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Chapter 5

Geometry of structures of
enstrophy and dissipation fields in
decaying homogeneous isotropic
turbulence

5.1 DNS database

The numerical database used here is that of Horiuti & Fujisawa (2008), henceforth referred to as

HF. It corresponds to a DNS of incompressible homogeneous isotropic turbulence decaying in time

in a cubic domain of side length 2π, with periodic boundary conditions. We use runs corresponding

to 2563, 5123, and 10243 grid points with the same value of the kinematic viscosity, ν, resulting in

a similar Taylor-microscale Reynolds number, Reλ ≈ 77, and in grid resolution criteria, kmaxη̄, of

approximately 1, 2, and 4, respectively. Together with the fact that the initial conditions are the

same for the three runs, they can be used to compare the geometry of flow structures at different

resolutions. Additional parameters for each run at the instant of maximum enstrophy are shown in

Table 5.1, extracted from HF, where more details of the computational method can be obtained.

The three velocity fields at this time instant for the three grid resolutions are the database for the

present study.

In this chapter, we apply the methodology proposed in Chapter 2 for the study of the geometry

of structures in turbulence to the enstrophy and dissipation fields. Local enstrophy is defined as
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N ν Reλ 〈K〉 〈ε〉 L λ η̄(×10−3) kmaxη̄

2563 0.00138 77.20 0.900 0.654 0.469 0.138 8.00 1.02
5123 0.00138 76.87 0.897 0.654 0.469 0.137 8.00 2.05
10243 0.00138 77.43 0.904 0.654 0.468 0.138 8.00 4.09

Table 5.1: Parameters for the computed cases: grid points, N ; kinematic viscosity, ν; Taylor-
microscale Reynolds number, Reλ; average kinetic energy, 〈K〉; average dissipation rate, 〈ε〉; integral
length scale, L; Taylor microscale, λ; average Kolmogorov length scale, η̄; grid resolution criterion,
kmaxη̄ (where kmax is the largest dynamically significant wavenumber). From HF

ωiωi, while local dissipation is defined as ε ≡ 2 νSijSij . Sij is the strain-rate tensor and ωi is the

vorticity field, which is related to the rotation-rate tensor, Ωij , by Ωij = −εijk ωk/2, εijk being the

Levi-Civita symbol. Thus: ωiωi = 2ΩijΩij . Strain- and rotation-rate tensors are obtained from the

velocity gradient tensor, ∂ui/∂xj , as:

Sij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, Ωij =

1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
. (5.1)

We will consider the dissipation rescaled by (2 ν)−1, that is, SijSij .

5.2 Multi-scale decomposition

We plot in Figure 5.1 the volume pdfs (left) and the spectra (right), in Fourier space, of the two

fields, ωiωi and SijSij , for the three grid resolutions (2563, 5123, 10243). It can be observed that

the pdf of ωiωi has longer tails than that of SijSij . This indicates that large amplitude events in

the enstrophy field are more prevalent than in the dissipation field (see Chen et al., 1997), and thus,

that ωiωi is more intermittent than SijSij , which is in agreement with results from experiments

(Zeff et al., 2003) and numerical simulations (Siggia, 1981; Kerr, 1985; Chen et al., 1997), using the

flatness of each field to measure its intermittency. The discrepancy in the spectra of ωiωi and SijSij

increases with the wavenumber, k, that is, for smaller scales. This is also in agreement with the

results from numerical simulations at higher Reynolds numbers of Ishihara et al. (2003), who found

that the maximum difference between spectra of ωiωi and SijSij peaks at kη̄ ≈ 0.4.

Figure 5.2 shows the effect in physical space of the multi-scale decomposition for ωiωi with 5123
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Figure 5.1: Volume pdfs in physical domain (left) and spectra in Fourier domain (right) of ωiωi

and SijSij fields for the three grid resolutions (2563, 5123, and 10243). Note that the volume pdfs
use a transformation of the form sign(x) log(1 + |x|) in the abscissa coordinate, and that curves for
ωiωi and SijSij fields use two different vertical axes (both in the pdfs and the spectra), shifted one
decade for a clear view (non-intersecting curves)

grid points, as an example, through plane cuts in the three principal directions of the cubic domain,

compared to the original field (top left).

