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ABSTRACT
PART 1
The reflection of an ionizing shock from the end wall of a

shock tube is studied theoretically following the experimental model
of J. Smith. The observed perturbations in the wall pressure history
are found to agree with this theory. To describe the first perturba-
‘tion, a decrease in pressure due to the ionization part in the reflected
shock structure, the flow equations are linearized but the rate equa-
tions are used in nonlinear form. The second perturbation, an
increase in pressure due to the ionization part of the incident shock
structure, is studied using Whitham's theory and assuming equilibri-

um behind the reflected shock.

PART 11

The propagation of sound and shock waves in a two-phase
medium is studied theoretically using the flow equations for each
component. It is shown that the assumption of constant mass ratio
during the sound propagation, used previously in the literature for
the case of bubbles suspended in a liquid, is only valid for low
frequencies. For high frequencies a larger sound speed is obtained,
These two sound speeds give two different Mach numbers. It is
found that When both Mach numbers are larger than one, the shock
structure in a liquid containing bubbles is given by an initial increase
of the pressure, followed by a region in which it oscillates around
its final equilibz;ium value. When the low frequency Mach number

is larger than one, and the high frequency Mach number smaller
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than one, the oscillations disappear and the transition is uniform.
The speed of sound of the mixture is also calculated by

evaluating the scattering by the suspended phase.
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I. THEORETICAL INVESTIGATION OF THE
REFLECTION OF IONIZING SHOCKS

1.1 Introduction

In a series of shock tube éxperiments with xenon, Smith (1)
found that the end wall pressure was not constant after the reflection
of an ionizing shock. Similar results were found by Camac and Fein-
berg (2) for argon. A typical form of the pressure profiles meas -
ured by Smith is shown in fig. 1. In fig. 1 is also given a description
of the model used to study this problem.

The incident shock wave propagating in the shock tube, leaves
behind a gas at very high temperature. In the equilibrium state this‘
gas must be ionized. However, as was shown by Petschek and Byron
(3), this gas does not reach anequilibrium state immediately after the
passage of the shock; there is a region (called 2 in fig. 1) in which
the gas is almost in a frozen state with zero degree of ionization,
After that, in region 6,the gas is supposed to have reached an equi-
librium degree of ionization. Between 2 and 6 there is a thin ioniza-
tion front (fig. 1) (refs. 1, 2, 3, 13).

Behind the reflected shock, a similar process takes place.
First, in region 4 the gas is almost frozen and reaches equilibrium
after a certain time in the region called 5 in fig. 1. Due to the higher
temperatures behind the reflected shock, the equilibrium state is
reached faster than behind the incident shock.

The first drop in the end wall pressure (fig. 1) observed by
Smith (1), was associated with the transition from frozen to equi-

librium state behind the reflected shock. This problem will be studied
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in 1.2. After the first drop in pressure, Smith (1) observed a region
of almost constant pressure followed by an increase. He associated
this increase in pressure with a shock wave produced by the inter-
action of the ionization front (behind the incident shock) with the
reflected shock. It will be shown that sometimes, rather than a shock,
this interaction produces a family of weak compression waves. In
1.3 we study this problem.

To study the transition from 4 to 5, it will be assumed that
the equilibrium degree of ionization is so small that the equilibrium
flow properties differ only in first order from the frozen flow prop-
erties., This will allow us to linearize the flow equations. However,
it will not be possible to linearize the equations governing the pro-
duction of ions and electrons., In these equations appear terms like
"exp(—ei/T)” where Gi is the ionization temperature and T the tem-
perature of the gas. Terms like this can only be linearized for such
small degrees of ionization that the properties of the flow will not
experience any significant change. A study similar to this was made
by Spence (4). He studied the problem of a piston moving in a gas
with such a velocity that the vibrating states were excited (or disso-
ciation produced); however, he linearized the rate equations.

The rate equations governing the production of electrons and
ions will be the ones given by Morgan and Morrison (5). Their model
can be described as follows: after the reflection of the shock there
are no electrons; the first electrons are produced by atom-atom col-
lision according to the model proposed by Harwell and Jahn (6); when

enough electrons are produced, the dominating mechanism is electron
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atom collision (Petschek and Byron (3)). It will be shown that the per-
turbation in pressure at the wall decreases proportionally to the in-

crease in degree of ionization according to the formula:
(0,/T,)p,

——— Y (t)
(1 +'\/§—) wall

2
Py = Pyanft) =3

where Py and ’I‘4 are the frozen pressure and temperature about which
we linearized, Gi is the ionization temperature, and « is the degree

of ionization at the wall. This behavior checks with Smith's results (1)
that show a decrease in pressure in the region where « increases, and
a constant pressure in the equilibrium region where « is constant.

Camac and Feinberg (10) say that this decrease in pressure
is due to an expansion wave preceding the ionization front. If that
were so the expansion wave would be in a frozen region and could be
considered as an isentropic expansion. We do not think that this is a
correct description of what really happens. According to our results
the decrease in pressure is due to the fact that the process is not
isentropic. The ionization acts like heat sink s distributed over
the flow field. These heat sinks decrease the entropy of the atom
gas. This decrease in entropy combined with the non-stationary
character of the process are the factors that produce the decrease
in pressure at the wall.

The compression wave between 5 and 7 is supposed to be at the
equilibrium degree of ionization as given by the Saha equation. Our
calculations are performed for degrees of ionization of the order of
30%. Under these conditions it is observed that temperature and

degree of ionization do not experience any significant changes. This
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seems to be consistent with the fact that, at such degrees of ionization,
Y, the ratio of the specific heats, is close to one. Whitham's rule (7)
is used to calculate the second decrease of the reflected shock speed,
during its interaction with the ionization front following the incident
shock. An extension of Whitham's rule (7) was made by Lick (8); both
Whitham's and Lick's rules are, in our problem, equivalent to assum-
ing that the curvature of the shock does not produce a significant
change in the entropy of the gas behind the shock. This approximation
seems to be good. As the reflected shock curves, it sends a family of
compression waves to the wall; if they intersect they produce a shock;
it will be shown that sometimes this is not the case., The interaction
of this family of compression waves with the wall is studied assuming
that temperature and degree of ionization remain constant. It will be
seen that this interaction produces an increase in pressure on the end
wall. Our results are in good agreement with Smith's measurements
regarding the total amount of the increase in pressure and the time
at which it happens. But the characteristic time of the pressure rise

is longer in Smith's measurements,

1.2 Relaxation Region Behind the Incident Shock

1.2.1 Introductory Remarks

In this se(;tion a study will be made of the transition region
from 4 to 5 (fig. 1). Region 4 of frozen flow does not exist in reality.
The transition to region 5 will start right after the reflection of the

shock. However, in the initial stages the ionization is almost
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negligible, and we can talk about a certain frozen region behind the
reflected shock. Similar arguments can be used for regions 2 and 6
behind the incident shock, This last transition is supposed to be
much longer than the one behind the reflected shock. The frozen
conditions 4 are calculated by the conventional methods of gas dy-
namics applied to a perfect monatomic gas (y = 5/3). We know the
conditions in 1 and the Mach number M, of the incident shock; con-

