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Appendix D

Density functions on manifolds

Consider a function ξM (P ) : P ∈ M 7→ I ⊆ R, that defines a local property ξ of an m-dimensional

manifold M embedded in a n-dimensional space Rn, m < n. At every point P ∈M . Define M=
ξ as

the set of points on M where ξM (P ) is equal to a particular value ξ, M=
ξ = {P ∈M | ξM (P ) = ξ},

and M≤ξ as the set of points on M where ξM (P ) is less or equal to a particular value ξ, M≤ξ =

{P ∈M | ξM (P ) ≤ ξ}. Consider the measure spaces1 (Rn,F(Rn), µ1) and (Rn,F(Rn), µ2), where

F(Rn) is a σ-algebra of Rn, and µ1, µ2 are two particular measures defined on (Rn,F(Rn)).

Define the function Ψ(ξ) : ξ ∈ I 7→ R̄+ such that for every value ξ ∈ I it returns the µ1-measure

of the set M=
ξ ⊂M :

Ψ(ξ) ≡ µ1

(
M=

ξ

)
≡
∫

M=
ξ

dµ1 =
∫

M

1[M=
ξ ]dµ1, (D.1)

where the function 1[M=
ξ ] is the characteristic function2 on M=

ξ and the integrals are defined in the

generalized Lebesgue3 sense.
1 A measure space (E,F(E), µ) is a measurable space, (E,F(E)), with a non-negative measure, µ. A measurable

space, (E,F(E)), is a set E with a σ-algebra, F(E), on it. A σ-algebra F on a given set E is a nonempty collection
of subsets of E such that: 1) ∅ ∈ F(E); 2) if A ∈ F then Ā ∈ F , where Ā is the complement of A; 3) if An is
a sequence of elements of F , then

S
An ∈ F . As a consequence: E ∈ F . A measure µ, defined on a measurable

space (E,F(E)), is a function µ : F(E) 7→ R̄ (where R̄ denotes the extended real numbers (R̄ = R ∪ {±∞})) such
that: 1) µ(A) ≥ 0 for A ∈ F(E) (equality iff A = ∅), 2) µ(∪∞n=0An) =

P∞
n=0 µ(An) for any sequence of disjoint

sets An ∈ F(E) (countable additivity). If µ(E) = 1 then µ is called a probability measure and the measure space
(E,F(E), µ) is called a probability space.

2 The characteristic function or indicator function, of a subset A ∈ E is a function 1A : E 7→ {0, 1} defined as
1A = {1, if P ∈ A; 0, if P 6∈ A}.

3 The Lebesgue integral of a measurable function f : E 7→ R̄ on a measure space (E,F(E), µ), is defined through the
following steps: 1) for the characteristic function, 1A,

R
E 1A dµ ≡ µ(A); 2) for a simple function (i.e., s =

Pn
i=1 ci1Ai

,
ci ∈ R, for some finite collection Ai ∈ F(E)), then:

R
E f dµ ≡

Pn
i=1 ci

R
E 1Ai

dµ =
Pn

i=1 ciµ(Ai); 3) For a non-

negative measurable function f (possibly attaining ∞ at some points),
R

E f dµ ≡ sup
˘R

E s dµ : s ≤ f, s simple
¯
;

4) For any measurable function f (possibly attaining ±∞ at some points),
R

E f dµ ≡
R

E f+ dµ −
R

E f− dµ, where

f± ≡ max(±f, 0), provided
R

E |f | dµ =
R

E(f+ + f−) dµ < ∞ (f is then said to be Lebesgue integrable). A function

f : Ex 7→ Ey is measurable if f−1(F(Ey)) ⊆ F(Ex), where (Ex,F(Ex)) and (Ey ,F(Ey)) are two measurable spaces.
The generalized Lebesgue integral extends this concept of Lebesgue integral to measure spaces with generalized
measures µ, not necessarily being Lebesgue measures (e.g., Hausdorff measures).
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Define also the function η(ξ) : ξ ∈ I 7→ R̄+ such that for every value ξ ∈ I it returns the

