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Numerical simulations of non-spherical bubble collapse

With applications to shockwave lithotripsy

by

Eric Johnsen

Abstract

Shockwave lithotripsy (SWL) is a non-invasive medical procedure in which shock-

waves are focused on kidney stones in an attempt to break them. Because the

stones are usually immersed in liquid, cavitation occurs during the process. How-

ever, the stone comminution mechanisms and the bubble dynamics of SWL are

not fully understood. In the present thesis, numerical simulations are employed to

study axisymmetric Rayleigh collapse and shock-induced collapse of a single gas

bubble in a free field and near a wall. A high-order accurate, quasi-conservative,

shock- and interface-capturing scheme is developed to solve the multicomponent

Euler equations.

The primary contributions of the present work are the development of a new

numerical framework to study compressible multicomponent flows, the character-

ization of the dynamics of non-spherical bubble collapse, and quantitative mea-

surements of wall pressures generated by bubble collapse. Because of asymmetries

in the flow field, a re-entrant jet develops and generates a large water-hammer

pressure upon impact onto the distal side. Jet properties are calculated and, as

an indication of potential damage, wall pressures are measured; pressures on the

order of 1 GPa are achieved locally. In shock-induced collapse, the wall pressure

is amplified by the presence of bubbles within several initial radii from the wall.

Thus, the pressure generated by the bubble collapse is larger than the incoming

shock. The results extended to SWL show that shock-induced collapse has tremen-

dous potential for damage along the stone surface. Furthermore, the simulations

are coupled to an elastic wave propagation code to show that bubble collapse may

cause damage within kidney stones as well.
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Chapter 1

Bubble collapse and cavitation damage

The present chapter provides an introduction to cavitation and the structural

damage caused by bubble collapse. First, the concept of cavitation is explained.

Then, the phenomenon of damage due to bubble collapse is examined, including

examples such as shockwave lithotripsy, which constitutes the motivation for the

current work. Next, the collapse of a single bubble is presented through a historical

overview of the problem, from analytical, experimental and numerical standpoints.

This chapter ends with a list of the contributions of the present work to the field

of numerical methods in bubble dynamics and an overview of the thesis.

1.1 The occurrence of bubbles in flows of liquids

When the local tension in a liquid (i.e., the difference between the saturated vapor

pressure and the local pressure) is smaller than the tensile strength, the liquid

may rupture. When the resulting microscopic cavity grows to a macroscopic bub-

ble due to vaporization of the liquid, cavitation is said to occur (Knapp et al., 1970;

Brennen, 1995).1 This phenomenon usually takes place at specific locations in the

liquid where imperfections, such as dissolved gas or small particles, are present.

When exposed to a transient tension in the liquid, cavities expand at these nucle-

ation sites and grow to a maximum radius ranging from hundreds of microns to

1This phenomenon should be contrasted with boiling, in which the change in temperature is

the mechanism driving the rupture of the liquid.
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centimeters in most engineering applications (Knapp et al., 1970).2 The bubbles

then collapse violently to a small size prescribed by the amount of non-condensible

gas contained within (Plesset & Prosperetti, 1977), sometimes dissolving into the

liquid after a single cycle.

Reductions in pressure leading to cavitation are typically caused by two factors

(Li, 2000): local variations due to the hydrodynamics of the flow field (i.e., the

Bernouilli effect) or the application of an acoustic field. Accordingly, the former

is called hydrodynamic cavitation and is characterized by the fact that a given

liquid element usually only passes through a cavitation zone only once. This

phenomenon frequently occurs in naval structures and turbomachines, as described

in the first half of Section 1.2.3. The latter is termed acoustic cavitation and is

usually characterized by small velocity fluctuations; acoustic waves lead to regions

of reduced pressure where cavitation takes place. This process is exploited in

several bio-medical applications, as discussed in the second half of Section 1.2.3.

Because of the dynamical interaction of bubbles with the flow field, the occur-

rence of cavitation in hydraulic systems can lead to a number of drawbacks, such

as a decline in performance and efficiency, or an increase in noise and vibrations

(Franc & Michel, 2004). One of the most severe consequences of cavitation is the

high pressure generated when bubbles collapse and the structural damage resulting

when this process occurs near a solid surface.

1.2 Cavitation damage

1.2.1 The violence of bubble collapse

Although the collapse of a bubble in a liquid may seem like an innocuous event,

extreme physics may be observed during the process. From its maximum radius to

2In a number of applications, vapor cavities of a larger scale (e.g., up to meters) form due to

a high density of cavitation events (Knapp et al., 1970; Arndt, 1981). Examples include vortex

cavitation, where regions of high vorticity lead to low pressures, and attached cavitation, where

a region of separated flow is filled with vapor. However, these flow phenomena are beyond the

scope of the present study.
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collapse, the volume of a cavitation bubble decreases rapidly by several orders of

magnitude. As this nearly adiabatic compression occurs, the pressure and temper-

ature within the cavity reach high values, and shockwaves are emitted (Hickling

& Plesset, 1964). In fact, Suslick (1990) remarks that by using conventional ultra-

sound equipment to drive a bubble to oscillate near its natural frequency,

[...] one can create the temperature of the sun’s surface, the pressure

of deep oceanic trenches, and the cooling rate of molten metal splatted

onto a liquid-helium-cooled surface!

Such conditions can give rise to a number of interesting phenomena, includ-

ing sonoluminescence (Putterman & Weninger, 2000), where light is emitted upon

collapse, sonochemistry (Suslick, 1990), where chemical reactions rates are sub-

stantially improved, or sonofusion (Taleyarkhan et al., 2002), where experimenters

claimed to have observed nuclear emissions.3 In sonoluminescence, temperatures

up to 15,000 K (McNamara III et al., 1999) and pressures greater than 0.37 GPa

(Flannigan et al., 2006) have been measured in experiments, thus demonstrating

the tremendous destructive potential of cavitation bubbles.

1.2.2 Undesirable cavitation damage

Conditions such as those described in the preceding section are uncommon in most

engineering applications, where cavitation is usually of a hydrodynamic nature.

Nevertheless, Suslick’s comment illustrates the tremendous damage potential of

even a single bubble collapsing near a structure. Half a century ago, Robert

Knapp (1952) stated in his James Clayton Lecture,

Cavitation is one hydraulic phenomenon in which the effects are pre-

dominantly undesirable and often destructive.

3The experiments of Taleyarkhan et al. (2002) where fusion evidence was observed could not

be reproduced by other researchers and constitutes an on-going controversy in the community

(Riesch, 2007).
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At the time, the focus of cavitation research lay in the need to understand to

what extent bubbles affected the operation of naval structures. In an investigation

of the reasons for the sub-par operation of a British destroyer, Thornycroft &

Barnaby (1895) were the first to report on the reduced performance and structural

damage caused by cavitation.4 Historically, naval engineering has been and still is

one of the main areas of cavitation research as collapsing bubbles and the resulting

damage may be observed along propellers, rudders, struts, and even hulls, (Knapp

et al., 1970).

Turbomachines constitute another field where cavitation plays a deleterious

role. In certain flows of liquids through rotating machines such as pumps and

turbines, cavitation cannot be avoided (Li, 2000). The operation of valves and

nozzles may also be affected by cavitation, due to changes in the velocity of the

liquid passing through them (Knapp et al., 1970). Thus, care must be taken in the

design of such instruments in order to minimize the destructive action of cavitation

(Brennen, 1994).

