the laser driving period. (Here, we drop the 𝜉 index
in 𝜀𝒌𝛼, because the quasienergy spectrum is identical in both valleys.) As a
result of their time periodicity, the Floquet-Bloch states can be decomposed as
|Φ𝜉

𝒌𝛼
(𝑡)⟩ = ∑

𝑚 𝑒
−𝑖𝑚Ω𝑡 |𝜙𝑛𝜉

𝒌𝛼
⟩, with |𝜙𝑛𝜉

𝒌𝛼
⟩ denoting the Floquet harmonics that can be

found by solving the Floquet Schrodinger equation (see Ref. [241]). The Floquet-
Bloch states form a complete basis of stationary solutions to the time-evolution
generated by 𝐻𝜉 (𝒌, 𝑡), which are taken onto themselves after each driving period,
up to a phase controlled by the quasienergy 𝜀𝒌𝛼. Note that 𝜀𝒌𝛼 is only defined up
to an integer multiple of the photon energy ℏΩ, compensated by a redefinition of
|Φ𝜉

𝒌𝛼
(𝑡)⟩ via multiplication by factor(s) of 𝑒𝑖Ω𝑡 . We use the convention where 𝜀𝒌𝛼

is chosen such that max𝑛 |⟨𝜙𝑛𝜉𝒌𝛼 |𝜙
𝑛𝜉

𝒌𝛼
⟩| = |⟨𝜙0𝜉

𝒌𝛼
|𝜙0𝜉

𝒌𝛼
⟩|.

Laser illumination with a circularly polarized laser opens dynamic gaps in the
Floquet quasienergy spectrum. The gap opening at the resonance energies around
𝜀𝒌𝛼 = ±ℏΩ/2, with a size Δ𝐸1 linear in the laser field amplitude, controls the Rabi
frequency of the resonant inter-band transitions induced by the laser drive. At the
Dirac point (𝜀𝒌𝛼 = 0), the band degeneracy is lifted by a second-order resonance
coupling between the conduction and valence bands, with a gap opening quadratic in
the laser field amplitude [33, 140, 215]. In the low power regime, Δ𝐸1 is, therefore,
larger than the bandgap at the Dirac point. Illustrating this, Figure B.8(a) shows the
theoretical prediction for the quasienergy bandgap Δ𝐸1 as a function of laser power
density and photon energy. For the photon energy and power density used in our
experiment, Δ𝐸1 is predicted to be in the range of ∼ 1-10 meV, while the gap around
the Dirac point, too small to be resolved in our measurements, cannot be clearly
discerned in the numeric calculations.

B.8 Steady State Simulations of Laser-Illuminated Graphene
To determine the non-equilibrium steady state occupation 𝐹𝜉

𝒌𝛼
of the Floquet bands

[3, 74, 257, 258], we consider the Floquet-Boltzmann equation (FBE) for electron-
phonon collisions, which describes the flow of electronic occupations into Floquet
states. The FBE is given by 𝜕𝑡𝐹𝜉𝒌𝛼 = 𝐼

el-ph,𝜉
𝒌𝛼

[{𝐹𝜉
𝒌𝛼
}], where 𝐼el-ph,𝜉

𝒌𝛼
[{𝐹𝜉

𝒌𝛼
}] is the

electron-phonon collision integral. To estimate the collision integral, we consider
electronic coupling to graphene-SiC surface acoustic phonons and graphene longi-
tudinal acoustic phonons, indexed by 𝑗 = 0 and 1, respectively. Assuming weak
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Figure B.8: Characteristics of the single-particle quasienergy spectrum. (a) Single-
particle quasienergy bandgap Δ𝐸1 opening at 𝜀𝑘𝛼 = ±ℏΩ/2, with 𝜀𝑘𝛼 = 0 corre-
sponding to the Dirac point. The axes indicate the laser power density and photon
energy. (b) Predicted light-induced modifications of the time-averaged density of
states of graphene (see section J for definition) as a function of Fermi energy shift
from the Dirac point for different power densities, with circular polarization (top)
and linear polarization (bottom). Notice that the laser-induced gap at the Dirac
point, which is a second-order process, is not resolved in the experiment for the
chosen laser intensities. (See the main text for details.) The vertical dotted lines
mark the 𝐸𝐹 , value at ±ℏΩ/2.

scattering rates relative to the Floquet gap Δ𝐸1, we use Fermi’s golden rule to
calculate the electron-phonon collision integral

𝐼
el-ph,𝜉
𝒌𝛼

[{𝐹𝒌𝛼}] ≈
1
𝑁

2𝜋
ℏ

∑︁
𝜉′=±1

∑︁
𝒌′∈BZ

∑︁
𝛼′, 𝑗 ,𝑛

|𝐺 𝒌′𝛼′𝜉′

𝒌𝛼𝜉
(𝑛, 𝑗) |2×

× [{𝐹𝜉
′

𝒌′𝛼′
(1 − 𝐹𝜉

𝒌𝛼
)N (ℏ𝜔 𝑗 (𝒌′ − 𝒌)) − 𝐹𝜉

𝒌𝛼
(1 − 𝐹𝜉

′

𝒌′𝛼′
) [1 + N(ℏ𝜔 𝑗 (𝒌′ − 𝒌))]}

× 𝑝(𝜀𝒌′𝛼′ − 𝜀𝒌𝛼 + ℏ𝜔 𝑗 (𝒌′ − 𝒌) + 𝑛ℏΩ)
+ {𝐹𝜉

′

𝒌′𝛼′
(1 − 𝐹𝜉

𝒌𝛼
) [1 + N(ℏ𝜔 𝑗 (𝒌′ − 𝒌))] − 𝐹𝜉

𝒌𝛼
(1 − 𝐹𝜉

′

𝒌′𝛼′
)N (ℏ𝜔 𝑗 (𝒌′ − 𝒌))}

× 𝑝(𝜀𝒌′𝛼′ − 𝜀𝒌𝛼 − ℏ𝜔 𝑗 (𝒌′ − 𝒌) + 𝑛ℏΩ)],
(B.6)

where 𝜔 𝑗 (𝒌′ − 𝒌) = 𝑐 𝑗ph |𝒌
′ − 𝒌 | is the frequency dispersion of the phonon branch 𝑗 ,

𝑐
𝑗

ph is the speed of sound, 𝑁 is the number of discretized 𝒌-points on the 2D grid,
and N(𝜀) = (𝑒−𝜀/𝑘𝐵𝑇 − 1)−1 is the occupation of a phonon mode with energy 𝜀,
evaluated at temperature 𝑇 . The matrix element

𝐺
𝒌′𝛼′𝜉′

𝒌𝛼𝜉
(𝑛, 𝑗) = 𝑀 𝑗 𝒌𝒌′

∑︁
𝑚

∑︁
𝜈𝜈′

⟨𝜙𝑛+𝑚,𝜉
𝒌𝛼

|𝜙𝑚𝜉
𝒌𝛼
⟩ (B.7)
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describes the electronic coupling to the 𝑗-th phonon branch, where

𝑀 𝑗 𝒌𝒌′ =
1
√
𝐴

𝐷 𝑗√︁
2𝜌𝑐 𝑗ph

√︃
ℏ𝜔 𝑗 (𝒌′ − 𝒌), (B.8)

𝐴 is the unit cell size of graphene, 𝜌 is the density of graphene, and 𝐷 𝑗 is the
deformation potential corresponding to the phonon branch 𝑗 . To impose energy
conservation on electron-phonon scattering processes, we use the smeared Dirac-
Delta function

𝑝(𝜀) = 1.05
𝑒−𝜀

2/2𝜎2

2.51𝜎
𝜃 (2𝜎 − |𝜀 |) (B.9)

where 𝜃 (𝑥) is the Heaviside step function and the numerical prefactors ensure
normalization (

∫ ∞
−∞ 𝑝(𝜀)𝑑𝜀 = 1). Here, the phenomenological level broadening of

𝜎 = 3 meV describes the phonon and electronic spectral broadening due to disorder
in the system. Our calculations assume that the speeds of the phonon branches are
given by 𝑐0

ph = 1.3 km/s and 𝑐1
ph = 11 km/s and their deformation potentials satisfy

𝐷0/𝐷1 = 0.18.

To obtain the steady state occupations, we solve for 𝐼el-ph,𝜉
𝒌𝛼

[{𝐹𝒌𝛼}] = 0 using the
Newton-Raphson method. Our calculations are performed on a discretized square
momentum grid covering the region 𝑘𝑥 , 𝑘𝑦 ∈ [−0.17 nm−1, 0.17 nm−1] with 105
equally-spaced grid points in the 𝑘𝑥 and 𝑘𝑦 directions. We focus only on low-energy
electronic states, where the Floquet occupations can be approximated as rotationally
symmetric about the Dirac node, i.e., 𝐹𝜉

𝒌𝛼
≈ 𝐹𝑘𝛼, with 𝐹𝑘𝛼 depending only on the

momentum magnitude 𝑘 = |𝒌 | and band index 𝛼. To impose the electronic particle
number, we add a Lagrange multiplier term 𝜆(∑𝒌𝛼 𝐹𝒌𝛼 − 𝑔𝑁)/𝑁 to the FBE with
a large constant 𝜆, and we vary the doping by changing 𝑔. The corresponding
Fermi energies 𝐸𝐹 = ℏ𝑣𝐹

√︁
𝑛/𝜋 in equilibriu mcan be calculated from the electronic

density 𝑛 =
∫
𝑑2𝒌/(2𝜋)2𝐹+1

𝒌+ as determined using the numerically-obtained steady
state.

B.9 Transport in the Floquet Steady State
To calculate the longitudinal photocurrent Δ𝐼 from the steady state, we use linear
response theory to estimate the longitudinal conductivity in the driven system:

𝜎𝑥𝑥 ≈ 𝑒2
∑︁
𝛼

∫
𝑑𝑘

2𝜋

∫
𝑑𝜃 𝑘𝜏(𝑘)𝑣2

𝑥

𝑑𝐹𝑘𝛼

𝑑𝜀𝑘𝛼
, (B.10)

where 𝑣𝑥 = |∇𝒌𝜀𝒌𝛼 | cos 𝜃 and 𝜏(𝑘) ∝ 𝑘 for relaxation processes dominated by
scattering from charge impurities [37]. The longitudinal photocurrent is given by
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Figure B.9: Temperature dependence of the longitudinal conductivity at 𝐸𝐹 = 0
without irradiation, which indicates charge puddle effects.

Δ𝐼 = (𝜎𝑥𝑥−𝜎0
𝑥𝑥)𝑉sd, where𝑉sd is the source-drain voltage and𝜎0

𝑥𝑥 is the longitudinal
conductivity in the equilibrium system, obtained by replacing 𝑣𝑥 = 𝑣𝐹 cos 𝜃 and 𝐹𝑘𝛼
with the Fermi-Dirac distribution.

In addition to the above-mentioned effects, charge puddles also modify the lon-
gitudinal conductivity. In particular, for doping near charge neutrality, where a
clean graphene sheet normally exhibits low conductivity, the charge puddles intro-
duce regions with larger chemical potential and greater mobility, thereby enhancing
the conductivity [163]. To roughly capture this behavior, we employ a simple
model to relate the conductivity 𝜎 in clean graphene to that with charge puddles,
𝜎𝑝 = 𝜎 + 𝑐(𝑇), similar to that used in Ref. [60]. Here, 𝑐(𝑇) is a function which
captures the temperature-dependence of the experimentally-measured conductiv-
ity at charge neutrality, fit using 𝑐(𝑇) =

∑14
𝑖=0 𝑐𝑖𝑇

𝑖 to the experimental data for
𝑇 < 10 K, and fit using the function 𝑐(𝑇) = 𝑑1 + 𝑑2𝑇

1/2 for 𝑇 > 10 K, where 𝑐𝑖,
𝑑1, and 𝑑2 are fitting parameters (see Figure B.9). Due to heating effects from the
drive, the temperature during the duty cycle of the chopper differs when the laser
is blocked by the chopper 𝑇eq and when the laser is unblocked 𝑇dr. We account for
the temperature mismatch and charge puddle effects by shifting the photocurrent
by a magnitude [𝑐(𝑇dr) − 𝑐(𝑇eq)]𝑉sd in our simulations. We find that this tem-
perature mismatch accounts for the highly temperature and amplitude dependent
photocurrent Δ𝐼 magnitude at charge neutrality 𝐸𝐹 = 0 observed in the experiment.
In particular, in our theory, we assume both 𝑇dr − 𝑇eq ≈ 7.3 K/(mW/𝜇m2)𝑃 and
𝑇eq = 3.5 K + 1.83 K/(mW/𝜇m2)𝑃 increase linearly as a function of the laser
power density 𝑃. The coefficients chosen allow our theory to roughly capture the
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dependence of Δ𝐼 at charge neutrality as 𝑇eq and 𝑃 are varied in the experiment. We
emphasize that the fitting procedures for the variables 𝑐(𝑇), 𝑇dr − 𝑇eq, and 𝑇eq do
not affect the width, depth, or shape of the photocurrent dip predicted in our theory;
rather, it only shifts the Δ𝐼 by a constant independent of electronic doping.

B.10 Density of States and Berry Curvature Calculation
The time-averaged density of states (defined as the time-dependent spectral function
averaged over one period) was calculated numerically through the formula

DOS(𝜀) =
∑︁
𝑘𝛼

𝛿(𝜀𝑘𝛼 − 𝜀) (B.11)

where the broadening parameter 𝜎 of the Gaussian function 𝛿(𝜀) is chosen to be
much smaller than the resonant Floquet gap.

The transverse conductivity was calculated from the anomalous conductivity in the
steady state 𝜎𝑥𝑦 = 2𝑒2

ℏ

∑
𝛼

∫
𝑑2𝒌 𝐵𝜉

𝒌𝛼
𝐹𝑥𝑖
𝒌𝛼

, where 𝐵𝜉
𝒌𝛼

is the time-averaged Berry
curvature, given by20

𝐵
𝜉

𝒌𝛼
=

1
2𝜋/Ω

∫ 2𝜋/Ω

0
𝑑𝑡

(2𝜋)2

𝑁𝑥𝑁𝑦𝐴
arg

[
𝑈𝑥 (𝒌, 𝑡)𝑈𝑦 (𝒌 + 𝒆𝑥 , 𝑡)
𝑈𝑥 (𝒌 + 𝒆𝑦, 𝑡)𝑈𝑦 (𝒌, 𝑡)

]
, (B.12)

where
𝑈𝜇 (𝒌, 𝑡) =

⟨𝑢𝒌𝛼 (𝑡) |𝑢𝒌+𝒆𝜇 ,𝛼 (𝑡)⟩
|⟨𝑢𝒌𝛼 (𝑡) |𝑢𝒌+𝒆𝜇 ,𝛼 (𝑡)⟩|2

, (B.13)

𝒆𝜇 =
𝐺𝜇
𝑁𝜇
𝜇̂, 𝜇 = 𝑥, 𝑦, 𝑁𝜇 is the number of grid points in the 𝜇-direction, 𝐺𝜇 is the

length of the discretized momentum grid along the 𝜇-direction, and |𝑢𝒌𝛼 (𝑡)⟩ are the
Bloch vectors, defined by |𝜓𝜉

𝒌𝛼
(𝑡)⟩ = 𝑒𝑖𝒌·𝒓 |𝑢𝒌𝛼 (𝑡)⟩.

B.11 Transverse Hall Voltage
An expected consequence of the Floquet states described above is the appearance
of a Hall signal [3, 74, 215]. We measure the transverse voltage in samples under
irradiation with both circular and linear polarization, as shown in Figures B.10-
B.13. Floquet theory predicts that a nonzero transverse voltage originates only from
nontrivial band topology, inconsistent with the observation of a transverse signal for
linear polarization. However, the extraneous, helicity-independent transverse signal
has been observed before under linearly polarized Mid-IR irradiation at zero source-
drain bias in McIver et al. [185] and attributed to an effective extra bias voltage
caused by band bending fields at the contacts, a possible result of asymmetries
introduced by charge puddles. The helicity-independent component may also be a
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Figure B.10: Transverse voltage response under different conditions. Transverse
voltage as a function of 𝐸𝐹 , under light irradiation (ℏΩ = 117 meV) with left-hand
circular polarization. The dotted lines mark the values corresponding to 𝐸𝐹 =

±ℏΩ/2, with the related uncertainties indicated by the gray stripes. (a) Transverse
voltage measured at different bias voltage values. The cryostat temperature is 3.1 K,
and the laser beam is circularly polarized. (b) Transverse voltage measured under
different irradiation power. The curves are vertically shifted for clarity. The cryostat
temperature ranges from 3.0-3.3 K depending on laser intensity. The laser beam
is circularly polarized. The circles represent data points, and the solid lines are
obtained by adjacent point averaging. (c) Transverse voltage measured at different
temperatures. For both (a) and (c), the laser intensity is 0.8 mW/𝜇m2 and for (b)
and (c) the bias voltage is 50 mV. The measurements are from sample C.

product of photovoltaic effects generated by optical transitions in highly irradiated
graphene [34, 70] or anisotropies in the Floquet band spectrum near the resonant
Floquet gap [33], which may appear due to the distorted circular polarization near
the metallic contacts (see Section B.1).

The weak polarization-dependent Hall voltage exhibits signs of a nontrivial 𝐸𝐹-
dependence, shown in Figure B.11(b) for graphene sample A, displaying peaks
starting to emerge around doping 𝐸𝐹 = ±ℏΩ/2. In Figure B.11(c), we show the
corresponding Hall conductivity. Upon inverting the sign of the source-drain bias
𝑉sd, the Hall voltage peaks reverse sign. Such a helicity-dependent Hall voltage
contribution may be an indicator of the emergence of Floquet chiral edge states
in our samples. The theoretically calculated Floquet Hall conductivity, see Figure
B.11(d), also exhibits peaks near doping 𝐸𝐹 = ±ℏΩ/2. However, the magnitude of
the Hall conductivity observed in the experiment is much weaker than the theory-
predicted levels. There are several possible reasons for this discrepancy. One
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Figure B.11: Transverse voltage response under different conditions. (a) Transverse
voltage as a function of 𝐸𝐹 , under light irradiation (ℏΩ = 117 meV) with different
polarizations of the laser. (b) helicity-dependent Hall voltage in Sample A. (c) Hall
conductivity in Sample A. Here, the laser intensity is 1.4 mW/𝜇m2, bias source-
drain voltage is 6 mV, and cryostat temperature is 3.4 K. (d) Theoretically calculated
Floquet Hall conductivity with nontrivial 𝐸𝐹-dependence arising from the tunable
electronic steady state. The dotted lines in (a)-(d) mark the values corresponding
to 𝐸𝐹 = ±ℏΩ/2, with the related uncertainties indicated by the gray stripes in (a)-
(c). In (a)-(c), the circles represent data points, and the solid lines are obtained by
adjacent point averaging.

possible contribution to the suppressed Hall voltage is the distorted polarization
of the laser beam near the metallic contacts (see Section B.1 for details), which
can create an anisotropic Floquet gap size in momentum space, as was already
mentioned in the main text. Charge puddles could also play an important role in
reducing the measured Hall response. The photocurrent Δ𝐼 flows through the most
conducting puddles with larger chemical potential. Insulating regions with depleted
photocurrent in this case would generate a much smaller Hall voltage than predicted,
reducing the overall average Hall voltage.

B.12 Reproducibility of the Results
The photoresponse features and the signatures of Floquet-Bloch band formation are
reproducible with multiple sweeps on the same device. As discussed in the main text
and above, we characterized the transverse conductivity of the devices for different
polarizations of laser irradiation. The results for samples A, B and C are shown in
Figures B.11, B.12, and B.13. For all three samples, the longitudinal photocurrent
Δ𝐼 showed dips around 𝐸𝐹 = ±ℏΩ/2 for circularly and linearly polarized light.
Such symmetric dips around the Dirac point are consistent with the emergent non-
equilibrium Floquet steady states in graphene.
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B.13 Effect of Hall contact misalignment on the transverse signal measured
under illumination

We made some estimates to quantify the contribution to the transverse voltage due
to the geometric effect of the contact misalignment and compared it to the trans-
verse voltage 𝑉𝑦 measured under illumination. First, we measured the transverse
voltage 𝑉Misalignment as a function of the source-drain voltage 𝑉sd and the source-
drain current 𝐼sd in the zero magnetic field, with no laser illumination and at room
temperature. The measured misalignment for sample A is plotted in Figure B.14(a).
From this measurement we extracted the quantity 𝑅Misalignment/𝐼sd ∼ 99.1 Ω. Figure
B.14(b) shows the estimated contribution to the transverse voltage from the photoin-
duced current change Δ𝐼, 𝑉Misalignment = 𝑅MisalignmentΔ𝐼, in the same graph with the
measured transverse photoresponse. The comparison shows that this misalignment
contribution is much smaller than the transverse signal measured under illumination.
Similar misalignment contributions were determined in all the measured samples.

Figure B.12: Floquet signatures in the longitudinal photocurrent in additional de-
vices. The dotted lines mark the 𝐸𝐹 values corresponding to ±ℏΩ/2, with the
related uncertainty described by the gray stripes. (a) Longitudinal photocurrent as
a function of 𝐸𝐹 under different polarization illumination in sample B. Parameters:
Laser power density 1.4 mW/𝜇m2 and bias voltage 6 mV. (b) Longitudinal pho-
tocurrent as a function of 𝐸𝐹 , under different polarization illumination in sample
C. Parameters: Laser power density 1.6 mW/𝜇m2, bias voltage 6 mV, and cryostat
temperature 3.4 K.
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Figure B.13: Transverse voltage response in additional devices. Transverse voltage
as a function of 𝐸𝐹 , under irradiation with different polarizations in sample C
[panel (a)] and the difference between the transverse voltage response from circular
polarizations of the laser beam with opposite chirality extracted from the curves in
panel (a) [see panel (b)], and upon reversing the source-drain bias 𝑉sd. Laser power
density 0.5 mW/𝜇m2, cryostat temperature 3.1 K. The dotted lines mark the 𝐸𝐹
values corresponding to ±ℏΩ/2, with the related uncertainty described by the gray
stripes.

B.14 Linearity in the device response
The source-drain bias voltage dependence of the photoresponse is an important char-
acteristic that can help determine its underlying physical mechanisms and separate
intrinsic contributions from graphene or from the graphene-electrode boundaries.
Figure B.15(a) shows a typical 𝐼-𝑉 curve (sample C). The clear linear relationship
between the bias voltage and current indicates the ohmic contact nature of our
graphene-electrode interface. Figure B.15(b) demonstrates the bias voltage depen-
dence of the longitudinal photoresponse at a few different fixed 𝑉𝑔, which reveals a
linear relationship between the sample response and the bias voltage. Moreover, no
clear photoresponse signal was observed at 𝑉sd = 0 for all measured gate voltages.
Furthermore, as presented in Figure B.15(c), the normalized photoresponse curves
collected at different 𝑉sd as a function of Fermi energy further confirm the linearity
of our sample’s photoresponse.

B.15 Chopper frequency dependence of the photoresponse
To better understand our samples’ photoresponse, we measured the longitudinal
photoresponse as a function of the chopper modulation frequency. As one can see
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Figure B.14: Effect of Hall contacts misalignment. (a) (Red) 𝑉Misalignment and
(black) 𝑉sd measured at the same source-drain current. Room temperature. (b)
Misalignment contribution to the measured transverse voltage for (top) circular and
(bottom) linear irradiation. Solid lines represent the transverse voltages measured
by the lock-in amplifier; dotted lines represent the contribution resulting from mis-
alignment in the Hall contacts. The experimental data from Figure B.11 are shown
for reference.

in Figure B.16, as the chopper frequency is increased, the signal first increases and
then rapidly drops. Such non-monotonic behavior can be attributed to the heating
and cooling processes of electrons that are associated with the chopping of the laser
beam. At low frequencies, electrons are heated with a longer exposure time to
the irradiation during each chopping cycle, while for high frequencies, although
the exposure time is shorter, the electrons do not have enough time for cooling.
As a result, for both too low and too high frequencies, a higher effective electron
temperature is expected. Furthermore, as discussed in the main text, an elevated
effective electron temperature will not only lead to the fading of Floquet features but
will also suppress the overall signal strength. Therefore, for better detection of the
Floquet features, one has to carefully control the chopper frequency and maintain
the electron temperatures below the size of Floquet gaps. All results presented in
this work were collected with a chopper frequency around 23 Hz.