µ2-measure of the set M≤ξ ⊂M :

η(ξ) ≡ µ2

(
M≤ξ

)
≡
∫

M
≤
ξ

dµ2 =
∫

M

1[M≤
ξ ] dµ2, (D.2)

where the function 1[M≤
ξ ] is the characteristic function on M≤ξ . Let δη(ξ,dξ) be the difference

between the values of η at ξ + dξ and ξ:

δη(ξ,dξ) ≡ η(ξ + dξ)− η(ξ) ≡ µ2

(
M≤ξ+dξ

)
− µ2

(
M≤ξ

)
≡ (D.3)

≡

(∫
M

≤
ξ+dξ

−
∫

M
≤
ξ

)
dµ2 =

∫
M

(
1[M≤

ξ+dξ] − 1[M≤
ξ ]

)
dµ2 (D.4)

and define formally dη(ξ)/dξ as the limit of δη(ξ,dξ)/dξ when dξ → 0:

dη(ξ)
dξ

≡ lim
dξ→0

δη(ξ,dξ)
dξ

= (D.5)

= lim
dξ→0

(∫
M

≤
ξ+dξ

−
∫

M
≤
ξ

)
dµ2

dξ
= (D.6)

= lim
dξ→0

∫
M

(
1[M≤

ξ+dξ] − 1[M≤
ξ ]

)
dµ2

dξ
= (D.7)

= lim
dξ→0

∫
M

1[M≤
ξ+dξ] − 1[M≤

ξ ]
dξ

dµ2 = (D.8)

=
∫

M

lim
dξ→0

(
1[M≤

ξ+dξ] − 1[M≤
ξ ]

dξ

)
dµ2. (D.9)

Define the generalized function:

δ[M=
ξ ] ≡ lim

dξ→0

(
1[M≤

ξ+dξ] − 1[M≤
ξ ]

dξ

)
≡

d1[M=
ξ ]

dξ
. (D.10)

It can be considered as an operator such that, when applied to a function f(P, ξ) defined on M , it

returns the variation of f(P, ξ) in the direction normal to the tangent space of M=
ξ on M at each
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point P ∈M=
ξ . Then, equation D.9 results:

dη(ξ)
dξ

=
∫

M

δ[M=
ξ ]dµ2. (D.11)

Consider, in particular, µi, i = 1, 2, to be the αi-dimensional Hausdorff measure4, Hαi on Rn,

such that α2 > α1, and dµ2 = dµ1d(µ2/µ1), where µ2/µ1 is the quotient of µ2 by µ1. Then, for a

regular and smooth5 manifold M :

dη(ξ)
dξ

=
∫

M

δ[M=
ξ ]dµ2 =

∫
M

[
δ[M=

ξ ]d(µ2/µ1)
]
dµ1 ≡ f(ξ)

∫
M=

ξ

dµ1 (D.12)

= f(ξ)µ1(M=
ξ ) ≡ f(ξ)Ψ(ξ), (D.13)

where the function f(ξ) is defined according the Mean-Value Theorem (applicable since the manifold

is regular and smooth):

f(ξ) ≡

∫
M

[
δ[M=

ξ ]d(µ2/µ1)
]
dµ1∫

M=
ξ

dµ1

≡
d[µ2/µ1|M=

ξ

dξ
. (D.14)

Considering the explanation of the character of δ[M=
ξ ], the function f(ξ) can be interpreted as

the average value of the variation with ξ of µ2/µ1 on the set M=
ξ (expressed as d[µ2/µ1|M=

ξ
/dξ).