Damage caused by bubble collapse is observed over a wide range of scales and

in different types of liquids. One of the most spectacular examples is the cavita-

tion erosion sustained by the passage of a large flood through a spillway or the

outlet of a dam, as illustrated by the size of the eroded parts compared to height

of the person in Figure 1.1 (Arndt, 1981). Furthermore, cavitation damage is not

restricted to flows of water. In the Spallation Neutron Source at Oak Ridge Na-

tional Laboratory, short-pulse proton beams strike heavy-metal targets containing

liquid mercury; because of the intense heating, large pressure variations may lead

to the formation of cavitation bubbles, which then collapse and generate signif-

icant damage (Haines et al., 2005). On a smaller scale, examples of cavitation

damage in the bio-medical field include damage to red blood cells in artifical heart

valves (Yoganathan et al., 2004) or trauma due to impact head injuries (Lubock

& Goldsmith, 1980).

4It was in the context of the research of Thornycroft & Barnaby (1895) that R. E. Froude

coined the term cavitation.
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Figure 1.1: Cavitation damage in the spillway tunnel of the Yellowtail Dam, Mon-

tana (Arndt, 1981). Courtesy of the US Bureau of Reclamations.

In underwater explosions, the effects of cavitation are important. A large

amount of energy is released from a small source, which generates a strong shock-

wave propagating radially outwards, with substantial damage potential (Cole,

1948). A gas bubble containing the products of the explosion rapidly expands

to a large size (on the order of meters) and subsequently collapses violently. The

dynamics of the gas bubble are complex, due to buoyancy effects and the possible

presence of nearby free-surfaces or solid structures, and large quantities of wa-

ter may be displaced during the process (Holt, 1977). However, cavitation damage

seems to occur on a small scale. As described in Figure 1.2, the shockwave resulting

from the underwater explosion loads the target, prompting it to recoil and create

a region of low pressure (Wardlaw & Luton, 2000). After reflecting off the target,
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the shock interacts with the explosion bubble and is reflected as an expansion wave

due to the impedance mismatch. This leads to a further pressure decrease near the

target, providing conditions favorable to the creation of cavitation bubbles, which

may inflict significant damage to the structure upon collapse.

Initial shock

Reflected expansions

Low pressure region

Figure 1.2: Schematic of an underwater explosion, adapted from Wardlaw & Luton

(2000).

1.2.3 Desirable cavitation damage

The examples mentioned in the previous section constitute a non-exhaustive list of

drawbacks of cavitation damage. However, in a number of applications, cavitation

erosion is employed in a deliberate fashion to clean or break materials. In these

instances, cavitation is usually controlled by acoustic means.

In ultrasonic cleaning, the flow induced by a bubble oscillating stably under

the action of an acoustic field (i.e., microstreaming (Elder, 1959)) generates shear

stresses that remove particulates from surfaces. Wet finishing, where textile mate-

rials are treated in an attempt to modify their properties (Moholkar et al., 2004),
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and silicon wafer cleaning (Busnaina et al., 1995) are examples of this process. Ohl

et al. (2006) recently suggested that the main contributions to the shear flow in

ultrasonic cleaning emanate from the spreading of the liquid jet generated during

bubble collapse along surfaces.

The use of cavitation bubble collapse to an advantage has even been observed

in animals. When the snapping shrimp closes its claw, it generates a high-speed

jet, which in turn leads to a local pressure below vapor pressure (Versluis et al.,

2000). Cavitation bubbles are thereby generated and their collapse provides means

for snapping shrimps to communicate amongst each other and stun their prey.

Several bio-medical applications use cavitation in a deliberate and controlled

fashion. In dentistry, plaque is removed using an ultrasonically vibrating probe;

Walmsley et al. (1988) showed that cavitation occurring in the cooling water supply

as it passes over the tip contributes to the plaque removal process. Such research

has translated into the mainstream sonic toothbrush and, more recently, into its

ultrasonic sibling (Mourad et al., 2007). In cataract surgery, the eye’s natural

lens is emulsified and removed in a process called phacoemulsification (Packer

et al., 2005). Bubbles also play an important role in shockwave lithotripsy, which

is described in greater detail below; the necessity to better understand certain

aspects of this medical procedure, in particular the role of bubble collapse in the

stone comminution process, constitutes the main motivation for the present work.

Shockwave lithotripsy

Over the course of their life, 5-12 % of Americans will develop a kidney stone (Coe

et al., 2005). Most stones are made of calcium oxalate and calcium phosphate;

they usually form because these substances dissolved in urine within the urinary

tract solidify. If small enough, the stones can be passed naturally by the body;

however, when they are large5 or located in certain strategic sites, they can lead

to severe pain and must therefore be removed.

5Kidney stones can reach a size of several centimeters.
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The most common form of treatment is a non-invasive medical procedure called

(extracorporeal) shockwave lithotripsy (SWL) (NIH, 2004), which has been used

since the 1980s (Chaussy, 1982). The patient is typically immersed in a water bath,

while shockwaves generated underwater are focused onto the kidney stone in an

attempt to break them. Current devices include electrohydraulic lithotripters, in

which the shock is generated using electrodes and is focused using a reflector, elec-

tromagnetic lithotripters, in which acoustic pulses are focused using a paraboloid

reflector or a lens, and piezoelectric lithotripters, which consist of an array of

spherically aligned piezoelectric elements.

Figure 1.3: Schematic of the set-up for SWL using an electrohydraulic lithotripter.

Reproduced with permission from Chaussy (1986). Copyright 1986 by Karger AG,

Basel.

A typical electrohydraulic lithotripter consists of a reflector in the shape of a

truncated ellipsoid, with a sparkplug in one focus. The patient is immersed in a

water bath, such that the kidney stone is located at the second focus, as shown in

Figure 1.3 (Chaussy, 1986). When the spark is generated, a shockwave propagates
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radially outwards, and, upon reflection, is focused onto the kidney stone. In a

typical procedure, several hundreds to thousands of shockwaves are fired at a

rate of approximately 0.5 Hz (Paterson et al., 2002; Willis et al., 2005). As a

result, the stones are broken into fragments small enough that they can be passed

naturally by the human body. The main reason for the popularity of SWL is the

fact that surgery is avoided altogether. However, collateral damage to the kidney

may be caused during the process, on the cellular (Lokhandwalla & Sturtevant,

2001; Sapozhnikov et al., 2002) and systemic (Evan et al., 1998, 2002) levels. In

addition to kidney stones, shockwave lithotripsy has been used to treat gall stones,

pancreatic stones, salivary stones and bone fracture (Delius, 1994).

Figure 1.4: Pressure profile in the focal region of a lithotripter (Cleveland et al.,

2000).

Because of the complex physics governing the process, the precise stone com-

minution mechanisms are not yet fully understood (Eisenmenger, 2001). As shown

in Figure 1.4 (Cleveland et al., 2000), the lithotripter pulse in the focal region con-

sists of a steep compressive front followed by a long expansion tail with a tensile
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component. Since kidney stones are typically immersed in urine and possibly in

pooled blood, this tension leads to the formation of bubbles at nuclei sites near

the stone. Two mechanisms are thus important in stone comminution: shockwave

propagation within and around the stone (Lokhandwalla & Sturtevant, 2000),

which may lead to spallation (Gracewski et al., 1993), squeezing (Eisenmenger,

2001) or the constructive interference of shear waves (Cleveland & Sapozhnikov,

2005), and cavitation erosion due to violent bubble collapse along the surface

(Coleman et al., 1987; Crum, 1988). Artifical stones damaged by spallation and

cavitation are shown in Figure 1.5.

Figure 1.5: Damage on artificial kidney stones. Left: spallation (adapted with

permission from Xi & Zhong (2001), copyright 2001 by the Acoustical Society of

America; right: cavitation erosion (Pishchalnikov et al., 2003).

