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Abstract

A multi-scale methodology for the study of the non-local geometry of eddy structures in turbulence

is developed. Starting from a given three-dimensional field, this consists of three main steps: extrac-

tion, characterization, and classification of structures. The extraction step is done in two stages: first,

a multi-scale decomposition based on the curvelet transform is applied to the full three-dimensional

field, resulting in a finite set of component fields, one per scale; second, by iso-contouring each

component field at one or more iso-contour levels, a set of closed iso-surfaces is obtained that rep-

resents the structures at that scale. For periodic domains, those structures intersecting boundaries

are reconnected with their continuation in the opposite boundaries. The characterization stage is

based on the joint probability density function (jpdf), in terms of area coverage on each individ-

ual iso-surface, of two differential-geometry properties—the shape index and curvedness—plus the

stretching parameter, a dimensionless global invariant of the surface. Taken together, this defines

the geometrical signature of the iso-surface. The classification step is based on the construction of a

finite set of parameters, obtained from algebraic functions of moments of the jpdf of each structure,

that specify its location as a point in a multi-dimensional ‘feature space’. At each scale the set of

points in feature space represents all structures at that scale, for the specified iso-contour value.

This allows the application, to the set, of clustering techniques that search for groups of structures

with a common geometry.

Results are presented of a first application of this technique to a passive scalar field obtained

from 5123 direct numerical simulation of scalar mixing by forced, isotropic turbulence (Reλ = 265).

These show transition, with decreasing scale, from blob-like structures in the larger scales to blob-

and tube-like structures with small or moderate stretching in the inertial range of scales, and then
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toward tube and predominantly sheet-like structures with high level of stretching in the dissipation

range of scales. Implications of these results for the dynamical behavior of passive scalar stirring

and mixing by turbulence are discussed.

We apply the same methodology to the enstrophy and kinetic energy dissipation rate instan-

taneous fields of a second numerical database of incompressible homogeneous isotropic turbulence

decaying in time obtained by DNS in a periodic box. Three different resolutions are considered:

2563, 5123, and 10243 grid points—with kmaxη̄ approximately 1, 2, and 4, respectively, the same

initial conditions and Reλ ≈ 77. This allows a comparison of the geometry of the structures obtained

for different resolutions. For the highest resolution, structures of enstrophy and dissipation evolve

in a continuous distribution from blob-like and moderately stretched tube-like shapes at the large

scales to highly stretched sheet-like structures at the small scales. The intermediate scales show a

predominance of tube-like structures for both fields, much more pronounced for the enstrophy field.

The dissipation field shows a tendency toward structures with lower curvedness than those of the

enstrophy for intermediate and small scales. The 2563 grid resolution case (kmaxη̄ ≈ 1) was unable

to detect the predominance of highly stretched sheet-like structures at the smaller scales.

The same methodology, but without the multi-scale decomposition, is then applied to two scalar

fields used by existing local criteria for the eduction of tube- and sheet-like structures in turbulence,

Q and [Aij ]+, respectively, obtained from invariants of the velocity gradient tensor and alike in the

10243 case. This adds the non-local geometrical characterization and classification to those local

criteria, assessing their validity in educing particular geometries.

Finally we introduce a new methodology for the study of proximity issues among different sets

of structures, based also on geometrical and non-local analyses. We apply it to four of the fields

previously studied. Tube-like structures of Q are mainly surrounded by sheets of [Aij ]+, which

appear at close distances. For the enstrophy, tube-like structures at an intermediate scale are

primarily surrounded by sheets of smaller scales of the enstrophy and structures of dissipation at the

same and smaller scales. A secondary contribution results from tubes of enstrophy at smaller scales

appearing at farther distances. Different configurations of composite structures are presented.
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the visualization spaces for SijSij at 2563 (left), 5123 (center), and 10243 (right) grid

resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



xvii

5.13 Clustering results in the visualization space—3D view (left) and lateral (center) and

top (right) projections—with glyphs (spheres) representing the optimum clusters of

structures educed from the stratified random sample with optimum allocation of the

sets of ωiωi (top) and SijSij (bottom) structures. Glyphs are scaled by the normalized

value of the silhouette coefficient, which indicates the degree of membership of that

element to the assigned cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.14 Optimality scores for different number of clusters obtained during the application of

the clustering algorithm to the set of structures of ωiωi (left) and SijSij (right) inde-

pendently. Optimum number of clusters (square point) of 3 and 2 were automatically

determined for ωiωi and SijSij , respectively . . . . . . . . . . . . . . . . . . . . . . . . 59

6.1 Volume pdfs in physical domain (left) and spectra in Fourier domain (right) of Q and

[Aij ]+ fields for the 10243 grid resolution. Note that the volume pdfs use a transfor-

mation of the form sign(x) log(1 + |x|) in the abscissa coordinate, and that curves for

Q and [Aij ]+ fields use two different vertical axes (both in the pdfs and the spectra),

shifted one decade for a clear view (non-intersecting curves) . . . . . . . . . . . . . . . 64

6.2 Plane cuts of Q (left) and [Aij ]+ (right) fields normal one of the principal directions of

the cubic domain, at half its side length . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3 Iso-contours of Q and [Aij ]+ fields extracted at their mean plus 5 and 4 times their

standard deviation, respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.4 Visualization space—3D view (left) and lateral (center) and top (right) projections—

with glyphs (spheres) representing educed structures of Q (blue) and [Aij ]+ (red),

scaled by the lognormalized area of each corresponding structure . . . . . . . . . . . . 66

6.5 Clustering results in the visualization space—3D view (left) and lateral (center) and

top (right) projections—with glyphs (spheres) representing optimum clusters of struc-

tures educed from the set union of Q and [Aij ]+ structures. Glyphs are scaled by

the normalized silhouette coefficient, which indicates the degree of membership of that

element to the assigned cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



xviii

6.6 Optimality scores for different number of clusters obtained during the application of

the clustering algorithm to the set of structures of Q and [Aij ]+ together. An optimum

number of clusters of 2 was automatically determined (square point) . . . . . . . . . . 68

7.1 Left: Plane cut of SijSij (red) superimposed over equivalent plane cut of ωiωi (blue).

Right: Plane cut of [Aij ]+ (red) superimposed over equivalent plane cut of Q (blue) . 71

7.2 Schematic of the computation of the conditional array map (CAM) for a given structure

ai (sheet-like) with respect to two close structures c1 (tube-like) and c2 (blob-like).

Minimum distance maps from cj (j = 1, 2) to ai are shown, with a common color scale

for both ranging from red to blue, representing smaller to larger minimum distances to

ai, respectively. The proximity value derived from them is mapped on ai, with a color

scale varying from blue (nil proximity) to red (maximum proximity). Those points

of ai tagged during the computation of the minimum distance maps (with proximity

values greater than zero) will store also the values {gj , ξj , ζj} of the corresponding cj

in the conditional array map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
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Chapter 1

Introduction

1.1 The role of geometry

Observation of natural fluid flows indicates the presence of structures with apparent repeating geome-

tries. Vortical structures in multiphase flows are commonly observed. The roll-up of an ocean wave

before it breaks (pressure- and gravity-driven flow), the swirling motion of a hurricane around its

center (pressure-driven flow affected by Coriolis and friction forces) or that of the stellar gas accretion

disk occurring during the formation of galaxies (gravitational-driven flow), and the Kelvin–Helmholtz

wave clouds formed between two layers of air of different density and speeds (shear-driven flow) are

just a few examples. Turbulent fluid flows are no exception, often adding levels of complexity to the

structure geometry owing to the multiple scales that comprise such flows.

Visualization experiments have provided means for the systematic study of geometrical structures

in fluid flows and have substantially increased the number of known flows where repeating geometrical

patterns are present. Experimental study of the flow past cylinders and spheres led to the discovery

of the Kármán vortex street while experiments in turbulent mixing layers resulted in an exhaustive

study of ‘coherent’ vortical structures (see Brown & Roshko, 1974). This work has stimulated

theoretical analysis of pattern formation, for example, the description of eddying motions and flow

patterns based on critical-point theory (see Perry & Chong, 1987).

Direct numerical simulations (DNS) have also proven to be a valuable tool in the search for

geometrical structures in fluid flows. The organized cylindrical elongated vortices (so-called ‘worms’)
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found in the intense vorticity of isotropic turbulence (Siggia, 1981; Kerr, 1985; Jiménez et al., 1993)

are one remarkable example. The ‘worms’, however, remain a puzzle; their contribution to the

kinetic energy dissipation is almost negligible and their role in turbulence dynamics remains an

open question.

Structures in turbulent flows can be considered a consequence of the forces and boundary con-

ditions driving the flow, but also can be seen as themselves producing some intrinsic properties of

the turbulence. In the multi-scale ansatz based on self-similarity and the idea of energy cascade

(Richardson, 1922; Kolmogorov, 1941a,b; Onsager, 1945), the external forces and the boundary

conditions affect mainly large energy-containing scales, with diminished influence on progressively

smaller eddies. The energy-containing scales then depend strongly on the external forces and bound-

ary conditions and are not expected to be universal, while small-scale structures may be related to

universal properties of turbulence, thereby exhibiting a generic geometric signature that may be

characteristic of efficient cascade dynamics.

A geometrical characterization of those structures could provide improved understanding of cas-

cade mechanics and dissipation-range dynamics, contributing potentially to the development of

structure-based models of turbulence fine scales (see Townsend, 1951; Tennekes, 1968; Lundgren,

1982; Pullin & Saffman, 1993), subgrid-scale models for large-eddy simulation LES (see Misra &

Pullin, 1997), and simulation methods based on multi-resolution decomposition by means of the

wavelet transform (see Farge, 1992; Meneveau, 1991; Farge et al., 1996, 1999). Further, a better un-

derstanding of eddy structure at large Reynolds number may provide important insight into possibly

singular or near-singular structures in the dynamics of the Euler equations (see Hou & Li, 2006)

by elucidating the geometrical characterization of sites within the turbulent field where extreme

dissipative or vortical events occur, and which are candidates for singularity formation in the limit

of vanishing viscosity.
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1.2 Previous identification criteria

Prior work on the identification of structures in turbulence addresses mainly the identification of

vortex tube- and sheet-like structures with emphasis on vortex tubes. But the importance of sheet-

like structures, where significant turbulent kinetic dissipation may be concentrated owing to their

high amplitude of strain rate, and which may produce tubes by roll-up instabilities, has led to

renewed interest in sheets. Most identification methods either for tubes, sheets, or both, are based

on local measures of scalar fields obtained from the velocity-gradient tensor and/or the pressure

field. They rely on physical aspects associated with a particular kind of structure either of turbulent

flows or of simpler solutions of the Navier-Stokes equations (e.g., Burgers vortex tubes and sheets),

whose phenomenology is extrapolated to turbulence.

Chong et al. (1990) classified regions with complex eigenvalues of the velocity-gradient tensor

as vortex tubes (since the local streamlines are then closed or spiral in a reference frame moving

with the fluid). The second-order invariant, Q, of the velocity-gradient tensor was used by Hunt

et al. (1988), to define a vortex tube as the region with a positive value of Q, and the condition of a

pressure lower than the ambient, while Ashurst et al. (1987) based their identification criterion on

the sign of the intermediate eigenvalue of the strain-rate tensor, Sij . Tanaka & Kida (1993) extended

the identification criterion based on Q for the extraction of both tubes and sheets. Jeong & Hussain

(1995) proposed a method based on the second largest eigenvalue, λ2, of the tensor Lij formed by

summing the products of the symmetric, Sij , and antisymmetric, Ωij , parts of the velocity-gradient

tensor with themselves, Lij = SikSkj + ΩikΩkj . They define a vortex core as the region where λ2 is

negative. Horiuti (2001) combined this methodology with the physical explanations of the alignment

of vorticity and the eigenvector associated with the intermediate eigenvalue of Sij (Andreotti, 1997)

to develop a new method in which the eigenvalues and eigenvectors of Lij are reordered based on their

alignment with the vorticity; then, regions are classified into vortex tubes, and so-called flat vortex

sheets and curved vortex sheets depending on the relations of those reordered eigenvalues. Horiuti

& Takagi (2005) proposed an improved method for the eduction of vortex sheet structures, based

on local values of the largest eigenvalue of the tensor Aij = SikΩkj + SjkΩki, once the eigenvalue
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corresponding to the eigenvector maximally aligned with the vorticity is removed.

Based solely on the pressure field, Miura & Kida (1997) developed a methodology for extracting

axes of tubular vortices as the loci of sectionally local minima of the pressure field (obtained by

means of the sign of the second largest eigenvalue of the pressure Hessian evaluated at each point;

positive values indicate pressure minima).

The majority of existing methods of identification are local, based on pointwise quantities used

to discriminate whether each point belongs to one type of structure or another (or none). Regions

of points sharing a common identity based on the local criterion applied can then be formed, but

often that local analysis is the end of the identification process. Visualization of such regions has

proved a helpful tool in its analysis, but here we seek a more automated, systematic approach to

structure characterization.

Some non-local methods exist in the fluid mechanics literature. These classify structures con-

sidering their spatial extent and can handle a broader range of geometries. While local methods

are often based on a priori physical knowledge of the particular geometry to be educed, non-local

methods generally draw physical conclusions a posteriori, based on geometrical characteristics ob-

tained from the educed structures. For example, an extended structural and fractal description of

turbulence was proposed by Moisy & Jiménez (2004), who applied a box-counting method to sets of

points of intense vorticity and strain-rate magnitude (educed by thresholding). They also analyzed

geometrically individual structures, defined as a connected set of points satisfying the threshold

criterion (thus, considering the spatial extent of such structures), based on their volume and spatial

distribution, finding that intense vorticity and dissipation structures are concentrated in clusters of

inertial size. Wang & Peters (2006) defined extended dissipation elements as the ensemble of grid

cells from which the same pair of extremal points of the scalar field can be reached, and studied

their characteristic linear distances.
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1.3 Non-local, multi-scale, and clustering features

Our approach is based on a non-local, multi-scale methodology for the extraction, characterization,

and classification of structures in turbulence from a geometrical perspective. It is non-local, focus-

ing on the spatial extent of structures. The multi-scale analysis is performed through the curvelet

transform, a higher-dimensional generalization of the wavelet transform. Presently, the structures

are defined as iso-surfaces extracted, at different scales, from a three-dimensional scalar field ob-

tained from a turbulent flow. The characterization and classification steps are based on measures of

the geometry of iso-surfaces. The problem of shape analysis of free-form surfaces has been widely

studied in the fields of computer graphics, computer vision and image understanding, (see Campbell

& Flynn, 2001; Iyer et al., 2005; Dorai & Jain, 1997; Osada et al., 2001; Zaharia & Prêteux, 2001).

Our method characterizes each individual structure in terms of local differential-geometry proper-

ties. Structure identification in terms of non-local characterization is done via area-based probability

density functions of those geometrical properties. Classification is based on this geometrical charac-

terization of individual structures and is enhanced via clustering techniques. Clustering algorithms

allow the eduction of groups of structures without the need for strong a priori assumptions about

their properties.

1.4 Choice of applications: passive scalar, enstrophy, and

dissipation fields

Presently we apply this methodology, first, to a passive scalar advected and diffused in statistically

stationary homogeneous isotropic turbulence with a mean scalar gradient imposed. Second, we

study the structures of the enstrophy and dissipation fields obtained from homogeneous isotropic

turbulence decaying in time. In all cases the flow is incompressible. The databases under analysis

were obtained by DNS.
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The dynamics of the passive scalar, c, are governed by the linear advection-diffusion equation:

∂

∂t
c(x, t) + uj(x, t)

∂

∂xj
c(x, t) = D

∂2

∂xj∂xj
c(x, t), (1.1)

where {uj , j = 1, 2, 3} are the components of the velocity field, u, x is the position vector ({xj , j =

1, 2, 3} are the spatial coordinates), t is the time variable, and D is the diffusivity. In the presence

of a uniform mean scalar gradient of magnitude µc in the x1 direction—which will be preserved by

the flow (see Corrsin, 1952)—the passive scalar can be split into its mean component, µcx1, and the

passive scalar fluctuation, c′(x, t). Thus c(x, t) = µcx1 + c′(x, t) and the passive scalar fluctuation

is then governed by:

∂

∂t
c′ (x, t) + uj(x, t)

∂

∂xj
c′ (x, t) = D

∂2

∂xj∂xj
c′ (x, t)− µcu1(x, t). (1.2)

The mean scalar gradient acts as a source term for the scalar fluctuation, and a statistically stationary

state can be reached (see Overholt & Pope, 1996). Passive scalars are of paramount importance in

turbulent mixing and combustion and a vast effort has been dedicated to their study (see Warhaft,

2000, and the references therein). We choose it as a first case of application of our methodology for

being a scalar field itself, governed by a relatively simple equation, before moving to other scalar fields

derived from the velocity gradient tensor, with more complicated dynamics, such as the enstrophy

and dissipation.

The analysis of the enstrophy and kinetic energy dissipation fields has been recurrent in the

study turbulence through experiments (e.g., Zeff et al., 2003), numerical simulations (e.g., Ishihara

et al., 2003), and theoretical developments (e.g., Pullin & Saffman, 1997; He et al., 1998; Wu et al.,

1999). They are obtained, up to scaling factors, from the double contraction of the rotation- and

strain-rate tensor fields. Physically, enstrophy and dissipation correspond to the remaining Galilean-

invariant degrees of freedom of fluid particles, rotation and strain, once the dilatation is restricted for

incompressible flows. This separation is useful but it does not decouple the equations of fluid motion.

On the contrary, both fields appear highly coupled in the equations describing the dynamics of each
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other (see Appendix A). In fact, the interaction between strain and rotation is intrinsic to the very

nature of three-dimensional turbulence; in particular, vortex-stretching occurs when the strain-rate

field stretches and amplifies vorticity. A study and comparison of the geometry of structures of both

fields, at different scales, might be valuable in our understanding of turbulence. For that reason, we

choose them as the second case of application of our methodology.

1.5 Grid resolution effects

Because of its multi-scale nature, a complete study of turbulence requires, both in experiments and in

numerical simulations, spatial resolution that resolves the flow up to dissipation scales. A traditional

grid resolution criterion used in DNS of homogeneous turbulence in a periodic box, for example,

consists in resolving the flow up to scales of the order of the (average) Kolmogorov length scale.

But in addition to being multi-scale, turbulence also shows intermittency (Batchelor & Townsend,

1949; Landau & Lifshitz, 1959; Kolmogorov, 1962): fluctuations of flow quantities can reach extreme

amplitudes in short intervals of time and spatial distances. Furthermore, fluctuations of different

amplitudes tend to cluster. Intermittency increases for higher Reynolds numbers (Okamoto et al.,

2007) and also for smaller scales (Brasseur & Wang, 1992).

This suggests that the traditional grid resolution criterion, based on an average dissipation scale,

might be inappropriate, since much smaller scales are locally present due to those high fluctuations.

Therefore, the resolution required to resolve all scales of turbulent flows increases significantly (see

Sreenivasan, 2004). This condition may become even more restrictive when studying the geometry

of structures in turbulence, and is explored during the application of our methodology to the enstro-

phy and dissipation fields by means of databases corresponding to multiple numerical simulations

performed at different resolutions but otherwise identical.
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1.6 Structure interaction

The dynamics of sheets and tubes are greatly affected by their own interactions. Common examples

are the coalescence and reconnection of approaching vortex tubes and the roll-up of vortex sheets to

form vortex tubes resulting from the Kelvin-Helmholtz instability. These interactions among sheets

and tubes can be seen as the translation of the strain-rotation interaction itself to the structural

level of turbulence, and help explain the presence of intermittency and the process of multi-scale

energy cascade in turbulence (see Kraichnan, 1974).

An interesting example of the geometrical relations between rotation- and strain-rate fields is the

local alignment of the vorticity with the intermediate strain-rate eigendirection, for incompressible

homogeneous isotropic turbulence. It was observed first in numerical simulations (Ashurst et al.,

1987) and confirmed experimentally (see Tsinober et al., 1992; Tao et al., 2000). Theoretical explana-

tions combine local and non-local arguments (see Jiménez, 1992; Nomura & Post, 1998; Hamlington

et al., 2008). But this prevailing alignment between vorticity and the intermediate eigendirection of

the strain-rate tensor is observed to switch towards the direction associated with the most negative1

(compressional) eigenvalue of the strain-rate tensor at the ends of tube-like structures (Nomura &

Post, 1998), which is consistent with the compressive straining of the vorticity occurring in those

regions.

Other geometrical analyses regarding the proximity of different types of structures, in relation

to their shapes, could be useful in further explaining those interactions and also improve structure-

based models of the fine scales of turbulence. For that purpose, we have developed a methodology

for the study of such proximity issues, from a geometrical viewpoint, among structures of different

fields and scales. It takes advantage of many of the features of the methodology for the study of the

geometry of structures in turbulence also introduced here.
1For incompressible flow the trace of the strain-rate tensor is null, ensuring at least one positive and one negative

eigenvalue of that tensor.
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1.7 Outline

This thesis is organized as follows: Chapter 2 describes the three main steps of the methodology

for the non-local multi-scale study of the geometry of structures—extraction, characterization, and

classification—with emphasis on the conceptual basis and on some particular implementation de-

tails. In Chapter 3, we present a system test that validates the methodology applied to a virtual

world of modeled structures. Chapter 4 shows results of its first application to extended passive

scalar structures educed from a DNS database of incompressible homogeneous isotropic turbulence

stationary in time. We apply, in Chapter 5, the same methodology to structures of the enstrophy

and dissipation fields, comparing the results of both fields, from another DNS database of incom-

pressible homogeneous isotropic turbulence decaying in time. This database includes three different

grid resolutions, allowing us to study how this parameter affects the geometry of educed structures

and the validity of the traditional grid resolution criterion in DNS from a geometrical standpoint. In

Chapter 6, we combine our non-local methodology with two local criteria of identification of vortex

tubes and sheets in turbulence (Horiuti & Takagi, 2005) that are based on scalar fields obtained from

the velocity gradient tensor. An assessment of the geometries expected from those local criteria is

done. Chapter 7 introduces a new methodology for the study of the proximity of multiple sets of

structures, also in terms of geometry and based on non-local measures through area-coverage quan-

tification. We apply this methodology to the pairs of two scalar fields used by the local identification

criteria in Chapter 6 and also to the enstrophy and dissipation fields, considering the multi-scale

decomposition performed in Chapter 5. Chapter 8 summarizes the conclusions of this work and

comments on its possible future directions. The contents of Chapters 2, 3, and 4, along with the

corresponding conclusions included in Chapter 8, will appear in Bermejo-Moreno & Pullin (2008).

We emphasize that the tools developed here—the multiresolution analysis, geometric character-

ization, spectral projection, clustering algorithms, and proximity analysis—can be applied to many

scalar and tensor fields in turbulence, and in fields beyond fluid dynamics.
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Chapter 2

Methodology for the study of the
geometry of structures in
turbulence

The starting point of this methodology is a three-dimensional scalar field obtained from a turbulence

database. Three properties were sought in its development: multi-scale capability, non-local charac-

ter, and geometry-based analysis. It consists of three main steps: extraction, characterization, and

classification of structures. They are explained in each of the sections of this chapter.

2.1 Extraction of structures

The main requirement imposed on the extraction process is to enable eduction of structures associ-

ated with different ranges of scales. Although scale decomposition is commonly defined in Fourier

space, the nature of Fourier basis functions, that are localized in wavenumber but not in physical

space, makes top-hat window filtering in Fourier space inappropriate for the purpose of educing

structures that are extended but compact in physical space. Thus, a transformation with basis func-

tions that are localized both in Fourier space, where the ranges of scales are defined, and in physical

space, where the structures are to be educed, is required. For this purpose, the curvelet transform

(Candès & Donoho, 2003a,b) in its three-dimensional discretized version (Ying et al., 2005; Candès

et al., 2005) is used. Owing to the multi-dimensional character of their definition, curvelets, unlike

wavelets, are naturally suited for detecting, organizing, or providing a compact representation of
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intermediate multi-dimensional structures.

2.1.1 The curvelet transform

Curvelets, the basis functions of the curvelet transform, are localized in scale (frequency/Fourier

space), position (physical space) and orientation (unlike wavelets). The frequency space is smoothly

windowed in radial and angular spherical coordinates, providing the decomposition in different scales

and orientations, respectively. For a given scale1, j, the radial window smoothly extracts the fre-

quency contents near the dyadic corona [2j−1, 2j+1]. A low-pass radial window is introduced for the

coarsest scale, j0. The unit sphere representing all directions in R3 is partitioned, for each scale

j > j0, into O
(
2j/2 · 2j/2

)
= O

(
2j
)

smooth angular windows, each with a disk-like support of radius

O
(
2−j/2

)
. In a discrete three-dimensional data field, of uniform grid of size n3, the last scale, je,

which extracts the highest frequency content, is given by je = log2(n/2).