1

ditions 2 will be given by the usual jump conditions across the shock:

Pa 2 2
- LY -
5 1+ 5k (M; - 1)
[ (y-l)Mf+2]
u, =M,a, |1l - — 2
2 1 2

p is the pressure, u the flow velocity (relative to the end wall of the
shock tube), and a the speed of sound. Similar formulae hold for
the other flow quantities in 2; see Liepmann and Roshko (9), Chapter
2. Once we know the flow quantities in 2, we apply the same jump
conditions to calculate the flow properties in region 4 where the

speed of the gas has to be zero., If C4 is the speed of the reflected

shock:
P
N L ytl 74
gty Ylp
‘4 ytl , P4
Y'l pz

1 194%
= y-t . ytl “4
c4+u2 az( +

These two equations give us Py and Cye The rest of the flow properties
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at 4 can be easily calculated from the other jump conditions. For
large incident Mach numbers the limiting values of the conditions

at 4 take a simpler form:

M, >> 1
P4 _ 3yl _ (1a)
pz Y'l

4 _ 3y-1 _ 12

T, ~ Yy 5 (1b)
a

4 _‘/3 -1 _

g, Yoy - (1c)
X |

2 ,‘/ __¢_5~_

c, Y2ly-I) V4 (1d)

The movement of the gas in the transition from 4 to 5 will be
considered one-dimensional and non-stationary. The x axis will be
taken along the shock tube; the origin will be at the end wall. The
origin of time will be the moment at which the incident shock hits
the end wall (see fig., 1). The problem will be solved for such small
degrees of ionization that the flow properties can be considered a

small perturbation of the frozen flow properties.

p=pyt P (xt) P /Py << 1 (2a)
u=u'(x,t) u' /a4 << 1 (2b)
T=T,+T (xt) T' /T, << 1 (2c)

P=pgtp(xnt) p'/py << 1 (2a)
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T is the temperature, and ay is the speed of sound of the frozen gas.
The effect of the ionization will be taken into account only in

the energy equation. As the monatomic gas becomes ionized, the

translational energy of its atoms is transformed into ionization

energy. The ionization effect can be considered as a series of heat

sinks distributed over the flow field,

1.2.2 Flow Equations

They will be:

op' - ou' _
3t TPy =0 (3)
u' . 9p' _
p4W+ x 0 (4)
r 8 _ _ ion 20 5)
4 0ot m ot

S' is the perturbed entropy of the gas:

— 1
S—S4+S

« is the degree of ionization, Eion is the energy required to ionize
an atom, and m the mass of an atom. Equation (3) is the continuity
equation, (4) the momentum equation, and (5) the energy equation.

The ionization temperature Qi is defined by:

R is the perfect gas constant: R = cp-cv, Cp/CV =y=5/3

*The electronic excitation of the atoms also acts like another heat
sink. This effect could be important in the first stages of the ioni-
zation, It has been neglected in this analysis,
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Using well-known thermodynamic relations, the energy equation can

be written:

0
-1 i o

4 t

9p’ L

t

Q)}_g?
o+

2
24

This equation tells us how small & has to be in order for conditions

(1) to be satisfied.
(Gi/T4) a<<1 (7)

For argon ei is 183,000°K, and in our case T4 is of the order of
10,000°K. Then (Gi/T4) is a large quantity, and & being small is
not enough for conditions (1) to be satisfied.

If @ were known, we would have three equations (3), (4) and
(6) with three unknowns u', p', p'. We need tb find more information
about the degree of ionization «.

To obtain equation (6) we used the equation of state:

where p, p, and T are the properties of the atom gas. It could be
a:.:gued that this is not true because of the presence of the electron
gas. However, in our case this will only introduce a lower order
correction. We should remember that:
ei
1>> —,17‘—} a>> d

A similar argument can be used for the continuity equation. Since

E)i/T4 is so large, the most important effect of the ionization is to
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take heat out of the atom gas, and any other effect is negligible com-
pared to this,

1.2.3 Equations Determining Ionization Rates

It will be assumed that the mechanisms that determine ioni-
zation rates are three: atom-atom collision, electron-atom collision,
and recombination. We will give a brief description of these three.
a) Atom-atom collisions. This process is the one that produces the
first electrons. It was studied by Harwell and Jahn (6). Two atoms
collide, and, if the collision energy is large enough, one of the atoms
becomes excited and reaches a certain metastable energy level. An
atom that has reached this energy level ionizes very easily. The
rate of ionization is then determined by the rate at which the atoms
reach this excited state. Morgan and Morrison (5) give an expression

for the rate at which electrons are produced by this process:

Dn, 2 -z 3/2 , B By
(g aa = 45, 0y (vmy)  (KT)7" (e + 1) exp (- )
2
= na Raa (8)

BD‘E is the derivative following the gas:

k is the Boltzmann constant, n, is the number of electrons per unit
volume, n_ the number of atoms per unit volume, m, the atom mass,
E1 the excitation energy of the metastable state, and S2 a constant
determining the inelés‘tic collision cross section. Harwell and Jahn

found that the atom-~-atom cross section for excitation from the ground
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state is represented by

0 for ¢ < E (9)

Sz(s—El)for a>E1; ]

where ¢ is the energy of the collision in electron volts in the center

-19

of mass system. For argon E2 isll.7e.v. and S, is 7.1 x 10

2
cmz/e.v. (according to Harwell and Jahn (6)). However, Morgan

20

and Morrison (5) say that S, is perhaps 7.1 x 10~ cmz/e'.v. Better

2
and more recent experiments by Kelly (16) give an intermediate value
of S2 of 1.2 x 10-19 cmz/e.v.

b) Electron-atom collisions, This mechanism is described in detail
by Petschek and Byron (3). Once the first electrons are produced,
this process, which is more effective than the atom-atom collision,
takes place. An electron collides inelastically with an atom and the
atom reaches a certain metastable state. Then the atom ionizes very
easily as in the case of atom-atom collision. The electron loses
energy in the inelastic collision and recovers it by elastic collision
with atoms and ions. This requires the electron gas to have a smaller
temperature than the atom gas. Both ion and atom gas are supposed
to have the same temperature, and this temperature is the one that
appears in the flow equations (1.2.2). Morgan and Morrison (5) give
an expression for the rate of production of electrons by electron-

atom collision:

Dn,_ -3 3/2 E E
o) = 8nery 5y (2mmy) (KT ) gpep FHexpl- g

n_ n Rea | {10)

Te is the temperature of the electron gas. Sl has a similar meaning
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to the one given by formula (9). m_ is the mass of the electron.

