On the non-local geometry of turbulence

Thesis by
Iván Bermejo-Moreno
In Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy

2008
(Defended April 18, 2008)
(C) 2008

Iván Bermejo-Moreno

All Rights Reserved

To my family and to the memory of Pawel Buraczewski

Acknowledgments

This Ph.D. and the marvelous experience that I lived through it were possible thanks to the help of many. First, I want to thank my advisor, Professor Dale Pullin, for his guidance, encouragement, patience, and support. His ability to keep always a larger view both in the course of research and also in life has given another dimension to my learning experience. Being his student has been an honor and a pleasure. I would like to thank the members of my thesis committee, Prof. Beverley McKeon, Prof. Daniel Meiron, and Prof. Joseph Shepherd for their valuable time and for showing interest in this research.

Interacting with the GALCIT community has been very rewarding. Particularly, I want to thank my friends from the former Iris Lab. Also, in the Aeronautics department, I would like to thank Alexandra Katsas and Dimity Nelson for their invaluable help. I am grateful to the members of the Caltech faculty, both in GALCIT and in other departments, who were involved in my education. Also at Caltech, I am thankful to Marjory Gooding, Jim Endrizzi, and Athena Trentin, for their outstanding dedication at the International Student Programs. I want to thank Dr. Paul O'Gorman, at Caltech, and Dr. Kiyosi Horiuti, at the Tokyo Institute of Technology, for providing the numerical turbulence databases used in this work, and Prof. Emmanuel Càndes and Dr. Lexing Ying for valuable discussions regarding curvelets.

The Fulbright Program gave me the opportunity to come to the U.S.A., and in particular to Caltech, to pursue a Ph.D. degree. With it, they gave me also one of the most wonderful experiences of my life, for which I will always be grateful. I wish to thank especially George L. Argyros, for his trust in me and his support, and Ann Z. Kerr, for her friendship and for being an example and inspiration. I feel honored and very fortunate to have met her.

I would like to thank my friends, those in the distance and those I met here, for making this journey so special. Sharing this time with them has been the best way I could have ever imagined to discover the amazing place California is.

My deepest gratitude goes to my parents, Atanasio and Ana Elisa Aura, and to my sister Sonia. Thanks to them, this dream came true.

This work has been supported in part by the National Science Foundation under grants DMS0353838 and DMS-0714050, and by the Fulbright Program, under sponsorship of the U.S. Department of State.

Abstract

A multi-scale methodology for the study of the non-local geometry of eddy structures in turbulence is developed. Starting from a given three-dimensional field, this consists of three main steps: extraction, characterization, and classification of structures. The extraction step is done in two stages: first, a multi-scale decomposition based on the curvelet transform is applied to the full three-dimensional field, resulting in a finite set of component fields, one per scale; second, by iso-contouring each component field at one or more iso-contour levels, a set of closed iso-surfaces is obtained that represents the structures at that scale. For periodic domains, those structures intersecting boundaries are reconnected with their continuation in the opposite boundaries. The characterization stage is based on the joint probability density function (jpdf), in terms of area coverage on each individual iso-surface, of two differential-geometry properties - the shape index and curvedness-plus the stretching parameter, a dimensionless global invariant of the surface. Taken together, this defines the geometrical signature of the iso-surface. The classification step is based on the construction of a finite set of parameters, obtained from algebraic functions of moments of the jpdf of each structure, that specify its location as a point in a multi-dimensional 'feature space'. At each scale the set of points in feature space represents all structures at that scale, for the specified iso-contour value. This allows the application, to the set, of clustering techniques that search for groups of structures with a common geometry.

Results are presented of a first application of this technique to a passive scalar field obtained from 512^{3} direct numerical simulation of scalar mixing by forced, isotropic turbulence $\left(R e_{\lambda}=265\right)$. These show transition, with decreasing scale, from blob-like structures in the larger scales to bloband tube-like structures with small or moderate stretching in the inertial range of scales, and then
toward tube and predominantly sheet-like structures with high level of stretching in the dissipation range of scales. Implications of these results for the dynamical behavior of passive scalar stirring and mixing by turbulence are discussed.