Denoting by f(n1, n2, n3) the scalar field, where 0 ≤ ni < n, being n the number of grid points

in each direction, the discrete version of the curvelet transform (see Ying et al., 2005) provides a set

of coefficients cD(j, l, k) defined as

cD(j, `, k) ≡
∑

n1,n2,n3

f(n1, n2, n3) ϕD
j,`,k(n1, n2, n3) (2.1)

where j, ` ∈ Z, k = (k1, k2, k3) (j represents the scale, ` the orientation, and k the spatial location);

ϕD
j,`,k(n1, n2, n3) are the curvelets, defined in Fourier space by

ϕ̂D
j,`,k(ω) ≡ Ũj,`(ω) exp


−2πi

3∑
i=1

kiωi

Li,j,`√√√√ 3∏
i=1

Li,j,`

 (2.2)

for {0 ≤ ki < Li,j,`, i = 1, 2, 3}—where ω is the wavenumber; Ũj,`(ω) is the frequency window

Ũj,`(ω) = W̃j(ω) Ṽj,`(ω), being W̃j(ω) and Ṽj,`(ω) the radial and angular windows; and {Li,j,`, i =

1The term scale, when referred to the index j in curvelet space, denotes in fact the range of scales in physical space
that results from the radial window filter in Fourier space.
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ω1 ω2

(1, α`, β`)

ω3

Figure 2.1: Frequency window Ũj,` (darkened region) defined in the three-dimensional discrete
curvelet transform, extracting the frequency content near the wedge with center slope (1, α`, β`)
(figure based on Ying et al. (2005))

1, 2, 3} are three positive integers such that: i)
{
6 ∃ω, ω′

∣∣∣ Ũj,`(ω) ≥ Ũj,`(ω′) andωi is multiple ofLi, i = 1, 2, 3
}

;

ii)Π3
i=1Li,j,` is minimal. A Cartesian coronae is used, so that:

W̃j0(ω) = Φj0(ω); W̃j(ω) =
√

Φ2
j+1(ω)− Φ2

j (ω), j > j0, (2.3)

where Φj(ω1, ω2, ω3) = φ(2−jω1) φ(2−jω2) φ(2−jω3), and φ is a smooth function such that 0 ≤ φ ≤ 1:

it equals unity on [−1, 1] and zero outside [−2, 2]. The angular window for the `th direction is defined

(for example, in the ω1 > 0 face of the unit cube) as

Ṽj,`(ω) = Ṽ

(
2j/2 ω2 − α`ω1

ω1

)
Ṽ

(
2j/2 ω3 − β`ω1

ω1

)
(2.4)

where (1, α`, β`) is the direction of the center line of the wedge (see Figure 2.1) defining the center

slope for the `th wedge. Wherever three smooth angular windows Ṽj,`, Ṽj,`′ , and Ṽj,`′′ overlap, they

are redefined as
(
Ṽj,`, Ṽj,`′ , Ṽj,`′′

)
/
√

Ṽ 2
j,` + Ṽ 2

j,`′ + Ṽ 2
j,`′′ .
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W̃j(ω) and Ṽ (ω) satisfy:

∑
j≥j0

W̃ 2
j (ω) = 1,

∞∑
`=−∞

Ṽ 2(t− 2`) = 1. (2.5)

Curvelets form a tight-frame in L2
(
R3
)
. Any function f ∈ L2

(
R3
)

can be expanded as

f =
∑

j,`,k〈ϕj,`,k, f〉ϕj,`,k, where ϕj,`,k is the curvelet at scale j, orientation `, and position k =

(k1, k2, k3). Parseval’s identity holds:
∑

j,`,k | 〈f, ϕj,`,k〉 |2= ‖f‖2L2(R3). The effective longitudinal

and cross-sectional dimensions (length and width), of curvelet basis functions in physical space follow

the relation width≈length2 (parabolic scaling). As a consequence of this parabolic scaling, curvelets

are an optimal (sparse) basis for representing surface-like singularities of codimension one. These

are three of the most remarkable properties of the curvelet transform.

We apply the curvelet transform to a scalar field, obtained from a turbulence database at an

instant in time, but again emphasize its broader applicability to other fields. The curvelet transform

allows a multi-scale decomposition by filtering in curvelet space the different scales of interest j =

j0, ..., je, individually or in groups. In addition, for anisotropic fields with privileged direction(s)

(e.g., shear flows), a multi-orientation decomposition may be useful for studying structures according

to their directionality (by using the angular window filtering in frequency space of the curvelet

transform (index ` in curvelet space)). Throughout this thesis, only the multi-scale decomposition

is used, which could be also attained by other multi-resolution techniques sharing the same choice

of sub-band radial filtering decomposition in Fourier space. Nevertheless, those capabilities that

set curvelets apart from other multi-resolution techniques, e.g., multi-orientation decomposition and

compact representation of surface-like singularities, justify its early implementation within the frame

of this methodology, enhancing its potential applications and possibilities of expansion.

For each scale j = j0, ..., je, a new scalar field is obtained after filtering all other scales (j′ 6= j)

in curvelet space and inverse transforming to physical space. Thus, a set of je− j0 +1 filtered scalar

fields results from the original field. The volume-based probability density functions (pdfs) of the

filtered fields are, in general, different from each other and from the original field; their comparison
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can be useful in determining how the original scalar field is distributed among the different scales.

After this multi-scale analysis, a second step is applied in the extraction process, by which the

structures of interest associated with each relevant range of scales are educed. Currently those

structures of interest are defined as the individual disconnected surfaces obtained by iso-contouring

each filtered scalar field at particular contour values (for example, the mean value of that filtered

scalar field plus a multiple of its standard deviation). See Appendix B for a physical interpretation

of the educed structures following this multi-scale decomposition plus iso-contouring procedure.

2.1.2 Periodic reconnection

In the case of scalar fields with periodic boundaries, an additional step is included in the extraction

process, to reconnect those structures intersecting boundaries with their periodic continuation on the

opposite boundaries. Figure 2.2 shows an example of the application of such periodic reconnection

algorithm to a set of 3D structures obtained from a periodic scalar field.

(a) (b)

Figure 2.2: Example of application of the periodic reconnection algorithm to a set of boundary-
intersecting structures obtained from a periodic three-dimensional scalar field. (a) Before periodic
reconnection. (b) After periodic reconnection, where the color of each structure indicates the num-
ber of pieces involved in the reconnected structure for this particular scenario: blue = 1 (non-
intersecting), green = 2, orange = 4, cyan = 8

Structures spanning across multiple repetitions of the periodic domain are accounted for in the
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algorithm, as shown schematically in Figure 2.3 for a 2D example. The only case that cannot be

completely reconnected is the structure with infinite extent.

L

Figure 2.3: 2D example of reconnection of a periodic structure spanning across multiple extensions of
the periodic domain. The original fragments of the structure are represented in the original domain
(central square). The resulting structure, after reconnection, is represented by the thick line.

2.2 Characterization of structures

We seek a geometrical characterization able to distinguish structures based on their shape. A two-

step method is used: first, a suitable set of differential-geometry properties is obtained locally (at

all points of the surface), and then area-based probability density functions of those local properties

are calculated, making the transition from local to non-local (in the surface sense) possible.

2.2.1 Shape index and curvedness

Shape index, Υ, and curvedness, Λ, (see Koenderink & van Doorn, 1992) are the differential-geometry

properties chosen to represent locally the geometry of the surface. They are related to the principal

curvatures {κ1, κ2} of a surface at a given point by:

Υ ≡ − 2
π

arctan
(

κ1 + κ2

κ1 − κ2

)
, Λ ≡

√
κ2

1 + κ2
2

2
. (2.6)
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Υ is scale-independent, whereas Λ is scale-dependent, having the dimensions of a reciprocal length.

The scaling is such that, for example, Λ at every point on a sphere equals the absolute value of its

reciprocal radius, 1/R, whereas the cylinder of radius R presents Λ = 1/(
√

2R) for all points. The

principal curvatures, {κ1, κ2}, are obtained as the maximum and minimum values of the normal

curvature, κn, in all possible directions of the tangent plane defined at the point P of the surface

of study. The normal curvature, κn, at a point P in a given direction a of the tangent plane,

defined as the division of the second and first fundamental forms of differential geometry applied in

that direction, a, can also be interpreted as the inverse of the radius of curvature, R, of the curve

obtained as the intersection of the surface and the plane defined by the direction a and the normal

N to the surface at the point P . Thus higher values of the curvedness correspond to smaller radius

of curvature (and, therefore, more locally curved surface at P ). All regular patches of a regular

surface M map on the domain (Υ,Λ) ∈ [−1,+1] × R+, except for the planar patch, which has an

indeterminate shape index and nil curvedness (since κ1 = κ2 = 0).

The mapping (κ1, κ2) → (Υ,Λ) represents (see Figure 2.4) a transformation from Cartesian

coordinates (κ1, κ2) to non-standard polar coordinates (Υ,Λ). For any point in the (κ1, κ2) plane,

Υ contains the information on the direction (measured as the angle, φ, with respect to the axis

κ1−κ2, rescaled into the range [−1,+1] by Υ = −2φ/π), whereas Λ contains the information on the

distance, %, to the origin (rescaled as Λ = %/
√

2). The convention chosen when ordering the principal

curvatures (κ1 ≥ κ2) implies that only the region κ1 − κ2 ≥ 0 of the (κ1, κ2) plane is accessible

(see Figure 2.4). Therefore, the polar angle φ can only have values in the range [−π/2,+π/2],

and, consequently, Υ = − φ
π/2 ∈ [−1,+1] covers all the possible cases, thus making the mapping

(κ1, κ2) → (Υ,Λ) injective (excluding the point (κ1, κ2) = (0, 0) from its domain) by eliminating

the multi-valuedness of the arctan function used in the definition of the shape index. The absolute

value of the shape index S ≡ |Υ| represents the local shape of the surface at the point P , with

0 ≤ S ≤ 1. Its sign indicates the direction of the normal, distinguishing, for example, convex from

concave elliptical points. Figure 2.5 shows the range of values of Υ and sketches of the local shapes

associated with representative values, with the names of corresponding points. Figure 2.6 shows
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κ1 + κ2κ2

κ1

κ1 − κ2

ρ =
√

2Λ

φ = −π
2Υ

Figure 2.4: Transformation from (κ1, κ2) to (Υ,Λ)

the mapping of both Υ and Λ in the plane of principal curvatures, also with representative local

shapes. A deeper mathematical background of these differential-geometry concepts is presented in

Appendix C.

Figure 2.5: Range of shape index, Υ, with its most representative associated local shapes (figure
based on Koenderink & van Doorn (1992))

2.2.2 Joint probability density function (jpdf)

From the pointwise Υ and Λ, a two-dimensional area-based joint probability density function in the

space of (S, Λ) can be obtained (see Appendix D). Since Λ is scale dependent, in order to compare the

shape of surfaces of different sizes, a non-dimensionalization is required for each surface. Selection

of the appropriate length scale for this purpose is critical; several can be obtained from global
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Figure 2.6: Representative local shape in the combined (κ1,κ2) plane

geometrical invariants of the surface, such as the square root of its area (A), the cubic root of its

volume (V ), etc. Presently we define

C ≡ µΛ, µ ≡ 3
V

A
. (2.7)

For the sphere, C = 1. The definition of a volume implies that the structure under consideration is

a closed surface. Thus, only closed surfaces educed from the scalar field are studied. For periodic

domains only those structures with infinite extent will not be closed. All others, following periodic

reconnection, will be closed. For non-periodic domains of limited extent, those structures intersecting

boundaries will not be closed, but they could still be considered in the analysis by closing them either

with the boundaries that they intersect or with their mirrored extension across those boundaries,
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for example.

Another dimensionless global parameter useful in the characterization of the geometry of the

educed closed structures is

λ ≡ 3
√

36π
V 2/3

A
. (2.8)

It represents the stretching of the structure; the lower its value, the more stretched the structure is.

For the sphere λ = 1.

The area-based jpdf P(S, C),
∫ ∫
P(S, C) dSdC = 1, contains non-local information on the

geometry of the surface. P(S, C) can be geometrically interpreted as a representation of how the

local shape, S, is distributed across the different (relative) length scales present on the surface, given

by C, in terms of area coverage. For closed surfaces, their geometry and topology are related by

the Gauss–Bonnet theorem, which imposes an integral constraint on the area-based joint probability

density function of S and C (see Appendix E for details).

2.2.3 Signature of a structure

We consider P(S, C) plus its associated one-dimensional marginal pdfs,

PS(S) =
∫
P(S, C) dC, PC(C) =

∫
P(S, C) dS, (2.9)

to be the signature of the structure. This is complemented with its area A and λ, representing the

stretching of the structure. We find it useful to display P(S, C) mapped onto the (S, C)-plane with

greyscale rendering of P; white ≡ 0, black ≡ max(P). Additionally, we plot PS(S) and PC(C)

on the S (top) and C (right) axes respectively; see Figure 2.7 for an example. This geometrical

characterization is based on properties of the structure that are invariant with respect to translations

and rotations of the reference system, and therefore, are suited for comparing structures based on

their geometry, the basis of the next step of this methodology: the classification of structures.

Several methods have been proposed in the computer graphics literature for estimating curvatures

of a discretized surface (such as the ones that represent our structures in the computational domain).
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(a) (b)

Figure 2.7: Example of a three-dimensional surface (a) with S and C mapped onto it (bottom and
upper halves, respectively) and its corresponding signature (b), for which a projection of the three-
dimensional physical structure is shown at the top-right corner, its area-based joint two-dimensional
probability density function (in terms of S and C) is presented in the bottom-left area, while the
marginal probability density functions of both S and C, are drawn at its top and right sides,
respectively. The value of the stretching parameter, λ, is represented below the jpdf by a black bar
(in a scale from 0 to 1). Mean and feature centers, as well as upper and lower distances for each
variable of the jpdf, are superimposed to the jpdf, as the filled and hollow squares, respectively (refer
to §2.3)

A subset of them, applied to the case in which the discretized surface is a triangular mesh, was here

implemented and tested (Chen & Schmitt, 1992; Dong & Wang, 2005; Taubin, 1995; Meyer et al.,

2003). Finally, a modification of the algorithm proposed by Dong & Wang (2005) (based on Chen &

Schmitt (1992)) is used. The only modification is the way in which the normal vector to each face

of the discretized surface is computed, following the method proposed by Chen & Wu (2004).

2.3 Classification of structures

A process of classification assigns different elements of a given set to groups based on the similarities

of their signatures. In our system, the elements to be classified are the educed structures, and the
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signatures are given by P(S, C),PS(S),PC(C), and λ, obtained in the characterization step for each

structure. Among the different approaches to the problem of classification, we seek those involving

as little a priori knowledge as possible of the relationships governing the different groups and of the

number of groups present in the set of elements under evaluation. This leads to the utilization of

learning-based clustering techniques. The idea behind this approach is to be able to detect other

types of geometries apart from the known tube-like and sheet-like structures in turbulence databases,

should they exist, by not imposing strong assumptions on the groups.

2.3.1 Clustering algorithm

The clustering algorithm used in this classification step combines several techniques found in the

data mining, pattern recognition, and artificial intelligence literature (see, for example, Berkhin,

2002, for a survey of such clustering techniques). It is a locally scaled spectral partitional clustering

algorithm that automatically determines the number of clusters. Its main steps are summarized

below using the notation proposed by Ng et al. (2001) in their NJW algorithm, that conforms the

core of our technique. Additions, particularizations, and modifications to the NJW algorithm are

also described below. In what follows we denote a set of N structures at a particular scale by

the N elements E = {e1, . . . , eN}. For each member of this set we construct a set of parameters

{p[k], k = 1, . . . , NP } which will serve as the contracted computational signature of the structure.

These will be a finite set of moments of P(S, C),PS(S),PC(C), to be defined subsequently, together

with λ. The p[k] will also define a feature space of parameters in which the elements ei are mapped.

Typically N = O(102 − 105), depending on the scale, and it will be seen that Np = 7.

1. Start from a set of N elements E = {e1, . . . , eN} and their corresponding contracted signatures

{pei
[k], k = 1, . . . , Np}.

2. Construct the distance matrix , dij = d(ei, ej), ei, ej ∈ E. The element dij of the distance ma-

trix measures dissimilarity between the two elements ei and ej of E, based on their signatures.
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Presently we define the distance

dij = F ({pei [k]− pej [k], k = 1, . . . , Np}) (2.10)

where pel
[k] is the kth parameter associated with element el. The weighting function F defines

a distance in that space of parameters. For example, a functional dependence of F of the form

F (x) =
(∑

i x2
i

)1/2 defines a Euclidean distance in the feature space of parameters.

3. Construct a locally scaled affinity matrix Â ∈ RN×N defined by

Âij = exp

(
−

d2
ij

σiσj

)
(2.11)

where σl is a local scaling parameter introduced by Zelnik-Manor & Perona (2005) and defined

as the distance of the element ei to its rth closest neighbor, denoted by er,i, σi = d(ei, er,i) (a

value of r = 7 is used, following Zelnik-Manor & Perona, 2005). The purpose of introducing a

local scaling parameter is to take into consideration the multiple scales that can occur in the

clustering process, which is important, for example, when tight clusters are embedded within

more sparse background clusters. Note that the elements of the diagonal of Â are null.

4. Normalize Â with a diagonal matrix D such that Dii =
∑N

j=1 Âij , obtaining the normalized

locally scaled affinity matrix L = D−1/2AD−1/2

5. For NC varying between the minimum and maximum number of clusters considered, do the

following loop:

(i) Find the NC largest eigenvectors {x1, . . . ,xNC
} of L and form the matrix X = [x1, . . . ,xNC

] ∈

RN×NC . This step constitutes the spectral part of the algorithm. It is intended to map

the elements ei onto a different eigenspace where clusters can be better identified. It can

be considered a pre-clustering step that, combined with the local scaling explained in one

of the previous steps, allows clustering of elements with more complicated relationships

among them (and to other clusters) than traditional clustering techniques that do not
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use these features. For example, concentric clusters can be easily educed by means of

spectral clustering.

(ii) Re-normalize the rows of X so that they have unitary length, obtaining the matrix

Y ∈ RN×NC as Yij = Xij/
(∑

j X2
ij

)1/2

.

(iii) Treat each row of Y as a point in RNC and cluster them into NC clusters via K-means

algorithm.

(iv) Assign the original element ei to cluster k if row i of Y was assigned to cluster k in the

previous step.

(v) Obtain optimality score for this number of clusters NC (see §2.3.3).

6. After the previous step has been done for all the possible numbers of clusters under evaluation,

determine the optimum number of clusters based on the minimization of the optimality score

for each one of the possible numbers of clusters (as will be described in §2.3.3).

The K-means clustering algorithm mentioned above is one of the simplest partitional clustering

techniques available. It first initializes the cluster centers (for a given number of them). Then it

assigns each element to the cluster with the closest centroid to that element. After all elements have

been assigned, it recalculates the position of the cluster centers. The last two steps are repeated until

the cluster centers no longer move. Different implementations of the K-means clustering algorithm

differ mainly in the initialization of the cluster centers: we choose the initial position of the first

cluster center randomly among all the elements; initial positions of subsequent cluster centers are

obtained as the farthest elements to the previously assigned cluster centers. Several initializations

following that procedure are performed to avoid local minima.

2.3.2 Feature and visualization spaces; definition of the p[k], k = 1, ..., Np

The selection of the p[k] used to define the feature space plays a decisive role in the classification

step. Each structure will be represented by a point in that feature space and its distance to the

other points will define the similarity to their corresponding structures. The number of parameters
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(dimensions of feature space) should be sufficiently large to distinguish satisfactorily relevant groups

of structures, but at the same time, it should be kept as small as possible to avoid the so-called

‘curse of dimensionality’ (see Bellman, 1961) that affects unsupervised learning algorithms, like the

clustering method used in this methodology, compromising its success by making the points too

disperse in such high-dimensional space. The set of (seven) parameters chosen here for each element

ei of E is

{p[k], k = 1, . . . , 7} ≡ {Ŝ, Ĉ, λ, dS
u , dS

l , dC
u , dC

l } (2.12)

where Ŝ, Ĉ denotes the feature center of P(S, C) and dS
u , dS

l , dC
u , dC

l are the upper and lower

distances of the jpdf in each variable. The feature center (Ŝ,Ĉ) takes into account the asymmetry

of the jpdf, correcting the mean center (S̄, C̄) so that the feature center lies closer to the region of

higher density of the jpdf. The upper and lower distances, du and dl, can be regarded as the r.m.s. of

the part of the jpdf above and below, respectively, its mean value. A graphical example can be seen

in Figure 2.7, where the mean and feature centers have been superimposed to their corresponding

jpdf. Definitions of feature center, upper and lower distances, together with a representative one-

dimensional example can be found in Appendix F.

Based on the idea of the feature space of parameters used for educing clusters of similar struc-

tures, we define a visualization space, intended to provide a graphical representation of the distri-

bution of individual structures in a three-dimensional space, providing qualitative and quantitative

information. In general, the higher-dimensional character of the feature space prevents its use as

visualization space, but the utilization of glyphs, scaling, and coloring allows more than just three

dimensions to be represented in the visualization space.

We define the three axes of the visualization space by Ŝ, Ĉ, and λ. Owing to the choice of

non-dimensionalization of the curvedness and the normalization factors (see §2.2), as well as the

intrinsic meaning of the shape index, curvedness, and stretching parameter, it is possible to identify

regions in the visualization space with a particular geometrical meaning for those structures whose

representation lies in them. For example, blob-like structures occupy the region near the point
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(1, 1, 1) (which corresponds to spheres); tube-like structures are localized near the (1/2, 1, λ)2 axis

(λ being an indication of how stretched the tube is) and the transition to sheet-like structures

occurs as the curvedness and λ decrease. The plane Ĉ = 0 is the limiting case of planar structure;

furthermore, any structure composed of (predominantly) planar regions, thus featureless in the

curvature sense, will have a (nearly) nil Ĉ, independently of its relative aspect ratios, that will

nevertheless affect its λ value. See Appendix G for an analysis of these limiting values. Throughout

this thesis, the visualization space is presented by a set of two-dimensional projections (see Figure

2.8 for an example).

Ĉ

λ

1001λ Ŝ0.5

1

1

0

1

1Ĉ

Ĉ

Ŝ
sheets

sheets sheets

tubes

blobs

tubes

blobstu
b
es

blobs

stretching

0.5

Figure 2.8: Projections of the visualization space with the predominantly blob-, tube- and sheet-
like regions sketched: three-dimensional perspective projection (left), two-dimensional orthogonal
projections (right) of the planes β (formed by the axes Ĉ and λ) and α (formed by Ŝ and Ĉ). For
example, a glyph consisting of a sphere and four bars along the ±Ŝ, ±Ĉ axes can represent nine
parameters of the characterization of the corresponding structure: Ŝ, Ĉ, λ given by the center of the
sphere, upper and lower distances of S and C given by each bar, the surface area A of the associated
structure, given by the size of the glyph, and the group to which the structure belongs, given by the
color of the glyph

2.3.3 Optimality score: silhouette coefficient

The determination of the optimum number of clusters is based on the minimization of an optimality

score. Different approaches have been considered. Among them, probabilistic criteria that consider

the relative increment of complexity of a model (set of clusters) when another parameter (cluster)

2Note that a value of the shape index equal to 1/2 corresponds to locally cylindrical shapes, that are predominant
in tube-like structures. The dimensionless curvedness of a straight elongated circular cylinder of radius R reduces to
C ' 3V/A

√
2R ≈ 3/2

√
2 ≈ 1.06.
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is added, such as the Bayesian Information Criterion (BIC) BIC (Schwarz, 1978), were found to

provide unsatisfactory results. This is mainly due to the use of spectral techniques, since they map

the elements to be clustered onto a different eigenspace whose dimensions change with the number

of clusters considered, complicating the task of comparing the goodness-of-fit for different number

of clusters by such probabilistic methods. Instead, the silhouette coefficient (Rousseeuw, 1987), SC,

is used. It is a confidence indicator of the membership of an element to the cluster it was assigned

to. It is defined, for each element ei, as SCi = (bi−ai)/ max(ai, bi), where ai is the average distance

between element ei and other elements in its cluster, and bi is the average distance to the items in

the closest cluster. It varies from −1 (lowest membership) to +1 (highest membership). Being a

dimensionless quantity, the mean and variance throughout all the clustered elements can be used as

indicators of the optimality of the clustering, and compared among results for different numbers of

clusters to determine the optimum number of them. High values of the mean silhouette indicate a

high degree of membership of the elements being clustered to the clusters they were assigned, and

low values of its variance indicate that the majority of elements have a similar value of the silhouette

coefficient. The combination of both indications reflects a successful clustering.

