Appendix E

Gauss-Bonnet theorem in the shape index, curvedness space

For any compact two-dimensional Riemann manifold without boundaries, M, the Gauss–Bonnet theorem states that the integral of the Gaussian curvature, K, over the manifold with respect to area, A, equals 2π times its Euler characteristic, χ:

$$\int_M K\,dA = 2\pi\chi(M). \quad (E.1)$$

This formula relates the geometry of the surface (given by the integration of the Gaussian curvature, a differential-geometry property) to its topology (given by the Euler characteristic). The Euler characteristic of a surface is related to its genus 1 by $\chi = 2 - 2g$. From the relation among shape index, curvedness, and mean and Gaussian curvatures stated in Appendix C (see equations C.38 and C.39), the following relation can be obtained:

$$K = -\Lambda^2 \cos(\pi \Upsilon). \quad (E.2)$$

Then, the Gauss-Bonnet theorem can be restated in terms of the shape index and curvedness as

$$\int_M \Lambda^2 \cos(\pi \Upsilon) \,dA = 4\pi[g(M) - 1]. \quad (E.3)$$

1The genus of an orientable surface is a topological invariant (as is the Euler characteristic) defined as the largest number of non-intersecting simple closed curves that can be drawn on the surface without disconnecting it.
Furthermore, considering the non-dimensionalization of the curvedness introduced in §2.2, \(C = \mu \Lambda\) (\(\mu \equiv 3V/A\), where \(V\) is the volume and \(A\) the area of the surface) and taking into account that cosine is a symmetric function and thus \(\cos(\pi \Upsilon) = \cos(|\Upsilon|) \equiv \cos(\pi S)\), then equation E.1 can be rewritten as

\[
\int_M C^2 \cos(\pi S) \, dA = 4\pi \mu^2 [g(M) - 1].
\]
(E.4)

The left-hand side can be expressed in terms of the \(\{S, C\}\) area-based joint probability density function of the surface, \(\mathcal{P}(S, C)\):

\[
\int_M C^2 \cos(\pi S) \, dA = A \cdot \int \int C^2 \cos(\pi S) \, \mathcal{P}(S, C) \, dS \, dC.
\]
(E.5)

Considering the stretching parameter, \(\lambda \equiv \sqrt[3]{\frac{3\pi V^2}{A}}\), also introduced in §2.2, the Gauss-Bonnet theorem finally results in an integral relation between the \(\{S, C\}\) area-based joint probability density function, \(\mathcal{P}\), the stretching parameter, \(\lambda\), and the genus of the surface, \(g\):

\[
\int \int C^2 \cos(\pi S) \, \mathcal{P}(S, C) \, dS \, dC = \lambda^3 [g(M) - 1].
\]
(E.6)