B.16 Error Analysis
In this section, we provide details of the error estimates in Fermi level position,
specifically for 𝐸𝐹 = ℏΩ/2 as well as the full width at half maximum (FWHM)
analysis for sample C, as presented in Figure 6.3(c)-(d) in the main text. The
electronic carrier density in the sample was estimated using the relation

𝑛 = 𝑘 (𝑉𝑔 −𝑉𝑑) (B.14)
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Figure B.15: Bias dependence of sample response. (a) I-V curve from sample C at
different values of 𝑉𝑔. (b) Photo-induced current change Δ𝐼 as a function of bias
voltage at different values of𝑉𝑔. (c) Normalized longitudinal photoresponse Δ𝐼 as a
function of 𝐸𝐹 at different bias voltages, under circularly polarized irradiation, with
a power density of 1.5 mW/𝜇m2. The curves are vertically shifted for clarity. The
cryostat temperature is 3.4 K. The dotted lines mark the 𝐸𝐹 values corresponding
to ±ℏΩ/2, with the related uncertainty described by the gray stripes.

where 𝑘 ≈ 1.63×10−15 m−2/V± 𝛿𝑘 and 𝛿𝑘 = 9×1013 m−2/V were estiamted from
the gate efficiency calibration. The voltage 𝑉𝑑 ≈ 0.55 V ± 𝛿𝑉𝑑 was estimated to be
the gate voltage at which 𝜎𝑥𝑥 is minimized, and the uncertainty 𝛿𝑉𝑑 ≈ 0.8 V was
estimated from the gate efficiency calibration. The corresponding uncertainties in
the Fermi energy 𝐸𝐹 = ℏ𝑣𝐹

√
𝜋𝑛 are given by

𝛿𝐸𝐹 ≈ (𝐸𝐹/2)
√︃
(𝛿𝑘/𝑘)2 + [𝛿𝑉𝑑/(𝑉𝑔 −𝑉𝑑)]2. (B.15)

The FWHM of the conductivity dip [see Figure 6.3(d)] FWHM = Δ𝐸𝐹 = 𝐸𝐹 (𝑉𝑔1) −
𝐸𝐹 (𝑉𝑔2), where 𝑉𝑔1 = 𝐵 +

√
2 ln 2𝜎 and 𝑉𝑔2 = 𝐵 −

√
2 ln 2𝜎, was estimated by

performing a least squares fit of the experimental data to the function

Δ𝐼fit = 𝑎0 exp
[
−(𝑉𝑔 − 𝐵)2/2𝜎2

]
+ 𝐶𝑉𝑔 + 𝐷. (B.16)

We estimated the uncertainty in the FWHM using the relationship

𝛿Δ𝐸𝐹 =

√√√[
𝜕Δ𝐸𝐹

𝜕𝑣𝐹
𝛿𝑣𝐹

]2
+

[
𝜕Δ𝐸𝐹

𝜕𝑉𝑑
𝛿𝑉𝑑

]2
+

[
𝜕Δ𝐸𝐹

𝜕𝑘
𝛿𝑘

]2
+

[
𝜕Δ𝐸𝐹

𝜕𝑉𝑔1
𝛿𝑉𝑔1

]2

+
[
𝜕Δ𝐸𝐹

𝜕𝑉𝑔2
𝛿𝑉𝑔2

]2

(B.17)
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Figure B.16: Longitudinal photoresponse as a function of chopper frequency. Photo-
induced current change measured in sample C under 1.5 mW/𝜇m2 of circularly
polarized irradiation. The sample is biased at a fixed 6 mV. The cryostat temperature
is 3.4 K. Error bars indicate the maximum deviation in the lock-in amplifier reading
during the measurement.

where 𝛿𝑣𝐹 ≈ 0.008×106 m/s as determined by cyclotron resonance measurements.
The uncertainties 𝛿𝑉𝑔1 and 𝛿𝑉𝑔2 were estimated using the relation

𝛿𝑉𝑔1 ≈ 𝛿𝑉𝑔2 ≈
√︃
𝛿𝐵2 + (

√
2 ln 2𝛿𝜎)2 (B.18)

where 𝛿𝐵 and 𝛿𝜎 are the uncertainties in the fitting parameters 𝐵 and𝜎, respectively,
as determined from the 68% confidence interval of the least squares fit.
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C h a p t e r 7

QUANTIZED ACOUSTOELECTRIC FLOQUET EFFECT IN
QUANTUM NANOWIRES

External coherent fields can drive quantum materials into non-equilibrium states,
revealing exotic properties that are unattainable under equilibrium conditions—an
approach known as “Floquet engineering.” While optical lasers have commonly
been used as the driving fields, recent advancements have introduced nontraditional
sources, such as coherent phonon drives. Building on this progress, we demon-
strate that driving a metallic quantum nanowire with a coherent wave of terahertz
phonons can induce an electronic steady state characterized by a persistent quan-
tized current along the wire. The quantization of the current is achieved due to
the coupling of electrons to the nanowire’s vibrational modes, providing the low-
temperature heat bath and energy relaxation mechanisms. Our findings underscore
the potential of using non-optical drives, such as coherent phonon sources, to in-
duce non-equilibrium phenomena in materials. Furthermore, our approach suggests
a new method for the high-precision detection of coherent phonon oscillations via
transport measurements.

7.1 Introduction
New phonon sources have recently enabled on-demand access to coherent phonon
beams across a broad spectrum of frequencies [100, 103, 116, 123, 206, 226, 286,
297]. These phonon excitations in solids [18, 19, 89, 125, 162, 175, 179, 275]
can induce new optical properties [135, 282], strong correlation physics [16, 134,
142, 164, 178, 192], tunable magnetic properties [18, 177, 206, 211], and acousto-
electric effects [126, 133, 154, 173, 221, 234, 262, 302]. The unique characteristics
of coherent phonons—e.g., finite momentum, low energy, and electron coupling—
enable Floquet engineering of non-equilibrium spatial-temporal electronic phenom-
ena [40, 91, 114, 224]. Notably, terahertz (THz) phonons [20, 22, 35, 77] could
become tools for the dynamic manipulation of narrow bandwidths materials, such as
moiré systems [77, 131, 312]. Recent proposals demonstrated that coherent phonon
beams can be used for Floquet engineering of nontrivial band topology [40, 224].

We demonstrate that a continuous propagating wave of coherent THz phonons
can drive a quantum wire into a non-equilibrium Floquet steady state, resulting in a
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persistent charge current [see Figure 5.1(a)]. Furthermore, under optimal conditions
of doping and driving strength, this current can achieve a quantized value, 𝐽 = 𝑒𝜔/𝜋,
where𝜔 represents the phonon driving angular frequency and 𝑒 is the electron charge
[see Figure 5.1(b)]. In the adiabatic limit, 𝜔 → 0, the quantization of current aligns
with the principles of a topological pump [7, 29, 32, 47, 71, 82, 111, 159, 201, 201,
278, 279]. Remarkably, we find that quantized transport can be maintained over a
wide range of THz frequencies, even beyond the adiabatic limit. This suggests a
robust mechanism underpinning the quantization, stabilized by the non-equilibrium
electronic steady state, which is set by the coupling to a bath of low-temperature
thermal phonons and electron-electron interactions [28, 78, 200, 229, 298].

J

(a)

phonon 
source

absorbing 
material
(c)

-5
0
5

(d)

(b)
anti-reflective material

Figure 7.1: (a) Schematic experimental setup. A THz-frequency coherent phonon
wave (with atomic displacements sketched by orange arrows) of momentum 𝑞 and
angular frequency𝜔 propagates from the phonon source on the right to the absorbing
material on the left. A screening material of dielectric constant 𝜖 is placed below
the CNT. Black sinusoid represents the coherent phonon potential. Electrons (black
dots) generate quantized current 𝐽 = 𝑒𝜔/𝜋 when confined to the troughs of the
potential, achieved when incoherent phonon relaxation (ep) is much faster than
electron-electron heating (ee). (b) Current 𝐽 vs. Floquet gap Δ/ℏ𝜔 for different 𝜖
(see inset). Vertical line denotes Δ = ℏ𝜔. Inset: Δ∗ vs. 𝜖 , where Δ∗ is the minimal
Floquet gap at which 𝐽 is nearly quantized, set as 0.96𝑒𝜔/𝜋. (c) Band structure of a
(10, 0) armchair CNT. Inset: Fermi energy lies near the band bottom of the lowest
positive-energy band, and the electronic density 𝑛𝑒 is chosen to be commensurate
to 𝑞. (d) Quasienergy spectrum of the driven system. Blue shading on the 𝛼 = 0
band indicates the optimal filling resulting in quantized current. Incoherent phonon
scattering transitions (black arrows) relax electrons into the 𝛼 = 0 band.

A device for robust generation of quantized current on demand through coherent
phonon illumination has numerous potential applications in metrology [95, 129, 209,
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222, 273, 326], electronics, and quantum computing [21, 57, 88, 316]. Furthermore,
this device can be used to characterize and detect coherent phonons through transport
measurement. Traditionally, the detection of coherent phonons has relied on optical
methods such as reflectivity measurements [72, 96, 157, 314, 315]. Leveraging
current quantization to probe the phonon field offers a more direct and sensitive
method of coherent phonon detection.

In this work, we focus on an experimental setup of a single-walled carbon nanotube
(CNT) [79, 105, 128, 191, 247, 249] coupled to a continuous source of coherent
phonons. The phonon waves propagate from the right to the left end of the CNT,
where they are absorbed by an absorbing material, see Figure 7.1(a). Anti-reflective
material with appropriate thickness suppresses reflected phonon waves that destruc-
tively interfere with the coherent phonon mode. The electronic steady state in the
CNT is formed from the balance between interactions with the coherent phonon
wave, incoherent phonons of the CNT, and free electrons. Our model considers a
detailed microscopic description of the phononic spectrum of the CNT that serves as
the low-temperature heat bath for the phonons and the electron-electron interactions.

7.2 Phonon-Driven Carbon Nanotube.
To analyze the steady-state properties of this setup, we use an effective model of a
single-walled CNT. We define 𝝍̂

†
𝑘,𝑠 ≡

(
𝜓̂
†
𝑘,𝐴,𝑠

𝜓̂
†
𝑘,𝐵,𝑠

)
as the creation operator of

a Bloch state on the CNT, where 𝜓̂†
𝑘, 𝑗 ,𝑠

creates an electron of crystal momentum 𝑘

on sublattice 𝑗 = 𝐴, 𝐵, and 𝑘 is the Bloch momentum in the direction 𝒌̂∥ along the
tube axis. The index 𝑠 = 0, . . . , 𝑁 − 1 enumerates the discrete electronic momenta
along the direction 𝒌̂⊥ around the circumference of the tube. Here, 𝑁 is the number
of graphene unit cells contained in a length |𝑻 | along the tube axis, and the CNT is
periodic along the tube axis by translations of vector 𝑻. The electronic momentum
𝑘 ∈ [−𝜋/|𝑻 |, 𝜋/|𝑻 |] is approximately continuous for a long tube. Corresponding
eigenenergies of the electronic states are given by 𝐸𝑠𝜈 (𝑘), where 𝜈 = +,− denote
the conduction and valence bands, respectively, see Figure 7.1(c).

We focus on a semiconducting CNT whose Fermi surface in equilibrium lies near
the bottom of the lowest conduction band [see inset of Figure 7.1(c)]. We omit
the index 𝑠, considering only the lowest conduction and highest valence bands
described by 𝜈 = +,− with eigenenergies 𝐸𝜈 (𝑘) and eigenstates |𝜈𝑘⟩. The two
bands are described by the effective Hamiltonian 𝐻̂e =

∫
𝑑𝑘/2𝜋 𝝍̂†

𝑘𝐻e(𝑘)𝝍̂𝑘 , where
the 𝑥 axis is aligned along a bond between carbon atoms. To describe electron-
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phonon interactions in the CNT, we consider the Hamiltonian 𝐻̂ep(𝑡) =
∑
𝜆 𝐻̂

(𝜆)
ep (𝑡),

where 𝐻̂ (𝜆)
ep (𝑡) =

∫
𝑑2𝒓 𝝍̂

†
𝒓𝑉̂

(𝜆) (𝒓, 𝑡)𝝍̂ 𝒓 and 𝑉̂ (𝜆) (𝒓, 𝑡) describe electronic coupling
to a phonon mode indicated by 𝜆, 𝒓 = (𝑥, 𝑦) is the spatial coordinate along the tube,
𝝍̂
†
𝒓 = 𝑃

−1
∫
𝑑𝑘/(2𝜋)𝑒−𝑖(𝛿𝑘 𝒌̂⊥+𝑘 𝒌̂ ∥ )·𝒓𝝍̂

†
𝑘 , 𝛿𝑘 is the momentum along 𝒌̂⊥, and 𝑃 is the

perimeter of the CNT [77, 296]. [See Appendix C for details.]

We assume that a phonon source [see Figure 7.1(a)] generates a coherent wave
of phonons in one of the modes denoted by 𝜆 = 𝜆0 that propagates through the
CNT, while other phonons are in low-temperature thermal equilibrium. The phonon
mode 𝜆0 has momentum 𝒒 = 𝑞 𝒌̂ ∥ , angular frequency 𝜔, and finite displacement
expectation value ⟨𝒖̂(𝜆0) (𝒓, 𝑡)⟩ = 𝑢0 cos

(
𝒒 · 𝒓 − 𝜔𝑡

)
𝒌̂ ∥ , where 𝑢0 is the displacement

amplitude and 𝒖̂(𝜆0) (𝒓, 𝑡) is the displacement operator of the mode. While we
consider coherent longitudinal phonon modes, coherent transverse modes should
induce similar behavior. We assume that the CNT is sufficiently short compared
to the coherent phonon decay length such that 𝑢0 is approximately constant [see
Appendix C].

The electronic dynamics can be divided to coherent components described by the
time- and spatially-periodic Hamiltonian 𝐻̂0(𝑡) = 𝐻̂e + 𝐻̂ (𝜆0)

ep (𝑡) and incoherent
components due to coupling to thermal phonon modes, 𝐻̂b(𝑡) =

∑
𝜆≠𝜆0 𝐻̂

(𝜆)
ep (𝑡).

For simplicity, we assume that the wavelength of the coherent phonon mode
is commensurate with the periodicity of the CNT along the tube axis. The
single-particle Hamiltonian 𝐻̂0(𝑡) can be diagonalized by the Floquet-Bloch states,
|𝜓𝑘𝛼 (𝒓, 𝑡)⟩ = 𝑒−𝑖(𝒌·𝒓+𝜀𝑘𝛼𝑡/ℏ)

∑
𝑛∈Z 𝑒

−𝑖𝑛(𝒒·𝒓−𝜔𝑡) |𝜙(𝑛)
𝑘𝛼
⟩ [91, 114, 224, 241]. Here, 𝜀𝑘𝛼 is

the quasienergy satisfying

(𝜀𝑘𝛼 + 𝑚ℏ𝜔) |𝜙(𝑚)𝑘𝛼
⟩ = 𝐻e(𝑘 + 𝑚𝑞) +

∑︁
𝑚′≠0

𝑉𝑚−𝑚′ |𝜙(𝑚
′)

𝑘𝛼
⟩ (7.1)

where𝛼 enumerates the Floquet bands and𝑉𝑛 are the Fourier harmonics of ⟨𝑉̂ (𝜆0) (𝒓, 𝑡)⟩,
i.e., ⟨𝑉̂ (𝜆0) (𝒓, 𝑡)⟩ = ∑

𝑛≠0 𝑒
−𝑖𝑛(𝒒·𝒓−𝜔𝑡)𝑉𝑛. The quasienergy spectrum 𝜀𝑘𝛼 arises from

replicas of the original energy bands 𝐸𝜈 (𝑘) shifted in energy and momentum by
𝑚ℏ𝜔 and 𝑚𝑞, respectively, where 𝑚 ∈ Z [see light grey, dashed curves in Figure
7.1(d)]. At the crossings between the Floquet replicas corresponding to 𝑘 = 𝑘∗+𝑚𝑞,
the quasienergy spectrum exhibits Rabi-like gaps of size Δ ≈ |𝑉1 |, see solid curves
in Figure 7.1(d) [see Appendix C]. Remarkably, the quasienergy satisfies the peri-
odicity condition 𝜀𝑘𝛼 = 𝜀𝑘+𝑞,𝛼 − ℏ𝜔, which is the basis for the quantized current
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presented in this work. Specifically, the current is given by [74]

𝐽 =
2𝑒
ℏ

∑︁
𝛼

∫ 𝑞

0

𝑑𝑘

2𝜋
𝑑𝜀𝑘𝛼

𝑑𝑘
𝐹𝑘𝛼 . (7.2)

Here, 𝐹𝑘𝛼 (𝑡) = ⟨ 𝑓 †
𝑘𝛼
(𝑡) 𝑓𝑘𝛼 (𝑡)⟩ is the occupation of the Floquet-Bloch state |𝜓𝑘𝛼 (𝒓, 𝑡)⟩

created by operator 𝑓 †
𝑘𝛼
(𝑡). The factor of two in Eq. (7.2) accounts for spin de-

generacy. When only the 𝛼 = 0 band is fully-occupied, 𝐽 = 𝑒𝜔/𝜋, resulting in
quantized current. Our goal is to determine 𝐹𝑘𝛼 (𝑡) in the steady state, which is
set by incoherent electronic dynamics due to electron-phonon and electron-electron
scattering.

7.3 Floquet-Boltzmann Equation.
To model the dynamics under electron-phonon scattering, we consider the micro-
scopic Hamiltonian 𝐻̂b(𝑡) for electronic coupling to incoherent bath phonons, as
defined above. Our model considers only the longitudinal acoustic phonon mode of
speed 𝑐ph, momentum 𝑝, and energy ℏ𝑐ph𝑝, which dominates the electron-phonon
scattering near the Fermi surface of the CNT. We assume that the CNT incoherent
phonons are coupled to an external heat bath, remaining in thermal equilibrium at
temperature𝑇 and thermalizing quickly with the heat bath phonons and environment.

Additionally, we consider scattering due to electron-electron interactions, given by
the Hamiltonian

𝐻̂ee =

∫
𝑑𝑘1𝑑𝑘2𝑑𝑝

(2𝜋)3 V𝑘1,𝑘2 (𝑝)𝑐
†
𝑘1+𝑝,+𝑐

†
𝑘2−𝑝,+𝑐𝑘2,+𝑐𝑘1,+, (7.3)

where V𝑘1,𝑘2 (𝑝) = 𝑈 (𝑝)W𝑘1,𝑝W𝑘2,−𝑝/(2𝜖), W𝑘,𝑝 ≡ ⟨+, 𝑘 + 𝑝 |+, 𝑘⟩ is the form-
factor,𝑈 (𝑝) is the Coulomb potential, 𝜖 is the dielectric constant of the surrounding
screening medium, and 𝑐†

𝑘𝜈
creates an electron in the eigenstate |𝜈𝑘⟩ of 𝐻̂e. We

consider scattering within the 𝜈 = + band only, because the Fermi level [see inset of
Figure 7.1(c)] is energetically well-separated from other bands, restricting scattering
to small momentum transfers 𝑝 ≲ 𝑞 near the Fermi surface. For small 𝑝, we
approximate𝑈 (𝑝) ≈ 1 eV, consistent with estimates in Refs. [176, 325].

Under electron-phonon and electron-electron scattering, the electrons form a steady
state distribution with occupations 𝐹𝑘𝛼 (𝑡) determined by the Floquet-Boltzmann
equation (FBE) [93, 110, 257, 258],

¤𝐹𝑘𝛼 (𝑡) = 𝐼b𝑘𝛼 [{𝐹𝑘𝛼 (𝑡)}] + 𝐼
ee
𝑘𝛼 [{𝐹𝑘𝛼 (𝑡)}] (7.4)
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Figure 7.2: (a) Floquet bands upon driving by a coherent phonon wave. Dashed light
purple arrows (1-3): dominant electron-phonon intraband and cooling processes
relaxing electrons into the 𝛼 = 0 band. Solid red arrows (4-5): electron-phonon
heating processes exciting electrons into the 𝛼 = 1 band, which are kinematically
suppressed when Δ ≫ 𝛿𝜀. (b) Pairs of zigzag and squiggly red arrows: electron-
electron scattering exciting electrons into the𝛼 = 1 band. Dashed light purple arrow:
electron-phonon process relaxing excited electrons into S+. (c)-(e) Occupation 𝐹𝑖
of the patch S𝑖 for 𝑖 = +,−, 0 [see panel (a)] vs Δ for various dielectric constants 𝜖 .
Vertical lines: Δ = Δ∗(𝜖). Note 𝐹+ → 0, 𝐹− → 1 as Δ → Δ∗, resulting in quantized
current.

with ¤𝐹𝑘𝛼 (𝑡) = 0. The FBE is valid when 𝐻̂ee and 𝐻̂b weakly scatter electrons between
single-particle Floquet eigenstates. Here, we use the Fermi golden rule modified for
transitions between Floquet states [257, 258] to calculate the electron-phonon and
electron-electron collision integrals 𝐼b

𝑘𝛼
[{𝐹𝑘𝛼 (𝑡)}] and 𝐼ee

𝑘𝛼
[{𝐹𝑘𝛼 (𝑡)}], respectively

(see Appendix C). We note that the analysis in terms of the occupations, 𝐹𝑘𝛼 (𝑡),
diagonal in the Floquet basis neglects the coherences ⟨ 𝑓 †

𝑘𝛼
(𝑡) 𝑓𝑘𝛼′ (𝑡)⟩ for 𝛼 ≠ 𝛼′.

These coherences are suppressed when 1/𝜏ph
𝑘𝛼𝛼′ + 1/𝜏el

𝑘𝛼𝛼′ ≪ |𝜀𝑘𝛼 − 𝜀𝑘𝛼′ |/ℏ, where
1/𝜏ph

𝑘𝛼𝛼′ and 1/𝜏el
𝑘𝛼𝛼′ are respectively the electron-phonon and electron-electron in-

terband scattering rates between bands 𝛼 and 𝛼′ ≠ 𝛼 [145, 257, 258]. Interband
scattering transitions also broaden the electronic spectral function by an energy of
roughly 𝛿𝜀 ≈ ℏ/𝜏tot

𝑘𝛼𝛼′ , relaxing energy conservation in the FBE.

7.4 Phenomenological Rate Equation
Before discussing the numerical solution to the FBE, we present a simplified phe-
nomenological analysis. Our goal is to estimate the conditions on the scattering
rates leading to 𝐹𝑘𝛼 ≈ 𝐹

opt
𝑘𝛼

in the steady state. Here, 𝐹opt
𝑘𝛼

is the optimal steady
state distribution, defined as 𝐹opt

𝑘0 = 1, and 𝐹opt
𝑘,𝛼≠0 = 0, in which the current is quan-
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tized. To this end, we identify the key scattering processes that contribute to the
steady state, indicated by arrows in Figure 7.2(a)-(b). These processes connect three
patches of Floquet states denoted by S+, S−, and S0, with approximately uniform
electronic occupation 𝐹+, 𝐹−, and 𝐹0 respectively. The patch S0 includes Floquet
states with momentum 𝑘∗ ≤ 𝑘 < 𝑞/2 in the 𝛼 = 0 band, while S+ and S− encloses
those with momentum −𝑞/2 ≤ 𝑘 < 𝑘∗ in the 𝛼 = 1 and 𝛼 = 0 bands, respectively
[see Figure 7.2(a)].

To estimate the electronic occupations of the patches, let us first consider the limit
𝜖 → ∞ and 𝐼ee

𝑘𝛼
→ 0 in which scattering is mediated by acoustic phonons only.

Averaging the FBE over the patches, we obtain rate equations for their occupations,

¤𝐹𝑖 =
∑︁
𝑗

[R 𝑗𝑖𝐹𝑗 (1 − 𝐹𝑖) − R𝑖 𝑗𝐹𝑖 (1 − 𝐹𝑗 )], (7.5)

where 𝑖, 𝑗 = +,−, 0 and R𝑖 𝑗 denotes the average scattering rate of an electron from
patch S𝑖 to S 𝑗 . We begin by assuming that the system is optimally doped, i.e.,
𝑛𝑒 = 𝑞, where 𝑛𝑒 is the density of the electrons. The optimal steady state 𝐹opt

𝑘𝛼
is

obtained when the “Floquet-cooling” processes R+0, R0− and R−0 [dashed, light
purple arrows numbered 1-3 in Figure 7.2(a)] dominate the scattering rates. The
rest of the scattering rates R𝑖 𝑗 create excitations in S+, leading to deviations from
𝐹

opt
𝑘𝛼

and therefore are dubbed “Floquet-heating” rates [solid red arrows numbered
4-5 in Figure 7.2(a)].

When the incoherent phonons remain at temperature 𝑇 = 0, all “Floquet-heating”
processes mediated by acoustic phonons require a small energy and large momentum
transfer. This kinematically constrains the ratesR+− andR0+ at high drive intensities,
i.e., when Δ > 𝛿𝜀, disabling all “Floquet-heating” processes. Simultaneously, the
processes described by the rates R0− and R−0 are kinematically allowed. These
processes are of the Floquet-Umklapp (FU) type and therefore increase with the drive
intensity as (Δ/ℏ𝜔)2 yielding 𝐹𝑘𝛼 → 𝐹

opt
𝑘𝛼

[76, 241, 257]. This is a remarkable result
that shows that the coupling to acoustic phonons can stabilize a quantized current
in the non-adiabatic regime 𝛿𝜀 < Δ < ℏ𝜔. In contrast, in the low intensity limit
(Δ → 0) of the drive, the rates R0− and R−0 vanish, whereas the rates R−+ and R0+

become kinematically enabled. This situation leads to 𝐹+ = 𝐹0 = 1 and 𝐹− = 0,
recovering the equilibrium Fermi-Dirac distribution.

