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ABSTRACT
PART 1
The reflection of an ionizing shock from the end wall of a

shock tube is studied theoretically following the experimental model
of J. Smith. The observed perturbations in the wall pressure history
are found to agree with this theory. To describe the first perturba-
‘tion, a decrease in pressure due to the ionization part in the reflected
shock structure, the flow equations are linearized but the rate equa-
tions are used in nonlinear form. The second perturbation, an
increase in pressure due to the ionization part of the incident shock
structure, is studied using Whitham's theory and assuming equilibri-

um behind the reflected shock.

PART 11

The propagation of sound and shock waves in a two-phase
medium is studied theoretically using the flow equations for each
component. It is shown that the assumption of constant mass ratio
during the sound propagation, used previously in the literature for
the case of bubbles suspended in a liquid, is only valid for low
frequencies. For high frequencies a larger sound speed is obtained,
These two sound speeds give two different Mach numbers. It is
found that When both Mach numbers are larger than one, the shock
structure in a liquid containing bubbles is given by an initial increase
of the pressure, followed by a region in which it oscillates around
its final equilibz;ium value. When the low frequency Mach number

is larger than one, and the high frequency Mach number smaller
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than one, the oscillations disappear and the transition is uniform.
The speed of sound of the mixture is also calculated by

evaluating the scattering by the suspended phase.
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I. THEORETICAL INVESTIGATION OF THE
REFLECTION OF IONIZING SHOCKS

1.1 Introduction

In a series of shock tube éxperiments with xenon, Smith (1)
found that the end wall pressure was not constant after the reflection
of an ionizing shock. Similar results were found by Camac and Fein-
berg (2) for argon. A typical form of the pressure profiles meas -
ured by Smith is shown in fig. 1. In fig. 1 is also given a description
of the model used to study this problem.

The incident shock wave propagating in the shock tube, leaves
behind a gas at very high temperature. In the equilibrium state this‘
gas must be ionized. However, as was shown by Petschek and Byron
(3), this gas does not reach anequilibrium state immediately after the
passage of the shock; there is a region (called 2 in fig. 1) in which
the gas is almost in a frozen state with zero degree of ionization,
After that, in region 6,the gas is supposed to have reached an equi-
librium degree of ionization. Between 2 and 6 there is a thin ioniza-
tion front (fig. 1) (refs. 1, 2, 3, 13).

Behind the reflected shock, a similar process takes place.
First, in region 4 the gas is almost frozen and reaches equilibrium
after a certain time in the region called 5 in fig. 1. Due to the higher
temperatures behind the reflected shock, the equilibrium state is
reached faster than behind the incident shock.

The first drop in the end wall pressure (fig. 1) observed by
Smith (1), was associated with the transition from frozen to equi-

librium state behind the reflected shock. This problem will be studied
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in 1.2. After the first drop in pressure, Smith (1) observed a region
of almost constant pressure followed by an increase. He associated
this increase in pressure with a shock wave produced by the inter-
action of the ionization front (behind the incident shock) with the
reflected shock. It will be shown that sometimes, rather than a shock,
this interaction produces a family of weak compression waves. In
1.3 we study this problem.

To study the transition from 4 to 5, it will be assumed that
the equilibrium degree of ionization is so small that the equilibrium
flow properties differ only in first order from the frozen flow prop-
erties., This will allow us to linearize the flow equations. However,
it will not be possible to linearize the equations governing the pro-
duction of ions and electrons., In these equations appear terms like
"exp(—ei/T)” where Gi is the ionization temperature and T the tem-
perature of the gas. Terms like this can only be linearized for such
small degrees of ionization that the properties of the flow will not
experience any significant change. A study similar to this was made
by Spence (4). He studied the problem of a piston moving in a gas
with such a velocity that the vibrating states were excited (or disso-
ciation produced); however, he linearized the rate equations.

The rate equations governing the production of electrons and
ions will be the ones given by Morgan and Morrison (5). Their model
can be described as follows: after the reflection of the shock there
are no electrons; the first electrons are produced by atom-atom col-
lision according to the model proposed by Harwell and Jahn (6); when

enough electrons are produced, the dominating mechanism is electron
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atom collision (Petschek and Byron (3)). It will be shown that the per-
turbation in pressure at the wall decreases proportionally to the in-

crease in degree of ionization according to the formula:
(0,/T,)p,

——— Y (t)
(1 +'\/§—) wall

2
Py = Pyanft) =3

where Py and ’I‘4 are the frozen pressure and temperature about which
we linearized, Gi is the ionization temperature, and « is the degree

of ionization at the wall. This behavior checks with Smith's results (1)
that show a decrease in pressure in the region where « increases, and
a constant pressure in the equilibrium region where « is constant.

Camac and Feinberg (10) say that this decrease in pressure
is due to an expansion wave preceding the ionization front. If that
were so the expansion wave would be in a frozen region and could be
considered as an isentropic expansion. We do not think that this is a
correct description of what really happens. According to our results
the decrease in pressure is due to the fact that the process is not
isentropic. The ionization acts like heat sink s distributed over
the flow field. These heat sinks decrease the entropy of the atom
gas. This decrease in entropy combined with the non-stationary
character of the process are the factors that produce the decrease
in pressure at the wall.

The compression wave between 5 and 7 is supposed to be at the
equilibrium degree of ionization as given by the Saha equation. Our
calculations are performed for degrees of ionization of the order of
30%. Under these conditions it is observed that temperature and

degree of ionization do not experience any significant changes. This
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seems to be consistent with the fact that, at such degrees of ionization,
Y, the ratio of the specific heats, is close to one. Whitham's rule (7)
is used to calculate the second decrease of the reflected shock speed,
during its interaction with the ionization front following the incident
shock. An extension of Whitham's rule (7) was made by Lick (8); both
Whitham's and Lick's rules are, in our problem, equivalent to assum-
ing that the curvature of the shock does not produce a significant
change in the entropy of the gas behind the shock. This approximation
seems to be good. As the reflected shock curves, it sends a family of
compression waves to the wall; if they intersect they produce a shock;
it will be shown that sometimes this is not the case., The interaction
of this family of compression waves with the wall is studied assuming
that temperature and degree of ionization remain constant. It will be
seen that this interaction produces an increase in pressure on the end
wall. Our results are in good agreement with Smith's measurements
regarding the total amount of the increase in pressure and the time
at which it happens. But the characteristic time of the pressure rise

is longer in Smith's measurements,

1.2 Relaxation Region Behind the Incident Shock

1.2.1 Introductory Remarks

In this se(;tion a study will be made of the transition region
from 4 to 5 (fig. 1). Region 4 of frozen flow does not exist in reality.
The transition to region 5 will start right after the reflection of the

shock. However, in the initial stages the ionization is almost
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negligible, and we can talk about a certain frozen region behind the
reflected shock. Similar arguments can be used for regions 2 and 6
behind the incident shock, This last transition is supposed to be
much longer than the one behind the reflected shock. The frozen
conditions 4 are calculated by the conventional methods of gas dy-
namics applied to a perfect monatomic gas (y = 5/3). We know the
conditions in 1 and the Mach number M, of the incident shock; con-

1

ditions 2 will be given by the usual jump conditions across the shock:

Pa 2 2
- LY -
5 1+ 5k (M; - 1)
[ (y-l)Mf+2]
u, =M,a, |1l - — 2
2 1 2

p is the pressure, u the flow velocity (relative to the end wall of the
shock tube), and a the speed of sound. Similar formulae hold for
the other flow quantities in 2; see Liepmann and Roshko (9), Chapter
2. Once we know the flow quantities in 2, we apply the same jump
conditions to calculate the flow properties in region 4 where the

speed of the gas has to be zero., If C4 is the speed of the reflected

shock:
P
N L ytl 74
gty Ylp
‘4 ytl , P4
Y'l pz

1 194%
= y-t . ytl “4
c4+u2 az( +

These two equations give us Py and Cye The rest of the flow properties
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at 4 can be easily calculated from the other jump conditions. For
large incident Mach numbers the limiting values of the conditions

at 4 take a simpler form:

M, >> 1
P4 _ 3yl _ (1a)
pz Y'l

4 _ 3y-1 _ 12

T, ~ Yy 5 (1b)
a

4 _‘/3 -1 _

g, Yoy - (1c)
X |

2 ,‘/ __¢_5~_

c, Y2ly-I) V4 (1d)

The movement of the gas in the transition from 4 to 5 will be
considered one-dimensional and non-stationary. The x axis will be
taken along the shock tube; the origin will be at the end wall. The
origin of time will be the moment at which the incident shock hits
the end wall (see fig., 1). The problem will be solved for such small
degrees of ionization that the flow properties can be considered a

small perturbation of the frozen flow properties.

p=pyt P (xt) P /Py << 1 (2a)
u=u'(x,t) u' /a4 << 1 (2b)
T=T,+T (xt) T' /T, << 1 (2c)

P=pgtp(xnt) p'/py << 1 (2a)
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T is the temperature, and ay is the speed of sound of the frozen gas.
The effect of the ionization will be taken into account only in

the energy equation. As the monatomic gas becomes ionized, the

translational energy of its atoms is transformed into ionization

energy. The ionization effect can be considered as a series of heat

sinks distributed over the flow field,

1.2.2 Flow Equations

They will be:

op' - ou' _
3t TPy =0 (3)
u' . 9p' _
p4W+ x 0 (4)
r 8 _ _ ion 20 5)
4 0ot m ot

S' is the perturbed entropy of the gas:

— 1
S—S4+S

« is the degree of ionization, Eion is the energy required to ionize
an atom, and m the mass of an atom. Equation (3) is the continuity
equation, (4) the momentum equation, and (5) the energy equation.

The ionization temperature Qi is defined by:

R is the perfect gas constant: R = cp-cv, Cp/CV =y=5/3

*The electronic excitation of the atoms also acts like another heat
sink. This effect could be important in the first stages of the ioni-
zation, It has been neglected in this analysis,
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Using well-known thermodynamic relations, the energy equation can

be written:

0
-1 i o

4 t

9p’ L

t

Q)}_g?
o+

2
24

This equation tells us how small & has to be in order for conditions

(1) to be satisfied.
(Gi/T4) a<<1 (7)

For argon ei is 183,000°K, and in our case T4 is of the order of
10,000°K. Then (Gi/T4) is a large quantity, and & being small is
not enough for conditions (1) to be satisfied.

If @ were known, we would have three equations (3), (4) and
(6) with three unknowns u', p', p'. We need tb find more information
about the degree of ionization «.

To obtain equation (6) we used the equation of state:

where p, p, and T are the properties of the atom gas. It could be
a:.:gued that this is not true because of the presence of the electron
gas. However, in our case this will only introduce a lower order
correction. We should remember that:
ei
1>> —,17‘—} a>> d

A similar argument can be used for the continuity equation. Since

E)i/T4 is so large, the most important effect of the ionization is to
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take heat out of the atom gas, and any other effect is negligible com-
pared to this,

1.2.3 Equations Determining Ionization Rates

It will be assumed that the mechanisms that determine ioni-
zation rates are three: atom-atom collision, electron-atom collision,
and recombination. We will give a brief description of these three.
a) Atom-atom collisions. This process is the one that produces the
first electrons. It was studied by Harwell and Jahn (6). Two atoms
collide, and, if the collision energy is large enough, one of the atoms
becomes excited and reaches a certain metastable energy level. An
atom that has reached this energy level ionizes very easily. The
rate of ionization is then determined by the rate at which the atoms
reach this excited state. Morgan and Morrison (5) give an expression

for the rate at which electrons are produced by this process:

Dn, 2 -z 3/2 , B By
(g aa = 45, 0y (vmy)  (KT)7" (e + 1) exp (- )
2
= na Raa (8)

BD‘E is the derivative following the gas:

k is the Boltzmann constant, n, is the number of electrons per unit
volume, n_ the number of atoms per unit volume, m, the atom mass,
E1 the excitation energy of the metastable state, and S2 a constant
determining the inelés‘tic collision cross section. Harwell and Jahn

found that the atom-~-atom cross section for excitation from the ground
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state is represented by

0 for ¢ < E (9)

Sz(s—El)for a>E1; ]

where ¢ is the energy of the collision in electron volts in the center

-19

of mass system. For argon E2 isll.7e.v. and S, is 7.1 x 10

2
cmz/e.v. (according to Harwell and Jahn (6)). However, Morgan

20

and Morrison (5) say that S, is perhaps 7.1 x 10~ cmz/e'.v. Better

2
and more recent experiments by Kelly (16) give an intermediate value
of S2 of 1.2 x 10-19 cmz/e.v.

b) Electron-atom collisions, This mechanism is described in detail
by Petschek and Byron (3). Once the first electrons are produced,
this process, which is more effective than the atom-atom collision,
takes place. An electron collides inelastically with an atom and the
atom reaches a certain metastable state. Then the atom ionizes very
easily as in the case of atom-atom collision. The electron loses
energy in the inelastic collision and recovers it by elastic collision
with atoms and ions. This requires the electron gas to have a smaller
temperature than the atom gas. Both ion and atom gas are supposed
to have the same temperature, and this temperature is the one that
appears in the flow equations (1.2.2). Morgan and Morrison (5) give
an expression for the rate of production of electrons by electron-

atom collision:

Dn,_ -3 3/2 E E
o) = 8nery 5y (2mmy) (KT ) gpep FHexpl- g

n_ n Rea | {10)

Te is the temperature of the electron gas. Sl has a similar meaning
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to the one given by formula (9). m_ is the mass of the electron.

—18cm2/e.v.

Petschek and Byron (3) give for S, the value 7 x 10
(Argon).

c) Recombination, When the degree of ionization is close to equi-
librium, the recombination makes the rate of production of electrons
smaller and tend to zero as the degree of ionization tends to the
equilibrium value. In this work we will use the three-body recom-

bination model proposed by Camac and Feinberg (10). This process

is the opposite of ionization by electron-atom collision:

e+e+A+ze+A (11)
T T

Two electrons collide with an ion and produce an electron and an
atom. We need the two electrons to sétisfy the momentum conser -
vation. For details see Camac and Feinberg (10). According to (11)
the rate of production of electrons will be:

Dn

e _ 2
Dt kion DMy - kzt'ec Dty (12)

where krec is the recombination rate constant and kion the ionization
rate constant. The value of kion can be found from (10) and (8). In
equilibrium

) (na)eq

ion’eq (ne)eq(ni)eq

(krec)eq =

(k

Assuming that the electrical forces are large compared to the dynamic

forces:
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Also from condition (7)

n << n
e a
ne ne
a= n fn.  n_
e a a
~2
(krec)eq = (klon eq 1_1~ [ eq eq Teq)] (13)

aeq can be determined from the Saha equation as a function of the
flow properties at equilibrium, aeq(peq’ Teq)' Camac and
Feinberg (10) assume that relation (13) also holds in non-equilibrium
situations, with aeq given by the Saha equation, but with the pressure

and the electron temperature that the gas really has in the non-

equilibrium conditions:

krec = 1on ;l— [ p’T )] (138.)

Because of conditions (2) n_ can be considered a constant. There is
some arbitrariness in the fact that we have chosen the electron tem-
perature instead of the atom temperature to determine this fictitious
aeq' Camac and Feinberg (10) say that the electrons are the ones
that determine the ionization rate, and consequently the electron
temperature is the significant one {also see Smith (1)).

Combining the three results obtained previously, (8), (10)

and (13a), we get:

n
. =2 (R_+aR )
ion ne aa ea
Dne p 2
=n“(R__+ aR__)[1- a/a )“] \ (14)

Dt a' aa ea q
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We see that when o approaches its equilibrium value -I-—)—E?— goes to

zero as was expected. The Saha equation gives:

__(.1.?.%_ = (3.35 x 1072 Nzewtoxg/2 Z'[C1+Cg exp(-ﬂa/TeH _—

1" %q m"(’K) [C31Cy exp(-6 /T )+ ...]
Te5/2

x—p o (-0y/T,) (15)

where C1 :aLndC2 are the degeneracies of ground state and first ex-

3

excitation temperature of the first excited state of the ion. The

cited state of the ion, and C and C4 the ones of the atom. Ga is the

contributions of the other excited states are neglected. For the
values of these constants see for example Witte (11).
We now face the problem of how to linearize equations (14)

and (15). We will also assume

—— 1 1
T, =T, + T, ’.1:‘6/'1‘4 << 1 (16)

This is to be expected because in equilibrium atoms and electrons
have the same temperature, and because of conditions (2) the flow
properties are a small perturbation of the equilibrium flow proper-
ties. This assumption will be checked later when an equation to
determine Te is found, and when the numerical results of the prob-
lem are obtained.

In expressions (8), (10), (14) and (15) appear terms like:

0. 0. 0. 6. T
exp(- ) = exp (- g—pgr) = exp(- 5—) explgr— 7=
e 4 "e 4 4 “4

and similar terms with T. The linearization of these terms would

X
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require:
5] T! 0
i e e T!
L _f << —— o << ]
Ty Ty Ty Ty

But these are much stronger conditions than (2) and (7). Since the
perturbations are expected to be of order a(Bi/T4), the above con-
ditions would require (Gi/T4)2a to be small compared to one. Under
these circumstances the perturbed flow quantities will be so small
that this analysis will become meaningless. We proceed supposing
that:
6. 2

(:i,—};) ¢ is not necessarily small. (17)

We can linearize all the terms of equation (14) except the ones con-

taining exponentials of the form indicated. We notice that:

E 0
1 _ e
k T

where Ge is 135,000°K for argon, that is,of the same order of mag-
nitude of Gi.

The semi-linearized equation (14) becomes:

-0 /T -0 /T 0./T
?-.tq = Afe © +Be © ®a)(1-Cafe i 9 (18)
where A, B, and C are constants
-1 3/2 o,
A = 41’1452(11'1’113) (kT4) [—Z—T—;-‘f' 1]
1
- 2
B = z(sl/sz) (ma/Zme)
-1 C P
-2 Newton 3 4
C =13.35x10
[ meterz(OK)S/z] [Z(C1+C2exp(-9a/T4))]T5/2

4
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Ga is only 2,O6OOK (argon) so it is possible to linearize the exponen-
tial containing 0_. The other terms of the partition functions are
ignored because they are small,

We need now an equation to calculate Te. It will be given
by the conservation of energy of the electron-gas. The electrons
lose their energy by inelastic collisions with the atoms and recover
it by elastic collisions with the ions and atoms. This process was
studied in detail by Petschek and Byron (3) and by Morgan and
Morrison (5).

The rate of energy transfer by elastic collisions between
electrons and ions was calculated by Landau and is given in Morgan
and Morrison's paper (5):

1 .

kT T
e e 81rnee

where e is the electron charge in Gaussian units:

ot

e=4.8x10"1% cm x dyne?

Ti is the ion temperature that,in our case,is equal to T (the atom
temperature).

The rate of energy transfer by elastic collisions between
atoms and ions was calculated by Petschek and Byron {(3). We use

for it the expression given by Morgan and Morrison (5):

46 mé T mg 3/2
Qa=4,36}(10 —-I—i]—— (—T—'—- -1)nane41r (m‘) X
a e e
< i
S S(e) €5/ exp (- 11600¢) ge= {18b)

0 e
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where all quantities are in the c.g.s. system; except ¢ (translational
energy of the electron) which is expressed in e.v.. S(e) is the
electron-atom momentum transfer cross-section, For the numeri-
cal analysis the values of S(c) will be taken from Von Engel (12).

The energy balance for the electrons will be:

Dne 3
Qi * Qa - ( Dt )ea (Eion ¥ ZkTe) (19)

(See Morgan and Morrison (5).) We now apply conditions (2) and (16)
to this equation., We also assume that in our case the electron tem-
perature is much smaller than the ionization temperature (18a,b, 19):

[Da tn () + F] (T-T ) = ABe-ee/Te(l -Cazeei/Te) (20)
where D, E, and F are new constants depending on the unperturbed
conditions of region 4. A, B, and C are the constants appearing in
equation (18).