Experimental findings suggest that the combined effect of the internal stress

waves and cavitation erosion pulverizes the stones (Zhu et al., 2002); if either

cavitation or the wave propagation within the stone are inhibited, the comminu-

tion efficiency decreases. Though repeated bubble collapse may lead to significant

structural damage, the individual impact of bubble dynamics on stone comminu-

tion is still unclear. After the passage of a lithotripter pulse, bubbles generally

gather in clusters that grow and collapse near the stone surface, thus generating

shockwaves (Xi & Zhong, 2001; Pishchalnikov et al., 2003). The effect of bub-

ble clouds in SWL has been studied numerically by Tanguay (2004), who showed

that there exists an optimal bubble population for which the damage potential is

maximized, while stone shielding is minimized. It is clear (at least in vitro) that
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nucleation of bubbles takes place at existing gas nuclei, which become more nu-

merous as the treatment progresses (Pishchalnikov et al., 2003). Thus, in addition

to cavitation bubble collapse (Rayleigh, 1917), which occurs in SWL at a time

O(100) microseconds after the initial tensile portion of the shockwave, pre-existing

gas bubbles are collapsed on a scale of microseconds by the compressive portion

of the pulse (i.e., the shock).

1.3 Single-bubble dynamics

Whether cavitation damage is desirable or not, an understanding of the basic

physics leading to this phenomenon is necessary. A number of attempts to classify

the various types of cavitation have been made in the literature (Knapp et al.,

1970; Brennen, 1995; Franc & Michel, 2004). Acosta (2000) even tabulated twelve

different regimes likely to occur in pumps or turbines! The most common type of

cavitation in SWL is a combination between cloud cavitation, where a collection of

bubbles behaves as a coherent whole, and acoustic cavitation, which is described

in Section 1.1. Historically, before considering the complex dynamics of a cloud,

the fundamental problem of the transient growth and collapse of a single bubble

subjected to time-varying pressure fields was first examined.6

1.3.1 Theoretical and experimental studies

Starting with the research of Lord Rayleigh (1917), single-bubble collapse has been

studied for almost a century. Besant (1859) had solved the following theoretical

problem previously:

An infinite mass of homogeneous incompressible fluid acted upon by

no forces is at rest, and a spherical portion of the fluid is suddenly

annihilated; it is required to find the instantaneous alteration of pres-

sure at any point of the mass, and the time in which the cavity will be

6In collections of bubbles, if the number density is low enough, a given bubble may be assumed

to behave independently from its neighbors (Knapp et al., 1970).
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filled up, the pressure at an infinite distance being supposed to remain

constant.

However, Rayleigh was the first to fully appreciate the engineering implica-

tions of bubbles repeatedly collapsing along propeller blades, and his studies set

the basis for cavitation research henceforth (Hammitt, 1980). Because the time

scale of bubble collapse is typically much smaller than the heat diffusion and con-

duction time scales, the compression of the bubble during collapse can be assumed

adiabatic; this implies that a large amount of energy is concentrated into a tiny

volume. The high pressures achieved during collapse and the impact of shockwaves

thereby emitted were the first proposed cavitation damage mechanisms (Rayleigh,

1917; Hickling & Plesset, 1964; Fujikawa & Akamatsu, 1980). Many improvements

to Rayleigh’s theory of spherical bubble dynamics have been made over the last

century. In studies of traveling cavitation bubbles, Plesset (1949) included viscous

and surface tension effects into what is now known as the Rayleigh-Plesset equa-

tion. Gilmore (1952) further extended the theory to include liquid compressibility

effects. Thermal effects were considered by Plesset & Zwick (1954) and Hickling

(1963). Further extensions and studies can be found in Plesset & Prosperetti

(1977) and Brennen (1995).

In the middle of the twentieth century, it was appreciated that the asymmetry

in the flow field caused by the presence of a solid surface near a bubble would

lead a re-entrant jet to form during the collapse. Kornfeld & Suvorov (1944) first

proposed this flow phenomenon, which was later confirmed by the experiments of

Naudé & Ellis (1961) and Benjamin & Ellis (1966), who also considered the prob-

lem analytically. During the collapse, the far end of the bubble involutes, such that

a high-speed re-entrant jet directed towards the solid surface forms and penetrates

the bubble during collapse, as shown in the recent high-speed photographs of Lin-

dau & Lauterborn (2003) in Figure 1.6. If such a bubble is close enough to the

wall, the jet may directly impact it and generate a large water-hammer pressure

(Plesset & Chapman, 1971).
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Most early experiments employed a spark discharge method to vaporize a small

portion of liquid and generate a bubble (Naudé & Ellis, 1961; Benjamin & Ellis,

1966; Kling & Hammitt, 1972). Using this technique, Tomita & Shima (1986)

studied the collapse of isolated cavitation bubbles near a solid surface and mea-

sured wall pressures up to 12 MPa. They found that bubbles near the wall migrate

towards it significantly and further argued that cavitation damage was caused by

the collapse of tiny bubbles generated during the collapse of the main bubble.

However, electrodes interfer with the flow field, and the bubbles thereby generated

are not always spherical. In order to study spherical bubble collapse in a con-

trolled and repeatable fashion, optical cavitation was developed, where a laser is

used to vaporize water, thus creating a bubble (Lauterborn & Bolle, 1975). The

combination of this technique with high-speed photography has provided many

advances in understanding the phenomenon of bubble collapse near a wall and

provided important insight into cavitation erosion. Vogel et al. (1989) investi-

gated the formation of the jet and the effect of the wall on the bubble dynamics.

Philipp & Lauterborn (1998) determined that bubbles in direct contact with solid

surface were responsible for the largest part of the erosion. Lindau & Lauterborn

(2003) visualized shockwaves emitted during collapse and studied the properties

of the counterjet formed after the collapse. However, the method by which such

cavitation bubbles are generated may lead to dynamical features different from

those observed in engineering applications (Lauterborn & Bolle, 1975).

When the flow is inviscid, the collapse of a bubble near a rigid wall is equivalent

to the simultaneous collapse of two identical bubbles. Another type of asymmetry

consists of the presence of an external force field, such as gravity. In such problems,

a re-entrant jet forms in the direction of the buoyancy force (Walters & Davidson,

1962). The passage of a shockwave over a bubble also leads to the formation of

a re-entrant jet in the direction of propagation of the shock (Tomita & Shima,

1986). In cloud cavitation, shockwaves may be generated by the collapse of indi-

vidual bubbles, as explained previously, or by the coherent collapse of the cloud

(Hansson et al., 1982). In SWL, the incoming pulse may interact with pre-existing
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Figure 1.6: Collapse of a laser-generated cavitation bubble near a solid surface

(maximum radius: 1.5 mm; initial stand-off distance: 2.4 mm; interframe spacing:

1 µs). Reprinted with permission from Lindau & Lauterborn (2003). Copyright

2003 by Cambridge University Press.

bubbles or gas nuclei (Philipp et al., 1993; Ohl & Ikink, 2003; Sankin et al., 2005),

as illustrated by Figure 1.7. When non-spherical bubble collapse takes place near

the kidney stone, the re-entrant jet may directly impact the stone. This phe-

nomenon has been regarded as the most important cause for cavitation damage in

SWL (Coleman et al., 1987; Crum, 1988) and has been studied in the context of

cavitation erosion (Philipp & Lauterborn, 1998) as well. Two-dimensional shock-

bubble interactions have been studied in the framework of shock propagation in
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non-uniform media: Dear & Field (1988) and Bourne & Field (1992) considered

the impact of shockwaves onto cavities in a water/gelatin mixture to better un-

derstand ignition and propagation of explosive reactions, while Haas & Sturtevant

(1987) investigated the impingement of shockwaves onto gaseous cylinders.

