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Appendix C

Differential geometry background

Let M be a regular surface1 parametrized by:

x(u) : {x(u, v), y(u, v), z(u, v)}. (C.1)

Its tangent plane at any point P , TP M , is defined by the tangent vectors {xu, xv} contained on it,

or, alternatively, by the normal unit vector N orthogonal to it:

xu =
(

∂x

∂u
,
∂y

∂u
,
∂z

∂u

)
, xv =

(
∂x

∂v
,
∂y

∂v
,
∂z

∂v

)
, (C.2)

N =
xu ∧ xv

||xu ∧ xv||
. (C.3)

The first fundamental form of M at a point P is the inner product restricted to tangent vectors:

I(mP ,nP ) = mP · nP , (C.4)

where mP , nP ∈ TP M (tangent plane of M at P ). The first fundamental form is independent of

the surface representation, and therefore invariant under parameter transformations. It satisfies:

I(axu + b xv, a xu + b xv) = E a2 + 2 F a b + G b2, (C.5)

1 M ⊂ Rn is a regular surface if for each point P ∈ M there exists a neighborhood of P , V ∈ Rn, and a map
x : U → M of an open set U ⊂ R2 onto V ∩M such that: (i) x is differentiable; (ii) x : U → V ∩M is a homeomorphism;
(iii) each map x : U → M is a regular patch, that is, its Jacobian has rank 2 for all (u, v) ∈ U .



101

where E, F , G are the first fundamental coefficients:

E = xu · xu = ||xu||2, (C.6)

F = xu · xv, (C.7)

G = xv · xv = ||xv||2. (C.8)

These coefficients are not invariant under parameter transformations. Since ||xv · xv|| < ||xu||||xv||

(recall xu 6‖ xv in a regular surface for the tangent plane to be defined):

E G− F 2 = ||xu||2||xv||2 − (xv · xv)2 > 0, (C.9)

and therefore, the first fundamental form is a positive definite quadratic form on the tangent plane

of M at P (TP M):

I(m,n) =
(

mu mv

) E F

F G


 nu

nv

 ,


m = mu xu + mv xv

n = nu xu + nv xv

 ∈ TP . (C.10)

A property of the surface M that depends only on the first fundamental form of M is called an

intrinsic property 2.

The arc length, s(t), of a curve C on M (given by its parametrization ~α(t) = (u(t), v(t)) =

u(t) xu + v(t) xv, t ∈ [a, b]), is:

s(t) =
∫ t

a

||~α′(r)||dr, ~α′(r) ≡ d~α(r)
dr

. (C.11)

2An intrinsic property of a surface is independent of the space in which the surface may be considered. Thus, a
hypothetical “inhabitant” of the surface can measure it without knowing anything about the space in which the surface
is embedded. On the other hand an extrinsic property of a surface depends on its embedding space, and therefore
cannot be measured by “inhabitants” of the surface. In a more formal definition a property is called intrinsic if it
is preserved by local isometries, and extrinsic otherwise. An isometry (or congruence transformation) is a bijective
distance preserving map between two metric spaces.
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Thus:

(
ds(t)
dt

)2

= ||~α′(t)||2 = ~α′(t) · ~α′(t)

= [u′(t) xu + v′(t) xv] · [u′(t) xu + v′(t) xv]

= E u′(t)2 + 2 F u′(t) v′(t) + G v′(t)2

and:

(ds)2 = E (du)2 + 2 F du dv + G (dv)2 = I(~α′, ~α′). (C.12)

Therefore, the arc length is an intrinsic property, since it depends only on the first fundamental

form. The area element, dA, of M at a point P ∈M is defined, in terms of its parametrization, as:

dA =
√

E G− F 2 du ∧ dv, (C.13)

where du ∧ dv is the wedge product.

The second fundamental form of a (three-dimensional regular) surface M at a point P is the

symmetric bilinear3 form on the tangent plane at P (TP M) given by:

II(mP ,nP ) = S(mP ) · nP = mP · S(nP ), (C.14)

where S is the shape operator (or second fundamental tensor or Weingarten map), which is defined,

when operating on a vector m, as the negative covariant derivative (along the direction of m), Dm,

of the unit normal vector field N of the surface M :

S(m) = −DmN . (C.15)

3Equivalently quadratic in this context
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The second fundamental form satisfies:

II(axu + b xv, a xu + b xv) = e a2 + 2 f a b + g b2, (C.16)

where e, f, g are the second fundamental coefficients:

e = −Nu · xu = N · xuu =
det(xuu,xu,xv)√

E G− F 2
, (C.17)

f = −Nv · xu = N · xuv =
det(xuv,xu,xv)√

E G− F 2
(C.18)

= −Nu · xv = N · xvu =
det(xvu,xu,xv)√

E G− F 2
, (C.19)

g = −Nv · xv = N · xvv =
det(xvv,xu,xv)√

E G− F 2
, (C.20)

being:

xαβ ≡
(

∂2x

∂α∂β
,

∂2y

∂α∂β
,

∂2z

∂α∂β

)
. (C.21)

The last equality in equations C.17–C.20 for the coefficients comes from rewriting the normal vector

as N = (xu ∧ xv)/||xu ∧ xv|| = (xu ∧ xv)/
√

E G− F 2 where the result ||xu ∧ xv|| =
√

E G− F 2

is a consequence of the Lagrange identity ((a · b)2 + ||a ∧ b||2 = ||a||2||b||2) and recalling that

(a ∧ b) · c = det(a, b, c). Unlike the first fundamental form, the second fundamental form is not

necessarily positive or definite.

The normal curvature of a regular surface M in the direction of a unit tangent vector tP at a

point P ∈M is formally defined as:

κN (tP ) = S(tP ) · tP , (C.22)

S being the shape operator. From the previous definition of the second fundamental form, we can

express the normal curvature κN as:

κN (tP ) = II(tP , tP ), (C.23)
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and, for a generic non-unitary tangent vector, t
′

P :

κN (t
′

P ) =
S(t

′

P ) · t′P
t
′
P · t

′
P

=
II(t

′

P , t
′

P )
I(t′P , t

′
P )

. (C.24)

The maximum (κ1) and minimum (κ2) values of the normal curvature at a point P ∈M are called

principal curvatures. The directions defined by the tangent vectors associated with those principal

curvatures are called principal directions and are orthogonal. Formally, the principal curvatures

at a point P are defined as the eigenvalues (κ1, κ2) of the shape operator S(P ), and the principal

directions correspond to the associated (orthogonal) eigenvectors (e1,e2). The normal curvature at

P along tP is then given by Euler’s formula:

κN = κ1 cos2(θ) + κ2 sin2(θ), (C.25)

where θ is the angle between e1 and tP . The Gaussian curvature of a regular surface M at a point

P ∈M is formally defined as the determinant of the shape operator S at that point:

K(P ) = det(S(P )). (C.26)

Gauss’ Theorema Egregium proves that the Gaussian curvature of a regular surface M is invariant

under local isometry. In other words, it is an intrinsic property of the surface, and therefore it

only depends on its first fundamental form (at every point P ∈ M). This is a remarkable result

since the formal definition of the Gaussian curvature involves the second fundamental form directly

(and, therefore, the embedding of the surface M). In terms of the first fundamental form only, the

Gaussian curvature is written as:

K =
1√

E G− F 2

[
∂

∂v

(√
E G− F 2

E
Γ2

11

)
− ∂

∂u

(√
E G− F 2

E
Γ2

12

)]
, (C.27)

where Γk
ij are the Christoffel symbols of the second kind, which can be expressed in terms of the
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first fundamental coefficients as:

Γ2
11 =

2 E Fu − E Ev − F Eu

2 (E G− F 2)
, Γ2

12 =
E Gu − F Ev

2 (E G− F 2)
. (C.28)

Gaussian curvature can also be expressed in terms of the first and second fundamental coefficients

in a more compact way:

K =
e g − f2

E G− F 2
. (C.29)

In terms of the principal curvatures, the Gaussian curvature is expressed as:

K = κ1κ2. (C.30)

Points with positive/negative Gaussian curvature are called elliptic/hyperbolic. A point is parabolic

if the Gaussian curvature is zero but not the shape operator. At planar points both the Gaussian

curvature and the shape operator are zero. In a synclastic/anticlastic surface, all its points are

elliptic/hyperbolic.