—18cm2/e.v.

Petschek and Byron (3) give for S, the value 7 x 10
(Argon).

c) Recombination, When the degree of ionization is close to equi-
librium, the recombination makes the rate of production of electrons
smaller and tend to zero as the degree of ionization tends to the
equilibrium value. In this work we will use the three-body recom-

bination model proposed by Camac and Feinberg (10). This process

is the opposite of ionization by electron-atom collision:

e+e+A+ze+A (11)
T T

Two electrons collide with an ion and produce an electron and an
atom. We need the two electrons to sétisfy the momentum conser -
vation. For details see Camac and Feinberg (10). According to (11)
the rate of production of electrons will be:

Dn

e _ 2
Dt kion DMy - kzt'ec Dty (12)

where krec is the recombination rate constant and kion the ionization
rate constant. The value of kion can be found from (10) and (8). In
equilibrium

) (na)eq

ion’eq (ne)eq(ni)eq

(krec)eq =

(k

Assuming that the electrical forces are large compared to the dynamic

forces:



-13-

Also from condition (7)

n << n
e a
ne ne
a= n fn.  n_
e a a
~2
(krec)eq = (klon eq 1_1~ [ eq eq Teq)] (13)

aeq can be determined from the Saha equation as a function of the
flow properties at equilibrium, aeq(peq’ Teq)' Camac and
Feinberg (10) assume that relation (13) also holds in non-equilibrium
situations, with aeq given by the Saha equation, but with the pressure

and the electron temperature that the gas really has in the non-

equilibrium conditions:

krec = 1on ;l— [ p’T )] (138.)

Because of conditions (2) n_ can be considered a constant. There is
some arbitrariness in the fact that we have chosen the electron tem-
perature instead of the atom temperature to determine this fictitious
aeq' Camac and Feinberg (10) say that the electrons are the ones
that determine the ionization rate, and consequently the electron
temperature is the significant one {also see Smith (1)).

Combining the three results obtained previously, (8), (10)

and (13a), we get:

n
. =2 (R_+aR )
ion ne aa ea
Dne p 2
=n“(R__+ aR__)[1- a/a )“] \ (14)

Dt a' aa ea q
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We see that when o approaches its equilibrium value -I-—)—E?— goes to

zero as was expected. The Saha equation gives:

__(.1.?.%_ = (3.35 x 1072 Nzewtoxg/2 Z'[C1+Cg exp(-ﬂa/TeH _—

1" %q m"(’K) [C31Cy exp(-6 /T )+ ...]
Te5/2

x—p o (-0y/T,) (15)

where C1 :aLndC2 are the degeneracies of ground state and first ex-

3

excitation temperature of the first excited state of the ion. The

cited state of the ion, and C and C4 the ones of the atom. Ga is the

contributions of the other excited states are neglected. For the
values of these constants see for example Witte (11).
We now face the problem of how to linearize equations (14)

and (15). We will also assume

—— 1 1
T, =T, + T, ’.1:‘6/'1‘4 << 1 (16)

This is to be expected because in equilibrium atoms and electrons
have the same temperature, and because of conditions (2) the flow
properties are a small perturbation of the equilibrium flow proper-
ties. This assumption will be checked later when an equation to
determine Te is found, and when the numerical results of the prob-
lem are obtained.

In expressions (8), (10), (14) and (15) appear terms like:

0. 0. 0. 6. T
exp(- ) = exp (- g—pgr) = exp(- 5—) explgr— 7=
e 4 "e 4 4 “4

and similar terms with T. The linearization of these terms would

X
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require:
5] T! 0
i e e T!
L _f << —— o << ]
Ty Ty Ty Ty

But these are much stronger conditions than (2) and (7). Since the
perturbations are expected to be of order a(Bi/T4), the above con-
ditions would require (Gi/T4)2a to be small compared to one. Under
these circumstances the perturbed flow quantities will be so small
that this analysis will become meaningless. We proceed supposing
that:
6. 2

(:i,—};) ¢ is not necessarily small. (17)

We can linearize all the terms of equation (14) except the ones con-

taining exponentials of the form indicated. We notice that:

E 0
1 _ e
k T

where Ge is 135,000°K for argon, that is,of the same order of mag-
nitude of Gi.

The semi-linearized equation (14) becomes:

-0 /T -0 /T 0./T
?-.tq = Afe © +Be © ®a)(1-Cafe i 9 (18)
where A, B, and C are constants
-1 3/2 o,
A = 41’1452(11'1’113) (kT4) [—Z—T—;-‘f' 1]
1
- 2
B = z(sl/sz) (ma/Zme)
-1 C P
-2 Newton 3 4
C =13.35x10
[ meterz(OK)S/z] [Z(C1+C2exp(-9a/T4))]T5/2

4
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Ga is only 2,O6OOK (argon) so it is possible to linearize the exponen-
tial containing 0_. The other terms of the partition functions are
ignored because they are small,

We need now an equation to calculate Te. It will be given
by the conservation of energy of the electron-gas. The electrons
lose their energy by inelastic collisions with the atoms and recover
it by elastic collisions with the ions and atoms. This process was
studied in detail by Petschek and Byron (3) and by Morgan and
Morrison (5).

The rate of energy transfer by elastic collisions between
electrons and ions was calculated by Landau and is given in Morgan
and Morrison's paper (5):

1 .

kT T
e e 81rnee

where e is the electron charge in Gaussian units:

ot

e=4.8x10"1% cm x dyne?

Ti is the ion temperature that,in our case,is equal to T (the atom
temperature).

The rate of energy transfer by elastic collisions between
atoms and ions was calculated by Petschek and Byron {(3). We use

for it the expression given by Morgan and Morrison (5):

46 mé T mg 3/2
Qa=4,36}(10 —-I—i]—— (—T—'—- -1)nane41r (m‘) X
a e e
< i
S S(e) €5/ exp (- 11600¢) ge= {18b)

0 e
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where all quantities are in the c.g.s. system; except ¢ (translational
energy of the electron) which is expressed in e.v.. S(e) is the
electron-atom momentum transfer cross-section, For the numeri-
cal analysis the values of S(c) will be taken from Von Engel (12).