Once the cluster centers have been obtained, it is also possible to retrieve the closest elements

to those cluster centers among the elements being classified. These closest elements to the cluster

centers can be considered as representative elements of each cluster.
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Chapter 3

Application to a virtual set of
structures

The validity and applicability of the last two steps (characterization and classification) of the pro-

posed methodology were tested on a virtual set of nearly 200 surfaces created using computer

three-dimensional modeling tools. The extraction step was not included in this test, since the start-

ing point is the set of surfaces itself. Nevertheless, modeled structures of very different sizes were

included, to emulate the multiple scales that would result from the extraction step, had it been

included. Also, the shapes of the modeled structures are all different. They could be visually classi-

fied into three main groups with a common geometry: blobs, tubes, and sheets. The target of this

test was to educe those three main groups automatically and without any a priori knowledge of the

possible geometries of the structures present in the dataset or of the number of groups among them,

that is, simply based on the characterization and classification steps of the methodology previously

explained. Among the modeled sheet-like structures, approximately one third were given a certain

rolling geometry (spiral-like sheets).

Figure 3.1 shows the visualization space with the results of the test. Each sphere in that space

represents a structure of the virtual set (some examples are projected onto the planar sides). The

color of each sphere in the visualization space indicates the cluster to which its corresponding

structure has been automatically assigned by the clustering algorithm during the classification step

of the methodology, and its diameter is scaled using its associated silhouette coefficient, which

represents for each structure the degree of membership to the cluster to which it was assigned (refer
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Figure 3.1: Visualization space with clustering results for the virtual set of modeled structures, with
representative examples shown at the sides

to §2.3.3), renormalized to have positive values that allow a comparison among structures. For

reference, the closest elements to the cluster centers have been highlighted using cubes of slightly

bigger size.

Three clusters were automatically educed in the classification step and each structure was ‘cor-

rectly’ assigned by the algorithm to the appropriate group corresponding to the previously con-

structed geometry. This can be seen in Figure 3.1 from the relative locations of the centers of the

glyphs defined by Ŝ, Ĉ, and λ for each structure. We emphasize that neither information on the

previously constructed shapes nor the number of groups to be educed formed any part of the clus-

tering algorithm (for example as pre-conditioning). The results of Figure 3.1 are a consequence of

the geometric characterization and automatic classification in the feature space of parameters.

We note also that in Figure 3.1 (as was sketched in Figure 2.8), the sheet-like structures can spread

over a large region near the plane Ĉ = 0 in the visualization space. This region could be narrowed by

means of a transformation of the (Ŝ, Ĉ)-plane to Cartesian coordinates (X̂ = Ĉ cos[π(Ŝ−1/2)], Ŷ =

Ĉ sin[π(Ŝ−1/2)]). This would bring sheet-like structures to the axis (0, 0, λ) in the new visualization
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space. Nevertheless, it is helpful to keep the original visualization and feature spaces, since that

allows a possible distinction of the different shapes of the structures that fall into the broadly defined

sheet-like geometry. For example, in the test case of the virtual set of modeled structures presented

here, the second optimum automatic clustering result was such that four groups were educed: the

blob-like and tube-like clusters remained the same as in the optimum case of three clusters described

above, but the sheet-like cluster was split into two, with one of these clusters containing a large

proportion of structures with a rolling geometry (spiral-like sheets). This also suggests that further

post-processing (ideally also automatic) of the educed clusters can be helpful in refining the results.
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Chapter 4

Geometry of structures of a passive
scalar fluctuation field in stationary
isotropic homogeneous turbulence

4.1 DNS database

We use a numerical database obtained from a DNS with 5123 grid points; the incompressible Navier–

Stokes equations for the velocity field and the advection–diffusion equation for the passive scalar

fluctuation were solved by means of a Fourier-Galerkin pseudo-spectral method. The domain is a

cube of side 2π with periodic boundary conditions. The velocity field was forced at large scales,

becoming statistically stationary in time. A mean scalar gradient was imposed so that the scalar

fluctuation field became also statistically stationary in time. Despite the mean scalar gradient ap-

plied, the scalar fluctuation is statistically homogeneous. The Reynolds number based on the integral

length scale is 1901, whereas the Taylor Reynolds number is Reλ = 265. The Schmidt number of

the simulation is Sc = 0.7. The product of the largest dynamically significant wavenumber, kmax,

and the average Kolmogorov length scale, η̄, is kmaxη = 1.05. More specific details of the database

can be found in O’Gorman & Pullin (2004).
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6543
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Figure 4.1: Tri-plane cuts of the passive scalar fluctuation field for the original database (top left)
and each of the filtered scales resulting from the multi-scale analysis (filtering in curvelet domain)
(increasing scale number from left to right and top to bottom)

4.2 Multi-scale diagnostics

We apply our methodology to the three-dimensional scalar field given by the passive scalar fluctuation

at an instant in time. For the given resolution of 5123 grid points, and a coarsest scale j0 = 2, the

curvelet transform provides seven scales. They will be named by a scale number, from 0 to 6;

increasing values of the scale number correspond to smaller scales. Thus, scale 0 captures the

largest scales and 6 the smallest. Figures 4.1 and 4.2 show the result of the multi-scale analysis

based on the curvelet transform. Plane cuts of the original database and each of the filtered scales

(filtered in the curvelet domain and then inverse transformed to the physical domain) are shown.

Three-dimensional views with plane cuts in the three directions of the volume data are presented in

Figure 4.1, and more detailed plane cuts normal to the x3-direction at half the length of the cube

are shown in Figure 4.2. Volume-data pdfs obtained for the scalar field associated with the original

database and for each one of the filtered scales, Figure 4.3(a), give insight into the distribution of

the scalar values at the different scales and their contribution to the total field (original database).

For this scalar field, the pdfs tend to become narrower for increasing values of the scale number,

that is, for smaller scales. Scalar fluctuation spectra are also computed for the original volume data
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Figure 4.2: Plane cuts normal to the x3-axis at its midpoint of the passive scalar fluctuation field
for the original database (top left) and each one of the filtered scales resulting from the multi-scale
analysis (filtering in curvelet domain) (increasing scale number from left to right and top to bottom)
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Figure 4.3: Volume-data pdfs of the passive scalar fluctuation field (a) and corresponding spectra
(b), associated with the original database (containing all scales) and each of the filtered scales

field and each filtered scale and are shown in Figure 4.3(b). The effect of the curvelet filtering in

the Fourier domain can be observed. This differs from a top-hat window filtering in that domain,

in order to preserve the localization in the physical domain. It can be noticed that scales 1, 2, and

3 correspond mainly to the inertial range of scales, whereas scales 4 and 5 are mainly dissipation

scales. From this observation and from Figure 4.3(a) we note that those pdfs associated with the

scales corresponding to the inertial range (1, 2 and 3) are very similar, almost collapsing in that
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plot.

Additionally, an equivalent multi-scale decomposition is done for the velocity field. That allows

us to define characteristic squared integral velocities, u2
i , and integral length scales, Li, L′i, for each

filtered scale, i, in the same terms in which they are defined for the original velocity field. For the

case of isotropic turbulence, they can be expressed as

u2
i =

2
3

∫ ∞
0

Ei(k)dk, (4.1)

Li =
π

2u2

∫ ∞
0

Ei(k)
k

dk, (4.2)

L′i =
π

2u2
i

∫ ∞
0

Ei(k)
k

dk, (4.3)

where Ei(k) is the energy spectrum associated with scale i, and the absence of subindex refers to

the original velocity field. It follows from equation 2.5 that the sums of the energy spectra and

the characteristic squared integral velocities of all the filtered scales is equal to those of the original

velocity field, E(k) and u2, respectively:

E(k) =
∑

i

Ei(k), (4.4)

u2 =
∑

i

u2
i . (4.5)

Table 4.1 shows, for the original velocity field and for each filtered scale, the characteristic squared

integral velocity and the characteristic integral length scale, and how they compare to the total

characteristic squared integral velocity, u2, and the average Kolmogorov length scale, η̄.

4.3 Geometry of passive scalar iso-surfaces

After the multi-scale analysis, iso-surfaces are obtained for each of the filtered scales. The contour

values are, for each filtered scale, the mean value of the scalar field plus two times the standard

deviation of that field (mean and standard deviation values can be obtained from the first- and
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scale u2
i /u2 Li/η̄ L′i/η̄

original 1.000 249.6 249.6
0 0.591 226.9 383.8
1 0.155 14.68 96.1
2 0.113 5.235 46.2
3 0.085 1.927 22.8
4 0.044 0.519 11.9
5 0.011 0.070 6.3
6 0.001 0.004 3.3

Table 4.1: Breakdown of characteristic integral velocities and length scales for the filtered scales

second-order moments of the volume pdfs presented before) (see Figure 4.4). Those iso-surfaces

corresponding to the same relative contour value at each scale will be characterized and classified

and their results compared among the different scales. We also remark that an additional step

in the extraction is applied to periodically reconnect those structures intersecting boundaries with

their continuation on the opposite boundaries; this reconnection is performed for each individual

filtered scale. Both the largest scale (0) and the smallest scale (6) are not considered in the process:

the largest scale is of less relevance in this analysis since its structure is expected to depend on

the boundary conditions and external forces applied. The smallest scale is excluded to avoid the

extraction of spurious structures and/or an erroneous geometrical characterization that could result

from the lack of grid resolution, or aliasing effects at that scale. Thus, the scale numbers under

analysis are 1–5. In the same spirit, a minimum number of points (300) was considered for a

structure to be analyzed, so that it is smooth enough for a reliable calculation of its differential-

geometry properties, the basis of the characterization step.

Then, each structure is geometrically characterized as described in §2.2 and, based on the param-

eters extracted from its signature, it can be represented in the visualization space referred in §2.3.

Figures 4.5 and 4.6 show the distribution of glyphs representing each structure, for the different scale

numbers 1–5 considered. In this case, glyphs are spheres whose centers correspond to the Ŝ, Ĉ, λ

parameters and whose radii are scaled according to the surface area of the structure, and their color

is assigned based on the scale number to which the structure belongs. First, structures of all scales

are shown and then the progression for individual scales is presented. As can be seen, the structures
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Figure 4.4: Iso-contours of the passive scalar fluctuation field for the original database (top left)
and each one of the filtered scales resulting from the multi-scale analysis (filtering in the curvelet
domain) (increasing scale number from left to right and top to bottom). A contour value equal to
the mean plus two times the standard deviation of each resulting scalar field was used
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go from predominantly blob-like and tube-like at scales 1–3 toward more sheet-like structures at the

smaller scales 4 and 5, The stretching of the structures increases with the scale number; that is, the

parameter λ decreases for smaller and smaller scales.

Some representative structures, named A–L, have been selected (see top of Figure 4.5); their

corresponding signatures are shown in Figure 4.7. The cascade in the passive scalar fluctuation

spectrum is thus translated into a cascade of the representation of structures in the visualization

space, that starts near the point (1, 1, 1) (sphere) and evolves toward highly stretched sheet-like

structures. whose geometry tends to be complex (see, for example, their corresponding signatures

in the last few points in Figure 4.7).

The clustering algorithm is then applied to the structures. The set of parameters {Ŝ, Ĉ, λ, dS
l , dS

u , dC
l , dC

u }

is used to form the feature space where each structure is represented by a point. Three groups of

structures are obtained, and the result can be seen in Figure 4.8. That figure shows a visualiza-

tion space with the same three spatial coordinates as in earlier plots (S, C, λ), and the structures

represented by glyphs consisting of spheres (colored by the cluster ID and with radius scaled by

the silhouette coefficient, defined in §2.3.3, that indicates the level of membership to the cluster to

which it has been assigned) and horizontal bars with origin at the center of the sphere and lengths

proportional to the other four parameters used for clustering (distances du and dl in ±S and ±C

directions). The thickness of these bars is also scaled by the value of the silhouette coefficient.

Although the clustering algorithm captures the main trends, the structure geometries appear con-

tinuously distributed across the main groups, rather than separated into well-differentiated groups.

This translates into the distribution of points and glyphs representing structures in the feature and

visualization spaces: in particular, glyphs associated with the educed structures are organized as

a cloud in the visualization space, transitioning from one region to other regions. For example, a

comparison of the clustering results for the passive scalar field (Figures 4.8) and the test case of

modeled structures (Figure 3.1) previously presented in §3 clearly shows the difference between the

continuously distributed geometries of the structures educed for the passive scalar field, and the well

distinct groups of geometries found in the test case. As a result, for the case of the passive scalar,
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Figure 4.5: Visualization space with spheres representing the structures educed from the passive
scalar fluctuation field at all scales (top), and only at scale 1 (middle) and 2 (bottom). Radii of
spheres represents (in normalized logarithmic scale) the surface area of each structure. Color of the
spheres represents the scale to which the structure belongs: dark blue (1), light blue (2), green (3),
yellow (4), red (5). (Continued on Figure 4.6)
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Figure 4.6: Visualization space with spheres representing the structures educed from the passive
scalar fluctuation field at scale 3 (top), 4 (middle), and 5 (bottom). Radii of spheres represents (in
normalized logarithmic scale) the surface area of each structure. Color of the spheres represents the
scale to which the structure belongs: green (3), yellow (4), red (5). (Continued from Figure 4.5)
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Figure 4.8: Result of the clustering algorithm in a visualization space showing spheres representing
structures with radii scaled by the value of their silhouette coefficient (renormalized to have only
positive values) and colored by the cluster to which they belong. An optimum number of three
clusters was automatically found. The seven clustering parameters used to define the feature space
are shown for each structure by the center of its representing sphere (of coordinates Ŝ, Ĉ, λ) and the
four bars scaled by the value of du, dl of S and C

some of the structures classified as belonging to one group but lying on the overlapping regions in the

feature space will not necessarily be significantly different (geometrically) from other structures that

belong to other groups but with a similar location in the feature space. The degree of membership

to the educed clusters (measured by the silhouette coefficient) of those structures in the overlapping

regions between clusters will therefore be lower than that of structures near the cluster centers.

Note how the glyphs in Figure 4.8, scaled by the renormalized silhouette coefficient of the associated

structures, are smaller in the overlapping regions (compare, for example, Figure 4.5 (top), where

the density of points is much more continuous throughout the whole distribution, since the scaling

factor in that case was the area of the structure, not its silhouette coefficient).
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4.4 Discussion and physical interpretation

We discuss first the smallest scales. Figure 4.6 (bottom) shows that highly stretched sheet-like

structures are predominant at those scales. From the size of the spheres representing the structures

(related to the the surface area of the structures in a normalized logarithmic scale), we conclude that

the larger of these structures appear more stretched (lower λ) and tend to be more sheet-like (lower

Ĉ). This trend is in agreement with the results of Schumacher & Sreenivasan (2005), who, using

a conventional box-counting method, found that passive scalar iso-level sets at the smallest scales

become smooth sheets. They did not find fractal structure in the passive scalar field within their

range of Sc and Reλ, which differ from present values. Schumacher & Sreenivasan also used the area-

to-volume ratio of the iso-levels, which is essentially the parameter µ used in our methodology to form

the dimensionless curvedness Ĉ: they use this in a global sense rather than applied to individual

structures, as is done here. In the study of intense strain structures in homogeneous isotropic

turbulence by Moisy & Jiménez (2004), the dominance of sheet-like structures in the smallest scales,

suggested by a similar box-counting method, was confirmed by the geometrical study of aspect ratios

of individual structures.

Multi-scale decompositions of the vorticity field in turbulent flows have been previously applied

using orthogonal wavelets in two and three dimensions (see Farge et al., 1999, 2001, 2003), where

thresholding of the wavelet coefficients based on denoising theory separates the vorticity into two

orthogonal fields, denoted as coherent and incoherent vorticity. It is found that the coherent field

is responsible for most of the energy transfer in the large and inertial scales. In three-dimensional

homogeneous isotropic turbulence, the pdf of the coherent vorticity is found to be stretched expo-

nential while the incoherent vorticity is exponential. We find that the pdf of the scalar fluctuation

(see Figure 4.3) is Gaussian, with sub-Gaussian tails, in agreement with previous results for scalar

fields (Overholt & Pope, 1996; Celani et al., 2001). In our multi-scale decomposition (see Figure 4.3),

the variance of the pdfs also decreases for smaller scales (resulting in narrower pdfs), quickly tran-

sitioning from Gaussian (with slightly sub-Gaussian tails) to exponential. Presently our multi-scale

analysis does not include any assumptions about the ‘coherence’ of the educed structures through
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thresholding of the multi-scale coefficients, since it has a different purpose, mainly as a diagnostics

tool.

It has been suggested that exponential tails of the scalar fluctuation pdfs are linked to metrics of

anomalous mixing (see the discussion in Warhaft (2000)). There have been attempts to clarify the

conditions under which sub-Gaussian/exponential tails appear based on various factors that include

relative simulation box size (Overholt & Pope, 1996; Schumacher & Sreenivasan, 2005), Reynolds

number (distinguishing between ‘soft’ and ‘hard’ turbulence (Jayesh & Warhaft, 1992)), flow initial

conditions and forcing (Jaberi et al., 1996), and, for the vorticity, the structure of intense portions

of the field (Siggia, 1981; Kerr, 1985; Jiménez et al., 1993). The transition, seen in Figure 4.3, from

Gaussian pdf in the larger scales to predominantly exponential pdfs in the smaller scales may be

related to the geometry of individual structures present at each scale.

The presence of ramp-cliff structures in the scalar field (plateau–cliff in the scalar fluctuation)

(Antonia et al., 1979) has been associated with anisotropy of the passive scalar field in the presence

of a mean gradient (Celani et al., 2001; Overholt & Pope, 1996; Warhaft, 2000). These features are

seen in the large scales (plateau regions) as well as in the small scales (cliffs of fronts), where steep

changes in the values of the passive scalar occur (see Figure 4.2). The highly stretched, sheet-like

structures found here at the smaller scales could be related to these fronts. A study of their spatial

distribution with respect to proximity to the structures of the larger scales would be needed to

confirm this. Further, the predominant orientation of the sheet-like regions of such structures could

help to clarify their role. This could be obtained within the framework of the present methodology

using the multi-orientation decomposition of the curvelet transform (not applied in this thesis).

For the present Sc and Re we know of no previous reports of blob- and tube-like (with moderate

stretching) structures in the intermediate scales of the passive scalar fluctuation field. Theoretical

developments in physical models of passive scalar mixing have utilized tube-like structures, stretched

by large-scale strain fields, to analyze cascade and dissipation dynamics for a passive scalar (Pullin

& Lundgren, 2001). Small-scale scalar mixing is modeled as a two-dimensional blob (a tube in

three dimensions) convecting, deforming, and diffusing in the presence of the swirling motion of
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a stretched spiral vortex. The blob is drawn out into rolled-up sheets whose azimuthally averaged

structure remains tube-like. Within this compound tube-sheet structure, the derived scalar spectrum

comprises two parts in the form of Batchelor (1959) k−1 and Obukov-Corrsin k−5/3 (see Tennekes &

Lumley (1974)) components. The k−5/3 contribution arises from the non-axisymmetric scalar field

which tends to be sheet-like. This dynamical model is not inconsistent with the present findings

of tube and sheet structures at the smallest scales. We can hypothesize that blob-like structures,

similar to structure A shown in Figure 4.7, are created first. These are then strained and stretched

by the action of vortex tubes (D, E, F) to form vortex sheets (J, K, L). Further vortex tubes are

then created by rolling-up of the sheets. Additional support for the validity of this picture as a

physical mechanism of the cascade would probably require (at least) local correlation in tube and

sheet structure locations and perhaps orientations for adjacent scales in the sense of the curvelet

transform. Some of these topics will be covered in Chapter 7.
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Chapter 5

Geometry of structures of
enstrophy and dissipation fields in
decaying homogeneous isotropic
turbulence

5.1 DNS database

The numerical database used here is that of Horiuti & Fujisawa (2008), henceforth referred to as

HF. It corresponds to a DNS of incompressible homogeneous isotropic turbulence decaying in time

in a cubic domain of side length 2π, with periodic boundary conditions. We use runs corresponding

to 2563, 5123, and 10243 grid points with the same value of the kinematic viscosity, ν, resulting in

a similar Taylor-microscale Reynolds number, Reλ ≈ 77, and in grid resolution criteria, kmaxη̄, of

approximately 1, 2, and 4, respectively. Together with the fact that the initial conditions are the

same for the three runs, they can be used to compare the geometry of flow structures at different

resolutions. Additional parameters for each run at the instant of maximum enstrophy are shown in

Table 5.1, extracted from HF, where more details of the computational method can be obtained.

The three velocity fields at this time instant for the three grid resolutions are the database for the

present study.

In this chapter, we apply the methodology proposed in Chapter 2 for the study of the geometry

of structures in turbulence to the enstrophy and dissipation fields. Local enstrophy is defined as
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N ν Reλ 〈K〉 〈ε〉 L λ η̄(×10−3) kmaxη̄

2563 0.00138 77.20 0.900 0.654 0.469 0.138 8.00 1.02
5123 0.00138 76.87 0.897 0.654 0.469 0.137 8.00 2.05
10243 0.00138 77.43 0.904 0.654 0.468 0.138 8.00 4.09

Table 5.1: Parameters for the computed cases: grid points, N ; kinematic viscosity, ν; Taylor-
microscale Reynolds number, Reλ; average kinetic energy, 〈K〉; average dissipation rate, 〈ε〉; integral
length scale, L; Taylor microscale, λ; average Kolmogorov length scale, η̄; grid resolution criterion,
kmaxη̄ (where kmax is the largest dynamically significant wavenumber). From HF

ωiωi, while local dissipation is defined as ε ≡ 2 νSijSij . Sij is the strain-rate tensor and ωi is the

vorticity field, which is related to the rotation-rate tensor, Ωij , by Ωij = −εijk ωk/2, εijk being the

Levi-Civita symbol. Thus: ωiωi = 2ΩijΩij . Strain- and rotation-rate tensors are obtained from the

velocity gradient tensor, ∂ui/∂xj , as:

Sij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, Ωij =

1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
. (5.1)

We will consider the dissipation rescaled by (2 ν)−1, that is, SijSij .

5.2 Multi-scale decomposition

We plot in Figure 5.1 the volume pdfs (left) and the spectra (right), in Fourier space, of the two

fields, ωiωi and SijSij , for the three grid resolutions (2563, 5123, 10243). It can be observed that

the pdf of ωiωi has longer tails than that of SijSij . This indicates that large amplitude events in

the enstrophy field are more prevalent than in the dissipation field (see Chen et al., 1997), and thus,

that ωiωi is more intermittent than SijSij , which is in agreement with results from experiments

(Zeff et al., 2003) and numerical simulations (Siggia, 1981; Kerr, 1985; Chen et al., 1997), using the

flatness of each field to measure its intermittency. The discrepancy in the spectra of ωiωi and SijSij

increases with the wavenumber, k, that is, for smaller scales. This is also in agreement with the

results from numerical simulations at higher Reynolds numbers of Ishihara et al. (2003), who found

that the maximum difference between spectra of ωiωi and SijSij peaks at kη̄ ≈ 0.4.

Figure 5.2 shows the effect in physical space of the multi-scale decomposition for ωiωi with 5123
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Figure 5.1: Volume pdfs in physical domain (left) and spectra in Fourier domain (right) of ωiωi

and SijSij fields for the three grid resolutions (2563, 5123, and 10243). Note that the volume pdfs
use a transformation of the form sign(x) log(1 + |x|) in the abscissa coordinate, and that curves for
ωiωi and SijSij fields use two different vertical axes (both in the pdfs and the spectra), shifted one
decade for a clear view (non-intersecting curves)

grid points, as an example, through plane cuts in the three principal directions of the cubic domain,

compared to the original field (top left).

6543

210Original

Figure 5.2: Tri-plane cuts of ωiωi and its multi-scale component fields for the 5123 case

Volume pdfs (physical domain) and spectra (Fourier domain) of the original and component fields

after the multi-scale decomposition are shown in Figure 5.3, for ωiωi (top) and SijSij (bottom) fields

in the 10243 case. Scales are named by scale numbers from 0 to 7. Increasing scale numbers, when
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referred to the component fields in which the original field is decomposed, indicate smaller scales.

