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ABSTRACT

While many physical systems, including superconductors, trapped atoms, molecules,
and acoustic resonators can process quantum information, photonics holds several
fundamental advantages. Most photonics systems not only offer the convenience of
room temperature operation but also shed the scalability limitations imposed by cryo-
genic and high vacuum environments. Integrated photonics has shrunk room-sized
experiments to a chip-scale device while improving performance and versatility.
Operating at optical frequencies offers information bandwidths orders of magnitude
larger than what is achievable with microwave or trapped atom experiments.

In this thesis, we propose nanophotonic optical parametric amplifiers (OPAs) on
a thin-film lithium niobate (TFLN) chip-scale platform for quantum information
processing. Through dispersion-engineering, we achieve the distortion-free prop-
agation of ultrafast pulses necessary for information clock rates above 1 THz. We
investigate OPAs as ultrashort entangled pair sources and generate biphotons with
a 165-fs temporal duration. We show that their generation efficiency and signal-
to-noise performance is state-of-the-art at 2 µm and on-par with contemporary
telecom-band sources. We explore OPAs as quantum measurement devices, and
demonstrate all-optical single-photon level detection with a dead time of 75 fs.
Finally, we show that OPAs can be used to recover continuous-variable quantum
information by reconstructing the Wigner function of a 2.41 dB squeezed state en-
coded in a 154-fs pulse. This technique is loss-tolerant and offers a maximum clock
speed of 6.5 THz. TFLN hosts a variety of high-performance optical devices in-
cluding filters, modulators, resonators, III-V gain media, all of which are compatible
with OPAs. Our results highlight ultrafast OPAs as the fundamental building blocks
needed to realize large-scale circuits for all-optical quantum information processing.
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C h a p t e r 1

INTRODUCTION

"If you think you understand quantum mechanics, you don’t understand
quantum mechanics." - Richard Feynman

1.1 Quantum Advantage
Understanding and engineering quantum phenomena can create performance ad-
vantages unattainable through classical means in three key fields: communication,
sensing, and computing [1, 2, 3]. In quantum key distribution (QKD), measure-
ments of the entanglement between two or more systems verify the security of a
communications channel and can detect the pretense of eavesdroppers. The quan-
tization of the magnetic field underpins the operation of highly-sensitive SQUID
detectors [4] while quantum tunneling of electrons can image individual atoms [5].
Universal quantum computing has been realized across many physical platforms
including superconducting qubits [6] and trapped atoms [7].

We investigate quantum advantage in the context of continuous-variable quantum
optics with a focus on states generated by spontaneous-parametric down-conversion
(SPDC) such as squeezed vacuum (SV) and biphotons. SV is a quantum state in
which the noise in one field quadrature is compressed below the shot-noise limit.
This allows for optical measurements which exceed the noise limits imposed by
quantum mechanics. SV has most famously been used to extend the range of the
LIGO experiments by lowering the noise floor of the large interferometers used
to measure gravitational waves [8]. Independent pulses of squeezed light can be
interfered to create large-scale entanglement known as a cluster state. These states,
along with non-Gaussian measurements, can be realized in fiber-based systems and
used to build a universal quantum computer [9, 10]. Biphotons are pairs of entangled
photons created through SPDC whose non-classical correlations can be leveraged to
achieve quantum advantage. By measuring these correlations, entangled pairs can
offer increased sensitivity in interferometric [11] and spectroscopic measurements
[12, 13]. Similar to SV, multiple biphoton sources have been used to create a
quantum computational advantage [14].
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1.2 Lithium Niobate Nanophotonics
Integrated photonics has proved to be a promising quantum information processing
platform for several reasons. First, the room temperature operation enjoyed by most
platforms greatly simplifies system complexity and allows for more rapid scaling
of computational power compared to superconducting systems requiring cryogenic
temperatures or trapped-atom systems requiring high vacuum environments. Plat-
forms such as thin-film lithium niobate (TFLN) exhibit a large second-order optical
nonlinearity (𝜒(2)), a necessary ingredient to manipulate and measure quantum
information, as well as ferroelectric domains which support poling [15]. Poling en-
ables the phase-matching necessary for efficient nonlinear conversion in integrated
waveguides. Conversion efficiency can be increased further through the use of ridge
waveguides which increase intensity as well as mode overlap [16]. These properties
have enabled the creation of nonlinear waveguides with record-breaking interaction
strengths [17].

TFLN can also host a variety of other high-performance optical devices [18]. Its
strong elecro-optic effect has been used to implement optical modulators with band-
widths beyond 100 GHz [19]. Low-loss ridge waveguides have enabled resonators
with Q factors exceeding 108 [20]. These resonators can be used to build a range of
useful circuits including wavelength filters and soliton microcombs [21]. Significant
progress has been made in integrating short pulse sources on chip, especially in LN
nanophotonics, with a 4.8-ps 10-GHz chip-scale mode-locked laser demonstrated
in [22] and a chip-scale electro-optic comb source with a 520-fs duration and a 30-
GHz repetition rate demonstrated in [23]. Heterogeneous integration has brought
additional optically useful materials to TFLN including III-V gain media [24] and
quantum dots [25]. Such a library of passive and active devices capable of being
integrated into a single monolithic platform has made TFLN an attractive solution
for creating large-scale nonlinear and quantum circuits.

1.3 Ultrafast Computing and Dispersion Engineering
For information processing in the optical domain, time-multiplexing is a technique
commonly deployed to increase computational speed and volume through the use of
pulsed light. Each pulse stores information, and time-multiplexed architectures take
advantage of these pulses by packing them tightly together in the time domain to
scale up system size. Shorter pulses translate to a denser encoding and hence a higher
effective clock rate. Pulses are often used to represent nodes in fiber-based optical
computers and reduce the number of fiber components needed in exchange for time
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complexity [26, 27, 28]. These same benefits extend to quantum measurements and
cluster state computing. This is particularly advantageous in integrated platforms
where device size is a density constraint as an O(𝑁2) scaling in 2-D cluster state
size can be achieved with just 𝑂 (𝑁) modulators.

We achieve ultrafast operation by engineering our waveguide to minimize the group
velocity dispersion (GVD) near the signal and pump wavelengths as well as their
mutual walk-off or group-velocity mismatch (GVM). By changing the height and
width of our ridge waveguides, we can tune the dispersion to a low-GVM-GVD
regime. This allows ultrafast pulses to propagate and interact with our waveguides
without becoming distorted and spreading out in time. Operation with femtosecond
pulses also increases nonlinear interaction strength thanks to higher peak powers
for a given energy, and maximum clock speeds increase as the inverse of the pulse
length. We show in this thesis that dispersion-engineered ridge waveguides can
achieve clock speeds beyond 1 THz, exceeding what is currently possible with
electronics.

1.4 Optical Parametric Amplifiers
The cornerstone of the quantum technologies we present in this thesis is the 𝜒(2)

optical parametric amplifier (OPA). OPAs use a pump at 2𝜔 to perform phase-
sensitive amplification on a signal at 𝜔. In later chapters, we will investigate the
physical underpinnings of why phase-sensitive amplification makes OPAs ideal
devices for generating, manipulating, and measuring quantum states. We fabricate
our OPAs on the TFLN platform using standard techniques compatible with the
majority of other TFLN devices.

In Chapter 2, we review the mathematics necessary to understand the behavior of
quantum states under the SPDC Hamiltonian. We start from the quantized descrip-
tion of the electromagnetic field and introduce the concept of field quadratures to
help us connect OPA-based measurements with the underlying theory. We then
introduce the mathematical notion of ultrafast quantum pulses and the Hamiltonian
implemented by 𝜒(2) nonlinear optics. We conclude this chapter with a discussion
of multimode behavior and show how spectrotemporal modes arise naturally from
the entanglement generated by OPAs.

In Chapter 3, we elaborate our discussion of spectrotemporal modes. These modes
are an important consideration as they have a profound impact on measurements we
investigate throughout the thesis. We discuss the challenges imposed by multimode
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behavior and perform a literature review of various experiments which utilize OPAs
as well as optical parametric oscillators (OPOs) as sources of quantum light. We
then review techniques for achieving single-mode output for OPAs and examine the
current state of the field.

In Chapter 4, we investigate ultrafast OPAs as sources of entangled pairs. We
show that with dispersion engineering, we can generate biphotons with a temporal
width of just 165 fs, the shortest entangled wavepacket from an integrated source
demonstrated to date. We discuss the quantum theory behind the operation of our
device and how dispersion and our pump laser work to limit temporal duration.
We delve into the impact of multimode behavior on our measurement and discuss
mitigation strategies. We then review the experiments used to characterize source
performance, analyze collected data, and undertake a thorough literature review in
which we contextualize the features of our source and examine its place among the
variety of other source designs.

In Chapter 5, we show that OPAs can act as room-temperature ultrafast single
photon detectors. By thresholding output measurements, we achieve a 26.5% detec-
tion efficiency and a 2.2% dark count rate. While these values are not competitive
with state-of-the art detectors based on superconducting circuits or semiconductor
devices, our OPAs set the record for effective dead time as we are solely constrained
by the dispersion of our device and not by electronics. We review the theoretical
conception of detector measurements and show that the quantum behavior of our
OPA can be uncovered by using known coherent states as an input probe. We
then review the experimental setup and the data processing used to reconstruct the
positive operator-valued measure (POVM). We take time to explore the theoretical
limitations of our technique and show how performance can be enhanced by em-
ploying more sophisticated photodetection techniques. We also begin our initial
discussions of pump depletion in this chapter, a phenomena with a profound effect
on our measurements which can potentially help us exceed the theoretical maximum
detection efficiency derived from the undepleted pump case.

In Chapter 6, we extend our analysis of OPAs to measure continuous-variable
information and ultimately deduce the underlying quantum information of a SV
state. Pioneered in [29], we initially showed that the macroscopic signal at the
output of our OPA can be used to infer squeezing levels at the microscopic input.
We now extend this technique further by resolving each individual pulse, allowing
us to measure photon number statistics and recover the Wigner function, a full
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description of the input quantum state. Through dispersion engineering, we achieve
a maximum measurement clock rate of 6.5 THz. We first conduct a literature review
of OPAs as detectors and derive their measurement behavior from first principles.
We discuss in detail the impact of both multimode behavior and pump depletion
on our measurements and show how these problems can be mitigated. We then
review the experimental setup, discuss how shot-noise is calibrated, and analyze our
collected data to show that our recovered Wigner function has a fidelity of 0.9998
relative to the expected Wigner function given the measured squeezing levels.

Finally in Chapter 7, we discuss the fabrication challenges facing TFLN and how
these engineering problems motivate future directions. We also discuss how OPAs
can be used as ultrafast classical switches to demultiplex THz information down to
clock speeds suitable for electronics. From the discussions and analysis presented
in this thesis, we conclude that lithium niobate nanophotonics has opened a viable
route to ultrafast quantum information processing in a room-temperature chip-scale
platform.
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C h a p t e r 2

A VERY BRIEF INTRODUCTION TO QUANTUM OPTICS

2.1 A Quantum Description of the Electromagnetic Field
In this chapter, we review the physical and mathematical concepts necessary to
understand and contextualize the nonlinear and quantum optics discussed later on.
First, we review the second quantization of the electromagnetic field. Then we extend
this quantization to arbitrary pulses and introduce the 𝜒(2) nonlinearity. Finally, we
introduce the Hamiltonian of the system and discuss multimode descriptions of
quantum states.

The hallmark of a quantized field is that we can only exchange energy with it in units
of its quanta. For the electromagnetic field, this quanta is the photon. To describe a
state with 𝑛 photons, we can write down a state 𝜓 as:

|𝜓⟩ = |𝑛⟩ (2.1)

where 𝜓 is a "wavefunction" describing the state of the field and |𝑛⟩ is a so-called
"Fock state" describing a field with exactly 𝑛 photons. To manipulate this field, we
can introduce the operators 𝑎 and 𝑎†, also known as the annihilation and creation
operators respectively. Allowing these operators to act on a Fock state produces the
following results:

𝑎 |𝑛⟩ =
√
𝑛 |𝑛 − 1⟩ (2.2)

𝑎† |𝑛⟩ =
√
𝑛 + 1 |𝑛 + 1⟩ (2.3)

While 𝑎 and 𝑎† deserve hats as they are operators, I have omitted the hats in this
section to keep the math readable. The operators themselves are related through the
commutator:

[𝑎, 𝑎†] = 𝑎𝑎† − 𝑎†𝑎 = 1 (2.4)
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Figure 2.1: A) A schematic of homodyne detection with 𝑎 as the measured field
and 𝑏 as the local oscillator. B) A phasor diagram plotting 𝑎 with respect to the
quadratures of 𝑏.

To connect this abstraction to what we can physically measure in the lab, we need
to introduce the concept of observables. An observable A is a Hermitian operator
which extracts a physically measurable quantity from the state. While 𝑎 and 𝑎† are
not observables as (𝑎)† = 𝑎† ≠ 𝑎, we can use them to construct:

𝑁̂ = 𝑎†𝑎 (2.5)

and

𝑁̂† = (𝑎†𝑎)† = (𝑎)†(𝑎†)† = 𝑎†𝑎 = 𝑁̂ (2.6)

𝑁̂ is the photon number operator. Allowing it to act on a Fock state |𝑛⟩ gives us:

𝑁̂ |𝑛⟩ = 𝑎†𝑎 |𝑛⟩ = 𝑎†
√
𝑛 |𝑛 − 1⟩ = 𝑛 |𝑛⟩ (2.7)

We will use 𝑁̂ in later sections to analyze photon number measurements and discern
information about an unknown |𝜓⟩.

2.2 Quadratures and Continuous Variable Quantum Optics
Homodyne detection is an optical signal measurement method often used in telecom-
munications. Figure 2.1A shows the experimental schematic. An unknown field
𝐴(𝑡) is interfered with a known local oscillator 𝐵(𝑡) at a balanced beamsplitter.
The output ports C and D of the beamsplitter are measured via photodetection, and
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the current from each photodetector is subtracted. We can write down the field
operators at C and D as:

𝑐 =
1
√

2
(𝑎 + 𝑖𝑏) 𝑑 =

1
√

2
(𝑏 + 𝑖𝑎) (2.8)

The photodetectors convert optical power to current (i.e 𝐼𝑑𝑒𝑡 = |𝐸 (𝑡) |2), and so:

𝐼𝐶 ∝ 𝑐†𝑐 =
1
2
(𝑎2 + 𝑖𝑎𝑏 − 𝑖𝑎𝑏† + 𝑏2)

𝐼𝐷 ∝ 𝑑†𝑑 =
1
2
(𝑏2 + 𝑖𝑎𝑏 − 𝑖𝑎†𝑏 + 𝑎2)

(2.9)

Subtracting their currents gives us:

𝐼𝐶 − 𝐼𝐷 ∝ 𝑖(𝑎†𝑏 − 𝑏†𝑎) (2.10)

If we assume that 𝑏 is a classical field such that 𝑏(𝜙) ∝ |𝐵 |𝑒𝑖𝜙, then Eq.2.10 becomes:

𝐼𝐶 − 𝐼𝐷 ∝ 𝑖 |𝐵 | (𝑎†𝑒𝑖𝜙 − 𝑎𝑒−𝑖𝜙) (2.11)

Now we introduce two new operators defined using the symetric and anti-symetric
combination of the creation and annihilation operators:

𝑥 =
1
√

2
(𝑎 + 𝑎†) 𝑝 =

1
𝑖
√

2
(𝑎 − 𝑎†) (2.12)

We can show that 𝑥 and 𝑝 can be used to represent the results of the homodyne
measurement:

𝑝𝑐𝑜𝑠(𝜙) − 𝑥𝑠𝑖𝑛(𝜙) = 𝑖
√

2
(𝑎†𝑒𝑖𝜙 − 𝑎𝑒−𝑖𝜙) (2.13)

where we have constructed the right-hand side of Eq.2.12 up to a scalar. 𝑥 and
𝑝, the quadratures of the field acted on by 𝑎 and 𝑎†, represent the "in-phase" and
"out-of-phase" components of the field. Figure 2.1B shows the phasor-diagram
depicting the relationship between the local oscillator 𝑏 (used as a reference for the
field) and 𝑎, the field to be measured. 𝑥 and 𝑝 can be thought of as the projections
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of 𝑎 onto 𝑏(𝜙 = 0) and its phase-shifted clone 𝑏(𝜙 = 𝜋
2 ). 𝑥 and 𝑝 will become

useful concepts later on when we show how parametric process can amplify and
de-amplify these quadratures. We note that

𝑥2 + 𝑝2 = 𝑎𝑎† + 𝑎†𝑎 = 2𝑎†𝑎 + 1 = 2𝑁̂ + 1 (2.14)

The +1 at the end of Eq.2.14 is a result of the presence of vacuum energy in the
field.

2.3 Defining Quantum Ultrafast Pulses
Until now, we’ve limited our description of these fields and their evolution to expres-
sions involving 𝑎 and 𝑎†, but these operators tell us nothing about the time-dependent
distribution of the electric field. To describe a pulse, we can treat the pulse shape
itself as a mode and use ladder operators to denote its occupancy such that:

𝐴𝑚 =

∫
𝐸𝑚 (𝑡)𝑎(𝑡)𝑑𝑡 (2.15)

where 𝐴𝑚 is the broadband photon annihilation operator acting on photons in the
electric field distribution 𝐸𝑚 (𝑡). To describe the total field 𝑎(𝑡) across all modes,
we can construct it as a superposition of 𝑚 modes:

𝑎(𝑡) =
∑︁
𝑚

𝐸𝑚 (𝑡)𝐴𝑚 (2.16)

While these 𝑚 modes are ultimately up to us to define, we will see in future sections
that the property:

∫
𝐸𝑚 (𝑡)𝐸𝑛 (𝑡)𝑑𝑡 = 𝛿𝑚,𝑛 (2.17)

ensures these 𝑚 modes remain uncorrelated and therefore unentangled with each
other. This will help us partition multimode systems into distinct parts which we
can analyze independently.

2.4 The 𝜒(2) Nonlinearity and Hamiltonian
The 𝜒(2) nonlinear interaction describes a 3-photon process in which either one
photon (the pump photon) is annihilated and two are created (the signal and idler
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photons) or vice versa. The former case is termed "optical parametric amplifica-
tion" (OPA) or, when the amplification is performed on the vacuum field, "optical
parametric generation" (OPG), while the latter case is termed "sum frequency gen-
eration" (SFG). To model these process mathematically, we define 𝑏 and 𝑏† to
represent the pump field at 2𝜔 and 𝑎 and 𝑎† to be the signal/idler field where we
have assumed degeneracy such that the signal and idler are indistinguishable and
hence belong to the same field. To represent OPA, we use the constructed operator
𝑎†

2
𝑏 to create a pair of signal/idler photons and annihilate a pump photon while

SFG can be represented with 𝑎2𝑏† to annihilate a signal/idler pair and create a pump
photon. Putting it all together, we express the Hamiltonian as:

𝐻̂ = 𝜔𝑎𝑎
†𝑎 + 𝜔𝑏𝑏

†𝑏 + 𝑔(𝑎†2
𝑏 + 𝑎2𝑏†) (2.18)

where terms such as 𝜔𝑎𝑎
†𝑎 denote energy resulting from the photon occupancy of

the field and 𝑔 represents a nonlinear coupling parameter calculated from the spatial
and temporal overlap of the signal/idler and pump fields. We will return to this
Hamiltonian later on and use it to derive quantum states at the output of an OPA.

2.5 Multimode Quantum Optics
Generally, modes are anything that can be written as a |⟩. The occupancy states
of a field are modes (i.e |0⟩ , |1⟩ etc), and, in later chapters, we will discuss how
continuous-variable states can be described with superpositions of these modes.
In the context of OPAs, we can use their spectrotemporal modes to analyze their
behavior as sources and measurement devices. The OPA produces a signal and
idler field at its output which are correlated as a result of energy and momentum
conservation. To study their correlation, we can plot the joint-probability amplitude
of detecting a single signal photon at a frequency of 𝑓𝑠𝑖𝑔𝑛𝑎𝑙 while simultaneously
detecting an idler photon at 𝑓𝑖𝑑𝑙𝑒𝑟 . We refer to this joint-probability function as the
joint-spectral intensity or the JSI.

Figure 2.2 shows the JSI of our biphoton source presented in Chapter 4. At
low gains, the JSI can be approximated as the product of the energy conserva-
tion of the pump (Fig. 2.2A) and the phase-matching condition (Fig. 2.2B).
The phase-matching condition is calculated from the dispersive properties of the
waveguide as well as the poling period. At higher gains, the JSI must be calcu-
lated from the Heisenberg propagators as defined in [2]. As our JSI is inseparable
(𝐽𝑆𝐼 (𝜔𝑠, 𝜔𝑖) ≠ 𝜙(𝜔𝑠)𝜙(𝜔𝑖)), we can decompose it into multiple independent modes
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Figure 2.2: A) The energy conservation of the pump laser plotted as a function of the
signal and idler frequencies. This is for a 75-fs transform-limited mode locked laser
centered at 1045nm. B) The phase matching condition of a thin-film periodically
poled lithium niobate waveguide in the type-0 configuration. The waveguide design
can be found in [1]. Yellow areas are where parametric down-conversion from a
pump photon to a signal and idler photon are supported. C) The joint spectral
intensity function computed as the product of the pump and phase matching. D) A
plot of the mode occupancy vs mode number of the JSI in panel C. E) Plots of the
first 6 modes composing the JSI.

Φ(𝜔𝑠, 𝜔𝑖) which can be expressed as Φ(𝜔𝑠, 𝜔𝑖) = 𝜙(𝜔𝑠)𝜙(𝜔𝑖). This multimode
behavior fundamentally stems from the inability to satisfy the group-velocity criteria
established in [3].