The energy balance for the electrons will be:

Dne 3
Qi * Qa - ( Dt )ea (Eion ¥ ZkTe) (19)

(See Morgan and Morrison (5).) We now apply conditions (2) and (16)
to this equation., We also assume that in our case the electron tem-
perature is much smaller than the ionization temperature (18a,b, 19):

[Da tn () + F] (T-T ) = ABe-ee/Te(l -Cazeei/Te) (20)
where D, E, and F are new constants depending on the unperturbed
conditions of region 4. A, B, and C are the constants appearing in
equation (18).

We now have a system of four differential equations (3), (4),
(6) and (18) with six unknowns p, p, u, T, Te’ and ®. There are two
additional algebraic equations, (20) and the equation of state:

2 - e T 21)
Py Py Ty (

1.2.4 Boundary Conditions

At the wall the speed of the gas is zero,

x=0, u=0 (22)

Other boundary conditions are given by the Rankine-Hugoniot

equations across the reflected shock., Upstream of the reflected
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shock the conditions are constant, and downstream a small perturba-
tion of the constant frozen conditions 4. We expect that the
speed of the reflected shock will be a small perturbation of the frozen
speed of the shock Cyr Then, in first approximation, we can apply the

boundary conditions on the frozen reflected shock x = -c ,t.

4
On region 2 we have some fixed values of the flow quantities:
Pys Py TZ’ u,. The Rankine-Hugoniot equations give the conditions

behind the reflected shock as a function of these fixed values and the

speed of the reflected shock. Calling this speed ¢ we have:

c=c4+c' c'/c4<<l
Pyt P' =1 (c teh) py = 1f;(c,)
pat P = hyle ) py =1,
".['4 +T' = f3(c4+c') T4 f3(c4)

u' = f4(c4+c') 0= f4(c4)

then:

dfl
p' = (dc )c=—‘c4C (23a)

dfz‘)

| B 1

= \dc c=cy © (23D)
df3

T'={—}) ¢ (23c)
dc c=cy
df4 .

TR 1
u' = | 5o c=c, c (234d)

Eliminating c':
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(dfl/dc)c___c4
| I ! = -
p' = (df4/dc)czc u on x c4t
4
(af,/dc) __
T' = 4 p' on x = -c,t
(d:fl/dc)C=C 4
4

We could obtain a further relation between p' and p', but that would
be a combination between the last equation and the equation of state.
After a lengthy but straightforward manipulation the last two equa-

tions reduce to:

p':-k1 a, p,u on x = -c,t (24)
T4
T'= -15:; kZ p' onx = —c4t (25)
where:
1 1
[+ 1+ (v-1)(p /P, )] 2 > P Py
= -1 (y+l) — (26
“ [(py/Py ) (¥H1)+3y-1] [v(p4/p2)] [(Y Py )pz]( )
+1
s p,/P,  (py/p )T ) o
2 - P
[/ tv-1]+py/py) (lg__) Fa,
P2
For y= 5/3
1
4+(p,/p, )% [1+(4p,/p,)
B
1 04/P, | L3+(2p,/p,)
k,= 1+ P4/P, - R4S (29)
2 4+(P4/p2) 1+(4P4/p2)
And fo; M1 >> 1 we saw in (1) that p4/pZ tends to 6 and
k) = 0.96 ' (28a)
k, = 0,64 (29a)

2
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The fact that kl is so close to one has a very important physical sig-

nificance:

1 o~

p' = -p4a4u' along the shock

This means that the characteristics intersecting
shock are absorbed by the shock, and they almost do not reflect.
The shock almost behaves like a characteristic (cf. Whitham (7)).

It should also be pointed out that kl remains close to unity for every
value of p‘,_]:/p2 between one and six (see (28)). In particular for
(pg/Py)= 1.0, ky = 1.0,

Spence (4) used in his analysis the strong shock jump condi-
tions, because he was working with an incident shock. His boundary
condition cannot be applied in this work because the reflected shock
can never be considered a strong shock (p4/p2 = 6).

Since the degree of ionization is zero in region 2 we have

also:
a=0 oﬁx= —c4t (30)

A further boundary condition is that initially there is no ionization

and all quantities are frozen.
atx=0, t=0
a=p'=p'=T' =u=20 (31)

Equations (22), (24), (25), (30) and (31) will be our boundary condi-

tions.,
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If we were interested in knowing the perturbed speed of the

shock, we could obtain it from (23a)

a
= [/tafy /de) o T pt = by o= 5,
where:
_ % _Y_t_l_. p4% 14 p4 "%
ky = (2y) (4Y ) (§—2~) [(yt1) (Y-l)-i;;] - (32)

p' is the perturbed pressure behind the shock. For y= 5/3

-1
T2

1
k _...._(—-) [4+-—] (32a)
> y5 P P2 *

And for Ml >> 1, p4/p2 is 6;

k3 = 0.692 (32b)

1.2.5 Numerical Results
The system of equations (3), (4), (6), (18), (20) and (21) with
boundary conditions (22), (24), (25), (30) and (31) was solved numer -

ically. To do it the flow equations were put in characteristic form:

0
9 )
(gt—+ 34 5% ) (p' +a,p,u") = -(y-1) 5 T4 py g(a,T,T o) (33a)
(8 —@—)('—a ") = (-1)81— (a, T, T ) (33b)
3t " 24 9% \P 4P4q ) = -y T4P4g sl le

6
9 T ' i
B S . e (334)
ot 'y-1 T4 Py T4
92 = gla,T,T,) (33e)

g is given in equation (18). The characteristics are the lines:
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const.

x—a4t

x + a4t const.

t = const,

In this problem the characteristics and the boundaries are fixed
straight lines.,

In figs. 2, 3, 4, 5 and 6 are represented some of the results
obtained from the numerical analysis. As was pointed out before,
the value of S, (formula (9)) is uncertain. So the calculations were
performed for the two different values of S2 given by Harwell and
Jahn (6) and Morgan and Morrison (5).

None of Smith's (1) experiments was done for such low de-
grees of ionization that would allow linearization. Consequently
we cannot compare them quantitatively with our calculations.
However, we can see that there is a decrease in pressure that
corresponds to an increase in the degree of ionization, and that
after a certain time the degree of ionization reaches asymptotically
its equilibrium value and the pressure also reaches a constant
equilibrium value (figs. 2 and 3). When the equilibrium value is
reached (fig. 4) electrons and atoms reach the same temperature;
this was to be expected because of the energy balance in the electron
gas, see equation (20). In fig. 5 is shown the shock trajectory;
the ionization tends to decrease the shock speed; after a certain
time the shock moves at a constant equilibrium speed.