Thus, 0 corresponds to the largest scale, and 1, 2,. . . correspond to smaller and smaller scales. For

the 2563 and 5123 cases similar plots (not shown) can be obtained with 5 and 6 as the maximum

scale numbers respectively. Note how, for both ωiωi and SijSij , the range of the pdfs increases for
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Figure 5.3: Effect of the multi-scale decomposition in the 10243 case for ωiωi (top) and SijSij

(bottom) fields on the volume pdfs in physical domain (left) and on the spectra in Fourier domain
(right). Note that the volume pdfs have been shifted vertically to accommodate all scales and the
original fields in a clearer view. Also, instead of using a log-scale in the abscissa of the pdf plots,
since there are negative values for all filtered scales, a transformation of the form sign(x) log(1+ |x|)
is used for each field x

increasing scale number (i.e., smaller scales), indicating that fluctuations of both fields are higher in

the small scales, and therefore, that intermittency also increases for those smaller scales. Previous

multi-scale studies of turbulence have shown this property (Kennedy & Corrsin, 1961; Meneveau,
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Figure 5.4: Plane cuts of ωiωi (left) and SijSij (right) normal to one of the principal directions of
the cubic domain at half its side length for the 10243 case

1991; Brasseur & Wang, 1992; Okamoto et al., 2007).

Figure 5.4 includes plane cuts of ωiωi (left) and SijSij (right) fields, for the 10243, at half the

length of the physical domain in one of the principal directions of the cube. Zoomed parts of those

plane cuts are shown in Figure 5.5 for the three grid resolutions (2563, 5123, and 10243, from left to

right) for both ωiωi (top) and SijSij (bottom) fields. It can be observed that, particularly in the

2563 case, the smallest scales are quite different from the higher-resolution cases. Figure 5.6 shows

zoomed parts of the plane cuts corresponding to the component field at scale number 5 for the three

grid resolutions, which is the highest scale number attainable in the multi-scale decomposition of the

2563 case and therefore contains the structures at the smallest scales captured in this flow at that

grid resolution. It is clear from the two-dimensional fields that structures educed with the lowest

grid resolution, 2563, can be significantly different from the ones at higher grid resolutions, 5123 and

10243. Intuitively, a geometrical characterization of those structures would be affected by that fact,

and its effect would be noticed in the application of the methodology proposed above.
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Figure 5.5: Zoomed parts of plane cuts of ωiωi (top) and SijSij (bottom) in one of the principal
directions of the cubic domain at half its side length for the three grid resolutions 2563 (left), 5123

(center), and 10243 (right). Greyscale has been renormalized to the zoomed region for better clarity

ωiωi

SijSij

256 512 1024

Figure 5.6: Zoomed parts of plane cuts of component field at scale number 5 for ωiωi (top) and
SijSij (bottom) in one of the principal directions of the cubic domain at half its side length for the
three grid resolutions 2563 (left), 5123 (center), and 10243 (right). Greyscale has been renormalized
to the zoomed region for better clarity
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5.3 Characterization and classification of individual struc-

tures

In Figure 5.7 we present the three-dimensional visualization spaces (formed by Ŝ, Ĉ, λ axes) with the

glyphs (simple spheres, in this case) representing each structure after its geometrical characterization.

The top row corresponds to ωiωi and the bottom row to SijSij , for increasing grid resolution

(2563, 5123, and 10243) from left to right. The spheres are scaled by the lognormalized area of the

corresponding structure. The color of each sphere represents the scale number to which it belongs. As

in §4.3, the largest scale is not included in the analysis, for being strongly dependent on the boundary

conditions and forcing applied. Neither is the smallest scale (for each grid resolution), to avoid

interference between grid resolution effects and the iso-contouring process. The fact that we have

three different grid-resolutions for the equivalent field allows us to verify whether that interference

occurs. This is discussed at the end of §5.4. Thus, scales 1–4, 1–5 and 1–6 are represented for the

2563, 5123, and 10243 grid resolutions, respectively. Top views ((Ŝ, Ĉ)-plane) of these visualization

spaces are shown in Figure 5.8, where the differences between ωiωi and SijSij fields can be better

realized.

In Figure 5.9 we show the breakdown by increasing scale number (top to bottom) of the three-

dimensional visualization spaces for the ωiωi field for the three grid resolutions (2563, 5123, and

10243), increasing from left to right. Top views ((Ŝ, Ĉ)-plane) of each visualization space can be

seen in Figure 5.10. Figures 5.11 and 5.12 are the equivalent ones for SijSij .

We discuss first the case with the highest resolution (10243). Structures of both ωiωi and SijSij

fields show a continuous transition of their corresponding glyphs in the visualization space, with

varying scale (see right plots of Figures 5.7 and 5.8). Structures at the largest scale of both fields

(top-right corner of Figures 5.9 and 5.11) are mainly blob-like; some get closer to the tube-like region

with small stretching (high λ). At the smallest scale (bottom right corner of Figures 5.9 and 5.11),

dominant structures of both fields are sheet-like (low values of Ĉ and λ). The intermediate scales

present a different behavior for each field: ωiωi shows a high concentration of structures near the
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Ŝ

1

λ

1

1

Ĉ

Ŝ

1

λ

SijSij

1

1

Ĉ
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Ŝ

1

λ

Figure 5.7: 3D views of the visualization spaces, with glyphs (spheres) representing educed struc-
tures, colored by scale number (all merged in each visualization space) and scaled by the lognormal-
ized area of the corresponding structure, for ωiωi (top row) and SijSij (bottom row) at 2563 (left),
5123 (center), and 10243 (right) grid resolutions
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Figure 5.8: Top views ((Ŝ, Ĉ)-plane) of the visualization spaces, with glyphs (spheres) representing
educed structures, colored by scale number and scaled by the lognormalized area of the corresponding
structure, for ωiωi (top row) and SijSij (bottom row) at 2563 (left), 5123 (center), and 10243 (right)
grid resolutions
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Ĉ

Ŝ
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Ŝ

1

λ

1

1

Ĉ
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Figure 5.9: Breakdown, by scale number (increasing top to bottom), of 3D views of the visualization
spaces for ωiωi at 2563 (left), 5123 (center), and 10243 (right) grid resolutions
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1

1

Ĉ
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1

Ĉ
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Ĉ

1 Ŝ
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Figure 5.10: Breakdown, by scale number (increasing top to bottom), of top views ((Ŝ, Ĉ)-plane) of
the visualization spaces for ωiωi at 2563 (left), 5123 (center), and 10243 (right) grid resolutions



54

256 512 1024

1

1

Ĉ
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Ŝ

1

λ

1

1

Ĉ
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Figure 5.11: Breakdown, by scale number (increasing top to bottom), of 3D views of the visualization
spaces for SijSij at 2563 (left), 5123 (center), and 10243 (right) grid resolutions



55

256 512 1024

Ĉ
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Ĉ

1 Ŝ
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Ĉ

1 Ŝ
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Ĉ

1 Ŝ
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Figure 5.12: Breakdown, by scale number (increasing top to bottom), of top views ((Ŝ, Ĉ)-plane) of
the visualization spaces for SijSij at 2563 (left), 5123 (center), and 10243 (right) grid resolutions
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tube-like region (see scale numbers 3 and 4 in Figure 5.10), highly stretched particularly for the

smaller scales; the transition to sheet-like structures appears to be significant at scale number 4 and

becomes obvious at scale number 5, for which dominant structures span across almost all values of

Ĉ. On the other hand, SijSij structures concentrate less in the tube-like region (see Figure 5.8 and

compare scale numbers 3 and 4 of SijSij in Figure 5.10 with those of ωiωi in Figure 5.12), while

they show, at all intermediate scales, many more structures with smaller values of Ĉ, characteristic

of sheet-like geometries. The transition to sheet-like structures begins earlier, at scale number 3, for

SijSij than for ωiωi, and is completed by scale number 5.

5.4 Effect of grid resolution in the geometry of structures

From Figures 5.7 and 5.8 it is observed that the 2563 case does not capture well the dominance of

sheet-like structures that occurs in both ωiωi and SijSij in the small scales (scales numbers from 4

on). Figures 5.11 and 5.12 show, for SijSij , a tendency toward sheet-like structures at the smallest

scale studied for the 2563 case, although the smaller values of Ĉ present in the 5123 and 10243 for

the same scale number are not captured in the 2563 case either. This is even more pronounced in

the ωiωi field (see, in particular, Figure 5.10), for which the departure from tube-like region toward

the sheet-like structures present at higher grid-resolutions is not obvious at all in the 2563 case.

The 5123 case performs better than the 2563 case in describing the geometry of the structures

at the scales of study, when each one is compared with its immediately higher grid resolution. For

example, the visualization space at scale number 5, the smallest scale analyzed for 5123, is rather

similar to the 10243 case (see central and right columns of Figures 5.9–5.12), where structures with

geometries transitioning from the tube-like region to the strongly sheet-like region are captured at

both resolutions in more similar proportions. The 10243 case still shows a higher concentration of

sheet-like structures, particularly for the SijSij case.

These results are consistent with the observations of HF. They identified multiple modes of the

stretched spiral vortex (Lundgren, 1982) in the numerical database and investigated their formation

processes. They found that the highest grid resolution kmaxη̄ ≈ 4 was needed to eliminate the
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fragmentation of sheets for a precise capture of the spiral turns (sheet-like) of those structures and

for a proper study of the dissipation field. Schumacher et al. (2005) found also the necessity of

resolving sub-Kolmogorov scales when studying the very fine structures in scalar mixing, where

sheets are also dominant in the scalar dissipation field. Sreenivasan (2004), based on intermittency

arguments, proposed a revised grid resolution criterion, based on estimates of the ratio of maximum

to average dissipation obtained from measured multi-fractal exponents (see Sreenivasan & Meneveau,

1988) much more stringent than the traditional kmaxη̄ ≈ 1 criterion.

As previously noted, the largest and smallest scales for each grid resolution were left out of the

analysis. The largest scale is dependent on boundary conditions and forcing applied and, therefore,

of less interest in this particular study. The smallest scale was not analyzed to avoid interference

with the iso-contouring step due to grid resolution effects. But three grid resolutions of the same flow

realization provide the opportunity to verify whether that last statement holds. For that reason,

Figures 5.9 to 5.12, include, for the 2563 case (left column), one additional visualization space

corresponding to scale number 5 (framed in a dashed-line box). When compared to the homologous

scale number for the higher grid resolutions, it can be seen that the strong sheet-like character of

the structures is not well captured in the 2563. A possible explanation is that sheet-like structures

at that resolution are more fragmented into smaller structures (part of the original ones). Some will

still be sheet-like but their tube-like area coverage increases since the nearly planar area is reduced

and the surface is still closed, which results in higher values of Ĉ directly affecting their location

in the visualization space. Some others can even result in small blob-like structures or, in general,

rather distinct geometries than the original sheets of which they are fragments. This is confirmed

when the population of individual structures at that scale number is evaluated, since there is a high

increase of small-area structures. The pixelization effect seen in Figure 5.6 for the two-dimensional

plane cuts, when extended to three-dimensions (where the iso-contours, and thus the individual

structures, are obtained) can help to visualize the scenario described above.
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5.5 Clustering results for the 10243 case

As part of the classification step of the methodology, clustering techniques are applied to the struc-

tures obtained from all merged scales under study. This is done independently for structures of

ωiωi and SijSij . Only the 10243 database is considered here. The number of structures present at

each scale largely increases with the scale number (i.e., for smaller and smaller scales). Therefore,

geometries of structures of larger scales could be under-represented in the clustering process. To

avoid that situation a stratified random sampling with a disproportionate allocation, based on the

standard deviation of the population of each scale number, is applied among the present scales prior

to the clustering algorithm. See Appendix H for more details.

The results of the clustering algorithm applied individually to ωiωi and SijSij structures are

presented in Figure 5.13. An optimum number of 3 clusters was automatically obtained by the

algorithm for ωiωi, while the structures of SijSij were optimally clustered in 2 groups. Optimality

scores obtained during the automatic determination of the number of clusters for ωiωi (left) and

SijSij (right) are plotted in Figure 5.14. The optimality score is computed as the mean value

of the silhouette coefficient of all the clustered elements minus the standard deviation of those

silhouette coefficients. Higher mean values of the silhouette coefficient imply that the elements were

clustered in groups where they have a high degree of membership. Small values of the standard

deviation of the silhouette coefficients indicate homogeneity in that level of membership among the

clustered elements. The combination of a high mean and a low standard deviation is sought for

an optimum clustering result. We note that the optimality scores obtained are rather low (less

than 0.5, 1 being the maximum achievable), even for the optimum number of clusters. Also, the

optimality score associated with the optimum number of clusters determined for each case does not

differ significantly from the rest. These two facts are an indication that the elements to cluster are

organized as a cloud of points continuously distributed throughout the feature space of parameters

used for clustering, instead of being organized in well distinguishable groups that would result in

higher optimality scores and more variation among those scores for non-optimal number of clusters.

A projection of that feature space is the visualization space where the results have been plotted,
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1

1

0

1

1

Ĉ
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where it is possible to see also the continuously distributed cloud of glyphs.

5.6 Discussion

The dominance of tube-like structures at intermediate scales of ωiωi is consistent with the presence of

so-called ‘worms’ reported in the fluid mechanics literature (see, for example, Siggia, 1981; Jiménez

et al., 1993). Tube-like structures appear also at intermediate scales of SijSij but in less proportion

than for ωiωi. At all scales analyzed, SijSij shows, on average, more planar geometries than ωiωi.

Also the transition to sheet-like structures occurs earlier (larger scale) for SijSij .

The maximum departure between the spectra of ωiωi and SijSij occurs at the intermediate scales

(scale numbers 3 and 4), as observed in Figure 5.3. This seems to translate into differences in the

geometrical character of structures of ωiωi and SijSij at those scales numbers. In physical space, the

higher concentration of tube-like structures found in the enstrophy field might be one geometrical

link to its higher intermittency, when compared to the dissipation field.

At the smallest scale, both fields show a clear dominance of sheet-like structures. They appear

highly stretched, that is, with small thickness, but their spatial extent can be significant. Instabilities

of vortex sheets have been suggested as a primary mechanism responsible for the generation of vortex

tubes in turbulent flows. Vincent & Meneguzzi (1994) found that the production of vortex sheets

and their subsequent roll-up, forming tubes, shows a strong correlation between scales, and occurs

in a one-step process (in contrast with Richardson multi-step cascade picture). Furthermore, they

explain the alignment of vorticity with the intermediate strain-rate eigenvector as a consequence of

vorticity sheet production by strong strain, instead of tube formation. HF identified the stretched

spiral vortex (Lundgren, 1982) in homogeneous isotropic turbulence, appearing in three modes (two

symmetric and one antisymmetric), that involve one or multiple vortex sheets interacting to generate

tubes. While the stretched spiral vortex was not found in the work of Vincent & Meneguzzi (1994),

that was attributed by HF to the increased grid resolution required to avoid fragmentation of the

spiral turns. The correlation of geometries for ωiωi and SijSij at the smallest scale is consistent

with the known feature of sheets, in which strain and rotation rates are both large and correlated
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(Ruetsch & Maxey, 1992; Horiuti & Takagi, 2005).

Previous studies of the enstrophy field also suggest (see Nomura & Post, 1998, and the references

therein) that its geometry depends on its local magnitude: intense regions appear tube-like while

moderate enstrophy regions seem to be more sheet-like. These considerations are, nevertheless,

independent of the scale. Besides the iso-contour value of the mean plus twice the standard deviation

of each filtered component field, whose results have been presented here, we examined also the mean

plus three times the standard deviation, with no significant differences of the geometries educed for

each field. A wider range of iso-contour values would help clarify the sensitivity of the geometries

Nonetheless, we note that the categorization of globally intense or moderate values of the original

field (containing all scales) based on the iso-contour value is not directly applicable to its component

fields after the multi-scale decomposition.

The 2563 grid resolution (kmaxη̄ ≈ 1) was unable to reproduce the predominance of highly

stretched sheet-like structures found for the smaller scales at higher grid resolutions. This indicates

that sub-Kolmogorov scales must be resolved for a proper geometrical study of the smallest structures

in turbulence, as has been suggested in the literature (see Shumacher & Sreenivasan, 2005; Horiuti

& Fujisawa, 2008) when studying intermittent fields: their high fluctuations (manifested in the long

tails of the volume pdfs in physical space) will occur at very fine scales. These, in general, can be

substantially smaller than the average Kolmogorov length scale, η̄ =
(
ν3/〈ε〉

)1/4, defined in terms

of the average rate of kinetic energy dissipation per unit mass, 〈ε〉, and the viscosity of the fluid,

ν, and traditionally used to define the largest dynamically significant wavenumber resolved in DNS,

kmax, such that kmaxη̄ ≈ 1. As noted in §5.2 the volume pdfs of the different scale component

fields obtained from ωiωi and SijSij show wider ranges for smaller scales, indicating that higher

fluctuations of those two fields occur in the small scales and confirming the intermittency of those

two fields.
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Chapter 6

Assessment of the new non-local
methodology complementing
existing local methods

In this chapter, the non-local methodology for the study of the geometry of structures in turbulence

introduced in Chapter 2 and used in Chapter 5 is utilized to complement two local criteria present

in the literature for the identification of vortex tubes and vortex sheets in turbulent flows. The

purpose is to provide a qualitative and quantitative assessment of the geometrical aspects of those

local identification criteria. This is performed by applying the non-local methodology to confirm

whether the educed structures show the expected geometries. The local and non-local methods are

applied to the same numerical database referred to in Chapter 5.

6.1 Local identification criteria

Among the various local criteria found in the literature, here we consider those used in Horiuti &

Takagi (2005) and HF for educing vortex tubes and sheets, which are outlined below. A point is

considered to belong to a vortex tube core where the second invariant, Q, of the velocity gradient

tensor, ∂ui/∂xj , has a sufficiently large value. Q is defined as:

Q ≡ 1
2

[(
∂ui

∂xi

)2

− ∂ui

∂xj

∂uj

∂xi

]
. (6.1)
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For incompressible flow, ∂ui/∂xi = 0, and Q is related to ωiωi and SijSij by:

2 Q = − ∂ui

∂xj

∂uj

∂xi
= ΩijΩij − SijSij =

1
2

ωiωi − SijSij (6.2)

The condition Q > 0 was first used by Hunt et al. (1988), in combination with the additional

constraint of the pressure, p, being lower than ambient, to define vortex tubes. The Poisson’s equa-

tion for pressure in incompressible turbulent flow with density ρ can be rewritten as (see Bradshaw

& Koh, 1981):

1
ρ

∂2p

∂xi∂xi
= − ∂ui

∂xj

∂uj

∂xi
= 2Q =

1
2

ωiωi − SijSij (6.3)

Therefore, Q is a pressure source term. Also, from the latter equality, enstrophy acts as a source

term while dissipation acts as a sink term of pressure. There are some situations in which the

Q-criterion is not adequate for educing vortex tubes, as is shown in Jeong & Hussain (1995) (e.g.,

conically symmetric vortex, axisymmetric axial vortex within a vortex ring, Bödewadt vortex).

For educing vortex sheets, the method proposed by Horiuti & Takagi (2005) is used in this

chapter. At any given point, the eigenvalues of the symmetric second-order tensor Aij ≡ SikΩkj +

SjkΩki are reordered as [Aij ]ω, [Aij ]+, and [Aij ]−. [Aij ]ω is the eigenvalue whose corresponding

eigenvector is most aligned with the vorticity field, ωi, at that point. [Aij ]+ and [Aij ]− are the

remaining largest and smallest eigenvalues (in an algebraic sense), respectively. The eigenvalues, ϑ,

of Aij can be obtained from the depressed cubic equation:

ϑ3 − 1
2
AijAji ϑ +

1
3
AijAjkAki = 0. (6.4)

Note that there is no term in ϑ2 for being Aii = 0, due to the symmetry of Sij and antisymmetry of

Ωij . Iso-contours of [Aij ]+ are considered vortex sheets. This method takes advantage of the known

feature of vortex sheets in which strain rate and vorticity are both large and correlated, reflected in

[Aij ]+. Horiuti & Takagi (2005) explain the advantages of this identification criterion over previously

existing ones also based on that feature of vortex sheets (see, for example, Tanaka & Kida, 1993).
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Figure 6.1: Volume pdfs in physical domain (left) and spectra in Fourier domain (right) of Q and
[Aij ]+ fields for the 10243 grid resolution. Note that the volume pdfs use a transformation of the
form sign(x) log(1 + |x|) in the abscissa coordinate, and that curves for Q and [Aij ]+ fields use
two different vertical axes (both in the pdfs and the spectra), shifted one decade for a clear view
(non-intersecting curves)

6.2 Application of non-local methodology

Once the sets of iso-surfaces of Q and [Aij ]+ are obtained, the non-local methodology introduced in

Chapter 2 is applied to both sets. The multi-scale decomposition is not used in the extraction step,

since the purpose is to assess the geometrical character of the iso-surfaces extracted by the local

criteria. A multi-scale decomposition of the Q and [Aij ]+ scalar fields could be applied beforehand

(as was done for ωiωi and SijSij in Chapter 5), and then iso-contours of the component fields could

be independently obtained, but the meaning of the educed structures would not be the same as those

obtained by iso-contouring the original fields of Q and [Aij ]+, and the purpose of the assessment of

the local criteria would be lost. While the three grid resolutions are available also for Q and [Aij ]+

fields, only the finest (i.e., 10243) is used, since this chapter is not intended to evaluate the effect of

the grid resolution in Q and [Aij ]+ structures.

Figure 6.1 shows plots of the volume pdfs (left) and the spectra (right), in Fourier space, of the

two fields, Q and [Aij ]+, for that finest grid resolution (10243). The two plane cuts in Figure 6.2

correspond to Q (left) and [Aij ]+ (right) fields, and were obtained normally to one of the principal

directions of the cubic domain at half the side length. Iso-surfaces of Q and [Aij ]+ extracted at

contour values equal to the mean plus 5 and 4 times, respectively, the standard deviation of each
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Figure 6.2: Plane cuts of Q (left) and [Aij ]+ (right) fields normal one of the principal directions of
the cubic domain, at half its side length

field are presented in Figure 6.3. These contour values are approximately the same ones used in

HF (1200 for Q and 1000 for [Aij ]+) to educe vortex tubes and sheets. The visualization spaces

in Figure 6.4 contain glyphs corresponding to the geometrical characterization of the individual

structures shown in Figure 6.3, with the same coloring scheme (blue used for Q structures and red

for [Aij ]+ structures). It is observed that structures of Q tend to be located near the (Ŝ, Ĉ) = (1/2, 1)

region, where tube-like structures are generally located, and present moderate-to-high stretching.

On the contrary, [Aij ]+ structures appear much closer to the Ĉ = 0 region, thus corresponding to

more planar geometries (sheet-like), and with lower values of λ, implying more stretched structures.

The clustering algorithm described in the classification step of the non-local methodology is

applied to the set of structures formed by the union of both sets of iso-surfaces of Q and [Aij ]+

fields, without any a priori distinction of structures of those two sets. This means that the algorithm

has no knowledge of whether individual structures were extracted from Q or [Aij ]+ fields. Owing to

the equivalent number of structures educed for Q and [Aij ]+ and the similar standard deviations of

each population, the pre-clustering stratified random sampling with disproportionate allocation in

this case results in practically the union of the complete sets. Then, structures are clustered based

solely on their geometrical characterization given by set of parameters {Ŝ, Ĉ, λ, dS
u , dS

l , dC
u , dC

l }, that
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Figure 6.3: Iso-contours of Q and [Aij ]+ fields extracted at their mean plus 5 and 4 times their
standard deviation, respectively
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Figure 6.4: Visualization space—3D view (left) and lateral (center) and top (right) projections—
with glyphs (spheres) representing educed structures of Q (blue) and [Aij ]+ (red), scaled by the
lognormalized area of each corresponding structure

define the feature space described in §2.3.2. An optimum number of clusters of 2 was found (see

Figure 6.6), and the resulting clusters are shown in Figure 6.5, where each color corresponds to a

different cluster. Glyphs (spheres) in that figure are scaled by the normalized silhouette coefficient,

a measure of the degree of membership of each structure to the cluster it was assigned. Comparing

Figures 6.5 and 6.4, it is confirmed that the two educed clusters correspond in their majority to the

two sets of structures (Q and [Aij ]+). Numerically a matching of 96% between pairs of groups was
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obtained. A small percentage of structures of both fields shows a different geometry than the one

expected according to the local criterion. For example, the central tube in Figure 7.5 (discussed

later) is a structure of [Aij ]+, which is meant to educe sheet-like structures, while the other two

tubes in that plot are structures of Q, as expected.
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Figure 6.5: Clustering results in the visualization space—3D view (left) and lateral (center) and top
(right) projections—with glyphs (spheres) representing optimum clusters of structures educed from
the set union of Q and [Aij ]+ structures. Glyphs are scaled by the normalized silhouette coefficient,
which indicates the degree of membership of that element to the assigned cluster

We emphasize that the scaling of the glyphs in Figures 6.4 and 6.5 is different. Figure 6.4 uses the

lognormalized area of each structure, and thus it can be concluded, for both Q and [Aij ]+ that more

stretched structures are typically larger (in area): glyphs with lower values of λ (more stretched) are

bigger in that figure. On the other hand, glyphs in Figure 6.5 are scaled by the silhouette coefficient

of the corresponding structure as a result of the clustering algorithm: bigger glyphs imply larger

silhouette coefficient and, therefore, a higher degree of membership to the cluster the structure was

automatically assigned. This different scaling contributes to an apparent lower density of glyphs in

Figure 6.4, when compared to Figure 6.5, since glyphs associated with small structures would be

also small in the former, while they will appear larger in the latter, if they have a high silhouette

coefficient.