A finite incoherent phonon temperature 𝑘𝐵𝑇 < ℏ𝜔 and electron-electron interactions
(finite 𝜖) cause deviations of the steady state from 𝐹

opt
𝑘𝛼

when Δ > 𝛿𝜀. Absorption
of incoherent phonons yields a finite but weak electron-phonon heating rate R0+,
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Figure 7.3: (a) Steady state occupation of the phonon-driven CNT for a weak phonon
drive (Δ < Δ∗), dielectric constant 𝜖 = 80, and optimal doping 𝑛𝑒 = 𝑞. Inset shows
excitations in the 𝛼 = 1 band near the Floquet gap. (b) Same as (a) but for a strong
drive amplitude (Δ > Δ∗) where the occupation of the 𝛼 = 1 band is negligible,
and the 𝛼 = 0 band is fully occupied. (c)-(d) Same as (b), but with two different
electronic densities 𝑛𝑒 away from optimal doping. (e) Steady state current vs 𝑛𝑒
evaluated at Δ = 0.8ℏ𝜔 > Δ∗ for 𝜖 = 80.

generating small electron and hole densities in S+ and S− respectively. Heating
processes due to electron-electron interactions excite electrons into the patch S+

in the 𝛼 = 1 band [pairs of squiggly red arrows in Figure 7.2(b)]. Other electron-
electron scattering processes [pairs of zigzag arrows in Figure 7.2(b)] excite electrons
to states elsewhere in the 𝛼 = 1 band, which are relaxed to S+ by electron-phonon
cooling [dashed, light purple arrow in Figure 7.2(b)]. These processes result in a
net increase in 𝐹+ and reduced current response. Electron-electron heating can be
suppressed by increasing the drive intensity, since the phase space for such scattering
processes is constrained to small energy and momentum transfers near the Floquet
gap [see Figure 7.2(b)] and is reduced as Δ is increased. In Figure 7.2(c)-(e), we
show the average occupations of the patches as a function of Δ for various dielectric
constants 𝜖 . We define Δ∗ as the minimal Floquet gap at which 𝐽 = 0.96𝑒𝜔/𝜋. The
equilibrium Fermi-Dirac distribution (𝐹+ = 𝐹0 = 1 − 𝐹− = 1) transitions to 𝐹opt

𝑘𝛼
as

Δ → Δ∗.

7.5 Numerical Analysis
To test our prediction of the steady state current, we solve the FBE numerically in the
steady state. We consider a coherent acoustic phonon mode of angular frequency
𝜔 = 6 meV/ℏ with speed of sound 𝑐ph = 20 km/s, incoherent phonon modes
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at temperature 𝑇 = 7 K, and optimal electronic density 𝑛𝑒 = 𝑞. Figure 7.3(a)-
(b) compares the steady state distributions for weak (𝛿𝜀 < Δ < Δ∗) and strong
(Δ∗ < Δ < ℏ𝜔) non-adiabatic drives. As predicted using the phenomenological
model, the density of excitations in the 𝛼 = 1 band is suppressed in the strong drive
limit, approaching the optimal distribution 𝐹opt

𝑘𝛼
.

Figure 7.1(b) shows the current 𝐽 as a function of Δ/ℏ𝜔 for different dielectric
constants 𝜖 . The vertical line indicates Δ = ℏ𝜔, the boundary between the non-
adiabatic and adiabatic drive regimes. The current approaches quantization in the
non-adiabatic regime Δ < ℏ𝜔 when 𝜖 is sufficiently large, verifying the phenomeno-
logical model. The inset of Figure 7.1(b) shows that the optimal Floquet gap Δ∗

decreases as a function of 𝜖 .

Finally, we study the current as a function of the doping. The optimal distribution,
𝐹

opt
𝑘𝛼

, is obtained at optimal doping 𝑛𝑒 = 𝑞. Figure 7.3(c)-(d) compares the steady
state distributions for electronic densities below (𝑛𝑒 < 𝑞) and above (𝑛𝑒 > 𝑞) optimal
doping, where the steady state deviates significantly from 𝐹

opt
𝑘𝛼

. Figure 7.3(e) shows
𝐽 as a function of 𝑛𝑒 for Δ ≈ 0.8ℏ𝜔 > Δ∗ and 𝜖 = 80. The quantized current is
reached at optimal doping.

Experimental realization.—In Figure 7.1(a), we show a CNT suspended above a
material of high relative permittivity 𝜖 , such as SrTiO3 with 𝜖 ∼ 103 at THz
frequencies [69, 243, 295]. The CNT is enclosed by a conducting anti-reflective
material (ARM) with thickness tuned for destructive interference of reflected phonon
waves [231]. Gold leads attached to the ARM measure the current. On the right,
a segment of the CNT extends beyond the ARM. Phonon generation could be
achieved by placing the segment under an intense laser pulse [67, 68, 85, 92, 246,
249, 250, 274, 317] or in contact with a material hosting coherent phonons, such
as a phonon laser [22, 77, 151, 182, 213, 327] (see the Appendix C for details of
potential coherent phonon sources.) The CNT must also be shorter than the coherent
phonon decay length, which we estimate by 𝑐ph𝜏 ∼ 1 𝜇m, where 𝜏 ∼ 100 ps is the
approximate coherent phonon lifetime, set by FU and phonon-phonon scattering
[18, 27, 94] (see Appendix C). Additionally, the phonon drive amplitude 𝑢0 must
be much weaker than that which causes melting, i.e., 𝑢0 ≪ 0.1𝑞−1, predicted by
the Lindemann criterion [136, 166]. Indeed, the inset of Figure 7.1(b) shows that
nearly quantized current is realized for experimentally-accessible values of 𝜖 when
the Floquet gap satisfies Δ∗/ℏ𝜔 ∼ 0.5, corresponding to sufficiently weak driving
amplitudes of 𝑢0 ∼ 0.001𝑎 ≪ 0.1𝑞−1.
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Conclusion.—Our work shows that coherent phonons can induce Floquet bands with
quantized transport in screened quantum wires, where the steady state electronic
population is stabilized by interactions with low-temperature incoherent phonons
[see Figure 7.1(c)]. Furthermore, our device can serve as a detector of coherent
phonons, where the measured current indicates the intensity and degree of coherence
of the incoming acoustic waves. We anticipate sensitive detection even to weak fields
because adiabaticity is not required [see Figs. 7.1(a)-(b)], in contrast to conventional
methods utilizing optical reflectivity [72, 96, 157, 315].

A stronger signal, also sensitive to the direction of phonon propagation, could be
obtained in higher-dimensional materials and heterostructures. Exploration of these
systems is left for future work. While our work specialized on a phonon-driven CNT,
the effect is general to various fermionic models with spatio-temoral modulation and
energy-relaxing heat bath coupling (see Appendix C for a general model), including
solid state and AMO systems [111, 201, 201].
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A p p e n d i x C

APPENDIX

C.1 Microscopic Details of the Carbon Nanotube
In this section, we discuss in detail the microscopic model for the phonon-driven
carbon nanotube, including the single particle electronic physics and electronic
coupling to coherent and incoherent phonons.

The Carbon Nanotube Hamiltonian
The carbon nanotube (CNT) structure is described by the chirality indices (𝑚, 𝑛)
[79, 105, 128, 191, 247, 249]. Along the axis of the CNT, the lattice is periodic
under translations by 𝑻 = 𝑡1𝒂1 + 𝑡2𝒂2, where 𝑡1 = (2𝑚 + 𝑛)/𝑑𝑅, 𝑡2 = −(2𝑛 +𝑚)/𝑑𝑅,
and 𝑑𝑅 = gcd(2𝑛 + 𝑚, 2𝑚 + 𝑛), resulting in enlarged CNT unit cells that each
contain 𝑁 = 2(𝑛2 + 𝑛𝑚 + 𝑚2)/𝑑𝑅 graphene unit cells. Here, 𝒂1 = 𝜹1 − 𝜹3 and
𝒂2 = 𝜹2 − 𝜹3 are the primitive lattice vectors the graphene layer, where 𝜹 𝑗 =

𝑎/
√

3(sin
(
2𝜋 𝑗/3

)
, cos

(
2𝜋 𝑗/3

)
) and 𝑎 = 0.246 nm. Along the circumference of

the tube, the electron and phonon momenta acquire discrete values, while the
momenta remain approximately continuous along the tube axis for a long CNT.
The possible momenta can be expressed as 𝒌 = 𝑠𝒌⊥ + 𝑘 𝒌̂ ∥ , where 𝑠 = 0, 1, . . . , 𝑁
and 𝑘 ∈ [−𝜋/|𝑻 |, 𝜋/|𝑻 |], with momentum vectors 𝒌⊥ = (−𝑡2𝒃1 + 𝑡1𝒃2) and 𝒌 ∥ =

(𝑚𝒃1 − 𝑛𝒃2)/𝑁 , and unit vectors 𝒌̂⊥ = 𝒌⊥/|𝒌⊥ | and 𝒌̂ ∥ = 𝒌 ∥/|𝒌 ∥ |. We use 𝒃1 and
𝒃2 to denote the reciprocal lattice vectors of the graphene layer (𝒂𝑖 ·𝒃 𝑗 = 2𝜋𝛿𝑖 𝑗 ). The
family of possible momenta for each value of 𝑠 represents a linear path, or ‘cut,’ along
the Brillouin zone of the monolayer graphene. Now, the Hamiltonian for the CNT
is of a block-diagonal form, with 𝑁 blocks each corresponding to the Hamiltonian
𝐻̂𝑠 (𝒌) = 𝐻̂g(𝑠𝒌⊥ + 𝑘 𝒌̂ ∥) along a cut 𝑠 = 0, . . . 𝑁 , where the single-particle tight-
binding Hamiltonian for a monolayer graphene sheet with nearest-neighbor hopping
is given by

𝐻̂g =
∑︁
𝒌

𝝍̂
†
𝒌

(
0 ℎ∗(𝒌)

ℎ(𝒌) 0

)
𝝍̂𝒌 . (C.1)

Here, 𝝍̂𝒌 ≡
(
𝜓̂𝒌,𝐴 𝜓̂𝒌,𝐵

)
where 𝜓̂†

𝒌,𝑥
creates a fermion of crystal momentum 𝒌 on

sublattice 𝑥 = 𝐴, 𝐵 of the graphene sheet, ℎ(𝒌) = ℎ∑
𝑗 𝑒
𝑖𝒌·𝜹 𝑗 , and ℎ = 2.8 eV.

The lowest-energy conduction and highest-energy valence bands are indexed by
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𝑠m = argmin𝑠 min𝑘 |𝑠𝒌⊥ + 𝑘 𝒌̂ ∥ −𝑲 |, where 𝑲 is the momentum of the Dirac 𝐾 point
in the monolayer graphene Brillouin zone. The lowest energy electronic state along
the cut 𝑠𝑚 has momentum 𝑘𝑚 = argmin𝑘 |𝑠𝑚𝒌⊥ + 𝑘 𝒌̂ ∥ − 𝑲 |.

The Electron-Phonon Hamiltonian
In this section, we detail the CNT Hamiltonian and electron-phonon coupling Hamil-
tonian used in the main text. The lowest conduction and highest valence bands [see
Figure 1(c) in the main text] of the CNT are described by the effective Hamiltonian
𝐻̂e =

∫
𝑑𝑘/2𝜋 𝝍̂

†
𝑘𝐻e(𝑘)𝝍̂𝑘 , where

𝐻e(𝑘) = ℏ𝑣𝐹 (𝛿𝑘 𝒌̂⊥ + 𝑘 𝒌̂ ∥) · 𝝈, (C.2)

𝑣𝐹 is the Fermi velocity of graphene, 𝝈 = (𝜎𝑥 , 𝜎𝑦) is a vector of Pauli matrices
acting in the graphene sublattice basis, the 𝑥 axis is aligned along a bond between
carbon atoms, and 𝛿𝑘 = |𝑠𝑚𝒌⊥ + 𝑘𝑚 𝒌̂ ∥ − 𝑲 |.

To describe electron-phonon interactions in the CNT, we consider the Hamiltonian
𝐻̂ep(𝑡) =

∑
𝜆 𝐻̂

(𝜆)
ep (𝑡), where 𝐻̂ (𝜆)

ep (𝑡) =
∫
𝑑2𝒓 𝝍̂

†
𝒓𝑉̂

(𝜆) (𝒓, 𝑡)𝝍̂ 𝒓 and

𝑉̂ (𝜆) (𝒓, 𝑡) = ℏ𝑣𝐹 Â
(𝜆)
ph (𝒓, 𝑡) · 𝝈 + 𝜙(𝜆)ph (𝒓, 𝑡) (C.3)

describe electronic coupling to a phonon mode indicated by 𝜆, 𝒓 = (𝑥, 𝑦) is the
spatial coordinate along the tube, and 𝝍̂

†
𝒓 = 𝑃−1

∫
𝑑𝑘/(2𝜋)𝑒−𝑖(𝛿𝑘 𝒌̂⊥+𝑘 𝒌̂ ∥ )·𝒓𝝍̂

†
𝑘 . The

electrons interact with the phonons through the effective vector potential

Â
(𝜆)
ph (𝒓, 𝑡) =

√
3𝛽/(2𝑎) (𝑢̂(𝜆)𝑥𝑥 (𝒓, 𝑡) − 𝑢̂(𝜆)𝑦𝑦 (𝒓, 𝑡), 2𝑢̂(𝜆)𝑥𝑦 (𝒓, 𝑡)) (C.4)

and through the local scalar potential

𝜙
(𝜆)
ph (𝒓, 𝑡) = 𝐷 [𝑢̂(𝜆)𝑥𝑥 (𝒓, 𝑡) + 𝑢̂(𝜆)𝑦𝑦 (𝒓, 𝑡)] 𝐼, (C.5)

where 𝑎 = 0.246 nm, 𝛽 ≈ 3.14, and deformation potential 𝐷 = 15 eV [77, 296].
Here, 𝒖̂(𝜆) (𝒓, 𝑡) is the displacement operator of the phonon mode, 𝑢̂(𝜆)

𝑏
(𝒓, 𝑡) is its

𝑏-th component, and 𝑢̂(𝜆)
𝑏𝑐

(𝒓, 𝑡) = [𝜕𝑏𝑢̂(𝜆)𝑐 (𝒓, 𝑡) + 𝜕𝑐𝑢̂(𝜆)𝑏 (𝒓, 𝑡)]/2.

Hamiltonian for Interactions Between Electrons and Incoherent Phonons
In this section, we provide the full expression for the microscopic Hamiltonian
𝐻̂b(𝑡) accounting for electronic coupling to incoherent bath phonon modes. The
low-energy longitudinal acoustic phonons dominate the electron-phonon scattering
near the Fermi surface of the lightly-doped CNT. Upon writing the displacement



133

operators 𝒖̂(𝜆) (𝒓, 𝑡) for such phonon modes in terms of bath acoustic phonon creation
operators 𝑏̂†𝑝, we derive the effective Hamiltonian [246]:

𝐻̂b =

∫
𝑑𝑘𝑑𝑞

(2𝜋)2𝑀𝑘,𝑝𝑐
†
𝑘+𝑝,+𝑐𝑘,+(𝑏̂

†
𝑝 + 𝑏̂−𝑝) + h.c. (C.6)

where 𝑀𝑘,𝑝 = 𝐷
√︁
ℏ𝑐ph𝑝/(

√︁
2𝐴𝜌𝑐ph)W𝑘,𝑝 with unit cell area 𝐴 =

√
3𝑁𝑎2/2, and

graphene density 𝜌.

C.2 Details of the coherent phonon drive
In this section, we analyze the coherent phonon drive in detail and propose possible
coherent phonon sources.

Analytic Expression for the Floquet Gap
In this section, we derive the expression for the Floquet gap

Δ ≈ 𝑞𝑢0 [𝐷 + 𝑘̂ 𝑦∥ℏ𝑣𝐹
√

3𝛽/2𝑎] (C.7)

used in the main text.

We begin by constructing an effective drive Hamiltonian by working in the eigenbasis
of the electronic Hamiltonian

𝐻e(𝑘) = ℏ𝑣𝐹 𝒌 · 𝜎, (C.8)

where 𝒌 = 𝛿𝑘 𝒌̂⊥ + 𝑘 𝒌̂ ∥ [see the full definition in the main text]. Let𝑈 be the matrix
that diagonalizes 𝐻e(𝑘), where

𝑈−1𝐻e(𝑘)𝑈 =

(
−ℏ𝑣𝐹 |𝒌 | 0

0 ℏ𝑣𝐹 |𝒌 |

)
. (C.9)

In the limit near 𝑘 = 0, one can show that

𝑈−1𝐻e(𝑘)𝑈 ≈
(
𝐸−(𝑘) 0

0 𝐸+(𝑘)

)
(C.10)

where 𝐸±(𝑘) = ℏ2𝑘2/(2𝑚) ± ℏ𝑣𝐹𝛿𝑘 . The electronic coupling to a coherent phonon
mode is described by the Hamiltonian

𝑉 (𝒓, 𝑡) = ℏ𝑣𝐹 ⟨Â
(𝜆0)
ph (𝒓, 𝑡)⟩ · 𝝈 + ⟨𝜙(𝜆0)

ph (𝒓, 𝑡)⟩. (C.11)

Note that

[⟨Â (𝜆0)
ph (𝒓, 𝑡)⟩]𝑥 =

√
3𝛽

2𝑎
[( 𝑘̂ 𝑦∥ )

2 − ( 𝑘̂𝑥∥)
2]𝑞𝑢 sin

(
𝑞𝑟 − 𝜔𝑡

)
(C.12)



134

[⟨Â (𝜆0)
ph (𝒓, 𝑡)⟩]𝑦 =

√
3𝛽

2𝑎
(−2𝑘̂𝑥∥ 𝑘̂

𝑦

∥ )𝑞𝑢 sin
(
𝑞𝑟 − 𝜔𝑡

)
(C.13)

and
⟨𝜙(𝜆0)

ph (𝒓, 𝑡)⟩ = 𝐷𝑞𝑢 sin
(
𝑞𝑟 − 𝜔𝑡

)
𝐼 . (C.14)

To transform 𝑉 (𝒓, 𝑡) into the diagonal basis of 𝐻e(𝑘), first note that

𝑈−1 [ℏ𝑣𝐹 ⟨Â
(𝜆0)
ph (𝑟, 𝑡)⟩ · 𝝈]𝑈

=
©­«−⟨Â

(𝜆0)
ph (𝒓, 𝑡)⟩ · 𝒌/|𝒌 | −𝑖⟨Â (𝜆0)

ph (𝒓, 𝑡)⟩ × 𝒌/|𝒌 |
𝑖⟨Â (𝜆0)

ph (𝒓, 𝑡)⟩ × 𝒌/|𝒌 | ⟨Â (𝜆0)
ph (𝒓, 𝑡)⟩ · 𝒌/|𝒌 |

ª®¬ .
(C.15)

In a semiconducting nanotube, near the band extrema, 𝑘 ≪ 𝛿𝑘 , so 𝒌 and 𝒌̂⊥ are
roughly parallel and

⟨Â (𝜆0)
ph (𝑟, 𝑡)⟩ · 𝒌/|𝒌 | ≈ 𝑘̂ 𝑦∥ℏ𝑣𝐹

√
3𝛽

2𝑎
𝑞𝑢 sin

(
𝑞𝑟 − 𝜔𝑡

)
. (C.16)

When ℏ𝑣𝐹𝛽𝑎−1 ≪ ℏ𝑣𝐹𝛿𝑘 , the off-diagonal components of Eq. (C.15) are negligible.
In this limit, we finally obtain an effective Hamiltonian for the lowest conduction
band of the CNT,

[𝑈−1𝐻0(𝑘, 𝑡)𝑈]00

≈ 𝐸+(𝑘) +
[
𝑘̂
𝑦

∥ℏ𝑣𝐹

√
3𝛽

2𝑎
+ 𝐷

]
𝑞𝑢 sin

(
𝑞𝑟 − 𝜔𝑡

)
.

(C.17)

From Eq. (C.17), we read the Floquet gap Δ ≈ 𝑞𝑢0 [𝐷 + 𝑘̂ 𝑦∥ℏ𝑣𝐹
√

3𝛽/2𝑎] from the
amplitude of the spatially- and time-periodic component of the Hamiltonian.

Coherent Phonon Occupancy
The Floquet theory used in the main text assumes that the coherent phonon occu-
pancy 𝑛 is large. In this section, we show that the assumption is true for the phonon
displacement amplitudes required to observe quantized acoustelectric Floquet ef-
fect. The coherent phonon amplitude, expressed in terms of the phonon occupation
𝑛, is given by

𝑢0 = 2

√︄
(𝑛 + 1/2)ℏ
2𝑁𝑀𝐶𝜔

, (C.18)

where 𝑀𝐶 is the mass of a carbon atom and 𝑁 is the total number of graphene
unit cells in the carbon nanotube. For a (10, 0) carbon nanotube of length on the
order of 1 𝜇m, we estimate 𝑁 ≈ 105. To estimate the minimum phonon occupancy
necessary to achieve nearly-quantized currents, we refer to the inset of Figure 1(b)
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C

Figure C.1: Phonon transfer mechanism when a phonon source (grey block) is
placed under the right end of the carbon nanotube [see Figure 1(a) in the main text
for the complete, proposed experimental setup]. A carbon atom of mass 𝑀𝑐 (grey
circle in magnified picture) experiences a Van der Waals force across the interface,
with effective spring constant 𝑘 .

in the main text, which indicates that the Floquet gap at current saturation is given
by Δ∗ ≈ 0.5ℏ𝜔, corresponding to the phonon amplitude [141]

𝑢∗0 ≈ 0.5ℏ𝑐ph/[𝐷 + 0.866ℏ𝑣𝐹
√

3𝜋/(2𝑎)] . (C.19)

(See Section C.2 for a derivation.) Here, 𝐷 is the deformation potential, 𝑐ph is
the speed of sound, 𝑣𝐹 = 106 m/s is the Fermi velocity, and 𝑎 = 0.246 nm is the
graphene lattice constant. As an example, assuming 𝐷 ≈ 10 eV, ℏ𝜔 ≈ 10 meV,
and 𝑐ph = 25 km/s, we arrive at the phonon occupancy 𝑛 ∼ 36. Given 𝑛 ≫ 1, this
occupation can provide multi-phonon absorption processes with an approximately
constant amplitude.

Coherent Phonon Lifetime
To estimate the coherent phonon lifetime 𝜏, which limits the total length of the CNT,
we note that the Floquet scattering rates shown in Figure C.2 saturate on the order
𝜏tot
𝑘𝛼𝛼′ ∼ 10 ps for relative permittivities 𝜖 > 500. The Floquet-Umklapp scattering

rates contribute to coherent phonon absorption and emission and are suppressed
by a factor of (Δ/ℏ𝜔)2, occuring on timescales of ∼ 100 ps. Phonon-phonon and
phonon-impurity interactions in graphene materials are also estimated to occur on
timescales of ∼ 100 ps [18, 27, 94]. Thus, we estimate 𝜏 ∼ 100 ps.

Proposals for Experimental Realizations of the Quantized Acoustoelectric Flo-
quet Effect
In this section, we investigate possible coherent phonon sources and their coupling to
the CNT. There are several potential sources of coherent THz-frequency phonons in
materials. Conventionally, THz-frequency phonons have been generated optically,
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by a direct driving of an IR-active phonon mode [68], or by excitation of electrons that
generate phonons through electron-phonon coupling [22, 67, 85, 109, 182, 274, 317].

Alternatively, acoustic phonons can be generated in strongly biased metals through
the acoustic Cerenkov [10, 151, 213, 327], Klein-Zehner effects [5, 103], and through
the phaser effect [35], which has been theoretically demonstrated in twisted bilayer
graphene-based devices.

These methods have been demonstrated to induce intense phonon waves. In partic-
ular, a medium with a positive phonon gain in an acoustic resonator is predicted to
induce acoustic waves with amplitudes of the order of ∼ 0.01 nm, when reaching
saturation [77].

In Figure 1(a) of the main text, we show a potential experimental setup, where a
segment of the carbon nanotube extends to the right of the anti-reflective material.
The coherent phonons can be directly generated by an optical illumination of the
segment of CNT [92, 249, 250]. Alternatively, they can be generated in a different
system, outside the CNT, and then coupled to the CNT. The latter is a more versatile
approach that allows for on-demand coherent phonon generation by various methods.
We estimate that the coherent phonon amplitudes in the CNT can reach the order
of ∼ 0.01 nm when an acoustic resonator like the phaser is placed in contact with
the CNT, provided that the phonon angular frequency does not exceed the natural
resonance frequency set by the coupling between the source and the CNT. To estimate
the resonance frequency, we consider the Van der Waals forces between the source
and CNT, which can be modeled by a forced oscillation problem (see Figure C.1).
For efficient transmission of the phonon wave into the CNT, the angular frequency
𝜔 of the coherent phonon should satisfy 𝜔 < 𝜔𝑟 , where the resonance frequency
𝜔𝑟 =

√︁
𝑘/𝑀𝐶 is set by the effective spring constant 𝑘 and the mass 𝑀𝐶 of the carbon

atom. We estimate 𝑘 ≈ 2 N/m and ℏ𝜔𝑟 = 7 meV by utilizing the Lennard-Jones
potential function calculated from first principles for Van der Waals forces between
graphene layers [56]. The angular frequency presented in the main text satisfies
𝜔 < 𝜔𝑟 .