A multimode OPA can be modeled as a collection of single-mode OPAs acting on
each mode. The output of an OPA after amplifying vacuum can be described as:

𝜌 =

𝑁⊗
𝑛=1

𝑆†𝑛𝜌𝑣𝑎𝑐𝑆𝑛 (2.19)

where 𝑆
†
𝑛 is the squeezing operator of the Nth mode of the OPA. 𝜌 is a multimode

output state, making it challenging to isolate and measure the effects of squeezing



15

on a single mode. We experimentally analyze the impact of multiple modes during
measurement and discuss how to mitigate multimode effects later on in Chapter 6.
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C h a p t e r 3

SPECTROTEMPORAL MODES

3.1 Mode Structure
As discussed in chapter Chapter 2, the time-dependent electric field of a quantum
state can be described using a basis of temporal modes [1], and these modes are
computed via the Bloch-Messiah decomposition, representing entanglement in en-
ergy and time [2]. The distribution of these modes within a quantum state becomes
relevant when multiple independent sources of quantum light are interfered as part of
a computation. Observing strong interference is only possible when measurements
performed on the system are sensitive only to a single mode. In a solid-state system
such as the quantum dot, this problem is typically addressed through filtering output
single photons to enforce a single spectral mode as interactions with the crystal
lattice and defects can cause source broadening. For sources of quantum light based
on nonlinear optics, such as spontaneous parametric down-conversion, single-mode
emission is not guaranteed. If multiple temporal modes experience non-negligible
phase matching for a given nonlinear process, then the output state will be created
in a superposition of temporal modes. For temporally-multiplexed systems, this
poses a problem as multimode states made from different laser pulses will have
degraded interference by a factor of approximately 1

𝑁
, where 𝑁 is the number of

modes [3]. This can be understood intuitively as the interference of two states being
an effective measurement of their relative temporal modes. If both states share the
same temporal mode they interfere strongly, whereas states in different modes will
not experience interference as they are mutually orthogonal.

3.2 Continuous Variable Cluster States from Parametric Oscillators
For experiments using multiple independent squeezed states of light, multimode
interference can be avoided by using mode-selective detection. Homodyne detection
is often employed for this task as the measured mode is determined by shaping the
local oscillator[4]. This technique is used in [5, 6, 7, 8, 9] to measure independent
squeezed vacuum states for continuous variable quantum information processing
using cluster states. Larsen et al [5, 6] utilize two separate bowtie-cavity type-0
OPOs made with periodically poled potassium titanyl phosphate (PPKTP) as their
gain medium. Each oscillator, when pumped below threshold, produces pulses of
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multimode squeezed vacuum, which are then combined at a beam splitter with a 𝜋
2

phase shift on one input to create 2-mode entangled states. These states are then
sent through a series of delays and additional beam splitters to create an N-mode
cluster state. This highly multimode state is measured at two separate homodyne
detectors which confirm the non-classical entanglement for a single mode through
a series of nullifier measurements. Cluster states made from squeezed light can
also be used for general purpose quantum computing via MBQC. Asavant et al [7]
perform a similar experiment to [5, 6], but instead use four separate type-0 OPOs
to generate a large-scale cluster state. Konno et al [8, 9] uses two separate type-0
OPOs made with a PPKTP gain medium placed in a Fabry–Pérot cavity. The single
mode squeezed vacuum states emitted from these oscillators are first passed through
a beam splitter with 5% reflection. The reflected port of the beam splitter is directed
to a superconducting nanowire single photon detector (SNSPD) so that idler photons
from the squeezed vacuum state can be detected. When an idler photon is detected,
this indicates that a single photon has been subtracted from the squeezed state,
causing it to become a so-called kitten state, or an approximation of a Schrodinger’s
cat state. Cat states are of great interest in quantum information processing as they
can be used to implement quantum error correction with only logarithmic overhead
[10]. Many optical photon-subtracted kittens and cats have been demonstrated
[11, 12, 13, 14]. The novelty of [8, 9] is to create two independent cat states
and then combine them at a 50:50 beam splitter to generate a Gottesman-Kitaev-
Preskill (GKP) state. GKP states are also of interest as they provide additional
phase-space symmetries which can be used to construct error correction methods
capable of correcting single and multi-qubit errors [15, 16, 17, 18]. OPOs can
also take advantage of the resonant enhancement of the pump field to lower the
levels of nonlinear gain required as well as limit the degradation of the observable
squeezing induced by amplitude and phase noise from the pump [19]. However,
using OPOs as sources is not always desirable. For pulsed operation, the pulse
repetition rate must match the cavity round-trip time. This ultimately constrains the
physical dimensions of the OPO to the round-trip distance of the implementation
medium (be it free-space, integrated photonics, etc). The cavity itself also requires
stabilization through a complex external locking mechanism, and the observable
squeezing is ultimately limited by the escape efficiency of the cavity [20].
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3.3 Parametric Amplifiers as Sources of Quantum Light
From a practicality standpoint, using an OPA to generate squeezed vacuum is advan-
tageous as OPAs do not require locking, and can, in principle, support operation with
any pulse repetition rate, so long as the pulses do not begin to overlap because of the
dispersion in the nonlinear medium. When combined with dispersion engineering,
chip-scale OPAs can be made to support the propagation of ultrafast pulses, leading
to record-breaking gain and gain bandwidth [21]. To understand the structure of the
entanglement produced by these OPAs, we can compute their joint-spectral inten-
sity function or JSI. The JSI is the joint probability distribution of the photon pairs
emitted during parametric down conversion. A full computation of the JSI involves
calculating the evolution of the creation and annihilation operators for the signal
and idler modes. In the low gain limit, the JSI can be approximated as the product
of the energy conservation of the pump and the phase matching as a function of the
signal and idler frequencies [2]. Fig. 2.2A-C shows these functions for an OPA fab-
ricated on thin-film lithium niobate [22]. The shape of the JSI contains information
about the time-energy entanglement of the signal and idler. When the JSI cannot
be written as the product of two independent functions of the signal and idler (i.e.
𝐽𝑆𝐼 (𝜔𝑖, 𝜔𝑠) ≠ |𝑆𝑠 (𝜔𝑠) | |𝑆𝑖 (𝜔𝑖) | where 𝑆𝑠,𝑖 (𝜔𝑠,𝑖) are the spectral distributions for the
signal/idler photons), the signal and idler are correlated. If the pair are in a true
superposition, as opposed to a mixed state, then the JSI will exhibit non-classical
correlations which experimentally violate Bell’s inequality[23, 24]. Maclean et al
[23] use a BiBO crystal in a type-I configuration to generate time-energy entan-
gled photon pairs, and measure their correlations via dispersive frequency mea-
surements and femtosecond-timescale temporal measurements implemented using
photon up-conversion. Combining information from the frequency-frequency, time-
time, time-frequency, and frequency-time correlations provides the data needed for
a total recovery of the amplitude and phase information, allowing them to compute
the joint-spectral amplitude (JSA) which contains phase information not present in
the JSI. Chen et al [24] develop a simplified method for measuring the JSA through
a method they coin as "conjugate-franson interferometry". This method modifies
a standard Franson interferometer by adding acousto-optic modulators in one arm
of the signal/idler Mach-Zender paths and performing dispersive frequency readout
at the single photon detectors to infer phase and amplitude information. Fig. 2.2E
shows the decomposition of the JSI in Fig. 2.2C. The modes that comprise the
basis can all be expressed as 𝐽𝑆𝐼 (𝜔𝑖, 𝜔𝑠) = |𝑆𝑠 (𝜔𝑠) | |𝑆𝑖 (𝜔𝑖) |. Franson interferome-
try combined with pair generation has recently been demonstrated in an integrated
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platform [25]. One method to suppress these higher-order modes is bandpass fil-
tering. Filtering limits measurements to a small region of the JSI. If this region
is approximately constant in amplitude and phase, the measured photon pairs will
appear to be a single mode. Filtering comes at the cost of reduced pair generation
rate as well as the introduction of distinguishable thermal parts of the overall state.
This is a result of vacuum fluctuations entering from frequency-dependent losses at
the filter [2].

While the multimodeness may create challenges in some scenarios, others have
suggested and demonstrated the use of these modes as a basis for storing and manip-
ulating quantum information. Eckstein et al [26] propose the concept of a quantum
pulse gate (QPG). A QPG operates by selectively addressing and performing fre-
quency up-conversion on one of the modes of an incoming photon. This mode
selectivity is engineered by both shaping the pump and the phase matching function
of an OPA such that only one mode experiences a strong parametric interaction.
Brecht et al [1] describe how these temporal modes can be exploited to perform
standard QIP tasks such as state manipulation, measurement, and practical applica-
tions such as quantum key distribution. Ansari et al [27] experimentally demonstrate
a technique to perform detector tomography and determine the measurement op-
erators implemented by a QPG. By carefully preparing a pump and signal pulse
with specific spectral and temporal structures, the measurement operators of the
QPG can be inferred via the measurement outcomes that result from the injected
signal and pump pulses. Serino et al [28] take the QPG technique a step further
by experimentally demonstrating the demultiplexing of five independent temporal
modes of an incoming single photon.

For type-0 phase matching, the signal and idler frequencies share the same spatial
mode and therefore the same dispersive properties. This makes it difficult to achieve
single-mode operation as the group velocity criteria in [29] cannot be satisfied.
Intuitively, this can be thought of as a result of symmetries present in the JSI.
Because the JSI must be symmetric about the line 𝜔𝑠 = 𝜔𝑖, any phase matching
near degeneracy must have a negative slope and therefore run parallel to the energy
conservation condition of the pump. Theoretical device proposals for near single-
mode operation in type-0 have recently been presented. Houde et al along with
Mundhra et al both propose an ultrashort pulse pumped waveguide design with a
high GVM at the signal/idler wavelength to suppress higher-order modes [30, 31].
Type-2 sources, in which the signal and idler are emitted into different polarization
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modes, can satisfy the necessary group velocity criteria. When combined with
engineered poling domains designed to remove fringes from the phase matching
function, these sources can produce single-mode light [32, 33, 34, 35], and are
used in experiments where multiple biphoton sources are interfered [36, 37, 38, 39,
40]. However, this light may initially be generated in a mixed state, and additional
optics are often needed to create a coherent superposition depending on the desired
measurement basis [41]. Mosley et al [34] achieve single-mode operation through
a combination of dispersion engineering and an ultra-fast pump to satisfy [29]. By
using a wavelength at which pump photons experience the same group velocity as
either the signal or idler photons, a circular JSI free of spectral correlations can be
generated when the phase matching is excited by a broadband pump. Dixon et al [33]
achieve single mode operation through the engineering of the periodic reversal of the
crystal domain directions in their nonlinear gain medium. This periodic reversal,
know as periodic poling, is used meet momentum conservation requirements for
efficient photon pair generation by changing the sign of the 𝜒(2) nonlinearity along
the length of the waveguide. Varying the duty-cycle of each poling domain while
keeping the poling period constant allows for the suppression of side lobes in the JSI,
enhancing the state purity to as high as 97%. In general, modification of the poling
function to achieve a desired JSI shape is known as "domain engineering". Graffitti
et al [35] use a more complex approach to domain engineering by employing an
annealing algorithm to form a Gaussian JSI, achieving a purity of 95.5%. Zhong et
al [40] use a combination of domain engineering and filtering to operate in a single
mode. After passing emitted photons through a 12-nm bandpass filter, [40] measures
a spectral purity of 99%, allowing them to use 25 independent sources of photon
pairs in parallel to conduct large scale boson-sampling experiments and demonstrate
a quantum advantage in optics for the first time. Xin et al [32] extend the techniques
of domain and dispersion engineering to thin-film lithium niobate, achieving an
unfiltered purity greater than 94%. [32] first tunes the waveguide geometry such
that the group velocity of the pump lies between that of the signal and idler. After
a geometry is chosen, the poling domains are apodized and selectively deleted to
generate a Gaussian phase matching function.

References

[1] B. Brecht, Dileep V. Reddy, C. Silberhorn, and M. G. Raymer. “Photon
Temporal Modes: A Complete Framework for Quantum Information Sci-
ence”. In: Phys. Rev. X 5.4 (Oct. 30, 2015), p. 041017. issn: 2160-3308. doi:



21

10.1103/PhysRevX.5.041017. url: https://link.aps.org/doi/10.
1103/PhysRevX.5.041017 (visited on 07/06/2023).

[2] Martin Houde and Nicolás Quesada. “Waveguided sources of consistent,
single-temporal-mode squeezed light: The good, the bad, and the ugly”. In:
AVS Quantum Science 5.1 (Mar. 1, 2023), p. 011404. issn: 2639-0213. doi:
10.1116/5.0133009. url: https://pubs.aip.org/aqs/article/5/
1/011404/2879061/Waveguided-sources-of-consistent-single-
temporal (visited on 01/24/2024).

[3] Christopher L Morrison, Francesco Graffitti, Peter Barrow, Alexander Pick-
ston, Joseph Ho, and Alessandro Fedrizzi. “Frequency-bin entanglement from
domain-engineered down-conversion”. In: APL Photonics 7.6 (2022).

[4] Jonathan Roslund, Renné Medeiros De Araujo, Shifeng Jiang, Claude Fabre,
and Nicolas Treps. “Wavelength-multiplexed quantum networks with ultrafast
frequency combs”. In: Nature Photonics 8.2 (2014), pp. 109–112.

[5] Mikkel V. Larsen, Xueshi Guo, Casper R. Breum, Jonas S. Neergaard-Nielsen,
and Ulrik L. Andersen. “Deterministic generation of a two-dimensional clus-
ter state”. In: Science 366.6463 (Oct. 18, 2019), pp. 369–372. issn: 0036-
8075, 1095-9203. doi: 10.1126/science.aay4354. url: https://www.
science.org/doi/10.1126/science.aay4354 (visited on 01/24/2024).

[6] Mikkel V. Larsen, Xueshi Guo, Casper R. Breum, Jonas S. Neergaard-Nielsen,
and Ulrik L. Andersen. “Deterministic multi-mode gates on a scalable pho-
tonic quantum computing platform”. In: Nat. Phys. 17.9 (Sept. 2021). Num-
ber: 9 Publisher: Nature Publishing Group, pp. 1018–1023. issn: 1745-2481.
doi: 10.1038/s41567-021-01296-y. url: https://www.nature.com/
articles/s41567-021-01296-y (visited on 07/06/2023).

[7] Warit Asavanant, Yu Shiozawa, Shota Yokoyama, Baramee Charoensombuta-
mon, Hiroki Emura, Rafael N. Alexander, Shuntaro Takeda, Jun-ichi Yoshikawa,
Nicolas C. Menicucci, Hidehiro Yonezawa, and Akira Furusawa. “Genera-
tion of time-domain-multiplexed two-dimensional cluster state”. In: Science
366.6463 (Oct. 18, 2019). Publisher: American Association for the Advance-
ment of Science, pp. 373–376. doi: 10.1126/science.aay2645. url:
https://www.science.org/doi/10.1126/science.aay2645 (visited
on 07/06/2023).

[8] Shunya Konno, Warit Asavanant, Fumiya Hanamura, Hironari Nagayoshi,
Kosuke Fukui, Atsushi Sakaguchi, Ryuhoh Ide, Fumihiro China, Masahiro
Yabuno, Shigehito Miki, et al. “Logical states for fault-tolerant quantum
computation with propagating light”. In: Science 383.6680 (2024), pp. 289–
293.

[9] Shunya Konno, Warit Asavanant, Fumiya Hanamura, Hironari Nagayoshi,
Kosuke Fukui, Atsushi Sakaguchi, Ryuhoh Ide, Fumihiro China, Masahiro

https://doi.org/10.1103/PhysRevX.5.041017
https://link.aps.org/doi/10.1103/PhysRevX.5.041017
https://link.aps.org/doi/10.1103/PhysRevX.5.041017
https://doi.org/10.1116/5.0133009
https://pubs.aip.org/aqs/article/5/1/011404/2879061/Waveguided-sources-of-consistent-single-temporal
https://pubs.aip.org/aqs/article/5/1/011404/2879061/Waveguided-sources-of-consistent-single-temporal
https://pubs.aip.org/aqs/article/5/1/011404/2879061/Waveguided-sources-of-consistent-single-temporal
https://doi.org/10.1126/science.aay4354
https://www.science.org/doi/10.1126/science.aay4354
https://www.science.org/doi/10.1126/science.aay4354
https://doi.org/10.1038/s41567-021-01296-y
https://www.nature.com/articles/s41567-021-01296-y
https://www.nature.com/articles/s41567-021-01296-y
https://doi.org/10.1126/science.aay2645
https://www.science.org/doi/10.1126/science.aay2645


22

Yabuno, Shigehito Miki, et al. “Propagating Gottesman-Kitaev-Preskill states
encoded in an optical oscillator”. In: arXiv preprint arXiv:2309.02306 (2023).

[10] David S Schlegel, Fabrizio Minganti, and Vincenzo Savona. “Quantum error
correction using squeezed Schrödinger cat states”. In: Physical Review A
106.2 (2022), p. 022431.

[11] Kentaro Wakui, Hiroki Takahashi, Akira Furusawa, and Masahide Sasaki.
“Photon subtracted squeezed states generated with periodically poled KTiOPO_4”.
In: Optics Express 15.6 (2007), p. 3568. issn: 1094-4087. doi: 10.1364/
OE.15.003568. url: https://opg.optica.org/oe/abstract.cfm?
uri=oe-15-6-3568 (visited on 02/28/2024).

[12] Valentina Parigi, Alessandro Zavatta, Myungshik Kim, and Marco Bellini.
“Probing Quantum Commutation Rules by Addition and Subtraction of Sin-
gle Photons to/from a Light Field”. In: Science 317.5846 (Sept. 28, 2007),
pp. 1890–1893. issn: 0036-8075, 1095-9203. doi: 10.1126/science.
1146204. url: https://www.science.org/doi/10.1126/science.
1146204 (visited on 02/28/2024).

[13] Alexei Ourjoumtsev, Rosa Tualle-Brouri, Julien Laurat, and Philippe Grang-
ier. “Generating Optical Schrödinger Kittens for Quantum Information Pro-
cessing”. In: Science 312.5770 (Apr. 7, 2006), pp. 83–86. issn: 0036-8075,
1095-9203. doi: 10 . 1126 / science . 1122858. url: https : / / www .
science.org/doi/10.1126/science.1122858 (visited on 02/28/2024).

[14] Alexei Ourjoumtsev, Hyunseok Jeong, Rosa Tualle-Brouri, and Philippe
Grangier. “Generation of optical ‘Schrödinger cats’ from photon number
states”. In: Nature 448.7155 (Aug. 16, 2007), pp. 784–786. issn: 0028-0836,
1476-4687. doi: 10.1038/nature06054. url: https://www.nature.
com/articles/nature06054 (visited on 02/28/2024).

[15] Kan Takase, Kosuke Fukui, Akito Kawasaki, Warit Asavanant, Mamoru
Endo, Jun-ichi Yoshikawa, Peter Van Loock, and Akira Furusawa. “Gottesman-
Kitaev-Preskill qubit synthesizer for propagating light”. In: npj Quantum
Information 9.1 (Oct. 10, 2023), p. 98. issn: 2056-6387. doi: 10.1038/
s41534-023-00772-y. url: https://www.nature.com/articles/
s41534-023-00772-y (visited on 02/28/2024).

[16] Kyungjoo Noh and Christopher Chamberland. “Fault-tolerant bosonic quan-
tum error correction with the surface–Gottesman-Kitaev-Preskill code”. In:
Physical Review A 101.1 (Jan. 13, 2020), p. 012316. issn: 2469-9926, 2469-
9934. doi: 10.1103/PhysRevA.101.012316. url: https://link.aps.
org/doi/10.1103/PhysRevA.101.012316 (visited on 02/28/2024).

[17] P. Campagne-Ibarcq, A. Eickbusch, S. Touzard, E. Zalys-Geller, N. E. Frattini,
V. V. Sivak, P. Reinhold, S. Puri, S. Shankar, R. J. Schoelkopf, L. Frunzio, M.
Mirrahimi, and M. H. Devoret. “Quantum error correction of a qubit encoded
in grid states of an oscillator”. In: Nature 584.7821 (Aug. 20, 2020), pp. 368–

https://doi.org/10.1364/OE.15.003568
https://doi.org/10.1364/OE.15.003568
https://opg.optica.org/oe/abstract.cfm?uri=oe-15-6-3568
https://opg.optica.org/oe/abstract.cfm?uri=oe-15-6-3568
https://doi.org/10.1126/science.1146204
https://doi.org/10.1126/science.1146204
https://www.science.org/doi/10.1126/science.1146204
https://www.science.org/doi/10.1126/science.1146204
https://doi.org/10.1126/science.1122858
https://www.science.org/doi/10.1126/science.1122858
https://www.science.org/doi/10.1126/science.1122858
https://doi.org/10.1038/nature06054
https://www.nature.com/articles/nature06054
https://www.nature.com/articles/nature06054
https://doi.org/10.1038/s41534-023-00772-y
https://doi.org/10.1038/s41534-023-00772-y
https://www.nature.com/articles/s41534-023-00772-y
https://www.nature.com/articles/s41534-023-00772-y
https://doi.org/10.1103/PhysRevA.101.012316
https://link.aps.org/doi/10.1103/PhysRevA.101.012316
https://link.aps.org/doi/10.1103/PhysRevA.101.012316


23

372. issn: 0028-0836, 1476-4687. doi: 10.1038/s41586-020-2603-3.
url: https://www.nature.com/articles/s41586- 020- 2603- 3
(visited on 02/28/2024).