Figure 1.7: Shock-induced collapse of a laser-generated cavitation bubble in a free-

field (frame width: 0.7 mm; interframe spacing: 0.5 µs). Reprinted with permission

from Sankin et al. (2005). Copyright 2005 by the American Institute of Physics.

1.3.2 Numerical simulations

Because of the complexity of the physics and the wide range of spatial and temporal

scales present in bubble collape, it is difficult to perform precise measurements in

experiments. Numerical simulations have therefore emerged as a reliable tool to

complement analytical and experimental studies. However, a direct numerical

simulation of such flow phenomena is not realizable at the present time, because of

high computational costs and a lack of suitable algorithms. Although simulations

of single-bubble collapse have been carried out over last few decades, prior studies

usually fell into one of two categories: the numerical method accurately solved a

problem in which the physics were highly restrictive, or the physics of the problem

were more adequately represented at the expense of accuracy.

Methods based on potential theory were first used to compute the collapse of a

bubble near a wall (e.g., the Particle In Cell Method of Plesset & Chapman (1971),

the Boundary Integral Method (BIM) of Blake et al. (1986) and Best (1993), and
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later the Boundary Element Method of Klaseboer et al. (2006)). These methods

capture the initial bubble behavior and the formation of the re-entrant jet well,

so that quantities of practical use can be computed, such as the collapse time, the

jet speed, or the bubble pressure. However, during the last stages of collapse, the

bubble wall velocity becomes comparable to the local sound speed, so that the as-

sumption of liquid incompressibility breaks down. Additional drawbacks of these

methods include the fact that shockwaves cannot be simulated in an incompress-

ible formulation and that the bubble pressure is assumed uniform. Furthermore,

“numerical surgery” (Best, 1993) must be carried out after the jet has hit the

distal side, in order to correct for the topological change in the bubble surface.

Another study based on incompressible flow was undertaken by Popinet & Zaleski

(2002), who used an axisymmetric front-tracking method to investigate the effect

of viscosity for Rayleigh collapse near a solid surface. This method has drawbacks

similar to the BIM.

However, in the problems under consideration, compressibility accounts for

a large part of the energy dissipation (Vogel et al., 1988), which is important

for shock emission upon collapse and is therefore relevant to the damage poten-

tial. Recent efforts have therefore been devoted to developing methods capable

of simulating the full compressible Euler equations in order to capture any shock

generated during the process; most of these methods are in their verification and

validation stages. The main difficulty consists of treating shockwaves and inter-

faces in a robust and stable fashion. Thus, in order to handle these features, shock-

capturing methods solving the Euler equations are currently being developed. Ball

et al. (2000) used a two-dimensional second-order accurate Free-Lagrange Method

to study shock-bubble interactions based on the experiments of Bourne & Field

(1992). The gas was observed to heat substantially due to internal reflections of the

shockwave. However, the complexities of the mesh are not very practical for intri-

cate bubble shapes in three dimensions. Nourgaliev et al. (2006) employed adaptive

characteristics-based matching, and Hu et al. (2006) used a level set method with

corrections to account for conservation losses to simulate the same problem and
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two-dimensional underwater explosions, with similar results. However, the meth-

ods are not conservative near interfaces because the numerical fluxes do not have

the telescoping property (LeVeque, 1992). Chang & Liou (2007) implemented a

volume fraction formulation in the AUSM+-up methodology to simulate similar

problems. The main drawback of this method is that several problem-dependent

constants must be adjusted. The Rayleigh collapse of a bubble was studied by

Nagrath et al. (2006), who combined a finite element and a level set method to

simulate three-dimensional collapse of a spherical bubble initially following the

Rayleigh-Plesset equation for a single set of parameters. The most comprehensive

work to date in the study of shock-bubble interactions in SWL was carried out

by Jamaluddin (2005) using an axisymmetric implementation of the Free-Lagrage

Method of Ball et al. (2000). The shockwave resulting from the impact of the jet

onto the distal side was captured, and predictions for jet speed and wall pressure

were made for certain specific parameters.

1.4 Motivation, accomplishments and overview

As illustrated in this chapter, bubble collapse shows tremendous potential for

damage. Since cavitation is such a ubiquitous phenomenon, a better understanding

of cavitation erosion is of great interest in numerous applications, including SWL.

However, the complexity of the physics and the wide range of spatial and temporal

scales limit experiments, while current numerical simulations do not represent the

physics accurately.

The motivation for the present research lies in the recognition that numerical

simulations of single-bubble collapse will provide insights into cavitation damage

in general. Furthermore, a full understanding of the role of cavitation in SWL

will allow for improvements in the treatment techniques (e.g., lithotripter design).

The objectives of the present thesis are twofold. The first is to develop a robust

numerical method that accurately computes flows in which strong shockwaves and

interfaces separating fluids with high density ratios (e.g., water and air) interact.
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The second is to utilize this method to simulate the collapse of a gas bubble, in

order to investigate non-spherical bubble dynamics and to provide quantitative

measurements for the potential damage generated by bubble collapse near a solid

surface. These results can then be cast in the context of SWL to determine the

role of bubble collapse in stone comminution.

The work reported in this thesis constitutes the most comprehensive compu-

tational study of non-spherical bubble collapse to date, in terms of the range of

the parameter space, of the accuracy and robustness of the numerical method,

and of the detailed analysis of the results. Since the entire flow field is computed,

quantitative measurements can be readily made, and the relevant physical phe-

nomena can be studied (e.g., shock-bubble interaction, generation of shockwaves

during collapse, and interactions between shockwaves and interfaces or solid sur-

faces). These results are then examined more carefully in the context of shockwave

lithotripsy.

The main contributions of the current research to the field of numerical methods

in bubbles dynamics include:� The development of a new high-order accurate, quasi-conservative, interface-

and shock-capturing scheme for the simulation of compressible multicompo-

nent flows with shocks (Chapter 3),

– Robust and stable simulations of strong shockwaves and interfaces be-

tween fluids of very large density ratios,

– Verification and validation of the method,

– Extension of the method to cylindrical coordinates and to non-uniform

grid spacing,� Theoretical investigations of non-spherical bubble collapse (Chapter 4),� Numerical simulations of Rayleigh collapse, driven by the initial pressure

difference across the interface, and of shock-induced collapse, driven by the

passage of a shockwave (Chapter 4),
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– Characterization of the dynamics of non-spherical bubble collapse,

– Analysis of the mechanism of formation of the re-entrant jet in shock-

induced collapse and in Rayleigh collapse near a wall,

– Determination of the shockwaves emitted upon bubble collapse,

– Estimation of the bubble pressure and energy radiated during collapse,

– Quantitative measurements of the pressure generated by bubble collapse

along a neighboring wall,� Application of the numerical method to SWL conditions (Chapter 5),

– Analysis of the influence of the pulse properties on the bubble dynamics,

– Evaluation of the potential damage caused by bubble collapse in SWL,

– Presentation of shock-induced collapse as a stone comminution mecha-

nism,� Implementation of the present results as boundary conditions for a code to

simulate elastic wave propagation in kidney stones to investigate the internal

structural damage due to the pressure generated by bubble collapse (Chapter

5).

The thesis is organized in the following manner. Chapter 2 provides the back-

ground information for the rest of the work. First, the problem is defined. Then,

relevant assumptions are listed and the governing equations are presented; addi-

tional relationships pertaining to the equation of state are included in Appendix A.

