Appendix A

Governing equations for the generation of strain, vorticity, dissipation, and enstrophy

A. 1 Generation of strain and dissipation

From the Navier-Stokes equations for incompressible flow $(\nabla \cdot \mathbf{u}=0)$:

$$
\begin{equation*}
\frac{\partial u_{i}}{\partial t}+u_{k} \frac{\partial u_{i}}{\partial x_{k}}=-\frac{1}{\rho} \frac{\partial p}{\partial x_{i}}+\nu \frac{\partial^{2} u_{i}}{\partial x_{k} \partial x_{k}} \tag{A.1}
\end{equation*}
$$

decompose the velocity gradient tensor $\partial u_{i} / \partial x_{j}$ in its symmetric (strain-rate tensor, $S_{i j}$) and antisymmetric (rotation-rate tensor, $\Omega_{i j}$) parts:

$$
\begin{equation*}
\frac{\partial u_{i}}{\partial x_{j}}=S_{i j}+\Omega_{i j}, \quad S_{i j} \equiv \frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right), \quad \Omega_{i j} \equiv \frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{j}}-\frac{\partial u_{j}}{\partial x_{i}}\right) . \tag{A.2}
\end{equation*}
$$

Take $\left[\partial(A .1)_{i} / \partial x_{j}+\partial(A .1)_{j} / \partial x_{i}\right] / 2$ and use

$$
\begin{equation*}
\frac{1}{2}\left(\frac{\partial u_{k}}{\partial x_{j}} \frac{\partial u_{i}}{\partial x_{k}}+\frac{\partial u_{k}}{\partial x_{i}} \frac{\partial u_{j}}{\partial x_{k}}\right)=S_{i k} S_{k j}+\Omega_{i k} \Omega_{k j} \tag{A.3}
\end{equation*}
$$

to obtain:

$$
\begin{equation*}
\frac{\mathrm{D} S_{i j}}{\mathrm{D} t}=-S_{i k} S_{k j}-\Omega_{i k} \Omega_{k j}-\rho^{-1} \frac{\partial^{2} p}{\partial x_{i} \partial x_{j}}+\nu \frac{\partial^{2} S_{i j}}{\partial x_{k} \partial x_{k}} \tag{A.4}
\end{equation*}
$$

where $\mathrm{D} / \mathrm{D} t$ denotes the substantial derivative operator ($\mathrm{D} / \mathrm{D} t=\partial / \partial t+u_{k} \partial / \partial x_{k}$).
Multiply equation A. 4 by $S_{j i}$ and use its symmetry to obtain:

$$
\begin{equation*}
\frac{\mathrm{D}}{\mathrm{D} t}\left(\frac{1}{2} S_{i j} S_{i j}\right)=-S_{i k} S_{k j} S_{j i}-\Omega_{i k} \Omega_{k j} S_{j i}-\rho^{-1} S_{j i} \frac{\partial^{2} p}{\partial x_{i} \partial x_{j}}+\nu S_{j i} \frac{\partial^{2} S_{i j}}{\partial x_{k} \partial x_{k}} . \tag{A.5}
\end{equation*}
$$

To find the equivalent relations in terms of the vorticity, $\boldsymbol{\omega} \equiv \nabla \times \mathbf{u}$, instead of the rotation-rate tensor, $\boldsymbol{\Omega}$, use $\Omega_{i j}=-\epsilon_{i j k} \omega_{k} / 2$, where $\epsilon_{i j k}$ is the Levi-Civita symbol and the contraction epsilon identity, $\epsilon_{l i k} \epsilon_{j m k}=\delta_{l j} \delta_{i m}-\delta_{l m} \delta_{i j}$, to express

$$
\begin{equation*}
\Omega_{i k} \Omega_{k j}=\left(\omega_{i} \omega_{j}-\delta_{i j} \omega_{m} \omega_{m}\right) / 4 \tag{A.6}
\end{equation*}
$$

Thus, equations A. 4 and A. 7 can be rewritten as:

$$
\begin{gather*}
\frac{\mathrm{D} S_{i j}}{\mathrm{D} t}=-S_{i k} S_{k j}-\frac{1}{4}\left(\omega_{i} \omega_{j}-\delta_{i j} \omega_{k} \omega_{k}\right)-\rho^{-1} \frac{\partial^{2} p}{\partial x_{i} \partial x_{j}}+\nu \frac{\partial S_{i j}}{\partial x_{k} \partial x_{k}} \tag{A.7}\\
\frac{\mathrm{D}}{\mathrm{D} t}\left(\frac{1}{2} S_{i j} S_{i j}\right)=-S_{i k} S_{k j} S_{j i}-\frac{1}{4} \omega_{i} S_{i j} \omega_{j}-\rho^{-1} S_{j i} \frac{\partial^{2} p}{\partial x_{i} \partial x_{j}}+\nu S_{j i} \frac{\partial S_{i j}}{\partial x_{k} \partial x_{k}} \tag{A.8}
\end{gather*}
$$

where the symmetry of $S_{j i}$ and the incompressibility condition $\left(\nabla \cdot \mathbf{u}=\operatorname{tr}(\nabla \mathbf{u})=\operatorname{tr}(\mathbf{S})=\delta_{i j} S_{j i}=0\right)$ have been considered.