6543

210Original

Figure 5.2: Tri-plane cuts of ωiωi and its multi-scale component fields for the 5123 case

Volume pdfs (physical domain) and spectra (Fourier domain) of the original and component fields

after the multi-scale decomposition are shown in Figure 5.3, for ωiωi (top) and SijSij (bottom) fields

in the 10243 case. Scales are named by scale numbers from 0 to 7. Increasing scale numbers, when
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referred to the component fields in which the original field is decomposed, indicate smaller scales.

Thus, 0 corresponds to the largest scale, and 1, 2,. . . correspond to smaller and smaller scales. For

the 2563 and 5123 cases similar plots (not shown) can be obtained with 5 and 6 as the maximum

scale numbers respectively. Note how, for both ωiωi and SijSij , the range of the pdfs increases for
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Figure 5.3: Effect of the multi-scale decomposition in the 10243 case for ωiωi (top) and SijSij

(bottom) fields on the volume pdfs in physical domain (left) and on the spectra in Fourier domain
(right). Note that the volume pdfs have been shifted vertically to accommodate all scales and the
original fields in a clearer view. Also, instead of using a log-scale in the abscissa of the pdf plots,
since there are negative values for all filtered scales, a transformation of the form sign(x) log(1+ |x|)
is used for each field x

increasing scale number (i.e., smaller scales), indicating that fluctuations of both fields are higher in

the small scales, and therefore, that intermittency also increases for those smaller scales. Previous

multi-scale studies of turbulence have shown this property (Kennedy & Corrsin, 1961; Meneveau,
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Figure 5.4: Plane cuts of ωiωi (left) and SijSij (right) normal to one of the principal directions of
the cubic domain at half its side length for the 10243 case

1991; Brasseur & Wang, 1992; Okamoto et al., 2007).

Figure 5.4 includes plane cuts of ωiωi (left) and SijSij (right) fields, for the 10243, at half the

length of the physical domain in one of the principal directions of the cube. Zoomed parts of those

plane cuts are shown in Figure 5.5 for the three grid resolutions (2563, 5123, and 10243, from left to

right) for both ωiωi (top) and SijSij (bottom) fields. It can be observed that, particularly in the

2563 case, the smallest scales are quite different from the higher-resolution cases. Figure 5.6 shows

zoomed parts of the plane cuts corresponding to the component field at scale number 5 for the three

grid resolutions, which is the highest scale number attainable in the multi-scale decomposition of the

2563 case and therefore contains the structures at the smallest scales captured in this flow at that

grid resolution. It is clear from the two-dimensional fields that structures educed with the lowest

grid resolution, 2563, can be significantly different from the ones at higher grid resolutions, 5123 and

10243. Intuitively, a geometrical characterization of those structures would be affected by that fact,

and its effect would be noticed in the application of the methodology proposed above.
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Figure 5.5: Zoomed parts of plane cuts of ωiωi (top) and SijSij (bottom) in one of the principal
directions of the cubic domain at half its side length for the three grid resolutions 2563 (left), 5123

(center), and 10243 (right). Greyscale has been renormalized to the zoomed region for better clarity
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Figure 5.6: Zoomed parts of plane cuts of component field at scale number 5 for ωiωi (top) and
SijSij (bottom) in one of the principal directions of the cubic domain at half its side length for the
three grid resolutions 2563 (left), 5123 (center), and 10243 (right). Greyscale has been renormalized
to the zoomed region for better clarity
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5.3 Characterization and classification of individual struc-

tures

In Figure 5.7 we present the three-dimensional visualization spaces (formed by Ŝ, Ĉ, λ axes) with the

glyphs (simple spheres, in this case) representing each structure after its geometrical characterization.

The top row corresponds to ωiωi and the bottom row to SijSij , for increasing grid resolution

(2563, 5123, and 10243) from left to right. The spheres are scaled by the lognormalized area of the

corresponding structure. The color of each sphere represents the scale number to which it belongs. As

in §4.3, the largest scale is not included in the analysis, for being strongly dependent on the boundary

conditions and forcing applied. Neither is the smallest scale (for each grid resolution), to avoid

interference between grid resolution effects and the iso-contouring process. The fact that we have

three different grid-resolutions for the equivalent field allows us to verify whether that interference

occurs. This is discussed at the end of §5.4. Thus, scales 1–4, 1–5 and 1–6 are represented for the

2563, 5123, and 10243 grid resolutions, respectively. Top views ((Ŝ, Ĉ)-plane) of these visualization

spaces are shown in Figure 5.8, where the differences between ωiωi and SijSij fields can be better

realized.