Chapter 3 is devoted to the numerical scheme. The method is described in detail

for a uniform Cartesian grid and then extended to cylindrical coordinates; further

derivations for non-uniform grids are listed in Appendix B. The verification of the

method is presented using various test problems. The dynamics of non-spherical

bubble collapse are then studied in detail in Chapter 4. Theoretical remarks on

spherical bubble dynamics are first provided, followed by flow visualizations of

the simulations. After investigating the dynamics of collapse, the jet formation
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mechanism is discussed. Then, the damage potential of bubble collapse is exam-

ined. The methodology is extended to SWL in Chapter 5, where the modeling of

the pulse is first considered, followed by a parameter study of bubble collapse in

SWL. A comminution mechanism for small- to medium-sized stone is then pre-

sented. Finally, Chapter 6 provides concluding remarks and further extensions for

the present work.
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Chapter 2

Physical model

In the current chapter, the physical model used to study bubble collapse is pre-

sented. First, a description of the occurrence of single-bubble collapse in shockwave

lithotripsy is provided and the set-up of the problem is presented. Then, relevant

assumptions are discussed to motivate the use of the Euler equations for studying

compressible multicomponent flows. The stiffened equation of state and the ad-

vection equations required to close the system are then presented and the range

of parameters explored in the study is listed.

2.1 Problem description

2.1.1 Single-bubble collapse in shockwave lithotripsy

In shockwave lithotripsy (SWL), the typical cycle of the lifetime of a bubble is

summarized in Figure 2.1. A pre-existing gas nucleus or vapor bubble is initially

in equilibrium with its surroundings. When the compressive part of the lithotripter

pulse impacts the bubble, it induces collapse. Then, because of the tensile portion

of the pulse, the bubble cavitates and grows to a large size. At its maximum

radius, the bubble mainly contains vapor. It then undergoes an isolated collapse

due to the difference between the bubble pressure and its surroundings. After

several of these cycles, the bubble may contain more non-condensible gas because

of rectified diffusion (Hsieh & Plesset, 1961; Crum, 1980), so that its equilibrium
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radius is larger.

Compression

Tension

- Time

Collapse Growth Collapse

︸ ︷︷ ︸

Rapid process (∼ 1 µs)

Small bubble (∼ 10 µm)

︸ ︷︷ ︸
Slow process (∼ 100 µs)

Large bubble (∼ 1 mm)

Figure 2.1: Typical bubble cycle in SWL.

The first type of collapse caused by the shockwave is termed shock-induced

collapse (SIC). This phenomenon is usually rapid, because the initial bubble radius

is small (Ro ≈ 10 µm) and the pressure ratio is large (ps/po = 353 for a lithotripter

pulse, pB ≈ patm). The resulting collapse time is on the order of microseconds.

The second type of collapse caused by the static pressure difference between the

bubble and its surroundings is called Rayleigh collapse (RC).1 This phenomenon

lasts over a longer time-scale, because the initial bubble radius is larger (Ro ≈ 1

mm) and the pressure ratio is smaller (ps/po = 34, pB ≈ pv and po = patm). The

resulting collapse time is on the order of milliseconds.

In order to understand the fundamental bubble dynamics in SWL, the Rayleigh

collapse and shock-induced collapse described above are studied in depth. Further-

1Named after the original problem considered by Rayleigh (1917).
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more, the limiting case of shock-induced collapse for which the shock speed in the

liquid is infinite corresponds to a Rayleigh collapse. In order to provide a bridge

for comparing the two problems, this third problem, which is equivalent to raising

the ambient pressure by a giving amount while keeping the bubble pressure at at-

mospheric value, is considered. Thus, three fundamental problems are considered:

1. Rayleigh collapse under cavitation conditions (ps/po ≈ 34),

2. Shock-induced collapse (ps/po = 353), and

3. Rayleigh collapse under shock conditions (ps/po = 353).2

These three problems are considered in two different geometries: free-field col-

lapse, in which the domain consists of an infinite sea of liquid and collapse near a

wall, in which the domain is half-infinite, with a perfectly reflecting solid surface

extending to infinity. The presence of a wall introduces an additional length scale,

i.e., the stand-off distance.

2.1.2 Domain

The domain consists of a cylinder, along whose centerline the bubble is located.

Appropriate non-reflecting boundary conditions are used at the edge of the cylinder

to extend the domain to infinity, as discussed in Section 3.5. Initially, the bubble

is spherical and has radius Ro. It contains only non-condensible gas and and is

assumed to be in equilibrium with its surroundings.3 If the collapse takes place

near a wall, the initial stand-off distance is denoted Ho. The bubble radius, R(t),

and the stand-off distance, H(t), change throughout the collapse. Because most

of the problems considered involve non-spherical collapse, R is an average value

calculated from the bubble volume, which is given by Equation C.2, while H

denotes the position of the bubble centroid, as described by Equation C.4.

2If the collapse occurs near a solid boundary, ps/po = 714, to account for pressure doubling

caused by the reflection of the shock.
3Because the focus is on the potential for damage, the nucleation and growth phases are

ignored; in Rayleigh collapse, this implies that the initial bubble radius is Ro = Rmax.
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A slice through the center of the domain is shown in Figure 2.2, where the

dashed line denotes the computational domain. The region enclosed by the dashed

line is revolved about the axis, r = 0 (bottom of the domain). In the case of

shock-induced collapse, the incoming shockwave starts inside the domain, travels

from right to left, and impinges the wall normally. Thus, the problems of inter-

est (Rayleigh collapse and shock-induced collapse in a free-field and near a wall)

are axisymmetric, so that they can be reduced from three spatial dimensions to

cylindrical coordinates with azimuthal symmetry. Hence, each computational cell

consists of an annular volume. This simplification greatly alleviates the computa-

tional expense.

Air

Water

•

�

Ro

⇐=

-�

Ho

po

pB

ps

Shock

-

6

x

r

Figure 2.2: Schematic of the problem geometry.

The pressure in three regions is specified: the bubble pressure, pB , the ambient

pressure, po, and the shock pressure, ps. If there is no shock, ps = po. In the

present set-up, the proximal side always denotes the right side of the bubble in

Figure 2.2 (i.e., the side closest to the shock), and the distal side always denotes

the left side of the bubble (i.e., the side closest to the wall).
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In SWL, the pulse consists of a steep compressive front, followed by a long

expansion. Thus, an additional length (or time) scale is introduced to the problem,

e.g., the pulse width. In order to simplify the analysis, shockwaves consist of a step

change in pressure in the presentation of the results for shock-induced collapse in

Chapter 4. When applying the results to SWL in Chapter 5, a suitable lithotripter

pulse with properties similar to that of Figure 1.4 is used.

In practice, the shock is not necessarily aligned with the stone normal and

the stone surface may not be flat, thus illustrating the three-dimensionality of the

general problem. The present assumption of axisymmetry constitutes the geomet-

rical configuration for which the bubble collapse is the most energetic, because

of symmetry. A full three-dimensional simulation would be necessary to compute

the general problem, in which case an additional parameter, the angle between

the shock and the wall normal, should be introduced. Furthermore, the bubble

collapse may take place under different conditions as well in SWL. For instance,

the collapse of each bubble generates shockwaves that may interact with bubbles

out of equilibrium, so that both the amplitude of the shock during the interaction

and the bubble radius may vary with time and space. However, these issues reside

beyond the scope of the present work.

2.2 Equations of motion

2.2.1 Compressible multicomponent flows

The main characteristics of single-bubble collapse in shockwave lithotripsy are

large non-spherical interface deformations and the generation and propagation of

shockwaves. Interactions between different types of waves and interfaces are thus

the most important flow features, so that compressibility effects in gases and liquids

are primordial.