We apply the same methodology to the enstrophy and kinetic energy dissipation rate instantaneous fields of a second numerical database of incompressible homogeneous isotropic turbulence decaying in time obtained by DNS in a periodic box. Three different resolutions are considered: $256^{3}, 512^{3}$, and 1024^{3} grid points-with $k_{\max } \bar{\eta}$ approximately 1,2 , and 4 , respectively, the same initial conditions and $R e_{\lambda} \approx 77$. This allows a comparison of the geometry of the structures obtained for different resolutions. For the highest resolution, structures of enstrophy and dissipation evolve in a continuous distribution from blob-like and moderately stretched tube-like shapes at the large scales to highly stretched sheet-like structures at the small scales. The intermediate scales show a predominance of tube-like structures for both fields, much more pronounced for the enstrophy field. The dissipation field shows a tendency toward structures with lower curvedness than those of the enstrophy for intermediate and small scales. The 256^{3} grid resolution case ($k_{\max } \bar{\eta} \approx 1$) was unable to detect the predominance of highly stretched sheet-like structures at the smaller scales.

The same methodology, but without the multi-scale decomposition, is then applied to two scalar fields used by existing local criteria for the eduction of tube- and sheet-like structures in turbulence, Q and $\left[A_{i j}\right]_{+}$, respectively, obtained from invariants of the velocity gradient tensor and alike in the 1024^{3} case. This adds the non-local geometrical characterization and classification to those local criteria, assessing their validity in educing particular geometries.

Finally we introduce a new methodology for the study of proximity issues among different sets of structures, based also on geometrical and non-local analyses. We apply it to four of the fields previously studied. Tube-like structures of Q are mainly surrounded by sheets of $\left[A_{i j}\right]_{+}$, which appear at close distances. For the enstrophy, tube-like structures at an intermediate scale are primarily surrounded by sheets of smaller scales of the enstrophy and structures of dissipation at the same and smaller scales. A secondary contribution results from tubes of enstrophy at smaller scales appearing at farther distances. Different configurations of composite structures are presented.

Contents

Acknowledgments iv
Abstract vi
Contents viii
List of Figures xii
List of Tables xxi
Nomenclature xxii
Greek letters xxii
Roman letters xxiii
Acronyms xxvi
1 Introduction 1
1.1 The role of geometry 1
1.2 Previous identification criteria 3
1.3 Non-local, multi-scale, and clustering features 5
1.4 Choice of applications: passive scalar, enstrophy, and dissipation fields 5
1.5 Grid resolution effects 7
1.6 Structure interaction 8
1.7 Outline 9
2 Methodology for the study of the geometry of structures in turbulence 10
2.1 Extraction of structures 10
2.1.1 The curvelet transform 11
2.1.2 Periodic reconnection 14
2.2 Characterization of structures 15
2.2.1 Shape index and curvedness 15
2.2.2 Joint probability density function (jpdf) 17
2.2.3 Signature of a structure 19
2.3 Classification of structures 20
2.3.1 Clustering algorithm 21
2.3.2 Feature and visualization spaces 23
2.3.3 Optimality score: silhouette coefficient 25
3 Application to a virtual set of structures 27
4 Geometry of structures of a passive scalar fluctuation field in stationary isotropic homogeneous turbulence 30
4.1 DNS database 30
4.2 Multi-scale diagnostics 31
4.3 Geometry of passive scalar iso-surfaces 33
4.4 Discussion and physical interpretation 41
5 Geometry of structures of enstrophy and dissipation fields in decaying homoge- neous isotropic turbulence 44
5.1 DNS database 44
5.2 Multi-scale decomposition 45
5.3 Characterization and classification of individual structures 50
5.4 Effect of grid resolution in the geometry of structures 56
5.5 Clustering results for the 1024^{3} case 58
5.6 Discussion 60
6 Assessment of the new non-local methodology complementing existing local meth- ods 62
6.1 Local identification criteria 62
6.2 Application of non-local methodology 64
7 Interaction among structures of different fields: proximity issues 69
7.1 Motivation 69
7.2 Methodology 71
7.2.1 Processing individual structures 71
7.2.2 Transition from individual structures to results for the set \mathcal{A} 74
7.2.3 Computational remarks 74
7.3 Application to structures of Q and $\left[A_{i j}\right]_{+}$ 75
7.3.1 Proximity and area coverage of surrounding structures through jpdf+i 76
7.3.2 Proximity split by groups through cumulative marginal pdfs 78
7.3.3 Structures of Q surrounding themselves 79
7.4 Application to structures of $\omega_{i} \omega_{i}$ and $S_{i j} S_{i j}$ 80
7.5 Discussion 83
8 Conclusions and Future Work 85
8.1 Geometry of individual structures 85
8.2 Assessment of non-local methodology complementing existing local identification criteria 87
8.3 Proximity issues from a geometrical perspective 88
8.4 Computational remarks 89
8.5 Future work 89
Appendix A Governing equations for the generation of strain, vorticity, dissipation, and enstrophy
A. 1 Generation of strain and dissipation 92
A. 2 Generation of vorticity and enstrophy 93
Appendix B Interpretation of extracted structures 96
Appendix C Differential geometry background 100
Appendix D Density functions on manifolds 109
D. 1 Conditions for existence of an explicit analytical solution 115
D. 2 Extension to multiple dimensions 118
Appendix E Gauss-Bonnet theorem in the shape index, curvedness space 120
Appendix F Definition of feature center and upper and lower distances of a prob- ability density function. 122
Appendix G Analytic geometric characterization of limiting surfaces. 124
Appendix H Stratified random sampling with disproportionate allocation 127
Bibliography 129
Subject Index 137