[18] Kosuke Fukui, Akihisa Tomita, Atsushi Okamoto, and Keisuke Fujii. “High-
Threshold Fault-Tolerant Quantum Computation with Analog Quantum Error
Correction”. In: Physical Review X 8.2 (May 25, 2018), p. 021054. issn: 2160-
3308. doi: 10.1103/PhysRevX.8.021054. url: https://link.aps.
org/doi/10.1103/PhysRevX.8.021054 (visited on 02/28/2024).

[19] J Teja and Ngai C Wong. “Twin-beam generation in a triply resonant dual-
cavity optical parametric oscillator”. In: Optics Express 2.3 (1998), pp. 65–
71.

[20] S Chaturvedi, K Dechoum, and PD Drummond. “Limits to squeezing in the
degenerate optical parametric oscillator”. In: Physical Review A 65.3 (2002),
p. 033805.

[21] Luis Ledezma, Ryoto Sekine, Qiushi Guo, Rajveer Nehra, Saman Jahani,
and Alireza Marandi. “Intense optical parametric amplification in dispersion-
engineered nanophotonic lithium niobate waveguides”. In: Optica 9.3 (2022),
pp. 303–308.

[22] James Williams, Rajveer Nehra, Elina Sendonaris, Luis Ledezma, Robert
M Gray, Ryoto Sekine, and Alireza Marandi. “Ultra-Short Pulse Biphoton
Source in Lithium Niobate Nanophotonics at 2\textmu m”. In: arXiv preprint
arXiv:2402.05163 (2024).

[23] Jean-Philippe W MacLean, John M Donohue, and Kevin J Resch. “Ultrafast
quantum interferometry with energy-time entangled photons”. In: Physical
Review A 97.6 (2018), p. 063826.

[24] Changchen Chen, Jeffrey H Shapiro, and Franco NC Wong. “Experimental
demonstration of conjugate-Franson interferometry”. In: Physical Review
Letters 127.9 (2021), p. 093603.

[25] Giovanni Finco, Filippo Miserocchi, Andreas Maeder, Jost Kellner, Alessan-
dra Sabatti, Robert J Chapman, and Rachel Grange. “Time-bin entangled
Bell state generation and tomography on thin-film lithium niobate”. In: npj
Quantum Information 10.1 (2024), p. 135.

[26] Andreas Eckstein, Benjamin Brecht, and Christine Silberhorn. “A quantum
pulse gate based on spectrally engineered sum frequency generation”. In:
Optics express 19.15 (2011), pp. 13770–13778.

[27] Vahid Ansari, Georg Harder, Markus Allgaier, Benjamin Brecht, and Chris-
tine Silberhorn. “Temporal-mode measurement tomography of a quantum
pulse gate”. In: Physical Review A 96.6 (2017), p. 063817.

https://doi.org/10.1038/s41586-020-2603-3
https://www.nature.com/articles/s41586-020-2603-3
https://doi.org/10.1103/PhysRevX.8.021054
https://link.aps.org/doi/10.1103/PhysRevX.8.021054
https://link.aps.org/doi/10.1103/PhysRevX.8.021054


24

[28] Laura Serino, Jano Gil-Lopez, Michael Stefszky, Raimund Ricken, Christof
Eigner, Benjamin Brecht, and Christine Silberhorn. “Realization of a multi-
output quantum pulse gate for decoding high-dimensional temporal modes of
single-photon states”. In: PRX quantum 4.2 (2023), p. 020306.

[29] Warren P Grice, Alfred B U’Ren, and Ian A Walmsley. “Eliminating fre-
quency and space-time correlations in multiphoton states”. In: Physical Re-
view A 64.6 (2001), p. 063815.

[30] Martin Houde, Liam Beaudoin, Kazuki Hirota, Rajveer Nehra, and Nicolás
Quesada. “Ultrashort-pulse-pumped, single-mode type-0 squeezers in lithium
niobate nanophotonics”. In: arXiv preprint arXiv:2412.17708 (2024).

[31] Shivam Mundhra, Elina Sendonaris, Robert M Gray, James Williams, and
Alireza Marandi. “Optimizing for a Near Single-Mode Type-0 Optical Para-
metric Amplifier in Nanophotonics”. In: arXiv preprint arXiv:2412.07004
(2024).

[32] CJ Xin, Jatadhari Mishra, Changchen Chen, Di Zhu, Amirhassan Shams-
Ansari, Carsten Langrock, Neil Sinclair, Franco NC Wong, MM Fejer, and
Marko Lončar. “Spectrally separable photon-pair generation in dispersion en-
gineered thin-film lithium niobate”. In: Optics Letters 47.11 (2022), pp. 2830–
2833.

[33] P Ben Dixon, Jeffrey H Shapiro, and Franco NC Wong. “Spectral engineering
by Gaussian phase-matching for quantum photonics”. In: Optics express 21.5
(2013), pp. 5879–5890.

[34] Peter J Mosley, Jeff S Lundeen, Brian J Smith, Piotr Wasylczyk, Alfred B
U’Ren, Christine Silberhorn, and Ian A Walmsley. “Heralded generation of
ultrafast single photons in pure quantum states”. In: Physical Review Letters
100.13 (2008), p. 133601.

[35] Francesco Graffitti, Peter Barrow, Massimiliano Proietti, Dmytro Kundys, and
Alessandro Fedrizzi. “Independent high-purity photons created in domain-
engineered crystals”. In: Optica 5.5 (2018), pp. 514–517.

[36] Pieter Kok, William J Munro, Kae Nemoto, Timothy C Ralph, Jonathan P
Dowling, and Gerard J Milburn. “Linear optical quantum computing with
photonic qubits”. In: Reviews of modern physics 79.1 (2007), p. 135.

[37] Peter C Humphreys, Benjamin J Metcalf, Justin B Spring, Merritt Moore,
Xian-Min Jin, Marco Barbieri, W Steven Kolthammer, and Ian A Walmsley.
“Linear optical quantum computing in a single spatial mode”. In: Physical
review letters 111.15 (2013), p. 150501.

[38] H-J Briegel, Wolfgang Dür, Juan I Cirac, and Peter Zoller. “Quantum re-
peaters: the role of imperfect local operations in quantum communication”.
In: Physical Review Letters 81.26 (1998), p. 5932.



25

[39] Justin B Spring, Benjamin J Metcalf, Peter C Humphreys, W Steven Koltham-
mer, Xian-Min Jin, Marco Barbieri, Animesh Datta, Nicholas Thomas-Peter,
Nathan K Langford, Dmytro Kundys, et al. “Boson sampling on a photonic
chip”. In: Science 339.6121 (2013), pp. 798–801.

[40] Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng,
Yi-Han Luo, Jian Qin, Dian Wu, Xing Ding, Yi Hu, et al. “Quantum compu-
tational advantage using photons”. In: Science 370.6523 (2020), pp. 1460–
1463.

[41] Heonoh Kim, Sang Min Lee, Osung Kwon, and Han Seb Moon. “Two-photon
interference of polarization-entangled photons in a Franson interferometer”.
In: Scientific reports 7.1 (2017), p. 5772.



26

C h a p t e r 4

ULTRASHORT PULSE BIPHOTON SOURCE IN LITHIUM
NIOBATE NANOPHOTONICS AT 2 MICRON

James Williams, Rajveer Nehra, Elina Sendonaris, Luis Ledezma,
Robert M. Gray, Ryoto Sekine, and Alireza Marandi. "Ultrashort pulse
biphoton source in lithium niobate nanophotonics at 2 µm." Nanopho-
tonics 0 (2024).



27

ABSTRACT

Photonics offers unique capabilities for quantum information processing (QIP) such
as room-temperature operation, the scalability of nanophotonics, and access to ul-
trabroad bandwidths and consequently ultrafast operation. Ultrashort-pulse sources
of quantum states in nanophotonics are an important building block for achieving
scalable ultrafast QIP, however, their demonstrations so far have been sparse. Here,
we demonstrate a femtosecond biphoton source in dispersion-engineered periodi-
cally poled lithium niobate nanophotonics. We measure 17 THz of bandwidth for
the source centered at 2.09 µm, corresponding to a few optical cycles, with a bright-
ness of 8.8 GHz/mW. Our results open new paths towards realization of ultrafast
nanophotonic QIP.
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4.1 Introduction
Entangled photon pairs (often referred to as biphotons) share non-classical cor-
relations which can be leveraged to provide a quantum advantage in a variety of
applications. The most mature and commercially available of these is quantum cryp-
tography, namely in the form of quantum key distribution (QKD). First proposed with
the BB84 protocol in 1984 [1], the correlations of polarization-entangled photons
can be used to detect the presence of an eavesdropper attempting to intercept secure
communications. When photons are allowed to pass from Alice (the sender) and Bob
(the receiver) undisturbed, the entanglement between the pairs is preserved and their
measurements will violate Bell’s inequality. If an eavesdropper begins to interact
with photons in transit, then the non-classical correlations will be destroyed, causing
the successive measurements to follow Bell’s inequality and alerting Alice and Bob
that their communications have been compromised. Since BB84, improvements in
photon sources and detection have led to the development of more sophisticated
protocols capable of leveraging other forms of entanglement. Time-bin entangled
photons have been used to prove secure communications through Franson interfer-
ometry [2, 3]. QKD has also been extended to so-called "continuous variable states"
using measurements which directly probe the Heisenberg uncertainty relations [4].
Following in the footsteps of classical telecommunications, QKD schemes designed
to take advantage of wavelength multiplexing have also been demonstrated [5].

As a result of the non-classical properties of entanglement, biphotons can also
be used to obtain an advantage in sensing and measurement. In optical coherence
tomography, biphotons have been used to enhance resolution by canceling the effects
of dispersion in the medium under measurement [6]. Biphotons have also been
used to overcome the diffraction limit in lithographic applications [7] and enhance
performance in atomic state control applications [8]. Recently, a quantum advantage
in computing has been demonstrated in which multiple biphoton sources are used
to perform Gaussian boson sampling [9].

In recent years, TFLN has emerged as a leading candidate for biphoton sources
for several reasons. The relatively large 𝜒(2) and mode overlap leads to high
pair-generation efficiency as well as signal-to-noise. Ultrafast operation can be
realized through tuning the waveguide geometry to achieve low GVM and GVD
propagation. While our implementation currently relies on a table-top mode-locked
laser, significant progress has been made in integrating short pulse sources on chip,
especially in LN nanophotonics, with a 4.8-ps 10-GHz chip-scale mode-locked
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laser demonstrated in [10] and a chip-scale electro-optic comb source with a 520-fs
duration and a 30-GHz repetition rate demonstrated in [11].

There have been many successful demonstrations of broadband biphoton sources
in TFLN [12, 13, 14]. However, these devices are still limited to the telecom
wavelength range. Moreover, they have been demonstrated in the continuous-wave
(CW) regime and have been unsuitable for ultrafast operation given their dispersive
properties. Unlike the previous nanophotonic biphoton sources [15, 16, 17, 12,
18, 19, 20, 21, 22, 23], we utilize a near-zero dispersion regime for the realization
of ultrashort-pulse photon pairs in nanophotonics. Operating in the 2-µm band in
lithium niobate is particularly advantageous as it yields better fabrication tolerances
compared with similar geometries for the 1550-nm band [24], and low GVD for
both pump and signal simultaneously as well as the ability to match their group
velocities and create strong temporal confinement for generated photon pairs [25].

Operation beyond the standard telecommunications band has several advantages for
quantum applications. For instance, recent work on free-space QKD at 1550 nm
has made a compelling case for moving to longer wavelengths to avoid limitations
caused by solar irradiance [26]. Integrated photonics platforms can also benefit
from operation at longer wavelengths because of lower scattering losses [27] and
more efficient high-speed modulators [28, 29]. Classical and quantum networks
are becoming practical in the 2-µm window given the progress on sources [30,
31], as well as low-dispersion and low-nonlinearity photonic crystal fibers [32, 33],
and high-speed detectors [34]. Along with thulium/holmium amplifiers offering
40 THz of gain bandwidth [35], these technologies can facilitate the construction
of wide area classical and quantum networks in the mid-IR. Quantum effects and
secure communications have also been successfully demonstrated in the 2-µm band
with Hong-Ou-Mandel visibility of 88.1% measured in bulk PPLN by [19] and
polarization-based quantum key distribution implemented by [36] with a key rate of
0.254 bits/pair.

In this work, we present the first ultrafast biphoton source in nanophotonic PPLN
capable of supporting ultra-short pulse propagation at both the pump and signal/idler
wavelengths (Fig.4.1). Our source covers 17 THz of 3-dB bandwidth centered at 2.09
µm, and produces a 165-fs biphoton wavepacket at the output. Through 2 and 3-fold
coincidence counting experiments, we demonstrate a coincidence-to-accidentals
ratio (CAR) of 945, a pair generation rate of 8.8 GHz/mW or 440 kHz/mW/GHz,
and a heralded 𝑔

(2)
𝐻

(0) of 0.027, all of which are state-of-the-art for this wavelength
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Figure 4.1: A diagram of the source operation. Femtosecond pump pulses are
injected into a dispersion-engineered periodically polled lithium niobate (PPLN)
waveguide to produce an ultrafast photon pair via type-0 spontaneous parametric
down-conversion (SPDC). A) An illustration of the SPDC process used to generate
photon pairs. B) 2-photon microscopy image of the poled region and an SEM of a
representative device. C) The theoretical and measured SPDC spectra.

range in nanophotonics. Combined with the recent advances in ultrafast lithium
niobate nanophotonics [37, 38, 39, 11], and the wide variety of high-performance
components [40], our source demonstrates a practical path towards ultrafast on-chip
QIP.

Biphoton Generation from OPAs
To generate biphotons, the OPA amplifies the vacuum field to produce pairs of
entangled photons from single pump photon. Using the Hamiltonian introduced in
chapter 2, we can time-evolve the vacuum field using the time-evolution operator:

𝑈 = 𝑒
𝑖
ℏ
𝐻̂𝑡 (4.1)

We can approximate the low-gain regime in which the biphoton source operates by
evaluating 𝑈 at some small time step 𝛿𝑡 and then expanding 𝑈 as follows:

𝑈̂ ≈ 1 +
∞∑︁
𝑛=0

𝑖𝛿𝑡𝑛

ℏ𝑛!
𝐻̂ (4.2)
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Since our biphoton source operates in the undepleted pump regime, we can reduce
the pump operators in the Hamiltonian to their classical analog as follows:

𝐻̂ ≈ 𝑔(𝑎†2
𝐵 + 𝑎2𝐵∗) (4.3)

where we have ignored the self-energy terms as they do not act on vacuum. In the
poled region of the waveguide, the vacuum field evolves as follows:

𝑈̂ |0⟩ = 1
𝛼

(
|0⟩ + 𝑖𝛿𝑡𝑔

√
2

ℏ
|2⟩ + 𝑖𝛿𝑡2𝑔

√
3

ℏ
|4⟩ + . . .

)
(4.4)

where 𝛼 ensures normalization such that ⟨0| 𝑈̂†𝑈̂ |0⟩ = 1. We note that the state is
still mostly vacuum in superposition with even-numbered photon occupancy terms
which exponentially decrease in amplitude. The term we are most interested in is
the 𝑖𝛿𝑡𝑔

√
2

ℏ
|2⟩ which represents the biphoton pair we wish to generate. It is important

to note that while this state may not appear to have any inherent entanglement as
we have written (i.e with just a single |⟩ and not in a superposition), these photons
still experience other forms of entanglement such as time-bin entanglement and
spectrotemporal entanglement. We briefly mention time-bin entanglement in the
context of Franson interferometry in chapter 2.

To obtain useful results from biphotons, we need to detect them pair-wise. All of the
aforementioned experiments which employ biphotons to gain a quantum advantage
use some flavor of coincidence detection such that only events where both photons
were present are considered. While our photon source was experimentally operated
at 250 MHz, the highest photon pair rates we measured at the detector were on the
order of 100s of kHz. Two factors contribute to this. First, because the generated
biphoton state is mostly vacuum, most laser pulses produce no photon pairs and
hence these events are ignored. Second, when pairs are successfully produced,
they are susceptible to both losses and detector inefficiency. Because we need both
photons to click at the detector, our measured pair rate is proportional to the square
of these losses. Both of these possibilities are ruled out with coincidence detection.

Another relavent consideration regarding this state is the presence of higher-order
photon number terms such as |4⟩, |6⟩, etc. These terms represent the creation of so-
called "multiphoton" events. Experimentally, these events lead to false coincidence
counts which result in a reduced signal-to-noise ratio. These events can be avoided
by lowering the pump power at the cost of a lower pair generation rate. We investigate
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the impact of these multimode events later on in this chapter when we discuss the
data analysis for coincidence-to-accidentals ratio measurements.

Device Design and Fabrication
Our source is designed for type-0 degenerate spontaneous parametric down-conversion
(SPDC) while also optimizing the dispersion parameters for short-pulse propaga-
tion. Our waveguide design also minimizes the group-velocity mismatch between
the pump and signal/idler wavelengths to minimize the temporal interaction win-
dow of the pump and generated photon pairs [41], allowing for the creation of an
ultrashort signal/idler wavepacket. We target our waveguide design for conversion
from a pump centered at 1.045 µm to a degenerate signal/idler pair at 2.09 µm. The
dispersion curves for our design are presented in Fig.4.2. We achieve a GVD of 135
𝑓 𝑠2/𝑚𝑚 and 60 𝑓 𝑠2/𝑚𝑚 for the pump and signal/idler respectively, and a GVM of
33 𝑓 𝑠/𝑚𝑚. For comparison, bulk lithium niobate has has a GVD of 246 𝑓 𝑠2/𝑚𝑚

for pump light, a GVD of -56 𝑓 𝑠2/𝑚𝑚 for signal/idler photons, and a GVM of 115
𝑓 𝑠/𝑚𝑚.

This near-zero GVM and GVD regime of operation leads to a broad spectrum of
signal/idler pairs as shown in Fig.4.1 with a 3-dB bandwidth of 17 THz. For a 5-mm
long device, we achieve a maximum temporal length for the signal/idler wavepacket
of 165 fs. The duration of this wavepacket can be estimated from the temporal
overlap of the pump pulse with the vacuum modes into which the waveguide phase-
matching and dispersion permit SPDC. As the pump propagates down the waveguide
and walks off in time from the 2 µm vacuum field, an large number of time-delayed
vacuum modes within the walk-off window can experience the creation of a photon
pair. The total wavepacket duration is approximated from the pump pulse duration
and the total walk-off time resulting from the GVM using Eq.27(a) from [42].
Shorter gain windows, the gain being responsible for pair generation, for similar
devices have been demonstrated in [43]. The temporal length of the photon pair can
be directly measured using techniques developed in [44] and [45]. Substantial GVD
at either the pump or signal/idler frequencies will also temporally broaden generated
photon pairs either by increasing the effective temporal gain window or by dispersing
photon pairs after their creation [46]. For 700-nm thick lithium-niobate on insulator
(LNOI), achieving a large enough GVD necessary for the GVD to be the primary
contribution to the temporal length of the photon pairs is generally difficult without
resorting to extremely narrow waveguide geometries or deep etch depths. Therefore,
our focus is on minimizing the GVM as this is the dominant contribution from the
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Figure 4.2: A) The quasi-TE waveguide mode for pump light at 1.045 µm. Arrows at
the top right denote the ordinary and extraordinary material axes. B) The quasi-TE
waveguide mode for signal light at 2.09 µm. C) Dispersion profile for the pump
wavelength. D) Dispersion profile for the signal wavelength. E) Group velocity
mismatch at different signal wavelengths relative to 1.045 µm.
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waveguide geometry to our temporal length. There exist other geometries for LNOI
that also experience low GVM and GVD thanks to the relaxed fabrication tolerances
and flatter dispersion curves around 1 and 2 µm [25, 37].

We calculate the waveguide dispersion by first measuring the width and etch depth
via atomic force microscopy, and then simulating the exact geometry with a mode-
solver to find the effective refractive index, group velocity, and second-order dis-
persion. In addition to temporal confinement, the waveguide geometry spatially
confines both the pump and signal/idler modes to the fundamental quasi-TE mode,
providing a large mode overlap to increase the pair generation rate. The mode
profiles are plotted in Fig.4.2A-B.

We fabricate our devices using commercially available thin-film lithium niobate on
silica wafers from NANOLN, with a 700-nm thick X-cut thin-film on 4.7-µm thick
SiO2. We start by using electron beam lithography to pattern poling electrodes
deposited via metal evaporation. After poling, we lithographically define and etch
waveguides with dry Ar+ plasma. The inset of Fig.4.1B shows a 2-photon mi-
croscopy image of the poled region before etching as well as an SEM image of the
waveguide facet at the edge of the chip.

4.2 Spectrotemporal Modes
While not the focus of this work, many recent works on photon-pair sources focus
on using dispersion or poling domain engineering to minimize the number of tem-
poral field-orthogonal modes [47] present in the output pairs [48, 49, 9, 50, 51].
The structure and occupancy of these modes can be found by performing a Bloch-
Messiah decomposition on the joint-spectral intensity (JSI) of the signal and idler
photons [52]. The JSI itself is estimated by the product of the energy conservation
of the pump and the phase matching of the waveguide as a function of the signal
and idler frequencies. A more detailed discussion of this process is presented in
the supplementary. In the context of SPDC, minimization of the mode number
is equivalent to removing the spectral correlations from the photon pairs. This
creates indistinguishable photons, which are especially important for applications
where multiple independent biphoton sources are combined [53, 54, 55, 56] as this
indistinguishably leads to a stronger interference of single photons from different
sources. Interference acts as a measurement of the relative mode of the two in-
coming photons. If both photons share the same mode, then they interfere strongly,
whereas photons in different modes experience no interference. The visibility of the
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interference between two independent but identical sources of biphotons is limited
to approximately 1

𝑁
where 𝑁 is the number of modes present [57].