Therefore, in order to measure sets M=
ξ ⊂ M ⊂ Rn in the µ1 Hausdorff measure, µ1 ≡ Hα1 , it is

possible to use alternatively the µ2 Hausdorff measure, µ2 ≡ Hα2 , on the set Mξ,dξ = M≤ξ+dξ∩M≤ξ =

4 Let (E, d) be a metric space (with a distance d defined on the set E). The α-dimensional Hausdorff
measure of the set A ⊂ E, Hα(A) ∈ [0, +∞], is defined as Hα(A) ≡ limδ→0+ Hα

δ (A), being Hα
δ (A) ≡

inf{
P∞

j=0 ωα

“
diam(Bδ

j )/2
”α

: Bδ
j ⊂ E,

S∞
j=0 Bδ

j ⊃ A, diam(Bδ
j ) ≤ δ,∀j = 0, 1, . . .}, where diam(Bδ

j ) ≡
supx,y∈Bδ

j
d(x, y), ωα = πα/2/Γ(α/2+1), (Γ(x) is the Gamma Function), δ > 0, α ≥ 0 and the infimum is taken over all

possible enumerable families of sets {Bδ
0 , Bδ

1 , . . . , Bδ
j , . . .} which are sufficiently small (diam(Bj) ≤ δ) and which cover

A. The limit exists since the function Hα
δ (E) is decreasing in δ: δ′ < δ ⇒

S∞
i=0 Bδ′

i ⊂
S∞

j=0 Bδ
j ⇒Hα

δ′ (E) < Hα
δ (E).

The Hausdorff measure is a Borel external measure on Rn that generalizes the concept of length, area, and volume of
sets in Rn. For the particular case of a m-dimensional regular manifold M ⊂ Rn, Hm(M) is the m-dimensional area
of M . For m = n, Hn is the Lebesgue measure on Rn. But as an external measure, Hα is defined on every subset of
Rn, not only on regular manifolds.

5A smooth manifold is infinitely differentiable. In particular, a two-dimensional surface parametrized by variables
(u, v) is smooth if the tangent vectors in the u and v directions satisfy: tu ∧ tv 6= 0.
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{P ∈M | ξ ≤ ξM (P ) < ξ + dξ} divided by f(ξ) dξ and then take the limit dξ → 0:

µ1(M=
ξ ) = lim

dξ→0

µ2(Mξ,dξ)
f(ξ)dξ

, (D.15)

derived from equations D.6, D.13, and the relation µ2(M
≤
ξ+dξ ∩M≤ξ ) = µ2(M

≤
ξ+dξ)− µ2(M

≤
ξ ).

The Hausdorff dimension6, α, of the sets M=
ξ ,Mξ,dξ ⊂M , satisfies:

∆α ≡ α(Mξ,dξ)− α(M=
ξ ) ≥ 0. (D.16)

Thus, equation D.15 implicitly indicates a reduction in the Hausdorff dimension of µ2(Mξ,dξ) by

taking the limit of it after dividing by f(ξ) dξ, obtaining µ1(M=
ξ ) as a result.

Consider the function Ψ(ξ), introduced above, with the particular choice of the measure µ1 as

being a α-dimensional Hausdorff measure,Hα. Also, consider the density function Ψ̃(ξ) ≡ f(ξ) Ψ(ξ) :

ξ ∈ I 7→ R+ with the choice of µ1 and µ2 as Hausdorff measures of dimension α and α + ∆α,

respectively, µ1 = Hα and µ2 = Hα+∆α. From the definition of Ψ̃(ξ) and η(ξ), (equations D.1, D.2),

and the relation between them given by equation D.13 it results:

∫ ξmax

ξmin

Ψ̃(ξ) dξ =
∫ ξmax

ξmin

f(ξ) Ψ(ξ) dξ =
∫ ξmax

ξmin

dη(ξ)
dξ

dξ =
∫ ξmax

ξmin

dη(ξ) = (D.17)

= η(ξmax)− η(ξmin) = µ2(M) = Hα+∆α(M). (D.18)