We now have a system of four differential equations (3), (4),
(6) and (18) with six unknowns p, p, u, T, Te’ and ®. There are two
additional algebraic equations, (20) and the equation of state:

2 - e T 21)
Py Py Ty (

1.2.4 Boundary Conditions

At the wall the speed of the gas is zero,

x=0, u=0 (22)

Other boundary conditions are given by the Rankine-Hugoniot

equations across the reflected shock., Upstream of the reflected
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shock the conditions are constant, and downstream a small perturba-
tion of the constant frozen conditions 4. We expect that the
speed of the reflected shock will be a small perturbation of the frozen
speed of the shock Cyr Then, in first approximation, we can apply the

boundary conditions on the frozen reflected shock x = -c ,t.

4
On region 2 we have some fixed values of the flow quantities:
Pys Py TZ’ u,. The Rankine-Hugoniot equations give the conditions

behind the reflected shock as a function of these fixed values and the

speed of the reflected shock. Calling this speed ¢ we have:

c=c4+c' c'/c4<<l
Pyt P' =1 (c teh) py = 1f;(c,)
pat P = hyle ) py =1,
".['4 +T' = f3(c4+c') T4 f3(c4)

u' = f4(c4+c') 0= f4(c4)

then:

dfl
p' = (dc )c=—‘c4C (23a)

dfz‘)

| B 1

= \dc c=cy © (23D)
df3

T'={—}) ¢ (23c)
dc c=cy
df4 .

TR 1
u' = | 5o c=c, c (234d)

Eliminating c':
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(dfl/dc)c___c4
| I ! = -
p' = (df4/dc)czc u on x c4t
4
(af,/dc) __
T' = 4 p' on x = -c,t
(d:fl/dc)C=C 4
4

We could obtain a further relation between p' and p', but that would
be a combination between the last equation and the equation of state.
After a lengthy but straightforward manipulation the last two equa-

tions reduce to:

p':-k1 a, p,u on x = -c,t (24)
T4
T'= -15:; kZ p' onx = —c4t (25)
where:
1 1
[+ 1+ (v-1)(p /P, )] 2 > P Py
= -1 (y+l) — (26
“ [(py/Py ) (¥H1)+3y-1] [v(p4/p2)] [(Y Py )pz]( )
+1
s p,/P,  (py/p )T ) o
2 - P
[/ tv-1]+py/py) (lg__) Fa,
P2
For y= 5/3
1
4+(p,/p, )% [1+(4p,/p,)
B
1 04/P, | L3+(2p,/p,)
k,= 1+ P4/P, - R4S (29)
2 4+(P4/p2) 1+(4P4/p2)
And fo; M1 >> 1 we saw in (1) that p4/pZ tends to 6 and
k) = 0.96 ' (28a)
k, = 0,64 (29a)

2
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The fact that kl is so close to one has a very important physical sig-

nificance:

1 o~

p' = -p4a4u' along the shock

This means that the characteristics intersecting
shock are absorbed by the shock, and they almost do not reflect.
The shock almost behaves like a characteristic (cf. Whitham (7)).

It should also be pointed out that kl remains close to unity for every
value of p‘,_]:/p2 between one and six (see (28)). In particular for
(pg/Py)= 1.0, ky = 1.0,

Spence (4) used in his analysis the strong shock jump condi-
tions, because he was working with an incident shock. His boundary
condition cannot be applied in this work because the reflected shock
can never be considered a strong shock (p4/p2 = 6).

Since the degree of ionization is zero in region 2 we have

also:
a=0 oﬁx= —c4t (30)

A further boundary condition is that initially there is no ionization

and all quantities are frozen.
atx=0, t=0
a=p'=p'=T' =u=20 (31)

Equations (22), (24), (25), (30) and (31) will be our boundary condi-

tions.,
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If we were interested in knowing the perturbed speed of the

shock, we could obtain it from (23a)

a
= [/tafy /de) o T pt = by o= 5,
where:
_ % _Y_t_l_. p4% 14 p4 "%
ky = (2y) (4Y ) (§—2~) [(yt1) (Y-l)-i;;] - (32)

p' is the perturbed pressure behind the shock. For y= 5/3

-1
T2

1
k _...._(—-) [4+-—] (32a)
> y5 P P2 *

And for Ml >> 1, p4/p2 is 6;

k3 = 0.692 (32b)

1.2.5 Numerical Results
The system of equations (3), (4), (6), (18), (20) and (21) with
boundary conditions (22), (24), (25), (30) and (31) was solved numer -

ically. To do it the flow equations were put in characteristic form:

0
9 )
(gt—+ 34 5% ) (p' +a,p,u") = -(y-1) 5 T4 py g(a,T,T o) (33a)
(8 —@—)('—a ") = (-1)81— (a, T, T ) (33b)
3t " 24 9% \P 4P4q ) = -y T4P4g sl le

6
9 T ' i
B S . e (334)
ot 'y-1 T4 Py T4
92 = gla,T,T,) (33e)

g is given in equation (18). The characteristics are the lines:
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const.

x—a4t

x + a4t const.

t = const,

In this problem the characteristics and the boundaries are fixed
straight lines.,

In figs. 2, 3, 4, 5 and 6 are represented some of the results
obtained from the numerical analysis. As was pointed out before,
the value of S, (formula (9)) is uncertain. So the calculations were
performed for the two different values of S2 given by Harwell and
Jahn (6) and Morgan and Morrison (5).

None of Smith's (1) experiments was done for such low de-
grees of ionization that would allow linearization. Consequently
we cannot compare them quantitatively with our calculations.
However, we can see that there is a decrease in pressure that
corresponds to an increase in the degree of ionization, and that
after a certain time the degree of ionization reaches asymptotically
its equilibrium value and the pressure also reaches a constant
equilibrium value (figs. 2 and 3). When the equilibrium value is
reached (fig. 4) electrons and atoms reach the same temperature;
this was to be expected because of the energy balance in the electron
gas, see equation (20). In fig. 5 is shown the shock trajectory;
the ionization tends to decrease the shock speed; after a certain
time the shock moves at a constant equilibrium speed.

A very interesting result is the one given in fig. 6, where
the lines of constant degree of ionization are represented. These

lines are very nearly parallel to the unperturbed shock trajectory.
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P, = 44 mm. Hg \\
Ty =300° K N\
Tq =10,990°K

P, = 14,818 mm.Hg
-20
—— Sinel {atom-atom)=7.1x10 cm®/ev(Ref.5)

- “ =74x10"® " (Ret.6)
—-— C4(Frozen Shock Speed)

-220us

-180us

-140us

-120us

~80us

-40us

1 i ]
-22.8cm -15.2cm -7.6cm

FIG.5 REFLECTED SHOCK TRAJECTORY

®
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FIG.6 DISTRIBUTION OF DEGREE OF IONIZATION
IN THE X,t PLANE
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The reason for this is not very clear. It could be argued that the

exponentials of equation (18) can be linearized, then we have:

Q—g = function (@)

This equation can be integrated independently of the others, and by

using the boundary condition (30) we obtain:

o = function {x + c4t)

This result is similar to the one of fig. 6. However, it can be
shown that by doing this, we obtain values of & that are two or three
times larger than the ones obtained without linearizing the exponen-
tials. Linearization of the exponentials is incorrect for our
problem.,

Camac and Feinberg (10) extrapolated the experimental data
of Petschek and Byron (3) in order to calculate the relaxation time

behind the reflected shock; according to them:

;. = 0.156 Pz, (f_g_)exp BT.000%K,
P P Py T4

Py is in mm. Hg. For the conditions of fig. 2 this formula gives
a value of 17 psec, for T4 (the relaxation time behind the reflected
shock). This value of 74 seems to be in good agreement with the

profile of fig. 2 that corresponds to

SZ =7.1x% 10719 cmz/e.v. (Harwell and Jahn)

In this case our value of Tyis about 20 ps, However, in

Petschek and Byron's experiments impurities probably played an
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important role, and they have been ignored in the present analysis.

1.2.6 Approximate Analysis of the Problem

Although the linearization of the exponentials of equation (18)
is incorrect in our problem, we can still make an analysis similar to
Spence's (4) by using for o the form:

a= at+ ) (34)

4

By eliminating p' from (6) and using (3) we obtain:

jos)

1 8p' ., Bw _ y-l % aa
2 5t Padx Ty T, Pame (35)
4

By using (35) and (4) we obtain two separate equations for p' and u'

1 azp' _9ppt o xy-l i aza 362
7 T2 25"y T, P4 T2 (362)
al ot ox 4 % b
1 8% a%w _ y1 % e%a (36b)
ai atZ 8x2 v T4 otox

2
ei <:4
| — et - — -
p' = (y-ll g py—5—5 a(t+ =)+ Py felt x)
4 a4~c4 4 4
Pyl +;X-) (37)
4
%) az C
gt = - ysl) _T_l_ 4 4 . (t+_.__)+f5(t- “"Hf()(”a"x“) (38)
Y 4 (ay-cy) 4 a4 4

where we used also the lower order equations (35) and (4) and the
functional form {(34) for «. fS and f6 are two arbitrary functions to

be determined by the boundary conditions. Using (22), (24) and (30),
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we obtain:

2
0. a ¢
_y-1 i %4 %
fs(t) + f6(t) Y T4 (az 2) a(t)
) 4 "4
P4 4 [(l + )t] 'P4 4f6 [(1 = "—")t] =
Cy 4
These two equations can be put in the form:
1-k, c2
f5(2) = e L L1 - =) 2]
1 a
4
2 2
(1 -k, ) 6. alc
4 A 4 "4
%4 @47
The solution of these equations is
2 0 n 2
8. ac (1-k,) c. n
- 4
fle)= XL L 22 N e L ga-4) g (39a)
6 Y Ty (az—cz) (1+k, )™ az
4 4" O 1 4
2 n 2
8. ac 5.2 (1-k,) c’ n
fo(e) = XL L 25 (1 —Lo a5 2] (39b)
> vy Ty (az—cz) (1+k )* al
4 74" 1 1 4

These series can be shown to be uniformly convergent for any finite
interval of z. The values of p' and u' are given as functions of x and
t by (37), (38) and (39) if & is known,

Our case is different fr‘om Spence's (4), because we are con-
sidering monatomic gases (y = 5/3), and because the reflected shock

can never be strong. This makes k, very close to one (28a) and
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allows us to make some simplifications. We can consider f5 (40) zero

and take only the first term in the series expansion for f() (39)., Then:

6 c2 p 0 a,c
i 4 Y4 i 4
Pl = (y-1) 7 ——2—afe+ X - (y-1) it p, —2 2t e+ X
T4(Z_ Z) c T4 4(2_ 2) a4)
a47C 3474
(40)
0 azc 0 azc
u' = (1____'\/1):11_1_ ; ‘lza(tJr—c}-(—‘)"“Y;l'Ti ;42 OZ(H'EX—-)
4 (a4- 4) 4 4(a4—c4) 4
(41)
and on the wall where x is zero:
Lo(t) = - (y-1) 3/ T4)py (t) (42)
P t)= - (y- alt 42
wall ]l+a47c4)
ua' = 0
and on the shock:
X = —c4t
9. p,a,c c
47474 4
Plhock(t) = = (v=1) 7= —5—— al(1- )]
4 (a4-c4) 4

. . . .
where Pihock I8 the pressure behind the shock. Using (32) we have
for the perturbed speed of the shock:

Gi Cy 4
i [ - e - ——
c'(t) = k3(y 1) T4 . 2/az)(tl[(l a4)t] (43)
C4/%4)
Then the speed of the shock is:

= ¢! +
C C C4
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These results will be interpreted in the next section.

1.2.7 Interpretation of the Results

Using for o« the functional form (34), equations (33a) and

(33b) become:

0

d o+ 't i _ P4 - -
Felp' tae ' iyl ——— al =0 onx=agt+
4 (l+-i) const. (44)
4
0. p
Ao I Wik S 2 - _
az [p ay4Py (y-1) T4 2, @] =0 onx= ~a4t+
(C— - 1) const. (45)
4

Suppose we want to calculate the conditions at point B of the

diagram below. B is at the wall and up is zero. Using (44) along

CB we get:
L= (plat aur)._(_l)_(?_i._..._...__.p4 a (45a)
PB = PC'Paqfc YT T a, B 2
(1+ —)
4
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since O is zero. At C(in the shock) we know a relation between
p' and u' (24). Using (45) along CD and (24) at C we get:

k 0.

1 i Py
- 1 — . e
Pc™ T7K, [PD (y-1) T, 3, O‘D]

|
€4

We can continue along the characteristics DE, EF, etc. until we get

arbitrarily close to the origin where ¢ is zero. It is easy to check
that the values of Pp ©T P obtained in this way correspond to the
series expansions obtained previously ((37), (39) and (40)). However,

the boundary condition (24) tells us that:

H ¥ ~
pc+ p4a4uc_. 0

We don't need to calculate the values of the flow quantities at C, D,
E, F, etc. All the information we need is contained in the charac-
teristic CB; the characteristic CD is almost totally absorbed by the
shock and does not affect what happens along CB. This simplification
corresponds to taking only the first term in the series expansion (39).
Formula (45a) gives the same result obtained in the previous section
(42). This tells us that the perturbation in pressure at the wall is
proportional to the degree of ionization that there is at that time on
the wall, and that the pressure decreases as the ionization increases,
These results are in agreement with Smith's (1) experiments.

A similar argument can be used to calculate the conditions
at A behind the shock. In that case the only relevant characteris-
tics will be AB and BC, because of the above arguments. So the

conditions at A can only be affected by the degree of ionization at B;
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this checks with formula (43)which can be written:

Gi Cy
1T o~ - —_—
cp = -ky (y l)T o

4 [ <2\ B
(-3
aZ
4
We can say that the perturbation in the speed of the shock is propor-
tional to the degree of ionization at the point of the wall that is on the
same C characteristic as the point in the shock.

In all these formulae we could use approximations (1). For
example, c‘,;[/a4 is 1/\/3-.

It is also interesting to note that all perturbations of the flow
quantities are proportional to the factor (Gi/T4)a. This checks the
validity of the pei'turbation method and assumption (7).

We must finally note that the analysis of sections 1.2.6 and
1,2.7 is subject to the condition that a(x+c4t) is known. To do this
we think the only possible method is the numerical solution indicated

in 1.2.5.

1.3 Interaction of the Reflected Shock with the Ionization Front

Following the Incident Shock

1.3.1 Introductory Remarks

We saw in part 1.2 that the reflected shock, after a certain
time, reaches an equilibrium speed and leaves behind an ionized gas
in equilibrium. There is experimental evidence that the ionization
time behind the reflected shock is shorter than behind the incident
shock. The reason is that behind the reflected shock the temperature

is higher. (Smith (1), Camac and Feinberg (10)). To study this
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problem we will assume that the gas behind the incident shock is
relaxing and behind the reflected shock is in equilibrium. In the
transition from 2 to 6 (fig. 1) the gas is relaxing, and in 5, 7, 8,
9 and 10 the gas is in equilibrium . This approximation will be
exact for 7, /1‘4 going to infinity. The experiments of Smith (1)
and Camac and Feinberg (10) seem to indicate that this ratio is
only of order five. However, as the ionization degree increases
behind the incident shock new electrons are produced, and as the
reflected shock advances it meets regions where there are more
electrons. We saw in part 1.2 that the initial and much longer
stage of the ionization process is by atom-atom collision, and that
this process ceases to be important as soon as there are enough
electrons for the electron-atom collision process to take over.
Consequently it is to be expected that when the reflected shock
meets regions where there are already electrons, the ionization
time will be much smaller than Ty Then the assumption of equi-
librium conditions behind the reflected shock is greatly improved.
We now want to calculate the structure of the ionization front
behind the incident shock. These fronts have been studied theoreti-
cally and experimentally by many people (Morgan and Morrison (5),
Smith (1), Petschek and Byron (3) and Wong and Bershader (13)).
This problem ‘is similar to the one worked out in section 1.2, but
simpler, because by taking coordinates fixed to the shock the flow
becomes stationary. Wong and Bershader (13) measured the ioniza-
tion profile behind the incident shock. They give a(7); T is the

distance in laboratory time behind the incident shock
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=t —x/c1

¢y is the speed of the incident shock (fig. 1). In the numerical
analysis we will use the experimental values of & obtained by Wong
and Bershader (13) for Argon and Smith's (1) theoretical results
for Xenon.*

Since we know the values of « behind the incident shock, we
can calculate the rest of the flow properties there. Petschek and

Byron (3) give these expressions:

Py = Py (46)
T =T --%Ole (47)
a 2 5 7a‘i
2 Gi ~1
Py =Py (1 g Ola 7:‘[:-2) (48)
0
_ 3 1 i
%y = M2y it T % T) (49)

These equations represent conservation of momentum (46), energy
(47), and mass (49). By using the equation of state we obtain (48).

The degree of ionization is supposed to be small, but not the pro-
0

~

ducts T, a, (compare with formula 2). The subscript "a" repre-

sents any point behind the incident shock, and subindex 2 represents
frozen conditions right after the passage of the shock. Conditions 2
are calculated by the usual Rankine-Hugoniot relations (see section

1.2.1).

*Some of thase results were given to us by Smith in a private com-
munication,
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Region 2 does not exist in reality. The ionization degree
is never zero except immediately after the passage of the shock;
however, it is close to zero for some time. This allows us to
define region 2.

We know all the information about the ionization front
following the incident shock and can study its interaction with the
reflected shock.

1.3.2 Trajectory of the Reflected Shock

We have the problem of a shock propagating in a region of
known but not constant properties, 'and we want to calculate the
trajectory of the shock and the properties of the gas behind it.

Across the shock we have conservation of mass, momentum

and energy.

p,lu_tc) = plute) (50)
pa+pa(ua+c)2' = p + plure)” (51)
h, + %(ua+c)2 =h+ -;-(u+c)2 (52)

p,» P,s» b, and u are known as functions of the position of the

shock. In particular (see (46), (47), (48) and (49)):

h =¢ T + R6.a =h, = const. (53)
a P a ia 2

P, u, p and h are the density, velocity, pressure and enthalpy of
the gas behind the reflected shock. c is the speed of the reflected
shock, These five quantities are unknown,

The gas behind the reflected shock is in equilibrium,
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consequently its properties are related by:

h= (l+a) cPT + 0, aR (54)
p= (1+a) RpT (55)
a= a(p,T) (56)

The last equation is the Saha equation, similar to equation (15).
(In our case the gas is in equilibrium and electrons and atoms have
the same temperature.) Behind the reflected shock the degree of
lonization is higher than behind the incident shock; then & is not
necessarily small behind the reflected shock,
For argon the coefficients of equations (54) and (55) are
2

2 m

2
R = E’Cp = 2,08299 x 10 Secz o
To find a further condition along the shock we are going to use
Whitham's theory (7). Whitham says that behind a shock that is
propagating in a non-uniform region, the same relation that holds
along the characteristics intersecting the shock also holds along

the shock. In our case {see, for example, Courant and Friedrichs

(14), Chapter III):
dp - pa du= 0 (57)

where "a" is the speed of sound of the ionized gas in equilibrium.
This relation is not exactly true. Let us consider fig. 7. During
the time that the shock meets the frozen gas of region 2 which has

constant properties, there is a uniform region 5 behind the shock.
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As the shock meets the transition region behind the incident shock
it starts to bend. We then have, as indicated in fig. 7, region 8a
which is a simple-wave, region 8b which is non-isentropic because
of the curvature of the shock, and region 8¢ which is isentropic but
not a simple wave. Along the C~ characteristics relation (57)

holds, and since region 8a is isentropic we can integrate equation
(57):

P
wu-\ 425 (58)

pa
Psg

This is satisfied over the whole region 8a. The integral should be
calculated at constant entropy; we will explain later how this can be
done in the case of ionized gases in equilibrium; at the moment
we just notice that for constant entropy p and "a" can be expressed
as functions only of p. Since equation (58) holds over the whole
region 8a, differentiating it we find that (57) also holds over the
whole region 8a, because Py is constant. However, (57) does not
hold on the whole region 8b, but holds only along the C~ character~-
istics of that region, because 8b is not isentropic and the integral
relation (58) does not hold there, Relation (57) proposed by
Whitham (7) is then only an approximation. Lick (8) extended
Whitham's theory and said that relation (57) holds over the whole
non-isentropic region behind the shock. ILick's theory is equiva-
lent in our case to assuming that the region adjoining the shock is
also a simple wave. The justification of these assumptions is not

very clear. For further information the reader is referred to the

works of Whitham (7) and ILick (8)., Our numerical results will
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also confirm these assumptions,

The speed of sound of an ionized gas in equilibrium is (Witte

(1n):

C
= (R) P
deg. const [c (ap)T fz- (g—%)p]
6 2 B
_5p 1+4(1+ ) a(l-~w) + 2(1+— —-)a(l -a)P(T)
3¢ 5 91 1,92 .29
l+[z + —,IT- + '3-; (—,'I,'-) ] a(l'ﬂ!)‘i‘ "z'(l'l‘-j- —,I—,-)a(l-a)lp(T)
(59)
whe:e
T = C,0, exp(-Ga/T) _ C,8, exp(-Ge/T)
‘ T Cl+Czexp(-9a/T) T C3+C4exp(-ee/T)

The term in Y(T) does not appear in Witte's paper; it is given by
the contributions of the first excited states of the atom and of the
ion atom. Formula (59) is obtained by using {55) and (56).