In Figure 5.9 we show the breakdown by increasing scale number (top to bottom) of the three-

dimensional visualization spaces for the ωiωi field for the three grid resolutions (2563, 5123, and

10243), increasing from left to right. Top views ((Ŝ, Ĉ)-plane) of each visualization space can be

seen in Figure 5.10. Figures 5.11 and 5.12 are the equivalent ones for SijSij .

We discuss first the case with the highest resolution (10243). Structures of both ωiωi and SijSij

fields show a continuous transition of their corresponding glyphs in the visualization space, with

varying scale (see right plots of Figures 5.7 and 5.8). Structures at the largest scale of both fields

(top-right corner of Figures 5.9 and 5.11) are mainly blob-like; some get closer to the tube-like region

with small stretching (high λ). At the smallest scale (bottom right corner of Figures 5.9 and 5.11),

dominant structures of both fields are sheet-like (low values of Ĉ and λ). The intermediate scales

present a different behavior for each field: ωiωi shows a high concentration of structures near the
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Figure 5.7: 3D views of the visualization spaces, with glyphs (spheres) representing educed struc-
tures, colored by scale number (all merged in each visualization space) and scaled by the lognormal-
ized area of the corresponding structure, for ωiωi (top row) and SijSij (bottom row) at 2563 (left),
5123 (center), and 10243 (right) grid resolutions
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1

Ĉ
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1

Ĉ
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Figure 5.8: Top views ((Ŝ, Ĉ)-plane) of the visualization spaces, with glyphs (spheres) representing
educed structures, colored by scale number and scaled by the lognormalized area of the corresponding
structure, for ωiωi (top row) and SijSij (bottom row) at 2563 (left), 5123 (center), and 10243 (right)
grid resolutions



52

256 512 1024

1

1

Ĉ
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Ŝ

1

λ

1

1

Ĉ

Ŝ
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Figure 5.9: Breakdown, by scale number (increasing top to bottom), of 3D views of the visualization
spaces for ωiωi at 2563 (left), 5123 (center), and 10243 (right) grid resolutions
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1

Ĉ
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Ĉ

1 Ŝ

1

Ĉ
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Ĉ

1 Ŝ
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Figure 5.10: Breakdown, by scale number (increasing top to bottom), of top views ((Ŝ, Ĉ)-plane) of
the visualization spaces for ωiωi at 2563 (left), 5123 (center), and 10243 (right) grid resolutions
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Ĉ

Ŝ
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Ŝ

1

λ

1

1

Ĉ
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Figure 5.11: Breakdown, by scale number (increasing top to bottom), of 3D views of the visualization
spaces for SijSij at 2563 (left), 5123 (center), and 10243 (right) grid resolutions
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1

Ĉ
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1

Ĉ
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Figure 5.12: Breakdown, by scale number (increasing top to bottom), of top views ((Ŝ, Ĉ)-plane) of
the visualization spaces for SijSij at 2563 (left), 5123 (center), and 10243 (right) grid resolutions
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tube-like region (see scale numbers 3 and 4 in Figure 5.10), highly stretched particularly for the

smaller scales; the transition to sheet-like structures appears to be significant at scale number 4 and

becomes obvious at scale number 5, for which dominant structures span across almost all values of

Ĉ. On the other hand, SijSij structures concentrate less in the tube-like region (see Figure 5.8 and

compare scale numbers 3 and 4 of SijSij in Figure 5.10 with those of ωiωi in Figure 5.12), while

they show, at all intermediate scales, many more structures with smaller values of Ĉ, characteristic

of sheet-like geometries. The transition to sheet-like structures begins earlier, at scale number 3, for

SijSij than for ωiωi, and is completed by scale number 5.

5.4 Effect of grid resolution in the geometry of structures

From Figures 5.7 and 5.8 it is observed that the 2563 case does not capture well the dominance of

sheet-like structures that occurs in both ωiωi and SijSij in the small scales (scales numbers from 4

on). Figures 5.11 and 5.12 show, for SijSij , a tendency toward sheet-like structures at the smallest

scale studied for the 2563 case, although the smaller values of Ĉ present in the 5123 and 10243 for

the same scale number are not captured in the 2563 case either. This is even more pronounced in

the ωiωi field (see, in particular, Figure 5.10), for which the departure from tube-like region toward

the sheet-like structures present at higher grid-resolutions is not obvious at all in the 2563 case.