List of Figures

2.1 Frequency window $\tilde{U}_{j, \ell}$ (darkened region) defined in the three-dimensional discrete curvelet transform, extracting the frequency content near the wedge with center slope (1, $\left.\alpha_{\ell}, \beta_{\ell}\right)$ (figure based on Ying et al. (2005))
2.2 Example of application of the periodic reconnection algorithm to a set of boundaryintersecting structures obtained from a periodic three-dimensional scalar field. (a) Before periodic reconnection. (b) After periodic reconnection, where the color of each structure indicates the number of pieces involved in the reconnected structure for this particular scenario: blue $=1$ (non-intersecting), green $=2$, orange $=4$, cyan $=8 .$.
2.3 2D example of reconnection of a periodic structure spanning across multiple extensions of the periodic domain. The original fragments of the structure are represented in the original domain (central square). The resulting structure, after reconnection, is represented by the thick line.
2.4 Transformation from $\left(\kappa_{1}, \kappa_{2}\right)$ to (Υ, Λ). 17
2.5 Range of shape index, Υ, with its most representative associated local shapes (figure based on Koenderink \& van Doorn (1992))17
2.6 Representative local shape in the combined $\left(\kappa_{1}, \kappa_{2}\right)$ plane 18
2.7 Example of a three-dimensional surface (a) with S and C mapped onto it (bottom and upper halves, respectively) and its corresponding signature (b), for which a projection of the three-dimensional physical structure is shown at the top-right corner, its area-based joint two-dimensional probability density function (in terms of S and C) is presented in the bottom-left area, while the marginal probability density functions of both S and C, are drawn at its top and right sides, respectively. The value of the stretching parameter, λ, is represented below the jpdf by a black bar (in a scale from 0 to 1). Mean and feature centers, as well as upper and lower distances for each variable of the jpdf, are superimposed to the jpdf, as the filled and hollow squares, respectively (refer to $\S 2.3)$
2.8 Projections of the visualization space with the predominantly blob-, tube- and sheetlike regions sketched: three-dimensional perspective projection (left), two-dimensional orthogonal projections (right) of the planes β (formed by the axes \hat{C} and λ) and α (formed by \hat{S} and \hat{C}). For example, a glyph consisting of a sphere and four bars along the $\pm \hat{S}, \pm \hat{C}$ axes can represent nine parameters of the characterization of the corresponding structure: $\hat{S}, \hat{C}, \lambda$ given by the center of the sphere, upper and lower distances of S and C given by each bar, the surface area A of the associated structure, given by the size of the glyph, and the group to which the structure belongs, given by the color of the glyph
3.1 Visualization space with clustering results for the virtual set of modeled structures, with representative examples shown at the sides
4.1 Tri-plane cuts of the passive scalar fluctuation field for the original database (top left) and each of the filtered scales resulting from the multi-scale analysis (filtering in curvelet domain) (increasing scale number from left to right and top to bottom)
xiv
4.2 Plane cuts normal to the x_{3}-axis at its midpoint of the passive scalar fluctuation field for the original database (top left) and each one of the filtered scales resulting from the multi-scale analysis (filtering in curvelet domain) (increasing scale number from left to right and top to bottom)
4.3 Volume-data pdfs of the passive scalar fluctuation field (a) and corresponding spectra (b), associated with the original database (containing all scales) and each of the filtered scales