Single-mode operation for the degenerate type-0 case without the use of filtering has
remained elusive due to constraints stemming from the shape of the phase matching
function as well as an inherent inability to satisfy the group velocity criteria used in
[58, 48]. We estimate a Schmidt number of 16 from the decomposition of the JSI.
For an ideal experiment with perfectly achromatic optics and detectors, this mode
number will not limit the performance in CAR, generation rate, or heralded 𝑔

(2)
𝐻

(0)
of our source. In practice, the SNSPDs used for single photon detection experience a
sharp fall-off in efficiency for increasing wavelength as does the transmissivity of the
SMF-28 fibers leading up to them. We therefore perform all SNSPD measurements
through a 48-nm bandpass filter centered at 2.09 µm to limit the impact of achromatic
detection on our measurements. This reduces our mode number to 3. Using this
filter during measurement prevents us from directly observing the total brightness
of the source. Therefore, using a technique similar to [15], we calculate the total
brightness by computing the ratio of the measured SPDC spectrum and the filter pass
band. Multiplying the measured brightness by this ratio gives the total brightness.

The Schmidt number can be reduced by engineering the dispersion of the waveguide
to meet certain group velocity mismatch requirements [58, 59], or by engineering the
poling domains to remove fringes caused by the 𝑠𝑖𝑛𝑐2 shape of the phase matching
function provided by periodic poling [49, 48]. For degenerate SPDC in the type-
0 configuration, reducing the mode number is challenging as the phase matching
function runs parallel to the energy conservation of the pump near degeneracy,
thereby causing the JSI to take on a narrow and inseparable elliptical shape. Filtering
can also be employed to reduce the mode number as this limits measurements to a
local region of the JSI. If the JSI is relatively constant in this region, then the source
will appear to be single mode. This does however come at the cost of a reduced rate,
as well as the introduction of a distinguishable thermal component into the state as
a result of the presence of vacuum at one of the input ports of the filter [52].

4.3 Determining Losses via Parametric Generation
In order to accurately calculate the pair generation rate, we must know the pump
power on-chip. We can measure the pump power off-chip before the reflective ob-
jective, and then infer the on-chip pump power by multiplying by the input loss.
While the input loss cannot be directly measured, we can calculate it by measur-
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Figure 4.3: A plot of the average number of photons per pulse vs input pump power.

ing the throughput loss and subtracting the output loss to find the input loss. The
throughput loss is measured by sending in 1 µW of pump power to avoid depletion
effects, and then measuring the received power at the output. The output loss is
calculated using the same methods presented in [37]. The output average photon
number is first measured verses the input pump power. This curve is then fitted with
the function 𝑁𝑎𝑣𝑔 = 𝜂𝑠𝑖𝑛ℎ(

√
𝛽𝑃)2 where 𝜂 is the output loss and 𝛽 is the nonlinear

gain. Knowing the exact input loss is not necessary to compute 𝜂 as changing the
input loss (i.e changing the scale of the x-axis) will only affect the calculated value
of 𝛽. After calculating the input loss, the curve can be fitted again with the correct
x-axis to determine 𝛽.

Fig.4.3 shows the fitted photon number data. We extract a loss of 9 dB by fitting the
raw data from 5 separate measurements. While this measurement gives the losses
at 2 µm, we know from fiber-in fiber-out chip coupling measurements that the loss
at 1 µm is approximately 1 dB more than that for 2 µm. Hence we conclude that
the fiber coupling loss at 1 µm is 10 dB. Subtracting this from our throughput loss
of 20 dB gives us 10 dB of input loss. Near the end of the curve, we have marked
points in red which were not used in the fit. In the limit of large pump power, the
assumptions underlying 𝑁𝑎𝑣𝑔 = 𝜂𝑠𝑖𝑛ℎ(

√
𝛽𝑃)2 are violated, and the depletion of the
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PBS is a polarizing beam splitter. VND is a variable neutral density filter. Obj is a
reflective objective. FC is a freespace to fiber coupler. LP is a low-pass filter. BP is
a band-pass filter. SNSPDs are superconducting nanowire single photon detectors.
50/50 are balanced fiber beamsplitters. H, S, and I denote the heralding, signal,
and idler channels respectively. B) Measurement setup for performing the Hanbury
Brown-Twiss (HBT) experiment. C) Measurement setup for determining 𝑔

(2)
𝐻

(0).
The SEM image inset is of a representative device [37].

pump pulse causes the experimental data to deviate from the model.

4.4 Experimental Setup
The experimental setup used to characterize our biphoton source is shown in Fig.
4.4. A 75-fs 250-MHz mode-locked laser centered at 1.045 µm is directed through a
motorized half-wave plate (HWP) and polarizing beam splitter (PBS) combination
used to digitally control the input power to the experiment. Laser light is then
collected and focused onto the input facet of the waveguide via a reflective objective
to minimize dispersion. Inside the waveguide, photons from the pump are split
into signal/idler pairs via degenerate type-0 SPDC. Light from the output facet is
collected with a lensed PM-2000 fiber from OZ Optics. This fiber is directed into
freespace with a reflective coupler and passed through one 1330-nm long pass filter,
three 1500-nm long pass filters, and a 48-nm bandpass filter centered at 2.09 µm
to provide 150 dB of pump rejection. The photon pairs are then coupled back into
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fiber and passed through a series of fiber-coupled 50/50 splitters to perform Hanbury
Brown-Twiss (HBT) and heralded 𝑔

(2)
𝐻

(0) experiments for measuring the CAR, pair
generation rate, and single photon behavior.
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Figure 4.5: A) Example histogram from an HBT experiment taken at 11 µW of
on-chip pump power. The main coincidence peak, caused by the detection of a
signal/idler pair from the same generation event, is centered at 0-ns delay while
accidentals peaks, caused by signal and idler photons created from consecutive and
hence uncorrelated generation events, are present to the left and right at ±4 ns. B)
Count rates for the signal and idler channels compared with the fitted linear model.

4.5 Measurement and Data Processing
To assess the CAR and on-chip pair generation rate, an HBT experiment (Fig.4.4B)
is performed by passing photon pairs from the chip into a 50/50 beamsplitter and
looking for coincidences at the output ports using a pair of superconducting nanowire
single photon detectors (SNSPDs) from IDQuantique. True coincidences are cre-
ated by entangled pairs of photons hitting the detectors at the same time, whereas
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Figure 4.6: A) Coincidence-to-accidentals ratio (CAR) as a function of on-chip
pump power. The fitted model is taken from [19]. B) On-chip pair generation rate
as a function of on-chip pump power. This is the rate of pair generation at the output
of the poled region of the waveguide. Pump input coupling losses are calculated
based on a parametric gain measurement detailed in the supplementary.

accidentals are created by two photons from unrelated SNSPD processes causing
coincidences. This is a measurement of the signal-to-noise ratio (SNR) of the detec-
tion system as the ratio of true to accidental coincidences is determined by the losses
in the signal path, the dark count rates for the SNSPDs, and multi-photon generation
events. Fig.4.5A shows a coincidence histogram collected by the time-to-digital
converter recording events from the SNSPDs. The central peak at 0 ns is a result of
both true and accidental coincidences, while side peaks are caused by accidentals.
For a continuous-wave pump, accidental counts are spread evenly across the delay
histogram. For the pulsed case, accidentals counts are localized to multiples of the
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pump repetition time (4 ns in our case for our 250-MHz repetition rate). The CAR
is defined as:

𝐶𝐴𝑅 =
𝑅𝑠𝑖 − 𝑅𝑎𝑐𝑐

𝑅𝑎𝑐𝑐

(4.5)

where 𝑅𝑠𝑖 is the total coincidence peak cont rate and 𝑅𝑎𝑐𝑐 is the accidental peak count
rate. Error bars are calculated via the standard deviation of CAR calculated from
different accidentals peaks. The timing jitter in the SNSPD measurement is limited
by the jitter of the electronics (100 ps), resulting in coincidence and accidentals
peaks which are much wider than the temporal width of the biphotons themselves.
Fig.4.5B shows the count rates at the signal and idler detectors as a function of
the on-chip pump power. By combining individual detector count rates with the
coincidence count rates, the pair generation rate on-chip and detection efficiency for
the signal and idler paths can be calculated from fitting the simplified linear model:

𝑅𝑠 = 𝜖𝑃𝜂𝑠 + 𝑅𝑑𝑠 (4.6)

𝑅𝑖 = 𝜖𝑃𝜂𝑖 + 𝑅𝑑𝑖 (4.7)

𝑅𝑠𝑖 =
1
2
𝜖𝑃𝜂𝑠𝜂𝑖 (4.8)

where 𝑅𝑠,𝑖,𝑠𝑖 are the signal, idler, and coincidence count rates respectively. 𝑃 is the
pump power in mW, 𝜖 is the generation rate in pairs per mW, 𝜂𝑠,𝑖 are the losses for
the signal and idler paths including detector efficiency, and 𝑅𝑑𝑠,𝑖 is the dark count
for the signal and idler detectors. The factor of 1

2 in Eq.4 is the result of a lack
of deterministic signal/idler separation in our experiment as they are degenerate in
wavelength and polarization. This model is valid for small values of 𝑃 where the pair
generation rate is directly proportional to the input power for SPDC. To compute
on-chip power for rate normalization, we measure the input loss by subtracting
measurements of the output lensed fiber and throughput losses. The output loss for
the lensed fiber is calculated by fitting the parametric generation output power vs
pump power as detailed in the supplementary. Using this method, we calculate an
output coupling loss of 9 dB from the chip to lensed fiber. The losses for additional
components are measured with a 2 µm diode laser. We measure 5 dB from the
freespace filter, 3 dB from the transition from SM-2000 to SMF-28 fiber, and 6 dB
from the SNSPD’s detection efficiency for a total of 23 dB. This agrees well with
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the measured total system efficiency of 25 ± 2 dB from fitting experimental data to
equations 2, 3, and 4.

Fig.4.6A displays the measured CAR values vs the on-chip pump power which has
been fitted with a model provided by [19]. At high pump powers, the CAR is limited
by noise induced from multiphoton events generated by a strong pump pulse. As
the pump power is lowered, the CAR increases until the maximum SNR is achieved.
The CAR then decreases at lower pump powers due to a loss of signal altogether
from the reduced pair generation rate. We measure a maximum CAR of 945 ± 475
at a pump power of 100 nW. The large variance is a result of the lack of prominent
accidental peaks at low pump powers. The theoretical model used to fit the CAR
vs power curve depends only on the pair generation rate, detector dark count rates,
and system losses. A perfectly achromatic detection system would measure a higher
CAR in the absence of the filter due to the higher observed pair generation rate. This
is not the case for our system as our SNSPDs and fibers suffer higher losses at longer
wavelengths, and therefore a bandpass filter in the measurement path increases our
measured CAR by limiting the spectral dependence of the measurement efficiency to
help satisfy the assumptions of the model. Fig.4.6B displays the measured on-chip
pair generation rate as a function of the on-chip power. This is the rate at which
generated photon pairs exit the poled region of the waveguide before incurring
detection losses. We measure a slope of 8.8 ± 2.3 GHz/mW over the entire SPDC
spectrum. Using our filter bandwidth, this normalizes to a pair-generation rate of
440 ± 115 kHz/mW/GHz.

In many applications requiring single photons, biphoton sources are used as a
heralded source of single photons where the idler is detected to infer the presence
of a single photon on the signal channel. To assess the performance of our biphoton
source as a heralded single photon source, we measure 𝑔

(2)
𝐻

(0) (Fig.4.4C). The
heralded 𝑔

(2)
𝐻

(0) is defined as:

𝑔
(2)
𝐻

(0) = 𝑅𝐻𝑆𝐼𝑅𝐻

𝑅𝐻𝑆𝑅𝐻𝐼

=
𝑃𝐻𝑆𝐼

𝑃𝐻𝑆𝑃𝐻𝐼

(4.9)

where 𝑅𝐻,𝑆,𝐼 are the 2 and 3-fold coincidence rates of the heralding, signal, and idler
detectors respectively. 𝑃𝐻,𝑆,𝐼 represent the probability for any given laser pulse to
produce a click at the subscripted detectors [60]. Fig.4.7 shows the measured
𝑔
(2)
𝐻

(0) as a function of the on-chip pump power. As the pump power decreases,
𝑔
(2)
𝐻

(0) initially drops as fewer and fewer multiphoton events are observed. At
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Figure 4.7: Heralded 𝑔
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(0) of our source as a function of on-chip pump power.

very low pump powers, SNR is lost due to low count rates, causing 𝑔
(2)
𝐻

(0) to
rise again. We report a minimum 𝑔

(2)
𝐻

(0) of 0.027± 0.0084 at a pump power
of 3.5 µW on chip, showing that we can reliably herald single photons from our
device using the measurement setup. This performance is competitive with state-
of-the-art mid and near-IR sources (see table 1 in the supplementary). The CAR
and 𝑔

(2)
𝐻

(0) performance are maximized at two different pump powers because the
𝑔
(2)
𝐻

(0) measurement uses 3 detectors (as opposed to 2 for CAR) and is therefore
more susceptible to system losses, necessitating a higher power to maximize the
system SNR. Increasing overall system losses would also shift the maximum CAR
to a higher power as these losses translate to a lower overall signal.

4.6 Comparison and Discussion
Fig.4.8 compares a variety of different IR pair sources with our work. We include
1550-nm sources to demonstrate that not only does our device have state-of-the-art
performance at 2 µm, but it is also competitive with state-of-the-art devices for
standard telecommunications bands. This allows for a more fair comparison of pair
generation rate as most reported 2-µm sources utilize the 𝜒(3) instead of the 𝜒(2)

nonlinearity, which has a normalized pair generation rate relative to 𝑚𝑊2 of pump
power instead of 𝑚𝑊 . Table 1 in the supplementary goes into greater detail by nor-
malizing the efficiency with the device length and bandwidth for an apples-to-apples
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comparison. Looking at the last pair generation rate column (𝐻𝑧/𝑚𝑊/𝑐𝑚2/𝐺𝐻𝑧),
we see that our rate measurements agree well with other devices reported in literature
except for one recent demonstration which exceeds the normalized pair generation
of all other listed sources by an order of magnitude[14]. It should be noted that the
pair generation rate will intrinsically be lower at 2 µm compared to 1550 nm as a
result of the 𝜆−4 dependence [25]. In the lower portion of the table which lists 2-µm
sources, we see that our source exceeds the CAR, pair generation rate, and heralded
𝑔
(2)
𝐻

(0) of the other recent 2-µm demonstrations in bulk crystals. We attribute this
namely to the use of nanophotonic TFLN, which is responsible for the stronger
nonlinear interactions given the device length, mode confinement, and dispersion
engineering.
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Detailed Comparison Table



45

Re
fe

re
nc

e
Si

gn
al

//I
dl

er
Pl

at
fo

rm
CA

R
Pa

ir
R

at
e

Pa
ir

R
at

e
Pa

ir
R

at
e

H
er

al
de

d
W

av
el

en
gt

h
𝐻
𝑧/
𝑚
𝑊

𝐻
𝑧/
𝑚
𝑊
/𝐺

𝐻
𝑧

𝐻
𝑧/
𝑚
𝑊
/𝐺

𝐻
𝑧/
𝑐
𝑚

2
𝑔
(2
)

𝐻
(0
)

[1
6]

15
70

nm
/1

57
0n

m
5m

m
TF

LN
W

av
eg

ui
de

67
00

0
±

71
4

x
46

0
·1

03
1.

84
·1

06
0.

02
2±

0.
00

4
[1

4]
15

00
nm

/1
50

0n
m

6m
m

TF
LN

W
av

eg
ui

de
59

9
27

9·
10

9
11

.5
·1

06
31

.9
·1

06
x

[6
1]

13
12

nm
/1

55
7n

m
40

m
m

TF
LN

W
av

eg
ui

de
27

00
00

15
·1

09
3.

1
·1

06
19

·1
03

0.
00

1
[1

7]
15

30
nm

/1
57

0n
m

30
0𝜇

𝑚
TF

LN
W

av
eg

ui
de

69
00

±
20

0
x

28
.6
±0

.5
4
·1

03
3.

18
±0

.0
6
·1

06
x

[1
2]

15
31

nm
/1

57
1n

m
5m

m
TF

LN
W

av
eg

ui
de

15
27

10
±3

27
72

13
·1

09
32

4±
25

·1
03

1.
37
±0

.0
1
·1

06
x

[1
3]

15
78

nm
/1

57
8n

m
La

rg
e

PP
LN

W
av

eg
ui

de
80

00
36

·1
09

1.
43

·1
06

22
9
·1

03
x

[6
2]

15
50

nm
/1

55
0n

m
La

rg
e

PP
LN

W
av

eg
ui

de
x

1.
2
·1

06
16

0
17

x
[6

3]
15

50
nm

/1
55

0n
m

La
rg

e
PP

LN
W

av
eg

ui
de

x
14

.4
·1

06
1.

9
·1

03
21

3
x

[1
8]

15
50

nm
/1

55
0n

m
A

lN
R

in
g

Re
so

na
to

r
56

0
20

·1
06

5.
3
·1

06
x

0.
08

8
±

0.
00

4
[6

4]
15

50
nm

/1
55

0n
m

B
ul

k
LB

O
x

7.
5
·1

03
x

x
x

[6
5]

15
50

nm
/1

55
0n

m
In

G
aP

R
in

g
Re

so
na

to
r

1.
4
·1

04
27

.9
·1

09
x

x
x

[1
5]

15
72

nm
/1

54
2n

m
A

lG
aA

sR
in

g
Re

so
na

to
r

26
97

±
26

0
20

·1
09 *

20
0
·1

09 *
x

0.
00

4
±

0.
01

[1
9]

21
00

nm
/2

10
0n

m
1m

m
B

ul
k

PP
LN

18
0
±

50
32

0·
10

3
x

x
x

[2
0]

12
59

nm
/2

01
5n

m
Si

lic
on

-O
n-

In
su

la
to

rW
av

eg
ui

de
40

.9
±

9
5.

9
·1

06 *
x

x
0.

23
±

0.
08

[2
1]

12
89

nm
/2

00
0n

m
Si

lic
on

-o
n-

In
su

la
to

rW
av

eg
ui

de
11

4±
4

5.
7
·1

03 †
*

x
x

x
[2

2]
70

0n
m

/6
30

0n
m

B
ul

k
𝐴
𝑔
𝐺
𝑎
𝑆

2
70

6
14

.6
·1

06
x

x
x

[2
3]

20
00

nm
/2

15
0n

m
Si

lic
on

-o
n-

In
su

la
to

rW
av

eg
ui

de
25

.7
±

1.
1

x
x

x
x

[3
6]

20
80

nm
/2

08
0n

m
1m

m
B

ul
k

PP
LN

60
7
±

18
5

98
.3

3
·1

03
x

x
x

O
ur

W
or

k
20

90
nm

/2
09

0n
m

5m
m

TF
LN

W
av

eg
ui

de
94

5±
47

5
8.

8±
2.

3
·1

09
44

0±
11

5
·1

03
1.

76
±0

.4
6
·1

06
0.

02
7
±

0.
00

3

Ta
bl

e
4.

1:
x

=
di

d
no

tr
ep

or
t.
†

=
es

tim
at

ed
ba

se
d

on
re

po
rte

d
da

ta
.*

=
un

its
of

pe
r𝑚

𝑊
2



46

Here we provide a more detailed comparison table which we reference in the main
text. This table also includes 𝜒(3) sources which, while the constitute the majority
of available mid-IR sources, are absent from the comparison plot as their rate scales
as the square of the pump power instead of linearly as with 𝜒(2) sources.

4.7 Conclusion
We have demonstrated a dispersion engineered broadband biphoton source with a
record breaking CAR, pair generation rate, and heralded 𝑔(2)

𝐻
(0) in the 2-µm window.

The near-zero GVM and GVD operation of our source allows for use of ultrashort
pulses, a crucial resource for realizing large-scale quantum information processing
systems as the temporal confinement of these pulses can be used to both enhance
the strength of nonlinear interactions as well as create well-defined time bins for
temporal multiplexing of quantum gates beyond 1-THz clock speeds. Reduced solar
irradiance near 2-µm combined with technological advancements in transmission
and detection in the mid-IR make our source an ideal candidate for both freespace and
fiber based quantum key distribution. Future work will revolve around characterizing
the quantum interference, temporal width, and entanglement properties of the source
through Houng-Ou-Mandel (HOM) and Franson interferometry. We plan to improve
outcoupling losses via both on-chip adiabatic couplers for pump rejection and the
use of an inverse tapered waveguide for better mode matching with a lensed fiber.
Using in-house adiabatic coupler designs and state-of-the-art inverse tapers [66], we
can lower the output coupling losses to 0.32 dB and filter losses to 3 dB for a total
detection loss of 9.32 dB.
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ABSTRACT

Integrated photonic quantum information processing (QIP) has advanced rapidly
due to progress in various nanophotonic platforms. Single photon detectors have
been the subject of intense study due to their ubiquity in QIP systems, yet many state-
of-the art detectors operate at cryogenic temperatures under vacuum and suffer from
long dead times. We propose and demonstrate a single photon detection scheme
based on optical parametric amplification in nanophotonic lithium niobate (LN)
combined with a macroscopic photodetector. We use quantum detector tomography
to experimentally demonstrate an efficiency of 26.5% with a 2.2% dark count rate.
We show that by improving the nonlinearity-to-loss ratio in nanophotonics and using
homodyne detection on a squeezed pump, the detector can achieve 69% efficiency
with 0.9% dark count rate. The detector operates at room temperature, has a dead
time limited only by its dispersion and pump pulse length, and is readily integrated in
LN nanophotonics, in which many other components of photonic QIP are available.
Our results represent a step towards all-optical ultrafast single photon detection for
scalable nanophotonic QIP.
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5.1 Main
Photonic QIP has been the subject of intense research as the relative absence of
thermal noise at optical frequencies translates to a relatively long coherence time
for optical photons. Particularly, QIP systems such as measurement-based quantum
computing [1, 2, 3], quantum computing with linear optics [4, 5, 6], and quantum
simulations [7] are all based on quantum information stored in photons. These
systems contain three crucial elements: state generation, state manipulation, and
detection. Single photon detectors (SPDs) are the most widely used detectors
in photonic QIP, for both determining the outcome of a computation in discrete-
variable (DV) QIP [4, 8] and for generating non-Gaussian states, necessary for
universal continuous-variable (CV) QIP [9, 10], such as Schrödinger cat and kitten
states [11] and GKP states [12, 13]. However, high-performance single photon
detection remains challenging to implement because of the need to achieve extreme
sensitivity and fast operation while avoiding false detection events [14].