The position of the shock is given by
dx/dt = -c (60)

In fig, 7 it is assumed that the reflected shock propagates
from the beginning with a speed g that leaves behind a gas in equi-
librium and at rest. We know that this is not true., There is a cer-
tain time, Ty during which the ionization degree at the wall is zero.
The first particles that are ionized are thé ones close to the wall,
;because they are the ones that have been for a longer time in region

4, The shock will propagate with the speed Cy that leaves behind
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a gas frozen and at rest
until it feels the effect of
the ionization. This will
happen when the frozen
characteristic leaving the
wall at the time T, Mmeets

the shock, Instead of

supposing that the re-

flected shock starts prop-
agating with speed Cg
from the origin, we will suppose that it propagates with that
velocity from a'point of coordinates (xl tl):

T

- 4
RI (e1e)
(&)
c, T
x, = —l-_—‘*-—f— (61b)
(-7)
a;l/c4 = V3 (see 1c)

The values of T4 Were taken from Smith (1) for xenon and Camac
and Feinberg (2) for argon, This approximation cannot be thought
to be a rigorous estimation of the effect of ionization behind the
reflected shock. It should be regarded rather as an improvement
over considering the shock propagating with the equilibrium speed
from the ofigin. The way to calculate ¢ 4 and a, was indicated in

4
l1.2.1.



-43 -

To calculate the initial speed of the shock c 5 and the initial
flow properties Pg» Pgs h5’ we just solve the algebraic equations
(50), (51), (52), (54), (55) and (56), taking the initial velocity ug
equal to zero and the properties ahead of the éhock P,r Py ha’ u,

equal to the frozen values Pys Py hZ’ Use The initial conditions

will be:

t=t19x=x1, C=C5,p=p5,h=h5’p=p5, a=a5’

T=T5,a=a5,u=0

We can now solve the system of equations (50), (51), (52), (54),
(55), (56), (57), (59) and (60) for x, c, p, h, p, &, T, a and u as
functions of time with the initial conditions given above. This

was done numerically. The initial conditions were also calculated
numerically.

In fig., 8 are represented some of the calculated shock
trajectories. In Table I are given the calculated flow properties
behind the shock.

An interesting result is that behind the reflected shock the
values of the degree of ionization, temperature, enthalpy, and
speed of sound remain nearly constant, and consequently the ratio
~p/p also remains constant., This result seems to hold for all the
numerical céses solved. The values of the degree of ionization
varied between 20% and 40% for the different examples worked
out, |

Along the shock the pressure behind it increased with time.

In the different cases considered, the total increase in pressure
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FIG. 8a REFLECTED SHOCK TRAJECTORY, a TAKEN FROM
REF. 13, M;=16.3, F=3mm.Hg,T;=300°K, ARGON
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FIG. 8b REFLECTED SHOCK TRAJECTORY, a TAKEN FROM
REF i3. M;= 15.0, B;= Smm.Hg, ARGON



FIG.8¢ REFLECTED SHOCK TRAJECTORY,a TAKEN FROM
REF.13. M;=15.4,R=5mm.Hg, ARGON
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Table I. Flow properties behind the reflected

M1 =16.3, P; = 3 mm. Hg., Argon

X mmoe tus

2,75

15,4, Py = 5 mm. Hg., Argon

3.49

0
0,06
0.10
0.20
0.40
0.67

0.79

0
0.05
0.08
0.15
0.35
0.42
0.58
0.65

u rnm/us p mm.Hg.

4644
4782
4895
5152
5704
6538

6942

6991
7186
7299
7554
8387
8727
9464
9802

o

0.348

© 0.348

0,348
0.347
0.343
0.336

0.332

0.297
0,297
0.296
0.296
0.292
0.291
0,287

0.285

shock as functions of the shock position

a mm/us

T °K
15,509
15,539
15,562
15,610
15,696
15,795

15,834

15,567
15,594
15,609
15,641
15,729
15,760
15,816

15,840
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Table I (Cont'd)
M, = 15.1, P = 0.5 mm. Hg., Xenon

X mm. tus u mm/us pmm.Hg, o amm./us T°K

7.96 6.13 0 655 0.410  1.08 11,400
8,23 6.85  0.03 679 0.410  1.08 11,428
8.39 7.30 0,10 730 0,409  1.09 11,478
8.46 7.56 0,27 869 0.402  1.09 11,582
8,47 7.64 0,37 967 0.396  1.09 11,636
8.48 7.70 0,41 1004 0.393  1.09 11,654

8.49 8.11  0.46 1060 0.390  1.09 11,679
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varied between 20% and 80% of the initial pressure.

The speed of the shock decreases with time. The interaction
of the ionization front with the shock bends the shock towards the
wall (because the density is increasing ahead of the shock).

The speed of the gas behind the shock, which initially is zero,
is towards the wall and increases in magnitude as the shock bends. -
This means that there is a mechanism to stop the gas, because the
velocity at the end‘ wall must be zero. To study this phenomena
we have to consider regions 8a, 8b and 8c (fig. 7); this will be done
in the following sections.

1.3.3 Flow Field Behind the Reflected Shock

It is well known that an ionized gas in equilibrium tends to
behave as if y, the ratio of the specific heats, were close to one.
This means that, if the gas behaves isentropically, the classical

relation:
P/py = const.

will tend to (p/p) equal to constant. If the degree of ionization and
the temperature of the gas remain constant, it is clear (from (55))
that this relation holds. The entropy of equilibrium ionized argon

is; (Witte (11))

5/2 l+a
S/R = (1+a) In Tp + zn[ﬁﬂll—:-a a'za]— 10.3540 (62)
(1-a) :

We claim that for moderate changes in pressure (80%) and high

degrees of ionization, constant entropy means constant temperature
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and constant degree of ionization. From the expression above we
see that the term that gives larger changes in entropy is 10.354a.
So if the entropy is going to be constant, & should also remain almost
constant. On the other hand, if we differentiate the Saha equation (15)
we obtain:
0

2 . 2
Y (PP F S g

¥(T) is given in (59). By far the biggest changes in this expression
will come from the term c;mtaining (ei/T). This term corresponds
to the exponential of the Saha equation. If @ is going to be constant
then T also has to be almost constant. Even more, if we examine

equation (59) of the speed of sound and take limits for (Oi/T) large,

and assume that & is not small, we get:
2
a“~p/p

But if we assume that at constant entropy & and T are constants we

get also:

§= R (1+a) T = const.

()2
o)y P

This can also be checked by looking at fig. 5 of Witte (11),
Now we can see that Whitham's (7) and Lick's theories
givé us a very good approximation. In part 2.2 we saw that behind

the reflected shock the relation:

B- const,
P
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held, and that a, T and "a" remained almost constant. This means
that the curvature of the shock does not change very much the entropy
behind the shock. Then regions 8a and 8b can be considered as a
single simple-wave region where the C+ characteristics are straight
lines along which the flow properties remain constant. Since the
conditions behind the shock are known, we also know all the flow
properties in regions 8a and 8b.

The C+ characteristics are convergent lines because their
slope is given by (atu), and u increases along the shock. However
for the moment we will assume that the characteristics do not inter-
sect in 8a or 8b. We will study this case later. This family of G
‘characterisf:ics forms a compression wave going to the wall,

1.3.4 Interaction of the Compression Wave with the Wall

f At
@ | 8¢

ionization
front -

% (pld)

Let us suppose that at point A of the diagram the shock starts to bend

by a significant amount. The‘characteristic leaving A hits the wall
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at a certain point B and then reflects., Let us call {f the reflected
characteristic. The trajectory of f and the flow properties along it
are known by the results of the previous section. Between f and the
wall is the region 8c that we want to study.
Let us choose B as our new origin of coordinates. Region 8c
is isentropic because all the particle paths crossing this region

come from 5 where the entropy is constant, On this region then:

u + dp . const. along éz{-=1J.+a,
pa dt

N de. 9%y -
u oa const. along gr-u-a

The integral has to be evaluated at constant entropy (see for example
Courant and Friedrichs (14), Chapter III). The evaluation of this
integral, although straightforward, is extremely messy, and it does
not look as though we would be able to obtain it in closed form.

From (55), (56), (59) and (62) eliminating @ and T (constant entropy)
we can obtain p and a in terms of p. Instead of doing this, we are
going to use the approximations pointed out before in section 1.3.3.
We saw that in the case of an ionized gas in equilibrium with high
degrees of ionization and with moderate changes in pressure in-
volved in the process, the constant éntropy condition is equivalent

to taking:
o =const., T = const,, §-= a,2 = const,

' Then:
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g dp ~a in (—E—) + const,
pa Pg

The constant pressure Py Was added for convenience. Then in

region 8c¢:
P__ - dx _
u+a fn = 2r = const, along =—=u+ a (63)
‘ Py dt
u - a fn E—= -2s= const. along dx _ u-a (64)
Pg at

r and s are the Riemann invariants, We now change the independent

variables to r and s. Equations (63) and (64) become:

u=r-s (65)

am-E=r+s (66)
Ps

x, = (r-stalt , (67)

x, = (r-s-alt, (68)

The subindices mean derivatives, Eliminating x between (67) and

(68) we obtain:
2at  tt o+t =0 (69)

This equation combined with (67) and (68) (and the boundary conditions)
will give us x(r,s), t(r,s). Inverting these functions we get s(x,t) and
r(x,t) and by using (65) and (66) u(x,t) and p(x,t). The inversion of
x(r,s) and t(r, s) is possible if the Wronskian of the transformation

is different from zero, In simple-wave regions this Wronskian is

zero; we will discuss later under what other circumstance}s this could
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also happen; for the moment we assume that this is not the case in
region 8c.

We need some boundary conditions to solve (69). At the wall

from (65) we have:

On the line r = s, x has to be constant (equal to zero):
xdrt+t+xds=(x_+x )dr=20
r s r s’
X = -X
r 8
~ Using (67) and (68) we get the boundary condition:

t.=t onr=s (70)

Another boundary condition is given by the fact that we know the
flow properties along the C~ characteristic f (see diagram) and its

trajectory. Along f:
s = const., = 0
because on B u is zero and p is Pge We then have:
t= 'I"(r) ons=20 (71)

where T(r) is known by the calculations of section 1.3.3, A typical
form of T(r) is given in fig. 9. When the reflected shock has crossed

the ionization front following the incident shock, the conditions behind
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the reflected shock (region 7) are constant. Region 7 is uniform,
and region 9 is a simple wave; there our theory is no longer correct.

is:

The value of r7

P
- 1 7
T, = z(u.? +a Mm p5) (72)

Condition (71) should rather be:

t= T(r) on s = 0 for O<r<r7 (73),

We now make the transformation:

t= e- —2—15(S+1')W . . (74)
Equation (69) becomes:

42w -w=0 (75)

rs

and the boundary conditions (70) and (73):

W, =W, on r=s (76)

w = T(r)er/za on s=0and 0 <r < Ty (77)
Since the problem is completely symmetrical we can substitute
boundary condition ‘(76) by:

.w=T(‘s)es/2aonr=Oand0<s<r (78)

7

It is evident that equation (75) with boundary conditions (77) and (78)

will give us a solution that also satisfies (76).
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The Riemann function of equation (75) is (see Courant and

Hilbert (15), Chapter V §5):

Rix,y,&,m) =T [‘/ = (x-g)(y-m] =1 [%5 \/(&-x)m-y)]
a

where I0 is the modified Bessel function of order zero. The solution

of equation (75) with boundary conditions (77) and (78) is then:

S r

w(r, s) =‘S(; Io (-i: Vr(s-z)) p'(z) dz + S(;Io(-é-\/szr-zi)ﬁ'(z)dz

r=2s and O0<r s<r (79)

7

Condition r = s means that we are at the left of or at the wall, The
value of B is:
z/2a
B(z) = T(z) e
‘It can be checked directly by substitution that (79) is a solution of
(75), (76) and (77).
We are interested in calculating the pressure distribution

at the wall where u is zero. From (65) and (66)

Pwall _ le/ a

P, (80)
and from (79) and (74) we 'get:
-rfa A '
gy (T) = 2e S; I, (-——"’fa Z1"25) B'(z) dz (81)

Formulae (80) and {81) give p(t) at the wall in pérametric form with
r as a parameter. We will give later a simpler interpretation of

this result.
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In the examples that we worked out the ratio r/a was never
larger than 0.4 and the modified Bessel function oscillated between
1 and 1.04. A very good approximation to (81) could be obtained by

taking Io equal to one:

= 2e7F/22 1y (82)

twall =

The reason for this is that the expansion of I0 is

i

I =1+ O(r2/4a2) ' (82a)

r/a can be regarded as the Mach number of the flow. In fig. 10.we
have pft) at the wall for the different examples calculated by this
theory. We did not find any experimental data to compare the results
of fig. 10. Later we will try to check Smith's (1) experimental
results; we cannot do it with this theory because, as we will see,
there may be shock formation in these cases. However we can see
that the interaction of the ionization front with the reflected shock
produces an increase in pressure at the end wall of the shock tube
as the experiments seem to indicate. °

As we séid before, once the shock has crossed the ionization
front it leaves behind a uniform region 7; adjoining this region is the
simple-wave 9, and between this and the wall the uniform region 10.
After the compression wave has hit the wall, the pressure at the
wall remains constant (fig. 10). This pressure can be easily deter-
" mined. Along a C+ characteristic going through. 7, 9and 10 we

have (see diagram and fig. 1)
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2Pg |- (q)

M, =16.3
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FIG. I0 END WALL PRESSURE INCREASE AS A RESULT OF

THE INTERACTION OF THE IONIZATION FRONT WITH .

THE REFLECTED SHOCK (ARGON)
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P P
a,tn-—l-gw=2r =u ~I-a.€n—Z
P [ Pg

and along a C~ characteristic going from 5 to T:
P7

-a fn—

Pg

O=u7

These equations give us:
2

P7
Pio = Ps (;5-) (83)
A result similar to this can be obtained, instead of formula (80),
for the region of changing pressure., Using the relations (63) and
(64) along a ¢t characteristic going from the shock to the wall and

along the shock (that behaves like a C~ characteristic):

p
: sh _
Uy - a In—s—-— 0
P P
u +a1n-—ﬁ=a£n wall
sh Ps p5
P 2

_ sh

Pwall = P5 ( Py ) (84)

Pah is the pressure behind the shock at a point that is on the same
C+ characteristic as the point at the wall, The fact that (psh/pS)

is elevated to the power two means that the pressure at the wall is
greater than behind the shock, because behind the shock the gas
has a speed towards the wall, Although this is a very simple inter-
pretation, we must not forget that we still need to know the trajec-

tory of the C+ characteristic and in particular the point at which it

hits the wall, This is given by formula (81).
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1.3.5 Cases for Which a Shock Wave is Formed in the Simple-Wave

Region

If the ionization front behind the incident shock is very thin
the reflected shock will bend very sharply. It is then possible that
the cha.ractéristics leaving the reflected shock will intersect. We
are going to assume that this intersection occurs somewhere in the
simple ~wave regions 8a or 8b (fig. 7).

Characteristic equation:
x=§ +c(Eh

envelope of characteris-

tics:
g§4=1 +c'(Et=0 }
E+ clé)t=x

cusp of the envelope:

dt _ c''(§)

BT ie)?

'To obtain the point on which the shock starts to form, we prolong the

=0 c'"(§)=0

]

characteristics to the left and calculate the coordinates § where they
intersect the x axis (as indicated in the diagram). Then we represent
the speeds of the characteristics, ¢ = uta, as a function of §£. The
characteristic where c'}'(go) is zero is the one on which the cusp of

the envelope of the characteristics lies. The coordinates of the cusp

are:
1
t = - ]
c c¥( o
R
Xe o c
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Now we have to continue constructing the shock, To do this we
examine first the conditions that the gas satisfies on both sides of

the shock, From energy conservation we get:

2

+ %(U-ub)

Lition V2 =
cpTa(1+aa)+Reiaa+ 5(U ua) = cpr(1+ab)+Reiab

U is the shock speed. Subindices a and b mean conditions on both
sides of the shock. The velocities are of the same order as c_T,
Since Gi is much larger than T, the dominant term in this expres-
sion is Gioz ; then across the shock @ is approximately constant.
Using the same arguments of section 1.3.3 we can conclude that

o, T, a, and p/p are constants over the whole field, indqundently
of the presence of this shock, The entropy will also be a constant™

(section 1.3.3). The mechanical conditions across the shock are:
P, (U-ua) = pb(U~ub) =m (85a)

p,tm(U-u ) =p, +m(U-u,) (85b)

b

and from the above arguments:

ko)
o)

.._a'..:: —b-z az = const. v (85C)
Pa b

From these three equations we get:

ua+ub+‘/ (ua -uy ) 2+4:a2 (ua+a 2 (ub+a) 1 (ua -y ) 2

U= > = > tg—F—t... (86)

There should be an increase in entropy across the shock, but -
it is small and does not affect the flow field.
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where the expansion is made for small values of the ratio (ua-ub)2/4a2
(see formulva (82a)., The first term of the expansion is the classical
result that the speed of the shock is the average of the speeds of the
characteristics on both sides of the shock. The first two terms of
the expansion (85) are the same ones obtained by Courant and Fried-
richs ((14), paragraph 72) for a perfect gas with constant specific
heats. However, their method cannot be applied for y equal to one.
Using equations (85) and (86) it is easy to show that the s Riemann
invariant also remains constant across the shock (in first approxima-

tion):

Pp=Py = m(ub-ua)

5= 1+ i)_ (ub—ua) =1+ Py (ub_ua) + 0((’;‘) )
a a

p u, -u u, 2
L= exp (22 +o[(31) ]

P, a
P, Uyuy, u, 2
dn — = + O (—)
P, a a
Py, Pa Ya 2]
ub—alnag—ua-ln;;"'o[(?) (87)

This means that the region behind the shock is also a simple-wave
with straight C+ characteristics along which the flow properties are
constants. With this latter result and formula (86), we can continue
‘constructing the shoci( and calculate all the flow field (see fig, 11).
However, the method fails as socon as the effect.of the wall is felt.

This happens when the non-simple wave region 8c is reached.
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We could study region 8c by using an analysis similar to the
one of section 1.3.4 and applying on the shock the conditions (86) and
(87), but in the examples that we are going to deal with we can apply
a further simplification. We assume that by the time the shock
arrives at region 8c the conditions behind and after the shock are
almost uniform; they are a small perturbation of uniform conditions
5 upstream of the shock and of conditions 7 downstream. All the
characteristics, across which the velocity and pressure suffer large
changes, are absorbed by the shock before it arrives at the non-
sii’nple wave region adjoining the wall. We can apply the linearized
theory of sound in this region. The characteristics upstream of the
shock propagate with speeds za (u5 is zero) and downstream with

u, *a. The shock moves with velocity:
' u
U=a+ —2?-

This shock reflects at the wall leaving behind a region 10 (fig. 11)
that is at rest in first approximation; the characteristics move with
velocities *a in that region. Across this reflected shock the Rie-
mann invariant r of the C+ characteristics remains constant. The
speed of this shock is given by the average of the speeds of the C~

characteristics on 7 and 10,

u
U =a -5

Since we know the location of all the characteristics we can apply

equation (84): (see section 1.3.4)
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2

P = (pih) p
wall Ps 5
Psh is the pressure behind the reflected shock (that interacts with the
ionization front) at a point that is on the same C+ characteristic as the
point at the wall./ Since we also know the location of the secondary
shocks, we can calculate the pressure distribution at the wall.