Therefore, the integral of the density function Ψ̃(ξ) of M over the range I of ξ is the (α + ∆α)-

dimensional Hausdorff measure of M . It can be normalized to obtain the corresponding probability
6 The Hausdorff dimension, α(A) ≥ 0, of a subset A of a metric space (E, d), is defined as α(A) = inf{D |

limr→0[HD
r (A)]} being HD

r (A) = inf
P

i∈I

`
diam(Br

i )
´D

where {Br
i , i ∈ I, I countable set} is a countable r-cover of

A and the infimum in HD
r is over all countable r-covers of A. If A is a subset of Rn with any restricted norm-induced

metric, this definition is equivalent to α(A) = − limr→0[log NA(r)/ log r], where NA(r) is the minimum number of
balls of radius r required to cover A. For a fixed set A ⊂ E there exists at most one value α such that the α-dimensional

Hausdorff measure of A, Hα(A) is finite and positive. For α′ > α, Hα′ (A) = 0, whereas for α′ < α, Hα′ (A) → +∞.
This result can be used equivalently to define the dimension of a set A, α(A) as the value for which its associated
α-dimensional Hausdorff measure, Hα(A), is finite and positive. For example, the Hausdorff dimension of a regular
two-dimensional surface M ⊂ Rn is two, and H2(M) (which coincides with the area of the surface) will be finite
and positive, while H1(M) (length of M) will be infinite, and H3(M) (volume of M) will be zero. The Hausdorff
dimensions of a set need not be integer (e.g., most fractals have a non-integer Hausdorff dimension).
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density function:

P(ξ) ≡ Ψ̃(ξ)
Hα+∆α(M)

, with
∫ ξmax

ξmin

P(ξ) dξ = 1. (D.19)

Depending on the distribution of the local property ξ throughout the manifold M , it will be

appropriate to choose particular values of α and ∆α for measuring the sets M=
ξ and Mξ,dξ in order

to obtain a relevant Ψ̃(ξ). For example, for a surface M in a three-dimensional euclidean space:

• If ξ is distributed mainly in patches of constant ξ, then a dimension α = 2 with ∆α = 0

(⇒ µ1 = µ2) would be appropriate: Ψ̃(ξ) would then give the area of those patches for the

particular values of ξ at which they appear (see Figure D.1). The sum of all those values would

be the area of M (
∑

i Ψ̃(ξi) = H2(M)). By using this measure, subsets of Hausdorff dimension

less than two (curves of constant ξ or isolated points of constant ξ) would not be reflected in

Ψ̃(ξ), since their associated H2 measure is null.

H2(M=
ξ )

H2(M=
ξ2

)

H2(M=
ξ1

)

H2(M=
ξ3

)
M=

ξ3

M=
ξ1

M=
ξ2

ξ3ξ2ξ1 ξM

Figure D.1: Ψ(ξ) = Ψ̃(ξ) (right) with α = 2 for a surface M (left) with the local property ξ
distributed in patches of constant ξ. Each point of that function (right) represents the area (two-
dimensional Hausdorff measure) of the associated patch. Their discrete sum equals the total area of
the surface M

• If ξ is smoothly distributed throughout M , the appropriate dimension to use is α = 1 (µ1 ≡

H1), with ∆α = 1 since the sets M=
ξ will be curves of constant ξ (unitary Hausdorff dimension)

or isolated points (null Hausdorff dimension). Ψ̃(ξ) will be continuous and its integral with

respect to ξ will be H2(M) (according to equation D.18), that is, the area of M . If ξ is piece-

wise smoothly distributed throughout M , that is, smooth except in the boundaries of patches

of M with constant ξ (see Figure D.2), these patches will be reflected in Ψ(ξ) as delta functions
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at the corresponding value of ξ associated with each patch, such that the integral with respect

to ξ equals (in the limit dξ → 0) the area of the patch. The shape of Ψ̃(ξ) (see Figure D.3)

ξ

H1(M=
ξ )

ξ1 ξ2 ξ3ξmin

M

M=
ξ2

M=
ξmax

M=
ξ1

ξmax

Figure D.2: Ψ(ξ) (right) with α = 1 for a surface M with ξ smoothly distributed throughout M
(except one patch of constant ξ = ξmax). In the left diagram, dashed lines represent line contours of
constant ξ = ξ1, ξ2, which have an associated finite value of Ψ(ξ) (since their Hausdorff dimension
equals the dimension of the measure used to obtain Ψ(ξ), α(M=