4.4 Iso-contours of the passive scalar fluctuation field for the original database (top left) and each one of the filtered scales resulting from the multi-scale analysis (filtering in the curvelet domain) (increasing scale number from left to right and top to bottom). A contour value equal to the mean plus two times the standard deviation of each resulting scalar field was used
4.5 Visualization space with spheres representing the structures educed from the passive scalar fluctuation field at all scales (top), and only at scale 1 (middle) and 2 (bottom). Radii of spheres represents (in normalized logarithmic scale) the surface area of each structure. Color of the spheres represents the scale to which the structure belongs: dark blue (1), light blue (2), green (3), yellow (4), red (5). (Continued on Figure 4.6)
4.6 Visualization space with spheres representing the structures educed from the passive scalar fluctuation field at scale 3 (top), 4 (middle), and 5 (bottom). Radii of spheres represents (in normalized logarithmic scale) the surface area of each structure. Color of the spheres represents the scale to which the structure belongs: green (3), yellow (4), red (5). (Continued from Figure 4.5)
4.7 Signatures of representative structures (refer to Figure 4.5 (top) for the location of the corresponding points $(A-L)$ in the visualization space)
4.8 Result of the clustering algorithm in a visualization space showing spheres representing structures with radii scaled by the value of their silhouette coefficient (renormalized to have only positive values) and colored by the cluster to which they belong. An optimum number of three clusters was automatically found. The seven clustering parameters used to define the feature space are shown for each structure by the center of its representing sphere (of coordinates $\hat{S}, \hat{C}, \lambda$) and the four bars scaled by the value of d_{u}, d_{l} of S and C
5.1 Volume pdfs in physical domain (left) and spectra in Fourier domain (right) of $\omega_{i} \omega_{i}$ and $S_{i j} S_{i j}$ fields for the three grid resolutions $\left(256^{3}, 512^{3}\right.$, and $\left.1024^{3}\right)$. Note that the volume pdfs use a transformation of the form $\operatorname{sign}(x) \log (1+|x|)$ in the abscissa coordinate, and that curves for $\omega_{i} \omega_{i}$ and $S_{i j} S_{i j}$ fields use two different vertical axes (both in the pdfs and the spectra), shifted one decade for a clear view (non-intersecting curves)
5.2 Tri-plane cuts of $\omega_{i} \omega_{i}$ and its multi-scale component fields for the 512^{3} case
5.3 Effect of the multi-scale decomposition in the 1024^{3} case for $\omega_{i} \omega_{i}$ (top) and $S_{i j} S_{i j}$ (bottom) fields on the volume pdfs in physical domain (left) and on the spectra in Fourier domain (right). Note that the volume pdfs have been shifted vertically to accommodate all scales and the original fields in a clearer view. Also, instead of using a log-scale in the abscissa of the pdf plots, since there are negative values for all filtered scales, a transformation of the form $\operatorname{sign}(x) \log (1+|x|)$ is used for each field x. . .
5.4 Plane cuts of $\omega_{i} \omega_{i}$ (left) and $S_{i j} S_{i j}$ (right) normal to one of the principal directions of the cubic domain at half its side length for the 1024^{3} case
5.5 Zoomed parts of plane cuts of $\omega_{i} \omega_{i}(\operatorname{top})$ and $S_{i j} S_{i j}$ (bottom) in one of the principal directions of the cubic domain at half its side length for the three grid resolutions 256^{3} (left), 512^{3} (center), and 1024^{3} (right). Greyscale has been renormalized to the zoomed region for better clarity