In figs. 12 are represented the calculated pressure distribu-
tions at the wall., In those figures are also shown Smith's (1) meas-
urements. These seem to be much more spread out than our
theoretical results, and their form seems to be more like the exam-
ples presented on fig. 10 on which there was no shock formation.
Perhaps impurities played an important role in the process of ioniza-
tion behind the incident shock, and the actual ionization front wés
thicker than the one resulting from the theoretical model proposed by
Smith (1). It could also be that our assumption of equilibrium degree
of ionization is not a good one, and there are relaxation and end wall
boundary layer effects that produce this spreading.

The agreement with Smith's (1) experiments regarding the
location and the amount of the jump in pressure seems to be good.

1.3.6 Formation of the Shock Inside the Region Adjoining the Wall

We now want to discuss the possibility of shock formation
in region 8c, In 1.3.4 we saw that the coordinates x and t could be
expressed in the forms x(r,s) and t(r,s), where r and s are the
Riemann invariants. r can be expressed as r(t,_s),‘ and the family

of C™ characteristics can be put in the parametric form:

x = x(r(t,s),s) = x(t, s)
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If these C~ characteristics intersect they will form an envelope of

equations:
x = x(t, s)
(88) =0

By a simple manipulation we get:

(ar)s (5_5— (as £ 0
or, _ (81:/35)r
(E-S—)t - i8t78ri
5% (at/as)r

BT s (0t/0r) (85 by =0

and by using (67) and (68) this last equation reduces to:
(:t'-‘s—a.)ts - (r—s+a)ts =0
(at/as)r =0 » (88)
In the same way the envelope of the C+ characteristics is given by
(81:/8?)8 =0 | (89)

The procedure used in 1.3,4 was correct as long as the Wronskian

'was different from zero:

(Br s (Bs)r (Bs r 8r 5 # 0

If we use equations (67) and '(68) we see that for the Wronskian to be

zero we need:
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x t-x t. =0
r s s r
(r—s+a,)t:rts-(r-s+a)ts'cr = -Zatrts =0

For this to be true either (88) or (89) has to be satisfied. If the
Wronskian vanishes in the non-simple wave region 8c there is shock
formation in that region.

Using (79), (74) and the approximation (82a):

t= e—r/Za T(s) + e-s/Za T(r)

Taking this expression into (88) and (89) we get:

s-r
T(r)= 2a e 2a T'(s) r=s (90)
: I-s
T(s) = 2a eZa T'(r) T s {91)

Equations (90) and (91) together with the functions x(r,s) and t(r, s)
give us the envelopes of the C~ and C+ characteristics respectively.
T is a known function.

The values of r and s that satisfy one of the equations (90) or‘
(91) and give a minimum value of t c‘brrespond to the cusp of the
envelope. If we consider that (9.0) gives us r(s), then the cusp will’

satisfy:

dr _
trgs--l.ts— 0

and since ts is zero on the envelope of the C~ characteristics:
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dr
== 0
T'(s)' + ZaT"(s) =0 (92)

The values of r and s that correspond to the cusp 6f the envelope of
the C™ characteristics will be given by equations (90) and (92) and
the ones corresponding to the cusp of the envelope of the C+ charac-

teristics by (91) and:
T'(r) + 2a T''"(x) = 0 (93)

We shoula first check if the C+ characteristics have an envel-
ope. If that is so, on the cusp of the envelope a shock wave will
start to form. This shock will propagate towards the wall and will
reflect from it. If fhe C+ characteristics do not collapse, we look
~ for the envelope of the C~ characteristics.,

In none of the cases studied in 1.3.4 were (90) or (91) satis-
fied at any point of 8c,

It must be remembered that since the C~ characteristics are
convergent lines, they must collapse somewhere in the simple-wave
region 9 (fig. 1) if they did not do it before. However, in our
examples this shock will be of modefate strength é,nd will not affect

the previous results.
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II. THEORETICAL STUDY OF SOUND AND SHOCK
WAVES IN A TWO-PHASE FLOW

2.1 Introduction

When the speed of sound is calculated in a liquid containing
bubbles, it is generally assumed that the mass ratio of the gas and
the liquid remains constant during the sound propagation (Wood (1),
Campbell and Pitcher (2), Eddington (3), Murray (4), Plesset (5)).
We will show that this is not true, unless during the sound propaga-
tion liquid and bubbles move together at the same velocity, When
the dynamic forces acting over the bubble are not negligible compared
to the viscous forces, liquid and bubble move at different velocities;
then the formulae for the speed of sound given in the previous refer-
ences are incorrect,

In the case of heavy particlgs in suspension in a gas a similar
phenomenon' takes place. However, in this case the consequences
of this behavior are better known. For example, in the papers by
Rudinger (6) and Marble (7) appear two different sound speeds.
Rudingei’ (6) callé them the equilibrium and frozen sound speeds.
The equilibrium sound speed is obtained when particles and fluid
move together at the same velocity, and it can be obtained by using
Wood's (1) formula (if heat transfer effects are taken into account).
The frozen sound speed is obtained when the particles do not move,
and this sound speed is just the speed of sound of the gas phase,.

In this work we will find an expression for the speed of sound

valid for any relative velocity between the phases and any type of
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suspension (drops, bubbles, or particles) in a fluid, and we will show
that the assumption of constant mass ratio can lead to significant
error, Heat transfer and surface tension effects will also be included.

To account for the relative velocity between the phases we
will define K as the ratio of the speed of the suspension (drop, parti-
cle, or bubble) to the speed of the fluid at a certain point, and to
account for heat transfer effects we will define K' as the ratio of the
perturbations in temperatures. In order for these definitions to be
meaningful, we have to assume that the general properties of the
flow do not change significantly over distances comparable to the
dimensions of thé particle. The expression for the speed of sound
will appear as a function of K and K'. In certain cases we are able
to calculate K and K' explicitly and sometimes we obtain values of
the speed of sound that are quite different from the ones obtained in
references (1) to (5). These results will be shown to be valid only
for low frequency sound.

Dobbins and Temkin (8) studied the case of sound propagation
in a fluid with solid particles in suspension, but they considered only
the low frequency limit in which the drag between the phases is due
to viscous forces; their result checks with ours (in that limit).

Soo (9) (10) also considered the case of sound propagating in a fluid
with solid particles in suspension; however, we think that his method
is incorrect because he assumed that the volume fraction occupied
by the particles was constant during the sound ﬁropagation. He did
not obtain the heat transfer effects ih closed form and his results do

not check with our analysis.
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For finite values of viscosity and heat conduction (or finite
frequencies), we obtain complex values of the speed of sound; the
imaginary part gives the damping of the sound wave. The damping
rate calculated in this way coincides with the one obtained by Carhart
(11) calculated by considering the dissipation terms in the energy
equation.

In part 2,2.6 we consider a general fluid in which thére is
a thin slab with spheres of a different material (particles, drops or
bubbles). We suppose there is a plane sound wave whose front is
parallel to the slab. We then calculate at a certain point behind the
slab the sum of all the intensities of the scattered waves produced
by the spheres. Comparing this sum with the difference in phase
produced by the fact that the sound wave travels at a different speed
in the slab, we obtain the speed of sound in the slab, The speed of
sound calculated in this way is the same as the one calculated in
sections 2.2.1 and 2.2,2. This dem.onstrates that the physical
mechanism of sound speed change is scattering by the suspended
phase,

In section 2.3 the structure of a shock wave in a liquid con-
taining bubbles will be stuciied. We will consider the two-phase
flow to be a compressible fluid in which the compressibility is given
by the bubbles (the liquid is incompre ssible). On the other hand the
inertia of the mixture is provided by the liquid phase (the gas density
is much smaller than the liquid density). We W:;I.].]. neglect interac-
tions between the bubbles.

The Rankine-Hugoniot relations for this type of shock are
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given by Campbell andv Pitcher (2); they also solved them and checked
~ their results experimentally., From these results they concluded that
the condition for shock existence is that the Mach number (ratio of
the speed of the mixture to the speed of sound of the mixture) has to
be larger than one upstream of the shock., However, as we said
before, their speed of sound is valid only in the low frequency limit;
from the calculations of section 2.2.1 we obtain a larger sound speed
(and a lower Mach number) in the high frequency limit. When both
Mach numbers are larger than one, we will show that the shock wave
structure is given by an exponential rise in pressure followed by a
relaxation region in which the pressure oscillates around the final
equilibrium value. The oscillations are damped by viscous and
thermal dissipation., These oscillations are produced by the fact

that the bubble behaves like a harmonic oscillator or a spring on
which the mass is provided by the liquid .outs‘ide the bubble and the
recovery force by the bubble pressure., The frequency of these
oscillations is similar to the classical resonant frequency (Silber-—
‘man (19)) corrected in our case by the effect of the virtual mass of
the bubble,

In the case that the Mach number referred to the low fre-
quency speed of sound is larger than one and the high frequency Mach
number smaller than one, the shock structure changes. The oscilla-
tions of the previous case disappear, and the shock takes a more
uniform and conventional shape, In this case all the regions of the
shock have the same character and the entire shock structure is

1

determined by viscous and heat transfer effects, whereas in the
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previous case the exponential rise in pressure was not influenced by
these dissipative mechanisms. The shock thickness is also larger
in this case, Under the latter conditions no numerical examples
were calculated.

The pressure gradient across the shock is maintained by the
drag between the phases. This drag is created by viscous and iner-
tial forces (virtual mass of the bubble),

We will take into account the heat transfer between the phases.
The temperature of the liquid is assumed to be constant but not the
temperature of the bubbles ™.

For large relative velocity between the phases the bubbles
are supposed to take the umbrella-like shape described by Davies
and Taylor (1 Zi.

Eddington (3) measured the structure of this type of shock.
The thicknesses of the shocks that he measured are about two times
larger than the ones calculated by us,

The shock thicknesses that we obtained aré large compared

to the size 6f bubble.

>=<Th:i.s assumption should be considered carefully because it could
lead to the result of constant entropy across the shock (Campbell
and Pitcher (2)).
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2.2 Sound Propagation in Two-Phase Flow

2,2.1 Calculation of a General Expression of the Speed of Sound

Liet us suppose that we have a suspension (drops, bubbles or
particles) in a fluid, The suspension is characterized by the sub-
script 1, and the fluid by the subscript 0. The volume fraction
occupied by the suspension is X, and the one occupied by the fluid
1-X. Now we assume there is a sound wave propagating in‘ this mix-
ture. We denote the perturbations of the flow properties by a tilde.
These perturbations are supposed to be small and the equations will
be linearized.

| The continuity equations of each component are:

8(potpo)1-X-X)  lpytpy)(1-X-K)a
+

Bt 5% = 0

8(xX+R)(p +p,)  Blp +p XHR)T,
ot * - 0x

= 0

~

ug and Gl are the velocities of both components (that are perturbed
quantities) and Py and P are the densities. The linearized continuity

equations are:

oX 0 _
op ~ ou
1 oX 1
X TP PXPp5x =0 (1b)

We define the average density, p, and velocity, u, as:

p+ 5= (pgtpy)1-X-X) + (py+py J(X+K) (2a)
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p=rpoll-X)+p X (2b)
p = po(l --X)-Xp0 + Xpl + plx (2¢)
~ po(l-X)uO+pl}(u1

T T eI X X (3)

Adding equations (1), and using (2) and (3) we get:

op du _
-a—t'*‘Pg-}z— 0 (4)

The linearized momentum equation of the mixture is:

du, ou,, L0 o
P X5 T (1-X)pg at Tox = O

where p is the pressure of phase 0. The above equation becomes:

ou , 9p _
PstTar = O (5)

on using (2) and (3). We take for p.the external pressure Pg- We
can justify this by taking a control surface that does not go through
any particle and applying to it the momentum equation.

Equations (4) and (5) are the usual sound equations. The
speed of sound will be (dp/dp)% if p can be defined as a function of p
only.

Let us define the mass fraction p and velocity ratio K:

o (1-X-X)(p 1P )

(utp) = == (6a)
(X+X)p,*p;)

“The viscosity of the mixture (as a single fluid) is neglected in com-
parison to the drag between the phases, This drag cancels when we
add the momentum equations for each component.
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(l‘X)PO .
b= T’"‘ (6b)
1
L A-Xp-p X (1-X)p, g B, .
= - — t —
P Xp, X, & ) (6¢)
K= ul/u.0 (7)

We assume that K is independent of x and t. Then from equations

(1) (eliminating uy and uo) we get:

K %P0k X 1 %1 1 8%
Po ot (1-X) ot Py ot X ot

Using equations (2) and (6) to eliminate (X;l + pll}\‘() and [(1-X)?)'0-por}v§]

in terms of ; and ; we obtain:

Ok _ (1-K)p(l+w) 1 3p
9t (RHp) P ot (8)

S will be a solution of the system (4) (5) and will have a form

(if (dp/dp) can be defined):

i
2

S = const. x exp [iw(t - -}g-)] where ¢ = (dp/dp) (8a)

fs: will have the same form and we can write (8):

e (l-IIi)ﬂL(HM) 1;-;; (9)

p is zero if K is unity (both phases move together) and not otherwise.
We will see that in many cases this condition is not satisfied, and the
assumption of considering the mass ratio constant (which is usual in

the literature) is erroneous.

From (22) and (6a) we get (eliminating (X+§)):
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~ ( +10)
B e (10a)
(ptp) (pytpy)  ppteg
}iﬁ. = _l.... +.l‘i_. (lOb)
P Py Po -
R ARt R aoe)
P Py 0 po .

If Py is the pressure of the suspended phase and we assume local

mechanical equilibrium:

- 2T
P1=Po* 3 (11)
~ ~ 2T
P tP =Py TPyt —= (11a)
ata
~ ~ 2 ~
Py =Py -3 a (12)
a

T is the surface tension that is supposed to be constant, We also

assume that the mass of the bubble (or drop) remaﬁns constant:
~3 ~ 3
(ata)” (p;*py) = 2P
3a‘pl + ap; = 0 (13)

From (12) and (13) (eliminating g) we get

~ -1
dpy Py 27 1
dp, 3a Py dpl dp1

Po

where:
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ff’_q__ﬁ dp . p
d ‘—N d—~
Po Po P p

(as we said before we take for 50 the pressure of the mixture 5).

Then (10c) becomes:

m 1 1+, 1 1 1 dpy |~ _
- - t— 57 |p=
p(Z) (dpy/dpg) 0% (dp/dp ) Pf (dp, /dp;) ‘dp,

f—

S Lpa (Ll (-Kuy)
(Po PP (Po P K

on using (9). This can be put in the form:

' dp P-p
1 dp, _ 0, (1 -K)u|(1+p)
[—Z dpo; Ty " 2 (dp, /dp,) (dpo)] ‘3’ = [1 i (, Po < ] p°

Using (6b) and (2b) to eliminate p and p, and taking for (dpl/dpo) the
value given in (14) we get:

@ pyp, (dp, /dp, Ndpy/de )

CZ = -CI-R =
de [XBldpy/dpy)eyt(1-X)dp, /dp, )p,] - [(1-X)p +Xp, ]
(15)
where
X(py =pa{1-K)(1-X)
a=1+——1P0

Kp, X ¥ py(l-X) (162)

1
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5= [1 27 1 ]'1_ P,/Pg
" 7 3a p,(dp,/dp,)| T,. 27
1'9P1/ 9Py [1- 55 pl(dpl/dpl)](l 0

(16b)

The values of (dpo/dpo) and (dpl/dpl) have not yet been calculated.
If we neglect surface tension B becomes unity; the second éxpression |
of B is obtained by using (11). If ('r/apo) is small and the fluid form-
ing the suspension behaves isothermally and is calorifically perfect,
the denominator of (16b) becomes (1 + 4'r/3ap0); this is the usual
surface tension correction found in the literature for the case of
bubbles (Eddington (3)). If the speeds of both components are the
same (& becomes unity. « is then the correction factor to the incor-~
rect expressions of the speed of sound found in references (1) to (5).

We are now going to calculate the quantities (dpl/d.po) of
formula (15). If the substances forming the phases are such that
their state law is of the form p(p), the values of those quantities are
evident. However, this is not so if the state law is of the form
plp, T) (T is the temperature); in this case we have to know whether
the phases behave isentropically, isothermally, or in any other way,

Tiae following thermodynamic relations are supposed to hold

for each component:

Cpi = Ti(asi/aTi)pi (17a)
/

CHRE Ti(asi/a'ri)pif | (17b)

2 _ - %2 -

¢, = (.api/api)s =y,c} _yi(afi/api) (17c)



-83-

p, = f(p,T,) C (174)
Cpi/cvi =75 (17e)
T.c2a% = (y. - 1) 1
i€ %= Wy mlley, (17g)
2
ds; = - [a . /p,ty;-1)] (dp,-cdp,) (17h)
i=0, 1

These relations are supposed to hold for very general types of com-
ponents (even a solid or a liquid). Cp and c, are the specific heats,
s.is the specific entropy, c the adiabatic speed of sound, c¥* the iso-
thermal speed of sound, and a, the compressibility. For further
justification of relations (17) see Appendix A,

We now express the conservation of energy of the system by
the linearized equation:

3s 9s

0 1 _

where we assum'ed that in the unperturbed state T0 is equal to Tl .
The heat conduction of the mixture (considered as if it were a single
fluid) is neglected in comparison to the heat exchange between the
phases. This heat exchange does not appear in (18) because it cancels
when we add the energy equations for each component. To higher
order we cannot consider that "I"’.0 is equal to %l' then in equation (18)

the heat transfer would appear like a dissipative term. The dissipa-

tion due to the drag between the phases will also appear as a higher
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order effect. These dissipative mechanisms would produce an
increase in the entropy of the system (to a higher order); alth'ough
they are negligible in our linearized analysis, they have a definite
physical significance; by evaluating them Carhart (11) obtained the
imaginary part of the speed of sound (damping), and his results
will be shown to coincide with ours.

From (17) and (18) (and using an argument similar to the
one in (8a)) we get:

(1 x>: ) (B - cg;0>+x%},@l-ef;ﬂ=o (19)

We now assume that the perturbations in the temperatures

are such that:
—_ 1
Tl/TO = K (20)

where K' is supposed to be a function of the unperturbed quantities
and of the frequency of sound.

From the state equation (17d) we get:

- (afl) , (Bfl & (212)
P17 % P17 BT "1
. ¥ of,

We now have a system of six homogeneous equations (12), (13), (19),
(20), (21a) and (21b) for the seven perturbed quantities EO’ 50, ;1 ,
;l’ fO’ fl and a. We can then obtain after some algebraic manipu-

‘lation (using also relations (17)):
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(81
1 1 vl
~ 14X [ Y 1]+ [K ————p (1-A)- —L=]
g _Pg_ 2 o (L- \’1m (1- Yl A) pO %0
gy 5T o )
0 l+X[—-—;—(—) T——K) l:l‘l' Yo (T—)[K '—Lpo (I-A)-avo]
(22a)
1 Po %po %o
~ 1+(1- X)[ O (1-y,8)-1]+-X) [y =2 B2 V0 _a))
dpy Py _ 2 vl 1 P S5 g
dp, ~ T "1
s 1+(1-x>[———<1 ~yyA)-11tyy (1-X) [ BQ—P—- —¥00.a)]
V 1 pl Vl

(22b)
where A = 27/3aplcf'.
For details of the calculation see Appendix A,
If:
c

%1 Po Spo 1

K' =
Ag Py Cpp (1-4)

both species behave isentropically and:
_ .2 : _ 2
dp; /dp; = cj dpy/dpy = <

On the other hand, the isothermal behavior is given by:

p 0 dp c:2
LS N S 2 N 2= 0%
Po po o0 dpg Vg O
1 Po po %o dp, o,
_RT___E_..EL(I-A)>>1 TR
P1 ©pi1 vl Py ¥

We see that if one of the species has a much higher density and
specific heat and much lower compressibility than the other, then

the latter species would have a tendency to behave isothermally.
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In the case of a liquid or a solid both specific heats are the
‘same, Y is close to one, and from (22) we see that: (the numerator

and denominator are equal)
4 2. i
p/dp = ¢” (independent of K')

Equations (15), (16) and (22) give us the speed of sound of
the mixture as a function of K and K',

We expect that for low sound frequency the species will be
at the same temperature (K' = 1) and that for high frequency they
will behave isentropically. At high frequencies the process is so
fast that there is no time'for the heat to be transferred from one
phase to the other. At low frequencies the process is so sl;)w that
there is enough time for the temperatures to become equal. These
assumptions will be justified in section 2.2.3 for the case in which
X is so small that the speed of sound of the mixture is a perturba-
f:ion of the speed of sound of the external flow; however, we are
going to assume that they hold for any X much smaller than one.