A very interesting result is the one given in fig. 6, where
the lines of constant degree of ionization are represented. These

lines are very nearly parallel to the unperturbed shock trajectory.
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P, = 44 mm. Hg \\
Ty =300° K N\
Tq =10,990°K

P, = 14,818 mm.Hg
-20
—— Sinel {atom-atom)=7.1x10 cm®/ev(Ref.5)

- “ =74x10"® " (Ret.6)
—-— C4(Frozen Shock Speed)

-220us

-180us

-140us

-120us

~80us

-40us

1 i ]
-22.8cm -15.2cm -7.6cm

FIG.5 REFLECTED SHOCK TRAJECTORY

®
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FIG.6 DISTRIBUTION OF DEGREE OF IONIZATION
IN THE X,t PLANE
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The reason for this is not very clear. It could be argued that the

exponentials of equation (18) can be linearized, then we have:

Q—g = function (@)

This equation can be integrated independently of the others, and by

using the boundary condition (30) we obtain:

o = function {x + c4t)

This result is similar to the one of fig. 6. However, it can be
shown that by doing this, we obtain values of & that are two or three
times larger than the ones obtained without linearizing the exponen-
tials. Linearization of the exponentials is incorrect for our
problem.,

Camac and Feinberg (10) extrapolated the experimental data
of Petschek and Byron (3) in order to calculate the relaxation time

behind the reflected shock; according to them:

;. = 0.156 Pz, (f_g_)exp BT.000%K,
P P Py T4

Py is in mm. Hg. For the conditions of fig. 2 this formula gives
a value of 17 psec, for T4 (the relaxation time behind the reflected
shock). This value of 74 seems to be in good agreement with the

profile of fig. 2 that corresponds to

SZ =7.1x% 10719 cmz/e.v. (Harwell and Jahn)

In this case our value of Tyis about 20 ps, However, in

Petschek and Byron's experiments impurities probably played an
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important role, and they have been ignored in the present analysis.

1.2.6 Approximate Analysis of the Problem

Although the linearization of the exponentials of equation (18)
is incorrect in our problem, we can still make an analysis similar to
Spence's (4) by using for o the form:

a= at+ ) (34)

4

By eliminating p' from (6) and using (3) we obtain:

jos)

1 8p' ., Bw _ y-l % aa
2 5t Padx Ty T, Pame (35)
4

By using (35) and (4) we obtain two separate equations for p' and u'

1 azp' _9ppt o xy-l i aza 362
7 T2 25"y T, P4 T2 (362)
al ot ox 4 % b
1 8% a%w _ y1 % e%a (36b)
ai atZ 8x2 v T4 otox

2
ei <:4
| — et - — -
p' = (y-ll g py—5—5 a(t+ =)+ Py felt x)
4 a4~c4 4 4
Pyl +;X-) (37)
4
%) az C
gt = - ysl) _T_l_ 4 4 . (t+_.__)+f5(t- “"Hf()(”a"x“) (38)
Y 4 (ay-cy) 4 a4 4

where we used also the lower order equations (35) and (4) and the
functional form {(34) for «. fS and f6 are two arbitrary functions to

be determined by the boundary conditions. Using (22), (24) and (30),
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we obtain:

2
0. a ¢
_y-1 i %4 %
fs(t) + f6(t) Y T4 (az 2) a(t)
) 4 "4
P4 4 [(l + )t] 'P4 4f6 [(1 = "—")t] =
Cy 4
These two equations can be put in the form:
1-k, c2
f5(2) = e L L1 - =) 2]
1 a
4
2 2
(1 -k, ) 6. alc
4 A 4 "4
%4 @47
The solution of these equations is
2 0 n 2
8. ac (1-k,) c. n
- 4
fle)= XL L 22 N e L ga-4) g (39a)
6 Y Ty (az—cz) (1+k, )™ az
4 4" O 1 4
2 n 2
8. ac 5.2 (1-k,) c’ n
fo(e) = XL L 25 (1 —Lo a5 2] (39b)
> vy Ty (az—cz) (1+k )* al
4 74" 1 1 4

These series can be shown to be uniformly convergent for any finite
interval of z. The values of p' and u' are given as functions of x and
t by (37), (38) and (39) if & is known,

Our case is different fr‘om Spence's (4), because we are con-
sidering monatomic gases (y = 5/3), and because the reflected shock

can never be strong. This makes k, very close to one (28a) and
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allows us to make some simplifications. We can consider f5 (40) zero

and take only the first term in the series expansion for f() (39)., Then:

6 c2 p 0 a,c
i 4 Y4 i 4
Pl = (y-1) 7 ——2—afe+ X - (y-1) it p, —2 2t e+ X
T4(Z_ Z) c T4 4(2_ 2) a4)
a47C 3474
(40)
0 azc 0 azc
u' = (1____'\/1):11_1_ ; ‘lza(tJr—c}-(—‘)"“Y;l'Ti ;42 OZ(H'EX—-)
4 (a4- 4) 4 4(a4—c4) 4
(41)
and on the wall where x is zero:
Lo(t) = - (y-1) 3/ T4)py (t) (42)
P t)= - (y- alt 42
wall ]l+a47c4)
ua' = 0
and on the shock:
X = —c4t
9. p,a,c c
47474 4
Plhock(t) = = (v=1) 7= —5—— al(1- )]
4 (a4-c4) 4

. . . .
where Pihock I8 the pressure behind the shock. Using (32) we have
for the perturbed speed of the shock:

Gi Cy 4
i [ - e - ——
c'(t) = k3(y 1) T4 . 2/az)(tl[(l a4)t] (43)
C4/%4)
Then the speed of the shock is:

= ¢! +
C C C4
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These results will be interpreted in the next section.

1.2.7 Interpretation of the Results

Using for o« the functional form (34), equations (33a) and

(33b) become:

0

d o+ 't i _ P4 - -
Felp' tae ' iyl ——— al =0 onx=agt+
4 (l+-i) const. (44)
4
0. p
Ao I Wik S 2 - _
az [p ay4Py (y-1) T4 2, @] =0 onx= ~a4t+
(C— - 1) const. (45)
4

Suppose we want to calculate the conditions at point B of the

diagram below. B is at the wall and up is zero. Using (44) along

CB we get:
L= (plat aur)._(_l)_(?_i._..._...__.p4 a (45a)
PB = PC'Paqfc YT T a, B 2
(1+ —)
4
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since O is zero. At C(in the shock) we know a relation between
p' and u' (24). Using (45) along CD and (24) at C we get:

k 0.