xvi

5.6 Zoomed parts of plane cuts of component field at scale number 5 for $\omega_{i} \omega_{i}$ (top) and $S_{i j} S_{i j}$ (bottom) in one of the principal directions of the cubic domain at half its side length for the three grid resolutions 256^{3} (left), 512^{3} (center), and 1024^{3} (right). Greyscale has been renormalized to the zoomed region for better clarity
5.7 3D views of the visualization spaces, with glyphs (spheres) representing educed structures, colored by scale number (all merged in each visualization space) and scaled by the lognormalized area of the corresponding structure, for $\omega_{i} \omega_{i}$ (top row) and $S_{i j} S_{i j}$ (bottom row) at 256^{3} (left), 512^{3} (center), and 1024^{3} (right) grid resolutions
5.8 Top views (($\hat{S}, \hat{C})$-plane) of the visualization spaces, with glyphs (spheres) representing educed structures, colored by scale number and scaled by the lognormalized area of the corresponding structure, for $\omega_{i} \omega_{i}$ (top row) and $S_{i j} S_{i j}$ (bottom row) at 256^{3} (left), 512^{3} (center), and 1024^{3} (right) grid resolutions
5.9 Breakdown, by scale number (increasing top to bottom), of 3 D views of the visualization spaces for $\omega_{i} \omega_{i}$ at 256^{3} (left), 512^{3} (center), and 1024^{3} (right) grid resolutions .
5.10 Breakdown, by scale number (increasing top to bottom), of top views (($\hat{S}, \hat{C})$-plane) of the visualization spaces for $\omega_{i} \omega_{i}$ at 256^{3} (left), 512^{3} (center), and 1024^{3} (right) grid resolutions
5.11 Breakdown, by scale number (increasing top to bottom), of 3D views of the visualization spaces for $S_{i j} S_{i j}$ at 256^{3} (left), 512^{3} (center), and 1024^{3} (right) grid resolutions
5.12 Breakdown, by scale number (increasing top to bottom), of top views (($\hat{S}, \hat{C})$-plane) of the visualization spaces for $S_{i j} S_{i j}$ at 256^{3} (left), 512^{3} (center), and 1024^{3} (right) grid resolutions
5.13 Clustering results in the visualization space-3D view (left) and lateral (center) and top (right) projections - with glyphs (spheres) representing the optimum clusters of structures educed from the stratified random sample with optimum allocation of the sets of $\omega_{i} \omega_{i}$ (top) and $S_{i j} S_{i j}$ (bottom) structures. Glyphs are scaled by the normalized value of the silhouette coefficient, which indicates the degree of membership of that element to the assigned cluster
5.14 Optimality scores for different number of clusters obtained during the application of the clustering algorithm to the set of structures of $\omega_{i} \omega_{i}$ (left) and $S_{i j} S_{i j}$ (right) independently. Optimum number of clusters (square point) of 3 and 2 were automatically determined for $\omega_{i} \omega_{i}$ and $S_{i j} S_{i j}$, respectively
6.1 Volume pdfs in physical domain (left) and spectra in Fourier domain (right) of Q and $\left[A_{i j}\right]_{+}$fields for the 1024^{3} grid resolution. Note that the volume pdfs use a transformation of the form $\operatorname{sign}(x) \log (1+|x|)$ in the abscissa coordinate, and that curves for Q and $\left[A_{i j}\right]_{+}$fields use two different vertical axes (both in the pdfs and the spectra), shifted one decade for a clear view (non-intersecting curves)
6.2 Plane cuts of Q (left) and $\left[A_{i j}\right]_{+}$(right) fields normal one of the principal directions of the cubic domain, at half its side length
6.3 Iso-contours of Q and $\left[A_{i j}\right]_{+}$fields extracted at their mean plus 5 and 4 times their standard deviation, respectively
6.4 Visualization space - 3D view (left) and lateral (center) and top (right) projectionswith glyphs (spheres) representing educed structures of Q (blue) and $\left[A_{i j}\right]_{+}$(red), scaled by the lognormalized area of each corresponding structure
6.5 Clustering results in the visualization space-3D view (left) and lateral (center) and top (right) projections - with glyphs (spheres) representing optimum clusters of structures educed from the set union of Q and $\left[A_{i j}\right]_{+}$structures. Glyphs are scaled by the normalized silhouette coefficient, which indicates the degree of membership of that element to the assigned cluster
6.6 Optimality scores for different number of clusters obtained during the application of the clustering algorithm to the set of structures of Q and $\left[A_{i j}\right]_{+}$together. An optimum number of clusters of 2 was automatically determined (square point)
7.1 Left: Plane cut of $S_{i j} S_{i j}$ (red) superimposed over equivalent plane cut of $\omega_{i} \omega_{i}$ (blue).