The results of section 2.2.3 are:

K'=1 (23)

coazp c 2 wazp c 9
1P} v« ana [—1PRl O
0y 91 0y

0 is the heat conductivity and w the sound frequency. In the case of
bubbles the first condition is more restrictive, and in the case of
drops or particles the second condition should be used. For high

frequencies:
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%1 i(l CpO
2y0 P Cpl
1

wazplc 1 z
1

Equation (24) gives the isentropic law (see (22)) (surface tension is

(24)

neglected),

At low frequencies both components are expected to move
together (K = 1). Lamb (13, section 363) gives for the case of parti-
cles in suspension:

2 p
=1 if ¥« O (25a)

K=
Yo Pi

ﬁll ']
[ L)
I

However, it is not difficult to redo his analysis for the case of bub-

bles (see section 2.2.5):

K =1 if 9}— << 1 (bubbles) (25b)
0

i
SFJFe

These results hold for X << 1, For high frequencies (see Lamb (13,

section 298) and Landau and Lifshitz (14, p. 36)):

E 3p
_ 1 _ 0
: Gy 2ppteg (26)
if L-ANPON 1 and X << 1]
Yo

%
These results will also be obtained in 2.2.3. We see that only for
low frequencies can it be assumed that both species move at the

same velocity. In this case the viscous forces are more important

*Under more restrictive conditions for X
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than the inertia forces, and the external fluid is able to drive along
the suspension. The results obtained in references (1) to (5) are
correct only for low frequencies,
Let us examine the case 6f air bubbles in water. For low

frequencies we saw that K' is one., Then (22) gives:

2 1H(1-X)(p e 0)/(pl c 1)
1 THy 1K) (pye 0!/ (P1C51)

(dp,/dp;) =

(Surface tension has been neglected.) Since the density and specific

heat of the water are much larger than the density and specific heat

of the air (pOCp0>> plcpl) the above formula reduces to:

2 ,
c . P :
1 %2 _*l1
(dpl/dpl —'ryl— =< —-——Pl (27)
2
wap e )
for ——0,——2— << 1]
1. ’

The last equality holds if the air can be considered a perfect gas.
At low frequencies the bubbles behave isothermally. For high fre-

quencies we saw (formula (24)) that:

dp, 2 V1P
d 1 (28)
Py P
wazp
for 1 pl >> 1
9y

The bubbles behave isentropically at high frequencies. For air and

water we have:

91 2
{ c ) = 0,19 cm“/sec.
P1pl air
_ 2
(vO)water = 0,01 cm“/sec.
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then

9

P1%p1

>
>v0

We can distinguish the following cases:

. 2
(i) wa” << vy << Ul/(plcpl)

In this case Wood's (1) formula is correct and the bubbles

behave isothermally. (See fig. 1).

>}<2 pl ‘
a=1, dpl/dpl =c; = ?’T (29a)

.. ' 2
(ii) vy << wa” << Ul/(plcpl)

The bubble still behaves isothermally, but Wood's formula
is incorrect. The correction factor «& (using (16a) and (26) with
Po >> pl) is: (See fig. 1)

| ¢y D
a=1+2X, dp,/dp =c| = P—l (29b)
1

For values of X of 10% we obtain a 20% correction.

2
(iii) L << (o‘l/plcpl)<< wa,

The bubbles behave isentropically: (See fig. 1)
2
a; 1+2X, dpl/dp1 =cy = ypl/p1 (29¢c)

L
The value of (dpo/dpo)‘2 (speed of sound in water) is a constant.
Taking formulae (29) in (15) we obtain the sound speed of the mix-

ture.,
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Let us examine the case of drops or particles in suspension
in a gas. In this case we will discuss only high and low frequency

limits without considering intermediate situations. In this case:
PL>> Pge dpl/dpl>> dpo/dpo, X <<1 (30a)

For high frequencies (26) holds, and (l6a) gives:

P1 5 2
a=1+x-p-5 - EX+O(X pl/po) (30b)

For high frequencies the gas phase behaves isentropically (see for-
mula (24)), Taking (30b) into (15) and using the above inequalities

we get:

Yp
c? = ¢2 [1-(x/2) + O(X%p, /p)]= —p-69[1~<x/;)+0(xzpl/po)]

, 2/, 13 2 5
if (wa /v0)3>>1, (wa plcpl/ol)2>>1 (30c)

This means that the speed of sound of the mixture is only in first
approximation affected by the presence of drops or particles. Wood's
formula will give us a quite different result if the factor ‘Xpl/Po)
turns out to be of order unity or larger (see formula (30b)). In the
low frequency limit particles and gas move together at the same
velocity (K = 1) (formula (252)); the temperatures are also the same

(K' = 1) (formula (23)). Then (22a) gives

P1%p1
4 1+xX —2=
Po_.2 P0%po
Pp 0 P15
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where we neglected surface tension (T = 0) and assumed that the com-
.pressibility of the gas, a0 is much higher than that of the solid,
ooy Since K is one, our correction factor & will be one, and for-

mula (15) gives (using ine qualities (30a)):

P1%p0
4 1+X —P22
2 Po 1 _ YoPg P0Cp0 1
dp P P p,c P
O [+x -] 0 “Vox'l_cp—l 1+x -2
0 P1%p0 Po
1
c X —c
PO " py Pl Py
Pl Pot¥Py B
c +X ——c¢ :
vO0 Po pl
2, 1 2 1 Y9
if (wa /vO) << po/p1 and (wa plcpl/()’l) << a—l—

In formula (31) we used the relation \‘(O = CpO/CvO‘ The first factor
of (31) can be interpreted as the ratio of the average specific heats
of the mixture, and the second as the ratio of the pressure over the
effective density of the mixture.

These two limits of high and low frequency give us the frozen
and equilibr:ium sound speeds obtained by Rudinger (6) (see also
Marble (7)).

2,2.2 Dispersion Relation

In 2.2.1 we obtained an expression for the speed of sound
that is supposed to hold under completely general conditions. How-
ever, in that exprlession there are two constants, K and K', whose
values are not always known., We estimated them only for some

limiting values of the sound frequency. We now want to obtain K
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and K' for any sound frequency and any type of suspension. However,
to solve this problem we will have to put even more restrictive con-
ditions on the volume fraction X. We will assume that X is so
small that the speed of sound of the mixture is only in first approx-
imation affected by the presence of the suspended phase.

Suppose that we have a spherical particle (drop or bubble)
suspended in a fluid in which there is a plane sound wave propagating.
We want to calculate the perturbed velocity and temperature of such
suspension and compare them with the perturbed velocity and tem-
perature of the fluid; this will give us K and K'. Carhart (11) calcu-
lated the flow fields inside and outside a particle under these
conditions. First we are going to give a summary of Carhart's (11)
results: |
iwt

Suppose 2 is the incident wave, where:

ikox ikorcose n
¢. = e = e = % i (2nt1)P (cos0)j (kor) (32)
=0 n n

j._(z) are the spherical Bessel functions:
n )

i (z) = sinz i (z) = sinz _cosz
Jo z 2 z

: R N SO
JZ(Z)—(Z3 z)smz ZZCOSZ"“" (32a)

The values of Pn are given in formula (37d). kO is the wave number:
kg = co/co ' (33)

r is the radial distance from the center of the suspended sphere that

we take as the origin of coordinates. The two other spherical
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coordinates are 8 and { (azimuthal coordinate). Carhart (11) found
that the velocity, pressure and temperature fields outside the particle

are.;

* ~iwt
Vo= [-Vig, + og+ o) + VxAle™ (34a)
* ’ ~iwt
PO = "1pr [‘Pi + ‘PO + Ylofpb] € e (34b)
g %(‘P + 900) +O!0¢p0]e (34c)
The scattered waves ?q° qob, and éO are:
Y
25 _n=01 (2n+1)Pn(cose) BnO hn(kor) (35a)
¥ .n
1 e 3 !
o= ), i'(2nt1)B (cos8) C_, h (i) (35b)
n=0
Ay, = OZD) i%(2n+1)Pl(cos@) D_, h_(k!'r) (35c)
Oy n n0 "n"0
n=1
Agg=Ay =0 (35d)
The coefficients determining pyg and Tz are:
' Mo
Yp=1 -4+ 0) v CPO/BGO (36a)
a, = ~iw(y,-1)/(a cz) (36b)
0 Yo v0°0
= =lpge o)/l q0p) (36¢)

N and p are the normal and shear viscosities respectively. The wave

numbers corresponding to the scattered waves are:

1
kY = (1+) (— 0 POy® (37a)
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ot

o . W 2
0- (1+i) ('2‘;(—))

hn(z) are the spherical Hankel functions:

eiZ iz, i L1
ho(z) = -l hl(z)’—‘ -e (‘;2"*‘;)

iz, 31, 3 i
hz(z)“."'e (_'3_+-2"';)9 s e s e
z pA
and P:;n(z) are the Legendre functions:

Po(z)= 1, Pl(z)= Zy seesens

Pl(z) = ~(1-2°)(dP /dz)

The expansions (35) are supposed to be made for small values of a

ag = koa << 1

The wavelength is much longer than the radius of the particle.

coefficients of the expansions (35) decay with n like increasing

(37b)

(37c)

(374)

o:

(38)

The

powers of a.s consequently, only the first coefficients will be needed:

A iag Po. 21 2 To a'o
= —2 [(—=) (—) - Y Y 1y 1y, -
Boo=3 (pl) (ao) 1 G g - Diagh (aglagCyg

1 %
=O(a.?6)
pn O
o (39 E% - 1)
C - l 0 =O(a2)
00- 0

{39a)

(39b)
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3

ja p bh (b y®+ T %

13y 0 o 3

BlO =3 (1- -‘;';) oy O(ao)

[-(2+ ——)+ 9 h (b,)] ®+<2+——)r

l

(39¢)
where ® = (1-H—O-)b '(b)-lbz'(b)
™ 192'°17 72 1119y

I = (2 ]_b )leZ(b)hl (bo)

: 0 0 3
C.,==— — : C,n = 0f(ay) (394)
10 1 a'l a'l_]l a.'l 00 0 ,
D)y = Olag)
where:
2 1
b = ak'é = (1+i) (wa /(Zvo))?- (40a)
2 :
} . | >
ag = akj) = (1+i) (wa pocpo/(ZGO)) (40b)

The coefficients y'l, a , al, kl, k'l', ay and a’1 have the same form
as the corresponding terms with subindex zero [(36), (37), (38) and
(40)], but instead of being defined by the external fluid properties,

they are defined by the properties of the substance forming the sus-

pension (subindex one).

* We think that there is a mistake in Carhart's result. Before the
second term of the numerator Carhart has a minus sign that we think
should be a plus.
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The velocity, pressure, and temperature fields inside the

suspended sphere are given also by Carhart (11):

. .
vy = [-Vie, +0)) +Vxa JeT (41a)
py = -iwp (g, + yjg]) e (41b)

", —‘wt .
TH= (e + &t gl)e ¢ (41c)
where
X n
o= )i (2nt1) B (cos8)B_,j_(k, ) (42a)
n=0
¢y = f i*(2nt1) P (cos)C_, j_(k!7) (42b)
n=0
A'1 = f in(2n+l)Prll(cosG)Dn1 i (k' T) (42¢)
n=1
Ag=A =0 ' (42d)

These expansions are supposed to be for small values of ag:

a; = o.>a,/c1 << 1

The coefficients decay with n like increasing powers of aj. The

values of the coefficients are:

B py/Py = O(1) (43a)

01~
1 1 1
0'0 aO aoh1 (aO)

Co1 =5, & aTh (a7 Coo = O@y) (43b)
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Ipy/P)i By,

O(1) (43c)

11" [1-(py/py)] ala(z)
C,. = 0@d) (43d)
11 1

At this point Carhart (11) proceeds to calculate the dissipation terms
of the energy equation, and from this he obtains the damping.
Instead of doing that, we are going to calculate K and K', take these
values into (15), (16) and (22), and obtain the speed of sound of the
mixture, The imaginary part of our sound speed will give the same
damping calculated by Carhart (11). Since the radius of the sphere
is small compared to the wavelength, we can say that the changes in
the flow field created by the presence of the suspended sphere will
die away over distances that are small compared to the wavelength.
We then define the velocity and temperature of the external flow as
the velocity and temperature at the origin given by the incident wave
only (the velocity and température of the external fluid at the origin
when the suspended sphere is absent)., The velocity will have only

the x component. From (34):

Ug = - ['a'E (p;e )]x=0 B P %x=0

= -ikoe-lwt (44a)
- ik x~wt) .
To=agle O 1 _ = age (44b)

‘For the velocity and temperature of the suspended particle we take
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the average of these values inside the particle (drop or bubble):

4 = v av (45a)
1 (4Tra.3/3) volume 1
particle
T o=t [ ] av (45b)
(4ra”/3) volume
particle

Looking at (42) and (43) we see that the ]301 and C01 terms give a
potential that depends only on the radial distance; consequently, they
only produce symmetrical radial velocities that do not give any net
velocity of the particle when the integration (45a) is carried out. The
lowest order term that gives a contribution to the velocity of the
sphere that does not cancel when we perform the integration (45a) is
B11 (of expression (42a)). Using for jl the value given in (32a) we
get:

sinkl r cosk,r

¢; t ¢} = 3icosb By, ( —=— - —g 57— |* symmetrical terms
(k,r) 1

+ O(al)

The vector potential é—l gives smaller order contributions. Since
klr is at most kla., we can expand the above expression for small

values of kla:

1 klr 1 klr
1 A~ 2 ——— - e—o— o,
<p1+<p1-31cos(3 Bll[klr TG crecee k1r+ > +veeel
o iBll klr cos@ = :LBll klx

This potential produces a uniform velocity in the x direction (see

(41a)):
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Vi =Bk, e It O_UF

1x 11k e T vigEvy, =0

Since this quantity is constant, the integration (45a) gives the same

va;.lue for the velocity of the particle, and using (44a) we get

. -iwt
-iB, .k, e 1w k
11 l. - B 1

iwt 11 Ic—(;

K = (46)

ﬁlll_‘l
I

0 -1k0 e

The temperature Ty is given in (41c). Using (45b) we get:

s e-iwt
- e . _
1T (4ma> /3) § (@ypitayop) dV
volume
particle
e-iwt ;
. e ) ’ - '
i (47ra3/3)5 [o; By gtk rh+ay C o iglkir)]av+O(a])
volume
particle

The term B11 although of the same order as B01 will not give any
net contribution (because of the cos 0 term) when integrated over the

volume of the sphere, Since klr is small we have: (see (32a))

jo(klr) e ]
However, k'lr is not small:
2 sin(k'lr) 2
g jo(k'lr) dv:S‘_l?—f— 4qr-dr =
1
volume 0
particle
47 sin(k'la) 47a cos k'la
- 3 - 2
kg kg

Then (since k'la is equal to a'] (40b))
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~ 301'1C01 iwt
= : s LR | 1 -
T, [al By, + 3 (sin aj -a} cos al)] e
1
From this result and (44b) we get:
T « 30! C
K'=——1—=-—1B +—l-—-9£(sina' -a' cos a'!) (47)
7 B 172 1
0 a1 %

(46) and (47) give the values of K and K' as functions of the unper-
turbed properties of the mixture and the frequency of sound. Putting
these values in (15), (16) and (22) we get the dispefsion relation that
we are looking for. ’

However, when we calculated K and K', we assumed that at
infinity there was a sound wave propagating with the speed of sound
of the external flow; because of that assumption this method is ex-
pected to be valid only if the speed of sound of the mixture is a per-
turbé,tion of the speed of sound of the external flow, Expanding (15),
(16) and (22) for small X, and then putting into this expansion the

values of K and K' previously calculated (46) (47) (using also relations

(39) and (43)) we get, after some algebraic manipulation:

c=cylt+ Zmni 5 (Byg * 3B, o) + o(x?)] (48)

(w/cg)

7ra3n (49)

Wl

X =

n is the number of suspended particles (or bubbles) per unit volume
of mixture, For details of the calculation see Appendix B. Formula

(48) gives the speed of sound of the mixture as a function of the
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coefficients of the scattered waves in the external flow field*. In
section 2.2, 6 we will give an interpretation of this result,
It is also easy to check that to a first approximation the
assumption of mechanical equilibrium ((12) with surface tension
neglected) holds, From (41b) and (43) we get:

~-iwt iwt

p; = (pi) = -iwp; By, e T HO0(a, ) - impoe" =p,

() means the average value over the particle (see formulae (45)).
The term [Bll P1 (cose)] of expansion (42) gives zero average. The
term (-iwpo)e_imt is the pressure at the origin when there is no drop
or bubble there (see (34b) and (32)).

The damping will be given by the imaginary part of the speed

of sound (48)

C =

“real T cimag. = [CO +O0X)] + i Cimag.

= O(X), c << ¢

C. .
imag. imag. 0

The properties of the mixture will have the functional form:

exp[im(%f— - t)] = exp [iw( t)]

CO-I-]'C:'L:ma.g
< xc.ma
2 exp [iw(E— - t)] exp [0) —lz'—-g-]

0 <o

The damping factor is then:

K and K' were obtained as functions of the coefficients of the scat-
tered waves inside the particle; after the algebraic manipulation we
obtained ¢ (48) as a function of the coefficients of the scattered
waves outside the particle,
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-W C,
@y = —3228 per unit length (50)
C
0

Using (48), (17g) and (39a,b) we get (see also Appendix B):

] 1 1
- zma 7, o -1)(1—£9£¥—1)2Real agh, (ap)/hylap)
) . 1 [} [}
d ¢y PeSpo O PL Ogdolay) aghlag)
i 1
0y apjjlag) hylag)
2™ Rea1l3B 51
(w/c )

which coincides with Carhart's (11) result. The energy dissipation

is obtained by multiplying the above result by two:
< 2
Energy~ {exp o - )]} = exp [210(X - t)]

The first term of (51) gives the thermal damping, and the second
the viscous damping.

2.2,3 Limiting Values of K and K!'

As indicated in section 2,2.1, it is expected that (if the volume
fraction occupied by the particles is small) for low frequencies both
components will move at the same velocity (K = 1), and they will have
the same perturbed temperature (K' = 1). For high frequencies it is
expected that the species will move according to formula (26) and
that they will behave isentropically (no heat transfer between the
phases). We are going fo see that the results of the previous section
follow these rules,

The value of K given in (46) can be put in the form (after using
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Bo 2 Po_2

(43c), (39¢c) and the identity — = — b, (40a))
My 0 Zpl 1
3p boh, (b, )+boh, (b, )G
K = 0 072'Y0 07°1'°0 | (52)

2P1*Po [ [ IPo h, (b)=b.h (b )+b%h. (b )G
2p1+p0 1707 Cootto’ TorLYo

where
G=2 Y b i by )/LL= =Ob § (b, )-% b2 (b:)] (53)
2’ P92 911212131-1

It is easy to check that G can never be large. For such small fre-

quencies that:

1

3
(—‘2’—3—0) <<'1 or ol << 1 (54a)

we have (see (37c)):

3
boh, (by) = -3/b0 =~ 3 hy (b)) (54b)
+1
h (by) = 0(1/b13 ) (54c)

In order to neglect the term (boho(bo)) of the denominator of (52),

we have to assume also:

b3 << po/(2py + pg) (544)
Using relations (54) we obtain (G cag never be large):

K=1 ' (55)
if

2 2
wa_ <<1, and —— < < ————
vy Vo 2p1+p0
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In the case of bubbles both conditions are equivalent (pO >> pl)
1

2 2
(%a_'_) <<1 {bubbles)
0

In the case of drops or solid particles the second condition is more

restrictive:

wa, Po . .
(5—)<< — <<'1 (drops or solid particles)

0 Py

These two results mean that it is easier for a heavy liquid to
drive along a bubble than for a light gas to move a heavy particle.