Let us finally discuss the necessary conditions on the placement of the dielec-
tric material. Because the characteristic separation between electrons in the tube,
2𝜋/𝑞 ∼ 100 , is much larger than the diameter of the CNT, the dielectric screens the
entire CNT. To avoid interference with the coherent phonon wave, one can minimize
phonon transfer between the dielectric and CNT by suspending the CNT above the
dielectric a distance much larger than the equilibrium interatomic distance ∼ 3 set
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by Van der Waals (VdW) potential between the materials [56].

C.3 Details on the Steady State Calculation
We start by presenting the full expression for the Floquet-Boltzmann equation (FBE)
discussed in main text and show that the FBE is valid under the conditions considered
in our work.

Floquet Boltzmann Equation
In this section, we present the full expressions for the electron-phonon and electron-
electron collision integrals, discretized on a 1D momentum grid of 𝑁 points. The
electron-phonon collision integral is given by

𝐼b𝑘𝛼 [{𝐹𝑘𝛼}] =
2𝜋
ℏ

1
𝑁

∑︁
𝑘 ′∈BZ

∑︁
𝛼′

∑︁
𝑠

∑︁
𝑛

|G𝑘 ′𝛼′

𝑘𝛼 (𝑛) |2 1
ℏ𝑐ph

×

× ({−N(𝜀𝑘 ′𝛼′ − 𝜀𝑘𝛼)𝐹𝑘𝛼 (1 − 𝐹𝑘 ′𝛼′)𝛿(𝑘′ − 𝑘 + 𝑛𝑞 + 𝑘𝑠)
+ [1 + N(𝜀𝑘 ′𝛼′ − 𝜀𝑘𝛼)] (1 − 𝐹𝑘𝛼)𝐹𝑘 ′𝛼′𝛿(𝑘′ − 𝑘 + 𝑛𝑞 − 𝑘𝑠)}𝜃 (𝜀𝑘 ′𝛼′ − 𝜀𝑘𝛼)

+ {−[1 + N(𝜀𝑘 ′𝛼′ − 𝜀𝑘𝛼)]𝐹𝑘𝛼 (1 − 𝐹𝑘 ′𝛼′)𝛿(𝑘′ − 𝑘 + 𝑛𝑞 − 𝑘𝑠)
+ N (𝜀𝑘 ′𝛼′ − 𝜀𝑘𝛼) (1 − 𝐹𝑘𝛼)𝐹𝑘 ′𝛼′𝛿(𝑘′ − 𝑘 + 𝑛𝑞 + 𝑘𝑠)}𝜃 (𝜀𝑘 ′𝛼′ − 𝜀𝑘𝛼)

(C.20)

G𝑘 ′𝛼′

𝑘𝛼 (𝑛) = 1
√
𝐴

𝐷ℏ𝑘𝑠√︁
2𝜌ℏ|𝜀𝑘 ′𝛼′ − 𝜀𝑘𝛼 |

∑︁
𝑚

⟨𝜙𝑛+𝑚𝑘 ′𝛼′ |+, 𝑘
′⟩W𝑘,𝑘 ′−𝑘 ⟨+, 𝑘 |𝜙𝑚𝑘𝛼⟩ (C.21)

where 𝜌 = 1.52 × 10−6 kg/m2 is the 2D density of the graphene layers, 𝐷 is the
deformation potential, 𝑘𝑠 satisfies ℏ𝑐ph |𝑠𝒌⊥ + 𝑘𝑠 𝒌̂ ∥ | = 𝜀𝑘 ′𝛼′ − 𝜀𝑘𝛼, and N(𝜀) =

1/(𝑒𝜀/𝑘𝐵𝑇 − 1) is the Bose-Einstein distribution for incoherent phonons maintained
in thermal equilibrium at temperature 𝑇 . The electron-electron collision integral is
given by

𝐼ee
𝑘𝛼 [{𝐹𝑘𝛼}] =

4𝜋
ℏ

1
𝑁2

∑︁
𝑘2∈BZ

∑︁
𝑘3∈BZ

∑︁
𝛼2,𝛼3,𝛼4

∑︁
𝑛

|V (𝑘3,𝛼3),(𝑘1+𝑘2−𝑘3,𝛼4)
(𝑘,𝛼),(𝑘2,𝛼2) (𝑛) |2×

× 𝛿(𝜀𝑘𝛼 + 𝜀𝑘2𝛼2 − 𝜀𝑘3𝛼3 − 𝜀𝑘+𝑘2−𝑘3,𝛼4 + 𝑛ℏΩ)×
×

[
(1 − 𝐹𝑘𝛼) (1 − 𝐹𝑘2𝛼2)𝐹𝑘3𝛼3𝐹𝑘1+𝑘2−𝑘3,𝛼4 − 𝐹𝑘𝛼𝐹𝑘2𝛼2 (1 − 𝐹𝑘3𝛼3) (1 − 𝐹𝑘1+𝑘2−𝑘3,𝛼4)

]
(C.22)
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V (𝑘3,𝛼3),(𝑘1+𝑘2−𝑘3,𝛼4)
(𝑘,𝛼),(𝑘2,𝛼2) (𝑛) =∑︁

𝑛2,𝑛3,𝑛4

𝑉 (𝑘2 − 𝑘3)W𝑘1,𝑘3−𝑘2W𝑘2,−(𝑘3−𝑘2) ⟨𝜙
𝑛−𝑛2+𝑛3+𝑛4
𝑘𝛼

|+, 𝑘⟩⟨𝜙𝑛2
𝑘2𝛼2

|+, 𝑘2⟩×

× ⟨+, 𝑘3 |𝜙𝑛3
𝑘3𝛼3

⟩⟨+, 𝑘4 |𝜙𝑛4
𝑘+𝑘2−𝑘3,𝛼4

⟩.

(C.23)

To solve for the steady-state, we use the Newton-Raphson algorithm to find the roots
𝜕𝑡𝐹𝑘𝛼 = 0 of the FBE. We set the doping of the system by adding the Lagrange
multiplier term 𝜆(∑𝑘𝛼 𝐹𝑘𝛼 − 𝑁𝑘𝐹/𝑞) with large constant 𝜆 to the FBE.

Validity of Floquet Boltzmann Equation and Steady State Scattering Times
The interband scattering rates 1/𝜏ph

𝑘𝛼𝛼′ and 1/𝜏el
𝑘𝛼𝛼′ are given by

1
𝜏

ph
𝑘𝛼𝛼′

=
2𝜋
ℏ

1
𝑁

∑︁
𝑘 ′∈BZ

∑︁
𝑠

∑︁
𝑛

|G𝑘 ′𝛼′

𝑘𝛼 (𝑛) |2 1
ℏ𝑐ph

×

× {N (𝜀𝑘 ′𝛼′ − 𝜀𝑘𝛼) (1 − 𝐹𝑘 ′𝛼′)𝛿(𝑘′ − 𝑘 + 𝑛𝑞 + 𝑘𝑠)+
+ [1 + N(𝜀𝑘 ′𝛼′ − 𝜀𝑘𝛼)] (1 − 𝐹𝑘 ′𝛼′)𝛿(𝑘′ − 𝑘 + 𝑛𝑞 − 𝑘𝑠)}

(C.24)

and
1

𝜏el
𝑘𝛼𝛼′

=
4𝜋
ℏ

1
𝑁2

∑︁
𝑘2∈BZ

∑︁
𝑘3∈BZ

∑︁
𝛼2,𝛼3,𝛼4

𝛼3=𝛼
′ or 𝛼4=𝛼

′

∑︁
𝑛

∑︁
𝐺

|V (𝑘3,𝛼3),(𝑘1+𝑘2−𝑘3,𝛼4)
(𝑘,𝛼),(𝑘2,𝛼2) (𝑛, 𝐺) |2×

× 𝛿(𝜀𝑘𝛼 + 𝜀𝑘2𝛼2 − 𝜀𝑘3𝛼3 − 𝜀𝑘+𝑘2−𝑘3,𝛼4 + 𝑛ℏΩ)×
× 𝐹𝑘2𝛼2 (1 − 𝐹𝑘3𝛼3) (1 − 𝐹𝑘1+𝑘2−𝑘3,𝛼4).

(C.25)

To verify that the steady state coherences are suppressed and that the Floquet Boltz-
mann equation is valid, we check that 𝜁 ≪ 1, where 𝜁 ≡ max𝑘,𝛼,𝛼′ ℏ/(𝜏tot

𝑘𝛼𝛼′ |𝜀𝑘𝛼 −
𝜀𝑘𝛼′ |), where 1/𝜏tot

𝑘𝛼𝛼′ ≡ 1/𝜏ph
𝑘𝛼𝛼′ + 1/𝜏el

𝑘𝛼𝛼′ [see full definition in the main text].
Figure C.2 verifies that 𝜁 ≪ 1 as a function of drive amplitude.

C.4 Effective Description Using Lindblad Master Equation
In the present and following sections, we analyze the quantized acoustoelectric
Floquet effect using a toy model that can be analytically solved. The purpose of the
toy model is to provide an intuitive and simple picture of the key conditions required
to observe the quantized acoustoelectric Floquet effect. We demonstrate that the
effect is analogous to a Thouless pump driven non-adiabatically, i.e. Δ < ℏ𝜔,
with quantized transport stabilized by an incoherent energy relaxation mechanism,
which in the microscopic model arises from phonon cooling [see Figure C.3]. In
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100 500 2000

Figure C.2: The ratio 𝜁 of the maximum interband scattering rate to the Floquet
band energy separation vs. Floquet gap Δ for various dielectric constants 𝜖 . Note
that 𝜁 ≪ 1, so steady state coherences are suppressed.

particular, incoherent phonons relax electrons into the troughs of the moving periodic
potential 𝑉 (𝑥, 𝑡), which is induced by the coherent phonon wave. This process is
dominant when the relaxation time of incoherent phonon scattering, 𝜏ep, is much
faster than that of heating processes, 𝜏ℎ. Importantly, we stress that the Lindblad
master equation analysis used in this section is distinct from the full Floquet theory
and Floquet-Boltzmann equation approach presented in the main text and previous
supplementary materials sections.

Effective Hamiltonian
Let us first derive an effective Hamiltonian for the driven carbon nanotube. In
the limit where coupling strength of the coherent electrons via the vector potential
Â

(𝜆)
ph (𝒓, 𝑡) is much smaller than the separation between the lowest conduction and

highest valence bands, i.e., ℏ𝑣𝐹𝛽𝑎−1 ≪ ℏ𝑣𝐹𝛿𝑘 (see definitions of 𝛿𝑘 and 𝛽 in Section
C.1) we can approximate 𝑉 ( 𝒓̂, 𝑡) ≈ Δ cos

(
𝑞𝑥 − 𝜔𝑡

)
, where 𝑉 ( 𝒓̂, 𝑡) ≡ ⟨𝑉̂ (𝜆0) ( 𝒓̂, 𝑡)⟩,

and 𝒓̂ = 𝑥 𝒌̂ ∥ is the spatial position along the tube axis of the CNT (see Section C.2
for the derivation). We also approximate 𝐸+(𝑘) ≈ ℏ2𝑘2/(2𝑚) + ℏ𝑣𝐹𝛿𝑘 where 𝑚 is
the effective mass at the band bottom [see Figure 1(c) in the main text]. Up to a
constant energy offset, the resulting effective Hamiltonian is given by

𝐻̂ (𝑡) = 𝐻̂0 + Δ cos
(
𝑞𝑥 − 𝜔𝑡

)
, (C.26)

where 𝐻̂0 = ℏ2 𝑘̂2/2𝑚, 𝑥 = −𝑖𝜕𝑘̂ is the position operator, and 𝑘̂ is the momentum
operator. To analyze the problem analytically, we work in the eigenbasis |𝑘⟩ of
the free-propagation Hamiltonian 𝐻̂0. Using the relation 𝑒𝑖𝑞𝑥 |𝑘⟩ = |𝑘 + 𝑞⟩, and
considering the limit ℏ2𝑞2/(2𝑚) ≫ Δ, we obtain the approximate matrix form of
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x

Figure C.3: Simplified model of the quantized acoustoelectric Floquet effect. The
black curve represents the moving coherent phonon potential 𝑉 (𝑥, 𝑡), and the grey
dashed curve sketches the potential at a slightly later time. Electrons (green dots)
generate quantized current when confined to the troughs of the potential, which is
achieved when the incoherent phonon relaxation time 𝜏ep is much faster than the
heating time 𝜏h.

𝐻̂ (𝑡),

𝐻 (𝑡) ≈ 𝜀𝑘 +
(

𝛿𝑘 Δ𝑒𝑖𝜔𝑡/2
Δ𝑒−𝑖𝜔𝑡/2 −𝛿𝑘

)
, (C.27)

where 𝜀𝑘 = (𝜀𝑘 + 𝜀𝑘−𝑞)/2, 𝛿𝑘 = (𝜀𝑘 − 𝜀𝑘−𝑞)/2, and 𝜀𝑘 = ℏ2𝑘2/(2𝑚).

Lindblad Master Equation
Our goal is to compute the time-averaged current, given by

𝐽 =
2𝑒
ℏ

1
𝑇

∫ 𝑇

0
𝑑𝑡

∫ 𝑞

0

𝑑𝑘

2𝜋
Tr

[
𝜕𝐻 (𝑡)
𝜕𝑘

𝜌(𝑘, 𝑡)
]

(C.28)

where the factor of two accounts for spin degeneracy, 𝑇 = 2𝜋/𝜔, and 𝜌(𝑘, 𝑡) is the
density matrix for an electron with crystal momentum 𝑘 . The actual value of 𝜌(𝑘, 𝑡)
is controlled by the Hamiltonian 𝐻 (𝑡), collisions with incoherent phonon modes,
and electron-electron interactions. We approximate the relaxation dynamics of the
electrons in the CNT due to scattering processes by the Lindbladian

L{𝜌(𝑘, 𝑡)} ≡ −𝜌(𝑘, 𝑡) − 𝜌
eq(𝑘, 𝑡)

𝜏h
− 𝜌(𝑘, 𝑡) − 𝜌𝐹 (𝑘, 𝑡)

𝜏ep
(C.29)

with two characteristic relaxation times 𝜏h and 𝜏ep. Here, heating processes, such
as electron-electron interactions, relax electrons into a thermal equilibrium state
in the instantaneous basis of 𝐻 (𝑡), denoted by 𝜌eq(𝑘, 𝑡). Separately, incoherent
phonon scattering processes relax electrons into the Floquet ground state 𝜌𝐹 (𝑘, 𝑡),
representing a fully-occupied lowest-energy band of the Floquet Hamiltonian 𝐻𝐹 ≡
𝐻 (𝑡) − 𝑖ℏ𝜕𝑡 . Eq. (C.29) captures the key microscopic scattering processes analyzed
in the main text. Under these approximations, the time evolution of the density
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matrix can be described by the master equation [186, 253]

¤𝜌(𝑘, 𝑡) = 𝑖

ℏ
[𝜌(𝑘, 𝑡), 𝐻 (𝑡)] + L{𝜌(𝑘, 𝑡)}. (C.30)

To solve the Lindblad master equation analytically, we utilize the time-independent
basis, where the Hamiltonian is given by

𝐻̃ = 𝑅(𝑡)𝐻 (𝑡)𝑅(𝑡)† = 𝜀𝑘 +
(
𝛿𝑘 Δ/2
Δ/2 −𝛿𝑘

)
. (C.31)

Here,

𝑅(𝑡) =
(
𝑒−𝑖𝜔𝑡/2 0

0 𝑒𝑖𝜔𝑡/2

)
(C.32)

is the transformation matrix. In the time-independent basis, the master equation is
given by

¤̃𝜌(𝑘, 𝑡) = 𝑖

ℏ
[ 𝜌̃(𝑘, 𝑡), 𝐻̃ + 𝐵] + L̃{ 𝜌̃(𝑘, 𝑡)} (C.33)

where 𝐵 = 𝑖 ¤𝑅(𝑡)𝑅(𝑡)† = (ℏ𝜔/2)𝜎𝑧, 𝜌̃(𝑘, 𝑡) = 𝑅(𝑡)𝜌(𝑘, 𝑡)𝑅(𝑡)†, and L̃{ 𝜌̃(𝑘, 𝑡)} =

𝑅(𝑡)L{𝜌(𝑘, 𝑡)}𝑅(𝑡)†. In the instantaneous basis, we also define

𝜌̃eq(𝑘) ≡ 𝑅(𝑡)𝜌eq(𝑘, 𝑡)𝑅(𝑡)†, (C.34)

and
𝜌̃𝐹 (𝑘) ≡ 𝑅(𝑡)𝜌𝐹 (𝑘, 𝑡)𝑅(𝑡)†. (C.35)

Thermal Distribution in the Instantaneous Eigenbasis
The instantaneous thermal distribution 𝜌eq(𝑘, 𝑡) is diagonal in the instantaneous
eigenbasis. In this section, we transfer 𝜌eq(𝑘, 𝑡) into the time-independent basis
to determine 𝜌̃eq(𝑘). We use the operator 𝑈 to transform into the instantaneous
eigenbasis of 𝐻 (𝑡), where

H = 𝑈𝐻̃𝑈† =

(
𝜀𝐼−(𝑘) 0

0 𝜀𝐼+(𝑘)

)
(C.36)

and 𝜀𝐼±(𝑘) ≡ 𝜀𝑘 ±
√︃
𝛿2
𝑘
+ (Δ/2)2 are the instantaneous eigenenergies. It follows that

the density matrix corresponding to the thermal distribution in the instantaneous
basis is given by

𝜌̃eq(𝑘) = 𝑈†
(
1 − 𝑓 𝐼

𝑘
0

0 𝑓 𝐼
𝑘

)
𝑈

=
1
2
+

1 − 2 𝑓 𝐼
𝑘

2
√︁
𝛿𝑘 + (Δ/2)2

[
Δ

2
𝜎𝑥 + 𝛿𝑘𝜎𝑧

]
.

(C.37)

where 𝑓 𝐼
𝑘

is the Fermi-Dirac occupation of the electronic state with energy 𝜀𝐼−(𝑘).
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Floquet Ground State
The Floquet ground state distribution 𝜌𝐹 (𝑘, 𝑡) is diagonal in the Floquet basis. In
this section, we transfer 𝜌𝐹 (𝑘, 𝑡) into the time-independent basis by determining
𝜌̃𝐹 (𝑘). To find the Floquet eigenenergies, we consider the diagonal basis of the
Floquet Hamiltonian 𝐻̃𝐹 = 𝑅(𝑡)𝐻𝐹𝑅(𝑡)† = 𝐻̃ + 𝐵, which can be obtained using the
transformation operator𝑈𝐹 , where

H𝐹 = 𝑈𝐹 𝐻̃𝐹𝑈
†
𝐹
=

(
𝜀𝐹− (𝑘) 0

0 𝜀𝐹+ (𝑘)

)
(C.38)

and 𝜀𝐹± (𝑘) = 𝜀𝑘 ±
√︁
(𝛿𝑘 + ℏ𝜔/2)2 + (Δ/2)2 are the quasienergies. The density

matrix corresponding to a fully-occupied Floquet ground state is given by

𝜌̃𝐹 (𝑘) = 𝑈†
𝐹

(
1 − 𝑓 𝐹

𝑘
0

0 𝑓 𝐹
𝑘

)
𝑈

=
1
2
+

1 − 2 𝑓 𝐹
𝑘

2
√︁
(𝛿𝑘 + ℏ𝜔/2)2 + (Δ/2)2

[(
Δ + ℏ𝜔

2

)
𝜎𝑥 + 𝛿𝑘𝜎𝑧

]
.

(C.39)

where 𝑓 𝐹
𝑘

is the occupation function of the electronic state with quasienergy 𝜀𝐹− (𝑘).

Steady State Solution
To calculate the current in the steady state, we solve for the steady state density
matrix in the time-independent basis, denoted 𝜌̃(𝑘), which satisfies the steady state
condition

𝑖

ℏ
[ 𝜌̃(𝑘), 𝐻̃ + 𝐵] + L̃{ 𝜌̃(𝑘)} = 0 (C.40)

[see Eq. (C.33)]. It can be shown that the steady state solution is given by

𝜌̃(𝑘) = 1
2
𝐼 + 1

2
( 𝜌̃𝑥𝜎𝑥 + 𝜌̃𝑦𝜎𝑦 + 𝜌̃𝑧𝜎𝑧), (C.41)

where

𝜌𝑥 =
𝜂 + 4𝜂𝛽2 − 4𝜁 𝛽2 [𝛼𝛾(𝑥 − 1/2) + 1/2]
1 + 4𝛽2{1 + [𝛾(𝑥 − 1/2) + 𝛼−1/2]}

, (C.42)

𝜌𝑦 =
2𝛽{𝜂[𝛾(𝑥 − 1/2) + 𝛼−1/2] − 𝜁 }

1 + 4𝛽2{1 + [𝛾(𝑥 − 1/2) − 𝛼−1/2]}
, (C.43)

𝜌𝑧 =
4𝜂2 [𝛾(𝑥 − 1/2) + 𝛼−1/2] + 𝜁 {1 + 4𝛽2 [𝛾(𝑥 − 1/2) + 𝛼−1/2]2}

1 + 4𝛽2{1 + [𝛾(𝑥 − 1/2) + 𝛼−1/2]2}
, (C.44)
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(a) (b)
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Figure C.4: Steady state current 𝐽 as calculated from the Lindblad master equation
[Eq. (C.33)]. (a) Steady state current in the regime ℏ/(𝜏Δ) ≪ 1 analyzed in the
main text using the Floquet Boltzmann equation. The current is quantized when
the system is driven adiabatically, i.e., log

(
ℏ𝜔/Δ

)
< 0. In the non-adiabatic regime

log
(
ℏ𝜔/Δ

)
> 0, the current attains a quantized value in the regime where incoherent

phonon relaxation dominates 𝜏ep ≪ 𝜏h. (b) Steady state current for a weak driving
potential amplitude Δ satisfying (𝜏Δ)/ℏ = 0.3. In contrast to panel (a), the current
deviates from quantization in the adiabatic regime log

(
ℏ𝜔/Δ

)
< 0, and instead only

attains a quantized value when 𝜏ep ≪ 𝜏h.

𝜂 = 𝜈
(1 − 2 𝑓 𝐼

𝑘
)√︁

1 + 𝛾−2(𝑥 − 1/2)−2
sign(𝑥 − 1/2) + 𝜈𝜒

(1 − 2 𝑓 𝐹
𝑘
) [𝛾(𝑥 − 1/2) + 1/2]√︁

[𝛾(𝑥 − 1/2)𝛼 + 1/2]2 + 𝛼2
,

(C.45)
and

𝜁 = 𝜈
(1 − 2 𝑓 𝐼

𝑘
)√︁

1 + 𝛾2(𝑥 − 1/2)2
+ 𝜈𝜒

(1 − 2 𝑓 𝐹
𝑘
) [𝛾(𝑥 − 1/2) + 1/2]√︁

[𝛾(𝑥 − 1/2) + 𝛼−1/2]2 + 1
. (C.46)

Here, 𝑥 = 𝑘/𝑞, 𝛼 = Δ/(2ℏ𝜔), 𝛽 = 𝜏Δ/(2ℏ), 𝛾 = 2[𝑞2/(2𝑚)]/Δ, 𝜈 = 𝜏/𝜏h,
𝜒 = 𝜏h/𝜏ep, and 𝜏 = (1/𝜏ep + 1/𝜏h)−1.

Using Eq. (C.28), we find that the time averaged current is given by

𝐽 =

∫ 𝑞

0

𝑑𝑘

𝜋
(𝜕𝑘𝛿𝑘 )𝜌𝑧 =

𝑒𝜔

𝜋
𝛾𝛼

∫ 1

0
𝑑𝑥 𝜌𝑧 . (C.47)

The integral in Eq. (C.47) can be calculated numerically.

