Appendix G

Analytic geometric characterization of limiting surfaces.

Consider the generic surface in Figure G.1(a). It consists of two planar parallel sheets of area $L W$ separated a distance of $2 R$; four halves of circular cylinders of radii R and lengths L and W by pairs, tangent to the planar sheets that they connect; and four quarters of a sphere of radius R tangent to the circular cylinders. The resulting surface is closed. The surface is \mathcal{C}^{1} along the curves of tangency among its parts (across which curvature is discontinuous) and \mathcal{C}^{2} everywhere else. The area-based jpdf of S and C is thus still applicable.

Figure G.1: Generic structure (a) and limiting cases (b)

Define $\xi \equiv L / R, \eta \equiv W / R$. Note that for $\xi=\eta=0$ the surface is a sphere, for $\xi \gg 1$ and $\eta=0$ (and vice versa) the surface is a circular tube with spherical caps (more stretched as ξ increases), and for $\xi, \eta \gg 1$ the surface is predominantly sheet-like (see Figure G.1(b)).

The area and volume of this surface are:

$$
\begin{equation*}
A=4 \pi R^{2}\left[1+\frac{1}{2}(\xi+\eta)+\frac{1}{2 \pi} \xi \eta\right], \quad V=\frac{4}{3} \pi R^{3}\left[1+\frac{3}{4}(\xi+\eta)+\frac{3}{2 \pi} \xi \eta\right] \tag{G.1}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\mu \equiv \frac{3 V}{A}=R \frac{1+\frac{3}{4}(\xi+\eta)+\frac{3}{2 \pi} \xi \eta}{1+\frac{1}{2}(\xi+\eta)+\frac{1}{2 \pi} \xi \eta}, \quad \lambda \equiv \sqrt[3]{36 \pi} \frac{V^{2 / 3}}{A}=\frac{\left[1+\frac{3}{4}(\xi+\eta)+\frac{3}{2 \pi} \xi \eta\right]^{2 / 3}}{1+\frac{1}{2}(\xi+\eta)+\frac{1}{2 \pi} \xi \eta} \tag{G.2}
\end{equation*}
$$

The principal curvatures, κ_{1} and κ_{2}, are both $1 / R$ in the spherical regions, $1 / R$ and 0 respectively in the circular cylindrical regions, and both nil in the planar regions of such surface. Thus the dimensionless curvedness associated with each region is $C_{s p h}=\mu / R, C_{c y l}=\mu / \sqrt{2} R, C_{p l a}=0$, respectively. The absolute value of the shape index is $S_{s p h}=1$ for the spherical regions and $S_{c y l}=1 / 2$ for the circular cylindrical regions, while its value is undefined for the planar regions. For the purpose of this illustrative example, define such a value as $\gamma \in[0,1]$.

The mean values of S and C for the surface, in terms of the dimensionless parameters ξ and η, result:

$$
\begin{align*}
& \qquad \begin{array}{l}
\text { sult: } \\
\left.\qquad \begin{array}{l}
A \\
A
\end{array} S_{s p h} A_{s p h}+S_{c y l} A_{c y l}+S_{p l a} A_{p l a}\right]=\frac{1+\frac{1}{4}(\xi+\eta)+\frac{1}{2 \pi} \xi \eta \gamma}{1+\frac{1}{2}(\xi+\eta)+\frac{1}{2 \pi} \xi \eta} \\
\bar{C}=\frac{1}{A}\left[C_{s p h} A_{s p h}+C_{c y l} A_{c y l}+C_{p l a} A_{p l a}\right]=\frac{\left[1+\frac{3}{4}(\xi+\eta)+\frac{3}{2 \pi} \xi \eta\right]\left[1+\frac{1}{2 \sqrt{2}}(\xi+\eta)\right]}{1+\frac{1}{2}(\xi+\eta)+\frac{1}{2 \pi} \xi \eta} .
\end{array} \tag{G.3}
\end{align*}
$$

In the limiting cases:
(i) for a sphere $(\xi=\eta=0): \bar{S}=\bar{C}=1$;
(ii) for a predominantly tube-like surface $(\xi \gg 1, \eta=0): \bar{S} \approx 1 / 2, \bar{C} \approx 3 / 2 \sqrt{2} \approx 1.06$;
(iii) for a predominantly sheet-like surface $(\xi=\eta \gg 1): \bar{S} \approx \gamma, \bar{C} \approx 0$.

Figure G. 2 shows the dependence on ξ of \bar{S}, \bar{C}, and λ for the two last cases (surfaces becoming, as ξ increases, tube-like $(\eta=0)$ and sheet-like (with $\eta=\xi$ for simplicity)), starting from the sphere limit $(\xi=0)$. A particular value of γ has been chosen, without loss of generality, in order to represent the limit $\bar{S}_{\text {sheet }}$ graphically. In a general sheet-like surface, γ can take any value between 0 and 1 , depending on its particular configuration. In the limiting cases $(\xi=0$ and $\eta=0 ; \xi \gg 1$ and $\eta=0 ; \xi=\eta \gg 1) \hat{S} \approx \bar{S}, \hat{C} \approx \bar{C}$. Thus, a surface predominantly blob-, tube- or sheet-like can be distinguished based on its values of $\hat{S}, \hat{C}, \lambda$.

Figure G.2: \bar{S}, \bar{C}, and λ as a function of ξ for the tube-like and sheet-like limits, evolving from the sphere limit $(\xi=0)$. Note that the abscissa has been rescaled as $\ln (1+\xi)$ to show more clearly the transition region