In the h1gh frequency limit we assume that:

o

2
i‘:—aé;--) >>1 or Ib0|>>l

Then (see (37c¢)):

h (bg) = 0(1/b0)
ib0
bOhO(b-O) ™~ aje = —bohz(bo)
and since (9p0/(291+p0)) can never be large, the numerator and
denominator of the bracket of {50) become the same, and:

3p0

K= 5—
2p1+p0

(56)

2
() >>1

This result checks with Lamb's (13, sect. 298).

Now let us examine K', By using (36b) and (17f) we get:
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o

% Po _ %1 Spo Po
%P1 %o Cp1 P

taking this into (47) and using (43a,b) and (39b) we get:

-~ 1) (57a)
0 0%p1P1 %0 Sp1 Py
where
1 1
. 360 aohl(ao) 1 (57b)
- ' : 1 1 1
1 at!n @h) [ %0 Jolep) 2gh;(ap)
100 -5 I Ty TR ey
1 %11y 0'%0
Let us examine the low frequency limit. We assume
2 1
wapiec 2
la'l<<l or | ——=-E= << 1
1 20‘1
Then from (32a):
sina! cosa! al
. Ty - 1 1.1 2
jplay)= 22 s 3t ol

jglal) =1+ Ofal)

jo(a'l) 3
- ~ + O !
ai Jl(a‘l) aiz (l/al)

(58}
We assume also that:

Then the second term in the bracket of the denominator of {(57b) is

much larger than one (it is easy to show that [abhl(a‘o)/ho(a'o)] can
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never be small), Using this and (58) we get:
H= -]
and (57a) gives:

K' = 1 (59)

et

. 2 2

if {wa plcpl/o'l) << 1

and (u.\a,2 c ., fo, )<< o,/0
P1¢p17%1 0’71

In the case of bubbles the first condition is more restrictive, The
heat conductivity of a gas is much lower than that of a liquid or a
solid. In the case of solid particles in suspension, 0y<< 0y the
sccond condition should be used. This means that it is easier

for a liquid to communicate its temperature to a bubble than for a
gas to heat or cool a heavy particle. At sufficiently low frequencies

both species have the same temperature,

In the high frequency limit we assume:

[

2 2
la'l l>> 1 or (wa plcp/O”l) >>1

Then from (32a) we get:

jo(ai) tanal
TEn 2 e for [eg|>>1
171191 1

and the value of H (57b) becomés,’:

1 .3z

T T T tam Al
al al Ztan al
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Clearly, H goes always to zero for large la,'l l, because if Z becomes

large then it would cancel with the term in the denominator
H=0
and from (57a):

¢ .C_.p
K= SLP0D (60)
v0 p1P1
| L

. 2 2

if wa plgpl/cl) >> 1
This value of K_' gives us the isentropic behavior (see (22) with sur-
face tension neglected). At high frequencies there is no heat transfer
between the phases, and both species behave adiabatically,

2.2.4 Case of Drops or Solid Particles in Suspension

In this case we assume:

Po << Pys Bg <K Bpy 0g<<0y, O o >> @

(61)

We want to calculate the value of the speed of sound of the mixture
(48) under these conditions. Formula (48) is only valid for X so

small that:
c = <o + O(X) (62)

Under assumptions (61) formula (48) gives:
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3, ,Po po 2 2.
4:zo+ 6; Cpl (1+z0+z0)+4(l+z0)zo1

2 3 3
c=c 1+§ mna” -rna ('yo-l)

Pn C
4zg+12 -QEP—Ozg + 9(— "o —P-—)
P1 “p1 P1 “p1

8y t+1 2y3+27(E9-)(2y2+ 2y+1)+12y% (y+1)i
-27ma3 (63)
16y +72( )y +81(—) (1+2y+2y2)
where
wal 2 “aPgCh0 z 4 3
y = EVE) z0=( - ) X=-5-7ra.n

0
The details of the calculation are shown in Appendix C. n is the
number of drops per unit volume,

In the low frequency limit we have (see 2.2.3):
y << Po/Pl

2
<< co/cf1

%1

but since:

p.c_.O
L2 = 102100 zg
Po°p0”1

(64)

we have:

PAC
zg<< _0p0.,
p1Cpl

and (63) reduces to:

X 3Xx 2 P1 X P
vl Y p—(—:R—)_ o
0"p0

cC=c [l+
Po
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and since Py >> Por We get:
p,C P
c=cyll -3 gy iRl . XL
Po“po Po
which coincides with formula (31) and Marble's (7) result (if X is so
small that expansion (62) can be made).

In the high frequency limit (see 2.2,.3):

y>>1

zl>>1

Using (64) we have:

2 . Po ®poY1

pPnC
2% >> >> 0 p0

P1 ©p190 P1%p1

If we assume that (pocpo)/(plcpl) is of the order (GI/O’O) we have

also:

z0>>1

Then (63) becomes:

cecpi+i-K=c n-% (66)

which coincides with formula (30c). At high frequencies the speed
of sound of the mixture (for drops or solid particles in suspension)
is only affected (in first approximation) by the volume occupied by
the suspension. This means that, ih this limit, expansion (62) is
valid for any X much smaller than one.,

Under assumptions (61) the values of K(52) and K' (56) are
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(see Appendix C):

x - 2P0 [8y4+12y3+z76(zy2+y+1>+1zy2(y+1)i]

(67)
P 16y +726y>+816% (1 +2y+2y°)
o _.c_.p o C p
k= 12000, (%1 Zpo fo 1) (682)
v0Sp1PL %0 “p1 P1
where
P C
42746 229 (145 +2%)+a(1+z )22 3
Py C ¢ 7 pc 0 70 0°"0
H=-2-2 RO L pl (68b)
2P1 °p1 4 PoCpo 3. P0%p0,2
4z + 12 —RZ 52 + 9(—R2
0 P1p1 0 P15

This value of K can be obtained from Lamb (13, sect. 363, formulae
(36) (39)) after a straightforward manipulation. His result applies

under only the condition:
X << ] (68¢)

If we could calculate K' using only assumption (68c), then by putting
K and K' in (15), (16) and (22) we would be able to obtain speeds of
sound of the mixture that would be significantly different from the
speed of sound of the external flow, cpe However, to calculate K'
in general, we have to use the more restrictive assumption (62).

The damping is: (formula 50))

mcimag 2mna o
Ug= -7 = o Wl Gl + 2)
o 0 0" p0o
4z
0 27na. 3
- — |+ EER v, S5)1+y) A (69)

€o
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16y
where A= 7 3 b > >
16y +726y +816 (1+2y+2y")

which coincides with Carhart's (11) result.

2.2.5 Case of Bubbles in Suspension

In this case:

PO™> Pps B >> My, 052> 00, @ << @, cy>> ¢, (70)

We want to see the form that the expression of the speed of sound
(48) takes under these conditions., Expression (48) is only valid if
the volume concentration of bubbles, X, is so small that the speed
of sound of the mixture is a small perturbation of the speed of sound

of the liquid. From (48) and (70) we get:

3 pc2 pcz

_ 2mna 070 3 070
c-col- 3 ( 2)--7ma ('yl-l)( 2)
P1¢1 P11

sinh2z, -sin2z . sinh2z.+sin2z
1 1 1 + 2 1 1 -1 +
2 \%1 cosh2z «cosZzl

z
1 coshZzl-cosZzl Zq 1

[

+2rma3 (2y6+6y5+9y4+24y3+54y2+54y+27)~ﬂ2y4+24y3+18y2H]
2y O+ 6y +9y 43 6y +1 62y%+1 62y+81

(71)

where:

1
2

- (wal - (0l 3
y = (wa /Zvo) , z) = (wa plcpl/ZUl) ,

"
I
(ST
5
o
B
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For details of the calculation see Appendix D, For low frequencies

(see 2.2.3):

z1<<l

y<<l

Expanding sinh, cosh, sin, and cos to third order in z, we get:

2
_ X Po% | x
C-‘CO (1 -“2‘ *2 +—2~) (72)
11

*

where ci“z = cf/’y1 (Cl isothermal sound speed)

For high frequencies (zl >> 1, ¥y >> 1) we get from (71):

2
_ X Po% | 3X
C—Co(l“—z‘“”_2'+ ”2'"") (73)
P11

Formula (72) can be obtained also from (15), (16) and (22) by taking
for the speed of sound of the bubbles the isothermal limit, c:lk, and
assuming that bubbles and liquid move at the same velocity. For-
mula (73) can be obtained by using the adiabatic speed of sound and
taking for K the value three. Formulae (15), (16) and (22) have to
be expanded in powers of X in order to obtain (72) and (73). This
requires such small values of X that in (72) and (73) we can neglect
the third term of the bracket compared to the second.

The values of K and K' given in (52) and (56) become (on

using (70)):

k=3 [(2y6+6y5+9y4+24y3+54y2+54y+27)-i(l Zy4+24y3+18y2)]
2y6+6y5+9y4+36y3+162y+81

(74)
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o .c_.p ad ¢ .p
Kx=_aY__1_EE_O__9_ +H(._dll_€129.,9__1) (75a)
vO0 plpl vO0 plpl
sinh2z. -sin2z sinh2z_ +sin2z
where 1= 2] LIS, L L ST, ]
2 z cosh2z, ~coslz 2 z. coshlz,-coslz
1 1 1 z] 1 1 1
(75b)

The value of K given in (74) can be cieduced by doing an analysis
similar to the one made by Lamb (13, section 361). Lamb considers
a sphere moving like a rigid body under the beating of a sound wave
propagating through a fluid. He assumes that at the surface of the
sphere the tangential fluid velocity is the same as the one of the
sphere. If we do the same analysis, but assuming instead that at

the surface of the bubble the tangential stress is zero, we get the
value of K given in (74). In the analysis made by Lamb (13) it is not
necessary to assume that the sound wave is propagating at infinity
with the speed of sound of the fluid; consequently his analysis is valid
for any X much smaller than one (and not so small that condition

(62) is satisfied). If we could calculate K' assuming only that:
X<<1 (75¢)

then by putting K and K' in (15), (16) and (22), we would be able to
get values of the speed of sound of the mixture quite different from
the speed of sound of the liquid, cqye However, the value of K' given

in (75a) can in general be used only in cases for which:

c = cO+O(X)
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This condition is more restrictive than (75c¢).

The damping is (formulae (50), (71)):

2 . .
o = - ®Cimag _ 2mna (plcpl)( _1)(%“0) ; sinh2z, tsin2z, .
d 2 c a rYl 2“1 cosh2z, ~cos2z,
c 0 1 p,¢c 1 1
0 171
+ 47na v ( 12y6+24y5+18y4 )
o O \2ybrey roytizey t162ySr162ytal (76)

which coincides with Carhart's (11) result except for the numerator
of the second term (viscous dissipation). We think that the reason
for this is a numerical mistake made by Carhart (11) in the evalua-
tion of the coefficient BlO (see formula (39c) and footnote). This
viscous damping is determined by K, and as mentioned before we cal-

culated K also by using L.amb's (13) analysis.

2,2.6 Alternative Derivation of the Speed of Sound

The results of section 2.2 and references (1) to (9) show that
the sound speed in the mixture may be appreciably less than that of
each component separately., In order to understand this paradoxical
result, we consider an alternative approach valid for very small X
(so that the speed of sound of the mixture can be expanded in powers
of X) and based on a derivation of refractive index in optics (see
Feynman (17, Chap. 31)).

Let us suppose that we have a plane sound wave travelling

in a medium with speed c:
¢ = exp [ik(x-cyt)] , (17)

and there is a portion of spherical material (drop or bubble) in its
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way. The radius of the sphere is small compared to the wavelength.
Then the intensity of the scattered wave in a direction 6 and at a
distance r (from the center of the sphere) large compared to the

wavelength will be (formulae (34) and (35)):

3.3

' = Py = [Booho(kr) +3i Blocoseh (kr)]e"1m+o(k a~) (78)

1

where we have neglected the viscous (35¢) and thermal (35b) scattered
waves because they decay exponentially (the term included in (78)
decays algebraically as r increases).* Since (kr) is supposed to be
large (see (37c¢)):

ikr

_~ie (

pit=L% ~iwt
B kr

BOO+3B10 cosf) e (79)

Let us suppose now that we have a slab with a density n of these
spheres per unit volume. The volume fraction occupied by
them is so small that we can in first approximation suppose that the

sound wave is not affected by their presence. The thickness of the

Y
o e ha
wave r
]
taallS 'S
Ax
slab

*We should also notice that all the flow properties are defined in
terms of ¢g in exactly the same way as for the incident wave. This
is not true for ¢} and AOJ/ (see formulae (34)), but fortunately we
could neglect them.,
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slab is Ax and is much smaller than the wavelength. We can suppose

that the slab occupies the plane x = 0. vy is the radial cylindrical

coordinate, We want to know what will be the additional flow field

¢' produced by the scattering of these spheres at a point x of the x
axis. Using (79):

00
@' =f ¢''" n Ax 27y dy
0

r2=x2+y2
ydy = rdr
cosb = =
T
00 % ieikr st
Co x -
o' = [nAer_)/; (Boo * 3B 2) 5 dr]e

This integral is non-convergent. To avoid this we use the standard

method of multiplying the integrand by a factor [exp[-¢(r-x)]] and

let ¢ go to zero,

o0 . ikx
lim elkr-e (r-x) dr = - eik
e 0 x
o, ikx
lim elkr—e(r—x) X dr = - e.k + 0 [(kx)_ll
e"0 x ¥ L

We assume that the distance x is large compared to the wavelength
(kxx >> 1). Then

ei(kx—wt) (80)

o = 2mnAx (B

kZ

00 T 3B1o)

The total field at the point considered is:
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¢T:¢‘+¢ (81)

We are going to assume now that the slab has a different
sound speed than the medium. Let us call it ¢, Then the field ob-
served at the point x of the x axis (see diagram) is:

ik i(S -k)Ax it
c

¢p =€ e e s k= w/co
where the term Ax(g- - k) takes care of the difference in phase pro-
duced by the fact that the wave travels at a different speed in the

slab. Since Ax(—‘;—) - k) is a small quantity:

ilkx-wt
>~ e

oy = 1+ iax € -5l

Comparing this result with (77), (80) and (81):

[BTRA% (B + 3B, ) + 1] o100et) o gillecetlyp @ o)

k 0
this gives:

2mni

(/e )

(B..+ 3B

00 1o) (82)

c=c0[1+ 3

where we used the fact that:
](c—co)/co l<< 1

The sound speed given in (82) is the same one obtained in section

2.2,2 (48).



-118-

2.2.7 Conclusions and Comparison with Experiments

The main result of this work is contained in formulae (15),
(16) and (22) that give the correct expression of the speed of sound
in a mixture. The results of sections 2.2.2 to 2.2.6 seem to check
the correctness of our theory from a theoretical point of view.

Zink and Delsasso (18) measured the damping of sound waves
propagating in a gas with particles in suspension; their measurements
agree with Carhart's (11) results (and consequently with ours too).
They also elaborated a theory to calculate the dispersion and checked
their results experimentally. Their theory coincides with ours for
low sound frequencies. In this limit our calculations also agree with
the more recent theoretical and experimental results of Dobbins and
Temkin (8,21). (Their results are supposed to hold only for low
frequencies). Dobbins and Temkin's (8, 21) experiments cover a
wider range than Zink and Delsasso's (18).

In a paper by Silberman (19) are reproduced some measure -
ments of sound speeds for water with volume concentrations of air
bubbles of around 10%; these measurements were made by Campbell
and Pitcher (we could not find the original reference). In fig. 1 are
reproduced these measurements and the results of our theoretical
calculations for low and high frequencies (formulae (15), (16) and
(29a,b,c)). Formulae (15), (16) with (29a) give Wood's (1) results;
with (29b, c) we obtain the results of the present theory for high fre-
quencies. The e);perimental results seem to be between all these
curves. Campbell and Pitcher used small amplitude pulses that will

contain many different frequencies, and according to our theory
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they will be dispersed. Since we do not know the conditions of their
experiment, it is difficult to interpret their measurements,
Formulae (15), (16) and (22) are completely general, although
we do not know K and K' for every X, but they could possibly be

determined empirically or by another method,

2.3 Shock Wave Structure in a Liquid Containing Bubbles

2.3.1 One-dimensional Stationary Equations of Motion

Let us suppose that we have some transition region separating

two uniform states. In the uniform regions we assume that liquid and

O ®

gas have the same velocity, temperature, and pressure. We denote
the uniform region upstream of the shock by subindex 1 and the one
downstream by subindex 2. We now assume that in the transition
region the flow is one~dimensional and stationary; all quantities
depend only on the x coordinate.

The conservation of mass of the gas phase is given by:

p,u X =pu X=

gl U1%1 T Ry ug X = A 8%y (83)



-121-
pg is the gas density, X is the volume fraction occupied by the gas,
and ug is the velocity of a bubble. The conservation of mass of the

liquid phase is (assuming that the liquid is incompressible):

(1-X )ul = (1-X)u, = (l—Xz)u2 (84)

1 2

u, is the velocity of the liquid. As we said before it is assumed:
1?7 Yp=u,,=u, (84a)

Let us suppose that the liquid produces over a bubble a cer-
tain force F (in addition to the hydrostatic force dpJz /dx). Then the
force per unit volume of gas is F/V; V is the volume of a bubble.
The equation of conservation of momentum of the gas phase is then:

du dp 7

p - & (85)

g Tt aw
Py is the pressure of the liquid phase. The bubble will produce a
force -F on the liquid. The number of bubbles per unit volume of
mixture is X/V, and the number of bubbles per unit volume of liquid
is X/l(1 -X)V]. The conservation of momentum of the liquid phase
is then:

du dp g

£, XF

AT R rralii: a4 § @) (86)

Py is the density of the liquid. By multiplying (85) by X and (86) by
(1-X), adding them, and then integrating (using (83) and (84)), we

obtain the conservation of momentum of the mixture:

2 2 _
pgng + plul(l -X) + p, = const.
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Assuming that ug is of the same order as u, (this assumption will be
confirmed later by the numerical results) and that:

>>
TR

the previous result reduces to:
2 _ 2 2
pluﬁ(l—X)+p£ = pﬂul(l—Xle = pﬂuz(l~XZ)+p2 (87)

This assumption also means that in equation (85) we can neglect the

convective term so that

%XR = _g. (88)

The energy conservation of the mixture is given by:

2]

(1-X)[c,T +%u2 g

L1 I]

1
u, P, + ugng[cVTg+ su

+ pluz(l—X) + pzng = const.,

T,(! is the liquid temperature, Tg the gas temperature, ¢, the specific

yi
heat of the liquid, and c, the specific heat at constant volume of the
gas phase (that is supposed to be calorifically perfect). In our calcu-

lations we will be involved with velocities of the order of 100 m. /sec.

and temperatures of about 300°K. The specific heat of water is:

. 2
c, =1 cal/gm®K = 4,186 42215 - 4 1g6x10° 2 L
v o Z o

gm K sec K

then:

c, T~ 106 mz/sec2 >> u2~ 104 mz/sec2

£
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Using this latter result, equation (87), and the fact that:
>> s
Py Pg
the energy equation reduces to:

T! = const., = T1 = 'I’2 = TO (89a)

The temperature of the liquid remains constant in the transition
region. The result that both temperatures (Tl and TZ) are almost
the same was also found by Campbell and Pitcher (2). ™ Since the
temperature of the gas is the same as the temperature of the liquid

in the uniform regions, we have:

Tgl = ng =T, . (89b)
p p

S (90)
Pl Pg2

However, inside the shock we cannot make this assumption; we should

use there the full equation of state:

= R T 1
p Py (91)

R is the perfect gas constant. pg is the pressure inside the bubble.

Let us suppose that the liquid communicates to the bubble an
amount of heat, Q, per unit time. Then the energy conservation of
the bubble is given by:

!,

However, as they point out, this increase in temperature should not
be neglected if we are interested in calculating entropy changes.
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ds
Q=mT (—a‘t‘:g) =
following
the bubble
ds mu d p_ dp Y
T u By 1 Pg TPy 7P (92)
g g dx Py (y-1) \ dx Pq dx

m is the mass of a bubble that is assumed to be constant.

m= Vp =V1p

. V2 Pg2 (93)

gl ~
We still need an equation to relate the bubble pressure to the pressure
of the liquid and two expressions for the quantities F and Q. This
will be done in the following sections.