Figure 6.6 shows the optimality scores found during the automatic determination of the number of

clusters. It is observed that a number of clusters of 2 provides an optimality score near 0.7 (1.0 being
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Figure 6.6: Optimality scores for different number of clusters obtained during the application of
the clustering algorithm to the set of structures of Q and [Aij ]+ together. An optimum number of
clusters of 2 was automatically determined (square point)

the maximum), much higher, comparatively, than for other numbers of clusters. A comparison with

the clustering results obtained for ωiωi and SijSij in §5.5 (see Figure 5.14), where the optimality

scores were rather low and the variation among different number of clusters was small, gives an

indication of the higher level of confidence in the clustering results for this case. This could be

anticipated by looking at the organization of glyphs in the visualization space in Figure 6.5, when

compared to Figure 5.13.

Thus, the intuition that resulted by the visual cues of Figure 6.3 in which iso-surfaces of Q

seemed tube-like and structures of [Aij ]+ appeared sheet-like has been verified with a mathematical

foundation first by the geometrical characterization, whose results can be partially seen in Figure 6.4,

and then with the application of clustering techniques to the union of both sets, whose results are

seen in Figure 6.5. The geometrical data can be used both qualitative and quantitatively.
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Chapter 7

Interaction among structures of
different fields: proximity issues

This chapter is devoted to the study of the interplay among structures of different fields under a

geometrical perspective. We present here a methodology that, for each individual structure, per-

forms an analysis of its proximal structures based upon their geometrical characterization previously

introduced. Statistical results are obtained for the set of structures under study, presented in the

form of combined probability density functions.

A motivation for this methodology is presented in §7.1, followed by the description of the method-

ology itself in §7.2. Results of its application to the four fields studied in previous chapters of this

thesis grouped by pairs, namely Q–[Aij ]+ and ωiωi–SijSij , are presented in §7.3 and §7.4, respec-

tively.

7.1 Motivation

The scalar fields that have been studied in the previous two chapters were all derived from the

velocity gradient tensor. Some of them can be formulated in terms of the others by simple algebraic

relations (e.g., Q in terms of ωiωi and SijSij). Other fields, not studied here but common in the study

of turbulence, such as the pressure field, p, are also related to these (see equation 6.3). A passive

scalar field could be also added to the flow and related to the other fields through the advection-

diffusion equation, as we did in Chapter 4. They all can be thought of as different manifestations
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of the same flow, in this case, incompressible homogeneous isotropic turbulence decaying in time in

a periodic box. The mathematical relations among all of them are well known, and a vast effort

has been dedicated in the fluid mechanics literature to study how those mathematical relations are

translated into the physical aspects of turbulence, both in physical and Fourier domains, through

the study of pdfs, structure and (auto-)correlation functions, spectra, etc.

It is thus conceivable that the structures extracted from those fields may have some relations,

first, in their relative locations in physical space and, second, in their geometrical character, forming

composite structures localized in physical domain. Perhaps the most common example of such inter-

relation between scalar fields is the formation process of a vortex tube that results from the roll-up

of a vortex sheet (see HF and the references therein): at an intermediate stage of that process, the

core of the vortex tube is dominated by high values of vorticity, while the sheet that is rolling up

around it presents high values of dissipation. Therefore, in that scenario, tube-like structures of ωiωi

would be surrounded by sheet-like structures of SijSij . Similarly, considering the scalar fields used

by the local identification criteria in §6.1 to educe vortex tubes and sheets, structures of Q (which

were found to be tube-like) would be surrounded by structures of [Aij ]+ (predominantly sheet-like).

Plane cuts of pairs of scalar fields, taken at the same location, are superimposed in Figure 7.1

(SijSij over ωiωi on the left, [Aij ]+ over Q on the right). Close relations between their corresponding

structures are noticed: structures of SijSij and [Aij ]+ (red) tend to wrap around those of ωiωi and

Q (blue), respectively. It is also observed that many structures of ωiωi and Q appear to have circular

cores, while structures of SijSij and [Aij ]+ are more elongated. When extrapolated to the three-

dimensional fields, those circular patches of the plane cuts of ωiωi and Q will likely belong to tubes,

while the elongated regions of plane cuts of SijSij and [Aij ]+ will probably correspond to sheets

around them. Another scenario in which circular and elongated regions of the plane cuts correspond,

respectively, to blob-like and tube-like structures in three dimensions would be also possible, but its

frequency of occurrence is comparatively smaller, as is concluded from the study of the geometry of

the four fields previously done in Chapter 5. A methodology enabling study, in three dimensions, of

the geometry of structures of different fields surrounding those of a particular field would be useful
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Figure 7.1: Left: Plane cut of SijSij (red) superimposed over equivalent plane cut of ωiωi (blue).
Right: Plane cut of [Aij ]+ (red) superimposed over equivalent plane cut of Q (blue)

to test this visual intuition and to quantify its appearance.

7.2 Methodology

Consider two sets of structures, A and B, containing NA and NB elements, respectively. We impose

no Boolean restriction on both sets, so that elements of A can also be elements of B.

7.2.1 Processing individual structures

For each structure ai ∈ A:

1. Obtain the subset C of NC structures of B (C ⊆ B) that are closest to ai in the bounding

box sense. This step is intended to speed up the algorithm by reducing the load required to

perform the rest of the steps.

2. For each cj ∈ C, j = 1, ..., NC , obtain the point-wise minimum distance map from cj to ai,

MDM(cj , ai). This map computes, for each point of the discretized surface cj , the minimum

of the distances from it to all points of ai.

At the same time, during the computation of MDM(cj , ai), those points of ai that provide the

minima for MDM(cj , ai) are tagged and an array of Nγ parameters is stored, for each one of

those points, in a point-wise conditional array map of ai, CAM(ai). The array of parameters

{γk, k = 1, ..., Nγ} contains, for each tagged point P ∈ ai, the (dimensionless) proximity value,
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Figure 7.2: Schematic of the computation of the conditional array map (CAM) for a given structure
ai (sheet-like) with respect to two close structures c1 (tube-like) and c2 (blob-like). Minimum
distance maps from cj (j = 1, 2) to ai are shown, with a common color scale for both ranging from
red to blue, representing smaller to larger minimum distances to ai, respectively. The proximity
value derived from them is mapped on ai, with a color scale varying from blue (nil proximity) to
red (maximum proximity). Those points of ai tagged during the computation of the minimum
distance maps (with proximity values greater than zero) will store also the values {gj , ξj , ζj} of the
corresponding cj in the conditional array map

p, obtained from the minimum distance, d, to the point(s) of cj for which P was the closest

of all points in ai, plus additional information of cj itself (for example, but not limited to,

an identifier of the structure cj , and geometrical parameters of cj obtained from a previous

characterization performed on it). The dimensionless proximity, p, is defined in terms of the

distance d by p ≡ (1 + d/Dai)
−1, where Dai is a non-dimensionalizing length scale of ai.

Smaller distances, d, translate into higher proximity values (p ∈ [0, 1]).

We consider here the particular case in which, for each point P of ai, the array {γk, k =

1, ..., Nγ} consists of four parameters (Nγ = 4), redefined for simplicity as {p, g, ξ, ζ}P : p is

the dimensionless proximity value to cj described above, g is an index categorizing cj among

Ng known groups of structures present in B, {Gg ⊂ B, g = 1, ..., Ng‖
⋃Ng

g=1 Gg = B} and ξ and

ζ are geometrical properties of cj . A schematic of the computation of the conditional array

map for ai based on the minimum distance maps for cj is depicted in Figure 7.2.

As different cj are processed, the conditional array map for ai, CAM(ai), is updated at previ-
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ously untagged points of ai. Also, the array of parameters of a previously tagged point of ai

is updated if the new proximity value for that point is larger than the previously stored one,

meaning that the corresponding distance of the new structure cj to that point is smaller than

for all the previous cj structures processed.

If cj is the same structure as ai, which can happen, since, as we stated above, A and B

could share elements, then it is discarded in the computation of CAM(ai). Otherwise it would

eclipse all other structures of C and the conditional array map would be trivial and useless.

Nevertheless, if cj is not the same as ai, but they happen to be identical, then cj is included

in the computation of CAM(ai), resulting in a trivial but useful result. For example, if A and

B are disjoint but their structures are identical by pairs {ai, bi}, the trivial CAM(ai) obtained

for each ai after processing all structures cj ∈ C would prove their identicality.

3. After all cj have been processed for a given ai we obtain, from the CAM(ai), the joint prob-

ability density function (jpdf), in terms of p and g, based on area-coverage, denoted by

P(p, g) |ai←C . The value
∫ p2

p1
P(p, g) |ai←C dp can be interpreted as the probability of find-

ing structures of C categorized in a group Gg as being the closest structures to ai in the range

of proximity values [p1, p2]. At a given point P ∈ ai, a structure cj∗ is the closest to ai at P

if it has the highest value of proximity, p, among all the structures cj that would tag P in the

computation of CAM(ai).

We compute also the area-based joint probability density function in terms of ξ and ζ, with an

additional intensity component based on the averaged proximity value. For each 2D interval

of the geometrical properties [ξm, ξm +∆ξ]× [ζn, ζn +∆ζ] the discrete joint probability density

function with intensity (jpdf+i) has two components: the first one is the pdf value itself, i.e.,

surface area of the ai such that (ξ, ζ) ∈ [ξm, ξm + ∆ξ]× [ζn, ζn + ∆ζ] divided by the total area

of ai; the second component is the area-weighted average of the proximity values of all faces

of the discretized ai such that (ξ, ζ) ∈ [ξm, ξm +∆ξ]× [ζn, ζn +∆ζ]. We denote that jpdf+i by

~PI(ξ, ζ; p)
∣∣∣
ai←C

, where the vector symbol reflects that it has two components (pdf in terms

of {ξ, ζ} and intensity based on p).



74

We approximate:

[P(p, g)|ai←B ≈ [P(p, g)|ai←C ,
[

~PI(ξ, ζ ; p)
∣∣∣
ai←B

≈
[

~PI(ξ, ζ ; p)
∣∣∣
ai←C

. (7.1)

This approximation is exact when the structures of C eclipse, for ai ∈ A, structures of B − C,

if NC < NB, and also in the trivial case NC = NB, for which it becomes an identity.

7.2.2 Transition from individual structures to results for the set A

Once all ai ∈ A have been processed, global jpdf and jpdf+i are obtained for the set A as the average

of individual jpdf and jpdf+i for each ai:

[P(p, g)|A←B =

∑
ai∈A [P(p, g)|ai←B

NA
(7.2)

[
~PI(ξ, ζ ; p)

∣∣∣
A←B

=

∑
ai∈A

[
~PI(ξ, ζ ; p)

∣∣∣
ai←B

NA
(7.3)

respectively. This is equivalent to assigning a probability density of [P(p, g)|ai←B /NA to each event

ai ← B and then computing the probability density of the event A ← B as the union of all individual

events (∀ai ∈ A), taking them as independent. The same reasoning applies to
[

~PI(ξ, ζ ; p)
∣∣∣
A←B

.

7.2.3 Computational remarks

When dealing with the discretized surfaces representing the structure ai, [P(p, g)|ai←B /NA and[
~PI(ξ, ζ ; p)

∣∣∣
A←B

are obtained from face-wise data, and not from point-wise data. This requires a

transformation from point-wise to face-wise data, which is done in this case by assigning to each

face the array {γk, k = 1, ..., Nγ} of its vertex with the maximum value of the proximity (i.e.,

minimum distance). Interpolation, in this case, is inappropriate since there is no guarantee of

continuity of the values of the parameters γk throughout the surface, as neighboring points can have

data corresponding to different surrounding structures cj ∈ C. When continuity of the jpdf variables

exists, an interpolation (for example, tri-linear if the faces are triangular) is justified and can improve
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the accuracy of the jpdf, relaxing the dependence between the discretization of the surface and the

discretization of the jpdf; this was the case in the computation of the P(S, C) used to obtain the

signatures of the structures in the characterization step of the study of the non-local geometry of

structures, but cannot be applied to the jpdf and jpdf+i we are analyzing in this chapter.

The algorithm can be modified to obtain directly face-wise data instead of point-wise data and

avoid such transformation. Point-wise data has been chosen in our implementation due to the

simplicity and increased speed when computing distance maps. Nonetheless, we note that this

imposes the additional constraint that both discretized surfaces ai and cj must have an equivalent

grid resolution for an accurate computation of the distance maps, basis of this algorithm. In our

implementation, this is guaranteed as a consequence of the iso-contouring algorithm in use and the

fact that, even when multi-scale techniques were applied, sub-sampling was not performed on the

grid for any scale, and no decimating operation was applied over the discretized structures thereafter.

7.3 Application to structures of Q and [Aij]+

We apply the methodology explained in §7.2 to the structures of the fields Q and [Aij ]+ educed in

§6.1. In our first application, the set A will be composed of the extracted structures of Q, A ≡ X (Q),

where X (α) denotes the set of extracted structures from a three-dimensional scalar field α, while

the set B is composed of the union of structures extracted from Q and those extracted from [Aij ]+,

B ≡ X (Q) ∪ X ([Aij]+). Therefore, in this particular case, A ⊂ B.

We choose (ξ, ζ) as the geometrical parameters (Ŝ, Ĉ) obtained in the characterization step of

the non-local study of the geometry of structures applied in §6.2. The index g refers in this case

to the two groups of structures in which B can be immediately divided, namely, structures of Q

(g = 1) and structures of [Aij ]+ (g = 2). The length scale Dai used to non-dimensionalize distances

when computing proximity values for each structure ai is taken to be the parameter µ ≡ 3 V/A,

where V is the volume and A the area of ai. Note that this parameter was used in the geometrical

characterization step of Chapter 2 to non-dimensionalize the curvedness (see equation 2.6), resulting

in the dimensionless value C, from which Ĉ was obtained. For a sphere of radius R, µsphere = R;
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for an elongated tube with circular cross section of radius R, µtube ≈ 3 R/2; for a predominantly

sheet-like structure of thickness t, µsheet ≈ 3 t/2. After applying the methodology, we obtain both[
~PI(Ŝ, Ĉ ; p)

∣∣∣
A←B

and [P(p, g)|A←B.

7.3.1 Proximity and area coverage of surrounding structures through

jpdf+i

Figure 7.3 shows
[

~PI(Ŝ, Ĉ ; p)
∣∣∣
A←B

. The top left plot is the representation of the pdf component,

using a greyscale, where white indicates nil area coverage and black indicates the maximum area

coverage. Therefore, dark regions indicate that structures of B with values of (Ŝ, Ĉ) within those

regions are found, on average, to surround comparatively a larger proportion of the area of structures

of A. Light regions indicate values of (Ŝ, Ĉ) not so commonly encountered in the structures of B

surrounding those of A. The top-right plot represents the intensity component, which in this case

corresponds to the proximity value, using a color-scale (continuous gradient blue-cyan-green-yellow-

red): blue indicates low proximity (farther distances) while red indicates high proximity (closer

distances) of the structures of B with given values (Ŝ, Ĉ) to those of A. The bottom-left plot is a

composition of both the pdf component and the intensity component by means of a hue-saturation

gradient, represented in the bottom-right plot. In a HSB (hue, saturation, brilliance) color space,

the area-coverage corresponds to the saturation, S, while the intensity component corresponds to

the hue, H, and the brilliance, B, is kept constant at its maximum value. Therefore, it contains

information of the averaged area-coverage in the saturation scale and information of the averaged

proximity in the hue scale. Saturated-red regions correspond to values of (Ŝ, Ĉ) found in structures

of B closest to those of A and covering, comparatively, the largest proportion of their surface area.

Desaturated regions indicate less area coverage and colors closer to the blue hue indicate lower values

of the proximity (and thus, farther structures). Regions of saturated-blue, for example, will indicate

that structures of B with those values of (Ŝ, Ĉ) appear far but cover a large proportion of the surface

area of structures of A. Desaturated blue regions, on the other hand, will indicate that structures

of B with those values of (Ŝ, Ĉ) appear far as well, but covering a small fraction of the surface area
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Figure 7.3: Components of the jpdf+i in terms of (Ŝ, Ĉ), plus intensity component based on proxim-
ity, of structures of X (Q)∪X ([Aij ]+) surrounding structures of X (Q): area-coverage pdf component
(top left) using greyscale; intensity component (top right) using blue-cyan-green-yellow-red color-
scale; composition of area-coverage pdf and intensity components to obtain the composite plot
(bottom left) with bi-dimensional hue-saturation gradient scale (bottom right) corresponding to
proximity (hue) and area coverage (saturation)

of structures of A. Note that both scales are normalized: the maximum area coverage will have a

saturated color, and red hue corresponds to the maximum proximity value. Therefore, they provide

only relative (not absolute) information of the area coverage and the intensity (proximity) values.

This can be changed fixing absolute ranges for the hue-saturation bi-gradient scale.

A first conclusion that can be directly drawn from Figure 7.3 is that structures of Q are mainly

surrounded (more saturation), among those of [Aij ]+ and Q itself, by structures with low values of Ĉ,

which are also closer (red hues). Those Ĉ values correspond to sheet-like structures. A desaturated
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region (less area coverage) of also green/cyan hues (farther structures) is located nearer the (Ŝ, Ĉ) ≈

(1/2, 1) zone. This implies that, secondarily, tube-like structures surround also structures of Q, but

they are not so proximal and cover a smaller relative surface area of them. When Figure 7.3 is

compared to the right plot of Figure 6.4, since both share the same axes (Ŝ, Ĉ), it is indirectly

concluded that the majority of sheet-like structures surrounding those of Q (as seen in Figure 7.3

by the saturated red-colored regions) are structures of [Aij ]+ since they are the ones with a higher

density of glyphs in the corresponding regions in the (Ŝ, Ĉ)-plane of Figure 6.4.

7.3.2 Proximity split by groups through cumulative marginal pdfs

In Figure 7.4 we plot cumulative one-dimensional marginal pdfs obtained from [P(p, g)|A←B for

increasing group g numbers, {fk(p) =
∑k

g=1 [P(p, g)|A←B , k = 1, ..., Ng}. The contribution of each

group g is represented by a different color between black lines. For k = Ng, the result is the marginal

pdf in terms of p, f(p) = fNg (p), represented by a thicker black line.
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Figure 7.4: Representation of the marginal pdf of [P(p, g)|A←B in terms of the proximity p (thick
black line), showing the contribution of each group g by the different colored areas between two
black lines (added cumulatively)

From Figure 7.4, it is directly concluded that structures of Q are predominantly surrounded by

structures of [Aij ]+, represented by the red area of the marginal pdf. The blue area corresponds

to structures of Q, which cover a much smaller fraction and are farther (lower values of proximity)

than those of the majority of [Aij ]+ structures. This was indirectly concluded previously, from
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the combination of Figures 7.3 and 6.4. The contribution of [Aij ]+ (red area) to the marginal

pdf in Figure 7.4 shows four regions of interest: first, the region near unitary proximity (p ≈ 1),

that corresponds to structures of [Aij ]+ very close to those of Q, likely overlapping/intersecting

each other. Examples of this interaction, extracted from the database under study, are shown in

Figure 7.5, cases (a), (b), and (c). Second, the region with proximity values between 0.6 and 0.9,

where a hump is visible in the marginal pdf, that corresponds to structures of [Aij ]+ (or parts

of them) still at a close distance but not overlapping or intersecting. Those values of proximity

translate into distances between 1/10 and 2/3 times their own characteristic length, defined by µ,

which corresponds, for the tube-like structures predominant in Q, to approximately 3/2 times their

characteristic radius. See cases (d), (e), and sheets surrounding tubes in case (f) of Figure 7.5 for

some examples of this configuration. Third, the region with proximity values between 0.25 and 0.5

with low values of the marginal pdf indicates that surrounding structures are rarely found at those

distances. The fourth region corresponds to low values of proximity (p ≈ 0.1−0.2). See, for example,

tubes nearby other tubes in case (f) of Figure 7.5. As a result of the definition of p, a wide range

of high values (> 4) of the relative distance between structures concentrates in that region, so it is

expectable to find an accumulation of the marginal pdf for low p, whenever there are structures of

A not completely surrounded by close ones of B. A modification of the definition of p or the scale

used to represent it can spread the effect of those higher distance over a wider range if required, but

here we are more interested in closer structures, so the current p seems suitable for this purpose.

7.3.3 Structures of Q surrounding themselves

A question that arises after this analysis is whether structures of Q might be closer to themselves than

what the blue region in Figure 7.4 shows, but structures of [Aij ]+ eclipsing them when computing[
~PI(Ŝ, Ĉ ; p)

∣∣∣
A←B

masquerade the result, making them appear farther than they are. This can

be answered by applying the proposed methodology to A = B = X (Q), that is, considering the

problem of how structures of Q surround themselves. Figure 7.6 shows the
[

~PI(Ŝ, Ĉ ; p)
∣∣∣
A←B

(left)

and [P(p, g)|A←B (right) obtained in this case. Note that now there is only one group (g = 1).
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(a) (b) (c)

(d) (e) (f)

Figure 7.5: Examples of composite structures formed by interaction of tube-like (blue) and sheet-
like (red) geometries found in the database. In cases (a) and (b) a tube is mostly embedded by
one or more sheets that intersect it and remain at a close distance. Case (c) consists of three
tubes and a sheet that follows closely their geometry, intersecting them, and connects them through
stretched regions. Cases (d) and (e) show, each, a sheet-like structure wrapping around a tube,
without intersecting it but remaining at a close distance and following its curvature. A smaller sheet
intersecting the tube is also seen in case (d). Case (f) shows three tubes at moderate distances
from each other (≈ 5–10 times their average radius) with a similar orientation and sheets partially
surrounding them at close distance or even intersecting them. For clarity, only a subset of all the
nearby structures surrounding each tube in every case is shown

[
~PI(Ŝ, Ĉ ; p)

∣∣∣
A←B

shows, as expected, tube-like geometries as the proximal, which is trivial once

the sheet-like structures of [Aij ]+ have been removed from B. But [P(p, g)|A←B also shows a peak

at about the same value of proximity that was found for Q structures when [Aij ]+ structures were

included, which confirms the farther distances among Q structures to themselves. See case (f) in

Figure 7.5.

7.4 Application to structures of ωiωi and SijSij

Next we apply this methodology to structures of ωiωi and SijSij educed in §5.3. For these two fields

a multi-scale decomposition was performed. Of all possible combinations of fields and scales, we

study two cases, due to their particular relevance. In both cases, we take A as the set of structures

of ωiωi at scale number 3 (intermediate scale). They were found in §5.4 to be predominantly tube-
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Figure 7.6: Results for structures of Q surrounding themselves:
[

~PI(Ŝ, Ĉ ; p)
∣∣∣
A←B

(left)

[P(p, g)|A←B (right) for the case A = B = X (Q), g = 1

like. We take B as the set of structures educed for scales numbers 3 − 6 for ωiωi in the first case

(thus, A ⊂ B) and for SijSij in the second (thus, A ∩ B = ∅). In both cases, we split B into four

groups (Ng = 4), each corresponding to a different scale number of the field under consideration

(ωiωi or SijSij , respectively).

Figure 7.7 shows
[

~PI(Ŝ, Ĉ ; p)
∣∣∣
A←B

(left) and [P(p, g)|A←B (right), for the first (top) and second

(bottom) cases. From the jpdf+i (left plots) it is observed that structures with small Ĉ (correspond-

ing to sheet-like geometries) appear to be the closest in both cases (yellow and red spots). But there

is a wide range of geometries among the surrounding structures.

In the first case, that is, for the set B containing structures of ωiωi, two saturated regions (im-

plying high area-coverage) are present in that plot, corresponding to tube-like (nearer the (Ŝ, Ĉ) ≈

(1/2, 1) region) and sheet-like (small Ĉ values) structures. The latter appear closer (red and yellow

hues, as opposed to green and cyan) but the former seem to cover a slightly higher percentage of

the area of structures of A (more saturated colors). The region in between those two (intermediate

values of Ĉ) contains structures which appear farther and covering a smaller area.

In the second case, B containing SijSij structures, the highest area-coverage corresponds clearly

to those structures with low Ĉ (sheet-like), which are also the closest (red, yellow, and green hues).