A. 2 Generation of vorticity and enstrophy

Apply the curl operator to equation A.1, obtaining:

$$
\begin{equation*}
\frac{\partial(\nabla \times \mathbf{u})}{\partial t}+\nabla \times(\mathbf{u} \cdot \nabla \mathbf{u})=-\nabla \times(\nabla p)+\nu \nabla^{2}(\nabla \times \mathbf{u}) \tag{A.9}
\end{equation*}
$$

From tensorial algebra, the following identities hold:

$$
\begin{array}{r}
\nabla \times(\nabla \phi) \equiv 0, \quad \nabla \cdot(\nabla \times \mathbf{u}) \equiv 0, \quad \nabla u^{2} / 2 \equiv \mathbf{u} \cdot \nabla \mathbf{u}+\mathbf{u} \times \nabla \times \mathbf{u} \\
\nabla \times(\boldsymbol{A} \times \boldsymbol{B}) \equiv(\boldsymbol{B} \cdot \nabla+\boldsymbol{B} \times \nabla \times) \boldsymbol{A}+(\boldsymbol{A} \cdot \nabla+\boldsymbol{A} \times \nabla \times) \boldsymbol{B} \tag{A.11}
\end{array}
$$

where ϕ is a scalar field, \mathbf{u} is a vector field with modulus $u \equiv\|\mathbf{u}\|$, and \boldsymbol{A} and \boldsymbol{B} are second-order tensor fields. Use these tensor identities and the incompressibility condition, $\nabla \cdot \mathbf{u}=0$ to rewrite equation A. 9 as:

$$
\begin{equation*}
\frac{\partial \boldsymbol{\omega}}{\partial t}+\mathbf{u} \cdot \nabla \boldsymbol{\omega}=\boldsymbol{\omega} \cdot \nabla \mathbf{u}+\nu \nabla^{2} \boldsymbol{\omega} \tag{A.12}
\end{equation*}
$$

The first term of the right-hand side of equation A. 12 is responsible for the vortex-stretching.
Dot product equation A. 12 with $\boldsymbol{\omega}$, decompose the velocity gradient tensor as $\nabla \mathbf{u}=\boldsymbol{S}+\boldsymbol{\Omega}$ in the first term of the right-hand side, and use the antisymmetry of Ω^{1} to obtain:

$$
\begin{equation*}
\frac{\mathrm{D}}{\mathrm{D} t}\left(\frac{1}{2} \omega_{i} \omega_{i}\right)=\omega_{i} S_{i k} \omega_{k}+\nu \omega_{i} \frac{\partial^{2} \omega_{i}}{\partial x_{k} \partial x_{k}} \tag{A.13}
\end{equation*}
$$

To express equation A. 13 in terms of $\boldsymbol{\Omega}$, particularize

$$
\begin{equation*}
\Omega_{i j} \frac{\partial^{2} \Omega_{k j}}{\partial x_{p} \partial x_{p}}=\frac{1}{4} \epsilon_{i j l} \omega_{l} \epsilon_{k j m} \frac{\partial^{2} \omega_{m}}{\partial x_{p} \partial x_{p}}=\frac{1}{4}\left(\omega_{m} \frac{\partial^{2} \omega_{m}}{\partial x_{p} \partial x_{p}} \delta_{i k}-\omega_{k} \frac{\partial^{2} \omega_{i}}{\partial x_{p} \partial x_{p}}\right) \tag{A.14}
\end{equation*}
$$

for $k=i$, obtaining:

$$
\begin{equation*}
\Omega_{i j} \frac{\partial^{2} \Omega_{i j}}{\partial x_{p} \partial x_{p}}=\frac{1}{2} \omega_{i} \frac{\partial^{2} \omega_{i}}{\partial x_{p} \partial x_{p}} \tag{A.15}
\end{equation*}
$$

Then, from equation A. 6 and the antisymmetry of Ω it results $\omega_{i} \omega_{i}=2 \Omega_{i j} \Omega_{i j}, \omega_{i} \omega_{j}=4 \Omega_{i k} \Omega_{k j}+$ $2 \delta_{i j} \Omega_{m n} \Omega_{m n}$, which can be substituted, along with the relation A.15, into equation A. 13 to obtain:

$$
\begin{equation*}
\frac{\mathrm{D}}{\mathrm{D} t}\left(\frac{1}{2} \Omega_{i j} \Omega_{i j}\right)=2 \Omega_{i k} \Omega_{k j} S_{j i}+\nu \Omega_{i j} \frac{\partial^{2} \Omega_{i j}}{\partial x_{k} \partial x_{k}} \tag{A.16}
\end{equation*}
$$

[^0]where the symmetry of \boldsymbol{S} and the incompressibility relation expressed in terms of $\boldsymbol{S}, \delta_{i j} S_{i j}=0$, have been used to rewrite the first term of the right-hand side.

[^0]: ${ }^{1}$ If \boldsymbol{A} is an antisymmetric second-order tensor, then $\boldsymbol{a} \cdot \boldsymbol{A} \cdot \boldsymbol{a}=0$, for any vector field \boldsymbol{a}.