On the other hand, diffusive effects, surface tension, and mass transfer are not

expected to play a significant role until the rebound and subsequent growth, as

the collapse time is small compared to the other time scales. This is illustrated
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in the following rudimentary analysis of spherical collapse. Because the bubble

wall reaches speeds comparable to the sound speed in water, cL, at collapse, the

characteristic speed is taken as cL, so that the Mach number is unity. The Reynolds

number for the present problem can be defined as Re = RocL/νL, while the Weber

number can be expressed as We = ρLRoc
2
L/S. Room temperature values of the

viscosity and surface tension are taken (νL = 10−6 m2/s, S = 0.0728 N/m).

The Prandtl and Schmidt numbers depend on the ambient temperature, with

Pr ≈ 6, Sc ≈ 450. In order to assess their importance during spherical collapse,

the magnitude of surface tension and viscous effects can be studied using the

Rayleigh-Plesset equation 4.3 discussed in Section 4.1.1. A comparison of the

magnitude of the contributions of these effects with those of the bubble pressure

and inertia are shown in Figure 2.3, for ps/po = 34 and Ro = 10−6, 10−3 m.

The length scales are non-dimensionalized using the initial bubble radius. The

main contribution to the acceleration is the term consisting of the bubble pressure

and the velocity, whereas the viscous and surface tension effects are essentially

negligible. In non-spherical collapse, the jet is characterized by high curvatures

and small scales, so that viscous and surface tension effects may be important

for small bubbles in shock-induced collapse, especially when the jet develops, as

explained in Section 4.3.6.

Based on these assumptions, compressible multicomponent flows are consid-

ered (Shyue, 1998). They constitute a subset of multiphase flows where the differ-

ent fluid components, characterized by their respective (constant) ratio of specific

heats, are immiscible. The resulting inviscid and adiabatic flows are governed by

the Euler equations. The bubble contains only non-condensible gas (e.g., air),

which is assumed to behave ideally; the liquid is water and obeys an appropriate

equation of state.
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2Ṙ/WeR
4/ReR

Figure 2.3: Solution to the Rayleigh-Plesset equation for one period (ps/po = 34).

Left: Ro = 1 µm; right Ro = 1 mm.

2.2.2 The Euler equations

Compressible multicomponent flows are governed by the unsteady Euler equations,

written here in conservative form,

∂q

∂t
+ ∇ · f = 0, q(x, t) =




ρ

ρu

E


 , f(q) =




ρu

ρuu + pI

(E + p)u


 , (2.1)

where ρ is the density, u is the velocity vector, p is the pressure, E is the total

energy and I is the identity tensor. An equation of state relating the pressure and

the internal energy is required to close the system, as described in Section 2.2.3.

Given an appropriate set of initial and boundary conditions, the resulting system

can then be solved.

In the simulations of bubble collapse, cylindrical coordinates with azimuthal



28

symmetry are used:




ρ

ρu

ρv

E




t

+




ρu

ρu2 + p

ρuv

(E + p)u




x

+




ρv

ρuv

ρv2 + p

(E + p)v




r

+
1

r




ρv

ρuv

ρv2

(E + p)v




= 0. (2.2)

The axial direction is represented by the x-coordinate. Equations 2.2 are then

discretized in a finite volume formulation, as explained in Section 3.7.1.

In the numerical scheme, the characteristic form of the Euler equations is ex-

ploited. The characteristic equations are written here for the x-direction only:

∂w

∂t
+ Λ

∂w

∂x
= 0, (2.3)

where

dw =

(
du − dp

ρc
, dρ − dp

c2
, dv, du +

dp

ρc

)T

, Λ = Diag[u − c, u, u, u + c]. (2.4)

This form is necessary for the non-reflecting boundary conditions and the charac-

teristic reconstruction, both described in Chapter 3. During the numerical recon-

struction of the variables, the primitive variables are projected onto the character-

istic fields. To do so, the following transformation matrices are required:

L =




0 −1
2 0 1

2ρc

1 0 0 − 1
c2

0 0 1 0

0 1
2 0 1

2ρc




, R =




ρ
c 1 0 ρ

c

−1 0 0 1

0 0 1 0

ρc 0 0 ρc




. (2.5)
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2.2.3 The stiffened equation of state

Because the fluids consist of liquids and gases, an appropriate equation of state

must be chosen. The stiffened equation of state (Harlow & Amsden, 1971),

Γp + Π∞ = E − 1

2
ρu · u, (2.6)

is used to close the Euler equations, where Γ = 1/(γ − 1) and Π∞ = γP∞/(γ − 1).

For perfect gases, γ is the ratio of specific heats and P∞ = 0, so that the usual

relationship between the pressure and the internal energy is achieved. For water,

as shown by Equations A.29 and A.30, γ and P∞, which is a measure of the

stiffness of the liquid, are determined based on the shock Mach number (Cocchi

et al., 1996). Because the shock Mach numbers in water relevant to SWL are close

to unity, the limit Ms → 1 is taken, so that constant values of γL = 6.684 and

P∞ = 4049 atm are employed for all the simulations. Further relations derived

from the stiffened equation of state are provided in Appendix A. This equation

of state is thermodynamically consistent (Menikoff & Plohr, 1989) and has been

used extensively to model multicomponent flows with shockwaves (Cocchi et al.,

1996; Shyue, 1998; Saurel & Abgrall, 1999b,a; Abgrall & Karni, 2001). However,

whether the equation is thermodynamically consistent when the interface diffuses

numerically is unclear. It should be noted that in the limit ∆x → 0 the interface

converges to a sharp one, leading to an appropriate physical behavior.

Although the sound speed does not appear explicitly in the Euler equations

2.1, it is used for upwinding in the numerical algorithm. Given the equation of

state 2.6, the local speed of sound can be computed, as shown in Equation A.9

Appendix A:

c =

√
γ

p + P∞

ρ
. (2.7)

2.2.4 Advection equations

Since mass transfer is neglected, interfaces between two fluid components are ad-

vected by the flow. Because the fluid components are assumed immiscible, in-
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terfaces are specified by a discontinuity in the fluid composition characterized by

the material properties γ and P∞. Thus, the functions φ = (Γ,Π∞)T obey the

advection equation,
∂φ

∂t
+ u · ∇φ = 0. (2.8)

Although not fully conservative, the system of equations 2.1 and 2.8 conserves

the required physical properties: the Euler equations 2.1 are conservative, ensuring

that mass, momentum and energy are conserved, while the advection equations 2.8,

which are non-conservative, specify the correct location of the interface, so that the

relevant properties are defined. Equations 2.1 and 2.8 form a quasi-conservative

system of equations (Abgrall, 1996).

The advection equations 2.8 could be combined with the continuity equation

to form the following conservative equations:

∂

∂t
(ρφ) + ∇ · (ρuφ) = 0, (2.9)

where φ could be any function of γ and P∞. The system of equations 2.1 and 2.9

is fully conservative. However, it is shown in Section 3.4.1 that this coupling leads

to oscillations at interfaces when using standard shock-capturing schemes, so that

the functions Γ = 1/(γ − 1) and Π∞ = γP∞/(γ − 1) must be advected (according

to Equation 2.8).

2.2.5 Non-dimensionalization and physical parameters

The ambient density and sound speed of water, ρL and cL, along with the initial

bubble radius, Ro, are used to non-dimensionalize the equations. The density and

sound speed are based on the values used in the derivation of the stiffened equation

of state (Cocchi et al., 1996). Table 2.1 lists the relevant material properties of air

and water.

The problems under consideration are simplified in order to minimize the num-

ber of parameters governing the physics of the problem. From the equations of

motion and the problem description, the following non-dimensional groups can be
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Table 2.1: Fluid properties.