Some of the most widely used single photon detectors include superconducting
nanowire single photon detectors (SNSPDs) [15], transition-edge sensors (TESs)
[16], and single photon avalanche detectors (SPADs) [17]. SNSPDs benefit from
their high efficiency [18, 19], large electronic bandwidths [20, 21], low dark count
rates [22], and low timing jitter [23]. However, they suffer from long dead times and
operate at cryogenic temperatures and under vacuum. TESs also operate in cryogenic
vacuum conditions and can distinguish between different numbers of photons while
having high efficiencies but lack short reset times compared to SNSPDs [16, 24].
SPADs operate at room temperature and pressure but tend to have higher dark
count rates and lower efficiencies than SNSPDs [17]. For all of these detectors, the
wavelength range at which they operate is limited by the materials used, and their
performance drops off at wavelengths longer than near-infrared (NIR).

Moving QIP systems to integrated photonics is of growing interest due to the stability
and compactness of the components as well as the scalability in manufacturing [25,
26, 27]. Quantum photonics can benefit from the low loss and strong light-matter
interaction offered by integrated platforms [28, 29]. Currently, single photons on
photonic chips are detected either by outcoupling them to SPDs off-chip [30] or
integrating the detector onto the photonic chip itself and placing it in a cryostat [31].
However, outcoupling photons from a chip leads to a lower total detection efficiency
due to the outcoupling loss, and integrating an SNSPD on chip creates fabrication
and performance challenges, especially when scaling device size given the spatial



57

constraints of typical cryostats.

In this work, we utilize ultrahigh gain nanophotonic OPAs to experimentally realize
a room-temperate single photon OPA detector (OPAD), and analyze its prospects
for QIP. Spatial confinement in nanophotonics combined with dispersion engineer-
ing enables us to use ultrashort pulses with high peak intensity, leading to stronger
nonlinear interaction with an inherent dark time limited only by the 𝜒(2) response
(typically less than 1 fs), dispersion of the device, and pump pulse length. Recently,
nanophotonic optical parametric amplifiers (OPAs) with gains of up to 100 dB/cm
have been demonstrated [32], opening up new avenues for quantum state engineer-
ing and measurement [33, 34, 35, 36]. Optical parametric amplification has been
used to both generate and measure measure squeezing over large bandwidths [37,
33, 35]. Here, we extend the use of OPAs into single-photon detection and analyze
the OPAD’s performance using using the positive operator-valued measure (POVM)
framework and quantum detector tomography [38]. We experimentally implement
such a detector using a periodically poled thin-film lithium niobate (TFLN) waveg-
uide OPA and a fast InGaAs photodetector. We also present an advanced variant
of the OPAD and show through simulations that Schrödinger’s kitten states can be
created using such an OPAD for photon subtraction from squeezed vacuum.

Figure 5.1(a) shows the concept of the OPAD: an OPA followed by a macroscopic
detector (which we term a classical detector). We consider two macroscopic detec-
tion methods: a photodetector and a homodyne detector on the pump after the OPA
[39]. In both detection schemes, we define a thresholding criteria for a click, as
shown in Fig. 5.1(b,c). For a single classical photodetector, this criteria is a thresh-
old in the photocurrent (Fig. 5.1(c)) and for the homodyne measurement, the criteria
is a range of outputs in the pump homodyne. In Fig. 5.1(d,e), we show numerically
how the single-photon detection efficiency and dark count rate are affected by the
thresholding criteria for these two schemes.

The performance of the photodetector OPAD is limited by how well the system can
distinguish between vacuum and a single photon, which is not perfect due to the
Gaussian noise erasing the parity information of these states. However, a squeezed
single photon has more probability distributed at high photon numbers, and hence
photocurrent, than squeezed vacuum does. Therefore, setting the threshold involves
a trade-off between two sought-after qualities in a single photon detector: low dark
counts, which occur when measuring the amplified vacuum results in a photocurrent
above the threshold and causes a click; and high photon detection efficiency, which
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Figure 5.1: Detecting single photons with an OPA and a macroscopic detector. (a)
The concept of the single photon OPAD. A microscopic quantum state is amplified
in a waveguide OPA to levels detectable by a macroscopic detector. A threshold is
applied to the detected pulse to categorize the signal as single photon or vacuum.
(b) Photocurrent distribution from a photodetector when the input to the OPA is
vacuum (dark blue) or a single photon (red). An example click threshold is shown.
(c) Pump homodyne result distribution of vacuum (dark blue) and a single photon
(red) as a function of the homodyne measurement result of the pump’s squeezed
quadrature. Inset: schematic of the homodyne detection scheme. (d) Efficiency
and dark count rate as a function of photocurrent threshold. The specific threshold
is dependent on the OPA gain and photodetector, and thus is left unlabeled. (e)
Efficiency and dark count rate as a function of lower homodyne result threshold,
with an upper threshold of 2.
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is the probability that measuring a squeezed single photon results in a click. This
trade-off can be seen in Fig. 5.1(d), with both the efficiency and dark count rate
falling as the threshold increases.

Using a homodyne detector on the pump after the OPA, akin to the quantum non-
demolition (QND) scheme from [39] (shown in the inset of Fig. 5.1(c)), can
substantially enhance the OPAD’s performance. With larger 𝑔/𝜅 (the ratio of the
coupling between the fundamental and second harmonic to the single-photon loss)
and fewer modes [36] than exist in current OPAs, one could operate an OPAD in
the pump-depletion regime in which the pump and signal become entangled, and
non-Gaussian and Wigner negative features begin to emerge. In this regime, it is
possible to project the signal state onto a squeezed Fock state through homodyne
conditioning on the depleted pump, which is initially a displaced squeezed state. We
simulated this OPAD scheme with the parameters from [39] (normalized interaction
time 𝑔𝑡 = 1, pump squeezing of 3 dB, and single-mode OPA squeezing of 3.88 dB),
finding a 69.2% efficiency and 0.9% dark count rate for certain click categorization
limits on the homodyne measurement, corresponding to the shaded region between
vertical lines in Fig. 5.1(c). The purity of the state resulting from a click is
0.89. Such an OPAD implements a non-Gaussian detection and could be used to
create universal CV QIP resource states. The 𝑔/𝜅 needed to realize this detection is
proportional to the pump squeezing, which in this case corresponds to a requirement
of 𝑔/𝜅 ≳ 1/4 (see section 5.7 for more details).

Using quantum detector tomography [38, 40, 41], we characterized an OPAD made
up of an integrated TFLN waveguide OPA (2.4-mm long) and an InGaAs pho-
todetector, as shown in Fig. 5.2(a). The waveguide is dispersion-engineered for
minimal group velocity mismatch between the signal and the pump, and for minimal
group velocity dispersion at the signal’s and pump’s frequencies [32], enabling the
distortion-free propagation of ultrafast pulses. To perform detector tomography, we
send coherent states at 2.09 μm of different amplitudes and phases into the OPA. The
coherent states are generated by a free-space optical parametric oscillator (OPO).

Histograms of the amplified and de-amplified coherent state photocurrents can be
seen in Figure 5.2(c). Amplified pulses are measured at a pump phase of 𝜃 = 0
while de-amplified pulses are measured at a pump phase of 𝜃 = 𝜋

2 . The amplified
pulses have a higher average photocurrent and variance than amplified vacuum, and
the de-amplified pulses have a similar distribution to amplified vacuum, as expected.
The cause of the double-bumped distribution of |𝛼 | = 2.13 in Figure 5.2(c) is likely
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Figure 5.2: Experimental quantum tomography of an OPA-based detector. (a)
Experimental setup for quantum tomography, including Wigner functions of the
generated coherent and coherent squeezed states (not to scale). BPF: band-pass
filter; LPF: low-pass filter; PD: photodetector; FC: fiber coupler; OSA: optical
spectrum analyzer. (b) Average photocurrent of pulses as a function of coherent state
angle. Shaded regions indicate the standard deviation of the pulses’ photocurrent
distribution. (c) Histogram of the pulse photocurrents for amplified and de-amplified
coherent states and vacuum.

pump depletion, which leads to gain saturation and a bunching of the tail of higher
photon number outcomes. The average photocurrent as a function of the coherent
state angle 𝜃, with the data binned into 5 angle bins between 0 and 𝜋/2, is plotted in
Figure 5.2(b). The shaded regions indicate the standard deviation of the data. As 𝜃
approaches 𝜋/2, the average and standard deviation approaches that of a squeezed
vacuum state, corresponding to the de-amplification of the coherent states.

To obtain the POVM of our OPAD, we used a convex optimization algorithm, similar
to the one described in [38]. The experimentally retrieved and theoretical POVMs
are shown in Figure 5.3 (a). The experimentally reconstructed POVM has a dark
count probability of 2.2% and an efficiency of 26.2%, while the theoretical POVM
has a dark count probability of 4.4% and an efficiency of 22.7%. The Wigner
functions of the experimentally reconstructed POVM elements are shown in Fig.
5.3(b), with the click having negativity in the center.

The theoretical POVM was calculated for an OPA with a scaled-down gain (10 dB)



61

OPA Click

~

a b

c d

Figure 5.3: Detector tomography results and analysis.(a) The POVM elements of
the OPAD, reconstructed through detector tomography (first and second rows) and
theoretically calculated using QuTiP (third row). The theoretical POVM elements
are real. (b) Experimentally reconstructed Wigner functions of the no click and click
POVM elements. (c) The efficiency and dark count rate of the detector for both
experimentally reconstructed and theoretically calculated POVMs as a function of
the threshold photocurrent or photon number. (d) The fidelity with a single photon
state after one mode of the Bell state ( |00⟩+ |11⟩)/

√
2 is measured with an OPAD vs.

the threshold photocurrent or photon number, for both experimental and theoretical
POVMs. Inset: diagram of the measurement scheme.

to be computationally viable, and with proportional noise. Since more squeezing
does not change the POVM qualitatively, it is possible to recover the same POVMs
from different amounts of gain by choosing appropriate thresholds (we elaborate on
this procedure in later sections). We calculated the fidelity between the theoretical
and experimental POVMs 𝐹𝑛 = Tr((Π1/2

𝑛,theoΠ𝑛,expΠ
1/2
𝑛,theo)

1/2)2 [38], with the trace
of each of the POVM elements normalized to 1, for every combination of 𝑁𝑡ℎ in
the theoretical POVM and photocurrent threshold in the experimental reconstruc-
tion. The average fidelity of both elements, (𝐹click + 𝐹no click)/2, was over 0.72 for
thresholds chosen to optimize this metric.

To quantify the trade-off between efficiency and dark counts, we sweep the cutoff
photocurrent in our convex optimization algorithm as well as 𝑁𝑡ℎ in the theoreti-
cal POVM calculation. The efficiencies and dark counts vs. the threshold photon
number (for theory) and threshold photocurrent (for experiment) both for the ex-
perimental and theoretical POVMs are plotted in Figure 5.3(c), with the threshold
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photocurrent adjusted to match the threshold photon number proportionally to the
gains of the OPAs. The experimental POVM outperforming the theoretical POVM
at higher thresholds is an indication that the pump depletion, which causes the later
bump in the amplified photocurrent distribution, is improving the performance.
This is because as the threshold photocurrent increases, especially above 0.006, the
detection probability does not decrease as quickly as for a squeezed coherent state
with no pump depletion.

We considered an example of DV detection in which one mode of a Bell state
|Φ+⟩ = ( |00⟩ + |11⟩)/

√
2 is sent to the OPAD. We calculated the fidelity of the

other mode with a single photon (|1⟩) as a function of the detection efficiency using
the theoretical and experimentally reconstructed POVMS. The results are plotted in
Figure 5.3(d). As expected, the theoretical curve indicates a decrease in fidelity as
the detection efficiency increases. This is due to the higher dark count probability at
lower thresholds. The experimental POVM has a higher fidelity than the theoretical
fidelity, which can be explained by the pump depletion.

The main benefits of the OPAD are its speed, room-temperature operation, integra-
bility, and flexibility in wavelength. The speed of detection is limited only by the
laser repetition rate, the photodetection system’s electronic bandwidth, and the width
of the pulses. We detected pulses with an 18 GHz detector, which is competitive
with the timing resolutions of state-of-the-art SNSPDs and SPADs [42, 20]. Typi-
cally, the efficiency of SNSPDs and SPADs decreases as the wavelength increases
due to bandgap-related limitations [43]. However, the OPAD can be designed to
operate flexibly within the transparency window of LN spanning from the visible
to the mid-IR. Furthermore, the simplicity of the design means that this detector
can be readily integrated into the fast-evolving nonlinear nanophotonic circuits in
LN. Additionally, our OPAD scheme is tolerant to losses after the OPA, as the loss
affects all amplified states equally and can thus be accounted for by setting a lower
threshold photocurrent.

The proposed OPAD can be used as an effective photon subtraction scheme for
generation of non-Gaussian states with further improvements on the gain and ma-
terial loss on nanophotonic platforms. We consider creating a Schrödinger kitten
state through photon subtraction [11] a pump homodyne OPAD similar to the QND
scheme and parameters in [39], as shown in Fig. 5.4(a) (see Methods for details). In
this scheme, when the pump homodyne measurement is in a specific range, a click
is triggered, projecting the initial squeezed vacuum onto a kitten state. The ensem-
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ble average output state purity is numerically estimated to be 0.98 (shown in Fig.
5.4(b)), and the fidelity between the squeezed photon subtracted 2-mode squeezed
state and a photon subtracted squeezed state is 0.96, with a click probability of
2.4%. Experimental realization of such kitten states requires further advancement
in the losses in nanophotonic waveguides and the multimode effects that occur with
broadband pulsed operation and dispersion engineering [44]. The propagation loss
limits the 𝑔/𝜅 of current realizations of OPAs to much less than one. Significant
non-Gaussianity can be observed only when 𝑔/𝜅 is around the order of unity.

5.2 Conclusion
We have proposed and demonstrated an OPAD on a TFLN nanophotonic chip
suitable for detecting single photons. Our detector works at room temperature and
pressure, and as the optical parametric amplification happens instantaneously, the
speed of the detector is limited by the dispersion and pump pulse length, which
determine the minimum duration of the output pulse at the signal wavelength. For
our device, the GVM mismatch is less than 10 fs/mm, and so our speed is primarily
constrained by the duration of the pump pulse to approximately 77 fs or a maximum
repetition rate of 13 THz [44]. Through tailoring of the material, periodic poling,
and dispersion engineering, it is possible to detect photons from visible wavelengths
into the MIR. As an example of the OPAD’s utility for DV QIP, we simulated
a measurement using our experimental POVM on one mode of a Bell state and
showed that for a detection efficiency of 30%, the fidelity of the other mode with a
single photon is over 92%, showing how this system is useful for ultrafast DV state
manipulations. We also showed numerically that it is possible to create a Schrödinger
kitten state with a fidelity of 0.96 with an OPAD that uses homodyne detection on
the pump. Our results suggest that single photon all-optical detection using second-
order optical nonlinearity is a promising direction for ultrafast integrated photonic
quantum information processing.

5.3 Methods
Experimental setup
We send coherent states of known amplitude and phase created by an OPO into the
OPAD to gather data for POVM reconsruction. We pump both the OPO and the
OPAD with 75-fs pulses at 1.045 μm at a 250 MHz repetition rate from a mode-
locked laser. The coherent state amplitudes are set with a neutral density filter,
and the phase is swept using a piezoelectric adjustable delay line. To reduce the
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multi-mode effects in the amplified light and filter the pump out, we used a 48-nm
bandwidth band-pass filter centered at 2.09 μm. In addition to this filter, we used
one 1330-nm long-pass filter and two 1500 nm long-pass filters, which provided
150 dB of total pump rejection. Both the coherent states and the pump pulses were
coupled onto the chip using a reflective objective and out-coupled with a tapered
single-mode fiber.

Using a 90/10 beam-splitter, we record both the individual pulse photocurrent
amplitudes and a slower time-averaged signal from an optical spectrum analyzer
(OSA) containing the amplification and de-amplification envelope of the signal
(amp/de-amp) as the phase is swept. The pulse data is recorded using an InGaAs
photodetector with an 18 GHz bandwidth with an 80Gs/s 40GHz oscilloscope,
enough to resolve individual optical pulses and hence measurement outcomes. The
amp/de-amp envelope is used to determine the phase of the coherent state relative
to the pump. We use data from roughly 4 million pulses as well as 140,000 pulses
of optical parametric generation data in which the signal is the vacuum state to
calibrate the shot noise.

In order to characterize the amplitude of the coherent states on-chip, we send the
pulses into an SNSPD optimized for operation at 2 μm. Knowing the chip output
loss from OPG measurements (see Supplemental Information) and the loss from the
filters allowed us to calculate the amplitude from the fraction of pulses that caused
a click on the SNSPD.

Quantum detector tomography
We calculate the theoretical click and no-click POVM matrices for a squeezer with
10 dB of squeezing. We used 𝜂 = 𝜂𝑝𝑑𝜂 𝑓 = 0.314, for photodetector efficiency
𝜂𝑝𝑑 = 0.629 and filter loss 𝜂 𝑓 = 0.5. In order to determine the appropriate standard
deviation 𝜎 for 10 dB of squeezing, we use the ratio of the standard deviation of the
electronic noise to the average photocurrent for squeezed vacuum as a metric for
the amount of noise. This metric was 0.172 for our setup and the average photon
number for a 10 dB squeezed vacuum contains 2.02 photons, so for the theoretical
POVM we used 𝜎 = 2.02 × 0.172 = 0.347 photons. We sum over photon numbers
up to 150 since at 10 dB the average photon number of squeezed vacuum is 2.02
and the probability amplitude at 150 photons is 10−7.

To experimentally reconstruct the POVM of our OPAD, we use the convex opti-
mization process described in [38] with the full POVM matrices rather than just the
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diagonal entries as this is a phase-sensitive measurement. Because of this, we must
solve a tensor equation rather than just a matrix one. We seek to invert the following
equation:

𝑃𝑖,𝑛 = 𝐹𝑖,𝑘,𝑝Π𝑘,𝑝,𝑛 (5.1)

where 𝑃𝑖,𝑛 = ⟨𝛼𝑖 | 𝜋𝑛 |𝛼𝑖⟩ is the experimentally determined probability of getting
a click or not as a function of the coherent state amplitude 𝛼𝑖, and 𝐹𝑖,𝑘,𝑝 =

𝑒−|𝛼𝑖 |
2 (𝛼∗

𝑖
)𝑘𝛼𝑝

𝑖
/
√︁
𝑘!𝑝! are the prefactors associated with the type of state being

sent in (in our case, coherent states). Π𝑘,𝑝,𝑛 =
∑

𝑘,𝑝 𝜃
(𝑛) |𝑘⟩ ⟨𝑝 | are the POVM ma-

trices we are trying to find by performing a convex optimization which minimizes
| |𝑃 − 𝐹Π | |2. The indices 𝑘 and 𝑝 are the indices of the matrices, 𝑛 refers to which
measurement result (𝑛 = 0 for no click, 𝑛 = 1 for a click), and 𝑖 indexes the coherent
state amplitude.

The optimization also involves a regularization constraint which smooths the diag-
onal entries of the POVM, which takes the form of:

𝑅 =
∑︁
𝑘,𝑛

(𝜃 (𝑛)
𝑘+1,𝑘+1 − 𝜃

(𝑛)
𝑘,𝑘

)2 (5.2)

We can then perform the minimization over:

min( | |𝑃 − 𝐹Π | |2 + 𝛾𝑅) (5.3)

for some regularization constant 𝛾. Here we use 𝛾 = 10−4, a relatively low value,
in order to prevent over-smoothing of the POVM, as we expect some sharp charac-
teristics from |0⟩ ⟨0| to |1⟩ ⟨1| indicating the click-like character of the detector (for
more details see the Supplemental Information).

We use data from coherent states with amplitudes |𝛼 | = 0.449, 4.87, and 7.11 and
binned the phases into five bins between 0 and 𝜋/2, as shown in Fig. 5.2(c), in
order to discretize the data for the convex optimization. We found that varying the
bin sizes did not create large variations in the output. We used CVXPY, a Python
library for solving convex optimization problems, to invert Eqn. 5.1 [45].

Homodyne OPAD
We consider an OPAD with the homodyne measurement on the pump outlined
in [39], which projects the signal onto a mixture of squeezed Fock states based
on a homodyne measurement of a depleted pump. The parameters used in our
simulations are the same as those considered in that paper. For an OPA Hamiltonian
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in a displaced frame of 𝐻̂ = 𝑔(𝑎̂†2𝑏̂ + 𝑎̂2𝑏̂†) + 𝛿𝑎̂†𝑎̂ + 𝑟
2 (𝑎̂

†2 + 𝑎̂2), as for Figure 1
of that paper, we use

√︁
1 − 𝑟2/𝛿2 = 150 and 𝑔̃/𝑔 = sinh

(
tanh−1(𝑟/𝛿)

)
= 1, which

leads to the Fock states post-measurement having 3.88 dB of squeezing. We also
set the total interaction time 𝑔𝑡 = 1. For the purity calculations, we consider a pump
with 3 dB squeezing.