Figure C.4 shows the steady state current at several representative values of ℏ/(𝜏Δ).
We choose a large 𝛾 = 104 to ensure the approximation used in Eq. (C.27) is accurate,
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and we assume that the system relaxes to zero-temperature thermal distributions in
the Floquet and instantaneous bases, i.e., 𝑓 𝐼

𝑘
= 𝑓 𝐹

𝑘
= 1. In Figure C.4(a), we

analyze the regime ℏ/(𝜏Δ) ≪ 1 considered in the main text. Consistent with the
analysis of the Floquet-Boltzmann equation, the current is quantized in the non-
adiabatic regime log

(
ℏ𝜔/Δ

)
> 0 when incoherent phonon relaxation dominates

𝜏ep ≪ 𝜏h. When the system is driven adiabatically, i.e., log
(
ℏ𝜔/Δ

)
< 0, the current

is quantized regardless of the strength of incoherent phonon coupling, consistent
with the picture of a Thouless pump. In Figure C.4(b), we show the current for a
weak driving potentialΔ satisfying (𝜏Δ)/ℏ = 0.3. In contrast to panel (a), the system
only exhibits quantized quantized current in the adiabatic regime when incoherent
phonon relaxation dominates 𝜏ep ≪ 𝜏h.

In conclusion, our effective description reproduces both the quantized acousto-
electric Floquet effect for non-adiabatic phonon drives and the Thouless pumping
regime for adiabatic phonon drives. In the the adiabatic regime, given by ℏ𝜔 ≪ Δ

and ℏ/𝜏 ≪ Δ, the current is quantized regardless of the rate of incoherent phonon
relaxation [see Figure C.4(a)]. Such a regime has been realized experimentally
using GHz-frequency surface acoustic phonon waves, which have been observed
to host a quantized acousto-electric current response [7, 29, 71, 82, 159, 278]. In
contrast, the quantized acoustoelectric Floquet effect relies on incoherent phonon
relaxation to realize quantized transport in the non-adiabatic regime where ℏ𝜔 > Δ

or ℏ/𝜏 ≳ Δ [see Figs. C.4(a-b)].
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C h a p t e r 8

CHIRAL PLASMONS AND TOPOLOGICAL PHOTOCURRENT
IN WEYL SEMIMETALS

We analyze a realizaton of Thouless’ adiabatic charge pump in a Weyl semimetal
(WSM) irradiated by circularly polarized light, first reported in Ref. [55]. We show
the effect can lead to a strong and highly nonlinear topological photocurrent along
the light propagation axis, which is insensitive to anisotropy, lattice orientation, and
interactions. The effect can emerge in non-centrosymmetric WSMs where Weyl
nodes of opposite chiralities are isolated and offset in energy, such as, potentially,
SrSi2. We estimate the current can reach 10 A/mm2 for THz frequencies at 106 V/m
amplitudes. We discuss the possibility of further amplification due to coinciding
plasmonic resonances in the THz-low infrared regime. We also report that WSMs
with broken time reversal and inversion symmetry may support two nontrivial re-
sponse phenomena: namely, a helicity-independent photocurrent, and a mechanism
for chiral plasmon modes, whose frequencies depend on their helicities relative to
an anisotropy axis of the material. The phenomena we uncover may find uses in
sensing, photovoltaics, and electronics.

8.1 Introduction
The linear dispersion and unique band topology of Weyl semimetals (WSMs) trans-
lates to exotic electronic responses [12, 14, 31, 38, 43, 58, 102, 121, 121, 150, 170–
172, 197, 199, 205, 207, 218, 230, 237, 285, 310, 319, 323, 328], with promising
applications in optics [9, 44, 122, 150, 156, 194, 198, 219, 283, 305, 311], mag-
netism [11, 66, 161, 202, 207, 208, 252, 267, 268, 276, 299, 324], and electronics
[13, 30, 98, 107, 112, 168, 190, 217, 227, 228, 265, 269, 272, 288, 300, 309, 318,
321]. These effects can arise both from interband photoabsorption, such as the
circular photogalvanic effect [58, 102, 121, 121, 172, 197, 218, 230, 237, 323], and
from intraband dynamics, such as topological frequency conversion [205], quantum
nonlinear Hall effects [264], photovoltaic chiral magnetic effects [51, 132, 277], and
shift current-induced bulk photovoltaic effects [218].

Here we study the intra-band dynamics of WSMs driven by circularly-polarized
light in the near-adiabatic regime, with frequency in the THz range, and less than
the momentum-dependent gap [see Figure 8.1(a)]. In noncentrosymmetric WSMs,
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Figure 8.1: Light-induced charge pumping and chiral plasmons. (a) We consider
the optical response of a noncentrosymmetric WSMs, where opposite-chirality Weyl
nodes (WNs) can have distinct effective chemical potentials (𝜇±) and tilts (𝜒±). We
show that circularly polarized driving in the near-adiabiatic regime can induce a
topological charge pumping effect leading to a strong photocurrent 𝑗 𝑧𝜂 along the
beam axis, where 𝜂 =⟲,⟳ denotes the helicity of the laser. (b) Numerically
computed photocurrent, 𝑗 𝑧⟲, for 𝜇− = 15 m𝑒𝑉 , 𝜇+ = 30 m𝑒𝑉 , and ℎ 𝑓 = 5 meV,
with 𝜒± = ±𝜒. (c) Maximal 𝑗 𝑧𝜂, denoted 𝑗 𝑧max, attained numerically (scatter points)
and predicted semiclassically (dashed line) [Eq. (8.7)]. Discrepancies arise as ℎ 𝑓
is raised beyond the adiabatic limit. (d) Plasmon enhancement factor 𝐺𝜂 ≡ 𝐸/𝐸ext
vs ℎ 𝑓 and 𝐸 , where 𝐸ext (𝐸) denotes the drive-field amplitude outside (inside) the
WSM. Dashed curve indicates plasmon resonance predicted semiclassically. (e)
Same as (d), but for a WSM with broken TRS and a pair of WNs with opposite
chirality and tilt. Here, the chiral plasmon resonance differs for left (left panel) and
right (right panel) circular polarizations.

we show these conditions induce Thouless’ topological charge pumping that gen-
erates a strong topological photocurrent along the propagation of light [47, 279].
The photocurrent is insensitive to lattice orientation or anisotropy in the WSM [see
Figure 8.1(b)] and can therefore arise even in systems with many domains of crystal
orientation. It is pronounced in WSMs where Weyl nodes (WNs) of opposite chiral-
ities are isolated and well-separated in energy [see Eq. (8.7)], such as, potentially,
SrSi2 [113]. When the WNs are tilted and time-reversal symmetry (TRS) is broken,
the WSM can further support a photocurrent component independent of laser helic-
ity. Interestingly, the THz driving coincides with the plasma resonance frequency
range of WSMs [43, 322], enabling significant amplification of the photocurrents at
moderate driving intensities [Figure 8.1(c)]. As a second result, when TRS is bro-
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ken, we show the plasmon frequency becomes chiral, dependent on the alignment
of the laser chirality with the anisotropy axis.

8.2 System
Let us start with the photoresponse of electrons near a single Weyl node (WN).
Focusing on the conduction and valence band, the Hamiltonian near a WN reads
𝐻 (𝒌) = 𝜉ℏ𝑣𝐹 𝒌 · 𝝈 + ℏ𝑽 · 𝒌 [12]. Here, 𝝈 = (𝜎𝑥 , 𝜎𝑦, 𝜎𝑧) denotes the vector of
Pauli matrices acting in the orbital basis, and the crystal momentum 𝒌 = (𝑘𝑥 , 𝑘𝑦, 𝑘𝑧)
is measured from the WN located at 𝒌 = 0. The Fermi velocity 𝑣𝐹 controls the
gap size of the energy dispersion away from the WN, while 𝑽 parameterizes a tilt
in the WN dispersion. Finally, 𝜉 = +,− defines the chirality of the WN. Below,
𝜀𝒌𝜈 and |𝜓𝒌𝜈⟩ respectively denote the single-particle energies and eigenstates of
𝐻 (𝒌), where 𝜈 = 0 (𝜈 = 1) indicate the conduction (valence) band. The WN
provides a point source of the Berry curvature of the bands, defined as \Ω𝜈 (𝒌) ≡
(2𝜋)−1∇𝒌 × ⟨𝜓𝒌𝜈 |𝑖∇𝒌 |𝜓𝒌𝜈⟩, where ∇𝒌 indicates the gradient with respect to 𝒌.
Specifically, ∇ · \Ω𝜈 (𝒌) = 2𝜋𝜉 (−1)𝜈𝛿(𝒌), where 𝛿(𝒌) denotes the Dirac delta
function. Nonzero Berry-curvature divergence is the hallmark of WSMs.

The system is illuminated by coherent circularly-polarized light traveling along
the 𝑧-direction with frequency 𝑓 and polarization 𝜂, which can take value ⟲ or
⟳, corresponding to left or right polarization, respectively. The time-dependent
vector potential inside the material is then 𝑨(𝑡) = 𝐴(cos

(
2𝜋 𝑓 𝑡

)
, 𝑐𝜂 sin

(
2𝜋 𝑓 𝑡

)
, 0),

where 𝑐⟲ = +1 and 𝑐⟳ = −1, with the corresponding internal electric field given
by 𝑬 (𝑡) = 𝜕𝑡𝑨(𝑡). The electrons couple to the light via 𝒌 → 𝒌 + 𝑒𝑨(𝑡)/ℏ,
where 𝑒 is the electron charge, resulting in the time-periodic Hamiltonian 𝐻 (𝒌, 𝑡) =
𝐻 (𝒌+𝑒𝑨(𝑡)/ℏ). We are interested in the photocurrent density in the system, denoted
𝒋𝜂 (𝑡), and its time-averaged value 𝒋̄𝜂 ≡ lim𝑡→∞

1
𝑡

∫ 𝑡

0 𝑑𝑡
′ 𝒋𝜂 (𝑡′) in the adiabatic regime

given by ℎ 𝑓 ≪ 𝑣𝐹𝑒𝐴/ℏ. This expression is derived from the adiabatic conditions
ℏ| |𝜕𝑡 𝐻̂ (𝒌, 𝑡) | | ≪ 𝛿𝜀2(𝒌, 𝑡) and ℏ𝜔 ≪ 𝛿𝜀2(𝒌, 𝑡), where | |·| | denotes the operator
spectral norm and 𝛿𝜀(𝒌, 𝑡) ≡ 𝜀1(𝒌, 𝑡) − 𝜀0(𝒌, 𝑡) denotes the spectral gap.

8.3 Origin of Topological Response
To elucidate the photoresponse of an isolated WN in the adiabatic regime [55], we
concentrate on the subset of electron modes with 𝑥𝑦-plane momentum 𝒌⊥ = (𝑘𝑥 , 𝑘𝑦),
represented by the vertical yellow line in Figure 8.2(a). These modes can be viewed
as a 1D Fermionic chain aligned in the 𝑧-direction, whose Bloch Hamiltonian𝐻 (𝒌, 𝑡)
is controlled by 𝒌⊥. For now, we fix 𝜇 = 0, and assume that the bands of this chain
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are fully gapped over a full driving cycle, such that they do not intersect the WN.
The light’s vector potential drives the Fermionic chain along a closed loop, indicated
by the yellow arrow in Figure 8.2(a). This adiabatic trajectory produces a Thouless
charge pump [201], which transports one electron per cycle in the 𝑧-direction:
I𝑧𝜂 (𝒌⊥) = −𝑐𝜂𝜉C𝒌⊥𝑒 𝑓 . Here C𝒌⊥ ≡ (2𝜋)−1

∫
S 𝑑𝑺 ·𝛀0(𝒌), where

∫
S 𝑑𝑺 denotes the

oriented surface integral on the closed cylinder S defined by 𝒌′(𝑡) ≡ 𝒌 + 𝑒𝑨(𝑡)/ℏ
for 𝑡 ∈ [0, 𝑇] and 𝒌⊥ fixed [see Figure 8.2(a)]. Stoke’s theorem implies that C𝒌⊥ is
given by the net charge of WNs inside S, leading to C𝒌⊥ = 𝜉𝜃 ( |𝑒𝐴/ℏ| − |𝒌⊥ |), with
𝜃 the step function. We verify this quantization in simulations, see Figure 8.2(b).
Summing all cylindrical trajectories that enclose the WN, the average current density
is the quantized current −𝑒 𝑓 times the reciprocal space area formed by the disk of
radius 𝑒𝐴/ℏ. This results in 𝑗 𝑧𝜂 = 𝑐𝜂𝜉 𝑗t𝑜𝑝, where

𝑗t𝑜𝑝 = −𝑒 𝑓
4𝜋

(
𝑒𝐴

ℏ

)2
. (8.1)

This topological photoresponse is unique to WSMs.

8.4 Nonzero Filling
Realistically, we must consider a nonzero chemical potential. To this end, we
consider the reduced density operator of the electronic many-body state, 𝜌̂(𝒌, 𝑡),
obtained by tracing over all electronic modes with crystal momenta distinct from
𝒌. This operator acts on a 4-dimensional Fock space of the 2 Bloch space orbitals
𝑠 =↓, ↑, spanned by the states |𝑛↑, 𝑛↓⟩ where 𝑛𝑠 = 0, 1 gives the occupation number
in Bloch state |𝑠⟩. The photocurrent is found from 𝜌̂(𝒌, 𝑡) via

𝒋𝜂 (𝑡) = 𝑒
∫

𝑑3𝒌

(2𝜋)3 Tr[ 𝜌̂(𝒌, 𝑡)ℏ−1∇𝒌 𝐻̂ (𝒌, 𝑡)], (8.2)

where 𝐻̂ (𝒌, 𝑡) = (𝑐†↑, 𝑐
†
↓)𝐻 (𝒌, 𝑡) (𝑐↑, 𝑐↓)𝑇 denotes the Hamiltonian acting on the

Fock space, with 𝑐†𝑠 creating a fermion in the orbital 𝑠. In addition to the coherent
evolution generated by 𝐻̂ (𝒌, 𝑡), 𝜌̂(𝒌, 𝑡) is affected by incoherent processes such as
electron-electron and electron-phonon collisions. We model these phenomenologi-
cally, through the master equation

𝜕𝑡 𝜌̂(𝒌, 𝑡) =
𝑖

ℏ
[ 𝜌̂(𝒌, 𝑡), 𝐻̂ (𝒌, 𝑡)] − 1

𝜏
[ 𝜌̂(𝒌, 𝑡) − 𝜌̂eq(𝒌, 𝑡)] . (8.3)

Here, we assume that electrons relax to a thermal state in the instantaneous eigenbasis
of 𝐻̂ (𝒌, 𝑡) (this is physically justified when the correlation time of the environment
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is fast relative to the driving frequency [203]),

𝜌̂eq(𝒌, 𝑡) = 𝑒−[𝐻̂ (𝒌,𝑡)−𝜇∑
𝑠 𝑐

†
𝑠𝑐𝑠]/𝑘𝐵𝑇/N (8.4)

where N = Tr[𝑒−[𝐻̂ (𝒌,𝑡)−𝜇∑
𝑠 𝑐

†
𝑠𝑐𝑠]/𝑘𝐵𝑇 ], 𝜇 is the chemical potential, and 𝑇 the lattice

temperature. We assume a uniform phenomenonlogical relaxation time 𝜏. The
explicit dissipator form is not essential, and chosen for simplicity.

In the adiabatic regime, ℎ 𝑓 ≪ 𝑣𝐹𝑒𝐴/ℏ 1, 𝒋𝜂 (𝑡) can be approximated semiclassi-
cally [205] via Tr[ 𝜌̂(𝒌, 𝑡)ℏ−1∇𝒌 𝐻̂ (𝒌, 𝑡)] ≈ ∑

𝜈 𝑔𝜈 (𝒌, 𝑡)𝒗𝜈 (𝒌, 𝑡), where

𝒗𝜈 (𝒌, 𝑡) ≡
∇𝒌

ℏ
𝜀𝒌𝜈 (𝑡) + 𝑒𝛀𝜈

(
𝒌 + 𝑒

ℏ
𝑨(𝑡)

)
× 𝑬 (𝑡)

ℏ
, (8.5)

𝑔𝜈 (𝒌, 𝑡) = Tr[ 𝜌̂(𝒌, 𝑡)𝜓̂†
𝒌𝜈
(𝑡)𝜓̂𝒌𝜈 (𝑡)] denotes the instantaneous occupation of band

𝜈, and 𝜓̂
†
𝒌𝜈
(𝑡) =

∑
𝑠⟨𝑠 |𝜓[𝒌+𝑒𝑨(𝑡)/ℏ]𝜈⟩𝑐†𝑠 creates an electron in the instantaneous

eigenstate in band 𝜈. The first and second term in Eq. (8.5) are the group velocity
and the anomalous velocity generated by the Berry curvature 𝛀𝜈, respectively. Near
the WN, 𝛀𝜈 (𝒌) = 𝜉 (−1)𝜈𝒌/2|𝒌 |3.

For a circularly polarized field 𝑬 (𝑡), the 𝑧-component of the anomalous velocity
is oriented in the same direction inside a radius 𝑒𝐴/ℏ from the origin (i.e., where
C𝒌⊥ ≠ 0). This generates a topological photocurrent which is always normal to the
electric field plane.

8.5 Photoresponse of a Single WN
Let us now consider the photoresponse of a WN with finite 𝜇. We focus on the
experimentally-relevant regime of slow relaxation 𝜏 𝑓 ≫ 1, realized for THz or
above in typical WSMs, where 𝜏 ∼ 1 − 100 ps [38, 320]. In this limit and at
𝑘𝐵𝑇 ≪ 𝜇, the photocurrent in Eq. (8.2) can be approximated by

𝑗 𝑧𝜂 ≈ 𝑐𝜂𝜉 𝑗t𝑜𝑝

(
1 − 𝛾(𝜇)

[
|𝜇 |
𝑣𝐹𝑒𝐴

]𝜑(𝜇) )
+ 𝜒𝑒𝜇(𝑒𝐴/ℏ)

2

12𝜋2ℏ
, (8.6)

[see Supplementary Material (SM) for details], where we assumed anisotropy along
the 𝑧-axis, 𝑽𝑖 = (0, 0,±𝑣𝐹 𝜒), with 𝜒 parameterizing the tilt of the WN. The tilt
gives rise to the second term in Eq. (8.6), which describes a helicity-independent
photocurrent originating from the group velocity term in Eq. (8.5). The first term

1This expression is derived from the adiabatic conditions ℏ| |𝜕𝑡 𝐻̂ (𝒌, 𝑡) | | ≪ 𝛿𝜀2 (𝒌, 𝑡) and ℏ𝜔 ≪
𝛿𝜀2 (𝒌, 𝑡), where | |·| | denotes the operator spectral norm and 𝛿𝜀(𝒌, 𝑡) ≡ 𝜀1 (𝒌, 𝑡) − 𝜀0 (𝒌, 𝑡) denotes
the spectral gap.
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Figure 8.2: Topological photocurrent as quantized charge pumping. (a) Brillouin
zone region (purple) surrounding a single WN (bright yellow) at 𝜇 = 0. Under
illumination by circularly polarized light, all electronic states with a given 𝑘𝑥 and
𝑘𝑦 (yellow vertical line) traces out a cylinder (pink) in momentum space during
a period of the drive. This generates a quantized charge transfer per cycle along
the 𝑧 direction, given by −𝑒 times the total flux of Berry curvature through the
surface of the cylinder (differential area element indicated by dark purple). When
the cylinder encloses the WN, this integral is nonzero and given by ±1. (b) Total
time-averaged current I𝑧⟳(𝒌⊥) in the system generated by electrons with a fixed
in-plane momentum 𝒌⊥ = (𝑘𝑥 , 𝑘𝑦). Left and right panels depict 𝑣𝐹𝑒𝐴/ℏ ≈ 5ℎ 𝑓
and 𝑣𝐹𝑒𝐴/ℏ ≈ 0.2ℎ 𝑓 , respectively, corresponding to adiabatic and nonadiabatic
driving. The dashed curve indicates the trajectory of the WN.

is the topological photocurrent originating from the anomalous velocity term in
Eq. (8.5), and generates the charge pumping effect described above. This term is
insensitive to the tilt, but controlled by the drive helicity.

The topological current is set by 𝛾(𝜇) and 𝜑(𝜇), which cross over from 𝛾 ≈ 0.4 and
𝜑 = 3 for |𝜇 | ≪ 𝑒𝐴𝑣F to 𝛾 ≈ 0.2 and 𝜑 = 2 for 𝑒𝐴𝑣𝐹 < |𝜇 | < 2𝑒𝐴𝑣𝐹 . The topologi-
cal current scales with the number of carriers (∝ 𝜇3) near the WN in the light-doping
regime |𝜇 |/(ℏ𝑣𝐹) ≪ 𝑒𝐴/ℏ, and with the area of charge-pumping fermionic chains
intersecting the Fermi sea (∝ 𝜇2) at higher 𝜇. It decreases monotonically with
|𝜇 |, and plateaus in the regime |𝜇 |/(ℏ𝑣𝐹) ≫ 2𝑒𝐴/ℏ, at a value given by 𝐵𝑐𝜂𝜉 𝑗t𝑜𝑝,
where 𝐵 depends on the Fermi volume geometry. The residual topological current
in this regime originates from the finite height of the cylinder S depicted in Figure
8.2(a), which terminates at the Fermi surface. The Berry flux through the top and
bottom ends of S leads to a reduction of I𝑧𝜂 (𝒌⊥) from the quantized value 𝑐𝜂𝜉𝑒 𝑓
derived above Eq. (8.1). A semiclassical analysis (see SM) yields 𝐵 = 1/3 for
spherical Fermi volumes in the |𝜇 |/(ℏ𝑣𝐹) ≫ 2𝑒𝐴/ℏ limit. When the Fermi volume
extends beyond the periodic Brillouin zone boundaries, S is no longer closed in the
𝑘𝑧-direction, resulting in 𝐵 = 0.
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Figure 8.3: Photoresponse from doped and tilted WNs, with parameters 𝐸 =

1.5 MV/m, ℎ 𝑓 = 5 meV and 𝜏 = 5 ps, corresponding to 𝜏 𝑓 ≈ 6. (a) Photocurrent
𝑗 𝑧𝜂 vs. 𝜇 for an isolated, untilted WN. The orange curve indicates semiclassical
prediction [see discussion below Eq. (8.6)]. (b)-(c) Photocurrent 𝑗 𝑧𝜂 from a pair
of opposite-chirality WNs with opposite tilts, 𝜒 ≡ 𝜒+ = −𝜒− under left (b) and
right (c) laser polarization. In the limit 𝜒 → 0, the photoresponse is dominated
by the chirality-dependent component generated by the anomalous velocity. (d)
Chirality-independent component 𝑗 𝑧

𝐺
= ( 𝑗 𝑧⟲ + 𝑗 𝑧⟳)/2 of 𝑗 𝑧𝜂. Dashed line indicates

prediction from semiclassical analysis [Eq. (8.6)]. (e) Steady state occupation func-
tion 𝑔1(𝒌, 0) at time 𝑡 = 0 in the 𝜈 = 1 band, for the same parameters as panel (a).
Black dot indicates the position of the WN, and vectors indicate the oscillating cur-
rent components generated parallel 𝑗∥ and perpendicular 𝑗⊥ to the internal electric
field 𝑬 (𝑡) and the resulting polarization 𝑷𝜂 (𝑡), along with induced field 𝑬ind(𝑡).

8.6 Symmetry Constraints
The total photocurrent 𝑗 𝑧𝜂 of a WSM is obtained by adding contributions from all
WNs, whose chemical potentials, tilts, and chiralities are related by the symmetries
of the system. WSMs must break either TRS, inversion symmetry (IS), or both.

Noncentrosymmetric WSMs with TRS are characterized by chemical potential im-
balance between nodes of opposite chiralities 𝜉, allowing for a nonzero net topolog-
ical photocurrent. TRS relates each node to another at opposite crystal momentum
with identical chirality and opposite tilt [see Figure 8.1(a)], implying a minimum
of four WNs, two 𝜉 = +1 nodes with chemical potential 𝜇+ and two 𝜉 = −1 nodes
with chemical potential 𝜇− [208]. TRS also implies that each pair of equal-chirality
WNs have opposite tilt, resulting in no net helicity-independent photocurrent [see
Eq. (8.6)]. Without loss of generality, we let 𝜇− ≤ 𝜇+. The photocurrent 𝑗 𝑧𝜂
sharply changes as the electric field amplitude 𝐸 approaches two critical values
set by the chemical potentials, 𝐸± ≡ ℎ 𝑓 𝜇±/(2ℏ𝑣𝐹𝑒) [Figure 8.1(b)]. While for
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𝐸 < 𝐸− none of the WNs exhibit photocurrents [see discussion below Eq. (8.6)],
for 𝐸− < 𝐸 < 𝐸+, the 𝜉 = − WNs contribute a nonzero topological current and the
𝜉 = + WNs remain inactive. Finally, for 𝐸 > 𝐸+ both 𝜉 = +,− WNs contribute. The
sharp changes of 𝑗 𝑧𝜂 imply a highly nonlinear nature of the topological photocurrent,
and can not be captured perturbing about 𝐸 = 0 [205]. Eq. (8.6) implies that 𝑗 𝑧𝜂
attains its maximum when 𝐸 > 𝐸+, 𝐸−,

𝑗 𝑧max ≈ 0.016𝑒 𝑓 [(𝜇+)2 − (𝜇−)2]/(ℏ𝑣𝐹)2. (8.7)

Hence the topological photocurrent is most pronounced when 𝜇+ differs significantly
from 𝜇−, such as, potentially, in SrSi2 [113].