Variable Dimensional value Non-dimensional value

ρG 1.22 kg/m3 1.22 × 10−3

ρL 998 kg/m3 1.00

cG 341 m/s 0.21

cL 1650 m/s 1.00

γG – 1.40

P∞,G 0.00 atm 0.00

γL – 6.68

P∞,L 4050 atm 0.15

formed: Ho/Ro, ps/po or po/pB , po/P∞,L, ρG/ρL, γL, γR. However, po/P∞,L ≪ 1,

and, although γ varies within the interfacial region due to numerical diffusion, it

is bound by γL and γR. Therefore, three non-dimensional numbers4 govern the

problems under consideration:

1. The pressure ratio across the shock, ps/po, for shock-induced collapse or

across the interface, po/pB , for Rayleigh collapse,5

2. The initial stand-off distance from the wall, Ho/Ro, and

3. The density ratio across the interface, ρG/ρL.

The pressure ratio is varied in the range, ps/po = 34 − 710. The lower

bound corresponds to the pressure ratio driving the collapse of a cavitation bubble

(patm/pv ≈ 34). In the present work, the bubble initially contains a fixed amount

of non-condensible gas, because phase change is neglected; in nature, a cavitation

bubble about to undergo Rayleigh collapse contains mainly vapor at its maximum

radius and only a small amount of non-condensible gas. As explained in Section

4In the case of SWL, an additional non-dimensional parameter, the normalized pulse width

(σ/Ro), enters the problem.
5Alternately, a Mach number, Ms, based on the pressure ratio can be used, as shown in

Equation A.25.
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4.1.1, the collapse is arrested by the compression of the non-condensible gas. Since

it contains much more gas in the simulations, the bubble cannot collapse to as

small a volume and reach as high an interfacial velocity as in nature. As a result

of this modeling, Rayleigh collapse under cavitation conditions is much gentler in

the simulations than it is in nature. The upper bound corresponds to an explosion

occurring near the bubble (Cole, 1948).6

Based on preliminary tests, the effect of the wall on the results is minor for

initial stand-off distances greater than five initial radii. Thus, the range, Ho/Ro =

1.05−5 is considered. Values less than unity are considered in experiments (Tomita

& Shima, 1986; Vogel et al., 1989; Philipp & Lauterborn, 1998). However, because

the bubble is not spherical in such a situation, the amount of vapor at Rmax is not

the same, so that it is not clear whether meaningful comparisons can be made.

Finally, the present work focuses on air bubbles in water. Thus, the density

ratio is held fixed at ρG/ρL = 1.22/998, except in Section 4.3.9 where the bubble

density is varied in order to study the bubble circulation.

2.3 Summary of the physical model

Rayleigh collapse and shock-induced collapse of an initially spherical air bubble in a

free-field and near a wall are investigated. These types of collapse are fundamental

problems in shockwave lithotripsy, as the former is exemplified by the isolated

collapse of a cavitation bubble, while the latter involves the impact of an incoming

shock onto a pre-existing bubble. The problems are defined in Table 2.2 based on

the pressure in the different regions shown in Figure 2.2. RC refers to “Rayleigh

collapse”, SIC to “shock-induced collapse” and W to “collapse near a wall”. It

should be noted that the case for which the shock pressure and the ambient pressure

are equal implies no shock (i.e., Rayleigh collapse). The sub-problems listed in

the second row of the RC cases are considered as comparison tools, because they

6Although the pressure ratios are large, the corresponding Mach numbers are close to unity,

as observed in Equation A.25.
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do not generally occur in nature.

Table 2.2: Definition of the different problems under consideration.

Collapse

type

Initial

stand-off

distance

Shock

pressure

(ps)

Ambient

pressure

(po)

Bubble

pressure

(pB)

RC ∞
patm patm pv

pmax pmax patm

SIC ∞ pmax patm patm

RCW Ho

patm patm pv

pmax pmax patm

SICW Ho pmax patm patm

The problems are idealized, so that the underlying physics of bubble collapse

can be probed. Because the main features of these flows involve interaction be-

tween various types of waves and interfaces, compressible multicomponent flows

are considered, where diffusive effects, surface tension, and mass transfer are ne-

glected, and the fluid components are immiscible. Hence, the axisymmetric Euler

equations, closed by a stiffened equation of state and supplemented by appropri-

ate advection equations, are solved. For the present study of Rayleigh collapse

and shock-induced collapse, three non-dimensional numbers are expected to gov-

ern the physics: Ho/Ro, ps/po, and ρG/ρL. In the case of shockwave lithotripsy,

the normalized pulse width, σ/Ro, also enters the problem.
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Chapter 3

Numerical method

A new numerical framework is developed to solve compressible multicomponent

flow problems.1 The need for the development of a new method is first motivated.

Then, the time-marching, the spatial discretization, and the interface-capturing

schemes are described, followed by a presentation of the boundary conditions.

Thereafter, the method is validated. The chapter ends with the extension of the

method to cylindrical coordinates and a discussion of the limitations of inviscid

simulations.

3.1 Numerical simulations of interfaces and shockwaves

Previous numerical studies of bubble dynamics can be divided into two main cate-

gories: incompressible and compressible simulations. The former is a mature field,

where several different techniques, such as Boundary Integral (Power, 1995), Level

Set (Sethian, 1996), and Particle (Koumoutsakos, 2005) methods, are capable of

accurately describing the dynamics of interfaces for certain types of flows. On the

other hand, the study of compressible multiphase flows, especially when shock-

waves are present, is still in its early developmental stages. In the present work, a

1The corresponding journal article presenting the two-dimensional method solving the system

of equations 2.1 and 2.8 on a uniform Cartesian grid was published in the Journal of Computational

Physics (Johnsen & Colonius, 2006), Copyright Elsevier 2006.
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numerical method is developed to simulate compressible multicomponent flows in

a first step to study the compressible-flow features of bubble dynamics.

3.1.1 Shock capturing

Because the Euler equations 2.1 are nonlinear hyperbolic conservation laws, a dis-

continuous solution can develop in a finite time even with smooth initial conditions.

Thus, shock-capturing schemes, in which numerical dissipation is added to prevent

oscillations near shockwaves and which result in the smearing of discontinuities over

a few grid points, form the backbone of numerical methods simulating compressible

multicomponent flows. Shock-capturing schemes that exhibit up to second-order

accuracy are widely used in computational fluid dynamics to resolve compressible

flow features that involve both shockwaves and complex smooth structures. In or-

der to achieve higher-order accuracy in smooth regions, finite difference and finite

volume Essentially Non-Oscillatory (ENO) and Weighted ENO (WENO) methods

can be used and perform well in such problems (Harten et al., 1987; Shu & Osher,

1988, 1989; Liu et al., 1994; Jiang & Shu, 1996). They prevent oscillations near

shockwaves without introducing excessive dissipation, which is a serious drawback

of first- and second-order accurate methods (Shu, 2003). However, a naive im-

plementation of the aforementioned schemes in compressible multicomponent flow

problems gives rise to oscillations at material interfaces. Thus, the interface must

be treated in a special fashion.

3.1.2 Interface tracking and capturing

In early algorithms for computing compressible multicomponent flows, the dis-

continuous nature of the fluid composition was represented by the mass fraction

(Larrouturou & Fezoui, 1989), the ratio of specific heats (Karni, 1994), or a level-

set function (Mulder et al., 1992), and evolved according to an advection equation

coupled to the Euler equations. The resulting system was solved using first- and

second-order accurate reconstructions with a Roe solver (Roe, 1981). However,

spurious oscillations developed at interfaces. The cause of these oscillations was
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identified by Abgrall (1996), who proposed a quasi-conservative method based on

the mass fraction formulation for gases; subsequently, this was extended to more

general equations of state (Shyue, 1998; Saurel & Abgrall, 1999b; Shyue, 2001), and

to multiphase and reactive flows (Abgrall & Saurel, 2003; Billet & Abgrall, 2003).