When we consider creating a Schrödinger kitten state using squeezed photon sub-
traction from squeezed vacuum using this scheme, we simulate a 5 dB squeezed
vacuum going through a beam-splitter with reflectivity 0.2, with the OPAD on the
reflected port. For our parameters, the measurement is effectively a squeezed Fock
state subtraction, with the number of photons dependent on the pump homodyne
detection result. We set the limits of the detected range of pump homodyne mea-
surements which trigger a click such that the ensemble average output state purity
is 0.98 and the average fidelity between this squeezed-photon-subtracted two-mode
squeezed state and a photon-subtracted squeezed state is over 0.96. The probability
of getting a detection result in the desired range is 2.4%.

5.4 Data availability
The data used to generate the plots and results in this thesis are available from the
author upon reasonable request.

5.5 Code availability
The code used to analyze the data and generate the plots for this thesis chapter is
available from the author upon reasonable request.

5.6 OPAD POVM
The POVM of an OPA followed by a photodetector with imperfect efficiency and
Gaussian electronic noise, given by [46], is:

Π𝑛 =
∑︁
𝑚≥0

𝑃(𝑛|𝑚)𝑆†(𝜉) |𝑚⟩ ⟨𝑚 | 𝑆(𝜉) (5.4)

where 𝑃(𝑛|𝑚) is the probability that the photodetector will register 𝑛 photons
when 𝑚 photons arrive at the detector. We assume that the OPA is operating at
degeneracy in the low pump-depletion, linear gain regime, so that it implements
the single-mode squeezing operator 𝑆(𝜉), for squeezing parameter 𝜉. Because the
squeezing operator is phase-sensitive, this is a phase-sensitive detector. 𝑃(𝑛|𝑚)



68

depends on the photodetector’s efficiency 𝜂 and sources of Gaussian noise as

𝑃(𝑛|𝑚) =
∑︁
𝑞≥0

𝑃𝜎 (𝑛|𝑞)𝑃𝜂 (𝑞 |𝑚) (5.5)

where

𝑃𝜎 (𝑛|𝑞) = exp
(
−(𝑛 − 𝑞)2

2𝜎2

)
(5.6)

is the probability of detecting 𝑛 photons given 𝑞 photons arrived at the detector.
There is Gaussian noise with standard deviation 𝜎, representing the electronic noise.
The term

𝑃𝜂 (𝑞 |𝑚) = 𝑚!
𝑞!(𝑚 − 𝑞)!𝜂

𝑞 (1 − 𝜂)𝑚−𝑞 (5.7)

is the probability that 𝑞 photons are detected after 𝑚 photons pass through a beam-
splitter with transmission 𝜂, which models the finite efficiency 𝜂 ≤ 1 of the pho-
todetector.

We can model a click detector by setting a threshold number of photons 𝑁𝑡ℎ above
which the detector registers a click. Then, the click POVM is

Πclick =
∑︁
𝑛≥𝑁𝑡ℎ

Π𝑛 (5.8)

and Πno click = 1 − Πclick. The probability of getting result 𝑘 is 𝑝𝑘 = Tr(𝜌Π𝑘 ), so
the single photon efficiency is the (1,1) matrix element of Πclick in the Fock basis,
and the dark count rate is the (0,0) element of the same matrix. All the summations
are all over all photon numbers, but for computational purposes it suffices to sum
over photon numbers within the range where there is significant probability density
based on the squeezing parameter and noise standard deviation.

5.7 Chip dimensions and characterization
We use a thin-film lithium niobate (TFLN) chip with a thickness of 700 nm, waveg-
uide etch depth of 345 nm and width of 1.85 𝜇m. The poling period is 5.22 𝜇m.
We estimate that the group velocity mismatch between the fundamental and second
harmonic is 5.2 fs/mm, and the group velocity dispersion at the fundamental is 120.1
fs2/mm and at the second harmonic it is 28.4 fs2/mm.

We characterize the chip’s gain and output coupling by measuring the optical para-
metric generation (OPG) power as a function of pump power. We do so by blocking
the signal path from the OPO and adjusting the pump power using a half-wave plate
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and polarizing beam-splitter. The data we collected is shown in Fig. 5.5. The
equation we fit to is

𝑃𝑂𝑃𝐺,𝑜 𝑓 𝑓 = ℏ𝜔𝑠𝜂𝑂𝐶 𝑓𝑟𝑒𝑝 sinh2(𝐿
√︁
𝜂𝑁𝐿𝜂𝐼𝐶𝑃𝑝𝑢𝑚𝑝,𝑜 𝑓 𝑓 ) (5.9)

≈
ℏ𝜔𝑠𝜂𝑂𝐶 𝑓𝑟𝑒𝑝

4
𝑒2𝐿

√
𝜂𝑁𝐿𝜂𝐼𝐶𝑃𝑝𝑢𝑚𝑝,𝑜 𝑓 𝑓 (5.10)

where the last approximation is in the large-gain regime. 𝑃𝑂𝑃𝐺,𝑜 𝑓 𝑓 is the OPG power
off-chip, 𝑃𝑝𝑢𝑚𝑝,𝑜 𝑓 𝑓 is the pump power off-chip, 𝜂𝑂𝐶 is the output coupling efficiency
of the chip, 𝜂𝐼𝐶 is the input coupling efficiency, 𝜔𝑠 is the signal frequency, 𝑓𝑟𝑒𝑝 is the
laser repetition rate, 𝐿 is the length of the OPA, and 𝜂𝑁𝐿 is the normalized second
harmonic efficiency. We fit to a linearized version of the equation, ln

(
𝑃𝑂𝑃𝐺,𝑜 𝑓 𝑓

)
=

ln
(
ℏ𝜔𝑠𝜂𝑂𝐶 𝑓𝑟𝑒𝑝/4

)
+ 2𝑏

√︁
𝑃𝑝𝑢𝑚𝑝,𝑜 𝑓 𝑓 . We find 𝜂𝑂𝐶 = 0.102 and 𝑏 = 𝐿

√
𝜂𝑁𝐿𝜂𝐼𝐶 =

16.3 with standard deviations of the fit 𝜎𝜂𝑂𝐶
= 0.027 and 𝜎𝑏 = 0.328. Thus, the

output coupling loss is 9.9 dB. The transmission loss through the chip is 25 dB,
which leads to an input coupling loss of approximately 15.1 dB. This is likely due to
the mode mismatch between the output of the reflective objective and the waveguide.
We find 𝜂𝑁𝐿 = (1.46 ± 0.06) × 105 W−1cm−2.

Extracting g/𝜅 from OPG measurements
The interaction Hamiltonian for 3-wave mixing is

𝐻̂

ℏ
= 𝑔(𝑎̂†2𝑏̂ + 𝑎̂2𝑏̂†) (5.11)

for interaction strength 𝑔, signal annihilation operator 𝑎̂, and pump annihilation oper-
ator 𝑏̂. In the Heisenberg picture under the undepleted-pump assumption with pump
strength 𝑏̂ → 𝛽, for an initial state of vacuum, the signal number operator evolves
as ⟨𝑎̂†𝑎̂⟩(𝑡) = ⟨𝑁̂𝑎⟩(𝑡) = sinh2(2𝑔 |𝛽 |𝑡). To compare this to the OPG equation (Eqn.
5.9), we consider how to convert these quantities into the power measurements.
⟨𝑁̂𝑎⟩(𝑡) = 𝑃𝑂𝑃𝐺,𝑜𝑛/(ℏ𝜔𝑠 𝑓𝑟𝑒𝑝) and |𝛽 | =

√︁
⟨𝑁̂𝑏⟩ =

√︁
𝑃𝑝𝑢𝑚𝑝,𝑜𝑛/(ℏ𝜔𝑝 𝑓𝑟𝑒𝑝) where the

"on" subscript refers to the on-chip power. Substituting, we have:

𝑃𝑂𝑃𝐺,𝑜 𝑓 𝑓 ≈
ℏ𝜔𝑠 𝑓𝑟𝑒𝑝𝜂𝑂𝐶

4
𝑒4𝑔𝑡

√
𝜂𝐼𝐶𝑃𝑝𝑢𝑚𝑝,𝑜 𝑓 𝑓 /(ℏ𝜔𝑝 𝑓𝑟𝑒𝑝) (5.12)

Comparing to Eqn. 5.9, we can see:

4𝑔𝑡
√︃
𝜂𝐼𝐶𝑃𝑝𝑢𝑚𝑝,𝑜 𝑓 𝑓 /(ℏ𝜔𝑝 𝑓𝑟𝑒𝑝) = 2𝐿

√︁
𝜂𝑁𝐿𝜂𝐼𝐶𝑃𝑝𝑢𝑚𝑝,𝑜 𝑓 𝑓 (5.13)

so we have:
𝑔 = 𝐿

√︁
𝜂𝑁𝐿ℏ𝜔𝑝 𝑓𝑟𝑒𝑝/(2𝑡) (5.14)
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Figure 5.5: OPG power as a function of pump power. We use a subset of the data
which is in the undepleted pump regime and also has a high enough power to clear
the electronic noise floor of the detector, shown in blue. The average power is shown
as the green line for illustration purposes. The fit equation with the parameters we
found is shown in red.

and with 𝑡 = 𝐿𝑛/𝑐, finally:

𝑔 =
𝑐

2𝑛
√︁
𝜂𝑁𝐿ℏ𝜔𝑝 𝑓𝑟𝑒𝑝 (5.15)

From the value of 𝜂𝑁𝐿 from the fit, we have 𝑔 = 29 MHz.

However, we must account for multimode effects in our OPA. The simplest way of
dealing with it is to assume that each mode receives an equal amount of the gain.
We calculate the purity 𝜌 from the normalized joint spectral intensity by performing
a singular value decomposition and adding the squares of the eigenvalues, and
obtain the effective mode number 𝑚𝑒 𝑓 𝑓 = 1/𝜌 ≈ 12.6. We can then calculate
𝑔𝑒 𝑓 𝑓 = 𝑔/𝑚𝑒 𝑓 𝑓 = 2.3 MHz.

We compare this number to the theoretical value using this equation from [47],
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modified to include the naive multimode effects:

𝑔𝑒 𝑓 𝑓 =
4𝑑𝑒 𝑓 𝑓
𝑚𝑒 𝑓 𝑓𝜆

3

√︄
2𝜋3ℏ𝑐3

𝑛3𝜀0𝑉̃𝑠ℎ

(5.16)

where 𝑑𝑒 𝑓 𝑓 is the effective quadratic nonlinear coefficient, which is 𝑑33/(2𝜋), with
𝑑33 = 20 pm/V and 𝑉̃𝑠ℎ is the effective mode volume divided by (𝜆/𝑛)3, with perfect
mode overlap resulting in it being exactly the normalized mode volume. We use
the size of the waveguide 400 nm by 1780 nm times the pulse width of 𝜏𝑝 = 100 fs
equating to 𝜏𝑝𝑐/𝑛 = 1.62 𝜇m for 𝑛 = 1.85. Assuming perfect overlap and plugging
in the parameters for our waveguide and pulse width to get the volume, we get an
estimate of 𝑔 = 9.0 MHz. This value is of the same order to the experimental
extraction, and the discrepancy may be attributed to the imperfect mode overlap
between the first harmonic and second harmonic.

We estimate the loss in the waveguide of 0.23 dB/cm and a group velocity of 𝑣𝑔 =

1.33× 108 m/s, which leads to a 𝜅 = 𝛼𝑣𝑔 [47] of 702 MHz. Thus, 𝑔𝑒 𝑓 𝑓 /𝜅 ≈ 0.0033.

5.8 High-gain OPA simulations
The OPA in our theoretical POVM calculations has 10 dB of squeezing. This is
clearly below the gain that our actual on-chip OPA has, which is in the tens of dBs.
However, we do not have to simulate the actual gain of the OPA because the nature
of the POVM does not qualitatively change with higher gain. Squeezing stretches
out the photon number distributions but does not change their characteristics beyond
5 dB of squeezing.

To test whether the gain affected the efficiency-dark count trade-off, we simulate
OPADs with gains between 7 and 12 dB, adjusted the Gaussian noise’s standard
deviation to be proportional to the average photon number of vacuum squeezed by
that parameter, and swept the threshold photon number. The gain does not affect
the efficiency-dark count rate curve, as can be seen in Fig. 5.6(a). The difference
between the different gains is that for a the same threshold, the OPAD will be on
different places on this curve. However, by adjusting the threshold it is possible to
achieve the same performance as any other OPAD with different gain.

As another example, we calculate the click probability for input states of a single
photon and a coherent state with ⟨𝑁⟩ = |𝛼 |2 = 1 for a threshold which yields a
2.5% dark count rate (a.k.a. vacuum click probability). As can be seen in Fig.
5.6(b), the rates stay constant over squeezing from 10 to 45 dB, indicating that an
OPAD’s performance is not based on the OPA’s gain, and that as long as the classical
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Figure 5.6: The performance of OPAs with different levels of gain. (a) The efficiency
vs. dark count rate of OPADs with OPAs with various levels of gain with Gaussian
noise proportional to the gain. The points were generated by sweeping the threshold
photon number. (b) Click probability vs. OPA gain for vacuum, single photon, and
an ⟨𝑁⟩ = 1 coherent state, for vacuum click probability (dark count rate) of 2.5%.
Note the constant click probabilities over a wide amplification range.

detector is sensitive enough to detect the pulses, an appropriate threshold can be set
to achieve any performance along the dark count rate-efficiency curve.

Thus, we conclude that it is possible to gain insight from a simulation of an OPAD
with 10 dB of gain despite it being much less than the actual gain.

5.9 Detector tomography regularization constant
To invert the matrix equation to extract the POVM, we perform convex optimization
to minimize this equation:

min( | |𝑃 − 𝐹Π | |2 + 𝛾𝑅) (5.17)

with 𝛾𝑅 being the regularization to smooth the potentially spiky nature of the
diagonal entries of the POVM, with 𝑅 =

∑
𝑘,𝑛 (𝜃

(𝑛)
𝑘+1,𝑘+1 − 𝜃

(𝑛)
𝑘,𝑘

)2. To ensure we use
a value of 𝛾 not too high such that it introduces artifacts, we swept 𝛾 and found the
dark count rate and efficiency as a function of 𝛾 (Fig. 5.7). We find that 10−4 was
within the region such that changing it did not change the result significantly, so we
chose that value.
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ABSTRACT

Squeezed vacuum, a fundamental resource for continuous-variable quantum infor-
mation processing, has been used to demonstrate quantum advantages in sensing,
communication, and computation. While most experiments use homodyne detec-
tion to characterize squeezing and are therefore limited to electronic bandwidths,
recent experiments have shown optical parametric amplification (OPA) to be a
viable measurement strategy. Here, we realize OPA-based quantum state tomogra-
phy in integrated photonics and demonstrate the generation and all-optical Wigner
tomography of squeezed vacuum in a nanophotonic circuit. We employ dispersion-
engineering to enable the distortion-free propagation of femtosecond pulses and
achieve ultrabroad operation bandwidths, effectively lifting the speed restrictions
imposed by traditional electronics on quantum measurements with a theoretical
maximum clock speed of 6.5 THz. We implement our circuit on thin-film lithium
niobate, a platform compatible with a wide variety of active and passive photonic
components. Our results chart a course for realizing all-optical ultrafast quantum
information processing in an integrated room-temperature platform.
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Figure 6.1: A) Layout of the measurement procedure. Δ𝑡 represents the relative
time-delay between the pump and squeezed vacuum generated on-chip where a
0.775 fs delay corresponds to a measurement phase of 𝜙 = 𝜋

2 . B) Measured photon
number distributions for squeezing (𝜙 = 𝜋

2 ), anti-squeezing (𝜙 = 0) and vacuum. C)
Wigner function recovered for vacuum. D) Wigner function recovered for squeezed
vacuum.

6.1 Introduction
Many quantum systems have been used to gain an advantage over otherwise purely
classical means in a variety of fields [1, 2, 3]. Photonics has emerged as a front-
runner platform in quantum information processing (QIP) for several key reasons.
Most photonic technologies are capable of operating at room temperature outside
a carefully-controlled cryogenic environment. Advances in integrated photonics
have allowed many devices and circuits to be combined into a single monolithic
platform similar to CMOS technology and the advent of integrated circuits [4].
Photonics also offers an inherently broad bandwidth which, when combined with
dispersion engineering, can allow for the manipulation and propagation of ultra-
short pulses of light [5]. Time-multiplexing, a pulse-based encoding technique used
in photonic systems, can leverage femtosecond pulses to scale information density
and throughput, and can exceed clock speeds beyond what is currently possible with
conventional electronics [6, 7, 8].

A crucial part of any QIP system is a measurement device capable of characterizing
a component of interest. Homodyne detection is widely employed as its phase-
sensitive nature can be used to reconstruct the Wigner function, a quasi-probability
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distribution over two non-commuting variables which completely characterizes a
quantum state [9]. Homodyne detectors can also isolate a single mode of a state of
interest by shaping the spectral profile of the local oscillator appropriately [10]. This
phase-sensitive and mode-selective behavior makes them well-suited for character-
izing a variety of quantum states, including non-classical states. Single-photon and
photon number-resolving (PNR) detectors are also common tools for state character-
ization and have been used to generate and measure of states with Wigner negativity
[11, 12, 13, 14, 15, 16]. While homodyne and PNR detection are powerful tech-
niques for probing quantum states of interest, their speed is ultimately constrained
by the bandwidth of the electronics used to physically realize these detectors, which
are limited to the GHz range.

To overcome the speed limitations of electronics, we demonstrate chip-scale all-
optical Wigner tomography of squeezed vacuum (SV) using a nanophotonic optical
parametric amplifier (OPA). In our previous work [17], we measured the average
photon number at the output of an OPA to calculate squeezing levels. In this
work, we use a fast photodetector to measure each pulse and resolve the statistical
information necessary to recover the Wigner function of the input SV. We design
our OPA to have low dispersion at both the pump and signal wavelengths, allowing
for the distortion-free propagation and amplification of femtosecond pulses. Such
an OPA-based circuit supports a maximum measurement repetition rate (i.e. clock
speed) of 6.5 THz. Increased clock speeds offers crucial benefits for QIP in photonic
time-multiplexed systems as faster clocks lead to shorter processing times while also
increasing the maximum circuit size which can be realized for a given system [18,
19, 20]. Our results highlight nanophotonic OPAs as an important building block for
chip-scale ultrafast quantum information processing systems at room temperature.

6.2 Parametric Amplifiers as Quantum Measurement Devices
Early proposals of OPAs as quantum measurement devices demonstrated loss-
tolerance and detector inefficiency mitigation [21]. OPAs are particularly well-suited
for this task as their phase-sensitive amplification is in principle noiseless unlike
phase-insensitive amplifiers such as erbium-doped fibers and semiconductor gain
media [22]. OPA-assisted balanced homodyne detection has been used to character-
ized fiber-based sources of SV over 43 GHz of electronic bandwidth [23]. A similar
technique has also been demonstrated using the 𝜒(3) nonlinearity [24]. Other ex-
periments have shown quantum-enhanced sensing using an SU(1,1) interferometer
constructed from two OPAs for state readout [25, 26]. OPAs have also been used to
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Figure 6.2: A) Pump dispersion and group-velocity mismatch (calculated at de-
generacy and plotted at the pump wavelength) for our OPA. B) Signal dispersion
vs wavelength. C) Parametric generation (vacuum amplification) spectra of our
measurement and squeezer OPAs.

amplify weak spatially-varying signals and detect quantum correlations for imaging
applications [27, 28]. All-optical feed-forward, a technique used to surpass the con-
straints of electronics in feed-forward schemes for quantum information processing,
has been demonstrated using 3 OPAs [29]. Wigner-tomography of squeezed states
using bulk OPAs has been experimentally realized [30]. OPA-based techniques
have also been extended to squeezing across multiple spatial modes where direct
detection is used to disentangle and analyze each mode independently [31].

Quadrature Measurement
Figure 6.1 depicts the scheme used to measure the Wigner function of a SV state
encoded in a femtosecond pulse. When the SV enters the nanophotonic amplifier, its
in-phase quadrature 𝑥𝜙 is amplified by the pump while its out-of-phase quadrature
𝑝𝜙 is deamplified. These quadratures map to the original operators of the state as
[30]:

𝑥𝜙 = 𝑥𝑐𝑜𝑠(𝜙) + 𝑝𝑠𝑖𝑛(𝜙) (6.1)

𝑝𝜙 = 𝑝𝑐𝑜𝑠(𝜙) − 𝑥𝑠𝑖𝑛(𝜙) (6.2)

Where 𝜙 represents a relative phase between the pump and amplified signal induced
by adjusting the time-delay (Δ𝑡) of the pump. After amplification, the output
quadratures can be expressed as:

𝑋𝜙 = 𝑥𝜙𝑒
𝑔 (6.3)

𝑃𝜙 = 𝑝𝜙𝑒
−𝑔 (6.4)
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where 𝑒𝑔, the gain of the amplifier, can be controlled by changing the pump power.
The operator for the number of photons in the signal field at the output is then:

𝑁𝜙 = 𝑋̂2
𝜙 + 𝑃̂2

𝜙 −
1
2

(6.5)

For a large gain, the 2nd and 3rd terms of Eq.6.5 can be ignored such that:

𝑁𝜙 ≈ 𝑋̂2
𝜙 (6.6)

By measuring the signal intensity at the output of the OPA for each pulse, we can
recover the marginal distribution 𝑃(𝑁, 𝜙), or the probability of detecting 𝑁 photons
at a measurement pump phase 𝜙.