The 5123 case performs better than the 2563 case in describing the geometry of the structures

at the scales of study, when each one is compared with its immediately higher grid resolution. For

example, the visualization space at scale number 5, the smallest scale analyzed for 5123, is rather

similar to the 10243 case (see central and right columns of Figures 5.9–5.12), where structures with

geometries transitioning from the tube-like region to the strongly sheet-like region are captured at

both resolutions in more similar proportions. The 10243 case still shows a higher concentration of

sheet-like structures, particularly for the SijSij case.

These results are consistent with the observations of HF. They identified multiple modes of the

stretched spiral vortex (Lundgren, 1982) in the numerical database and investigated their formation

processes. They found that the highest grid resolution kmaxη̄ ≈ 4 was needed to eliminate the
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fragmentation of sheets for a precise capture of the spiral turns (sheet-like) of those structures and

for a proper study of the dissipation field. Schumacher et al. (2005) found also the necessity of

resolving sub-Kolmogorov scales when studying the very fine structures in scalar mixing, where

sheets are also dominant in the scalar dissipation field. Sreenivasan (2004), based on intermittency

arguments, proposed a revised grid resolution criterion, based on estimates of the ratio of maximum

to average dissipation obtained from measured multi-fractal exponents (see Sreenivasan & Meneveau,

1988) much more stringent than the traditional kmaxη̄ ≈ 1 criterion.

As previously noted, the largest and smallest scales for each grid resolution were left out of the

analysis. The largest scale is dependent on boundary conditions and forcing applied and, therefore,

of less interest in this particular study. The smallest scale was not analyzed to avoid interference

with the iso-contouring step due to grid resolution effects. But three grid resolutions of the same flow

realization provide the opportunity to verify whether that last statement holds. For that reason,

Figures 5.9 to 5.12, include, for the 2563 case (left column), one additional visualization space

corresponding to scale number 5 (framed in a dashed-line box). When compared to the homologous

scale number for the higher grid resolutions, it can be seen that the strong sheet-like character of

the structures is not well captured in the 2563. A possible explanation is that sheet-like structures

at that resolution are more fragmented into smaller structures (part of the original ones). Some will

still be sheet-like but their tube-like area coverage increases since the nearly planar area is reduced

and the surface is still closed, which results in higher values of Ĉ directly affecting their location

in the visualization space. Some others can even result in small blob-like structures or, in general,

rather distinct geometries than the original sheets of which they are fragments. This is confirmed

when the population of individual structures at that scale number is evaluated, since there is a high

increase of small-area structures. The pixelization effect seen in Figure 5.6 for the two-dimensional

plane cuts, when extended to three-dimensions (where the iso-contours, and thus the individual

structures, are obtained) can help to visualize the scenario described above.
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5.5 Clustering results for the 10243 case

As part of the classification step of the methodology, clustering techniques are applied to the struc-

tures obtained from all merged scales under study. This is done independently for structures of

ωiωi and SijSij . Only the 10243 database is considered here. The number of structures present at

each scale largely increases with the scale number (i.e., for smaller and smaller scales). Therefore,

geometries of structures of larger scales could be under-represented in the clustering process. To

avoid that situation a stratified random sampling with a disproportionate allocation, based on the

standard deviation of the population of each scale number, is applied among the present scales prior

to the clustering algorithm. See Appendix H for more details.

The results of the clustering algorithm applied individually to ωiωi and SijSij structures are

presented in Figure 5.13. An optimum number of 3 clusters was automatically obtained by the

algorithm for ωiωi, while the structures of SijSij were optimally clustered in 2 groups. Optimality

scores obtained during the automatic determination of the number of clusters for ωiωi (left) and

SijSij (right) are plotted in Figure 5.14. The optimality score is computed as the mean value

of the silhouette coefficient of all the clustered elements minus the standard deviation of those

silhouette coefficients. Higher mean values of the silhouette coefficient imply that the elements were

clustered in groups where they have a high degree of membership. Small values of the standard

deviation of the silhouette coefficients indicate homogeneity in that level of membership among the

clustered elements. The combination of a high mean and a low standard deviation is sought for

an optimum clustering result. We note that the optimality scores obtained are rather low (less

than 0.5, 1 being the maximum achievable), even for the optimum number of clusters. Also, the

optimality score associated with the optimum number of clusters determined for each case does not

differ significantly from the rest. These two facts are an indication that the elements to cluster are

organized as a cloud of points continuously distributed throughout the feature space of parameters

used for clustering, instead of being organized in well distinguishable groups that would result in

higher optimality scores and more variation among those scores for non-optimal number of clusters.

