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Appendix G

Analytic geometric
characterization of limiting
surfaces.

Consider the generic surface in Figure G.1(a). It consists of two planar parallel sheets of area LW

separated a distance of 2R; four halves of circular cylinders of radii R and lengths L and W by pairs,

tangent to the planar sheets that they connect; and four quarters of a sphere of radius R tangent to

the circular cylinders. The resulting surface is closed. The surface is C1 along the curves of tangency

among its parts (across which curvature is discontinuous) and C2 everywhere else. The area-based

jpdf of S and C is thus still applicable.
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Figure G.1: Generic structure (a) and limiting cases (b)
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Define ξ ≡ L/R, η ≡W/R. Note that for ξ = η = 0 the surface is a sphere, for ξ � 1 and η = 0

(and vice versa) the surface is a circular tube with spherical caps (more stretched as ξ increases),

and for ξ, η � 1 the surface is predominantly sheet-like (see Figure G.1(b)).

The area and volume of this surface are:
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The principal curvatures, κ1 and κ2, are both 1/R in the spherical regions, 1/R and 0 respectively

in the circular cylindrical regions, and both nil in the planar regions of such surface. Thus the

dimensionless curvedness associated with each region is Csph = µ/R, Ccyl = µ/
√

2R, Cpla = 0,

respectively. The absolute value of the shape index is Ssph = 1 for the spherical regions and

Scyl = 1/2 for the circular cylindrical regions, while its value is undefined for the planar regions.

For the purpose of this illustrative example, define such a value as γ ∈ [0, 1].

The mean values of S and C for the surface, in terms of the dimensionless parameters ξ and η,

result:
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In the limiting cases:

(i) for a sphere (ξ = η = 0): S̄ = C̄ = 1;

(ii) for a predominantly tube-like surface (ξ � 1, η = 0): S̄ ≈ 1/2, C̄ ≈ 3/2
√

2 ≈ 1.06;



126

(iii) for a predominantly sheet-like surface (ξ = η � 1): S̄ ≈ γ, C̄ ≈ 0.

Figure G.2 shows the dependence on ξ of S̄, C̄, and λ for the two last cases (surfaces becoming,

as ξ increases, tube-like (η = 0) and sheet-like (with η = ξ for simplicity)), starting from the sphere

limit (ξ = 0). A particular value of γ has been chosen, without loss of generality, in order to

represent the limit S̄sheet graphically. In a general sheet-like surface, γ can take any value between

0 and 1, depending on its particular configuration. In the limiting cases (ξ = 0 and η = 0; ξ � 1

and η = 0; ξ = η � 1) Ŝ ≈ S̄, Ĉ ≈ C̄. Thus, a surface predominantly blob-, tube- or sheet-like can

be distinguished based on its values of Ŝ, Ĉ, λ.
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Figure G.2: S̄, C̄, and λ as a function of ξ for the tube-like and sheet-like limits, evolving from the
sphere limit (ξ = 0). Note that the abscissa has been rescaled as ln(1 + ξ) to show more clearly the
transition region


