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Abstract

A multi-scale methodology for the study of the non-local geometry of eddy structures in turbulence

is developed. Starting from a given three-dimensional field, this consists of three main steps: extrac-

tion, characterization, and classification of structures. The extraction step is done in two stages: first,

a multi-scale decomposition based on the curvelet transform is applied to the full three-dimensional

field, resulting in a finite set of component fields, one per scale; second, by iso-contouring each

component field at one or more iso-contour levels, a set of closed iso-surfaces is obtained that rep-

resents the structures at that scale. For periodic domains, those structures intersecting boundaries

are reconnected with their continuation in the opposite boundaries. The characterization stage is

based on the joint probability density function (jpdf), in terms of area coverage on each individ-

ual iso-surface, of two differential-geometry properties—the shape index and curvedness—plus the

stretching parameter, a dimensionless global invariant of the surface. Taken together, this defines

the geometrical signature of the iso-surface. The classification step is based on the construction of a

finite set of parameters, obtained from algebraic functions of moments of the jpdf of each structure,

that specify its location as a point in a multi-dimensional ‘feature space’. At each scale the set of

points in feature space represents all structures at that scale, for the specified iso-contour value.

This allows the application, to the set, of clustering techniques that search for groups of structures

with a common geometry.

Results are presented of a first application of this technique to a passive scalar field obtained

from 5123 direct numerical simulation of scalar mixing by forced, isotropic turbulence (Reλ = 265).

These show transition, with decreasing scale, from blob-like structures in the larger scales to blob-

and tube-like structures with small or moderate stretching in the inertial range of scales, and then
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toward tube and predominantly sheet-like structures with high level of stretching in the dissipation

range of scales. Implications of these results for the dynamical behavior of passive scalar stirring

and mixing by turbulence are discussed.

We apply the same methodology to the enstrophy and kinetic energy dissipation rate instan-

taneous fields of a second numerical database of incompressible homogeneous isotropic turbulence

decaying in time obtained by DNS in a periodic box. Three different resolutions are considered:

2563, 5123, and 10243 grid points—with kmaxη̄ approximately 1, 2, and 4, respectively, the same

initial conditions and Reλ ≈ 77. This allows a comparison of the geometry of the structures obtained

for different resolutions. For the highest resolution, structures of enstrophy and dissipation evolve

in a continuous distribution from blob-like and moderately stretched tube-like shapes at the large

scales to highly stretched sheet-like structures at the small scales. The intermediate scales show a

predominance of tube-like structures for both fields, much more pronounced for the enstrophy field.

The dissipation field shows a tendency toward structures with lower curvedness than those of the

enstrophy for intermediate and small scales. The 2563 grid resolution case (kmaxη̄ ≈ 1) was unable

to detect the predominance of highly stretched sheet-like structures at the smaller scales.

The same methodology, but without the multi-scale decomposition, is then applied to two scalar

fields used by existing local criteria for the eduction of tube- and sheet-like structures in turbulence,

Q and [Aij ]+, respectively, obtained from invariants of the velocity gradient tensor and alike in the

10243 case. This adds the non-local geometrical characterization and classification to those local

criteria, assessing their validity in educing particular geometries.

Finally we introduce a new methodology for the study of proximity issues among different sets

of structures, based also on geometrical and non-local analyses. We apply it to four of the fields

previously studied. Tube-like structures of Q are mainly surrounded by sheets of [Aij ]+, which

appear at close distances. For the enstrophy, tube-like structures at an intermediate scale are

primarily surrounded by sheets of smaller scales of the enstrophy and structures of dissipation at the

same and smaller scales. A secondary contribution results from tubes of enstrophy at smaller scales

appearing at farther distances. Different configurations of composite structures are presented.
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Ĉ Feature dimensionless curvedness center 24

c Passive scalar 6

c′ Passive scalar fluctuation 6

cj Element j of the set C (in the structure interaction analysis) 71



xxiv

cD(j, l, k) Curvelet coefficients 11

D Diagonalizing matrix 22

D Diffusivity 6

d Distance 72

Dai
Non-dimensionalizing length scale of the structure ai 72

dij Distance matrix 21

dl Lower distance of a probability density function 24

du Upper distance of a probability density function 24

E Set of elements, ei, to cluster, i = 1, ..., N 21

E(k) Energy spectrum of original field (containing all scales) 33

Ei(k) Energy spectrum associated with component field at scale number i 33

F Distance function in the space of parameters 22

fk Cumulative marginal probability density function of proximity for group

indices g from 1 to k

78

g Group index 72

Gg Groups contained in set B 72

j Scale number (curvelets) 11

j0 Minimum scale number (curvelets) 11

je Maximum scale number (curvelets) 11

k Spatial location index, {ki, i = 1, 2, 3} (curvelets) 11

kmax Largest dynamically significant wavenumber 30

L Normalized locally scaled affinity matrix 22

` Orientation index (curvelets) 11

Li, L′i Integral length scales of component field at scale number i 33

N Normal vector to the tangent plane at a point P of a surface 16

N Number of elements to cluster 21

n Grid size of side cubic domain 11



xxv

Ng Number of Gg groups contained in set B 72

NP Number of parameters defining the feature space 21

p Pressure field (in the equations of fluid mechanics) 63

p Proximity (in the structure interaction analysis) 72

P Area-based joint probability density function 19

PC Area-based (marginal) probability density function of C 19

PS Area-based (marginal) probability density function of S 19

~PI(ξ, ζ; p) Area-based joint probability density function in terms of the local prop-

erties (ξ, ζ) with averaged intensity component in terms of the local

property p

73

p[k] Parameters of feature space 21

R Radius of curvature 16

r Number of closest neighbors for local scaling (in the clustering algo-

rithm)

22

Re Reynolds number 42

Reλ Taylor Reynolds number 30

S Absolute value of the shape index 16
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