The spread toward other geometries is also significant, but the area-coverage and proximity decreases
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Figure 7.7: Results for structures of ωiωi at scale number 3 surrounded by structures of ωiωi (top)
and by structures of SijSij (bottom), at scale numbers 3− 6:

[
~PI(Ŝ, Ĉ ; p)

∣∣∣
A←B

(left) [P(p, g)|A←B
(right)

in those other regions of the (Ŝ, Ĉ)-plane (less saturation and cyan and blue hues). Also, the region

around tube-like structures found in the first case is now, in the second case, more diffuse and spread

toward the blob-like region. This is consistent with the fact that less tubes were found in §5.3 in the

geometrical analysis of structures of SijSij .

The right plots of Figure 7.7 show the cumulative marginal pdf obtained from [P(p, g)|A←B, split

by groups corresponding to each scale number under study (3 to 6). We use the same color code

for each scale number as in Figures 5.7– 5.12 of Chapter 5. There are two main differences between

both cases of study. In the first case, structures of ωiωi at scale number 3 have a small contribution
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to the marginal pdf, and they appear far (p ≈ 0.1), compared to the rest of the scales; structures

at scale number 4 are the closest, showing a significant increase for p in the range 0.6-0.8, while

structures at scale numbers 5 and 6 appear also close, but with a more gradual increase for p > 0.6.

In the second case, structures of SijSij at each one of the scales under analysis (3-6) have a more

balanced contribution to the marginal pdf; scale number 3 shows a slightly higher concentration of

closer structures (p > 0.6), and less proportion of farther structures (p ≈ 0.1), when compared to

structures at scale numbers 4–6.

7.5 Discussion

From this proximity study, tubes appear closely surrounded by sheets, both when structures of Q

and those of an intermediate scale of ωiωi are analyzed, in relation to structures of [Aij ]+ and the

sets of structures of ωiωi and SijSij , respectively. Concerning structures of Q and [Aij ]+ surrounding

those of Q itself, it is found that a large proportion of structures of [Aij ]+ appears much closer, with

regions either intersecting or at less than one characteristic diameter of the tube-like structures of

Q, and covering a larger proportion of their area than other surrounding structures of Q. These are,

on average, farther than five diameters apart from themselves, as is also a second group of [Aij ]+

structures, which might be surrounding those other Q structures at a closer distance.

Regarding structures of ωiωi at an intermediate scale (scale number 3), which were found to be

predominantly tube-like in the previous geometrical study (see Chapter 5), we have considered the

surrounding structures at the same and smaller scales (i.e., scale numbers from 3 to 6) of both ωiωi

and SijSij , each field independently. In the first case, the set of structures of ωiωi at scale number

4 is the predominant group surrounding tubes of ωiωi at scale number 3. Structures of smaller

scales (i.e., scale numbers 5 and 6) are also found close to those at scale number 3. In comparison,

structures at scale number 3 appear farther among themselves. Concerning geometries of proximal

structures, we find two predominant groups: sheet-like structures, which appear closer on average,

and tube-like structures, certainly farther but with a high proportion of the total area-coverage.

Other geometries, intermediate between tubes and sheets, had also a contribution, but to a lesser
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degree of both proximity and area coverage.

In the second case, when structures of SijSij at scale numbers 3–6 surrounding structures of

ωiωi at scale number 3 are studied, all scales show similar results of proximity and area coverage.

Structures at scale number 3 of SijSij have a slightly higher value of proximity, likely owing to

the similarity of some structures of both ωiωi and SijSij at that intermediate scale. Regarding the

geometry of proximal structures in this case, they are primarily sheet-like, with significantly higher

proximity values and area-coverage. Other geometries can be seen among the surrounding structures

but they tend more toward the region of blob-like structures, instead of tube-like structures, as

opposed to the case of surrounding structures of ωiωi itself. Also, these other geometries are found

farther and covering a smaller area fraction, on average.

Physically, these findings are consistent with the phenomenology of tubes being generated by one

or multiple proximal sheets discussed in §5.6. Furthermore, as Ruetsch & Maxey (1992) pointed out

when studying the evolution of small-scale structures in incompressible homogeneous isotropic turbu-

lence, vortex tubes and vortex sheets should not be considered as separate, independent structures.

Instead, they form composite structures, as those shown in Figure 7.5, with dependent geometries.

The results of this proximity analysis also support the structure-based explanation of intermit-

tency, previously explored by Moisy & Jiménez (2004) using box counting methods. They found

that intense structures form clusters of inertial-range extent. In our case, the low values of the

cumulative marginal pdfs encountered for intermediate values of proximity suggest the existence of

empty regions (in the iso-contour context) in physical domain in between composite structures.
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Chapter 8

Conclusions and Future Work

8.1 Geometry of individual structures

A methodology for the identification of structures based on their geometry has been introduced first.

Our goal has been to develop a methodology that can compensate for the computational bottleneck

of DNS computing for turbulent flows, and to provide a solid mathematical framework for non-

local characterization of the flow structures based on existing data sets. The main characteristics

of this methodology, in comparison with previously existing ones, are its multi-scale and non-local

character. The multi-scale nature, implemented by means of the curvelet transform, provides the

framework for studying the evolution of the structures associated with the main ranges of scales

defined in Fourier space, while keeping the localization in physical space that enables a geometrical

study of such structures. We note that the multi-orientation decomposition included in the curvelet

transform, not used in this study, can be useful when analyzing other flows in which the direction-

ality of the structures can play a significant role, such as channel flow. The non-local character

of the methodology is achieved through the calculation of area-based probability functions of the

differential-geometry properties of the surface under consideration. It is also a generic methodology,

not intended to educe a particular kind of geometry, but able to manage and classify all possible

geometries. There are three main steps involved: extraction, characterization, and classification of

structures. Individual structures (considered as closed surfaces disconnected from each other) are

studied.
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Results of its application first to a virtual world of modeled structures for system validation

purposes and then to different fields obtained from DNS turbulence databases have been presented.

From its application to the passive scalar fluctuation field advected and diffused in incompress-

ible statistically stationary homogeneous isotropic turbulence in a 5133 periodic box, the following

conclusions can be drawn: first, the multi-scale decomposition resulted in a set of scalar fields (asso-

ciated with the different ranges of scales extracted) with volumetric probability density functions of

decreasing width for smaller scales. In addition, those probability density functions corresponding

to scales approximately in the inertial range tend to overlap. Secondly, the study of the structures

educed for the different scales shows a transition of their geometry from predominantly the blob-like

and tube-like kind in the inertial range of scales toward sheet-like structures in the dissipation range.

The dominant structures become more and more stretched for the smaller scales. This transition of

geometry is smooth, complicating the automatic classification of structures. There are not clearly

distinct groups of structures with a common geometry, but a continuous distribution of them filling

the spectrum of present geometries instead. Thus, the application of the clustering algorithms is

more challenging. In this case, three groups were educed automatically by applying the clustering

technique implemented, and their projection in the visualization space and the identified cluster

centers agree with the comments stated above. Nevertheless, clustering results are to be used with

care in these conditions in which the points are so continuously distributed in the feature space used

for clustering.

This methodology was then applied to the enstrophy and dissipation fields of a second database,

obtained from a DNS of incompressible homogeneous isotropic turbulence decaying in time in a

periodic box, at the time of maximum enstrophy of the flow. Three different grid resolutions were

analyzed, corresponding to 2563, 5123, and 10243 points, with identical initial conditions and similar

Reλ ≈ 77, resulting in kmaxη̄ of approximately 1, 2, and 4, respectively. This allowed us to compare

the geometry of the structures for different resolutions and evaluate whether the traditional DNS

grid-resolution criterion kmaxη̄ ≈ 1 is adequate for such geometrical analysis of the educed structures.

The 10243 case showed a continuous transition, for decreasing scale, from blob-like and moder-
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ately stretched tube-like structures at large scales to highly stretched sheet-like structures at the

smallest scales under study. Intermediate scales of ωiωi show a dominance of tube-like structures,

which is consistent with the presence of so-called ‘worms’ in previous studies (Siggia, 1981; Jiménez

et al., 1993). Tube-like structures appear also at intermediate scales of SijSij but in less proportion

than for ωiωi. The case with smallest grid resolution (2563 points) did not capture the predomi-

nance of highly stretched sheet-like structures educed for the small scales at higher grid resolutions.

This suggests the necessity to resolve sub-Kolmogorov scales for a proper geometrical study of the

smallest structures of intermittent fields in turbulence, as was previously stated in the literature (see

Shumacher & Sreenivasan, 2005; Horiuti & Fujisawa, 2008).

For the 10243 case, clustering techniques used during the classification step to obtain distinct

groups of geometries among the educed structures resulted in three and two as the optimum number

of groups obtained for ωiωi and SijSij , respectively. Blobs, tubes, and sheets can be seen as the

predominant structures in the three groups of ωiωi, while blobs and sheets are predominant in SijSij ;

but tubes, present also in this latter field, were included among the two optimum groups. Optimality

scores for other number of groups did not differ substantially from the optimal results. This is a

consequence of the continuous distribution of geometries, which indicates that the educed groups

are not highly differentiated from each other and that the clustering results in this case should again

be considered with reserve.

8.2 Assessment of non-local methodology complementing ex-

isting local identification criteria

We then applied the same non-local methodology for the study of the geometry of structures to two

scalar fields, Q and [Aij ]+, used by local criteria of identification of tubes and sheets in turbulence,

based on the physical meaning of those quantities, that have been proposed in the fluid mechan-

ics literature. This application confirmed the geometrical character expected for the majority of

structures educed from those two fields (which before had been done only visually) by providing the
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necessary mathematical and geometrical background as well as means for quantifying the frequency

of appearance of each geometry. Clustering techniques in this case provided a much clearer optimum

number of two groups of structures, well differentiated. 96% of the structures of Q and [Aij ]+ were

assigned to separate groups by the clustering algorithm. Q structures were found to be mainly

tube-like, while [Aij ]+ were recognized as sheet-like. A small amount of structures of both fields

present a geometry that does not correspond to the expected shape. For example, some tubes were

found among structures of [Aij ]+.

8.3 Proximity issues from a geometrical perspective

Finally, we introduced a new methodology for the study of proximity issues among structures corre-

sponding to different fields, from a geometrical perspective. It provides information about the type

of geometry found in structures of one group surrounding those of another, indicating the proximity

and area coverage, by means of joint probability density functions. The set of surrounding structures

can be also split into groups, and quantitative results for each group, concerning the proximity to

the other structures, are shown by means of cumulative marginal probability density functions. The

representation of the geometrical character of each structure is closely related to the visualization

space used in the classification step of the previous study of the geometry of structures in turbulence

(as introduced in Chapter 2). We applied this new technique to structures of Q, [Aij ]+, ωiωi and

SijSij , taken by pairs.

Structures of Q appear closely surrounded, partially overlapped and/or intersected by those of

[Aij ]+. Comparatively, other structures of Q appear farther from themselves and cover a smaller

proportion of their area. A second group of proximal structures of [Aij ]+ surrounds those of Q at

a farther distance, comparable to the distances where other structures of Q are located, which they

might be closely surrounding.

Considering only structures of ωiωi those extracted at an intermediate scale (predominantly

tube-like) are surrounded primarily by ωiωi structures at the immediately smaller scale, and to

a lesser degree by structures of even smaller scales. Structures of ωiωi at the same intermediate
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scale appear significantly farther. Two groups of surrounding geometries are dominant: sheet-like

structures are closer; tube-like structures are farther but they cover a large proportion of the area

of the structures they surround, thus indicating that the close sheet-like structures are not eclipsing

them.

When ωiωi at the same intermediate scale are studied in relation to the structures of SijSij

at that and smaller scales, a more balanced contribution from all scales is observed. Sheet-like

geometries are again the closest, and they appear to wrap around the tubes of ωiωi, eclipsing more

effectively other farther geometries.

8.4 Computational remarks

The requirements of our implementation and application of these methodologies to the 2563 and

5123 databases do not exceed the computational resources offered by a normal desktop or laptop

computer. For the case of 10243 grid points, those steps involving Fourier transforms—computation

of the fields in physical space from their spectral counterparts, spectral differentiation, and curvelet-

based filtering during the multi-scale decomposition—required parallelization and the use of clusters

of computers. The rest of the algorithms involved in both methodologies were designed to operate

both in parallel and serial environments, independently of the size of the database. For serial

operation, splitting and reconnecting algorithms were developed.

8.5 Future work

Both methodologies presented here could benefit from the addition of other geometrical and non-

geometrical (e.g., physical) parameters in their analysis. The former could improve the characteri-

zation and classification of individual structures, while the latter could be used to relate geometrical

properties of those structures with their own physical aspects or those of the surrounding structures.

This potential for expansion was a driving criterion during the design and development of both

methodologies, translated into the modular character of their implementation.
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In the case of the methodology for the study of the geometry of structures, this modularity,

consequence of its conceptual division into the three main steps of extraction, characterization,

and classification, should facilitate future algorithmic improvements corresponding to each step.

For example, the extraction step of the methodology for the study of the geometry of structures

currently utilizes iso-surfaces of the (filtered component) scalar fields. Iso-surfaces are a natural

first choice to educe structures from a three-dimensional scalar field, but add the dependence on

a particular (set of) iso-contour value(s). In our implementation we use the mean of each field

plus twice its standard deviation; for higher-contour values the educed structures showed similar

geometries, implying a low sensitivity with the contour values, within a certain range. Note that,

for extremely high contour values, the number of educed structures will be significantly reduced

(only iso-surfaces in the vicinity of a few absolute maxima of the scalar field will be captured)

and their geometries could change. Different techniques for the determination of optimum global

contour values, such as percolation theory and Morse (critical points) discrete theory were explored

in the context of this research. Additional techniques, such as region-based optimum contour values

could be applied. Concerning the characterization stage, refined and faster future algorithms for the

computation of curvatures of discretized surfaces could be easily implemented. Alternatives to the

currently implemented K-means clustering algorithm, part of the classification step, such as fuzzy

c-means clustering or density-based clustering, more oriented toward educing intermingled clusters

without clear boundaries can be considered. Also, the addition of other relevant parameters in

the clustering process may be useful to allow more separation in those cases where a continuous

distribution of geometries is found.

Application to other flows, in particular those with a strong anisotropy, such as channel flow,

would be useful, not only to study the geometries present in structures of those flows, but also to

compare with homogeneous isotropic turbulence that has been object of this research, as a first

canonical case of study. It would help determine whether common geometries in the small scales

of turbulence exist. The exploration of the geometry of structures of those anisotropic flows would

benefit from the multi-orientation capability of the curvelet transform, part of our current implemen-
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tation for the extraction of structures. This capability has not been used in our present applications,

for dealing with isotropic turbulence. We note that the mean scalar gradient imposed to the passive

scalar field is responsible for some anisotropy in the passive scalar fluctuation field, in contrast with

the velocity field that advects it. But due to the relatively weak anisotropy and the use of the

passive scalar fluctuation field as the first simpler case to test the methodology, a multi-orientation

decomposition was not applied to it.

A multi-orientation analysis could also be useful to study relative alignment among structures,

both for isotropic and anisotropic flows. This multi-orientation decomposition can be applied in the

extraction of the structures from the original field and then used in the methodology for the study

of proximity issues among structures of different sets.

A natural line of expansion of this work is the study of the evolution in time of the geometry

of educed structures, as well as the proximity issues presently investigated, both at the individual

and composite level. This can be achieved by including a time tracker of structures as an additional

module in both methodologies. This may facilitate the search for potential geometrical ‘attractors’

in a suitable feature space, as well as the development of models of (composite) structure-dynamics.

Applications in the tracking and evolution in time of individual Lagrangian structures and their

developmental geometry and interaction may also be useful.
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Appendix A

Governing equations for the
generation of strain, vorticity,
dissipation, and enstrophy

A.1 Generation of strain and dissipation

From the Navier-Stokes equations for incompressible flow (∇ · u = 0):

∂ui

∂t
+ uk

∂ui

∂xk
= −1

ρ

∂p

∂xi
+ ν

∂2ui

∂xk∂xk
, (A.1)

decompose the velocity gradient tensor ∂ui/∂xj in its symmetric (strain-rate tensor, Sij) and anti-

symmetric (rotation-rate tensor, Ωij) parts:

∂ui

∂xj
= Sij + Ωij , Sij ≡

1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, Ωij ≡

1
2

(
∂ui

∂xj
− ∂uj

∂xi

)
. (A.2)

Take [∂(A.1)i/∂xj + ∂(A.1)j/∂xi]/2 and use

1
2

(
∂uk

∂xj

∂ui

∂xk
+

∂uk

∂xi

∂uj

∂xk

)
= SikSkj + ΩikΩkj (A.3)

to obtain:

DSij

D t
= −SikSkj − ΩikΩkj − ρ−1 ∂2p

∂xi∂xj
+ ν

∂2Sij

∂xk∂xk
, (A.4)
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where D/D t denotes the substantial derivative operator (D/D t = ∂/∂t + uk∂/∂xk).

Multiply equation A.4 by Sji and use its symmetry to obtain:

D
D t

(
1
2
SijSij

)
= −SikSkjSji − ΩikΩkjSji − ρ−1Sji

∂2p

∂xi∂xj
+ ν Sji

∂2Sij

∂xk∂xk
. (A.5)

To find the equivalent relations in terms of the vorticity, ω ≡ ∇×u, instead of the rotation-rate

tensor, Ω, use Ωij = −εijk ωk/2, where εijk is the Levi-Civita symbol and the contraction epsilon

identity, εlik εjmk = δljδim − δlmδij , to express

ΩikΩkj = (ωiωj − δij ωmωm)/4. (A.6)

Thus, equations A.4 and A.7 can be rewritten as:

DSij

D t
= −SikSkj −

1
4

(ωiωj − δijωkωk)− ρ−1 ∂2p

∂xi∂xj
+ ν

∂Sij

∂xk∂xk
, (A.7)

D
D t

(
1
2

SijSij

)
= −SikSkjSji −

1
4

ωiSijωj − ρ−1Sji
∂2p

∂xi∂xj
+ ν Sji

∂Sij

∂xk∂xk
, (A.8)

where the symmetry of Sji and the incompressibility condition (∇·u = tr(∇u) = tr(S) = δijSji = 0)

have been considered.

A.2 Generation of vorticity and enstrophy

Apply the curl operator to equation A.1, obtaining:

∂(∇× u)
∂t

+∇× (u · ∇u) = −∇× (∇p) + ν∇2(∇× u). (A.9)
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From tensorial algebra, the following identities hold:

∇× (∇φ) ≡ 0, ∇ · (∇× u) ≡ 0, ∇u2/2 ≡ u · ∇u + u×∇× u, (A.10)

∇× (A×B) ≡ (B · ∇+ B ×∇×)A + (A · ∇+ A×∇×)B, (A.11)

where φ is a scalar field, u is a vector field with modulus u ≡ ‖u‖, and A and B are second-order

tensor fields. Use these tensor identities and the incompressibility condition, ∇ · u = 0 to rewrite

equation A.9 as:

∂ω

∂t
+ u · ∇ω = ω · ∇u + ν∇2ω. (A.12)

The first term of the right-hand side of equation A.12 is responsible for the vortex-stretching.

Dot product equation A.12 with ω, decompose the velocity gradient tensor as ∇u = S + Ω in

the first term of the right-hand side, and use the antisymmetry of Ω 1 to obtain:

D
D t

(
1
2

ωiωi

)
= ωiSikωk + ν ωi

∂2ωi

∂xk∂xk
. (A.13)

To express equation A.13 in terms of Ω, particularize

Ωij
∂2Ωkj

∂xp∂xp
=

1
4

εijl ωl εkjm
∂2ωm

∂xp∂xp
=

1
4

(
ωm

∂2ωm

∂xp∂xp
δik − ωk

∂2ωi

∂xp∂xp

)
(A.14)

for k = i, obtaining:

Ωij
∂2Ωij

∂xp∂xp
=

1
2

ωi
∂2ωi

∂xp∂xp
. (A.15)

Then, from equation A.6 and the antisymmetry of Ω it results ωiωi = 2 ΩijΩij , ωiωj = 4 ΩikΩkj +

2 δijΩmnΩmn, which can be substituted, along with the relation A.15, into equation A.13 to obtain:

D
D t

(
1
2

ΩijΩij

)
= 2ΩikΩkjSji + ν Ωij

∂2Ωij

∂xk∂xk
, (A.16)

1If A is an antisymmetric second-order tensor, then a ·A · a = 0, for any vector field a.
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where the symmetry of S and the incompressibility relation expressed in terms of S, δijSij = 0,

have been used to rewrite the first term of the right-hand side.
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Appendix B

Interpretation of extracted
structures

Here we give an interpretation of the physical meaning of the educed structures at different scales

resulting from the extraction step of the present methodology. For simplicity and clarity, a two-

dimensional scalar field is used. A 1024 × 1024 greyscale image (with values in the range [0–255])

(see top left of Figure B.1) obtained from a particular realization of a Julia set has been chosen as

the scalar field. This set is of interest since it contains self-similar structures at different scales. The

outer region has been faded to white so that all boundaries have the same value.

The extraction procedure described in the main text is applied to the two-dimensional image.

The result of the multi-scale decomposition provided by the curvelet transform can be seen on the

left images of Figure B.1. The effect in Fourier space is shown by the spectra on Figure B.2(b),

while Figure B.2(a) shows the bin pdfs of the original and filtered fields, in physical space. Note

that, in this case, the low-pass filter used for the coarsest scale is (in logarithmic scale) wider than

the others. It can be thought of as two scales merged into one (the coarsest scale, in this case), and

could be done also for other groups of scales.

Each filtered field (image) corresponding to each scale is then iso-contoured at a value equal to

its mean plus 3/2 times its standard deviation: see right plots on Figure B.1. The original field has

also been iso-contoured (top right) for comparison.

From the way in which the decomposition is done, as observed in the spectra, the structures

educed for each filtered scale have a correspondence with the different ‘energetic’ bands of the
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Figure B.1: Fields (left) and corresponding iso-contours (right) for original (top) and filtered scales
(below)
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Figure B.2: Pdfs (a) and spectra (b) associated with the original and each one of the filtered scales

field, as defined by frequency corona in Fourier space. But furthermore, they also have a direct

correspondence in physical space with the structures of the original field (features of the image).

First, we notice that the spatial localization of the features (structures) educed for each scale is

retained, with respect to the original image. As expected, they vary in relative sizes (scales), from

one filtered scale to the next. Some features of the original image that span across different scales

are split as a result of the decomposition. See, for example, the dark continuous arm of the spiral:

scale 0 captures its largest portion, but the remainder can be seen also in the rest of the scales.

The geometry of each part resembles that of the structure from which it was derived. Shape is

preserved and thus a geometrical analysis of the educed structures is meaningful in this context.

The iso-contour obtained from the original field (top right of Figure B.1) contains a large individual

structure, rich in features, and a few simpler structures, but is missing many other features of the

original image. In contrast, contours of the filtered fields tend to contain many more (simpler)

structures that capture the essential features of the original field at that scale. The fact that the

spatial localization is kept can be used for the study of relative positioning, clustering, and other

organizational aspects of the sets of structures.

The extension of this reasoning to three dimensions is immediate. The complexity of the struc-

tures that can be found increases. For example, structures that appear as circular in two dimensions

could become either blob- or tube-like, while elongated structures in two dimensions could become
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either tube- or sheet-like structures. We note that an alternative to the multi-scale decomposition

of the scalar field applied here is to perform a multi-resolution analysis applied to the iso-contours

extracted from the original database. Since there is a loss of information by iso-contouring, we

choose to perform the multi-scale decomposition first over the entire field and then iso-contour each

one of the filtered scales.

As an analogy, consider the decomposition of a tree into its trunk, branches, leaves, etc. The

outer surface of the tree, containing all those elements, would correspond to the iso-surface of the

original field. It is generally too rich and complex to study as a whole. By applying a multi-scale

decomposition before iso-contouring, we can separate the tree into its individual components, ranged

by the scale. Then, iso-contouring extracts structures at those different levels, whose properties

can be studied individually. This is the philosophy applied in our methodology for the study of

structures in turbulence. In the same manner that the geometry of the elements of a tree has a

relation to their physical functionality, perhaps that is also the case for those structures present in

turbulent flows. A multi-scale decomposition followed by surface identification (by iso-contouring

based on global contour values or other means) seems an appropriate framework for this study.