Right: Plane cut of $\left[A_{i j}\right]_{+}$(red) superimposed over equivalent plane cut of Q (blue).
7.2 Schematic of the computation of the conditional array map (CAM) for a given structure a_{i} (sheet-like) with respect to two close structures c_{1} (tube-like) and c_{2} (blob-like). Minimum distance maps from $c_{j}(j=1,2)$ to a_{i} are shown, with a common color scale for both ranging from red to blue, representing smaller to larger minimum distances to a_{i}, respectively. The proximity value derived from them is mapped on a_{i}, with a color scale varying from blue (nil proximity) to red (maximum proximity). Those points of a_{i} tagged during the computation of the minimum distance maps (with proximity values greater than zero) will store also the values $\left\{g_{j}, \xi_{j}, \zeta_{j}\right\}$ of the corresponding c_{j} in the conditional array map
7.3 Components of the jpdf +i in terms of (\hat{S}, \hat{C}), plus intensity component based on proximity, of structures of $\mathcal{X}(Q) \cup \mathcal{X}\left(\left[A_{i j}\right]_{+}\right)$surrounding structures of $\mathcal{X}(Q)$: area-coverage pdf component (top left) using greyscale; intensity component (top right) using blue-cyan-green-yellow-red color-scale; composition of area-coverage pdf and intensity components to obtain the composite plot (bottom left) with bi-dimensional hue-saturation gradient scale (bottom right) corresponding to proximity (hue) and area coverage (saturation)
7.4 Representation of the marginal pdf of $\left[\left.\mathcal{P}(p, g)\right|_{\mathcal{A} \leftarrow B}\right.$ in terms of the proximity p (thick black line), showing the contribution of each group g by the different colored areas between two black lines (added cumulatively)
7.5 Examples of composite structures formed by interaction of tube-like (blue) and sheetlike (red) geometries found in the database. In cases (a) and (b) a tube is mostly embedded by one or more sheets that intersect it and remain at a close distance. Case (c) consists of three tubes and a sheet that follows closely their geometry, intersecting them, and connects them through stretched regions. Cases (d) and (e) show, each, a sheet-like structure wrapping around a tube, without intersecting it but remaining at a close distance and following its curvature. A smaller sheet intersecting the tube is also seen in case (d). Case (f) shows three tubes at moderate distances from each other ($\approx 5-10$ times their average radius) with a similar orientation and sheets partially surrounding them at close distance or even intersecting them. For clarity, only a subset of all the nearby structures surrounding each tube in every case is shown
7.6 Results for structures of Q surrounding themselves: $\left[\left.\overrightarrow{\mathcal{P I}}(\hat{S}, \hat{C} ; p)\right|_{\mathcal{A} \leftarrow \mathcal{B}}(\operatorname{left})\left[\left.\mathcal{P}(p, g)\right|_{\mathcal{A} \leftarrow \mathcal{B}}\right.\right.$ (right) for the case $\mathcal{A}=\mathcal{B}=\mathcal{X}(Q), g=1$
7.7 Results for structures of $\omega_{i} \omega_{i}$ at scale number 3 surrounded by structures of $\omega_{i} \omega_{i}$ (top) and by structures of $S_{i j} S_{i j}($ bottom $)$, at scale numbers $3-6:\left[\left.\overrightarrow{\mathcal{P I}}(\hat{S}, \hat{C} ; p)\right|_{\mathcal{A} \leftarrow \mathcal{B}}\right.$ (left) $\left[\left.\mathcal{P}(p, g)\right|_{\mathcal{A} \leftarrow \mathcal{B}}\right.$ (right)
B. 1 Fields (left) and corresponding iso-contours (right) for original (top) and filtered scales (below)
B. 2 Pdfs (a) and spectra (b) associated with the original and each one of the filtered scales
C. 1 Transformation from $\left(\kappa_{1}, \kappa_{2}\right)$ to (Υ, Λ)
C. 2 Range of shape index (Υ), with its most representative associated local shapes (figure based on Koenderink \& van Doorn (1992))
D. $1 \Psi(\xi)=\tilde{\Psi}(\xi)$ (right) with $\alpha=2$ for a surface M (left) with the local property ξ distributed in patches of constant ξ. Each point of that function (right) represents the area (two-dimensional Hausdorff measure) of the associated patch. Their discrete sum equals the total area of the surface M
D. $2 \Psi(\xi)$ (right) with $\alpha=1$ for a surface M with ξ smoothly distributed throughout M (except one patch of constant $\xi=\xi_{\max }$). In the left diagram, dashed lines represent line contours of constant $\xi=\xi_{1}, \xi_{2}$, which have an associated finite value of $\Psi(\xi)$ (since their Hausdorff dimension equals the dimension of the measure used to obtain $\Psi(\xi)$, $\alpha\left(M_{\xi_{1,2}}^{\overline{1}}\right)=1$), whereas the central patch (filled with oblique lines pattern) of constant $\xi=\xi_{\max }$ has an associated value $\mathcal{H}^{1}\left(M_{\xi_{\max }}^{=}\right) \rightarrow \infty$, since its Hausdorff dimension is $\alpha\left(M_{\xi_{\text {max }}}^{\overline{\bar{m}}}\right)=2$
D. $3 \tilde{\Psi}(\xi)$ (right) for a surface M with ξ smoothly distributed throughout M (except one patch of constant $\xi=\xi_{\max }$). In the left diagram, dashed lines represent line contours of constant $\xi=\xi_{\min }, \xi_{1}, \xi_{2}, \xi_{3}, \xi_{\max }$, such that they differ in a constant $\Delta \xi$. The central part of the figure represents $\Psi(\xi)$ (top) and $f(\xi)$ (bottom). $f(\xi)$ increases with ξ since the averaged distance between contours (normal to them along n) increases with ξ. On the right, the multiplication of both gives $\tilde{\Psi}(\xi)$.
D. 4 Example of non-invertible $\xi(u)$ map
F. 1 Mean (\bar{x}) and feature (\hat{x}) centers and upper $\left(d_{u}\right)$ and lower $\left(d_{l}\right)$ distances for a sample asymmetric probability density function, $f(x)$
G. 1 Generic structure (a) and limiting cases (b)
G. $2 \bar{S}, \bar{C}$, and λ as a function of ξ for the tube-like and sheet-like limits, evolving from the sphere limit $(\xi=0)$. Note that the abscissa has been rescaled as $\ln (1+\xi)$ to show more clearly the transition region