If inversion and TRS are broken, the WSM hosts a minimum of two WNs with
opposite 𝜉 and different chemical potentials, but generically different tilts. The
lack of symmetry constraints on the tilts enables a photocurrent with both helicity-
dependent and independent components. Finally, WSMs with broken TRS but
preserved inversion symmetry do not support a photocurrent.

8.7 Numerical Verification
To numerically verify our results, we first use Eq. (D.1) to compute 𝑗 𝑧𝜂 from an
isolated WN with no tilt, using parameters 𝑣𝐹 = 5 × 105 m/s, 𝜏 = 5 ps, 𝑇 = 20 K,
ℎ 𝑓 = 5 meV, and 𝐸 = 5×105 V/m, reflecting experimentally achievable conditions
[38]. Note that our simulation is agnostic to the estimates in Eqs. (8.5)-(8.6). Figure
8.2(b) shows the in-plane momentum-resolved photocurrent, I𝑧⟲(𝒌⊥) for 𝜇 = 0. For
adiabatic driving (left panel), 𝑒𝐴/ℏ ≈ 5ℎ 𝑓 , we see a clear quantized plateau with
I𝑧⟲(𝒌⊥) ≈ 𝑒 𝑓 , of disk shape and radius 𝑒𝐴/ℏ, as the semiclassical analysis above
Eq. (8.1) predicts. Illustrating the role of adiabaticity, the right half of Figure 8.2(b)
depicts the same data for non-adiabatic driving, 𝑒𝐴 ≈ 0.2ℎ 𝑓 . Here, non-adiabatic
heating reduces the photocurrent of electronic states with momentum close to the
trajectory (black dashed curve) of the WN [205]. Figure 8.3(a) plots 𝑗 𝑧𝜂 vs. 𝜇.
The dashed line is the analytical result, Eq. (8.6). For 𝜇/(𝑣𝐹𝑒𝐴) ≫ 2, the current
plateaus near 𝑗 𝑧𝜂 = 𝑗 𝑧top/3, as semiclassically predicted.

To calculate 𝑗 𝑧𝜂 in a noncentrosymmetric WSM with TRS, we take 𝜇− = 15 meV and
𝜇+ = 30 meV. Time-reversal conjugate nodes have opposite tilt, and, for simplicity,
we assume that non-conjugate pairs of opposite-chirality WNs have opposite tilts,
±𝜒. Figure 8.1(b) plots 𝑗 𝑧⟲ for various values of 𝜒. As we expect, 𝑗 𝑧⟲ exhibits
sharp changes at the predicted field amplitudes 𝐸± [defined above Eq. (8.7)], and
is moreover insensitive to 𝜒. Figure 8.1(c), shows 𝑗 𝑧m𝑎𝑥 calculated numerically and
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as predicted by Eq. (8.7). We expect the discrepancy for ℎ 𝑓 ≳ 𝑒𝐴/ℏ are due to
non-adiabatic effects.

Lastly, Figure 8.3(b)-(c) compares 𝑗 𝑧⟲ and 𝑗 𝑧⟳ for a WSM with broken TRS. When
𝜒 → 0, 𝑗 𝑧𝜂 exhibits a sign flip upon reversing the laser helicity 𝜂, as expected.
The sign flip does not persist for finite tilts 𝜒 > 0, where the helicity-independent
photocurrent emerges. Figure 8.3(d) shows that the helicity-independent component
𝑗 𝑧
𝐺
= ( 𝑗 𝑧⟲ + 𝑗 𝑧⟳)/2 scales quadratically with the field amplitude in agreement with

Eq. (8.6) (dashed lines) for 𝜒 ≪ 1.

8.8 Plasmon Enhancement
We now discuss how the plasmonic response of WSMs may enhance the topological
photocurrent. We assume that the size of the WSM sample is smaller than the
skin depth, estimated to be 0.1-1 µm for THz frequencies [183]. The light-induced
plasma oscillations of the WSMs induce a surface charge oscillation on the sample.
This in turn induces an electric field 𝑬ind(𝑡) that modifies the internal electric field
𝑬 (𝑡) relative to the external field provided by the light outside the WSM, 𝑬ext(𝑡),
via 𝑬 (𝑡) = 𝑬ind(𝑡) + 𝑬ext(𝑡). The modification can induce either damping or
amplification, depending on whether the gain ratio 𝐺𝜂 ≡ |𝑬 (𝑡) |/|𝑬ext(𝑡) | is smaller
or larger than 1. The induced field 𝑬ind(𝑡) is appreciable in 3D geometries, but may
be negligble in quasi-2D settings such as thin films.

To estimate 𝑬ind(𝑡) in a 3D configuration, we consider a spherical geometry. The
drive-induced in-plane current, 𝒋𝜂 (𝑡), creates surface charge corresponding to a uni-
form internal polarization density 𝑷𝜂 (𝑡) such that 𝜕𝑡𝑷𝜂 (𝑡) = 𝒋𝜂 (𝑡). With spherical
geometry, 𝑬ind(𝑡) = 𝑷𝜂 (𝑡)/(3𝜖0). Writing 𝒋𝜂 (𝑡) = 𝑗

𝜂
𝑧 (𝑡)𝑧 + 𝑗

𝜂

𝑃
𝒆̂(𝑡) + 𝑗

𝜂

𝑁
𝑧 × 𝒆̂(𝑡),

where 𝒆̂(𝑡) ≡ 𝑬 (𝑡)/𝐸 and 𝐸 = |𝑬 (𝑡) |, we find

𝐺𝜂 = 𝐸{[𝐸 + 𝑐𝜂 𝑗𝜂𝑁/(6𝜋𝜖0 𝑓 )]2 + [ 𝑗𝜂
𝑃
/(6𝜋𝜖0 𝑓 )]2}−1/2. (8.8)

In noncentrosymmetric WSMs with TRS, the instantaneous population distribution
for 𝜏 𝑓 ≫ 1 [see color plot in Figure 8.3(e)] is anisotropic about the WN, yielding
𝑗
𝜂

𝑃
≈ 0, and 𝑗𝜂

𝑁
≈ 𝑐𝜂𝑒𝑣𝐹

∑
𝜉=± [𝜇𝜉/(ℏ𝑣𝐹)]3/(3𝜋3) in the limit 𝜇𝜉 ≪ ℏ𝑣𝐹𝑒𝐴/ℏ. This

result is derived from Eq. (8.5) [see SM], and implies a plasma resonance (divergent
𝐺𝜂) which takes the internal field amplitude inside system towards the critical value

𝐸𝑝 ( 𝑓 ) ≈ 𝑒𝑣𝐹 [(𝜇+)3 + (𝜇−)3]/[(ℏ𝑣𝐹)3(18𝜋4𝜖0 𝑓 )] . (8.9)

The existence of a characteristic internal field amplitude is a consequence of the
linear dispersion of the WSM, which gives rise to an inherently nonlinear response.
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Figure 8.1(d) plots the numerically obtained value of 𝐺𝜂, along with 𝐸𝑝 ( 𝑓 ) as
predicted above.

8.9 Chiral Plasmons in WSMs with broken TRS
When TRS is broken, noncentrosymmetric WSMs support a chiral plasmonic reso-
nance, where plasma modes with opposite helicities have different frequencies. To
illustrate this, we again consider the minimal example of a pair of WNs of opposite
chirality, with unequal chemical potentials 𝜇± and tilts 𝜒±. The tilt reshapes the
Fermi surface in the 𝜈 = 1 band of each WN, creating an imbalance of electronic car-
riers with positive and negative 𝑘𝑧. In this regime, an additional, in-plane topological
current emerges, given by 𝛿 𝒋𝜂

𝑁
(𝑡) ≈ −∑

𝜉=± 𝜉𝜒𝜉𝑒 𝑓 (𝜇𝜉/ℏ𝑣𝐹)2𝑧 × 𝒆̂(𝑡)/(4𝜋2) in the
slow relaxation limit 𝜏 𝑓 ≫ 1. The topological current arises from the in-plane,
oscillating component of the anomalous velocity 𝑒𝛀𝜈 × 𝑬 (𝑡)/ℏ which is nonzero
after integration over 𝑘𝑧 for a tilted WN. The resonant electric field amplitude is
modified as a result, and, in the limit 𝜒± ≪ 1, is now given by

𝐸𝑝 ( 𝑓 ) ≈
1

6𝜋𝜖0 𝑓

∑︁
{𝜉}


𝑒𝑣𝐹

3𝜋3

𝜇3
𝜉

(ℏ𝑣𝐹)3 − 𝜉𝑐𝜂𝜒𝜉
𝜇2
𝜉

(ℏ𝑣𝐹)2
𝑒 𝑓

4𝜋2

 . (8.10)

This chirality-dependent plasma resonance is verified numerically in Figure 8.1(e)
for the case where the WNs of positive and negative chirality exhibit opposite tilts,
𝜒± = ±𝜒. Notably, the plasma resonance amplitudes and frequencies depend on the
helicity of the laser drive.

8.10 Conclusions
Here we analyzed the generation of robust topological photocurrent induced by
circularly polarized light in noncentrosymmetric WSMs, first reported in Ref. [55].
We showed that the effect is insensitive to anisotropy and electronic interactions.
The effect may be observed in noncentrosymmetric WSMs where nodes of opposite
chiralities are well-separated in energy, such as, possibly, SrSi2 [113]. When time-
reversal symmetry is broken and the WNs are tilted, the transport further exhibits
a giant helicity-independent photocurrent and a helicity-dependent plasmon reso-
nance. These exotic topological electronic and plasmonic responses constitute a new
class of highly nonlinear photoresponses in Weyl semimetals with low symmetry
constraints.

Multiple works have investigated the light-induced current responses of WSMs [38,
58, 102, 117, 118, 121, 121, 147, 172, 197, 218, 230, 237, 264, 323]. The pho-
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tocurrent we analyze here (first reported in Ref. [55]) is different from these works,
since it is of intra-band origin and of strongly nonlinear nature, beyond the paradigm
of conventional nonlinear response theory [55, 205]. The topological photocurrent
moreover does not require any explicit band structure anisotropy, and can be orders
of magnitude stronger than in Refs. [117, 118].
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A p p e n d i x D

APPENDIX

Here we provide the semiclassical calculation of the photocurrent 𝒋 (𝑡) quoted in
the main text. Before we proceed to the technical details of the derivation, which
are provided in the following sections, we begin by outlining the structure of the
calculation.

Our calculation of 𝒋 (𝑡) is based on solving the Lindblad master equation in Eq.
(D.1) of the main text,

𝜕𝑡 𝜌̂(𝒌, 𝑡) =
𝑖

ℏ
[ 𝜌̂(𝒌, 𝑡), 𝐻̂ (𝒌, 𝑡)] − 1

𝜏
[ 𝜌̂(𝒌, 𝑡) − 𝜌̂eq(𝒌, 𝑡)], (D.1)

with 𝐻̂ (𝒌, 𝑡), 𝜌̂(𝒌, 𝑡), and 𝜌̂e𝑞 (𝒌, 𝑡) denoting the second-quantized Bloch Hamil-
tonian, density matrix and equilibrium density matrix, respectively, while 𝜏 is the
phenomenological relaxation time of the system (see main text for more details).
The photocurrent is obtained from the steady-state solution to Eq. (D.1), 𝜌̂s(𝒌, 𝑡)
via 𝒋 (𝑡) = 1

(2𝜋)3

∫
𝑑3𝒌Tr[ 𝜌̂s(𝒌, 𝑡)ℏ−1∇𝒌 𝐻̂ (𝒌, 𝑡)]. In the quasi-adiabatic limit we

consider, this integral can be approximated by [205]

𝒋 (𝑡) ≈
∑︁
𝜈

𝑔𝜈 (𝒌, 𝑡)𝒗𝜈 (𝒌, 𝑡). (D.2)

Here 𝑔𝜈 (𝒌, 𝑡) = Tr[ 𝜌̂s(𝒌, 𝑡)𝜓̂†
𝒌𝜈
(𝑡)𝜓̂𝒌𝜈 (𝑡)] denotes the steady-state occupation of the

instantaneous electronic bands, with 𝜓̂𝒌𝜈 (𝑡) denoting the creation operator of an
electron with crystal momentum 𝒌 in the instantaneous eigenstate in band 𝜈 [see full
definition below Eq. (8.5) in the main text]. Moreover,

𝒗𝜈 (𝒌, 𝑡) ≡
∇𝒌

ℏ
𝜀𝒌𝜈 (𝑡) + 𝑒𝛀𝜈

(
𝒌 + 𝑒

ℏ
𝑨(𝑡)

)
× 𝑬 (𝑡)

ℏ
(D.3)

denotes the phase velocity of the electrons in band 𝜈. Here, 𝛀𝜈 (𝒌 + 𝑒𝑨(𝑡)/ℏ) and
𝜀𝒌𝜈 (𝑡) are respectively the Berry curvature and eigenenergies of the bands of the
Bloch Hamiltonian 𝐻 (𝒌, 𝑡), 𝑨(𝑡) is the drive-induced magnetic vector potential,
and 𝑬 (𝑡) = 𝜕𝑡𝑨(𝑡) the corresponding electric field. We provide more details on the
quantities above in the main text.

The remainder of this supplement is devoted to calculating the photocurrent 𝒋 (𝑡)
using the results above. The calculation is structured as follows: in Section D.1,
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we derive approximate steady state solutions for 𝑔𝜈 (𝒌, 𝑡). In Section D.2, we use
this solution along with Eqs. (D.2)-(D.3) to compute 𝒋 (𝑡) for an isolated Weyl node
with no tilt, focusing on the out-of-plane (Section D.2) and in-plane (Section D.2)
components separately. In Section D.3, we extend the calculation to the case of
a finite Weyl node tilt to demonstrate the emergence of the helicity-independent
photocurrent and chiral plasmons.

D.1 Steady State Electronic Distribution
We first derive an approximate analytic expression for the steady state occupation
function of the electronic bands, 𝑔𝜈 (𝒌, 𝑡). By explicitly solving the master equation
[see Eq. (D.1)] [205], we obtain the solution

𝑔𝜈 (𝒌, 𝑡) =
1
𝜏

∫ 𝑡

−∞
𝑑𝑠 𝑒−(𝑡−𝑠)/𝜏 𝑓 eq

𝜈 (𝒌, 𝑠), (D.4)

where 𝑓
eq
𝜈 (𝒌, 𝑡) defines the electronic occupation function of band 𝜈 in thermal

equilibrium, and is given by

𝑓
eq
𝜈 (𝒌, 𝑡) = 1

𝑒 [𝜀𝒌𝜈 (𝑡)−𝜇]/𝑘𝐵𝑇 + 1
, (D.5)

where 𝜇 is the chemical potential, 𝑘𝐵 is the Boltzmann constant, and 𝑇 is the lattice
temperature. As discussed in the main text, we focus on the slow-relaxation limit
𝜏 𝑓 ≫ 1, which is realized for picosecond-scale relaxation times and terahertz or
higher frequency drives [38, 320]. In this limit, using Eq. (D.4) and exploiting the
time-periodicity of 𝑓 eq

𝜈 (𝒌, 𝑡), we find that

𝑔𝜈 (𝒌, 𝑡) ≈
1
𝑇dr

∫ 𝑇dr

0
𝑑𝑢 𝑓

eq
𝜈 (𝒌, 𝑢), (D.6)

where𝑇dr = 1/ 𝑓 is the period of the drive. Thus, the steady-state distribution 𝑔𝜈 (𝒌, 𝑡)
approaches a distribution obtained from “smearing” the equilibrium distribution
𝑓𝜈 (𝒌, 𝑡) along the circular trajectory 𝒌 + 𝑒𝑨(𝑡)/ℏ defined by the drive-induced
vector potential.

D.2 Photoresponse of an Isolated, Untilted Weyl Node
Here, we use the results above to compute 𝒋𝜂 (𝑡) for an isolated, untilted Weyl
node driven by circularly polarized light in the slow relaxation limit 𝜏 𝑓 ≫ 1. The
Hamiltonian we consider is given by

𝐻 (𝒌) = 𝜉ℏ𝑣𝐹 𝒌 · 𝝈, (D.7)

where 𝑣𝐹 is the Fermi velocity. We first consider the photocurrent component in the
𝑧-direction (Section D.2), and finally in the 𝑥-𝑦 plane (Section D.2).
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Photocurrent along the 𝑧-axis
We compute the photocurrent in the 𝑧-direction by analyzing the contribution from
each electronic band separately. To this end, we define 𝑗 𝑧𝜂 =

∑
𝜈 𝑗

𝑧
𝜈,𝜂, where 𝑗 𝑧𝜈,𝜂

is the time-averaged contribution to the current from the 𝜈-th band. Using the
semiclassical equations of motion [Eqs. (D.2)-(D.3)], we find

𝑗 𝑧𝜈,𝜂 =
1
𝑇dr

∫ 𝑇dr

0
𝑑𝑡

∫
𝑑3𝒌

(2𝜋)3


1
ℏ
𝜕𝑘𝑧𝜀𝒌𝜈 (𝑡) +

{
𝑒𝛀𝜈

(
𝒌 + 𝑒

ℏ
𝑨(𝑡)

)
× 𝑬 (𝑡)

ℏ

}
· 𝑧

 𝑔𝜈 (𝒌, 𝑡).
(D.8)

In untilted Weyl nodes, the occupation function 𝑔𝜈 (𝒌, 𝑡) is symmetric upon inversion
along 𝑘𝑧 (𝑘𝑧 → −𝑘𝑧), and 𝜕𝑘𝑧𝜀𝒌𝜈 (𝑡) is an odd function of 𝑘𝑧. Therefore, the group
velocity contribution vanishes. The remaining anomalous velocity is the origin
of the topological current. For the positive-chirality Weyl node we consider in Eq.
(D.7), the Berry curvature is given by𝛀𝜈 (𝒌) = 𝜉 (−1)𝜈𝒌/2|𝒌 |3. Moreover using that
𝑬 (𝑡) = −2𝜋 𝑓 𝑐𝜂𝑧 × 𝑨(𝑡) for circularly polarized light, we obtain the photocurrent

𝑗 𝑧𝜈,𝜂 = −𝑐𝜂𝜉 (−1)𝜈 𝑒
2

2ℏ
𝑓

2𝜋

∫
𝑑3𝒌

(2𝜋)3

∫ 𝑇dr

0
𝑑𝑡

𝒌 · 𝑨(𝑡) + 𝑒𝐴2/ℏ
|𝒌 + 𝑒𝑨(𝑡)/ℏ|3

𝑔𝜈 (𝒌, 𝑡). (D.9)

We now compute the contributions from the 𝜈 = 0 and 𝜈 = 1 bands separately.
In our analysis, we focus on the case 𝜇 ≥ 0, noting that the results can be easily
generalized to 𝜇 < 0.

Computing 𝑗 𝑧0,𝜂

To compute the photocurrent from electronic states in the fully-occupied 𝜈 = 0
valence band, we note that the inner integral over 𝑡 in Eq. (D.9) is symmetric under
rotation around the 𝑧-axis. We can therefore set 𝑘𝑥 = 𝑘⊥ and 𝑘𝑦 = 0 to evaluate
it, where 𝒌⊥ = (𝑘𝑥 , 𝑘𝑦) denotes the in-plane momentum and 𝑘⊥ = |𝒌⊥ | denotes its
magnitude. Introducing the unitless parameters 𝑥⊥ = 𝑘⊥/(𝑒𝐴/ℏ), 𝑥𝐹 ≡ 𝑘𝐹/(𝑒𝐴/ℏ),
𝑥𝑧 ≡ 𝑘𝑧/(𝑒𝐴/ℏ), and 𝜙 = 2𝜋𝑡, where 𝑘𝐹 = 𝜇/(ℏ𝑣𝐹), the net current produced by
electrons in the 𝜈 = 0 band is given by

𝑗 𝑧0,𝜂 = −𝑐𝜂𝜉
𝑒 𝑓

8𝜋2

(
𝑒𝐴

ℏ

)2 ∫ ∞

0
𝑑𝑥

∫ 2𝜋

0
𝑑𝜙

∫ ∞

−∞
𝑑𝑥𝑧

𝑥⊥ cos 𝜙 + 1
(𝑥2

⊥ + 2𝑥⊥ cos 𝜙 + 1 + 𝑥2
𝑧 )3/2

.

(D.10)
Here, we have used 𝑔0(𝒌, 𝑡) = 1 because the valence band is fully occupied. We
first perform integration over 𝑥𝑧, which yields

𝑗 𝑧0,𝜂 = −𝑐𝜂𝜉
𝑒 𝑓

8𝜋2

(
𝑒𝐴

ℏ

)2 ∫ ∞

0
𝑑𝑥

∫ 2𝜋

0
𝑑𝜙

𝑥⊥ cos 𝜙 + 1
𝑥2
⊥ + 1 + 2𝑥⊥ cos 𝜙

. (D.11)
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Using the identity ∫ 2𝜋

0
𝑑𝜙

cos 𝜙 + 𝑥−1
⊥

cos 𝜙 + (𝑥−1
⊥ + 𝑥⊥)/2

= 4𝜋𝜃 (1 − 𝑥⊥), (D.12)

it follows that 𝑗 𝑧0,𝜂 = 𝑐𝜂𝜉 𝑗top, where

𝑗top = −𝑒 𝑓
4𝜋

(
𝑒𝐴

ℏ

)2
. (D.13)

Thus, we have reproduced the quantized current result in Eq. (1) of the main text,
which was obtained using the charge pump picture [see discussion above Eq. (1)].

Computing 𝑗 𝑧1,𝜂

We next calculate the current 𝑗 𝑧1,𝜂 generated by electronic states in the partially-
filled 𝜈 = 1 conduction band, which hosts a spherical Fermi volume with radius
𝑘𝐹 = 𝜇/(ℏ𝑣𝐹). We again exploit that the inner integral in Eq. (D.9) is symmetric
under rotation around the 𝑧-axis, and, without loss of generality, set 𝑘𝑥 = 𝑘⊥ and
𝑘𝑦 = 0. Using the approximate expression for the occupation function in Eq. (D.6),
and the same unitless paramters as in Section D.2, we find that

𝑗 𝑧1,𝜂 = 𝑐𝜂𝜉
𝑒 𝑓

8𝜋2

(
𝑒𝐴

ℏ

)2 ∫ 1+𝑥𝐹

max(0,1−𝑥𝐹 )
𝑑𝑥⊥

∫ √
𝑥2
𝐹
−(𝑥⊥−1)2

−
√
𝑥2
𝐹
−(𝑥⊥−1)2

𝑑𝑥𝑧

×
∫ 2𝜋

0
𝑑𝜙

𝑥⊥ cos 𝜙 + 1
(𝑥2

⊥ + 2𝑥⊥ cos 𝜙 + 1 + 𝑥2
𝑧 )3/2

G1(𝑥⊥, 𝑥𝑧, 𝑡).
(D.14)

Here, G1(𝑥⊥, 𝑥𝑧, 𝑡) = 𝑔1 [𝑒𝐴/ℏ(𝑥⊥, 0, 𝑥𝑧), 𝑡]. Eq. (D.14) can be integrated numeri-
cally for different values of 𝑥𝐹 . We show the numerical result in Figure D.1(a). We
fit 𝑗 𝑧1,𝜂 to the function

𝑗 𝑧1,𝜂 = −𝑐𝜂𝜉 𝑗t𝑜𝑝𝛾(𝜇)𝑥𝜑(𝜇)𝐹
, (D.15)

where 𝑗top = −𝑒 𝑓
(
𝑒𝐴/ℏ

)2 /(4𝜋). In Figure D.1(b), we plot log[− 𝑗 𝑧1,𝜂/(𝑐𝜂𝜉 𝑗top)]
vs. log(𝑥𝐹) and we perform fits to the numerically-calculated data using 𝜑 = 3 in
the regime 0.05 < 𝑥𝐹 < 0.3 and 𝜑 = 2 in the regime 1.0 < 𝑥𝐹 < 1.7 to arrive at the
values of 𝛾(𝜇) provided in the main text. For 𝑥𝐹 ≫ 2, the coefficients saturate to
𝛾 = 2/3, and 𝜑 = 0, as we show below.

Saturation value of 𝑗 𝑧1,𝜂 for 𝑘𝐹 ≫ 2𝑒𝐴/ℏ. We can analytically compute the
saturation value of 𝑗 𝑧1,𝜂 in the limit 𝑘𝐹 ≫ 2𝑒𝐴/ℏ. To this end, we first consider
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(b)(a)

Figure D.1: (a) Topological current produced by conduction band (𝜈 = 1) states
in an isolated Weyl node, calculated by numerically integrating the semiclassical
equations of motion [see Eq. (D.14)]. Here, 𝑗top = −𝑒 𝑓 (𝑒𝐴/ℏ)2/(4𝜋) denotes the
topological current magnitude produced by a fully-occupied valence band [see Eq.
(1) in the main text], and 𝑥𝐹 = ℏ𝑘𝐹/(𝑒𝐴). (b) Log-scale plot of panel (a), with fits
(solid lines) to the numerical data.