Because our OPA exhibits low dispersion over a broad bandwidth while oper-
ating in the type-0 phase matching configuration, it amplifies many orthogonal
spectro-temporal modes simultaneously [32], all of which contribute to the measured
𝑃(𝑁, 𝜙). These modes can be calculated analytically by computing the joint spectral
intensity (JSI) function of the signal and idler. Our JSI and the corresponding modes
are computed and plotted in the supplementary using the dispersion parameters cal-
culated from the waveguide geometry and the Heisenberg propagators derived in
[33]. Because our JSI is inseparable (𝐽𝑆𝐼 (𝜔𝑠, 𝜔𝑖) ≠ 𝜙(𝜔𝑠)𝜙(𝜔𝑖)), it is composed
of multiple independent modes Φ(𝜔𝑠, 𝜔𝑖) of the form Φ(𝜔𝑠, 𝜔𝑖) = 𝜙(𝜔𝑠)𝜙(𝜔𝑖).

At the photodetector, we use a combination of a 1700-nm long-pass filter and 1950-
nm short-pass filter to suppress contributions from higher order modes. Using the
measured 𝑃(𝑁) for vacuum amplification (i.e. when no signal field is sent into
the OPA), we calculate a Schmidt number of 1.35 modes after filtering from the
definition of 𝑔(2) in [34]. Contributions from the higher-order modes are quantified
and separated by fitting a 2-mode photon number distribution to determine the gain
of the fundamental mode as a function of 𝜙. As our Schmidt number of 1.35 is close
to single-mode (i.e. 1), we limit our fit to just the first two modes as contributions
from higher order modes are relatively small. For a single mode, the photon number
distribution is

𝑃
[1]
⟨𝑁⟩ (𝑁, 𝜙) =

1√︁
2𝜋𝑁 ⟨𝑁 (𝜙)⟩

𝑒
− 𝑁

2⟨𝑁 (𝜙) ⟩ (6.7)
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Figure 6.3: A diagram of the squeezer and measurement OPA circuit.

where ⟨𝑁 (𝜙)⟩ is the squeezing-dependent average photon number. Convolving this
distribution with itself yields the 2-mode distribution [35]:

𝑃[2] (𝑁, 𝜙) =
∫ ∞

0
𝑃
[1]
⟨𝑁1⟩ (𝑁 − 𝑛, 𝜙)𝑃[1]

⟨𝑁2⟩ (𝑛, 𝜙)𝑑𝑛 (6.8)

This convolution is the probability of detecting a total of N photons across both
modes as the photodetector cannot distinguish between photons arriving from dif-
ferent modes. These fitted distributions are then sampled and used as inputs to
a maximum-likelihood reconstruction algorithm to recover the density matrix and
Wigner function [36].

Multimode Cascaded Squeezing in the Heisenberg picture
We use the formalism of [37] to derive the output of a two cascaded multimode
OPAs: a squeezer OPA and a measurement OPA. Figure 6.3 shows the circuit
diagram. We begin with the state after the squeezer OPA (denoted with superscript
𝑠) and decompose the annihilation operator into the squeezer OPA’s eigenmodes
(denoted by subscript 𝑚):

𝑎̂𝑠 (𝑡) =
∑︁
𝑚

𝜓𝑠∗
𝑚 (𝑡)𝑎̂𝑠𝑚 (6.9)

=
∑︁
𝑚

𝜓𝑠∗
𝑚 (𝑡) (cosh 𝑟 𝑠𝑚 𝑎̂

𝑖𝑛
𝑚 + sinh 𝑟 𝑠𝑚 𝑎̂

𝑖𝑛†
𝑚 )

where 𝑟 𝑠𝑚 is the squeezing parameter of mode 𝑚. To simplify later expressions,
we assume that 𝑟 𝑠𝑚 = 𝑟 𝑠𝑚 (𝜙) where 𝜙 is the phase of the squeezed vacuum relative
to the measurement pump. Each eigenmode of the squeezer OPA is independently
squeezed. In our experiment, we inject vacuum into the squeezer OPA, and so
𝑎̂𝑖𝑛 ≡ 𝑎̂𝑣𝑎𝑐.
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After the squeezer OPA, the state is placed into the measurement OPA (superscript
𝑚𝑠 and mode subscript 𝑛) and the resulting output operator is labeled 𝑎̂𝑜𝑢𝑡 (𝑡). The
measurement OPA amplifies its own modes as independent single-mode OPAs:

𝑎̂𝑜𝑢𝑡 (𝑡) =
∑︁
𝑛

𝜓𝑚𝑠∗
𝑛 (𝑡)𝑎̂𝑜𝑢𝑡𝑛 (6.10)

=
∑︁
𝑛

𝜓𝑚𝑠∗
𝑛 (𝑡) (cosh 𝑟𝑚𝑠

𝑛 𝑎̂𝑠𝑛 + sinh 𝑟𝑚𝑠
𝑛 𝑎̂𝑠†𝑛 )

We can write the squeezed operators in the measurement OPA basis as a function of
the mode overlaps between the measurement OPA’s and squeezer OPA’s eigenmodes
𝜎𝑚𝑛 =

∫
d𝑡 𝜓𝑚𝑠

𝑛 (𝑡)𝜓𝑠∗
𝑚 (𝑡)

𝑎̂𝑠𝑛 =

∫ ∞

−∞
d𝑡 𝜓𝑚𝑠

𝑛 (𝑡)𝑎̂𝑠 (𝑡) (6.11)

=

∫ ∞

−∞
d𝑡 𝜓𝑚𝑠

𝑛 (𝑡)
∑︁
𝑚

𝜓𝑠∗
𝑚 (𝑡)𝑎̂𝑠𝑚

=
∑︁
𝑚

𝜎𝑚𝑛𝑎̂
𝑠
𝑚

The output annihilation operator is then

𝑎̂𝑜𝑢𝑡 (𝑡) =
∑︁
𝑚𝑛

𝜓𝑚𝑠∗
𝑛 (𝑡) (cosh 𝑟𝑚𝑠

𝑛 𝜎𝑚𝑛𝑎̂
𝑠
𝑚 + sinh 𝑟𝑚𝑠

𝑛 𝜎∗
𝑚𝑛𝑎̂

𝑠†
𝑚 ) (6.12)

=
∑︁
𝑚𝑛

𝜓𝑚𝑠∗
𝑛 (𝑡) (cosh 𝑟𝑚𝑠

𝑛 𝜎𝑚𝑛 (cosh 𝑟 𝑠𝑚 𝑎̂
𝑖𝑛
𝑚 + sinh 𝑟 𝑠𝑚 𝑎̂

𝑖𝑛†
𝑚 )

+ sinh 𝑟𝑚𝑠
𝑛 𝜎∗

𝑚𝑛 (cosh 𝑟 𝑠𝑚 𝑎̂
𝑖𝑛†
𝑚 + sinh 𝑟 𝑠𝑚 𝑎̂

𝑖𝑛
𝑚 ))

For large measurement OPA gains, we use the approximation cosh 𝑟𝑚𝑠
𝑛 ≈ sinh 𝑟𝑚𝑠

𝑛 ≈
1
2 exp

(
𝑟𝑚𝑠
𝑛

)
, when 𝑒𝑟

𝑚𝑠 ≫ 1 ≫ 𝑒−𝑟
𝑚𝑠 . Then, the output operator becomes:

𝑎̂𝑜𝑢𝑡 (𝑡) =
∑︁
𝑚𝑛

𝑒𝑟
𝑚𝑠
𝑛

2
𝜓𝑚𝑠∗
𝑛 (𝑡) (𝜎𝑚𝑛 (cosh 𝑟 𝑠𝑚 𝑎̂

𝑖𝑛
𝑚 + sinh 𝑟 𝑠𝑚 𝑎̂

𝑖𝑛†
𝑚 ) (6.13)

+𝜎∗
𝑚𝑛 (cosh 𝑟 𝑠𝑚 𝑎̂

𝑖𝑛†
𝑚 + sinh 𝑟 𝑠𝑚 𝑎̂

𝑖𝑛
𝑚 )) (6.14)
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Figure 6.4: A) Joint-spectral intensity function of the squeezed vacuum produced
by our OPA. B) The first four modes of the JSI calculated via the Bloch-Messiah
decomposition. C) Plot of the mode number vs proportion of mode present in the
JSI.

We can write the photon number operator for an individual pulse as

𝑁̂ =

∫ Δ𝑡

−Δ𝑡
d𝑡 𝑎̂𝑜𝑢𝑡†(𝑡)𝑎̂𝑜𝑢𝑡 (𝑡) (6.15)

=

∫
d𝑡

∑︁
𝑚,𝑚′,𝑛,𝑛′

𝑒𝑟
𝑚𝑠
𝑛 +𝑟𝑚𝑠

𝑛′

4

(
𝜓𝑚𝑠
𝑛 (𝑡) (𝜎∗

𝑚𝑛 (cosh 𝑟 𝑠𝑚 𝑎̂
𝑖𝑛†
𝑚 + sinh 𝑟 𝑠𝑚 𝑎̂

𝑖𝑛
𝑚 )

+ 𝜎𝑚𝑛 (cosh 𝑟 𝑠𝑚 𝑎̂
𝑖𝑛
𝑚 + sinh 𝑟 𝑠𝑚 𝑎̂

𝑖𝑛†
𝑚 ))

)(
𝜓𝑚𝑠∗
𝑛′ (𝑡) (𝜎𝑚′𝑛′ (cosh 𝑟 𝑠𝑚′ 𝑎̂

𝑖𝑛
𝑚′ + sinh 𝑟 𝑠𝑚′ 𝑎̂

𝑖𝑛†
𝑚′ )

+ 𝜎∗
𝑚′𝑛′ (cosh 𝑟 𝑠𝑚′ 𝑎̂

𝑖𝑛†
𝑚′ + sinh 𝑟 𝑠𝑚′ 𝑎̂

𝑖𝑛
𝑚′))

)
=
∑︁
𝑚,𝑛

𝑒2𝑟𝑚𝑠
𝑛 (Re[𝜎𝑚𝑛]𝑒𝑟

𝑠
𝑚𝑥𝑖𝑛𝑚 − Im[𝜎𝑚𝑛]𝑒−𝑟

𝑠
𝑚 𝑦̂𝑖𝑛𝑚 )2

where the integral over Δ𝑡 captures the total time-duration of the pulse, and we have
used the orthonormality of modes (

∫
d𝑡 𝜓𝑛 (𝑡)𝜓∗

𝑛′ (𝑡) = 𝛿𝑛𝑛′) to insert 𝛿𝑛𝑛′ and 𝛿𝑚𝑚′

and resolve 𝑚′ and 𝑛′ in the summation as the modes are uncorrelated in the OPA’s
squeezing basis.

Bandpass filtering around degeneracy suppresses the imaginary component of 𝜎𝑚𝑛

as imaginary contributions arise from phase walk-off in the JSI away from degener-
acy. Taking Im[𝜎𝑚𝑛]𝑒−𝑟

𝑠
𝑚 << Re[𝜎𝑚𝑛]𝑒𝑟

𝑠
𝑚 , we have:

𝑁̂ =
∑︁
𝑚,𝑛

𝑒2𝑟𝑚𝑠
𝑛 +2𝑟𝑠𝑚

4
𝜎𝑚𝑛 (𝑎̂𝑖𝑛𝑚 + 𝑎̂𝑖𝑛†𝑚 )2 (6.16)

If we take a compare to the case of no squeezing from the squeezer OPA (𝜎𝑚𝑛 =
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𝛿𝑚𝑛, 𝑟
𝑠
𝑚 = 0 ∀ 𝑚):

𝑁̂ =
∑︁
𝑛

𝑒2𝑟𝑚𝑠
𝑛

4
(𝑎̂𝑖𝑛𝑛 + 𝑎̂𝑖𝑛†𝑛 )2 (6.17)

and assume 𝑀 squeezer modes and 𝑁 measurement modes, we show that there
are now 𝑀𝑁 modes with effective squeezing parameters 𝑟𝑒 𝑓 𝑓𝑚,𝑛 = 𝑟𝑚𝑠

𝑛 + 𝑟 𝑠𝑚, whose
contributions are weighted by 𝜎𝑚𝑛. From here, we can use the quadrature 𝑋̂ =

1√
2
(𝑎̂ + 𝑎̂†) to re-write Eq.6.16 as:

𝑁̂ =
∑︁
𝑚,𝑛

𝑒2𝑟𝑚𝑠
𝑛 +2𝑟𝑠𝑚

8
𝜎𝑚𝑛 ( 𝑋̂ 𝑖𝑛

𝑚 )2 (6.18)

In our experiment, we make the assumption that only the first two modes provide
significant contributions to the measured statistics as our Schmidt number after
filtering is 1.35, and so we truncate 𝑚 and 𝑛 to the range [1,2]. Furthermore, we
know that 𝜎𝑚𝑛 where𝑚 and 𝑛 are of different parity are zero. This simplifies Eq.6.18
to:

𝑁̂ =
𝑒2𝑟𝑚𝑠

1 +2𝑟𝑠1

8
𝜎11( 𝑋̂ 𝑖𝑛

1 )2 + 𝑒2𝑟𝑚𝑠
2 +2𝑟𝑠2

8
𝜎22( 𝑋̂ 𝑖𝑛

2 )2 (6.19)

This allows us to model the measured photon number distribution as the sum of two
independent photon number distributions. During the experiment, we treat the fast
photodetector as a macroscopic photon number resolving detector such that 𝑁 ∝ 𝐼𝑑

where 𝐼𝑑 is the current measured on the detector integrated over a single pulse. We
connect this analysis to the measured photon number distributions in section 6.4.

Dispersion Engineering
A key advantage of using nanophotonics is the ability to control the dispersive prop-
erties of the waveguides used to realize photonic circuits. Figure 6.5 depicts our
ridge waveguide geometry and material stack used for our OPAs. We fabricate our
OPAs on a thin-film lithium niobate (TFLN) on silica on silicon wafers available
from NanoLN. By adjusting the width, etch depth, and thin-film thickness of the
waveguide, we can manipulate its dispersive properties to achieve low group ve-
locity dispersion (GVM) at the pump and signal wavelengths while simultaneously
minimizing the walk-off from group velocity mismatch (GVM) between the pump
and signal [5]. Figures 6.2A-B plot the GVD for the signal/pump and GVM at
degeneracy for the waveguide geometry in Fig. 6.5A. The operating wavelengths
are marked with a red star. This regime of operation allows for our OPA to exhibit
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Figure 6.5: A) Signal spatial mode within our waveguide. Text on the right
denotes the material stack-up with air, poly methyl methacrylate (PMMA), lithium
niobate (LN) and silicon dioxide (SiO2). Dimensions are indicated by the vertical
and horizontal measurements. The ordinary and extraordinary crystal axes are
denoted at the top right. B) Pump spatial mode. C) OPA gain versus measurement
pump energy. Error bars are calculated from pump and signal coupling stability
measurements taken before gain measurements. The depleted pump theory is taken
from the Gaussian limit defined in [38].

high gain over a broad bandwidth, making it an ideal tool for studying quantum
states encoded in ultrafast pulses. Our waveguide geometry achieves a GVD of
−17.3 fs2/mm at our signal wavelength of 1860 nm, 244 fs2/mm at our pump wave-
length of 930 nm, and a GVM of −87 fs/mm. By comparison, bulk lithium niobate
has a GVD of 13.3 fs2/mm at 1860 nm, a GVD of 341 fs2/mm at 930 nm, and
a GVM of 203 fs/mm. A thin layer of poly-methyl methacrylate (PMMA) is de-
posited via spin-coating on top of the waveguide which acts to perturb the effective
refractive index of the waveguide and offer some tunability of the phase matching
condition during fabrication. We note that our design is not perfectly optimal, and
that geometries with lower dispersion have been demonstrated [5].

Figure 6.2C shows the parametric generation (i.e. vacuum amplification) spectra for
the 2.5-mm OPA used for SV generation and the 5-mm OPA used for measurement.
These spectra are taken at a pump pulse energy of 30 pJ. Both OPAs exhibit a 3-dB
gain over > 20 THz as a result of low GVD at the signal wavelength and signal
gains > 40 dB thanks to low GVM. Compared to the squeezer, the measurement
OPA has a slightly narrower and more intense gain spectrum as the extra 2.5-mm
of propagation allows for greater walk-off far from degeneracy and more interaction
time near degeneracy.

Operating with low dispersion allows us to utilize ultrafast femtosecond pulses at
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Figure 6.6: A) Simulated photon number distributions for unfiltered detection
across different pump energies. B) Simulated photon number distributions for
20-nm bandpass filtered detection across different pump energies. C) A plot of
the remaining pump energy after pulse propagation (lower remaining energy is a
more depleted pump), and the peak histogram bin for the unfiltered and filtered
simulations.

both the pump and signal frequencies. Shorter pulses are advantageous for nonlinear
processes such as OPA because the high peak power from temporal confinement can
achieve a stronger nonlinear interaction for the same pulse energy. This interaction
is also enhanced by the tight spatial mode confinement offered by ridge waveguides.
Furthermore, by shortening the length of the pump and signal pulses in the time
domain, subsequent pulses can be packed closer together in time, enabling a sig-
nificant boost in clock speeds for time-multiplexing. This boost also allows larger
quantum circuits to be realized in cluster state architectures [18, 19, 20]. Based
on the dispersive properties of our 5-mm measurement OPA and our 70-fs pump
source, we estimate an upper bound on the temporal length of our SV of 154.3 fs,
which gives a theoretical maximum of 6.5 THz for our clock rate [37]. This clock
rate can be increased further by using a shorter OPA and a higher pump power, or
more advanced dispersion engineering.

Calculation of the Joint Spectral Intensity and its Modes
Figure 6.4A shows the joint-spectral intensity function (JSI) of the squeezed vac-
uum we measure. We calculate our JSI using the dispersive parameters obtained
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from mode simulations, the input pump pulse energy, and the resources from [33].
The modes of the JSI are found by performing the Bloch-Messiah decomposition
which calculates the modes such that the correlations between pairs of modes are
minimized. The first four modes are plotted in Fig. 6.4B and the fraction of the
first eight modes comprising the JSI is shown in Fig. 6.4C. The JSI decomposition
reveals a Schmidt mode number of 7.1. This same calculation can be repeated for the
measurement OPA resulting in a Schmidt number of 3.9. Filtering before detection
reduces this number to 1.35.

Pump Depletion
An important consideration for OPAs as quantum measurement devices is the deple-
tion experienced by the pump during amplification. As the pump energy increases,
the nonlinear interaction becomes more efficient, causing the pump pulse to deplete
while propagating in the OPA and the gain to saturate. Figure 6.5C shows measured
on-chip OPA gain vs the input pump energy. The black line represents the theoretical
undepleted pump gain 𝐺𝑑𝐵 = 10 log10(𝑒𝑏

√
𝐸 ) where 𝐸 is the pump energy in Joules

and 𝑏 is a found by fitting the pump energy vs gain curve in the undepleted regime.
The dashed blue line represents the theoretical gain when accounting for pump de-
pletion up to 2nd order in the Gaussian limit [38]. Around 20 pJ, the measured gain
begins to saturate relative to the theoretical gain due to pump depletion effects.

Pump depletion impacts our measurement in two ways. First, the larger photon
number components of the state being measured experience less gain than smaller
photon number components. This phenomenon, often known as gain saturation for
classical amplifiers, suppresses the larger photon number contributions to the mea-
sured distributions and distorts our measurement. This distortion can be mitigated
by improving output coupling losses to allow operation at a lower pump power. We
investigate this distortion experimentally in section 6.4. Second, pump depletion
can be thought of as a semi-deterministic transfer of energy from the pump pulse
to the signal pulse. This causes the peak of the photon number distribution to shift
away from 𝑁 = 0. We observe this effect in classical simulations which use a
split-step Fourier method to simulate single-mode and multimode vacuum measure-
ments. These simulations are detailed in the supplementary. This effect has also
been observed in single-mode quantum simulations [38] and experimentally [34].
We address this issue when fitting our data with 2-mode distributions by fitting a
constant offset along the 𝑁 axis, leading to good agreement between the measured
data and fitted distributions.
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Pump Depletion in Simulation
As discussed in the main text, we model the effects of pump depletion as a shift
in the peak of the photon number distribution. Figure 6.6 shows semi-classical
simulation results of vacuum amplification in our OPA generated via a split-step
Fourier method. As pump energy increases, the pump pulse depletes more efficiently
given the peak-power-enhanced nonlinear interaction, and causes the peak of P(N) to
shift away from 0. Fig. 6.6B shows simulated P(N) with 20-nm bandpass filtering at
degeneracy before measurement. In this case, the dominant contribution to the peak
shift is pump depletion as multimode effects are suppressed. The difference can be
seen in Fig. 6.6A where in the unfiltered case, peak shifting is more prominent thanks
to strong multimode contributions. Peak shifting as a result of pump depletion has
recently been studied in single-mode quantum simulations [38] and experimentally
observed [34].

Pump Depletion and Multimode Amplification in Experiment
To investigate the impact of multimode behavior and pump depletion, we measure
the photon number distributions (PNDs) with and without bandpass filtering for two
different devices: a 2 mm OPA and a 5 mm OPA. Both OPAs are pumped at 1045
nm with the same source as in 4 and both bandpass measurements use a 48-nm
filter centered at 2090 nm. Our 5 mm OPA is the same OPA used in chapter 4
where its dispersive properties are show in figure 4.2 and listed in section 4.1. Our
2 mm OPA has slightly lower dispersion with a GVD of 78.3 fs2/mm at 1045 nm,
a GVD of 15.8 fs2/mm at 2090nm, and a GVM of 2.6 fs/mm. Figures 6.7A and
6.7B show PNDs for the 2-mm device. In both the filtered and unfiltered cases, the
PNDs begin to broaden as pump energy increases from both multimode and pump
depletion effects. However, in the unfiltered case, the peak of the PND experiences
a shift to higher photon numbers that is not observed on the filtered case. While both
pump depletion and multimode amplification can lead to this behavior, we conclude
that the dominant contribution to peak-shifting in the unfiltered case is multimode
amplification as the bandpass filter used in Fig. 6.7B suppresses these contributions.
Figures 6.7C and 6.7D show the same experiment performed on the 5-mm device
where similar behavior is seen. However, the peak shifting in Fig. 6.7C is much
more prominent. This is likely due to supercontinuum generation enabled both
by high pump powers as well as a longer device which permits the phase walk-off
needed to induce the back-and-forth conversion and generate supercontinuum.