The mean curvature of a regular surface M at a point P ∈M is formally defined as the trace of

the shape operator S at that point:

H(P ) = tr(S(P )). (C.31)

In terms of the first and second fundamental coefficients, the mean curvature is:

H =
eG− 2 f F + g E

2 (E G− F 2)
. (C.32)

Unlike Gaussian curvature, which is intrinsic, the mean curvature is an extrinsic property of the

surface, that is, it depends on the embedding 4. The mean curvature coincides with the mean of the

principal curvatures:

H =
κ1 + κ2

2
. (C.33)

4For instance, a cylinder and a plane are locally isometric but the mean curvature of a plane is zero while that of
a cylinder is nonzero. Their Gaussian curvature is zero.
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Combining equations C.30 and C.33, the principal curvatures can be obtained from the Gaussian

and mean curvatures: 
κ1 = H +

√
H2 −K

κ2 = H −
√

H2 −K

. (C.34)

Gaussian and mean curvature satisfy:

H2 −K =
(

κ1 − κ2

2

)2

≥ 0. (C.35)

Points where H2 = K (that is, κ1 = κ2 and, therefore, the normal curvature is the same in any

direction) are called umbilical points. A surface is defined as (locally) minimal if its mean curvature

(locally) vanishes (H = 0, that is, κ1 = −κ2).

The shape index , Υ, and curvedness, Λ, of a regular surface M at a point P are defined (Koen-

derink & van Doorn, 1992) by:

Υ = − 2
π

arctan
(

κ1 + κ2

κ1 − κ2

)
, (C.36)

Λ =

√
κ2

1 + κ2
2

2
. (C.37)

In terms of the Gaussian and mean curvatures, the shape index and curvedness can be expressed as:

Υ = − 2
π

arctan(
H√

H2 −K
), (C.38)

Λ =
√

2H2 −K. (C.39)

Shape index is dimensionless, while curvedness has the dimensions of a reciprocal length. The

planar patch, for which κ1 = κ2 = 0, has null curvedness and an indeterminate shape index.

All other regular patches of a regular surface M map on the domain (Υ,Λ) ∈ [−1,+1] × R+.

{ρ, φ} ≡ {
√

2Λ,−πΥ/2} are polar coordinates in the semi-plane5 of axes {κ1 − κ2}+ and {κ1 +

κ2} (see Figure C.1). Some other properties of the shape index are summarized below (extracted

5Note that, by definition, κ1 − κ2 > 0.
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κ1 + κ2κ2

κ1

κ1 − κ2

ρ =
√

2Λ

φ = −π
2Υ

Figure C.1: Transformation from (κ1, κ2) to (Υ,Λ)

from Koenderink & van Doorn (1992)) (see Figure C.2 for a graphical explanation):

• Points where |Υ| = 1 are umbilical points and represent locally spherical shapes (“cup” (Υ =

−1) or “cap” (Υ = +1))6. Points where 0.5 < |Υ| < 1 are elliptic points and represent

locally ellipsoidal shapes, tending toward the spherical shape when |Υ| → 1 and towards the

cylindrical shape when |Υ| → 0.5. Points where |Υ| = 0.5 are parabolic points and represent

cylindrical shapes (“rut” (Υ = −0.5), and “ridge” (Υ = +0.5)). Points where 0 < |Υ| < 0.5

are hyperbolic points and represent locally hyperbolic shapes, tending toward the cylindrical

shapes when |Υ| → 0.5 and towards the symmetrical saddle when |Υ| → 0.

• The range Υ ∈ (−1,−0.5) represents the concavities (concave “ruts” or “trough” shapes).

The range Υ ∈ (−0.5,+0.5) represents the saddle-like shapes (“saddle-ruts” (Υ ∈ (−0.5, 0))

and “saddle-ridges” (Υ ∈ (0,+0.5))), with the symmetrical saddle at Υ = 0. The range

Υ ∈ (+0.5,+1) represents the convexities (convex “ridges”, or “dome-shapes”).

• Generically, umbilicals (|Υ| = 1) occur only at isolated points on the surface. Parabolic points

(|Υ| = 0.5) occur on curves of two distinct types (Υ = ±0.5), which are smooth, closed

6The following convention has been chosen: a regular surface M is locally concave/convex at a given point P ∈ M
if the point P is a local minimum/maximum in the reference system with vertical axis pointing towards the outward
normal at P .
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loops on closed regular surfaces, and such that never intersect (although they can be nested

or juxtaposed). Symmetrical saddles (Υ = 0) also occur on curves. Ellipsoid patches with

different sign(Υ) (“domes” and “troughs”) are never adjacent, being necessarily separated by

saddle-like patches.

• Two shapes with opposite shape indices represent complementary pairs (matching each other

as “mold” and “stamp”, when appropriately scaled).

Figure C.2: Range of shape index (Υ), with its most representative associated local shapes (figure
based on Koenderink & van Doorn (1992))