ξ1,2
) = 1), whereas the central patch

(filled with oblique lines pattern) of constant ξ = ξmax has an associated value H1(M=
ξmax

) → ∞,
since its Hausdorff dimension is α(M=

ξmax
) = 2

will depend on the function f(ξ), that represents how ‘distant’ two different sets (curves, in

general), M=
ξ and M=

ξ+dξ, are. That distance, for each point P ∈ M=
ξ , is measured along the

coordinate n of the tangent plane at P normal to the arc length s of M=
ξ , and then averaged

over the whole set, thus resulting in a function of ξ only. Large values of f(ξ) indicate that

the property ξ varies slowly along n in average, whereas small values of f(ξ) correspond to a

rapid averaged variation of ξ with n.

The resulting Ψ̃(ξ) (and, alternatively, P(ξ)) of M can be regarded as a non-local characterization

of the distribution of ξ throughout M .
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M=
ξmax

M=
ξ3

M=
ξ2

M=
ξmin

M=
ξ1

ξ

ξξ1 ξ2 ξ3ξmin ξmax

ξ1 ξ2 ξ3ξmin ξmax

M

Ψ̃(ξ) = f(ξ)Ψ(ξ)

f(ξ)

ξξ1 ξ2 ξ3ξmin ξmax

Ψ(ξ)

n

s

Figure D.3: Ψ̃(ξ) (right) for a surface M with ξ smoothly distributed throughout M (except one
patch of constant ξ = ξmax). In the left diagram, dashed lines represent line contours of constant
ξ = ξmin, ξ1, ξ2, ξ3, ξmax, such that they differ in a constant ∆ξ. The central part of the figure
represents Ψ(ξ) (top) and f(ξ) (bottom). f(ξ) increases with ξ since the averaged distance between
contours (normal to them along n) increases with ξ. On the right, the multiplication of both gives
Ψ̃(ξ)

D.1 Conditions for existence of an explicit analytical solution

Consider an explicit parametrization of the surface M in terms of two parameters (u, v), and also

an explicit parametrization of the local property ξ on M in terms of the same two parameters:

M : (u, v) ∈ (Iu, Iv) 7→ Rn, (D.20)

ξ : (u, v) ∈ (Iu, Iv) 7→ R. (D.21)

By choosing µ2 to be the two-dimensional Hausdorff measure, the integrals in the function δη defined

above can be expressed in terms of the parametrization as:

δη(ξ,dξ) =
∫

M

(
1[M≤

ξ+dξ] − 1[M≤
ξ ]

)
dµ2 =

∫
(Iu,Iv)

(
1[M≤

ξ+dξ] − 1[M≤
ξ ]

)
θ(u, v) du dv, (D.22)

where dµ2 = θ(u, v) du dv, and θ(u, v) depends on the parametrization of the surface.

Under the following constraints imposed on the parametrization, the function Ψ̃(ξ) = lim
dξ→0

(δη(ξ,dξ)/dξ)

can be obtained explicitly in terms of the parameters (u, v), providing interesting analytical solutions
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of Ψ̃(ξ) for certain surfaces:

1. If the functions ξ(u, v) and θ(u, v) are both independent of one (the same one) of the two

parameters (u, v) (the parameter v has been chosen for that purpose in this development

without loss of generality), ξ(u, v) ≡ ξ(u), θ(u, v) ≡ θ(u), then Ψ̃(ξ) can be written as:

Ψ̃(ξ(u)) = lim
dξ→0

(∫
Iv

dv

)(∫
Iu

(
1[M≤

ξ+dξ] − 1[M≤
ξ ]

)
θ(u) du

)
(D.23)

= ∆v
θ(u) du

dξ
= ∆v

θ(u) du

dξ

du
du

= ∆v
θ(u)
dξ

du
(u)

, (D.24)

where ∆v =
∫

Iv
dv is a constant.