2.3.2 Flow Properties Downstream of the Shock

From the conservation laws across the shock we can get
enough information to calculate the flow properties downstream of
the shock as a function of the properties upstream. The conserva-

tions of mass (83), (84), momentum (87) and energy (89), (90) give:

Pg1¥1%1 = Pga®o%; (94)
(1 —Xl)ul = (l-—XZ)u2 (95)
p,ul(L-X)tp, = p,ul(l-X,)¢p, (96)
Py /Py = P/ Py (97)

This is a system of four equations for the four unknowns ng’ XZ’
U, and Ppe Eliminating ng’ XZ’ and u, we get an equation for P,

only:
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Py uy X (1-X,) P, = PP

One of the solutions is:
P; = P2

as is obvious by looking at the original system. The non-trivial

solution is:

_ 2
Py = Py (1-X )Xy (98)

This solution was also found by Campbell and Pitcher (2) and Edding -

ton (3). The other flow properties are given by:

uy = (1-X)) uy + m (99)

X, = ! (100)
2 pﬁuf(l-XI)Zerl

B (ufxl(l-xl) o
2° P P )

Campbell and Pitcher (2) have shown that the condition for

shock existence (increase of entropy across the shock) is:

P, 7 P;

using (98) this condition becomes:

Pz uz

2 1
Py b/l x%] 7}

The quantity in the denominator is the square of the speed of sound
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for low frequencies; this can be seen by substituting (29a) into (15)

and (16)¥ and assuming that:

(dpz/dp£)>>(dpg/dpg)

Pp > P

T=0

then we get:

- Pl (102)
Ll Xl(l--Xl)piZ

This is also the speed of sound found by Campbell and Pitcher (2).
The subindex L. means low frequency. The condition found by Camp-

bell and Pitcher (2) can be expressed as:
2
!
— =M, =— > 1 (103)
1

MLl is the low frequency Mach number. In section 2.2.1 we also
found that for high frequencies the sound speed is different (29c) and
so is the corresponding Mach number., In section 2.3.5 we will see
the meaning of this other sound speed.

2,.3.,3 Force on a Bubble

In this section we are going to calculate the force F (88).

Let us define the Reynolds number of the bubble as:

¥The subscripts 1, 0 in 2,2 correspond to g and £ in this section.
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Re = !ul —-ug lZapﬂ
Mg
1

1 1
a= (g>3 - (j:; >3 (105)
g

a is the equivalent radius of the bubble, By is the liquid viscosity,

(104)

where

and m is the mass of a bubble that is supposed to be constant (93).
Levich (15) says that for moderately high Reynolds numbers

(air bubbles in water):
1 € Re = 700 or 800

and stationary flow, the bubble remains spherical, and the viscous
effects are confined to a thin boundary layer that almost does not
separate. Outside the boundary layer there is ideal potential flow,
This is not a boundary layer in the classical sense. At the boundary
between liquid and gas the tangential stress must vanish (viscosity
of the gas is negligible); the boundary layer required, for this condi-
tion to be satisfied, produces only a small perturbation of the
potential flow (of the order (Re)-%) and does not change the pressure
field. Levich also shows that the drag coefficient due to viscous

forces is:
cp = 48/Re, 1 << Re < 700 or 800 (106)

In our case the relative velocity between bubble and liquid is changing

at the rate:
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d(ul-u ) ) d(uﬁ-u )
dt ug dx

This does not happen in Levich's (15) problem. However, the non-
stationary effects do not change the ideal potential velocity field
around a body; they only change the pressure field when Bernoulli's
equation is applied. Consequently the structure of the boundary
layer found by Levich (15) is not expected to change because of the
relative acceleration, and the viscous drag given in (106) applies
also in our case., Since the boundary layer does not change the
pressure field, we also have acting over the bubble a force produced
by the ideal potential pressure distribution. This force is (see

for example Landau and Lifshitz (14), section 11):

d(ul-u )
F=%p£Vug-——-—c—1—£—&- (107)

+ Py V is the virtual mass of the bubble. The total force will then be:
d(u,~a )
F=§p£Vug———a}-{_ﬁ_+%p£(u£—ug) luf—uglwach (108)
Davies and Taylor (12) studied the problem of a large bubble
rising at constant large velocity in a fluid under gravity force. They
found experimentally that the

bubble deforms and takes the

0 shape of a spherical cap. In

the front of the bubble the flow

is laminar and on the back

turbulent. The radius of the
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cap is such that the dynamic pressure produced by the stationary
ideal flow at the front of the cap balances the hydrostatic pressure
(created by gravity), and consequently thefe is a constant pressure
at the front of the bubble. They found that the distance A was (see

diagram):

L
3

A~V (109)

Gm did not change very much for different cases and has an average

value:

0, = 55° (110a)

The value of the coefficient of resistance referred to the distance A

was around one; if we refer it to the equivalent radius "'a'' (105):

win

= A%/a% = (4n/3)%= 2.6 (110b)

‘D
This latter value is in excellent agreement with the experimental
results of Haberman and Morton (these results are reproduced in
a paper by Moore (16)) for Reynolds numbers higher than 5,300 (air
bubbles in water). We want to apply Davies' and Taylor's (12) results
to our problem. The gravity force of their problem could be inter-
preted in our case as the pressure gradient of the liquid (see formula
{88)). However, the main inconvenience resides in the fact that
Davies and Taylor (12) considered the case of a bubble moving at
constant velocity. We will assume that the non-stationary effects
produce the same force as the one acting over the spherical bubble

of the same volume (see (107)). The total force acting over the
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bubble will be given by (108) with the value of °p appearing in (110b).
In the transition region between Reynolds number equal to 700
and 5300 the experimental results of Haberman and Morton (see
Moore (16}) seem to indicate that we can interpolate between the

values found by Levich (15) and Davies and Taylor (12). We then

have:
¢y = 48/Re’,  Re< 700 (111a)
cp = 2.6, Re > 5300 (111b)
_ 48 (2.6 - 48/700)
°p = o5 * —— (Re-700) , 700 < Re < 5300

{(11lc)

The value of the force on the bubble will be given by (108) with the
values of cpy appearing in (111).

2.3.4 Heat Transfer to a Bubble

In this section we will try to calculate Q (92).

Let us examine first the case on which the bubble is spherical.
We will assume that there is a uniform constant velocity of the liquid,
u, -«ug, around the bubble. This velocity is supposed to be large and
the thermal effects will be shown to be confined to a thin thermal

layer of thickness:

1
Re 2

o

§~a Pr’

“For Reynolds numbers much smaller than one the value of ¢ is
given by 16/Re (see Landau and Liftshitz (14, p. 70) and the value

of the accelerating force is slightly changed (Basset effect, see
Landau and Lifshitz, p. 97). However, as we will see, in this prob-
lem Re will be almost always larger than one.
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where Pr (the Prandtl number of the liquid):
Pr = CEHE/GE = 6.75 (water)
The heat equation for an incompressible fluid is:

aa’f-k q- grad T = XVZT

where

x=0,/(pycy) (112)

and g is the liquid velocity. ILet us choose spherical coordinates
with origin at the center of the bubble. Using the thermal layer

approximations:

18T<<8T r=at+r', r'<a

a 96  or’
and neglecting the non-stationary term we get:

T (113)

As indicated in section 2.2.3 the boundary layer only produces a

small perturbation of the ideal potential velocity field. This potential

flow field is given by:

S S 1"
r sin0®
l__ %y (114b)

q9= rsinb or

where § is the stream function:
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y=3U rZ sinZG (1 - ——5) (114c)

U=u,-u

£ g
Changing coordinates: (von Mises's transformation)

(6,r) = (0,y)

equation (113) reduces to (using the boundary layer approximation):

2
— - e x (115)
3Ua"sin" © oy
The boundary conditions are:
T=T , r=a (116a)
g
T=T, r=o0 (116b)

for all 0 € 6< 7. See formula (89). The solution of (115), (116) is:

2.
T = (T(-T,) exf 3Usin 01} T, (117a)
4%/-‘3’—[2—]—%xf(6)
where:
£(8) = cosb (3 cos®0-1) + 2 (117b)

The thickness of the thermal layer will be given by the value of r'
that makes the bracket (of (117)) of order unity:

i

§ ~a Pr 2 Re £9)

sinze

o[

It is easy to show that the last factor is of order unity for:
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s
0<a<qg

The heat transfer will be:

T
2 . AT _
Q= % g, 27a " sin® (é-r-)r=a de =

= 4NZT (Ty-T,) Ula‘/% (118)

The corresponding Nusselt number will be:

1 1
Nu = 2aQ = 1.13 Pr? ReZ (119)

(TO~Tg)G£47ra

In the case of a solid body the dependence is:

[

1 1
Nu~Pr? Re?

(See for example Landau and Lifshitz (14) p. 208), In the case of
bubbles we get a larger Nusselt number because there is no (to
first approximation) boundary layer; consequently, the velocities
around the bubble are larger and the convective heating is more
effective.

For Reynolds numbers larger than 5,300 (air bubbles in
water) we saw in the previous section that the bubble takes the shape
of a spherical cap. The average angle of the cap was shown to be
around 55°, and the flow on the front of the cap was shown to be lami-

nar (Davies and Taylor (12)). If we assume that this laminar flow is

For 6 = .7, 6 becomes infinity; this means that there is a wake and
that our solution is not valid there. However, Leyich (15) also shows
that the boundary layer separates for 6-7 = O(Re~-2), so this solution
is not valid there anyway.
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the same as the flow around the complete sphere, we can use the

previous theory to calculate the heat transfer to the front of the cap.

Using (118):

55° 2 . oT
Q. = fo 27R“0sind (3=)__p dO
1
R = 4 3m)3
sin 55°

for T we take the value given in (117a) (with R instead of a). We

then get

1 1
Nu, = Qx Za > =1.56 Pr? Re? (120)

g, (TO-Tg)47ra

Liet us calculate now the turbulent heat transfer to the back of the
spherical cap. Richardson (20) gives for the local heat transfer

to the back of a bluff body:

2
3

% 5k 1
Nu = 0.19 Re® Pr?

It seems that this result is in good agreement with previous experi-
ments. These Reynolds and Nusselt numbers are referred to the

transversal dimension of the body, in our case:

[

2A = (47/3)3? 2a

Then Richardson's (20) result referred to the surface and radius of

the equivalent sphere is:

5/9

4 2 1 2 1
(-331) Re? Pr® = 0.1 Re3 Pr? (121)

(o

_0.19

Nuturb T4
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Then the total heat transfer is given by:

1 1 2 1
_ - Z RaZ 5 p.3
Nu Nula + Nuturb 1.56 Pr?2 Re? + 0.1 Re?® Pr

if Re > 5,300 (122a)

For intermediate Reynolds numbers we interpolate between the

previous result and (119):

_ 1.56-1.13 3o 3
Nu = [1.13+W (Re—?OO)} Pr«Re® +

n

0.1 5
+ 1,600 {(Re~700) Re* Pr

D

if 700 < Re < 5,300 (122b)

When the bubble remains spherical (119):

ot

Ry 1
Nu=1,13 Pr2 Re? + 2,0 (122¢)

if Re < 700

The term 2.0 gives the pure heat conduction to a sphere at rest.
(See for example Rudinger (6)), for large Re this term is negligible.

The heat transfer has always been non-dimensionalized by

the same parameters (119).

2.3.5 Bubble Dynamics

In 2,3,1 we said that the pressure inside the bubble could be
different from the pressure of the liquid. ILet us see how that is
possible. As the bubble changes its volume it communicates a cer~

tain speed to the liquid outside; since the bubble could change its
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volume in an arbitrary manner, the liquid outside the bubble could
be accelerating. A difference in pressure between the liquid (at co)
and the bubble is necessary to provide this acceleration.
Liet us suppose first that the bubble remains spherical.
Lamb (13) calculated the flow field created by a spherical bubble

immersed in liquid whose radius is increasing at the rate:
da/dt = &,

and whose pressure is pg. The liquid far from the bubble is at rest
and has a pressure Py The potential function satisfying these con-

ditions is:
2.
¢=-a"d/r v = Vo (125a)

and at the boundary of the bubble:

p_-p
g 4 4V£§_+_3_32 + aa (125b)
Py a 2

The viscous term does not appear in Lamb's (13) formula;

it just represents the viscous force at the interface (viscosity of

the gas neglected). The addition of this term in the boundary condi-
tion (125b) does not affect the validity of Lamb's (13) solution. As

is well known, any solution of the potential equation is also a solution

of Navier Stokes equations (with viscosity included). In our case the

£ . .
The normal viscous stress is:

Tor = Zpﬁ avr/ar 5

v 2v
. 2. T T
in our problem v_r” is constant. (777 _ =-(==)__ S
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liquid is moving at a uniform velocity (uﬂ —ug) relative to the bubble.
However, as we said before, this relative velocity produces a poten-
tial flow field (neglecting the boundary layer) around the sphere.
Since Lamb's (13) solution also satisfies Laplace's equation (which
is linear), we can superimpose both solutions.,

For high Reynolds numbers the sphere deforms, and the
flow becomes turbulent at its back. In this case the dynamics of
the bubble are not known, and we will assume that we can still apply
(125Db) taking for ''a'' the equivalent radius of the bubble (105). We
base this assumption on the fact that possibly the liquid at a large
distance from the bubble is insensible to its shape and behaves as
if the bubble were spherical.

In (125b) the derivatives with respect to time should be inter-
preted like derivatives following the bubble:

d _ d

Equation (125b) is an equation for the volume of the bubble

or for its density (93), (105):

3 _ .3
a pg = const, = a] pgl (127)
dp
da _ a g
dx ~ pg dx (128)

2.3.6 Preliminary Study of the Equations

By using the momentum (87) and continuity (84) equations,
we can express the liquid velocity, Uy and volume fraction, X, as

functions of the liquid pressure, Pyt



. =u P ¥y Py X *P (129)
£ 1 Py
p,tpP,-p
1 P27P
X=X - (130)
1 (91X1+Pz Py%y )

By using the equation of conservation of mass of the gas (83)

and the previous result (130) we get:'

P p,X tp,-p,X
u, = u (—-g—-)1 ( 1 l+ 2 _1 1) (131)
g Py P, t Py - Py

The temperature of the gas is given by the equation of state (91) as
a function of the pressure and density of the gas. The volume and

equivalent radius of a bubble are (93):

3

V = Ta :% (132)

Wik

We can express all our variables as functions of the liquid pressure,
Py, gas density, pg, and gas pressure, pg, and for these three quan-
tities we have three differential equations: the momentum equation
of the gas (88), the energy equation of a bubble (92), and the equation
describing the dynamics of the bubble (125b). By putting in the
momentum equation (88) the value of F given in (108), and then cal-

culating the derivatives of a, and ug by using (129) and (131), we get:

—=~ -B—2 =
Adx de D (133a)

where:
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1 X u (1-—X1)
A=1+ 3 u u 133
2 Pe%e™1 B, T U, e, p) (133b)
2
u
B = épl—‘;& (133c)
g
(u, ~u )fu -u ]c
_ 3 L gty D
D= ) p'e S (1334d)

These three quantities can be expressed as functions of pg, pg, P,
by using (129) to (132) and (111).
The energy conservation of a bubble (92) is:

dp_ vp_, dp (vy-1)p Q
£. B B E =N (134)
dx pg dx mug

N can be expressed as a function of pg, pg, P, by using (122) and
the previous relations ((129) to (132)).

The equation describing the bubble dynamics (125b), (126)
can be expressed as:

Zaz

pf “p_ = O(qug ;‘2‘)

g

Since we expect the radius of the bubble to be small compared to the
thickness of the shock, it is possible that this equation would just
mean that both pressures are the same. However, we are going to
show that this pressure difference cannot always be neglected.

If Py and pg are equal, equations (133), (134) can be written:

IR p -
dpﬂ _ Py D - BN
dx A

(135a)

dpg _ D-AN
dx A

(135b)
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where

A=21P_ B (135¢)
Pg

It is easy to show that A is positive when we are in region 2. From

(133b, c):
"2 a5 48, (x + 1 )P2

On the other hand, A has in region 1 the value (using (133b,)):

PR Y 1 (1-M2 ) (136)
177, X [(1X, M
where:
2
Mé ! i (137a)
o e—— a
172 7 ylieex, (1-x)]p,
H1
[1+2x. (1-X.)] vp
% = 1 1 1 (137b)
Hi p, X (T-X])

This value of Sy corresponds to the high frequency speed of sound in
a liquid with bubbles that we calculated in 3.2.1 (see formulae (15),

(16) and (29c¢)), except for the factor (1 —Xl) multiplying 2X The

1 L]
reason for this difference is probably that formula (26) (from which

(29c¢) is deduced) is only valid for small values of X *a is then
y 1

the high frequency Mach number. Comparing cy with ¢, (102) we

L

have:

%This analysis itself is only valid for small values of X; however,
we expect that as the gas is compressed, the value of X will become
very small even if X; is not small. This is the reason why we kept
the (1 -Xl) term.
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c >cL, MH1<ML1

MLl > MHl >1 (138)

Al (136) is negative; and since A, is always positive, A should be-
come zero somewhere in the transition region. At the point where
that happens, the function Py (x) (see (135)) will have an infinite slope
that will change sign. This means that close to that point the func-
tion p, (x) will be double valued, and this is physically unacceptable,
We can give a physical interpretation to this; if in equation (133a) we
neglect the dissipative terms we get:

(g.;ﬁ.) = AB_1.>r-Y;il— if MH>1

g/1 1 gl

If Py and pg are the same, the bubble is subject to changes in pres-
sure larger than the ones allowed by the isentropic law. Because
of the form of our heat equation (Q proportional to (TO-Tg)), this is
not possible. This means that the bubble cannot follow the pressure
changes of the liquid imposed by the momentum equation. We should
let the pressure of bubble and liquid be different and consider the
full equation describing the bubble dynamics.