List of Tables

4.1 Breakdown of characteristic integral velocities and length scales for the filtered scales
5.1 Parameters for the computed cases: grid points, N; kinematic viscosity, ν; Taylormicroscale Reynolds number, $R e_{\lambda}$; average kinetic energy, $\langle K\rangle$; average dissipation rate, $\langle\epsilon\rangle$; integral length scale, L; Taylor microscale, λ; average Kolmogorov length scale, $\bar{\eta}$; grid resolution criterion, $k_{\max } \bar{\eta}$ (where $k_{\max }$ is the largest dynamically significant wavenumber). From HF

Nomenclature

Greek letters

$\alpha_{\ell}, \beta_{\ell} \quad$ Angles defining the center slope of the frequency wedge (curvelets) 12
$\gamma_{k} \quad$ Array of parameters stored in the conditional array map (CAM) 71
$\epsilon \quad$ Local dissipation 45
$\epsilon_{i j k} \quad$ Levi-Civita symbol 45
$\bar{\eta} \quad$ Average Kolmogorov length scale 30
$\vartheta \quad$ Eigenvalues of $A_{i j}$ 63
$\kappa_{1} \quad$ Maximum curvature 15
$\kappa_{2} \quad$ Minimum curvature 15
$\kappa_{n} \quad$ Normal curvature 16
$\Lambda \quad$ Curvedness 15
$\lambda \quad$ Stretching parameter 19
$\mu \quad$ Characteristic length scale of a closed surface 18
$\mu_{c} \quad$ Mean passive scalar gradient magnitude in x_{1} direction 6
$\nu \quad$ Kinematic viscosity 44
$\xi, \zeta \quad$ Local properties mapped onto a surface 72
$\rho \quad$ Density 63
$\varrho \quad$ Radial polar coordinate in the plane of principal curvatures 16
$\sigma_{l} \quad$ Local scaling parameter 22
$\Upsilon \quad$ Shape index 15
$\phi \quad$ Azimuthal polar coordinate in the plane of principal curvatures 16
$\begin{array}{lll}\varphi_{j, \ell, k}^{D} \quad \text { Curvelets in physical space } & 11\end{array}$
$\begin{array}{lll}\hat{\varphi}_{j, \ell, k}^{D} & \text { Curvelets in Fourier space } & 11\end{array}$
$\Omega_{i j} \quad$ Rotation-rate tensor $\quad 45$
$\omega \quad$ Wavenumber (Fourier domain) 11
$\omega_{i} \quad$ Vorticity field $(i=1,2,3) \quad 45$
$\omega_{i} \omega_{i} \quad$ Local enstrophy 45

Roman letters

$\hat{\boldsymbol{A}} \quad$ Locally scaled affinity matrix 22
$A \quad$ Area of a surface 18
$\boldsymbol{a} \quad$ Vector contained on the tangent plane at a point P of a surface $\quad 16$
$a_{i} \quad$ Average distance from an element to other elements of its same cluster $\quad 26$
(in the clustering algorithm)
$a_{i} \quad \quad$ Element i of the set \mathcal{A} (in the structure interaction analysis)
71
$A_{i j} \quad$ Symmetric second-order tensor $S_{i k} \Omega_{k j}+S_{j k} \Omega_{k i} \quad 3$
$\left[A_{i j}\right]_{+} \quad$ Largest remaining eigenvalue of $A_{i j}$ after removing $\left[A_{i j}\right]_{\omega} 63$
$\left[A_{i j}\right]_{-} \quad$ Smallest remaining eigenvalue of $A_{i j}$ after removing $\left[A_{i j}\right]_{\omega} \quad 63$
$\left[A_{i j}\right]_{\omega} \quad$ Eigenvalue of $A_{i j}$ associated with the eigenvector most aligned with the 63 vorticity field, ω_{i}
$b_{i} \quad$ Average distance from an element to the elements in the closest cluster26
$\begin{array}{lll}C & \text { Dimensionless curvedness } & 18\end{array}$
$\hat{C} \quad$ Feature dimensionless curvedness center 24
$c \quad$ Passive scalar
$c^{\prime} \quad$ Passive scalar fluctuation
$c_{j} \quad$ Element j of the $\operatorname{set} \mathcal{C}$ (in the structure interaction analysis)
xxiv