Figure D.2: Illustration of the coordinate system used to calculate the saturation
value of 𝑗 𝑧1,𝜂 for 𝑘𝐹 ≫ 2𝑒𝐴/ℏ. Here, 𝒌′ = 𝒌 + 𝑒𝑨(𝑡)/ℏ is the shifted coordinate
system, which fixes the WN at the origin. Purple sphere indicates the Fermi volume
in the conduction band, which is centered at the WN (center white dot). Under
illumination by circularly polarized light, populated electronic states with a given
𝒌⊥ = (𝑘𝑥 , 𝑘𝑦) traces out a cylinder S𝑡 (𝒌⊥) (dark purple) in momentum space
during a period of the drive. Due to the finite Fermi momentum 𝑘𝐹 , finite Berry
curvature 𝛀1 penetrates the “caps” S𝑡 (𝒌⊥) (light green) of the cylinder located at
𝑘𝑧 = ±

√︃
𝑘2
𝐹
− |𝒌⊥ |2. The Berry flux through the caps S𝑡 (𝒌⊥) produces a saturation

value of 𝑗 𝑧1,𝜂 in the limit 𝑘𝐹 ≫ 2𝑒𝐴/ℏ.
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the current produced by a single Fermionic chain of states with fixed in-plane
momentum 𝒌⊥, given by

I(𝒌⊥) =
1
𝑇dr

∫ 𝑇dr

0
𝑑𝑡

∫ ∞

−∞

𝑑𝑘𝑧

2𝜋


1
ℏ
𝜕𝑘𝑧𝜀𝒌1(𝑡) +

{
𝑒𝛀1

(
𝒌 + 𝑒

ℏ
𝑨(𝑡)

)
× 𝑬 (𝑡)

ℏ

}
· 𝑧

 𝑔1(𝒌, 𝑡).

(D.16)
This in-plane-momentum-resolved current determines 𝑗 𝑧1,𝜂 via

𝑗 𝑧1,𝜂 =

∫
𝑑2𝒌⊥
(2𝜋)2I(𝒌⊥). (D.17)

Noting again that the group velocity term in Eq. (D.16) vanishes by symmetry, it
follows that

I(𝒌⊥) =
𝑒 𝑓

2𝜋

∫ ∞

−∞
𝑑𝑘𝑧

∫ 𝑇dr

0
𝑑𝑡
𝑒

ℏ
[𝛀1(𝒌 + 𝑒𝑨(𝑡)/ℏ) × 𝑬 (𝑡)] · 𝑧 𝑔1(𝒌, 𝑡). (D.18)

To further simplify the expression, we note that the magnetic vector potential 𝑨(𝑡)
is always perpendicular to the electric field 𝑬 (𝑡), and, therefore,

I(𝒌⊥) = 𝑐𝜂
𝑒 𝑓

2𝜋

∫ ∞

−∞

∫ 𝑇dr

0
𝛀1(𝒌 + 𝑒𝑨(𝑡)/ℏ) ·

[
𝑒

ℏ
𝐸 𝑨̂(𝑡)𝑑𝑡𝑑𝑘𝑧

]
𝑔1(𝒌, 𝑡), (D.19)

where 𝐸 = |𝑬 (𝑡) | and 𝑨̂ = 𝑨(𝑡)/|𝑨(𝑡) |. We identify

𝛀1(𝒌 + 𝑒𝑨(𝑡)/ℏ) · (𝑒/ℏ)𝐸 𝑨̂(𝑡)𝑑𝑡𝑑𝑘𝑧 (D.20)

[see Figure 2(a) in the main text] as the flux of Berry curvature through an in-
finitesimal surface area element for a cylinder S0(𝒌⊥) of radius 𝑒𝐴/ℏ oriented
along the 𝑧 axis and with center located at 𝒌⊥ = (𝑘𝑥 , 𝑘𝑦). Next, we note that
𝑔1(𝒌, 𝑡) ≈ 𝜃 (𝑘𝐹 − |𝒌 |) for 𝑘𝐹 ≫ 𝑒𝐴/ℏ. Thus I(𝒌⊥) is given by the total Berry
flux through the open surface (or “ribbon”) defined by the segment of S0(𝒌⊥) with
|𝑘𝑧 | <

√︃
𝑘2
𝐹
− |𝒌⊥ |2:

I(𝒌⊥) = 𝑐𝜂
𝑒 𝑓

2𝜋

∫
S0 (𝒌⊥)

𝛀1 · 𝑑𝑺. (D.21)

To compute this, we consider the closed surface S(𝒌⊥) formed by closing the
ends of S0(𝒌) by adding the disk-shaped “caps” S𝑡 (𝒌⊥), consisting of points 𝒌′ =

(𝑘𝑥 , 𝑘𝑦,±
√︃
𝑘2
𝐹
− |𝒌⊥ |2), see Figure D.2 for an illustration. The surface integral

over S0(𝒌⊥) is given by the surface integral over S(𝒌⊥) minus the oriented surface
integral over S𝑡 (𝒌⊥):

I(𝒌⊥) = 𝑐𝜂
𝑒 𝑓

2𝜋

(∫
S(𝒌⊥)

𝛀1 · 𝑑𝑺 −
∫
S𝑡 (𝒌⊥)

𝛀1 · 𝑑𝑺
)
. (D.22)
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The first integral evaluates to 𝑗t𝑜𝑝 following the analysis presented before Eq. (8.1)
in the main text. To evaluate the second integral, we recall that 𝛀1(𝒌) = 𝜉𝒌/|𝒌 |3.
When 𝑘𝐹 ≫ 2𝑒𝐴/ℏ, we can effectively set 𝑘𝑧 =

√︃
𝑘2
𝐹
− |𝒌⊥ |2 on the surface

S𝑡 (𝒌⊥), implying that the Berry flux density through S𝑡 (𝒌⊥) is uniform and given
by 𝜉

√︃
𝑘2
𝐹
− |𝒌 |2/𝑘3

𝐹
. Noting that S𝑡 (𝒌⊥) has area 2𝜋(𝑒𝐴/ℏ)2, this leads us to∫
S𝑡 (𝒌⊥)

𝛀1(𝒌) · 𝑑𝑺 ≈ 2𝜋𝜉
(
𝑒𝐴

ℏ

)2
√︃
𝑘2
𝐹
− |𝒌 |2

𝑘3
𝐹

. (D.23)

Using Eq. (D.17) and Eq. (D.22) to compute the total current produced all Fermionic
chains in the conduction band, we find that

𝑗 𝑧1,𝜂 = 𝑐𝜂𝜉
2
3
𝑒 𝑓

4𝜋

(
𝑒𝐴

ℏ

)2
f𝑜𝑟 𝑘𝐹 ≫ 2𝑒𝐴/ℏ. (D.24)

Photocurrent in the 𝑥-𝑦 plane for 𝑘𝐹 ≪ 𝑒𝐴/ℏ
We next calculate the (oscillating) photocurrent in the 𝑥-𝑦 plane induced by the
circularly polarized laser. We focus on the low temperature regime 𝑇 ≪ 𝜇/𝑘𝐵
and for small Fermi momenta 𝑘𝐹 ≪ 𝑒𝐴/ℏ. This current gives rise to the plasma
resonances described in the main text [see Eq. (8.8)]. For concreteness, we set
𝑡 = 0, noting that the results for later times are related to this case through trivial
rotation. Using the semiclassical equations in Eqs. (D.2) and (D.3), we find that the
total current is given by

𝒋𝜂 (𝑡) = 𝑒
∑︁
𝜈

∫
𝑑3𝒌

(2𝜋)3


∇𝒌

ℏ
𝜀𝒌𝜈 (𝑡) +

{
𝑒𝛀𝜈

(
𝒌 + 𝑒

ℏ
𝑨(0)

)
× 𝑬 (0)

ℏ

}⊥ 𝑔𝜈 (𝒌, 𝑡),
(D.25)

To evaluate the in-plane component of 𝒋𝜂 (𝑡), we first note that the anomalous
velocity term does not contribute to the in-plane photocurrent for untilted Weyl
nodes, because the in-plane component of the anomalous velocity reverses direction
upon inversion along the 𝑘𝑧 axis (𝑘𝑧 → −𝑘𝑧), and the Fermi volume (and hence
also 𝑔𝜈 (𝒌, 𝑡)) is symmetric upon the same transformation. We also note that the
𝜈 = 0 band does not contribute, because 𝑔0(𝒌, 𝑡) = 1 and ∇𝒌𝜀𝒌0(0) is odd under
momentum inversion about the Weyl node (𝒌 + 𝑒𝑨(0)/ℏ → −𝒌 + 𝑒𝑨(0)/ℏ) and the
Fermi volume is also symmetric about the same transformation. Thus,

𝑗
𝜂
𝑥,𝑦 (𝑡) = 𝑒

∫
𝑑3𝒌

(2𝜋)3∇𝑘𝑥 ,𝑘𝑦𝜀𝒌1(0)𝑔1(𝒌, 𝑡). (D.26)

We next decompose the in-plane photocurrent into its components 𝑗𝜂
𝑃

and 𝑗𝜂
𝑁

parallel
and normal to the direction of the instantaneous electric field, 𝒆̂(𝑡) ≡ 𝑬 (𝑡)/𝐸 ,
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respectively, such that

𝒋𝜂 (𝑡) = 𝑗
𝜂
𝑧 (𝑡)𝑧 + 𝑗𝜂𝑃 𝒆̂(𝑡) + 𝑗

𝜂

𝑁
𝑧 × 𝒆̂(𝑡). (D.27)

The combination of rotation and time translation symmetry of the problem implies
that 𝑗𝜂𝑧 , 𝑗

𝜂

𝑁
, and 𝑗𝜂

𝑃
are all time-independent in the steady-state. We moreover identify

𝑗
𝜂

𝑁
= 𝑐𝜂 𝑗𝑥 (0), 𝑗𝜂𝑃 = 𝑐𝜂 𝑗𝑦 (0). Also using the expression for the energies 𝜀𝒌1(𝑡), we

find

𝑗
𝜂

𝑁
= 𝑐𝜂𝑒𝑣𝐹

∫
𝑑3𝒌

(2𝜋)3
𝑘𝑥 − 𝑒𝐴/ℏ√︃

[𝑘𝑥 + 𝑒𝐴/ℏ]2 + 𝑘2
𝑦 + 𝑘2

𝑧

𝑔1(𝒌, 0), (D.28)

𝑗
𝜂

𝑃
= 𝑐𝜂𝑒𝑣𝐹

∫
𝑑3𝒌

(2𝜋)3
𝑘𝑦√︃

[𝑘𝑥 + 𝑒𝐴/ℏ]2 + 𝑘2
𝑦 + 𝑘2

𝑧

𝑔1(𝒌, 0). (D.29)

To evaluate the above, we need to find an approximate expression for the occupation
function 𝑔1(𝒌, 𝑡) = 𝑇d𝑟

−1
∫ 𝑇dr

0 𝑑𝑡′ 𝑓 e𝑞
1 (𝒌, 𝑡′) [See Eq. (D.6)]. We transform into the

cylindrical coordinates 𝒌 = (𝑘⊥ cos 𝜑, 𝑘⊥ sin 𝜑, 𝑘𝑧) and first find an approximate
expression for the zero-temperature instantaneous equilibrium occupation function
𝑓

eq
1 (𝒌, 𝑡) = 𝜃 (𝑘𝐹 − |𝒌 + 𝑒𝑨(𝑡)/ℏ|), where 𝜃 is the Heaviside step function. In the

regime 𝑘𝐹 ≪ 𝑒𝐴/ℏ, it can be approximated by

𝑓
eq
1 (𝒌, 𝑡) ≈ 𝜃 (min

𝑛∈Z
|𝜑−2𝜋 𝑓 𝑡+2𝜋𝑛|−𝛿𝜑(𝑘⊥, 𝑘𝑧))𝜃 (𝑘2

𝐹−𝑘2
𝑧−(𝑘⊥−𝑒𝐴/ℏ)2), (D.30)

where 𝛿𝜑(𝑘⊥, 𝑘𝑧) measures the azimuthal angle taken up by the Fermi volume at
fixed 𝑘⊥ and 𝑘𝑧 [see Figure D.3(a)]. The second step function in Eq. (D.30) requires
that the in-plane momentum magnitude 𝑘⊥ of occupied states lies between the two
dashed blue circles in Figure D.3(a), while the first step function in Eq. (D.30)
requires that the azimuthal angle 𝜑 of the in-plane momentum lies between the two
angles indicated by green dashed lines in Figure D.3(a). The angle between the
two green dashed lines can be estimated by 𝛿𝜑(𝑘⊥, 𝑘𝑧) = 𝜑+(𝑘⊥, 𝑘𝑧) − 𝜑−(𝑘⊥, 𝑘𝑧),
where 𝜑±(𝑘⊥, 𝑘𝑧) are defined via the relation

ℏ𝑣𝐹 | (𝑘⊥ cos[𝜑±(𝑘⊥, 𝑘𝑧)] − 𝑒𝐴/ℏ, 𝑘⊥ sin[𝜑±(𝑘⊥, 𝑘𝑧)], 𝑘𝑧) | = ℏ𝑣𝐹𝑘𝐹 , (D.31)

which parameterizes the boundary of the Fermi volume. Expanding cos[𝜑±(𝑘⊥, 𝑘𝑧)] ≈
1 − [𝜑±(𝑘⊥, 𝑘𝑧)]2/2 in the limit 𝑘𝐹 ≪ 𝑒𝐴/ℏ, solving for 𝜑±(𝑘⊥, 𝑘𝑧) yields

𝛿𝜑(𝑘⊥, 𝑘𝑧) ≈ (ℏ/𝑒𝐴)
√︃
𝑘2
𝐹
− 𝑘2

𝑧 − (𝑘⊥ − 𝑒𝐴/ℏ)2. (D.32)
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(b)(a)

Figure D.3: (a) Illustration of the characteristic in-plane momentum dynamics
relevant for analyzing the photocurrent. Solid black circle indicates the edge of
the instantaneous equilibrium Fermi volume of 𝐻 (𝒌, 𝑡) as a function of in-plane
momentum, 𝒌⊥ = (𝑘𝑥 , 𝑘𝑦), for an arbitrary, fixed value of 𝑘𝑧. Black dot indicates
the instantaneous location of the Weyl node, which is located at an azimuthal angle
of 2𝜋 𝑓 𝑡 from the 𝑘𝑥 axis (red arrow). We approximate the instantaneous equilibrium
occupation 𝑓 eq

1 (𝒌, 𝑡) [Eq. (D.30)] to be given by 1 if 𝒌⊥ is located within the annulus
segment (shaded blue) and between the two angles indicated by green lines, and
0 otherwise. (For the choice of 𝒌⊥ sketched in the figure, 𝒌⊥ is positioned such
that 𝑓 eq

1 (𝒌, 𝑡) = 0.) Such an approximation is accurate in the limit where the Fermi
momentum 𝑘𝐹 is much less than the vector potential 𝑒𝐴/ℏ. (b) Occupation function
𝑔1(𝒌, 𝑡) as a function of the in-plane momentum magnitude 𝑘⊥ =

√︃
𝑘2
𝑥 + 𝑘2

𝑦 in the
slow relaxation time limit 𝜏 𝑓 ≫ 1, plotted for several values of the 𝑧-momentum
𝑘𝑧.

The steady state occupation function [see Eq. (D.6)] in the 𝜏 𝑓 ≫ 1 limit is the
time-average of Eq. (D.30), which is time-independent and given by

𝑔1(𝒌, 𝑡) ≈
1
𝜋

(
ℏ

𝑒𝐴

) √︃
𝑘2
𝐹
− 𝑘2

𝑧 − (𝑘⊥ − 𝑒𝐴/ℏ)2𝜃 (𝑘2
𝐹 − 𝑘2

𝑧 − (𝑘⊥ − 𝑒𝐴/ℏ)2). (D.33)

We plot 𝑔1(𝒌, 𝑡) as a function of 𝑘⊥ for several values of 𝑘𝑧 in Figure D.3(b).
We finally exploit the rotational symmetry of 𝑔1(𝒌, 𝑡) to express it in terms of the
dimensionless cylindrical coordinates 𝑥⊥, 𝑥𝑧, 𝜙, defined via

(𝑘𝑥 , 𝑘𝑦, 𝑘𝑧) = 𝑒𝐴/ℏ(𝑥⊥ cos 𝜙, 𝑥⊥ sin 𝜙, 𝑥𝑧), (D.34)

giving
G(𝑥⊥, 𝑥𝑧, 𝜙) ≡ 𝑔1 [𝑒𝐴/ℏ(𝑥⊥ cos 𝜙, 𝑥⊥ sin 𝜙, 𝑥𝑧), 0] . (D.35)

In terms of this function, the in-plane components of the current read, for 𝛼 = 𝑁, 𝑃,
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𝑗
𝜂
𝛼 = 𝑐𝜂

𝑒𝑣𝐹

(2𝜋)3

(
𝑒𝐴

ℏ

)3 ∫ ∞

0
𝑑𝑥⊥ 𝑥⊥

∫ 2𝜋

0
𝑑𝜙

∫ ∞

−∞
𝑑𝑥𝑧

ℎ𝛼 (𝜙)√︃
𝑥2
⊥ + 𝑥2

𝑧 + 1 − 2𝑥⊥ cos 𝜙
G(𝑥⊥, 𝑥𝑧, 𝜙),

(D.36)
where ℎ𝑁 (𝜙) = 1 − 𝑥⊥ cos 𝜙 and ℎ𝑃 (𝜙) = −𝑥⊥ sin 𝜙. Because G(𝑥⊥, 𝑥𝑧, 𝜙) is only
nonzero when |𝑥𝑧 | ≤ 𝑘𝐹/(𝑒𝐴/ℏ) and we assume 𝑘𝐹 ≪ 𝑒𝐴/ℏ, we have 𝑥𝑧 ≪ 1. As
a result, we can approximate

𝑗
𝜂
𝛼 ≈ 𝑐𝜂

𝑒𝑣𝐹

(2𝜋)3

(
𝑒𝐴

ℏ

)3 ∫ ∞

0
𝑑𝑥⊥ 𝑥⊥

∫ 2𝜋

0
𝑑𝜙

ℎ𝛼 (𝜙)√︃
𝑥2
⊥ + 1 − 2𝑥⊥ cos 𝜙

∫ ∞

−∞
𝑑𝑥𝑧 G(𝑥⊥, 𝑥𝑧, 𝜙).

(D.37)
Converting the expression for 𝑔1(𝒌, 0) in Eq. (D.33) to the cylindrical coordinates,
we find

G(𝑥⊥, 𝑥𝑧, 𝜙) ≈
1
𝜋

√︃
𝑥2
𝐹
− 𝑥2

𝑧 − (𝑥⊥ − 1)2𝜃 (𝑥2
𝐹 − 𝑥2

𝑧 − (𝑥⊥ − 1)2). (D.38)

We next perform the integral over 𝑥𝑧, finding∫ √
𝑥2
𝐹
−(𝑥⊥−1)2

−
√
𝑥2
𝐹
−(𝑥⊥−1)2

𝑑𝑥𝑧 G(𝑥⊥, 𝑥𝑧, 𝜙) =
1
2
[𝑥2
𝐹 − (𝑥⊥ − 1)2] . (D.39)

Furthermore, in the 𝑥𝐹 ≪ 1 limit, we approximate

𝑗
𝜂
𝛼 ≈ 𝑐𝜂

𝑒𝑣𝐹

(2𝜋)3
1

2
√

2

(
𝑒𝐴

ℏ

)3
(∫ 1+𝑥𝐹

1−𝑥𝐹
𝑑𝑥 𝑥 [𝑥2

𝐹 − (𝑥⊥ − 1)2]
) ∫ 2𝜋

0
𝑑𝜙

ℎ𝛼 (𝜙)√︁
1 − cos 𝜙

.

(D.40)
Integration over 𝑥 and 𝜙 yields

𝑗
𝜂

𝑃
= 0 a𝑛𝑑 𝑗

𝜂

𝑁
≈ 𝑐𝜂

𝑒𝑣𝐹

3𝜋3 𝑥
3
𝐹

(
𝑒𝐴

ℏ

)3
f𝑜𝑟 𝑘𝐹 ≪ 𝑒𝐴/ℏ (D.41)

for the components parallel and perpendicular to the electric field 𝑬 (𝑡), respectively,
where we have used that ℎ𝑁 (𝜙) ≈ 1 − cos 𝜙 throughout the integration range and∫ 2𝜋

0 𝑑𝜙
√︁

1 − cos 𝜙 = 4
√

2.

D.3 Consequences of Finite tilt
In this section, we finally consider the photocurrent produced by Weyl node with
finite tilt. We focus on an isolated Weyl node with anisotropy along the 𝑧-direction,
described by the Hamiltonian

𝐻 (𝒌) = ℏ𝑣𝐹 𝒌 · 𝝈 + ℏ𝑉𝑧𝜎𝑧 . (D.42)
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In what follows, we use the unitless tilt parameter 𝜒 ≡ 𝑉𝑧/𝑣𝐹 and focus on the
slow relaxation limit 𝜏 𝑓 ≫ 1 at temperature 𝑇 ≪ 𝜇/𝑘𝐵, 𝑣𝐹𝑒𝐴/𝑘𝐵. The anisotropy
gives rise to a laser helicity-independent photocurrent in the 𝑧-direction, which
we analyze semiclassically in Section D.3. In Section D.3, we show that the
anistropy contributes an anomalous velocity component to the oscillating current
in the plane of the electric field, giving rise to a laser helicity-dependent plasmon
resonance frequency. We semiclassically estimate the additional topological current
perpendicular to the electric field, denoted 𝑗𝐻

𝑁
(𝜒), and the modifications to 𝑗

𝜂

𝑁,𝐺

and 𝑗
𝜂

𝑃,𝐺
in leading order of 𝜒. These calculations allow us to calculate the total

photocurrent in the presence of a tilt, given by

𝒋𝜂 (𝑡) = 𝑗
𝜂
𝑧 (𝑡)𝑧 + 𝑗𝜂𝑃,𝐺 𝒆̂(𝑡) + [ 𝑗𝜂

𝑁,𝐺
+ 𝑗𝐻𝑁 (𝜒)]𝑧 × 𝒆̂(𝑡). (D.43)

Photocurrent along the 𝑧-axis in the weak field limit 𝑒𝐴/ℏ ≪ 𝑘𝐹

When the Weyl node exhibits a tilt 𝜒 ≠ 0 along the 𝑧-axis, the topological photocur-
rent is insensitive to weak anisotropy 𝜒 ≪ 1, as demonstrated numerically in Figure
1(b) in the main text. However, the anisotropy allows for the group velocity term in
the semiclassical equations of motion [see Eq. (4)] to contribute a nonzero, laser
helicity-independent photocurrent [see Figure 3(d) in the main text], given by

𝑗 𝑧
𝐺
=

1
𝑇dr

∫ 𝑇dr

0
𝑑𝑡

∫
𝑑3𝒌

(2𝜋)3

[
1
ℏ

𝜕𝜀𝒌1(𝑡)
𝜕𝑘𝑧

]
𝑔1(𝒌, 𝑡). (D.44)

In the slow relaxation limit 𝜏 𝑓 ≫ 1, we can rewrite

𝑔1(𝒌, 𝑡) ≈
1
𝑇dr

∫ 𝑇dr

0
𝑑𝑡′ 𝑓 eq

1 (𝒌, 𝑡′) (D.45)

[see Eq. (D.6)] and express the instantaneous equilibrium occupation function in
terms of the instantaneous eigenenergies

𝑓
eq
1 (𝒌, 𝑡) = 𝜃 (𝜀𝒌1(𝑡) − 𝜇). (D.46)

To provide intuition for the emergence of the helicity-independent photocurrent,
we note that the tilt produces an asymmetric 𝑓 eq

1 (𝒌, 𝑡) that preferentially populates
electronic states with 𝑧-momentum 𝑘𝑧 antiparallel to the direction of anisotropy, i.e.,
sign(𝑘𝑧) = −sign(𝜒). The steady state occupation 𝑔1(𝒌, 𝑡), which time-averages the
instantaneous electronic occupation, therefore acquires larger values for electronic
states whose 𝑧-momentum has sign −sign(𝜒), leading to a net group velocity in the
same direction.
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To estimate the helicity-independent photocurrent, we rewrite Eq. (D.44) as

𝑗 𝑧
𝐺
= 𝑒 𝑓

∫
𝑑𝑘𝑥𝑑𝑘𝑦

(2𝜋)2

∫ 𝑇dr

0
𝑑𝑡′J𝑧 (𝑘𝑥 , 𝑘𝑦, 𝑡, 𝑡′), (D.47)

where
J𝑧 (𝑘𝑥 , 𝑘𝑦, 𝑡, 𝑡′) ≡

∫
𝑑𝑘𝑧

2𝜋
1
ℏ

𝜕𝜀𝒌1(𝑡)
𝜕𝑘𝑧

𝜃 (𝜀𝒌1(𝑡′) − 𝜇). (D.48)

As discussed previously, the slow relaxation time 𝜏 gives rise to a lagging of the
Fermi volume along the trajectory of the Weyl node traced out by the vector potential.
This is captured in Eq. (D.47) because the current at time 𝑡 is given by the average
of the occupation-weighted group velocity J𝑧 (𝑘𝑥 , 𝑘𝑦, 𝑡, 𝑡′) set by the instantaneous
thermal equilibrium distribution at all other times 𝑡′. Crucially, J𝑧 (𝑘𝑥 , 𝑘𝑦, 𝑡, 𝑡′) is
nonzero with sign given by sign(𝜒) only when 𝜒 ≠ 0 and 𝑡 ≠ 𝑡′, as illustrated in
Figure D.4(a), which is the origin of the helicity-independent photocurrent. When
𝜒 < 0, the electronic momenta with nonzero instantaneous equilibrium occupation
𝜃 (𝜀𝒌1(𝑡′) − 𝜇) (thick orange line) at previous time 𝑡′ < 𝑡 preferentially populates
electronic states with negative 𝑧-group velocity 𝜕𝜀𝒌1(𝑡)/𝜕𝑘𝑧 < 0 at time 𝑡, allowing
the integral in Eq. (D.48) to attain a nonzero negative value. Eq. (D.48) can be
solved by integration by parts, yielding

J𝑧 (𝑘𝑥 , 𝑘𝑦, 𝑡, 𝑡′) =
1

2𝜋ℏ

[
𝜀𝒌1(𝑡) |𝑘𝑧=𝑘+𝑧 (𝑡′) − 𝜀𝒌1(𝑡) |𝑘𝑧=𝑘−𝑧 (𝑡′)

]
, (D.49)

where 𝜀𝒌1(𝑡′) |𝑘𝑧=𝑘±𝑧 (𝑡′) = 𝜇. To compute the values of 𝑘±𝑧 (𝑡′), we consider the
instantaneous eigenenergy at time 𝑡′, given by

𝜀𝒌1(𝑡′) = ℏ𝑣𝐹 |𝒌 + 𝑒𝑨(𝑡′)/ℏ| + ℏ𝑣𝐹 𝜒𝑘𝑧 . (D.50)

Defining 𝑘𝐹 ≡ 𝜇/(ℏ𝑣𝐹) and solving for the instantaneous Fermi surface 𝜀𝒌1(𝑡′) =
ℏ𝑣𝐹𝑘𝐹 gives rise to two roots

𝑘±𝑧 (𝑡′) ≡
𝜒𝑘𝐹 ∓

√︃
(𝜒2 − 1) [ 𝒌̃⊥(𝑡′)]2 + 𝑘2

𝐹

𝜒2 − 1
, (D.51)

where
𝒌̃⊥(𝑡′) ≡ (𝑘𝑥 + 𝑒𝐴𝑥 (𝑡′)/ℏ, 𝑘𝑦 + 𝑒𝐴𝑦 (𝑡′)/ℏ) (D.52)

denotes the in-plane momentum shifted by the drive-induced vector potential via
minimal coupling. Therefore, using Eq. (D.49), we find that

J𝑧 (𝑘𝑥 , 𝑘𝑦, 𝑡, 𝑡′) =
𝑣𝐹

𝜋

√︃
−[ 𝒌̃⊥(𝑡)]2 + 𝑘2

𝐹

×
©­­­«1 − 𝑘𝐹√︃

−[ 𝒌̃⊥(𝑡)]2 + [ 𝒌̃⊥(𝑡′)]2 + 𝑘2
𝐹

ª®®®¬ 𝜃 (𝑘
2
𝐹 − [ 𝒌̃⊥(𝑡)]2)𝜒 +𝑂 (𝜒3).