2. If the map ξ(u) : u ∈ Iu ⊂ R 7→ ξ ∈ Iξ ⊂ R is invertible (i.e., bijective7), there exists the

inverse map u = u(ξ) : ξ ∈ Iξ ⊂ R 7→ u ∈ Iu ⊂ R and equation D.24 can be finally written as

an explicit analytical result:

Ψ̃(ξ) = ∆v
θ(u(ξ))
dξ

du
(u(ξ))

. (D.25)

Note that the invertibility condition on the map ξ(u) implies8 that the first derivative dξ/du

exists and is non-zero ∀u ∈ Iu. Therefore, the function Ψ̃(ξ) (that has dξ/du in the denomi-

nator) is defined ∀ξ ∈ Iξ.

This invertibility condition can be relaxed still obtaining explicit analytical solution in those

cases (see Figure D.4) in which there exists a countable number of local extrema, Sle =

{u∗le,p ∈ Iu; p = 1, . . . , Nle}, and a countable number of (surjective) subintervals, Ssurj
I =

{Isurj
u,q = [u∗min,q, u

∗
max,q] ⊂ Iu; q = 1, . . . , N surj

I } (the associated set of extreme points of those

subintervals is called Sep = {(u∗min,q, u
∗
max,q); q = 1, . . . , Nle}), where the first derivative dξ/du

is null (i.e., dξ/du |u∗= 0, u∗ ∈ Sle ∪ Ssurj
I ). Define the set of points SP = {u∗j ∈ {Sle ∪

Sep ∪ {umin, umax}}; j = 1, . . . , (Nle + 2N surj
I )} ordered such that u∗j < u∗j+1. Define also

7A map f : a ∈ A ↔ b ∈ B is bijective (∀a ∈ A ∃! b ∈ B | b = f(a)) if it is injective (∀a ∈ A ∃ b ∈ B | b = f(a))
and surjective (∀b ∈ B ∃ a ∈ A | b = f(a)).

8 The inverse function theorem states that a continuous function f : x ∈ Ix ⊂ R 7→ y ∈ IyR is (locally) invertible
(at x′ ∈ Ix) if its first derivative is non-null, df/dx 6= 0 (at x′), that is, if f is strictly monotonic (at x′). f is invertible
in Ix if it is locally invertible ∀x ∈ Ix
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the set of (bijective) subintervals Sbij
I = {Ibij

u,r =]u∗j , u
∗
k[, r = 1, . . . , Nbij

I ;u∗j , u
∗
k ∈ SP } where

there exists an invertible map uIbij
u,r

(ξ) (inverse function of ξ(u) in the interval Ij
u). Note that

Ssurj
I ∩ Sbij

I = ∅, and Iu = Sbij
I ∪ Ssurj

I ∪ Sle. In that case, and assuming that there exists an

explicit analytical expression for u∗j ∈ SP in terms of ξ (which depends on the solvability of

the equation (dξ/du)(u) = 0), then the function Ψ̃(ξ) can still be explicitly obtained by the

following analytical expression:

Ψ̃(ξ) = ∆v

Nbij
I∑

r=1

θ(uIbij
u,r

(ξ))
dξ
du (uIbij

u,r
(ξ))

+
Nle∑
p=1

θ(u∗le,p) δ0(ξ(u∗le,p)) +
Nsurj

I∑
q=1

(∫
Isurj

u,q

θ(u)du

)
δ1(ξ(Isurj

u,q ))

 ,

(D.26)

where the generalized functions δ0(ξ) and δ1(ξ) are zero everywhere except at ξ, where their

value is an infinite with null and unitary total integral, respectively. The subintervals I∗u,q ∈

Ssurj
I correspond to patches of the surface with constant ξ, which have a Hausdorff dimension

of two, and therefore their one-dimensional measure is an integrable infinite such that, when

integrated, it results the area of the patch (i.e.,
(∫

I∗u,q
θ(u) du

)
∆v =

∫
Iv

∫
I∗u,q

θ(u) du dv).