1 i Py
- 1 — . e
Pc™ T7K, [PD (y-1) T, 3, O‘D]

|
€4

We can continue along the characteristics DE, EF, etc. until we get

arbitrarily close to the origin where ¢ is zero. It is easy to check
that the values of Pp ©T P obtained in this way correspond to the
series expansions obtained previously ((37), (39) and (40)). However,

the boundary condition (24) tells us that:

H ¥ ~
pc+ p4a4uc_. 0

We don't need to calculate the values of the flow quantities at C, D,
E, F, etc. All the information we need is contained in the charac-
teristic CB; the characteristic CD is almost totally absorbed by the
shock and does not affect what happens along CB. This simplification
corresponds to taking only the first term in the series expansion (39).
Formula (45a) gives the same result obtained in the previous section
(42). This tells us that the perturbation in pressure at the wall is
proportional to the degree of ionization that there is at that time on
the wall, and that the pressure decreases as the ionization increases,
These results are in agreement with Smith's (1) experiments.

A similar argument can be used to calculate the conditions
at A behind the shock. In that case the only relevant characteris-
tics will be AB and BC, because of the above arguments. So the

conditions at A can only be affected by the degree of ionization at B;
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this checks with formula (43)which can be written:

Gi Cy
1T o~ - —_—
cp = -ky (y l)T o

4 [ <2\ B
(-3
aZ
4
We can say that the perturbation in the speed of the shock is propor-
tional to the degree of ionization at the point of the wall that is on the
same C characteristic as the point in the shock.

In all these formulae we could use approximations (1). For
example, c‘,;[/a4 is 1/\/3-.

It is also interesting to note that all perturbations of the flow
quantities are proportional to the factor (Gi/T4)a. This checks the
validity of the pei'turbation method and assumption (7).

We must finally note that the analysis of sections 1.2.6 and
1,2.7 is subject to the condition that a(x+c4t) is known. To do this
we think the only possible method is the numerical solution indicated

in 1.2.5.

1.3 Interaction of the Reflected Shock with the Ionization Front

Following the Incident Shock

1.3.1 Introductory Remarks

We saw in part 1.2 that the reflected shock, after a certain
time, reaches an equilibrium speed and leaves behind an ionized gas
in equilibrium. There is experimental evidence that the ionization
time behind the reflected shock is shorter than behind the incident
shock. The reason is that behind the reflected shock the temperature

is higher. (Smith (1), Camac and Feinberg (10)). To study this
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problem we will assume that the gas behind the incident shock is
relaxing and behind the reflected shock is in equilibrium. In the
transition from 2 to 6 (fig. 1) the gas is relaxing, and in 5, 7, 8,
9 and 10 the gas is in equilibrium . This approximation will be
exact for 7, /1‘4 going to infinity. The experiments of Smith (1)
and Camac and Feinberg (10) seem to indicate that this ratio is
only of order five. However, as the ionization degree increases
behind the incident shock new electrons are produced, and as the
reflected shock advances it meets regions where there are more
electrons. We saw in part 1.2 that the initial and much longer
stage of the ionization process is by atom-atom collision, and that
this process ceases to be important as soon as there are enough
electrons for the electron-atom collision process to take over.
Consequently it is to be expected that when the reflected shock
meets regions where there are already electrons, the ionization
time will be much smaller than Ty Then the assumption of equi-
librium conditions behind the reflected shock is greatly improved.
We now want to calculate the structure of the ionization front
behind the incident shock. These fronts have been studied theoreti-
cally and experimentally by many people (Morgan and Morrison (5),
Smith (1), Petschek and Byron (3) and Wong and Bershader (13)).
This problem ‘is similar to the one worked out in section 1.2, but
simpler, because by taking coordinates fixed to the shock the flow
becomes stationary. Wong and Bershader (13) measured the ioniza-
tion profile behind the incident shock. They give a(7); T is the

distance in laboratory time behind the incident shock
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=t —x/c1

¢y is the speed of the incident shock (fig. 1). In the numerical
analysis we will use the experimental values of & obtained by Wong
and Bershader (13) for Argon and Smith's (1) theoretical results
for Xenon.*

Since we know the values of « behind the incident shock, we
can calculate the rest of the flow properties there. Petschek and

Byron (3) give these expressions:

Py = Py (46)
T =T --%Ole (47)
a 2 5 7a‘i
2 Gi ~1
Py =Py (1 g Ola 7:‘[:-2) (48)
0
_ 3 1 i
%y = M2y it T % T) (49)

These equations represent conservation of momentum (46), energy
(47), and mass (49). By using the equation of state we obtain (48).

The degree of ionization is supposed to be small, but not the pro-
0

~

ducts T, a, (compare with formula 2). The subscript "a" repre-

sents any point behind the incident shock, and subindex 2 represents
frozen conditions right after the passage of the shock. Conditions 2
are calculated by the usual Rankine-Hugoniot relations (see section

1.2.1).

*Some of thase results were given to us by Smith in a private com-
munication,
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Region 2 does not exist in reality. The ionization degree
is never zero except immediately after the passage of the shock;
however, it is close to zero for some time. This allows us to
define region 2.

We know all the information about the ionization front
following the incident shock and can study its interaction with the
reflected shock.

1.3.2 Trajectory of the Reflected Shock

We have the problem of a shock propagating in a region of
known but not constant properties, 'and we want to calculate the
trajectory of the shock and the properties of the gas behind it.