(D.53)
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To make further progress, we take the limit of weak fields, given by 𝑒𝐴/ℏ ≪ 𝑘𝐹 , in
which case we can take the limit | [𝒌⊥(𝑡′)]2 − [𝒌⊥(𝑡)]2 | ≪ 𝑘𝐹 and obtain

J𝑧 (𝑘𝑥 , 𝑘𝑦, 𝑡, 𝑡′) ≈
𝑣𝐹

2𝜋

√︃
−[ 𝒌̃⊥(𝑡)]2 + 𝑘2

𝐹

[ 𝒌̃⊥(𝑡′)]2 − [ 𝒌̃⊥(𝑡)]2

𝑘2
𝐹

𝜃 (𝑘2
𝐹 − | 𝒌̃⊥(𝑡) |2)𝜒.

(D.54)
Note that after integration over 𝑡′, the photocurrent 𝑗 𝑧

𝐺
is time-independent. There-

fore, without loss of generality, we set 𝑡 = 0. To estimate |𝒌⊥(𝑡) | and |𝒌⊥(𝑡′) |, we
transform to the polar coordinates 𝑘𝑥 = 𝑘⊥ cos 𝜑 and 𝑘𝑦 = 𝑘⊥ sin 𝜑, where

[𝒌⊥(𝑡′)]2 − [𝒌⊥(𝑡)]2 =
𝑒𝐴

ℏ

[
𝑒𝐴

ℏ
− 2

𝑒𝐴

ℏ
cos

(
2𝜋 𝑓 𝑡′

)
+ 2𝑘⊥ sin

(
𝜑 + 2𝜋 𝑓 𝑡′

) ]
.

(D.55)
Furthermore, in the limit 𝑒𝐴/ℏ ≪ 𝑘𝐹 , 𝑘2

𝐹
− [𝒌⊥(𝑡)]2 ≈ 𝑘2

𝐹
− 𝑘2

⊥. Using these
approximations,

𝑗 𝑧
𝐺
=

𝑒 𝑓

(2𝜋)2

∫ 𝑘𝐹

0
𝑑𝑘⊥ 𝑘⊥

∫ 𝑇dr

0
𝑑𝑡′

∫ 2𝜋

0
𝑑𝜑

𝑣𝐹

2𝜋𝑘2
𝐹

√︃
𝑘2
𝐹
− 𝑘2

⊥

(
𝑒𝐴

ℏ

)2

×
[
1 − 2 cos

(
2𝜋 𝑓 𝑡′

)
+ 2

𝑘⊥
𝑒𝐴/ℏ sin

(
𝜑 + 2𝜋 𝑓 𝑡′

) ]
.

(D.56)

Upon integration over 𝜑, 𝑘 , and 𝑡′, we find that

𝑗 𝑧
𝐺
=

𝑒𝜇

12𝜋2ℏ

(
𝑒𝐴

ℏ

)2
𝜒 f𝑜𝑟 𝑘𝐹 ≫ 𝑒𝐴/ℏ. (D.57)

Photocurrent in the 𝑥-𝑦 plane
We finally discuss how band anisotropy modifies the photocurrent induced by the
circularly polarized laser in the 𝑥-𝑦 plane. In Section D.3, we discuss the effect of
weak band anisotropy (𝜒 ≪ 1) on the occupation function. In Section D.3, we use
the occupation function to understand the emergence of an additional topological
current 𝑗𝐻

𝑁
(𝜒) in the direction perpendicular to the laser electric field, produced by

the anomalous velocity of electrons. This mechanism gives rise to the chiral plas-
mons discussed in the main text [see Figure 8.1(e)]. In Section D.3, we demonstrate
that the nonzero Weyl node tilt does not modify the group velocity contribution to the
in-plane current to first order in 𝜒. As in Section D.2, we analyze the photocurrent
in the small Fermi volume limit 𝑘𝐹 ≪ 𝑒𝐴/ℏ.

Occupation function for 𝜒 ≪ 1 and 𝑘𝐹 ≪ 𝑒𝐴/ℏ

The tilt along the 𝑧-axis reshapes the instantaneous equilibrium occupation function
𝑓

eq
1 (𝒌, 𝑡) in the conduction band of the Weyl node, which in turn modifies the steady
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Figure D.4: Origin of the laser helicity-independent photocurrent in a tilted WN.
In the limit 𝜏 𝑓 ≫ 1, the steady state occupation of bands at any given time 𝑡 is the
time average of the instantaneous equilibrium occupation function 𝜃 (𝜀𝒌1(𝑡′) − 𝜇) at
all other times 𝑡′. The black solid and dashed gray curves represent the electronic
bands at representative times 𝑡 and 𝑡′, respectively. The instantaneous equilibrium
distribution at time 𝑡′ (orange) preferentially fills states with 𝜕𝜀𝒌1(𝑡)/𝜕𝑘𝑧 < 0,
producing a net helicity-independent current.

state ocupation function 𝑔1(𝒌, 𝑡). To recalculate 𝑔1(𝒌, 𝑡), we revisit the derivation
in Section D.2, using the approximate expression for the occupation function in the
slow relaxation limit 𝜏 𝑓 ≫ 1 given by

𝑔1(𝒌, 𝑡) ≈
1
𝑇dr

∫ 𝑇dr

0
𝑑𝑢 𝑓

eq
1 (𝒌, 𝑢). (D.58)

In the presence of a tilt, we again have

𝑓
eq
1 (𝒌, 𝑡) ≈ 𝜃 (min

𝑛∈Z
|𝜑−2𝜋 𝑓 𝑡+2𝜋𝑛|−𝛿𝜑𝜒 (𝑘⊥, 𝑘𝑧))𝜃 (𝑘2

𝐹−𝑘2
𝑧−(𝑘⊥−𝑒𝐴/ℏ)2) (D.59)

[see Eq. (D.30)], but with a modified 𝛿𝜑𝜒 (𝑘⊥, 𝑘𝑧) defined by 𝛿𝜑𝜒 (𝑘⊥, 𝑘𝑧) =

𝜑𝜒,+(𝑘⊥, 𝑘𝑧) − 𝜑𝜒,−(𝑘⊥, 𝑘𝑧), where

ℏ𝑣𝐹 | (𝑘⊥ cos[𝜑𝜒,±(𝑘⊥, 𝑘𝑧)] −𝑒𝐴/ℏ, 𝑘⊥ sin[𝜑𝜒,±(𝑘⊥, 𝑘𝑧)] | +ℏ𝜒𝑘𝑧 = ℏ𝑣𝐹𝑘𝐹 (D.60)

parameterizes the edge of the Fermi volume [see Eq. (D.31)] which may be rewritten
in the form

(1 + 𝜒2)𝑘2
𝐹 = 𝑘2

⊥ − 2
𝑒𝐴

ℏ
𝑘⊥ cos[𝜑𝜒,±(𝑘⊥, 𝑘𝑧)] +

𝑒2𝐴2

ℏ

+ (
√︁

1 − 𝜒2𝑘𝑧 + 𝜒𝑘𝐹)2 + 2(1 −
√︁

1 − 𝜒2)𝜒𝑘𝐹𝑘𝑧 .
(D.61)

Expanding cos[𝜑𝜒,±(𝑘⊥, 𝑘𝑧)] ≈ 1 − [𝜑𝜒,±(𝑘⊥, 𝑘𝑧)]2/2 in the limit 𝑘𝐹 ≪ 𝑒𝐴/ℏ and
evaluating 𝛿𝜑𝜒 (𝑘⊥, 𝑘𝑧) = 𝜑𝜒,+(𝑘⊥, 𝑘𝑧) − 𝜑𝜒,−(𝑘⊥, 𝑘𝑧), we find that

[𝛿𝜑𝜒 (𝑘⊥, 𝑘𝑧)]2 ≈ (ℏ/𝑒𝐴)2 [𝑘2
𝐹 − (𝑘𝑧 + 𝜒𝑘𝐹)2 − (𝑘⊥ − 𝑒𝐴/ℏ)2], (D.62)
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where we have discarded terms of 𝑂 (𝜒2) or higher.

Using Eq. (D.58), we time-average the equilibrium occupation function, Eq. (D.59),
to find

𝑔1(𝒌, 𝑡) ≈
1
𝜋

(
ℏ

𝑒𝐴

) √︃
𝑘2
𝐹
− (𝑘𝑧 + 𝜒𝑘𝐹)2 − (𝑘⊥ − 𝑒𝐴/ℏ)2𝜃 (𝑘2

𝐹−(𝑘𝑧+𝜒𝑘𝐹)2−(𝑘⊥−𝑒𝐴/ℏ)2).
(D.63)

Note that 𝑔1(𝒌, 𝑡) is time-independent. We see that the primary effect of the tilt in
the limit of weak anisotropy 𝜒 ≪ 1 is the shift of the Fermi volume along the 𝑘𝑧
axis by 𝜒𝑘𝐹 .

Topological current 𝑗𝐻
𝑁
(𝜒) for 𝜒 ≪ 1 and 𝑘𝐹 ≪ 𝑒𝐴/ℏ

Due to the asymmetry of the electronic occupation function along the 𝑘𝑧-axis, and
the combination of rotation and time-translation symmetry of the problem, the
anomalous velocity in Eq. (D.25) contributes a photocurrent given by

𝒋𝑎⊥ = 𝑒

∫
𝑑3𝒌

(2𝜋)3

[
𝑒𝛀1

(
𝒌 + 𝑒

ℏ
𝑨(0)

)
· 𝑧

] [
𝑧 × 𝑬 (0)

ℏ

]
𝑔1(𝒌, 0). (D.64)

The current flows perpendicular to 𝑬 (0) and is given by 𝒋𝑎⊥ = 𝑗𝐻
𝑁
(𝜒)𝑧 × 𝑬 (0),

where

𝑗𝐻𝑁 (𝜒) = 𝜉
𝑒2

2ℏ
𝐸

∫
𝑑3𝒌

(2𝜋)3
𝑘𝑧

{[𝑘𝑥 + 𝑒𝐴/ℏ]2 + 𝑘2
𝑦 + 𝑘2

𝑧 }3/2
𝑔1(𝒌, 0). (D.65)

To evaluate the integral, we again transform to the dimensionless coordinates
given by 𝑥𝐹 = 𝑘𝐹/(𝑒𝐴/ℏ), 𝑥⊥ = 𝑘⊥/(𝑒𝐴/ℏ), and 𝑥𝑧 = 𝑘𝑧/(𝑒𝐴/ℏ), such that
G(𝑥⊥, 𝑥𝑧, 𝜙) ≡ 𝑔1 [𝑒𝐴/ℏ(𝑥⊥ cos 𝜙, 𝑥⊥ sin 𝜙, 𝑥𝑧), 0]. This leads to

𝑗𝐻𝑁 (𝜒) = 𝜉
𝑒 𝑓

8𝜋2

(
𝑒𝐴

ℏ

)2 ∫ ∞

0
𝑑𝑥⊥ 𝑥⊥

∫ 2𝜋

0
𝑑𝜙

∫ ∞

−∞
𝑑𝑥𝑧

𝑥𝑧

(𝑥2
⊥ + 1 − 2𝑥⊥ cos 𝜙 + 𝑥2

𝑧 )3/2
G(𝑥⊥, 𝑥𝑧, 𝜙).

(D.66)
Next we caluclate G(𝑥⊥, 𝑥𝑧, 𝜙) using Eq. (D.63):

G(𝑥⊥, 𝑥𝑧, 𝜙) ≈
1
𝜋

√︃
𝑥2
𝐹
− (𝑥𝑧 + 𝛿)2 − (𝑥⊥ − 1)2𝜃 (𝑥2

𝐹− (𝑥𝑧+𝛿)2− (𝑥⊥−1)2), (D.67)

where 𝛿 ≡ 𝜒𝑥𝐹 . This leads to

𝑗𝐻𝑁 (𝜒) ≈ 𝜉
𝑒 𝑓

8𝜋3

(
𝑒𝐴

ℏ

)2 ∫ 𝑥𝐹−𝛿

−𝑥𝐹−𝛿
𝑑𝑥𝑧

∫ 1+
√
𝑥2
𝐹
−(𝑥𝑧+𝛿)2

1−
√
𝑥2
𝐹
−(𝑥𝑧+𝛿)2

𝑑𝑥⊥ 𝑥⊥×

∫ 2𝜋

0
𝑑𝜙

√︃
𝑥2
𝐹
− (𝑥𝑧 + 𝛿)2 − (𝑥⊥ − 1)2

[𝑥2
⊥ + 1 − 2𝑥⊥ cos 𝜙 + 𝑥2

𝑧 ]3/2
𝑥𝑧 .

(D.68)
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We first perform integration over 𝜙 by expanding the integrand around 𝜙 ∼ 𝜋, where
the integrand is largest∫ 2𝜋

0
𝑑𝜙

1
[𝑥2

⊥ + 1 − 2𝑥⊥ cos 𝜙 + 𝑥2
𝑧 ]3/2

≈ 1
𝑥

3/2
⊥

2
𝑥2
𝑧 + 𝛿𝑥2

⊥
, (D.69)

where 𝛿𝑥⊥ ≡ 𝑥⊥ − 1. Therefore,

𝑗𝐻𝑁 (𝜒) ≈ 𝜉
𝑒 𝑓

4𝜋3

(
𝑒𝐴

ℏ

)2 ∫ 𝑥𝐹−𝛿

−𝑥𝐹−𝛿
𝑑𝑥𝑧

∫ √
𝑥2
𝐹
−(𝑥𝑧+𝛿)2

−
√
𝑥2
𝐹
−(𝑥𝑧+𝛿)2

𝑑𝛿𝑥

√︃
𝑥2
𝐹
− (𝑥𝑧 + 𝛿)2 − 𝛿𝑥2

⊥

𝑥2
𝑧 + 𝛿𝑥2

⊥
𝑥𝑧 .

(D.70)
Transforming to the shifted coordinates 𝑥′𝑧 = 𝑥𝑧 + 𝛿, we find

𝑗𝐻𝑁 (𝜒) ≈ 𝜉
𝑒 𝑓

4𝜋3

(
𝑒𝐴

ℏ

)2 ∫ 𝑥𝐹

−𝑥𝐹
𝑑𝑥′𝑧

∫ √
𝑥2
𝐹
−(𝑥′𝑧)2

−
√
𝑥2
𝐹
−(𝑥′𝑧)2

𝑑𝛿𝑥

√︃
𝑥2
𝐹
− (𝑥′𝑧)2 − 𝛿𝑥2

⊥

(𝑥′𝑧 − 𝛿)2 + 𝛿𝑥2
⊥

(𝑥′𝑧 − 𝛿).

(D.71)
We now use the integral identity∫ 𝑎

−𝑎
𝑑𝑥

√
𝑎2 − 𝑥2

𝑏2 + 𝑥2 = 𝜋

[√︂
1 + 𝑎

2

𝑏2 − 1

]
(D.72)

to obtain∫ √
𝑥2
𝐹
−(𝑥′𝑧)2

−
√
𝑥2
𝐹
−(𝑥′𝑧)2

𝑑𝛿𝑥

√︃
𝑥2
𝐹
− (𝑥′𝑧)2 − 𝛿𝑥2

⊥

(𝑥′𝑧 − 𝛿)2 + 𝛿𝑥2
⊥

= 𝜋

√︄
1 +

𝑥2
𝐹
− (𝑥′𝑧)2

(𝑥′𝑧 − 𝛿)2 − 𝜋. (D.73)

Therefore,

𝑗𝐻𝑁 (𝜒) = 𝜉
𝑒 𝑓

4𝜋2

(
𝑒𝐴

ℏ

)2 ∫ 𝑥𝐹

−𝑥𝐹
𝑑𝑥′𝑧

[
sign(𝑥′𝑧 − 𝛿)

√︃
𝑥2
𝐹
− (𝑥′𝑧)2 + (𝑥′𝑧 − 𝛿)2 − (𝑥′𝑧 − 𝛿)

]
.

(D.74)
Finally, upon integrating over 𝑥′𝑧 and expanding in 𝜒, we find

𝑗𝐻𝑁 (𝜒) ≈ −𝜉 𝑒 𝑓
4𝜋2

(
𝑒𝐴

ℏ

)2
𝑥2
𝐹 𝜒 f𝑜𝑟 𝑘𝐹 ≪ 𝑒𝐴/ℏ. (D.75)

Current 𝑗𝜂
𝑁,𝐺

and 𝑗
𝜂

𝑃,𝐺
for 𝜒 ≪ 1 and 𝑘𝐹 ≪ 𝑒𝐴/ℏ

Lastly, we consider the effect of the tilt on the in-plane current components produced
by the group velocity of electrons. The group velocity contribution to the currents
perpendicular and parallel to the electric field 𝑬 (𝑡) are respectively given by

𝑗
𝜂

𝑁,𝐺
= 𝑐𝜂𝑒𝑣𝐹

∫
𝑑3𝒌

(2𝜋)3
𝑘𝑥 − 𝑒𝐴/ℏ√︃

[𝑘𝑥 + 𝑒𝐴/ℏ]2 + 𝑘2
𝑦 + 𝑘2

𝑧

𝑔1(𝒌, 0), (D.76)

𝑗
𝜂

𝑃,𝐺
= 𝑐𝜂𝑒𝑣𝐹

∫
𝑑3𝒌

(2𝜋)3
𝑘𝑦√︃

[𝑘𝑥 + 𝑒𝐴/ℏ]2 + 𝑘2
𝑦 + 𝑘2

𝑧

𝑔1(𝒌, 0), (D.77)
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as predicted by the semiclassical equations of motion [see Section D.2 for details].

Transforming Eq. (D.76) into the dimensionless cylindrical coordinates parameter-
ized by 𝑥⊥, 𝑥𝑧, and 𝜙, we obtain, for 𝛼 = 𝑁, 𝑃,

𝑗
𝜂

𝛼,𝐺
≈ 𝑐𝜂

𝑒𝑣𝐹

(2𝜋)3

(
𝑒𝐴

ℏ

)3 ∫ ∞

0
𝑑𝑥⊥ 𝑥⊥

∫ 2𝜋

0
𝑑𝜙

∫ ∞

−∞
𝑑𝑥𝑧

ℎ𝛼 (𝜙)√︃
𝑥2
⊥ + 1 − 2𝑥⊥ cos 𝜙 + 𝑥2

𝑧

G(𝑥⊥, 𝑥𝑧, 𝜙),

(D.78)
where ℎ𝑁 (𝜙) = 1 − 𝑥⊥ cos 𝜙 and ℎ𝑃 (𝜙) = −𝑥⊥ sin 𝜙. Because G(𝑥⊥, 𝑥𝑧, 𝜙) is only
nonzero when |𝑥𝑧 | ≲ 𝑘𝐹 and we assume 𝑘𝐹 ≪ 𝑒𝐴/ℏ, we have 𝑥𝑧 ≪ 1. As a result,
we can approximate

𝑗
𝜂

𝛼,𝐺
≈ 𝑐𝜂

𝑒𝑣𝐹

(2𝜋)3

(
𝑒𝐴

ℏ

)3 ∫ ∞

0
𝑑𝑥⊥ 𝑥⊥

∫ 2𝜋

0
𝑑𝜙

ℎ𝛼 (𝜙)√︃
𝑥2
⊥ + 1 − 2𝑥⊥ cos 𝜙

∫ ∞

−∞
𝑑𝑥𝑧 G(𝑥⊥, 𝑥𝑧, 𝜙).

(D.79)

We now use the occupation function G(𝑥⊥, 𝑥𝑧, 𝜙) in the presence of a tilt in Eq.
(D.67) to evaluate the integral above. The integral over 𝑥𝑧 reads∫ ∞

−∞
𝑑𝑥𝑧 G(𝑥⊥, 𝑥𝑧, 𝜙) =

∫ √
𝑥2
𝐹
−(𝑥⊥−1)2−𝛿

−
√
𝑥2
𝐹
−(𝑥⊥−1)2−𝛿

𝑑𝑥𝑧
1
𝜋

√︃
𝑥2
𝐹
− (𝑥𝑧 + 𝛿)2 − (𝑥⊥ − 1)2,

(D.80)
which evaluates to∫ √

𝑥2
𝐹
−(𝑥⊥−1)2−𝛿

−
√
𝑥2
𝐹
−(𝑥⊥−1)2−𝛿

𝑑𝑥𝑧
1
𝜋

√︃
𝑥2
𝐹
− (𝑥𝑧 + 𝛿)2 − (𝑥⊥ − 1)2 =

1
2
[𝑥2
𝐹 − (𝑥⊥ − 1)2], (D.81)

which is identical to the result without a tilt, see Eq. (D.39). Thus, to first order
in 𝜒, the group velocity contribution to the in-plane currents 𝑗𝜂

𝑁,𝐺
and 𝑗

𝜂

𝑃,𝐺
are

unmodified relative to the isotropic case, and given by

𝑗
𝜂

𝑃,𝐺
= 0 a𝑛𝑑 𝑗

𝜂

𝑁,𝐺
≈ 𝑐𝜂

𝑒𝑣𝐹

3𝜋3 𝑥
3
𝐹

(
𝑒𝐴

ℏ

)3
f𝑜𝑟 𝑘𝐹 ≪ 𝑒𝐴/ℏ, (D.82)

for the components parallel and perpendicular to the electric field 𝑬 (𝑡), respectively.
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