In Figure 6.7E, we use the measured PNDs to calculate the Schmidt number using
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Figure 6.7: A) Photon number distributions for a 2-mm OPA with no filtering. B)
Photon number distributions for a 2-mm OPA with bandpass filtering. C) Photon
number distributions for a 5-mm OPA with no filtering. D) Photon number distri-
butions for a 5-mm OPA with bandpass filtering. E) Mode number vs measurement
(input) pulse energy for the 4 cases shown above as well as the measurement OPA
used for tomography.

the definition in [34]. For measurements taken without filtering, we see similar
behavior in which the mode number initially decreases before reaching a minimum
and then increasing again. This initial decrease is seen in full quantum simulations
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and can be thought of conceptually as the JSI beginning to expand along the line
𝜔𝑠 = 𝜔𝑖 [39]. As the JSI becomes more circular, the Schmidt number decreases. We
also observe this behavior when analytically calculating the JSIs for our squeezer
and measurement OPAs in section 6.2. The cause behavior of the Schmidt number vs
pump power after the Schmidt minima is still under investigation, but we hypothesize
that this is a result of supercontinuum generation. At high pump powers, higher-
order nonlinear processes turn on inside our waveguide, causing its output spectrum
to become very broad and the generation of light in different modes which no
longer correspond to the modes of the JSI as these are solely calculated from 𝜒(2)

effects. These higher-order nonlinear processes, including effective 𝜒(3) effects
from back-and-forth conversion increase the mean of the PND in such a way that
the calculated 𝑔(2) (0) trends towards 1, causing the Schmidt number to increase.
Future experiments in which output spectra are measured at every point of Fig. 6.7
could be used to verify this argument.

6.3 Experimental Setup

PBSHWP
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SH Obj FC
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Fiber
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Figure 6.8: Experimental setup. MLL: Titanium:sapphire tunable mode-locked
laser. PBS: polarizing beamsplitter. VND: variable neutral density filter. SH:
mechanical shutter. Obj: reflective objective. FC: reflective fiber collimator. LP
and SP: long-pass and short-pass wavelength filters. 90/10: fiber splitter with 90%
going to the fast detector and 10% going to the slow detector. PD: photodetector. Fast
Osc: 80 GSPS 40 GHz oscilloscope. Slow Osc: 100 MSPS 10 MHz oscilloscope.

Figure 4.4 shows the experimental setup. An 80 MHz mode-locked titanium-
sapphire laser (MLL) sends 70-fs pulses to a half-wave plate (HWP) and polarizing
beamsplitter (PBS) combination to control the power splitting between the mea-
surement and squeezer beam paths. Pump light for the squeezer OPA is sent to a
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delay stage used to scan 𝜙 in equation 6.1. A shutter is also placed in this path
to block the squeezer beam for shot-noise calibration. Two continuously-variable
neutral density filters (VND) are used in both paths to fine-tune the input power. The
paths are combined on a reflective objective (Obj) and focused onto the waveguide
inputs for the OPAs. Figure 4.4A shows the layout of the nanophotonic circuit. In
the squeezer OPA, the vacuum field around 1860 nm is squeezed by the pump to
generate squeezed vacuum (SV). The SV and the remaining pump light enter an
adiabatic coupler which passes at least 55% of the SV and 5% of the pump into the
measurement OPA. Inside the measurement OPA, the SV is amplified by a strong
pump pulse (40 pJ) to macroscopic photon levels detectable by a fast photodetector.
A lensed fiber collects light from the output of the measurement OPA and directs it
to a series of free-space filters used to remove remaining pump light, including the
previously mentioned 1700-nm long pass and a 1950-nm short pass for limiting the
measured mode number. From here, the filtered SV is collected into single-mode
fiber and enters a 90/10 splitter where 90% is sent to a fast (10 GHz) photodetector
and fast (80 GSPS 40 GHz) oscilloscope used to resolve individual pulses while the
remaining 10% is sent to a slow (1 MHz) detector and slow (100 MSPS 10 MHz)
oscilloscope used to detect the amplification fringe and determine the measurement
phase 𝜙.

6.4 Data Analysis
Shot-noise Calibration
To calibrate our squeezing and anti-squeezing measurements, we measure the 𝜙-
dependent shot noise using the slow (1 MHz) photodetector and an optical spectrum
analyzer (OSA) which replaces the fast detector in Fig. 4.4. The coupler in Fig.
4.4A couples some of the 930-nm pump light used to drive the squeezer into the
measurement OPA, causing it to interfere with the pump light sent into the upper
port of Fig. 4.4A. Because of this interference, the gain inside the measurement
OPA, and hence the shot noise, is dependent on 𝜙.

Data from the shot-noise calibration procedure is show in figure 6.9A. During
calibration, the mechanical shutter is initially left open. As the relative delay of the
squeezer path is scanned, the measurement amplifier oscillates between measuring
squeezed (with destructive pump interference) and anti-squeezed (with constructive
pump interference) quadratures, resulting in the black curve in Fig. 6.9A. The
remaining pump light collected from the output is monitored on a second OSA to
determine the strength of the pump interference. The shutter is then closed and the
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Figure 6.9: A) Squeezing measurement taken on the OSA. The black curve is the
amplification fringe produced from squeezed vacuum amplified in the measurement
OPA. The grey curve is the baseline shot noise at the pump power used to measure
the black curve. The red and blue curves are the corrected shot-noise levels to
account for pump interference in the measurement OPA. B) Variance relative to
vacuum vs squeezer pulse energy with a measurement pulse energy of 30 pJ. C)
Variance relative to vacuum vs measurement pulse energy. Error bars are calculated
from shot-noise variations during each measurement.

baseline shot noise is measured by the OSA resulting in the gray curve in Fig. 6.9A.
To find the shot-noise level corresponding to destructive pump interference (i.e.
the shot-noise minimum), the intensity of the measurement OPA pump is lowered
until the measured power at the pump OSA matches the minima of the previously
measured pump interference. The shot-noise minimum is then measured on the slow
photodetector and OSA resulting in the red curve in Fig. 6.9A. This same procedure
is repeated for the shot-noise maximum to calibrate the anti-squeezing and obtain
the blue curve. The pump OSA is set to measure around 970 nm to minimize any
pump depletion effects. After shot-noise calibration, the squeezing is calculated as:

𝑆
𝜙
± [𝑑𝐵] = 10 log10

[ ⟨𝑁 (𝜙)⟩
⟨𝑁𝑣𝑎𝑐⟩

]
(6.20)

where ⟨𝑁 (𝜙)⟩ is proportional to the current measured at the detector, and ⟨𝑁𝑣𝑎𝑐⟩ is
the calibrated shot noise. We note that the variance of the measured quadrature is
proportional to the average photon number for a state with zero mean field such as
SV [17].

Slow Photodetector Measurements
Figure 6.9B shows the measured squeezing on the slow photodetector and OSA as a
function of the input pulse energy for the squeezer waveguide with a measurement
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pulse energy of 30 pJ. For these measurements, the 1950-nm long-pass filter is
removed to accentuate the impact of multiple modes (a Schmidt number of 2.8).
Because the OSA uses a 2-nm bandpass filter, it can better suppress higher-order
modes to isolate the squeezing in the fundamental mode [17, 33]. For the pho-
todetector, the presence of higher-order modes with less squeezing reduces overall
measured squeezing as the photodetector is not mode-sensitive and measures the
squeezing as averaged over all modes.

At low squeezer pulse energies, the measured squeezing is limited by the gain
available in the squeezer OPA and grows as the pulse energy is increased. After 5
pJ, the observed squeezing begins to decrease with increasing pulse energy. Two
phenomena contribute to this behavior. First, the finite phase noise of the pump
laser causes a portion of the anti-squeezed quadrature to leak into the measurement
of the squeezed quadrature. Raising the squeezer gain increases the contribution of
the anti-squeezing to the measurement and reduces the measured squeezing. This
increased gain produces more squeezing, but the noise reduction in the squeezed
quadrature is asymptotically limited by the finite efficiency of the coupler while the
noise of the anti-squeezed quadrature is not (see solid theory curves in Fig. 6.9B).
Second, gain saturation in the measurement amplifier increases with input power
and further degrades measured squeezing.

The effects of gain saturation on measured squeezing can be more easily seen in Fig.
6.9C which plots the squeezing values vs the measurement pulse energy for a fixed
squeezer energy of 5 pJ. As the measurement pulse energy is decreased, the behavior
of the measurement OPA becomes more linear with less gain compression, leading
to higher measured squeezing and anti-squeezing. In the undepleted pump regime,
measured squeezing and anti-squeezing will follow Eq.6.21 and remain unchanged
with small changes in pump energy. Hence, we know all measurements in Fig. 6.9B
are taken in the pump depletion regime as the measured anti-squeezing deviates
from the theoretical model calculated using the efficiency of the coupler. This is
also confirmed from Fig. 6.5C where pump depletion effects take hold around 20 pJ.
Below 20 pJ, the shot noise no longer clears the electronic noise floor of the OSA,
preventing squeezing measurements at lower measurement pump energies. For this
reason, data points in Fig. 6.9B are taken at a pump energy of 30pJ to improve SNR
and shrink vertical error bars while sacrificing some measurable squeezing (3 dB at
30 pJ pump compared to 4.1 dB at 20 pJ pump in Fig. 6.9B and C respectively).

The solid lines plotted in Fig. 6.9B are calculated from the theoretical measured



100

squeezing as a function of the coupling loss from the squeezer to measurement OPA.
As SV passes through the coupler, some of the light is lost as a result of fabrication
imperfections in the coupler. This light is replaced with vacuum noise, causing
lower squeezing and anti-squeezing values to be measured [40]. For a measurement
efficiency 𝜂, the measured squeezing can be modeled as:

𝑆
𝜂
± [𝑑𝐵] = 10 log10 [(1 − 𝜂) + 𝜂𝑒±2𝑟] (6.21)

where 𝑟 is the on-chip squeezer gain in natural log units. Using this fit, we estimate an
effective 𝜂 of 55% at 1860 nm. This fit includes squeezing lost to inefficiencies in our
coupler as well as losses to nonlinear behavior in the measurement OPA. We expect 𝜂
to be dominated by the coupler losses given the characterization measurements taken
previously of this device [17]. The vacuum noise injected from losses contaminates
the SV, resulting in a state with reduced squeezing and anti-squeezing measured by
the measurement OPA.

Equation 6.21 also allows us to calculate the expected anti-squeezing, however, the
measured data has a stark divergence from the expected trend. This is a result of
gain-compression in the measurement OPA. Because the measurement OPA oper-
ates in the pump-depleted regime, the anti-squeezed vacuum cannot be sufficiently
amplified to reflect the true anti-squeezing entering the OPA. The same is true for
the squeezing measurements as the shot-noise level becomes compressed, leading
to lower measured squeezing.

Pulse-to-pulse Measurements
Fast photodetector measurements resolve the pulse-to-pulse intensity and provide
the statistical information necessary to resolve 𝑃(𝑁, 𝜙) and recover the Wigner
function. During a fast measurement, the shutter is initially left open, and the
fast oscilloscope is triggered using the voltage applied to the piezo driving the
squeezer’s delay stage to coincide with the middle of the 𝜙 scan. Data from the
slow oscilloscope is used to determine 𝜙 and estimate the coupling stability based
on measurement-to-measurement variations in the shot noise. After recording data,
the shutter is closed to block the squeezer and the measurement is repeated to find
the calibrated shot-noise level.

Figure 6.10 shows results gathered from fast photodetector measurements for a
squeezer pulse energy of 5 pJ and a measurement pulse energy of 45 pJ. This mea-
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Figure 6.10: A) Sample photon number distributions from fast measurements at
different 𝜙. Red points are data, and the blue curve is a 2-mode fit. B) Photon
number variance vs 𝜙 for slow, fast (pulse-to-pulse) measurements and the 1st mode
of a 2-mode fit. Solid lines are the expected cosine dependence taken from [30].
C) Recovered squeezed vacuum Wigner function. Solid and dashed while lines lie
along the 1/(𝑒𝜋) contours. D) Expected density matrix (𝜌) based on measured
squeezing and anti-squeezing. E) Recovered 𝜌. F) Absolute difference between
expected and recovered 𝜌.

surement pulse energy was chosen to satisfy SNR requirements at the fast photode-
tector given the loss between the chip and detector. Sample measured histograms at
4 different phases are plotted in Fig. 6.10A. Each histogram corresponds to a single
data point in Fig. 6.10B. For each measurement, we fit a 2-mode photon number
distribution model to extract the variance of the fundamental mode as a function
of 𝜙. Figure 6.10B shows these measurements for three cases: slow photodetector
measurements, fast photodetector measurements, and the 2-mode fit. Slow mea-
surement values are calculated from the slow oscilloscope trace using the method
outlined in section 6.4. Because of the photon number offset resulting from pump
depletion, the numerator and denominator of Eq.6.20 have a small but constant off-
set, resulting in the measured squeezing and anti-squeezing being underestimated.
Fast measurement values are calculated using the variance of the photon numbers
measured at the fast detector. This overcomes the offset problem and measures
more squeezing and anti-squeezing, but these measurements are still contaminated
with remaining contributions from higher-order modes. The 2-mode fit addresses
this problem by isolating the variance as a function of 𝜙 for the fundamental mode,
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leading to higher measured squeezing and anti-squeezing. After performing this
fit for all measurements, the distributions are re-sampled and fed into a maximum
likelihood algorithm which calculates the Wigner function (Fig. 6.10C). We extract
a squeezing in the fundamental mode of 2.41 ± 0.34 dB and an anti-squeezing of
3.87 ± 0.61 dB. Figure 6.10E shows the recovered density matrix corresponding to
the Wigner function plotted in Fig. 6.10C. We show the expected density matrix
given the measured squeezing and anti-squeezing in Fig. 6.10D, and the absolute
difference between the expected and recovered in Fig. 6.10F where we calculate
a fidelity of 0.9998 ± 0.0001. This fidelity serves as a sanity-check to ensure our
data analysis is not introducing distortions into the measurement. While our fitting
strategy limits us to states with known distributions, we can overcome this limita-
tion with tighter bandpass filtering to better reject higher-order modes. Our losses
between the chip and fiber (10 dB) and from our filter setup (6 dB) currently prevent
us from tighter filtering as the remaining light is no longer intense enough to provide
a sufficient signal-to-noise ratio at the fast photodetector.

6.5 Conclusion
We have demonstrated OPA-based Wigner tomography for squeezed vacuum in
the ultrafast regime using dispersion-engineered TFLN. This is, to the extent of
the knowledge of the authors, the first demonstration of all-optical quantum state
tomography on-chip. The low dispersion of our OPA design allows operation with
ultra-short pulses to exceed the bandwidth of traditional measurement techniques
and access a new regime of THz repetition-rate measurement and computation.
Achieving THz clock rates is a fundamental advancement for time-multiplexed
systems such as cluster states and measurement-based quantum computation as
higher clock rates translates to faster computation and allows for larger quantum
circuits to be realized.

Our THz claim is based on dispersion calculations derived from the waveguide
geometry measured using atomic force microscopy. We also note that similar
dispersion-engineered OPAs with faster clock rates than the one presented here
have been experimentally characterized [41]. Speed limitations imposed by the
photodetector bandwidth are present in our experiment, but can be overcome with
fast demultimplexing schemes which we elaborate in the supplementary.

Because we only measure intensity, our current experimental implementation is
limited to tomography of states with zero mean field. However, OPA-based state
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tomography can be generalized to any arbitrary state by implementing either homo-
dyne detection or a displacement scheme at the output, both of which are mature
technologies [42, 11, 43, 44, 45]. As discussed in earlier sections, experimental
limitations stemming from high losses between the chip and fast photodetector in-
troduce measurement distortion from pump depletion and multimode effects. Both
of these problems can be solved with narrower bandpass filtering and modest im-
provements in detection efficiency to allow for the measurement OPA to operate in
the undepleted pump regime.

To conclude, we show that dispersion-engineered nanophotonic OPAs can serve as
quantum measurement devices, paving the way for ultrafast quantum information
processing to be realized in a room-temperature chip-scale platform.
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C h a p t e r 7

OUTLOOK

"If I had more time, I would have written a shorter thesis."

7.1 Challenges with TFLN and the Future of Nonlinear Photonics
The ultrafast technology studied in this thesis has been made possible by thin-film
lithium niobate (TFLN), a versatile platform for nonlinear photonics. While a variety
of useful devices and circuits have been demonstrated on TFLN, many engineering
challenges still exist. Compared to CMOS foundrys, fabrication techniques for
TFLN are still in their infancy. One of the more pressing challenges is etching.
While propagation losses of around 0.2 dB/cm have been demonstrated [1], these
losses are still large compared to Si and SiN platforms which have achieved losses as
low as 0.06 dB/cm [2]. This is not a significant problem for classical operation, but
quantum signals are severely impacted by loss, and many advanced techniques for
quantum information processing including non-demolition measurements require a
nonlinear coupling to loss ratio (i.e. 𝑔

𝜅
) greater than 1 [3]. Furthermore, physical

etch processes such as ion milling or inductively-coupled plasma reactive ion etching
(ICP-RIE) currently hold the record for waveguide losses. Because these processes
are physical, the etched LN is not carried away and is instead redeposited near the
waveguide and on adjacent devices. This redeposition presents challenges as its
removal is nontrivial and often requires aggressive chemical cleaning techniques
which can damage or destroy devices and waveguides.

For nonlinear devices, achieving phase-matching at a desired wavelength remains
experimentally difficult. Small variations in the thickness of the thin-film can lead
to large changes in the phase-matching wavelength. Some groups have addressed
this problem by measuring the thin-film thickness along the length of the target
waveguide region and then adjusting either the waveguide width or poling period to
compensate for thickness variations [4, 5]. In Chapter 6, we used a thin-layer of
PMMA to tune the phase matching condition. However, this solution was somewhat
of an inconvenience as it also caused an undesirable increase in the dispersion of
the waveguide. We also had the convenience of using a tunable ultrafast laser to
find the phase matching. Other groups have tuned phase-matching by selectively
etching the LN or depositing SiO2 on top until the device operates at the desired



109

wavelength [6]. While phase-mismatched nonlinear devices can still be made to
work by changing the input wavelength, this strategy limits system operation overall
as now other components, which may have been designed to operate at the target
phase-matching wavelength, must now also operate at this new wavelength.

While LN is prized for its large 𝜒(2) coefficient, it is otherwise not an optically-
active material. To create sources or detectors on TFLN, other active materials
such as semiconductors must be heterogeneously integrated with passive TFLN
devices. This has been demonstrated for III-V gain media [7, 8] as well as other
passive platforms such as SiN [9] and silicon-based photodetectors [10]. However,
heterogeneous integration is also difficult to develop and implement successfully.
This raises an obvious question: is it easier to integrate other platforms onto TFLN,
or is it easier to integrate TFLN onto other platforms? Other groups have begun
to take the latter approach by creating "coupons" of TFLN which are then bonded
to other platforms [11]. This avoids difficulties in fabricating low-loss waveguides
through direct etching, but introduces challenges in reducing losses as light enters
and exits the coupon region. Based on the fabrication challenges in TFLN and
the need for optically-active features enabled by different materials, it is likely
that the future of integrated nonlinear photonics will trend towards some form of
heterogeneous integration. Just as early electronics designers dreamed of the day
they could implement millions of diverse functional blocks on a single platform, so
do we now for photonics.

7.2 Lifting the Electronic Bandwidth
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Figure 7.1: A demultiplexing circuit used to transition from a clock rate 𝑓 to a
clock rate 𝑓
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We’ve made the claim that our OPAs can operate at clock speeds faster than 1
THz, well beyond what is achievable with conventional electronics. However, in
every experiment, we have employed electronic detection to measure optical signals
and translate them into digital data. This problem of needing to return to the
electronic domain will continue to exist until we use an all-optical computer to
process experimental data [12].

To overcome this, we can employ OPAs as fast switches to demultiplex a clock rate
of 𝑓 down to 𝑓

𝑁
using 𝑁 OPAs and photodetectors. Figure 7.1 shows an example

demultiplexer circuit design. An unknown quantum state is amplified and measured
inside of the measurement OPA. After measurement, we are left with classical
information robust to losses which we split into N channels. Once N clock cycles
elapse, we have N pulses in each of the N channels. For each channel, a second
pump pulse dubbed the "gating pump" is sent in to pump the gating amplifier. To
achieve demultiplexing, each gating pump is time delayed such that in channel i,
the i’th pulse will be amplified in the gating amplifier while all other pulses will
remain unamplified. While each of the N photodetectors will see a THz stream of
pulses, only one out of every N of these pulses will be amplified enough to produce
an electronic signal at the photodetector output. Hence, by correctly setting the
delays of the gating pump pulses, we can selectively send each pulse to a different
photodetectors and effectively lower the system clock rate by a factor of N. The
feasibility dispersion-engineered OPAs as switches for ultrafast demultiplexing was
first studied in [13], however similar schemes have also been presented elsewhere in
literature [12].
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