Its current form can be considered a starting point, but there is much room for refinement: for

example, use of additional multi-resolution capabilities (as outlined in the body of the thesis), such

as multi-orientation decomposition, and selection of locally adapted contour levels for optimal feature

extraction are two possible paths for improvement.
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Appendix C

Differential geometry background

Let M be a regular surface1 parametrized by:

x(u) : {x(u, v), y(u, v), z(u, v)}. (C.1)

Its tangent plane at any point P , TP M , is defined by the tangent vectors {xu, xv} contained on it,

or, alternatively, by the normal unit vector N orthogonal to it:

xu =
(

∂x

∂u
,
∂y

∂u
,
∂z

∂u

)
, xv =

(
∂x

∂v
,
∂y

∂v
,
∂z

∂v

)
, (C.2)

N =
xu ∧ xv

||xu ∧ xv||
. (C.3)

The first fundamental form of M at a point P is the inner product restricted to tangent vectors:

I(mP ,nP ) = mP · nP , (C.4)

where mP , nP ∈ TP M (tangent plane of M at P ). The first fundamental form is independent of

the surface representation, and therefore invariant under parameter transformations. It satisfies:

I(axu + b xv, a xu + b xv) = E a2 + 2 F a b + G b2, (C.5)

1 M ⊂ Rn is a regular surface if for each point P ∈ M there exists a neighborhood of P , V ∈ Rn, and a map
x : U → M of an open set U ⊂ R2 onto V ∩M such that: (i) x is differentiable; (ii) x : U → V ∩M is a homeomorphism;
(iii) each map x : U → M is a regular patch, that is, its Jacobian has rank 2 for all (u, v) ∈ U .
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where E, F , G are the first fundamental coefficients:

E = xu · xu = ||xu||2, (C.6)

F = xu · xv, (C.7)

G = xv · xv = ||xv||2. (C.8)

These coefficients are not invariant under parameter transformations. Since ||xv · xv|| < ||xu||||xv||

(recall xu 6‖ xv in a regular surface for the tangent plane to be defined):

E G− F 2 = ||xu||2||xv||2 − (xv · xv)2 > 0, (C.9)

and therefore, the first fundamental form is a positive definite quadratic form on the tangent plane

of M at P (TP M):

I(m,n) =
(

mu mv

) E F

F G


 nu

nv

 ,


m = mu xu + mv xv

n = nu xu + nv xv

 ∈ TP . (C.10)

A property of the surface M that depends only on the first fundamental form of M is called an

intrinsic property 2.

The arc length, s(t), of a curve C on M (given by its parametrization ~α(t) = (u(t), v(t)) =

u(t) xu + v(t) xv, t ∈ [a, b]), is:

s(t) =
∫ t

a

||~α′(r)||dr, ~α′(r) ≡ d~α(r)
dr

. (C.11)

2An intrinsic property of a surface is independent of the space in which the surface may be considered. Thus, a
hypothetical “inhabitant” of the surface can measure it without knowing anything about the space in which the surface
is embedded. On the other hand an extrinsic property of a surface depends on its embedding space, and therefore
cannot be measured by “inhabitants” of the surface. In a more formal definition a property is called intrinsic if it
is preserved by local isometries, and extrinsic otherwise. An isometry (or congruence transformation) is a bijective
distance preserving map between two metric spaces.
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Thus:

(
ds(t)
dt

)2

= ||~α′(t)||2 = ~α′(t) · ~α′(t)

= [u′(t) xu + v′(t) xv] · [u′(t) xu + v′(t) xv]

= E u′(t)2 + 2 F u′(t) v′(t) + G v′(t)2

and:

(ds)2 = E (du)2 + 2 F du dv + G (dv)2 = I(~α′, ~α′). (C.12)

Therefore, the arc length is an intrinsic property, since it depends only on the first fundamental

form. The area element, dA, of M at a point P ∈M is defined, in terms of its parametrization, as:

dA =
√

E G− F 2 du ∧ dv, (C.13)

where du ∧ dv is the wedge product.

The second fundamental form of a (three-dimensional regular) surface M at a point P is the

symmetric bilinear3 form on the tangent plane at P (TP M) given by:

II(mP ,nP ) = S(mP ) · nP = mP · S(nP ), (C.14)

where S is the shape operator (or second fundamental tensor or Weingarten map), which is defined,

when operating on a vector m, as the negative covariant derivative (along the direction of m), Dm,

of the unit normal vector field N of the surface M :

S(m) = −DmN . (C.15)

3Equivalently quadratic in this context



103

The second fundamental form satisfies:

II(axu + b xv, a xu + b xv) = e a2 + 2 f a b + g b2, (C.16)

where e, f, g are the second fundamental coefficients:

e = −Nu · xu = N · xuu =
det(xuu,xu,xv)√

E G− F 2
, (C.17)

f = −Nv · xu = N · xuv =
det(xuv,xu,xv)√

E G− F 2
(C.18)

= −Nu · xv = N · xvu =
det(xvu,xu,xv)√

E G− F 2
, (C.19)

g = −Nv · xv = N · xvv =
det(xvv,xu,xv)√

E G− F 2
, (C.20)

being:

xαβ ≡
(

∂2x

∂α∂β
,

∂2y

∂α∂β
,

∂2z

∂α∂β

)
. (C.21)

The last equality in equations C.17–C.20 for the coefficients comes from rewriting the normal vector

as N = (xu ∧ xv)/||xu ∧ xv|| = (xu ∧ xv)/
√

E G− F 2 where the result ||xu ∧ xv|| =
√

E G− F 2

is a consequence of the Lagrange identity ((a · b)2 + ||a ∧ b||2 = ||a||2||b||2) and recalling that

(a ∧ b) · c = det(a, b, c). Unlike the first fundamental form, the second fundamental form is not

necessarily positive or definite.

The normal curvature of a regular surface M in the direction of a unit tangent vector tP at a

point P ∈M is formally defined as:

κN (tP ) = S(tP ) · tP , (C.22)

S being the shape operator. From the previous definition of the second fundamental form, we can

express the normal curvature κN as:

κN (tP ) = II(tP , tP ), (C.23)
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and, for a generic non-unitary tangent vector, t
′

P :

κN (t
′

P ) =
S(t

′

P ) · t′P
t
′
P · t

′
P

=
II(t

′

P , t
′

P )
I(t′P , t

′
P )

. (C.24)

The maximum (κ1) and minimum (κ2) values of the normal curvature at a point P ∈M are called

principal curvatures. The directions defined by the tangent vectors associated with those principal

curvatures are called principal directions and are orthogonal. Formally, the principal curvatures

at a point P are defined as the eigenvalues (κ1, κ2) of the shape operator S(P ), and the principal

directions correspond to the associated (orthogonal) eigenvectors (e1,e2). The normal curvature at

P along tP is then given by Euler’s formula:

κN = κ1 cos2(θ) + κ2 sin2(θ), (C.25)

where θ is the angle between e1 and tP . The Gaussian curvature of a regular surface M at a point

P ∈M is formally defined as the determinant of the shape operator S at that point:

K(P ) = det(S(P )). (C.26)

Gauss’ Theorema Egregium proves that the Gaussian curvature of a regular surface M is invariant

under local isometry. In other words, it is an intrinsic property of the surface, and therefore it

only depends on its first fundamental form (at every point P ∈ M). This is a remarkable result

since the formal definition of the Gaussian curvature involves the second fundamental form directly

(and, therefore, the embedding of the surface M). In terms of the first fundamental form only, the

Gaussian curvature is written as:

K =
1√

E G− F 2

[
∂

∂v

(√
E G− F 2

E
Γ2

11

)
− ∂

∂u

(√
E G− F 2

E
Γ2

12

)]
, (C.27)

where Γk
ij are the Christoffel symbols of the second kind, which can be expressed in terms of the



105

first fundamental coefficients as:

Γ2
11 =

2 E Fu − E Ev − F Eu

2 (E G− F 2)
, Γ2

12 =
E Gu − F Ev

2 (E G− F 2)
. (C.28)

Gaussian curvature can also be expressed in terms of the first and second fundamental coefficients

in a more compact way:

K =
e g − f2

E G− F 2
. (C.29)

In terms of the principal curvatures, the Gaussian curvature is expressed as:

K = κ1κ2. (C.30)

Points with positive/negative Gaussian curvature are called elliptic/hyperbolic. A point is parabolic

if the Gaussian curvature is zero but not the shape operator. At planar points both the Gaussian

curvature and the shape operator are zero. In a synclastic/anticlastic surface, all its points are

elliptic/hyperbolic.

The mean curvature of a regular surface M at a point P ∈M is formally defined as the trace of

the shape operator S at that point:

H(P ) = tr(S(P )). (C.31)

In terms of the first and second fundamental coefficients, the mean curvature is:

H =
eG− 2 f F + g E

2 (E G− F 2)
. (C.32)

Unlike Gaussian curvature, which is intrinsic, the mean curvature is an extrinsic property of the

surface, that is, it depends on the embedding 4. The mean curvature coincides with the mean of the

principal curvatures:

H =
κ1 + κ2

2
. (C.33)

4For instance, a cylinder and a plane are locally isometric but the mean curvature of a plane is zero while that of
a cylinder is nonzero. Their Gaussian curvature is zero.
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Combining equations C.30 and C.33, the principal curvatures can be obtained from the Gaussian

and mean curvatures: 
κ1 = H +

√
H2 −K

κ2 = H −
√

H2 −K

. (C.34)

Gaussian and mean curvature satisfy:

H2 −K =
(

κ1 − κ2

2

)2

≥ 0. (C.35)

Points where H2 = K (that is, κ1 = κ2 and, therefore, the normal curvature is the same in any

direction) are called umbilical points. A surface is defined as (locally) minimal if its mean curvature

(locally) vanishes (H = 0, that is, κ1 = −κ2).

The shape index , Υ, and curvedness, Λ, of a regular surface M at a point P are defined (Koen-

derink & van Doorn, 1992) by:

Υ = − 2
π

arctan
(

κ1 + κ2

κ1 − κ2

)
, (C.36)

Λ =

√
κ2

1 + κ2
2

2
. (C.37)

In terms of the Gaussian and mean curvatures, the shape index and curvedness can be expressed as:

Υ = − 2
π

arctan(
H√

H2 −K
), (C.38)

Λ =
√

2H2 −K. (C.39)

Shape index is dimensionless, while curvedness has the dimensions of a reciprocal length. The

planar patch, for which κ1 = κ2 = 0, has null curvedness and an indeterminate shape index.

All other regular patches of a regular surface M map on the domain (Υ,Λ) ∈ [−1,+1] × R+.

{ρ, φ} ≡ {
√

2Λ,−πΥ/2} are polar coordinates in the semi-plane5 of axes {κ1 − κ2}+ and {κ1 +

κ2} (see Figure C.1). Some other properties of the shape index are summarized below (extracted

5Note that, by definition, κ1 − κ2 > 0.
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κ1 + κ2κ2

κ1

κ1 − κ2

ρ =
√

2Λ

φ = −π
2Υ

Figure C.1: Transformation from (κ1, κ2) to (Υ,Λ)

from Koenderink & van Doorn (1992)) (see Figure C.2 for a graphical explanation):

• Points where |Υ| = 1 are umbilical points and represent locally spherical shapes (“cup” (Υ =

−1) or “cap” (Υ = +1))6. Points where 0.5 < |Υ| < 1 are elliptic points and represent

locally ellipsoidal shapes, tending toward the spherical shape when |Υ| → 1 and towards the

cylindrical shape when |Υ| → 0.5. Points where |Υ| = 0.5 are parabolic points and represent

cylindrical shapes (“rut” (Υ = −0.5), and “ridge” (Υ = +0.5)). Points where 0 < |Υ| < 0.5

are hyperbolic points and represent locally hyperbolic shapes, tending toward the cylindrical

shapes when |Υ| → 0.5 and towards the symmetrical saddle when |Υ| → 0.

• The range Υ ∈ (−1,−0.5) represents the concavities (concave “ruts” or “trough” shapes).

The range Υ ∈ (−0.5,+0.5) represents the saddle-like shapes (“saddle-ruts” (Υ ∈ (−0.5, 0))

and “saddle-ridges” (Υ ∈ (0,+0.5))), with the symmetrical saddle at Υ = 0. The range

Υ ∈ (+0.5,+1) represents the convexities (convex “ridges”, or “dome-shapes”).

• Generically, umbilicals (|Υ| = 1) occur only at isolated points on the surface. Parabolic points

(|Υ| = 0.5) occur on curves of two distinct types (Υ = ±0.5), which are smooth, closed

6The following convention has been chosen: a regular surface M is locally concave/convex at a given point P ∈ M
if the point P is a local minimum/maximum in the reference system with vertical axis pointing towards the outward
normal at P .
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loops on closed regular surfaces, and such that never intersect (although they can be nested

or juxtaposed). Symmetrical saddles (Υ = 0) also occur on curves. Ellipsoid patches with

different sign(Υ) (“domes” and “troughs”) are never adjacent, being necessarily separated by

saddle-like patches.

• Two shapes with opposite shape indices represent complementary pairs (matching each other

as “mold” and “stamp”, when appropriately scaled).

Figure C.2: Range of shape index (Υ), with its most representative associated local shapes (figure
based on Koenderink & van Doorn (1992))
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Appendix D

Density functions on manifolds

Consider a function ξM (P ) : P ∈ M 7→ I ⊆ R, that defines a local property ξ of an m-dimensional

manifold M embedded in a n-dimensional space Rn, m < n. At every point P ∈M . Define M=
ξ as

the set of points on M where ξM (P ) is equal to a particular value ξ, M=
ξ = {P ∈M | ξM (P ) = ξ},

and M≤ξ as the set of points on M where ξM (P ) is less or equal to a particular value ξ, M≤ξ =

{P ∈M | ξM (P ) ≤ ξ}. Consider the measure spaces1 (Rn,F(Rn), µ1) and (Rn,F(Rn), µ2), where

F(Rn) is a σ-algebra of Rn, and µ1, µ2 are two particular measures defined on (Rn,F(Rn)).

Define the function Ψ(ξ) : ξ ∈ I 7→ R̄+ such that for every value ξ ∈ I it returns the µ1-measure

of the set M=
ξ ⊂M :

Ψ(ξ) ≡ µ1

(
M=

ξ

)
≡
∫

M=
ξ

dµ1 =
∫

M

1[M=
ξ ]dµ1, (D.1)

where the function 1[M=
ξ ] is the characteristic function2 on M=

ξ and the integrals are defined in the

generalized Lebesgue3 sense.
1 A measure space (E,F(E), µ) is a measurable space, (E,F(E)), with a non-negative measure, µ. A measurable

space, (E,F(E)), is a set E with a σ-algebra, F(E), on it. A σ-algebra F on a given set E is a nonempty collection
of subsets of E such that: 1) ∅ ∈ F(E); 2) if A ∈ F then Ā ∈ F , where Ā is the complement of A; 3) if An is
a sequence of elements of F , then

S
An ∈ F . As a consequence: E ∈ F . A measure µ, defined on a measurable

space (E,F(E)), is a function µ : F(E) 7→ R̄ (where R̄ denotes the extended real numbers (R̄ = R ∪ {±∞})) such
that: 1) µ(A) ≥ 0 for A ∈ F(E) (equality iff A = ∅), 2) µ(∪∞n=0An) =

P∞
n=0 µ(An) for any sequence of disjoint

sets An ∈ F(E) (countable additivity). If µ(E) = 1 then µ is called a probability measure and the measure space
(E,F(E), µ) is called a probability space.

2 The characteristic function or indicator function, of a subset A ∈ E is a function 1A : E 7→ {0, 1} defined as
1A = {1, if P ∈ A; 0, if P 6∈ A}.

3 The Lebesgue integral of a measurable function f : E 7→ R̄ on a measure space (E,F(E), µ), is defined through the
following steps: 1) for the characteristic function, 1A,

R
E 1A dµ ≡ µ(A); 2) for a simple function (i.e., s =

Pn
i=1 ci1Ai

,
ci ∈ R, for some finite collection Ai ∈ F(E)), then:

R
E f dµ ≡

Pn
i=1 ci

R
E 1Ai

dµ =
Pn

i=1 ciµ(Ai); 3) For a non-

negative measurable function f (possibly attaining ∞ at some points),
R

E f dµ ≡ sup
˘R

E s dµ : s ≤ f, s simple
¯
;

4) For any measurable function f (possibly attaining ±∞ at some points),
R

E f dµ ≡
R

E f+ dµ −
R

E f− dµ, where

f± ≡ max(±f, 0), provided
R

E |f | dµ =
R

E(f+ + f−) dµ < ∞ (f is then said to be Lebesgue integrable). A function

f : Ex 7→ Ey is measurable if f−1(F(Ey)) ⊆ F(Ex), where (Ex,F(Ex)) and (Ey ,F(Ey)) are two measurable spaces.
The generalized Lebesgue integral extends this concept of Lebesgue integral to measure spaces with generalized
measures µ, not necessarily being Lebesgue measures (e.g., Hausdorff measures).
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Define also the function η(ξ) : ξ ∈ I 7→ R̄+ such that for every value ξ ∈ I it returns the

µ2-measure of the set M≤ξ ⊂M :

η(ξ) ≡ µ2

(
M≤ξ

)
≡
∫

M
≤
ξ

dµ2 =
∫

M

1[M≤
ξ ] dµ2, (D.2)

where the function 1[M≤
ξ ] is the characteristic function on M≤ξ . Let δη(ξ,dξ) be the difference

between the values of η at ξ + dξ and ξ:

δη(ξ,dξ) ≡ η(ξ + dξ)− η(ξ) ≡ µ2

(
M≤ξ+dξ

)
− µ2

(
M≤ξ

)
≡ (D.3)

≡

(∫
M

≤
ξ+dξ

−
∫

M
≤
ξ

)
dµ2 =

∫
M

(
1[M≤

ξ+dξ] − 1[M≤
ξ ]

)
dµ2 (D.4)

and define formally dη(ξ)/dξ as the limit of δη(ξ,dξ)/dξ when dξ → 0:

dη(ξ)
dξ

≡ lim
dξ→0

δη(ξ,dξ)
dξ

= (D.5)

= lim
dξ→0

(∫
M

≤
ξ+dξ

−
∫

M
≤
ξ

)
dµ2

dξ
= (D.6)

= lim
dξ→0

∫
M

(
1[M≤

ξ+dξ] − 1[M≤
ξ ]

)
dµ2

dξ
= (D.7)

= lim
dξ→0

∫
M

1[M≤
ξ+dξ] − 1[M≤

ξ ]
dξ

dµ2 = (D.8)

=
∫

M

lim
dξ→0

(
1[M≤

ξ+dξ] − 1[M≤
ξ ]

dξ

)
dµ2. (D.9)

Define the generalized function:

δ[M=
ξ ] ≡ lim

dξ→0

(
1[M≤

ξ+dξ] − 1[M≤
ξ ]

dξ

)
≡

d1[M=
ξ ]

dξ
. (D.10)

It can be considered as an operator such that, when applied to a function f(P, ξ) defined on M , it

returns the variation of f(P, ξ) in the direction normal to the tangent space of M=
ξ on M at each
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point P ∈M=
ξ . Then, equation D.9 results:

dη(ξ)
dξ

=
∫

M

δ[M=
ξ ]dµ2. (D.11)

Consider, in particular, µi, i = 1, 2, to be the αi-dimensional Hausdorff measure4, Hαi on Rn,

such that α2 > α1, and dµ2 = dµ1d(µ2/µ1), where µ2/µ1 is the quotient of µ2 by µ1. Then, for a

regular and smooth5 manifold M :

dη(ξ)
dξ

=
∫

M

δ[M=
ξ ]dµ2 =

∫
M

[
δ[M=

ξ ]d(µ2/µ1)
]
dµ1 ≡ f(ξ)

∫
M=

ξ

dµ1 (D.12)

= f(ξ)µ1(M=
ξ ) ≡ f(ξ)Ψ(ξ), (D.13)

where the function f(ξ) is defined according the Mean-Value Theorem (applicable since the manifold

is regular and smooth):

f(ξ) ≡

∫
M

[
δ[M=

ξ ]d(µ2/µ1)
]
dµ1∫

M=
ξ

dµ1

≡
d[µ2/µ1|M=

ξ

dξ
. (D.14)

Considering the explanation of the character of δ[M=
ξ ], the function f(ξ) can be interpreted as

the average value of the variation with ξ of µ2/µ1 on the set M=
ξ (expressed as d[µ2/µ1|M=

ξ
/dξ).

Therefore, in order to measure sets M=
ξ ⊂ M ⊂ Rn in the µ1 Hausdorff measure, µ1 ≡ Hα1 , it is

possible to use alternatively the µ2 Hausdorff measure, µ2 ≡ Hα2 , on the set Mξ,dξ = M≤ξ+dξ∩M≤ξ =

4 Let (E, d) be a metric space (with a distance d defined on the set E). The α-dimensional Hausdorff
measure of the set A ⊂ E, Hα(A) ∈ [0, +∞], is defined as Hα(A) ≡ limδ→0+ Hα

δ (A), being Hα
δ (A) ≡

inf{
P∞

j=0 ωα

“
diam(Bδ

j )/2
”α

: Bδ
j ⊂ E,

S∞
j=0 Bδ

j ⊃ A, diam(Bδ
j ) ≤ δ,∀j = 0, 1, . . .}, where diam(Bδ

j ) ≡
supx,y∈Bδ

j
d(x, y), ωα = πα/2/Γ(α/2+1), (Γ(x) is the Gamma Function), δ > 0, α ≥ 0 and the infimum is taken over all

possible enumerable families of sets {Bδ
0 , Bδ

1 , . . . , Bδ
j , . . .} which are sufficiently small (diam(Bj) ≤ δ) and which cover

A. The limit exists since the function Hα
δ (E) is decreasing in δ: δ′ < δ ⇒

S∞
i=0 Bδ′

i ⊂
S∞

j=0 Bδ
j ⇒Hα

δ′ (E) < Hα
δ (E).

The Hausdorff measure is a Borel external measure on Rn that generalizes the concept of length, area, and volume of
sets in Rn. For the particular case of a m-dimensional regular manifold M ⊂ Rn, Hm(M) is the m-dimensional area
of M . For m = n, Hn is the Lebesgue measure on Rn. But as an external measure, Hα is defined on every subset of
Rn, not only on regular manifolds.

5A smooth manifold is infinitely differentiable. In particular, a two-dimensional surface parametrized by variables
(u, v) is smooth if the tangent vectors in the u and v directions satisfy: tu ∧ tv 6= 0.
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{P ∈M | ξ ≤ ξM (P ) < ξ + dξ} divided by f(ξ) dξ and then take the limit dξ → 0:

µ1(M=
ξ ) = lim

dξ→0

µ2(Mξ,dξ)
f(ξ)dξ

, (D.15)

derived from equations D.6, D.13, and the relation µ2(M
≤
ξ+dξ ∩M≤ξ ) = µ2(M

≤
ξ+dξ)− µ2(M

≤
ξ ).

The Hausdorff dimension6, α, of the sets M=
ξ ,Mξ,dξ ⊂M , satisfies:

∆α ≡ α(Mξ,dξ)− α(M=
ξ ) ≥ 0. (D.16)

Thus, equation D.15 implicitly indicates a reduction in the Hausdorff dimension of µ2(Mξ,dξ) by

taking the limit of it after dividing by f(ξ) dξ, obtaining µ1(M=
ξ ) as a result.

Consider the function Ψ(ξ), introduced above, with the particular choice of the measure µ1 as

being a α-dimensional Hausdorff measure,Hα. Also, consider the density function Ψ̃(ξ) ≡ f(ξ) Ψ(ξ) :

ξ ∈ I 7→ R+ with the choice of µ1 and µ2 as Hausdorff measures of dimension α and α + ∆α,

respectively, µ1 = Hα and µ2 = Hα+∆α. From the definition of Ψ̃(ξ) and η(ξ), (equations D.1, D.2),

and the relation between them given by equation D.13 it results:

∫ ξmax

ξmin

Ψ̃(ξ) dξ =
∫ ξmax

ξmin

f(ξ) Ψ(ξ) dξ =
∫ ξmax

ξmin

dη(ξ)
dξ

dξ =
∫ ξmax

ξmin

dη(ξ) = (D.17)

= η(ξmax)− η(ξmin) = µ2(M) = Hα+∆α(M). (D.18)

Therefore, the integral of the density function Ψ̃(ξ) of M over the range I of ξ is the (α + ∆α)-

dimensional Hausdorff measure of M . It can be normalized to obtain the corresponding probability
6 The Hausdorff dimension, α(A) ≥ 0, of a subset A of a metric space (E, d), is defined as α(A) = inf{D |

limr→0[HD
r (A)]} being HD

r (A) = inf
P

i∈I

`
diam(Br

i )
´D

where {Br
i , i ∈ I, I countable set} is a countable r-cover of

A and the infimum in HD
r is over all countable r-covers of A. If A is a subset of Rn with any restricted norm-induced

metric, this definition is equivalent to α(A) = − limr→0[log NA(r)/ log r], where NA(r) is the minimum number of
balls of radius r required to cover A. For a fixed set A ⊂ E there exists at most one value α such that the α-dimensional

Hausdorff measure of A, Hα(A) is finite and positive. For α′ > α, Hα′ (A) = 0, whereas for α′ < α, Hα′ (A) → +∞.
This result can be used equivalently to define the dimension of a set A, α(A) as the value for which its associated
α-dimensional Hausdorff measure, Hα(A), is finite and positive. For example, the Hausdorff dimension of a regular
two-dimensional surface M ⊂ Rn is two, and H2(M) (which coincides with the area of the surface) will be finite
and positive, while H1(M) (length of M) will be infinite, and H3(M) (volume of M) will be zero. The Hausdorff
dimensions of a set need not be integer (e.g., most fractals have a non-integer Hausdorff dimension).
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density function:

P(ξ) ≡ Ψ̃(ξ)
Hα+∆α(M)

, with
∫ ξmax

ξmin

P(ξ) dξ = 1. (D.19)

Depending on the distribution of the local property ξ throughout the manifold M , it will be

appropriate to choose particular values of α and ∆α for measuring the sets M=
ξ and Mξ,dξ in order

to obtain a relevant Ψ̃(ξ). For example, for a surface M in a three-dimensional euclidean space:

• If ξ is distributed mainly in patches of constant ξ, then a dimension α = 2 with ∆α = 0

(⇒ µ1 = µ2) would be appropriate: Ψ̃(ξ) would then give the area of those patches for the

particular values of ξ at which they appear (see Figure D.1). The sum of all those values would

be the area of M (
∑

i Ψ̃(ξi) = H2(M)). By using this measure, subsets of Hausdorff dimension

less than two (curves of constant ξ or isolated points of constant ξ) would not be reflected in

Ψ̃(ξ), since their associated H2 measure is null.