Across the shock we have conservation of mass, momentum

and energy.

p,lu_tc) = plute) (50)
pa+pa(ua+c)2' = p + plure)” (51)
h, + %(ua+c)2 =h+ -;-(u+c)2 (52)

p,» P,s» b, and u are known as functions of the position of the

shock. In particular (see (46), (47), (48) and (49)):

h =¢ T + R6.a =h, = const. (53)
a P a ia 2

P, u, p and h are the density, velocity, pressure and enthalpy of
the gas behind the reflected shock. c is the speed of the reflected
shock, These five quantities are unknown,

The gas behind the reflected shock is in equilibrium,
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consequently its properties are related by:

h= (l+a) cPT + 0, aR (54)
p= (1+a) RpT (55)
a= a(p,T) (56)

The last equation is the Saha equation, similar to equation (15).
(In our case the gas is in equilibrium and electrons and atoms have
the same temperature.) Behind the reflected shock the degree of
lonization is higher than behind the incident shock; then & is not
necessarily small behind the reflected shock,
For argon the coefficients of equations (54) and (55) are
2

2 m

2
R = E’Cp = 2,08299 x 10 Secz o
To find a further condition along the shock we are going to use
Whitham's theory (7). Whitham says that behind a shock that is
propagating in a non-uniform region, the same relation that holds
along the characteristics intersecting the shock also holds along

the shock. In our case {see, for example, Courant and Friedrichs

(14), Chapter III):
dp - pa du= 0 (57)

where "a" is the speed of sound of the ionized gas in equilibrium.
This relation is not exactly true. Let us consider fig. 7. During
the time that the shock meets the frozen gas of region 2 which has

constant properties, there is a uniform region 5 behind the shock.
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As the shock meets the transition region behind the incident shock
it starts to bend. We then have, as indicated in fig. 7, region 8a
which is a simple-wave, region 8b which is non-isentropic because
of the curvature of the shock, and region 8¢ which is isentropic but
not a simple wave. Along the C~ characteristics relation (57)

holds, and since region 8a is isentropic we can integrate equation
(57):

P
wu-\ 425 (58)

pa
Psg

This is satisfied over the whole region 8a. The integral should be
calculated at constant entropy; we will explain later how this can be
done in the case of ionized gases in equilibrium; at the moment
we just notice that for constant entropy p and "a" can be expressed
as functions only of p. Since equation (58) holds over the whole
region 8a, differentiating it we find that (57) also holds over the
whole region 8a, because Py is constant. However, (57) does not
hold on the whole region 8b, but holds only along the C~ character~-
istics of that region, because 8b is not isentropic and the integral
relation (58) does not hold there, Relation (57) proposed by
Whitham (7) is then only an approximation. Lick (8) extended
Whitham's theory and said that relation (57) holds over the whole
non-isentropic region behind the shock. ILick's theory is equiva-
lent in our case to assuming that the region adjoining the shock is
also a simple wave. The justification of these assumptions is not

very clear. For further information the reader is referred to the

works of Whitham (7) and ILick (8)., Our numerical results will
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also confirm these assumptions,

The speed of sound of an ionized gas in equilibrium is (Witte

(1n):

C
= (R) P
deg. const [c (ap)T fz- (g—%)p]
6 2 B
_5p 1+4(1+ ) a(l-~w) + 2(1+— —-)a(l -a)P(T)
3¢ 5 91 1,92 .29
l+[z + —,IT- + '3-; (—,'I,'-) ] a(l'ﬂ!)‘i‘ "z'(l'l‘-j- —,I—,-)a(l-a)lp(T)
(59)
whe:e
T = C,0, exp(-Ga/T) _ C,8, exp(-Ge/T)
‘ T Cl+Czexp(-9a/T) T C3+C4exp(-ee/T)

The term in Y(T) does not appear in Witte's paper; it is given by
the contributions of the first excited states of the atom and of the
ion atom. Formula (59) is obtained by using {55) and (56).

The position of the shock is given by
dx/dt = -c (60)

In fig, 7 it is assumed that the reflected shock propagates
from the beginning with a speed g that leaves behind a gas in equi-
librium and at rest. We know that this is not true., There is a cer-
tain time, Ty during which the ionization degree at the wall is zero.
The first particles that are ionized are thé ones close to the wall,
;because they are the ones that have been for a longer time in region

4, The shock will propagate with the speed Cy that leaves behind
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a gas frozen and at rest
until it feels the effect of
the ionization. This will
happen when the frozen
characteristic leaving the
wall at the time T, Mmeets

the shock, Instead of

supposing that the re-

flected shock starts prop-
agating with speed Cg
from the origin, we will suppose that it propagates with that
velocity from a'point of coordinates (xl tl):

T

- 4
RI (e1e)
(&)
c, T
x, = —l-_—‘*-—f— (61b)
(-7)
a;l/c4 = V3 (see 1c)

The values of T4 Were taken from Smith (1) for xenon and Camac
and Feinberg (2) for argon, This approximation cannot be thought
to be a rigorous estimation of the effect of ionization behind the
reflected shock. It should be regarded rather as an improvement
over considering the shock propagating with the equilibrium speed
from the ofigin. The way to calculate ¢ 4 and a, was indicated in

4
l1.2.1.
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To calculate the initial speed of the shock c 5 and the initial
flow properties Pg» Pgs h5’ we just solve the algebraic equations
(50), (51), (52), (54), (55) and (56), taking the initial velocity ug
equal to zero and the properties ahead of the éhock P,r Py ha’ u,

equal to the frozen values Pys Py hZ’ Use The initial conditions

will be:

t=t19x=x1, C=C5,p=p5,h=h5’p=p5, a=a5’

T=T5,a=a5,u=0

We can now solve the system of equations (50), (51), (52), (54),
(55), (56), (57), (59) and (60) for x, c, p, h, p, &, T, a and u as
functions of time with the initial conditions given above. This

was done numerically. The initial conditions were also calculated
numerically.

In fig., 8 are represented some of the calculated shock
trajectories. In Table I are given the calculated flow properties
behind the shock.

An interesting result is that behind the reflected shock the
values of the degree of ionization, temperature, enthalpy, and
speed of sound remain nearly constant, and consequently the ratio
~p/p also remains constant., This result seems to hold for all the
numerical céses solved. The values of the degree of ionization
varied between 20% and 40% for the different examples worked
out, |

Along the shock the pressure behind it increased with time.

In the different cases considered, the total increase in pressure
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FIG. 8a REFLECTED SHOCK TRAJECTORY, a TAKEN FROM
REF. 13, M;=16.3, F=3mm.Hg,T;=300°K, ARGON
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FIG. 8b REFLECTED SHOCK TRAJECTORY, a TAKEN FROM
REF i3. M;= 15.0, B;= Smm.Hg, ARGON



FIG.8¢ REFLECTED SHOCK TRAJECTORY,a TAKEN FROM
REF.13. M;=15.4,R=5mm.Hg, ARGON



~47 -

Table I. Flow properties behind the reflected

M1 =16.3, P; = 3 mm. Hg., Argon

X mmoe tus

2,75

15,4, Py = 5 mm. Hg., Argon

3.49

0
0,06
0.10
0.20
0.40
0.67

0.79

0
0.05
0.08
0.15
0.35
0.42
0.58
0.65

u rnm/us p mm.Hg.