$c^{D}(j, l, k)$	Curvelet coefficients	11
D	Diagonalizing matrix	22
D	Diffusivity	6
d	Distance	72
$D_{a_{i}}$	Non-dimensionalizing length scale of the structure a_{i}	72
$d_{i j}$	Distance matrix	21
d_{l}	Lower distance of a probability density function	24
d_{u}	Upper distance of a probability density function	24
E	Set of elements, e_{i}, to cluster, $i=1, \ldots, N$	21
$E(k)$	Energy spectrum of original field (containing all scales)	33
$E_{i}(k)$	Energy spectrum associated with component field at scale number i	33
F	Distance function in the space of parameters	22
f_{k}	Cumulative marginal probability density function of proximity for group	78
	indices g from 1 to k	
g	Group index	72
G_{g}	Groups contained in set \mathcal{B}	72
j	Scale number (curvelets)	11
j_{0}	Minimum scale number (curvelets)	11
j_{e}	Maximum scale number (curvelets)	11
k	Spatial location index, $\left\{k_{i}, i=1,2,3\right\}$ (curvelets)	11
$k_{\text {max }}$	Largest dynamically significant wavenumber	30
L	Normalized locally scaled affinity matrix	22
ℓ	Orientation index (curvelets)	11
L_{i}, L_{i}^{\prime}	Integral length scales of component field at scale number i	33
N	Normal vector to the tangent plane at a point P of a surface	16
N	Number of elements to cluster	21
n	Grid size of side cubic domain	11

N_{g}	Number of G_{g} groups contained in set \mathcal{B}	72
N_{P}	Number of parameters defining the feature space	21
p	Pressure field (in the equations of fluid mechanics)	63
p	Proximity (in the structure interaction analysis)	72
\mathcal{P}	Area-based joint probability density function	19
$\mathcal{P}_{\mathcal{C}}$	Area-based (marginal) probability density function of C	19
$\mathcal{P}_{\mathcal{S}}$	Area-based (marginal) probability density function of S	19
$\overrightarrow{\mathcal{P I}}(\xi, \zeta ; p)$	Area-based joint probability density function in terms of the local properties (ξ, ζ) with averaged intensity component in terms of the local property p	73
$p[k]$	Parameters of feature space	21
R	Radius of curvature	16
r	Number of closest neighbors for local scaling (in the clustering algorithm)	22
$R e$	Reynolds number	42
$R e_{\lambda}$	Taylor Reynolds number	30
S	Absolute value of the shape index	16
\hat{S}	Feature absolute value of the shape index center	24
$S C$	Silhouette coefficient	26
Sc	Schmidt number	30
$S_{i j}$	Strain-rate tensor	45
$S_{i j} S_{i j}$	Local dissipation renormalized by $(2 \nu)^{-1}$	45
t	Characteristic thickness of a sheet-like structure	76
t	Time variable (in the equations of fluid mechanics)	6
u	Velocity vector field (with components $u_{j}, j=1,2,3$)	6
$\overline{u^{2}}$	Characteristic squared integral velocity of original field	33

xxvi

$\overline{u_{i}^{2}}$	Characteristic squared integral velocity of component field at scale num-	33
	ber i	
$\tilde{U}_{j, \ell}$	Frequency window (curvelets)	11
V	Volume inside a closed surface	18
$\tilde{V}_{j, \ell}$	Angular frequency window (curvelets)	11
\tilde{W}_{j}	Radial frequency window (curvelets)	11
\boldsymbol{X}	Matrix of eigenvectors	22
\boldsymbol{x}	Position vector (spatial coordinates $\left.x_{j}, j=1,2,3\right)$	6
$\boldsymbol{X}(\alpha)$	Set of extracted structures from a three-dimensional scalar field α	75
\boldsymbol{Y}	Renormalized matrix of eigenvectors	23

Acronyms

BIC Bayesian information criterion 26
CAM Conditional array map 71
DNS Direct numerical simulation(s) 1
HSB Hue-saturation-brilliance color space $\quad 76$ $\begin{array}{lll}\text { jpdf Joint probability density function } & 19\end{array}$
jpdf $+\mathrm{i} \quad$ Joint probability density function with intensity component 73
LES Large eddy simulation(s) 2
MDM Minimum distance map 71
$\begin{array}{lll}\text { pdf Probability density function } & 13\end{array}$