A projection of that feature space is the visualization space where the results have been plotted,
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where it is possible to see also the continuously distributed cloud of glyphs.

5.6 Discussion

The dominance of tube-like structures at intermediate scales of ωiωi is consistent with the presence of

so-called ‘worms’ reported in the fluid mechanics literature (see, for example, Siggia, 1981; Jiménez

et al., 1993). Tube-like structures appear also at intermediate scales of SijSij but in less proportion

than for ωiωi. At all scales analyzed, SijSij shows, on average, more planar geometries than ωiωi.

Also the transition to sheet-like structures occurs earlier (larger scale) for SijSij .

The maximum departure between the spectra of ωiωi and SijSij occurs at the intermediate scales

(scale numbers 3 and 4), as observed in Figure 5.3. This seems to translate into differences in the

geometrical character of structures of ωiωi and SijSij at those scales numbers. In physical space, the

higher concentration of tube-like structures found in the enstrophy field might be one geometrical

link to its higher intermittency, when compared to the dissipation field.

At the smallest scale, both fields show a clear dominance of sheet-like structures. They appear

highly stretched, that is, with small thickness, but their spatial extent can be significant. Instabilities

of vortex sheets have been suggested as a primary mechanism responsible for the generation of vortex

tubes in turbulent flows. Vincent & Meneguzzi (1994) found that the production of vortex sheets

and their subsequent roll-up, forming tubes, shows a strong correlation between scales, and occurs

in a one-step process (in contrast with Richardson multi-step cascade picture). Furthermore, they

explain the alignment of vorticity with the intermediate strain-rate eigenvector as a consequence of

vorticity sheet production by strong strain, instead of tube formation. HF identified the stretched

spiral vortex (Lundgren, 1982) in homogeneous isotropic turbulence, appearing in three modes (two

symmetric and one antisymmetric), that involve one or multiple vortex sheets interacting to generate

tubes. While the stretched spiral vortex was not found in the work of Vincent & Meneguzzi (1994),

that was attributed by HF to the increased grid resolution required to avoid fragmentation of the

spiral turns. The correlation of geometries for ωiωi and SijSij at the smallest scale is consistent

with the known feature of sheets, in which strain and rotation rates are both large and correlated
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(Ruetsch & Maxey, 1992; Horiuti & Takagi, 2005).

Previous studies of the enstrophy field also suggest (see Nomura & Post, 1998, and the references

therein) that its geometry depends on its local magnitude: intense regions appear tube-like while

moderate enstrophy regions seem to be more sheet-like. These considerations are, nevertheless,

independent of the scale. Besides the iso-contour value of the mean plus twice the standard deviation

of each filtered component field, whose results have been presented here, we examined also the mean

plus three times the standard deviation, with no significant differences of the geometries educed for

each field. A wider range of iso-contour values would help clarify the sensitivity of the geometries

Nonetheless, we note that the categorization of globally intense or moderate values of the original

field (containing all scales) based on the iso-contour value is not directly applicable to its component

fields after the multi-scale decomposition.

The 2563 grid resolution (kmaxη̄ ≈ 1) was unable to reproduce the predominance of highly

stretched sheet-like structures found for the smaller scales at higher grid resolutions. This indicates

that sub-Kolmogorov scales must be resolved for a proper geometrical study of the smallest structures

in turbulence, as has been suggested in the literature (see Shumacher & Sreenivasan, 2005; Horiuti

& Fujisawa, 2008) when studying intermittent fields: their high fluctuations (manifested in the long

tails of the volume pdfs in physical space) will occur at very fine scales. These, in general, can be

substantially smaller than the average Kolmogorov length scale, η̄ =
(
ν3/〈ε〉

)1/4, defined in terms

of the average rate of kinetic energy dissipation per unit mass, 〈ε〉, and the viscosity of the fluid,

ν, and traditionally used to define the largest dynamically significant wavenumber resolved in DNS,

kmax, such that kmaxη̄ ≈ 1. As noted in §5.2 the volume pdfs of the different scale component

fields obtained from ωiωi and SijSij show wider ranges for smaller scales, indicating that higher

fluctuations of those two fields occur in the small scales and confirming the intermittency of those

two fields.