2.3,7 Case for Which Both Mach Numbers are Larger than One

We are going to study the case for which:

e &
My > 1, Alp B,

In this case we have the equations of momentum (133), energy of the
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bubble (134), and dynamics of the bubble (125b) for the three unknowns
Py pg and pg. Let us examine first the behavior of these equations

when we are close to the uniform region l. We represent pg, pg and Py

by ~  Ax-
Pg =Py TP, ¢ (139a)
~  Ax
P, =P tp,e (139b)
~ x
= + e 13
Pg = Pg1 T Py (139c)

;g’ 51 and ;g are supposed to be small constants (so that the equa-

tions can be linearized). By using (129), (131) and (91) we get:

P p
a4 -u =u L - L) (139d)
£ g 1 p1 p2
P P
T -T =1 [ -& - —fi>e7‘x (139e)
0 g "O0\rp; p

Equation (133a) becomes (using (111a))
)\(Al+ el) Py - (?\B1 + 52) Pq =0 (140a)

where € and €, are parameters that correspond to the viscous drag:

p 9p uz
e =L g =41 1 (140b)
1 Py 2 a,1 R(—':1 P,
2a.u
Re, = —& 1 (140c)
1 Vg

For the cases that we are going to solve Re, is of the order of 105;

1

we can then assume:

€ << Al)\, e2<< )\Bl (140d)
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because as will be shown:
A~ 1 /al

The energy equation of the bubble becomes (using (134), (122c))

()\+€3)pg-()\-p';-l— + 84) pg = 0 (141&)

where €5 and ey are coefficients that correspond to the heat transfer:

Py 6y 2, P1 1
£, == £, = —= (—) (—) (141b)
3 1 4 ay cp pg1 F%:Re1
c, p

In this case the product (E—'e—) (—‘;—4—-—) is large (of the order of 104); how-

ever Pr Re is of the order of 107; we can then assume:

€3 << A (141c)
£ 4<< )\pl/pl (1414)
The equation of the dynamics of the bubble (125b) becomes:
| a2u? B, D
MAL D v =L g (142a)
30y "8 5 Tg py

on using (126), (127), (128). €g is small and represents the normal

viscous stress acting at the interface of gas and liquid:

2
o8 M1* 1%
€5 =3 leel<< N 3p1 (142b)

The homogeneous system (140), (141), (142) has a non-trivial solu-

tion if N\ satisfies:
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)\.A1+el 0 -(Bl)d-ez)
0 N o1
€3 -(X—f;—l-—-i- 54) = 0 (143)
azuz
1 1 WM
Py Py Pyl
Let us assume that we can neglect the dissipative terms (el. o ,55).
Then (143) becomes:
2 2
aju B AL TP
TN e U =
This equation has the solutions:
A=0 (144a)
3X,(1-X.) 3
L1 v 1 1 1 )2
M Vo a=xo\ T =2 (144b)
1 1 1 MHI

where we used (133b,c) and (137). The solution A\ equal to zero is
not correct, because we cannot then make the assumptions (140d),
(141c,d), (142b), and consequently the ¢ terms cannot be neglected
in (143). This solution will really be (see next section) two real
roots of the same‘ sign, or possibly two imaginary roots; however,
these roots have small modulus, and when taken into (142) they give
a negligible difference between pg and Py and we find the same
type of difficulty as when we tried to solve the problem taking the
same value for both pressures (system (135)). As a matter of fact,

these roots will be shown (in the next section) to correspond to the
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solution of (135), We then have to take one of the solutions (144b).
Looking at (139) we see that we have to pick the positive value of X,
This will give us an exponential initial increase of all the quantities.,
This increase is very fast, O(al)*, and does not depend on viscosity
or thermal conductivity (see (144Db)).
Let us examine now how the equations behave when we are

close to the uniform region 2. In this case we have:

_ ~  Ax
Pg = P2 + Py © (145a)
~ Ax
P, =P, tp,e (145b)
~ Ax
= + e 145c¢c
Py = Pg2 ™ Py ( )
and from (130), (131) and (91) we get:
3 p
u,u = u, (—g- - -—’3-> (1454)
g sz P,
p P
T.-T =T /|8 - -8) (145e)
0 g O\p p
2 2
By doing the same analysis that we did before we get:
1
)\AZ +a'1 0 —(BZ)\Jrez)
Y P2
1 - 1 =
0 )\+s3 (\ 5 + 54) 0 (146)
aZuZ
- ___].'._ _._2‘._ )\2 272 + }\8'
Py Py 30, >

"(This is not exactly true. The factor multiplying (l/al) in (144b)
is small and 1/\ is of the order of several bubble lengths. This is
another indication of the fact that this analysis is strictly speaking
only valid for small values of X;. A similar argument can be
applied to formula (148b) appearing in the next pages.
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where;
P 9p ,u
a'l=——g-€'2=a é{ez L (147a)
1 27%2 P
Z2a.u
Re, = 22 o 0% (147b)
v
]
P2 6 S1., P Py 1
el = 2! =2 (=) () =—a—o (147¢)
3 > 4 a, Cp g2 PrRe2 Py

s'l, coos e'5 are small. In this case we are going to keep to first

order the dissipative terms, The solution of (146) is:

A=A + i, (148a)
real imag
where:
1
3vp 3B,p,\?
N, = g ( Z-AZZ (148b)
imag U@, Py 2Py
3, Ay
Meal™ " T2 22 [6E2+ tr-1) —= 54} (148¢c)
. a-u-A £
imag 272 2
p (p,-p,) ((1-X Jp,ué [ 1-X, p u
11 2 , ‘PP 1/P g2 1 P2 2
b=—\a-tT—=ztzx& Z W —— =Dt e
Pe\"2 p,u5 2P2 P P 1"
A,p
Px b e e & ooy 22 (1484)
1 p 18 9 2
2 Peuy

The first term in the bracket of (148c) represents the viscous damp-
ing (drag and normal stress) and the second the thermal damping.

is zero

Condition (135d) insures that }\imag is always real. Kreal

if we neglect the dissipative terms. In general }\real is negative.
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When we are close to region 2 all the variables have the functional

dependence

)\realx
e

) s

sin (A !Ximagl > > l)\reaLlf

imagx
The flow properties oscillate around the values that they are supposed
to take in region 2. Since )\real is small and negative, these oscilla-
tions are slowly damped, and the flow properties tend to reach their

final values (see figs. 3). Since both components move approximately

at the same velocity, us, the frequency of these oscillations can be

defined as:

1

2

%2 Mmag 1 37p,  3Bye,

£ = 2w T 2wa - A (149)
2 Py 2Py

This is the classical resonant frequency found by Spitz<ar>:< corrected
in our case by a term due to the virtual mass of the bubble. For
very large values of the pressure ratio across the shock, pz/pl, the
last term disappears and we recover the resonant frequency usually
found in the literature,

The system of equations (133), (134), and (125) was solved
numerically. The last equation (dynamics of the bubble) was put

for convenience in the integral form:

11/6

a., [dp dp 3(p_/p,) x (p,-p_Ju
_L[_g-<__g> ]z g'"1 X, (1-x,) [ —L & 11/6 -S—’i
pp Ldx dx /x (ug/ul) X pO(pg/pl) ug 1

4/3 1/6 x

48(p /p,) " (p_/py) u,-u
_ ol g’ 'l L8 (150)
Re uy x,

*We could not find this reference, See Silberman (19) instead.
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Initially we give a certain arbitrary and very small value to ng"pgl .

Since we know \ close to region 1 (144), we also know:

(dp /dx). = Mp_o-p

o g pl)

and by using (140) and (141) we get (dpg/dx)o, (dpﬁ/dx)o, ng’ and
Pyoe Once we know all the flow properties and their derivatives at
the initial point, we give a small increment to x and calculate the
flow properties at a second point; at this second point we calculate
the values of the derivatives by using (150), (133) and (134) and so on.

In figs. 2 and 3 are shown some of the results of the numer-
ical calculations. In these figures we see that the numerical analysis
gives the oscillatory character (when we are close to region 2) pre-
dicted by our linearized analysis. In fig. 2 are also given the results
of experiments made by Eddington (3). These experiments seem to
give shock thicknesses about two times larger than the ones calcu-
lated here. He did not measure enough points inside the shock to
determine whether our oscillations really exist or not. On the other
hand, he did not use a uniform bubble size, and, as indicated (149), the
frequency of the oscillations depends on the radius of the bubble.

We can interpret the results of this section as follows.
When we are close to region 1, an increase in the density of the
bubble produces an increase in its pressure, but it also produces
a larger increase in the pressure of the liquid (because of the virtual
mass of the bubble acting through the momentum equation); as a
result, the bubble is compressed more and we get an exponential

increase of the bubble density. When we are close to region 2 we
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have the opposite behavior; a compression of the bubble produces an
increase in its pressure larger than the increcase in pressure of the
liquid; consequently the bubble tends to behave like a harmonic oseil -
lator,

2.3.8 Casc for which the High Frequency Mach Number is Smaller

than One

In this case we suppose:

P
2 _Pp
MI.Jl = ED—]‘- > 1 (1513)
2 _ P2 .
MHI = <1 (151b)

y+2x, (1-X)]p,

In this case there are no difficultics if we try to solve the problem
considering that the pressure of liquid and gas are the same (seo
section 2,3.6 (135), (136)).

Let us examine the behavior of the flow properties when we
are close to region 1. By doing the same analysis of the previous
section we get the determinant (143) that gives us four values of \.
The values of A given in (144b) (which were the only ones we could
use in the last section) become imaginary in this case, and by keep-~
ing to first order the dissipative terms, it is easy to show that they
become complex with negative real part. These values of \ give
damped oscillations; that means that we will never be able to leave
region 1. We have to go back to (143) and try to calculate the two
other roots. In the previous section we obtained for thesec roots the

value zero, but as we said there, this value is erroneous because
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we cannot neglect the dissipation terms when calculating it. However,

the values of N\ are expected to be small, and as we will show:

1 1 1

Py 2 P 2/ CoN\2

a)\~(ezs3——l—) o ( 1) <.C.£) << 1 (152)
P1 ReNPr \Pgl p

If that is so, in (143) the third term of the last row can be neglected,
but that is exactly the same as neglecting the left hand side of the
equation of bubble dynamics (142a) and assuming that the pressure
of liquid and gas are equal! Equation (143) with that term neglected

gives:

A
2 (TP TP
N < pl - Bl) + )\(—Bls3-eZ+Als4+ -—Ei—- £l> -

P2
"'6283 ('I-)-;—l) = 0 (153)
where we also used (140b) and (141b). It is easy to check that the
solutions of this equation satisfy the condition (152). The coefficient
of )\2 is positive (135c, 136) and the independent term is negative.

This equation then has two real roots of opposite sign .

In the same way when we are close to region 2 we get (using

(146) with the third term of the third row neglected):

(224 B )+ n(-Boet-ct +A €'+zf£8'>+
p, 2772 2°37%2 T 2%e T Tl
o1 Dl
+£263(1-—§"z~) = 0 (154)

"In the case of the previous section the coefficient of A2 would be
negative and the roots would either be real (of the same sign) or
imaginary.
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where we also used (147a,c¢)., The two coefficients and the indepen-
dent term of this équation are positive (135d), (147a,c), (151a,b).
It is also easy to check that the roots of this equation are real. This
equation has then two negative real roots.

The solution of this problem can be calculated considering
only the momentum (133) and energy equations (134) and assuming
that the pressures of liquid and gas are equal, This is the same as
using the system of equations (135). Dividing (135a) by (135b) we get:

, D-BN
ap _ (/e

= 155
dp, D-AN (155)

This equation does not involve x. We can then draw a phase plane
representation for p and pg' The singular points of (155) are obvi-
ously (plpl) and (pzpz). The behavior of (155) at these points is
given by (153), (154). Equation (153) has two real roots of opposite
sign; this means that (plpl) is a saddle point. KEquation (154) has
two negative real roots; this means that (pzpz) is a stable node.

In fig. 4 a phase plane represcntation of equation {155) is given,

In this case the transition is uniform, and the oscillations
of the previous case do not appear. In the previous case the dissi-
pative terms did not have influence in the first stages of the shock
structure; in this case the whole shock structure is determined by
viscous and heat transfer effects. In this case when we are close
to region 1 we have (152) A\ >> 1/a, whereas in the previous case

A~1/a. This means that the shock is thicker now,
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APPENDIX A

Thermodynamic Properties of the Phases

Let us suppose that each phase has a state law:

P= f(P,T)

then:

>'<2= (%P_

aQ = TdszT( ) aT + ;gf-) dp=T(a
P/ 9T

_ s _ s
Cp“‘Ts’f%' e, = (5%

from (A-1) and (A-3) we get:

Sy f_g_ as)
Tds=-f----~dp—cvf TBppo

T T
= + T('——") dp - C_ dP
fT op T pip
%) - pe) L
dp T T fT

and from (A-5) and (A-6)

=(_8_P_ i (c f /f )-T( 8s/8p)T
(c /f

where 7 = CP/CV

then:

), @

(A-1)

(A-2)

A-3)

(A-4)

(A-5)

(A-7)
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c
A

= (dp-c“dp) (a-8)
T

Tds =

The compressibility is defined as:

le2]
by

r_ -1y
'f—"'" P 2 fT (A-—9)

P c

1 p -1
Y = = = (=} = -
P() P

v o

o)

One of the Maxwell reciprocity relations is:

8s) _ 1 QE) _ 1
<§5 =z (aT =-—z i
p PP

Using (A-6) and (A-9):

2 2
Tc o = cp(’y-l) (A-10)

Then (A-8) becomes:

103

_ v 2
ds = - W (dp - C dp) (A—ll)

We have justified relations (17) of section 2.2.1.

Relations (19), (20), (12) and (13) of section 2.2.1 give:

avO avl

2 2
(1~X) _('—Y—(-)—"_TT (de—CO dpo) + X w (dpl-Cldpl) =0 (A-—lZ)

- 1 -
dTl = K dTO (A-13)
do. = -Z‘lda+d (A-14)

P 2 Po
3p1
dpl = - "—a—'—- da (A-15)

From (A-l1) we have:
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L ) dp +(—--—-1 dT (A-16)
0 1 1 aTl 1

;‘%)d (% )dT (A-17)

Using (A-14) and (A-15), (A-12) becomes:

(rg-1) «
2 _ x 19 vl 2__2r
“dro=eodP) = TX 7D m,, [dpo"(cl‘?iq)dpl]
(A-18)
and (A-16):

)
do = | k) - 27| ap + (oL ar (A-19)
0 apl 3ap1 1 aTl 1

Eliminating the temperature dependence by using (A-13), (A-17) and

(A-19) we get:

dp
0

(K' £ - f ) dp=K'{ -
1T, ~tor,) %Po 0p0 flpl 3apl T

1
(A-20)
by eliminating dp, between (A-18) and (A-20) and using (A-10) we
can easily get (22a) of section 2,2.1. By eliminating dpo we get

(22b).
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APPENDIX B

Calculation of the Dispersion and Attenuation of Sound

Expanding (15), (16) and (22) for small X and neglecting sur-

face tension:

dp paldp,/dp,) P
c2-~—£al+X(1- 00 O) X(l-——}—

a=1+X
o

dp
0. é[}x -1) <K'1.__E___ a):l
Po Po “po %o

' 1
;2 Pocpo/ (K plcpl)
rr + O(X)
"1 v0, . (L Fo %po

1
%1 K Pl Cpl Olvl

From these three formulae we get:

1)

(¢}

(py-py)K p, c_. «
2_ .2 [1_KX__L_Q__. _X(Kr_}_..E_l___Kp_-

0 Po Po p0 %1
C.p CZP
0o 0P0
((70—1) 5= - -1 — ) > ] (B-1)
%vo €11 €1P1

Using (39c) and (43c) (and the relations for the wave numbers (33) and

(38)) we get:

(p,~p K 127 B
x——2 - 22 (B-2)
o (w/c )

where K is given in (46) and:

4 3

X=§- mn (B-3)
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In the same way: (using (33) and (38)):

CSPO 47rn iag pO aé
xﬁfcz >= — i (—~—7--l)
1P : 1

(w/co) 1 a
Using (57a):

2 0%1P1
Kl_a___..E_.____ 1—H<1___..._R___
v1°p0Po %1p0P0

From relations (36) and the identity (17g) we get:

% 0%p1P1 %P

= i
%1000 %P %%

2
21 coPo _ (p-Da, “1Po
('}’0“1)6“-6 - ('Yl“l) > = a 0 1l - G
v Cc,p v 071

1P1

Using (B-5), (B-6) and (B-7) we get:

(0 fh ot 2 1>[ Do

- (1 gigt) T (1 o)

vO c

(B-4)

(B-5)

(B-6)

(B-7)

Using (17g), (B-6) and the value of H (57b) we get for the last ex-

pression:
3 3 ‘a3 a2
S 2% g Zofe
- 3.3 00 3 2
w’a P12,

where BOO is given in (39a).

Putting (B-8), (B-4) and (B-2) in (B-1) we get: .

(B-8)
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2 2 4nmi ‘
0

This is the result given in (48).

From (B-9) we get:

_ anw
Cimag = m CO Real [BOO + 3810] (B—].O)
0
From (39a) and (B-6)
R 21 Po ) . ,
Real (BOO) = -Real <1 - Ggp, ia hl(aO) COO (B-11)
Using (36), (38) and (33):
010 wz('yo-l)
ia,— =T ~——— a (B-12)
an 3 c
“0P0%po
Then (B-11) becomes (using (39a,b))
@ pnl wiya-1)ac alh (al)/h (al)
_ 1°0 Yo 0 0'1'%0’/?0'%p
Real (BOO) =(1- P 3 Real 53 J <a|) 2' h (al)
0"1 COPOCpO 1_.___0_ 0'"1 0"1'"0

U H 1
1 alJl(al) ho(ao)

Putting this result in (B-10) and then using (50) we get (51).
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APPENDIX C

Case of Drops or Solid Particles

In this appendix we want to calculate the limiting value of the

expression of the speed of sound given in (48) when:

c1>> Cor P17 Pos ;..L1>> Fos crl>> 0gr @ (C-1)

<< o
vl v

0

This means that we have to obtain the limiting values of the coeffi-
cients BOO and BlO (39a,c). Carhart (11) calculated the limiting
value of the damping factor (51). His results can be easily applied
to our problem.

Carhart says that the bracket of the denominator of (39b):
50 o)) 2phy(ap)
o) a1 p) " Bolay)

1 -

. The reason for this

should be expanded for small values of Ia'l

is that CYO/CT1 is small C~1), and consequently the second term is

important only for large values of jo(a'l)/a'ljl(a'l).

jolay) 1 N 45 ©-2)
T3 T - ol i — -
algl(al) 1 alcotgal a,lz (15+a'12)
From (40b) we get:
2 z
wap,C o
al :(1+5_)(___.._.P..) = (1 + i)z (C-3)
0] ZO‘O 0
ai = (1 +1i)z (C-4)

1

This means that:
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o, p, ¢
2 0 "1 "pl 2
2170 c ) (C-5)
1 "0 “pO
A
0, =z Pn €
0 "p
O_-—-—O -—-——(2) = — 0 << 1 (C-6)
1 =z P1 “p1 '
1 P

Using (C-2) to (C-6) and the values of spherical Hankel functions
(3:7c) we get:
aph; (ag)
1
h(ag) Tq Jpla] ) ohy (ag)
o T (a! T
%1 131( 1) ho<ao)

4(1+z0)zg—1z [4:2 +6< —-E-(i)-) l+zo+zé)]

= 5 5 (C-7)
4z g+12z0( O-AB— +9( 0 —39)
In Appendix B we saw that:
1
%Py %% _ %1p0P0
o, p ', A C P << 1 (C-8)
oP1 191 v0Sp1P1
The inequality is obtained using (C-1). Also from (38):
P a 2 P AC
_..O_(_l>: 99 <1 (C-9)
P1 ‘3o 2
P1¢1

Taking (C-7), (C-8) and (C-9) in (39a,b) we obtain a value of BOO;
substituting this value of BOO in (48) we obtain the first two terms
of the bracket of (63). Similarly taking (C-7) in (57) we obtain the

value of K' given in (68).
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Using (C-1) the value of B10 (39¢c) becomes:

a b, h. {(b,)
_. % 072'Po
BlO"lT [ PO } (C—IO)
9 a—hl(bo)"ZbOhO(bO)
where:
wa? 3
bg = (1 +1) (‘2‘;“(‘)) = (1 +1i)y (C-11)
(C-10) becomes:
.. 3
_ 20 | sy*rizyr278(2y oyl )l 2y Pyt )i
Bio= 3 7) 3 .2 2 (C-12)
loy +726y +818 7 (1+2y+2y”)

on using (37c). Taking this value of BlO in (48) we get the third term
of the bracket of (63). Substituting (C-12) in (43c) and using (46) we

obtain the value of K (67).
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APPENDIX D

Case of Bubbles

We want to calculate the limiting value of the expression of

the speed of sound (48) when:

Co > Cps P> Py B> By 0> 0, @ (<< @ (D-1)

vl

Using relations (B-6) and (D-1) we get:

1

@GPy %Yy _ % 1%,0P0
00 _

oy X0 QoCL1P)

>> 1 (D-2)

Also from (38):

p a;, 2 p c2
0 1 070

— (=) = 5> > > 1 (D-3)
P1 0 P17

In this case (using D-1):

1 1
aOhl(a )

0
ho(a'o)

1
)

z 1 1 [}
%0 jolay)  agh fag)
- T T T
0y ayi;(a) hylag)
| ]
AU
g

~ 1
o @)

and using the values of the spherical Bessel functions (32a)
!
— oAl 1 -
= % (1 -aj cotgaj) (D-4)
Using the value of a'l given in (C-4):

smh2z1+s1n2zl 51nh221-51n2zl

%1 cosh?.z1 --cosZzz1 * 127 (:oshZzl—-(:OSZZ1

-al! L -
1 alcotg ay 1
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Taking (D-4) in (39a,b) and using the inequalities (D-2) and
(D-3) we obtain Boo* This value of BOO (using (48)) gives the first
two terms of the bracket of (71). Similarly, taking (D-4) in (57) and |
using relations (36) we get the value of K' given in (75).

From (40a) we get:

2 M
_ L2 wa .21
- (1+1) —'——2—- == bl B—l' (D"S)

9
be -2
Po

Formula (39c) becomes:

1,2
. ~byh,(by) + 3bghy (bo) |
= - S =
kS
boho(bg) + Fbghy (by)

3

X ‘
0 | 2y®+6yProytiaaysayiesaytar-i(i 2y taay 11 8y9)

2y%+6y +9y 436y +1 62y 5+ 62y+81

on using (D-1), (D-5), (37c) and (C-11). This value of B using

10 (
(48)) gives the last term of the bracket of (71), By using (43c) and

(46) we get the value of K given in (74).