4644
4782
4895
5152
5704
6538

6942

6991
7186
7299
7554
8387
8727
9464
9802
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Table I (Cont'd)
M, = 15.1, P = 0.5 mm. Hg., Xenon

X mm. tus u mm/us pmm.Hg, o amm./us T°K

7.96 6.13 0 655 0.410  1.08 11,400
8,23 6.85  0.03 679 0.410  1.08 11,428
8.39 7.30 0,10 730 0,409  1.09 11,478
8.46 7.56 0,27 869 0.402  1.09 11,582
8,47 7.64 0,37 967 0.396  1.09 11,636
8.48 7.70 0,41 1004 0.393  1.09 11,654

8.49 8.11  0.46 1060 0.390  1.09 11,679
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varied between 20% and 80% of the initial pressure.

The speed of the shock decreases with time. The interaction
of the ionization front with the shock bends the shock towards the
wall (because the density is increasing ahead of the shock).

The speed of the gas behind the shock, which initially is zero,
is towards the wall and increases in magnitude as the shock bends. -
This means that there is a mechanism to stop the gas, because the
velocity at the end‘ wall must be zero. To study this phenomena
we have to consider regions 8a, 8b and 8c (fig. 7); this will be done
in the following sections.

1.3.3 Flow Field Behind the Reflected Shock

It is well known that an ionized gas in equilibrium tends to
behave as if y, the ratio of the specific heats, were close to one.
This means that, if the gas behaves isentropically, the classical

relation:
P/py = const.

will tend to (p/p) equal to constant. If the degree of ionization and
the temperature of the gas remain constant, it is clear (from (55))
that this relation holds. The entropy of equilibrium ionized argon

is; (Witte (11))

5/2 l+a
S/R = (1+a) In Tp + zn[ﬁﬂll—:-a a'za]— 10.3540 (62)
(1-a) :

We claim that for moderate changes in pressure (80%) and high

degrees of ionization, constant entropy means constant temperature
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and constant degree of ionization. From the expression above we
see that the term that gives larger changes in entropy is 10.354a.
So if the entropy is going to be constant, & should also remain almost
constant. On the other hand, if we differentiate the Saha equation (15)
we obtain:
0

2 . 2
Y (PP F S g

¥(T) is given in (59). By far the biggest changes in this expression
will come from the term c;mtaining (ei/T). This term corresponds
to the exponential of the Saha equation. If @ is going to be constant
then T also has to be almost constant. Even more, if we examine

equation (59) of the speed of sound and take limits for (Oi/T) large,

and assume that & is not small, we get:
2
a“~p/p

But if we assume that at constant entropy & and T are constants we

get also:

§= R (1+a) T = const.

()2
o)y P

This can also be checked by looking at fig. 5 of Witte (11),
Now we can see that Whitham's (7) and Lick's theories
givé us a very good approximation. In part 2.2 we saw that behind

the reflected shock the relation:

B- const,
P
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held, and that a, T and "a" remained almost constant. This means
that the curvature of the shock does not change very much the entropy
behind the shock. Then regions 8a and 8b can be considered as a
single simple-wave region where the C+ characteristics are straight
lines along which the flow properties remain constant. Since the
conditions behind the shock are known, we also know all the flow
properties in regions 8a and 8b.

The C+ characteristics are convergent lines because their
slope is given by (atu), and u increases along the shock. However
for the moment we will assume that the characteristics do not inter-
sect in 8a or 8b. We will study this case later. This family of G
‘characterisf:ics forms a compression wave going to the wall,

1.3.4 Interaction of the Compression Wave with the Wall

f At
@ | 8¢

ionization
front -

% (pld)

Let us suppose that at point A of the diagram the shock starts to bend

by a significant amount. The‘characteristic leaving A hits the wall
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at a certain point B and then reflects., Let us call {f the reflected
characteristic. The trajectory of f and the flow properties along it
are known by the results of the previous section. Between f and the
wall is the region 8c that we want to study.
Let us choose B as our new origin of coordinates. Region 8c
is isentropic because all the particle paths crossing this region

come from 5 where the entropy is constant, On this region then:

u + dp . const. along éz{-=1J.+a,
pa dt

N de. 9%y -
u oa const. along gr-u-a

The integral has to be evaluated at constant entropy (see for example
Courant and Friedrichs (14), Chapter III). The evaluation of this
integral, although straightforward, is extremely messy, and it does
not look as though we would be able to obtain it in closed form.

From (55), (56), (59) and (62) eliminating @ and T (constant entropy)
we can obtain p and a in terms of p. Instead of doing this, we are
going to use the approximations pointed out before in section 1.3.3.
We saw that in the case of an ionized gas in equilibrium with high
degrees of ionization and with moderate changes in pressure in-
volved in the process, the constant éntropy condition is equivalent

to taking:
o =const., T = const,, §-= a,2 = const,

' Then:
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g dp ~a in (—E—) + const,
pa Pg

The constant pressure Py Was added for convenience. Then in

region 8c¢:
P__ - dx _
u+a fn = 2r = const, along =—=u+ a (63)
‘ Py dt
u - a fn E—= -2s= const. along dx _ u-a (64)
Pg at

r and s are the Riemann invariants, We now change the independent

variables to r and s. Equations (63) and (64) become:

u=r-s (65)

am-E=r+s (66)
Ps

x, = (r-stalt , (67)

x, = (r-s-alt, (68)

The subindices mean derivatives, Eliminating x between (67) and

(68) we obtain:
2at  tt o+t =0 (69)

This equation combined with (67) and (68) (and the boundary conditions)
will give us x(r,s), t(r,s). Inverting these functions we get s(x,t) and
r(x,t) and by using (65) and (66) u(x,t) and p(x,t). The inversion of
x(r,s) and t(r, s) is possible if the Wronskian of the transformation

is different from zero, In simple-wave regions this Wronskian is

zero; we will discuss later under what other circumstance}s this could
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also happen; for the moment we assume that this is not the case in
region 8c.

We need some boundary conditions to solve (69). At the wall

from (65) we have:

On the line r = s, x has to be constant (equal to zero):
xdrt+t+xds=(x_+x )dr=20
r s r s’
X = -X
r 8
~ Using (67) and (68) we get the boundary condition:

t.=t onr=s (70)

Another boundary condition is given by the fact that we know the
flow properties along the C~ characteristic f (see diagram) and its

trajectory. Along f:
s = const., = 0
because on B u is zero and p is Pge We then have:
t= 'I"(r) ons=20 (71)

where T(r) is known by the calculations of section 1.3.3, A typical
form of T(r) is given in fig. 9. When the reflected shock has crossed

the ionization front following the incident shock, the conditions behind
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