u∗le,1 u∗min,1umin u∗le,1 u∗max,1 u∗le,1 u∗le,1

ξ

u

u∗1 u∗2 u∗4 u∗3 u∗5 u∗6 u∗7

Ibij
u,1 Ibij

u,2 Ibij
u,3 Ibij

u,4 Ibij
u,5 Ibij

u,6 Ibij
u,7Isurj

u,1 Isurj
u,2

umax

u∗10u∗9

u∗max,2

u∗8

u∗min,2

Figure D.4: Example of non-invertible ξ(u) map

Common cases of existence of explicit analytical solution (complying with these two sufficient

conditions) arise for cylindrical surfaces and surfaces of revolution, such that the property ξ pre-

serves the cylindrical nature (being independent of the variable along the cylindrical axis) or the

axisymmetric character of the surface (being independent of the azimuthal coordinate), and the
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invertibility of the function relating ξ and the other variable of the parametrization is guaranteed,

either globally or along subintervals.

D.2 Extension to multiple dimensions

A parallel development can be followed to define multi-variable density functions on a manifold M .

For two local properties, ξ and ζ, we define M=
ξ,ζ as the set of points P of M where (ξM , ζM )(P ) =

(ξ, ζ), and M=
ξ+dξ,ζ+dζ as:

M=
ξ+dξ,ζ+dζ =

(
M≤ξ+dξ ∩M≤ξ

)
∩
(
M≤ζ+dζ ∩M≤ζ

)
= (D.27)

= {P ∈M | ξ ≤ ξM (P ) < ξ + dξ, ζ ≤ ζM (P ) < ζ + dζ} . (D.28)

Ψ(ξ, ζ) is now defined as Ψ(ξ, ζ) ≡ µ1

(
M=

ξ,ζ

)
. Instead of dη(ξ)/dξ, we have Jacobian determinant

J(ξ, ζ) ≡
∣∣∣∣∂(ηξ, ηζ)

∂(ξ, ζ)

∣∣∣∣ = f(ξ, ζ) Ψ(ξ, ζ), (D.29)

with f(ξ, ζ) ≡
∫

M

[
δ[M=

ξ,ζ]d(µ2/µ1)
]
dµ1

/∫
M=

ξ,ζ

dµ1 . Then

µ1(M=
ξ,ζ) = lim

dξ,dζ→0

µ2(Mξ,ζ;dξ,dζ)
f(ξ, ζ) dξ dζ

. (D.30)

We also define ∆α ≡ α(Mξ,dξ;ζ,dζ)− α(Mξ,ζ) and Ψ̃(ξ, ζ) ≡ f(ξ, ζ) Ψ(ξ, ζ). Therefore:

∫ ξmax

ξmin

∫ ζmax

ζmin

Ψ̃(ξ, ζ) dξ dζ =
∫ ξmax

ξmin

∫ ζmax

ζmin

f(ξ, ζ) Ψ(ξ, ζ) dξ dζ = (D.31)

=
∫ ξmax

ξmin

∫ ζmax

ζmin

J(ξ, ζ) dξ dζ = µ2(M) = Hα+∆α(M), (D.32)

and the corresponding joint probability density function can be obtained by normalization as:

P(ξ, ζ) ≡ Ψ̃(ξ, ζ)
Hα+∆α(M)

, with
∫ ξmax

ξmin

∫ ζmax

ζmin

P(ξ, ζ) dξ dζ = 1. (D.33)
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The one-dimensional (probability) density functions in terms of each variable can be directly

obtained from the multi-dimensional one by integration with respect to the rest of variables. They

are named marginal (probability) density functions. For the two-dimensional case, the corresponding

marginal probability density functions are Pξ(ξ) =
∫ ζmax

ζmin

P(ξ, ζ) dζ and Pζ(ζ) =
∫ ξmax

ξmin

P(ξ, ζ) dξ.

An example of application is the use of the joint and/or marginal probability density functions

of two differential-geometry properties of a surface M , such as the principal curvatures (κ1, κ2) or

the shape index and curvedness (Υ,Λ), in terms of area-coverage on M , to provide a non-local

geometrical characterization of such surface M .