H2(M=
ξ )

H2(M=
ξ2

)

H2(M=
ξ1

)

H2(M=
ξ3

)
M=

ξ3

M=
ξ1

M=
ξ2

ξ3ξ2ξ1 ξM

Figure D.1: Ψ(ξ) = Ψ̃(ξ) (right) with α = 2 for a surface M (left) with the local property ξ
distributed in patches of constant ξ. Each point of that function (right) represents the area (two-
dimensional Hausdorff measure) of the associated patch. Their discrete sum equals the total area of
the surface M

• If ξ is smoothly distributed throughout M , the appropriate dimension to use is α = 1 (µ1 ≡

H1), with ∆α = 1 since the sets M=
ξ will be curves of constant ξ (unitary Hausdorff dimension)

or isolated points (null Hausdorff dimension). Ψ̃(ξ) will be continuous and its integral with

respect to ξ will be H2(M) (according to equation D.18), that is, the area of M . If ξ is piece-

wise smoothly distributed throughout M , that is, smooth except in the boundaries of patches

of M with constant ξ (see Figure D.2), these patches will be reflected in Ψ(ξ) as delta functions
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at the corresponding value of ξ associated with each patch, such that the integral with respect

to ξ equals (in the limit dξ → 0) the area of the patch. The shape of Ψ̃(ξ) (see Figure D.3)

ξ

H1(M=
ξ )

ξ1 ξ2 ξ3ξmin

M

M=
ξ2

M=
ξmax

M=
ξ1

ξmax

Figure D.2: Ψ(ξ) (right) with α = 1 for a surface M with ξ smoothly distributed throughout M
(except one patch of constant ξ = ξmax). In the left diagram, dashed lines represent line contours of
constant ξ = ξ1, ξ2, which have an associated finite value of Ψ(ξ) (since their Hausdorff dimension
equals the dimension of the measure used to obtain Ψ(ξ), α(M=

ξ1,2
) = 1), whereas the central patch

(filled with oblique lines pattern) of constant ξ = ξmax has an associated value H1(M=
ξmax

) → ∞,
since its Hausdorff dimension is α(M=

ξmax
) = 2

will depend on the function f(ξ), that represents how ‘distant’ two different sets (curves, in

general), M=
ξ and M=

ξ+dξ, are. That distance, for each point P ∈ M=
ξ , is measured along the

coordinate n of the tangent plane at P normal to the arc length s of M=
ξ , and then averaged

over the whole set, thus resulting in a function of ξ only. Large values of f(ξ) indicate that

the property ξ varies slowly along n in average, whereas small values of f(ξ) correspond to a

rapid averaged variation of ξ with n.

The resulting Ψ̃(ξ) (and, alternatively, P(ξ)) of M can be regarded as a non-local characterization

of the distribution of ξ throughout M .
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M=
ξmax

M=
ξ3

M=
ξ2

M=
ξmin

M=
ξ1

ξ

ξξ1 ξ2 ξ3ξmin ξmax

ξ1 ξ2 ξ3ξmin ξmax

M

Ψ̃(ξ) = f(ξ)Ψ(ξ)

f(ξ)

ξξ1 ξ2 ξ3ξmin ξmax

Ψ(ξ)

n

s

Figure D.3: Ψ̃(ξ) (right) for a surface M with ξ smoothly distributed throughout M (except one
patch of constant ξ = ξmax). In the left diagram, dashed lines represent line contours of constant
ξ = ξmin, ξ1, ξ2, ξ3, ξmax, such that they differ in a constant ∆ξ. The central part of the figure
represents Ψ(ξ) (top) and f(ξ) (bottom). f(ξ) increases with ξ since the averaged distance between
contours (normal to them along n) increases with ξ. On the right, the multiplication of both gives
Ψ̃(ξ)

D.1 Conditions for existence of an explicit analytical solution

Consider an explicit parametrization of the surface M in terms of two parameters (u, v), and also

an explicit parametrization of the local property ξ on M in terms of the same two parameters:

M : (u, v) ∈ (Iu, Iv) 7→ Rn, (D.20)

ξ : (u, v) ∈ (Iu, Iv) 7→ R. (D.21)

By choosing µ2 to be the two-dimensional Hausdorff measure, the integrals in the function δη defined

above can be expressed in terms of the parametrization as:

δη(ξ,dξ) =
∫

M

(
1[M≤

ξ+dξ] − 1[M≤
ξ ]

)
dµ2 =

∫
(Iu,Iv)

(
1[M≤

ξ+dξ] − 1[M≤
ξ ]

)
θ(u, v) du dv, (D.22)

where dµ2 = θ(u, v) du dv, and θ(u, v) depends on the parametrization of the surface.

Under the following constraints imposed on the parametrization, the function Ψ̃(ξ) = lim
dξ→0

(δη(ξ,dξ)/dξ)

can be obtained explicitly in terms of the parameters (u, v), providing interesting analytical solutions
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of Ψ̃(ξ) for certain surfaces:

1. If the functions ξ(u, v) and θ(u, v) are both independent of one (the same one) of the two

parameters (u, v) (the parameter v has been chosen for that purpose in this development

without loss of generality), ξ(u, v) ≡ ξ(u), θ(u, v) ≡ θ(u), then Ψ̃(ξ) can be written as:

Ψ̃(ξ(u)) = lim
dξ→0

(∫
Iv

dv

)(∫
Iu

(
1[M≤

ξ+dξ] − 1[M≤
ξ ]

)
θ(u) du

)
(D.23)

= ∆v
θ(u) du

dξ
= ∆v

θ(u) du

dξ

du
du

= ∆v
θ(u)
dξ

du
(u)

, (D.24)

where ∆v =
∫

Iv
dv is a constant.

2. If the map ξ(u) : u ∈ Iu ⊂ R 7→ ξ ∈ Iξ ⊂ R is invertible (i.e., bijective7), there exists the

inverse map u = u(ξ) : ξ ∈ Iξ ⊂ R 7→ u ∈ Iu ⊂ R and equation D.24 can be finally written as

an explicit analytical result:

Ψ̃(ξ) = ∆v
θ(u(ξ))
dξ

du
(u(ξ))

. (D.25)

Note that the invertibility condition on the map ξ(u) implies8 that the first derivative dξ/du

exists and is non-zero ∀u ∈ Iu. Therefore, the function Ψ̃(ξ) (that has dξ/du in the denomi-

nator) is defined ∀ξ ∈ Iξ.

This invertibility condition can be relaxed still obtaining explicit analytical solution in those

cases (see Figure D.4) in which there exists a countable number of local extrema, Sle =

{u∗le,p ∈ Iu; p = 1, . . . , Nle}, and a countable number of (surjective) subintervals, Ssurj
I =

{Isurj
u,q = [u∗min,q, u

∗
max,q] ⊂ Iu; q = 1, . . . , N surj

I } (the associated set of extreme points of those

subintervals is called Sep = {(u∗min,q, u
∗
max,q); q = 1, . . . , Nle}), where the first derivative dξ/du

is null (i.e., dξ/du |u∗= 0, u∗ ∈ Sle ∪ Ssurj
I ). Define the set of points SP = {u∗j ∈ {Sle ∪

Sep ∪ {umin, umax}}; j = 1, . . . , (Nle + 2N surj
I )} ordered such that u∗j < u∗j+1. Define also

7A map f : a ∈ A ↔ b ∈ B is bijective (∀a ∈ A ∃! b ∈ B | b = f(a)) if it is injective (∀a ∈ A ∃ b ∈ B | b = f(a))
and surjective (∀b ∈ B ∃ a ∈ A | b = f(a)).

8 The inverse function theorem states that a continuous function f : x ∈ Ix ⊂ R 7→ y ∈ IyR is (locally) invertible
(at x′ ∈ Ix) if its first derivative is non-null, df/dx 6= 0 (at x′), that is, if f is strictly monotonic (at x′). f is invertible
in Ix if it is locally invertible ∀x ∈ Ix
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the set of (bijective) subintervals Sbij
I = {Ibij

u,r =]u∗j , u
∗
k[, r = 1, . . . , Nbij

I ;u∗j , u
∗
k ∈ SP } where

there exists an invertible map uIbij
u,r

(ξ) (inverse function of ξ(u) in the interval Ij
u). Note that

Ssurj
I ∩ Sbij

I = ∅, and Iu = Sbij
I ∪ Ssurj

I ∪ Sle. In that case, and assuming that there exists an

explicit analytical expression for u∗j ∈ SP in terms of ξ (which depends on the solvability of

the equation (dξ/du)(u) = 0), then the function Ψ̃(ξ) can still be explicitly obtained by the

following analytical expression:

Ψ̃(ξ) = ∆v

Nbij
I∑

r=1

θ(uIbij
u,r

(ξ))
dξ
du (uIbij

u,r
(ξ))

+
Nle∑
p=1

θ(u∗le,p) δ0(ξ(u∗le,p)) +
Nsurj

I∑
q=1

(∫
Isurj

u,q

θ(u)du

)
δ1(ξ(Isurj

u,q ))

 ,

(D.26)

where the generalized functions δ0(ξ) and δ1(ξ) are zero everywhere except at ξ, where their

value is an infinite with null and unitary total integral, respectively. The subintervals I∗u,q ∈

Ssurj
I correspond to patches of the surface with constant ξ, which have a Hausdorff dimension

of two, and therefore their one-dimensional measure is an integrable infinite such that, when

integrated, it results the area of the patch (i.e.,
(∫

I∗u,q
θ(u) du

)
∆v =

∫
Iv

∫
I∗u,q

θ(u) du dv).

u∗le,1 u∗min,1umin u∗le,1 u∗max,1 u∗le,1 u∗le,1

ξ

u

u∗1 u∗2 u∗4 u∗3 u∗5 u∗6 u∗7

Ibij
u,1 Ibij

u,2 Ibij
u,3 Ibij

u,4 Ibij
u,5 Ibij

u,6 Ibij
u,7Isurj

u,1 Isurj
u,2

umax

u∗10u∗9

u∗max,2

u∗8

u∗min,2

Figure D.4: Example of non-invertible ξ(u) map

Common cases of existence of explicit analytical solution (complying with these two sufficient

conditions) arise for cylindrical surfaces and surfaces of revolution, such that the property ξ pre-

serves the cylindrical nature (being independent of the variable along the cylindrical axis) or the

axisymmetric character of the surface (being independent of the azimuthal coordinate), and the
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invertibility of the function relating ξ and the other variable of the parametrization is guaranteed,

either globally or along subintervals.

D.2 Extension to multiple dimensions

A parallel development can be followed to define multi-variable density functions on a manifold M .

For two local properties, ξ and ζ, we define M=
ξ,ζ as the set of points P of M where (ξM , ζM )(P ) =

(ξ, ζ), and M=
ξ+dξ,ζ+dζ as:

M=
ξ+dξ,ζ+dζ =

(
M≤ξ+dξ ∩M≤ξ

)
∩
(
M≤ζ+dζ ∩M≤ζ

)
= (D.27)

= {P ∈M | ξ ≤ ξM (P ) < ξ + dξ, ζ ≤ ζM (P ) < ζ + dζ} . (D.28)

Ψ(ξ, ζ) is now defined as Ψ(ξ, ζ) ≡ µ1

(
M=

ξ,ζ

)
. Instead of dη(ξ)/dξ, we have Jacobian determinant

J(ξ, ζ) ≡
∣∣∣∣∂(ηξ, ηζ)

∂(ξ, ζ)

∣∣∣∣ = f(ξ, ζ) Ψ(ξ, ζ), (D.29)

with f(ξ, ζ) ≡
∫

M

[
δ[M=

ξ,ζ]d(µ2/µ1)
]
dµ1

/∫
M=

ξ,ζ

dµ1 . Then

µ1(M=
ξ,ζ) = lim

dξ,dζ→0

µ2(Mξ,ζ;dξ,dζ)
f(ξ, ζ) dξ dζ

. (D.30)

We also define ∆α ≡ α(Mξ,dξ;ζ,dζ)− α(Mξ,ζ) and Ψ̃(ξ, ζ) ≡ f(ξ, ζ) Ψ(ξ, ζ). Therefore:

∫ ξmax

ξmin

∫ ζmax

ζmin

Ψ̃(ξ, ζ) dξ dζ =
∫ ξmax

ξmin

∫ ζmax

ζmin

f(ξ, ζ) Ψ(ξ, ζ) dξ dζ = (D.31)

=
∫ ξmax

ξmin

∫ ζmax

ζmin

J(ξ, ζ) dξ dζ = µ2(M) = Hα+∆α(M), (D.32)

and the corresponding joint probability density function can be obtained by normalization as:

P(ξ, ζ) ≡ Ψ̃(ξ, ζ)
Hα+∆α(M)

, with
∫ ξmax

ξmin

∫ ζmax

ζmin

P(ξ, ζ) dξ dζ = 1. (D.33)
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The one-dimensional (probability) density functions in terms of each variable can be directly

obtained from the multi-dimensional one by integration with respect to the rest of variables. They

are named marginal (probability) density functions. For the two-dimensional case, the corresponding

marginal probability density functions are Pξ(ξ) =
∫ ζmax

ζmin

P(ξ, ζ) dζ and Pζ(ζ) =
∫ ξmax

ξmin

P(ξ, ζ) dξ.

An example of application is the use of the joint and/or marginal probability density functions

of two differential-geometry properties of a surface M , such as the principal curvatures (κ1, κ2) or

the shape index and curvedness (Υ,Λ), in terms of area-coverage on M , to provide a non-local

geometrical characterization of such surface M .
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Appendix E

Gauss-Bonnet theorem in the
shape index, curvedness space

For any compact two-dimensional Riemann manifold without boundaries, M , the Gauss–Bonnet

theorem states that the integral of the Gaussian curvature, K, over the manifold with respect to

area, A, equals 2π times its Euler characteristic, χ:

∫
M

KdA = 2πχ(M). (E.1)

This formula relates the geometry of the surface (given by the integration of the Gaussian curvature,

a differential-geometry property) to its topology (given by the Euler characteristic). The Euler

characteristic of a surface is related to its genus 1 by χ = 2 − 2g. From the relation among shape

index, curvedness, and mean and Gaussian curvatures stated in Appendix C (see equations C.38

and C.39), the following relation can be obtained:

K = −Λ2 cos(πΥ). (E.2)

Then, the Gauss-Bonnet theorem can be restated in terms of the shape index and curvedness as

∫
M

Λ2 cos(πΥ)dA = 4π[g(M)− 1]. (E.3)

1The genus of an orientable surface is a topological invariant (as is the Euler characteristic) defined as the largest
number of non-intersecting simple closed curves that can be drawn on the surface without disconnecting it.



121

Furthermore, considering the non-dimensionalization of the curvedness introduced in §2.2, C = µΛ

(µ ≡ 3V/A, where V is the volume and A the area of the surface) and taking into account that

cosine is a symmetric function and thus cos(πΥ) = cos(π|Υ|) ≡ cos(πS), then equation E.1 can be

rewritten as ∫
M

C2 cos(πS) dA = 4πµ2[g(M)− 1]. (E.4)

The left-hand side can be expressed in terms of the {S, C} area-based joint probability density

function of the surface, P(S, C):

∫
M

C2 cos(πS) dA = A ·
∫ ∫

C2 cos(πS)P(S, C) dS dC. (E.5)

Considering the stretching parameter, λ ≡ 3
√

36π(V 2/3/A), also introduced in §2.2, the Gauss-Bonnet

theorem finally results in an integral relation between the {S, C} area-based joint probability density

function, P, the stretching parameter, λ, and the genus of the surface, g:

∫ ∫
C2 cos(πS)P(S, C) dS dC = λ3[g(M)− 1]. (E.6)
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Appendix F

Definition of feature center and
upper and lower distances of a
probability density function.

Consider a real-valued random variable X with probability density function f(x), x ∈ R. We define

the feature center x̂ as

x̂ ≡


x̄− dl

√
1− (dl/du)2 if dl < du

x̄ + du

√
1− (du/dl)

2 if dl > du

(F.1)

where x̄ is the mean or expected value of X, x̄ ≡
∫

xfdx. The lower and upper distances are defined

by

dl ≡

√√√√√√√
∫

x≤x̄

(x̄− x)2 fdx∫
x≤x̄

fdx

, du ≡

√√√√√√√
∫

x≥x̄

(x̄− x)2 fdx∫
x≥x̄

fdx

. (F.2)

The feature center can be interpreted as a correction to the mean that accounts for the asymmetry

(skewness) of the density function f(x) with respect to its mean, defining a new point closer to the

region of higher density. When the probability density function f(x) is symmetric, the feature center

and mean coincide (x̂ = x̄). The upper and lower distances, du and dl, can be regarded as the r.m.s.

of the part of the pdf above and below its mean value, respectively. A graphical example is shown

in Figure F.1, for a probability density function f(x) = x2 exp (−
√

x) /
∫∞
0

ξ2 exp
(
−
√

ξ
)
dξ that

shows a long tail in one direction. The mean, x̄, feature center, x̂, and lower and upper distances, dl
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and du, are superimposed on the probability density function. These definitions can be immediately

extended to higher-dimensional probability density functions.

x̂ 1000 50x̄
0

f(x)

0.01

0.02

dl du

x

Figure F.1: Mean (x̄) and feature (x̂) centers and upper (du) and lower (dl) distances for a sample
asymmetric probability density function, f(x)
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Appendix G

Analytic geometric
characterization of limiting
surfaces.

Consider the generic surface in Figure G.1(a). It consists of two planar parallel sheets of area LW

separated a distance of 2R; four halves of circular cylinders of radii R and lengths L and W by pairs,

tangent to the planar sheets that they connect; and four quarters of a sphere of radius R tangent to

the circular cylinders. The resulting surface is closed. The surface is C1 along the curves of tangency

among its parts (across which curvature is discontinuous) and C2 everywhere else. The area-based

jpdf of S and C is thus still applicable.

R

R

W

L

(a) (b)

Figure G.1: Generic structure (a) and limiting cases (b)
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Define ξ ≡ L/R, η ≡W/R. Note that for ξ = η = 0 the surface is a sphere, for ξ � 1 and η = 0

(and vice versa) the surface is a circular tube with spherical caps (more stretched as ξ increases),

and for ξ, η � 1 the surface is predominantly sheet-like (see Figure G.1(b)).

The area and volume of this surface are:

A = 4πR2

[
1 +

1
2
(ξ + η) +

1
2π

ξη

]
, V =

4
3
πR3

[
1 +

3
4
(ξ + η) +

3
2π

ξη

]
. (G.1)

Therefore

µ ≡ 3V

A
= R

1 +
3
4
(ξ + η) +

3
2π

ξη

1 +
1
2
(ξ + η) +

1
2π

ξη
, λ ≡ 3

√
36π

V 2/3

A
=

[
1 +

3
4
(ξ + η) +

3
2π

ξη

]2/3

1 +
1
2
(ξ + η) +

1
2π

ξη
. (G.2)

The principal curvatures, κ1 and κ2, are both 1/R in the spherical regions, 1/R and 0 respectively

in the circular cylindrical regions, and both nil in the planar regions of such surface. Thus the

dimensionless curvedness associated with each region is Csph = µ/R, Ccyl = µ/
√

2R, Cpla = 0,

respectively. The absolute value of the shape index is Ssph = 1 for the spherical regions and

Scyl = 1/2 for the circular cylindrical regions, while its value is undefined for the planar regions.

For the purpose of this illustrative example, define such a value as γ ∈ [0, 1].

The mean values of S and C for the surface, in terms of the dimensionless parameters ξ and η,

result:

S̄ =
1
A

[SsphAsph + ScylAcyl + SplaApla] =
1 +

1
4
(ξ + η) +

1
2π

ξηγ

1 +
1
2
(ξ + η) +

1
2π

ξη
, (G.3)

C̄ =
1
A

[CsphAsph + CcylAcyl + CplaApla] =

[
1 +

3
4
(ξ + η) +

3
2π

ξη

] [
1 +

1
2
√

2
(ξ + η)

]
1 +

1
2
(ξ + η) +

1
2π

ξη
. (G.4)

In the limiting cases:

(i) for a sphere (ξ = η = 0): S̄ = C̄ = 1;

(ii) for a predominantly tube-like surface (ξ � 1, η = 0): S̄ ≈ 1/2, C̄ ≈ 3/2
√

2 ≈ 1.06;
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(iii) for a predominantly sheet-like surface (ξ = η � 1): S̄ ≈ γ, C̄ ≈ 0.

Figure G.2 shows the dependence on ξ of S̄, C̄, and λ for the two last cases (surfaces becoming,

as ξ increases, tube-like (η = 0) and sheet-like (with η = ξ for simplicity)), starting from the sphere

limit (ξ = 0). A particular value of γ has been chosen, without loss of generality, in order to

represent the limit S̄sheet graphically. In a general sheet-like surface, γ can take any value between

0 and 1, depending on its particular configuration. In the limiting cases (ξ = 0 and η = 0; ξ � 1

and η = 0; ξ = η � 1) Ŝ ≈ S̄, Ĉ ≈ C̄. Thus, a surface predominantly blob-, tube- or sheet-like can

be distinguished based on its values of Ŝ, Ĉ, λ.

 0

 0.5

 1

 0  2  4  6  8  10

ln(1 + ξ)

γ

sphere

λsheet
λtube

C̄tube

S̄tube

S̄sheet

C̄sheet

Figure G.2: S̄, C̄, and λ as a function of ξ for the tube-like and sheet-like limits, evolving from the
sphere limit (ξ = 0). Note that the abscissa has been rescaled as ln(1 + ξ) to show more clearly the
transition region
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Appendix H

Stratified random sampling with
disproportionate allocation

When a multi-scale decomposition is applied to the scalar field from which the structures are educed,

large differences among the number of structures obtained for each scale are to be expected. Larger

scales will generally have a smaller number of educed structures than smaller scales. This difference

in number can sometimes be of several orders of magnitude, particularly when analyzing fields with

high grid resolution that results in a larger number of scales.

Thus, when structures of all scales are considered in the clustering algorithm, after the geometrical

characterization, those structures (and their geometries) corresponding to the largest scale can be

under-represented owing to the much smaller population they have compared to the others. In such

a scenario, it can be beneficial to apply, prior to the clustering algorithm itself, a sampling of the

population that takes into account the uneven sizes of the strata in which it can be divided.

We use a disproportionate stratification that considers the variance of the mutually exclusive

strata to determine the sample size for each stratum. If no is the sample size of the stratum with the

minimum standard deviation, σo = min{σh,∀h}, then the sample size, nh, of any other stratum, h,

with standard deviation σh will be proportional to (σh/σo) no. Therefore, those strata with higher

variances will have also a higher number of elements to represent them in the clustering algorithm,

accounting for their higher diversity. We take no as the population size of that stratum with the

minimum standard deviation, No, since the purpose of this sampling is not to reduce the global

population size, but to have a more balanced representation of the different groups present in it for
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a better clustering.

After the disproportionate stratification, for those strata with nh < Nh, where Nh is the popu-

lation size of the stratum h, we take a random sample of nh out of the Nh elements. Otherwise, the

complete population is considered for that stratum.
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