The difficulty resides in maintaining the pressure equilibrium across the interface

despite numerical dissipation (Karni, 1994) and in coupling advection equations to

the Euler system in a consistent fashion (Abgrall, 1996; Fedkiw et al., 2000). The

implementation of non-oscillatory methods, such as the finite difference WENO

scheme in Marquina & Mulet (2003), does not suppress these oscillations.

In analogy to shock capturing, the methods described above are termed interface-

capturing, because the interface is not explicitly tracked but allowed to diffuse

numerically. Sharp interfaces can be achieved using interface-tracking methods,

where a level set function (Osher & Sethian, 1988) or marker particles (Tryggvason

et al., 2001) track the interface. However, such formulations often involve slight

modifications to the governing equations. Karni (1994, 1996) replaced the energy

equation by a pressure evolution equation near interfaces. In the Ghost Fluid

Method (Fedkiw et al., 1999) and simplified versions thereof (Abgrall & Karni,

2001; Koren et al., 2002), thermodynamically similar variables are added across

interfaces to complete stencils. Jenny et al. (1997) provided a correction for the

internal energy based on an updated value of the ratio of specific heats. These

methods do not generate spurious oscillations at interfaces and can be used with

WENO schemes. However, they are not discretely conservative (Abgrall & Karni,

2001; Liu et al., 2003), making them less desirable for problems where shockwaves

are involved. An important drawback of sharp-interface methods for the simula-

tion of compressible multicomponent flows is that ill-posed features may develop

(Samtaney & Pullin, 1996), as described in greater detail in Section 3.8.

3.1.3 Present methodology

The present goal is to simulate compressible multicomponent flow problems with a

numerical method that satisfies certain important numerical properties mentioned
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in the previous section:

1. High-order accurate: good convergence properties in smooth regions and

little dissipation at discontinuities,

2. Discretely conservative: discrete conservation of mass, momentum and en-

ergy, so that correct wave speeds are achieved, and

3. Oscillation-free: prevention of spurious oscillations at shockwaves and inter-

faces.

From a practical standpoint, it is also desirable that the scheme be computationally

efficient and easy to implement. In order to achieve these goals, the existing quasi-

conservative interface-capturing formulation of Abgrall (1996) and Shyue (1998)

is extended by implementing a high-order accurate WENO reconstruction of the

average primitive variables and modifying the HLLC solver to solve the advection

equations.

3.2 Time-marching scheme

A total variation diminishing (TVD) Runge-Kutta (RK) scheme (Shu, 1988; Got-

tlieb & Shu, 1998) is employed to march the equations forward in time. These

explicit schemes are used to solve systems of initial value problems of the type

qt = L(q), which result from a method of lines approximation to the partial differ-

ential qt = −f(q)x. The total variation diminishing property is especially desirable

for nonlinear systems like the Euler equations in order to prevent oscillations. In

particular, the following third-order accurate scheme (RK3TVD) is used:

q(1) = qn + ∆tL(qn)

q(2) =
3

4
qn +

1

4
q(1) +

1

4
∆tL(q(1))

qn+1 =
1

3
qn +

2

3
q(2) +

2

3
∆tL(q(2)),

(3.1)
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with a critical CFL coefficient of 1. The scheme 3.1 has the advantage of requiring

few storage locations, which is important for large-scale computations, and few

right-hand-side (RHS) evaluations. In comparison to the three RHS evaluations

and three storage locations of RK3TVD, six RHS evaluations and five storage lo-

cations are required for the corresponding fourth-order accurate RK TVD scheme.

Though the order of accuracy of the time-marching scheme is important for smooth

problems, results for bubble collapse problems hardly differ when using RK3TVD

or RK4TVD.

3.3 Shock-capturing scheme

3.3.1 Finite volume vs. conservative finite difference

A comparison between finite volume (FV) and conservative finite difference (FD)

ENO and WENO approximations is first provided, following Shu (1997). It is

shown in Section 3.4.1 that a FV formulation must be used to suppress oscillations

generated at interfaces, so this formulation will be described in greater detail in the

following sections. In the computational cell Ii = [xi −∆x/2, xi +∆x/2], equation

(2.1) can be written in semi-discrete form

dq̃i

dt
= −

fi+1/2 − fi−1/2

∆x
, (3.2)

where q̃i approximates the conserved variable, q, at i, and fi+1/2 approximates the

flux, f(q), at the cell edge, i + 1/2. In the FV formulation, q̃i is the cell-average

value of q in Ii, and is reconstructed on either side of each cell edge, thus yielding

a Riemann problem with left and right states, qL
i+1/2 and qR

i+1/2. An approximate

Riemann solver provides the correct upwind numerical flux. In the FD formulation,

q̃i is the point value of q at xi, and positive and negative fluxes defined at the

cell centers are interpolated at the cell edges. A flux-splitting scheme is used to

compute the correct upwind numerical flux.
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3.3.2 Finite volume WENO reconstruction

In first-order FV methods, the left and right states of the Riemann problem are

reconstructed from the cell averages in a piecewise constant fashion. Such methods

can be extended to second-order accuracy by using limiters (LeVeque, 2002). ENO

reconstruction (Harten et al., 1987; Shu & Osher, 1988) is based on adaptive sten-

cils, such that the optimal one is chosen. Given its cell-average values, the function

is interpolated on either side of the cell edges. This provides high-order accuracy

and essentially non-oscillatory behavior. WENO reconstruction (Liu et al., 1994;

Jiang & Shu, 1996) constitutes an improvement over ENO in that it consists of a

convex combination of all the candidate stencils.

The following description of FV WENO is based on Shu (1997). The goal of

the WENO reconstruction is the following: given the cell-average values, v̄i, i =

0, ..., N , of a function, v(x), approximate the value of v(x) at xi+1/2 to order 2k−1.

This is achieved in two steps: first, k polynomials of degree k−1 are reconstructed

from the cell-average values of v; then, these polynomials are combined to provide

a 2k − 1th order non-oscillatory approximation to v.

A few useful definitions for an arbitrary function are listed in Table 3.1. Based

on these definitions, the primitive function can be related to the cell-average value,

V [xi−1/2, xi+1/2] =
V (xi+1/2) − V (xi−1/2)

xi+1/2 − xi−1/2
= v̄i, (3.3)

so that, for uniform grid spacing, v̄[xi, ..., xi+j+1] = jV [xi−1/2, ..., xi+j−1/2]. In

addition,

V (xi+1/2) =

i∑

j=−∞

∫ xi+1/2

xj−1/2

v(ξ)dξ =

i∑

j=−∞

v̄j∆xj. (3.4)

Reconstruction from cell-average values

The goal of the reconstruction is the following: given the cell-average values, v̄i,

of a function, v(x), find a polynomial, p(x), of degree at most k − 1 for each cell
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Table 3.1: Definitions of variables used in the derivation of the WENO procedure.

Cell-average value v̄i = 1
xi+1/2−xi−1/2

∫ xi+1/2

xi−1/2
v(ξ)dξ

Primitive function V (x) =
∫ x
−∞

v(ξ)dξ

Divided differences

v[xi+1/2] = v(xi+1/2)

v[xi−1/2, xi+1/2] =
v(xi+1/2)−v(xi−1/2)

xi+1/2−xi−1/2

...

v[xi−1/2, ..., xi+j+1/2] =
v[xi+1/2,...,xi+j−1/2]−v[xi−1/2,...,xi+j−3/2]

xi+j+1/2−xi−1/2

Ii such that it is a kth-order accurate approximation of v(x) on Ii, i.e., pi(x) =

v(x) + O(∆xk), ∀x ∈ Ii. In particular,

vL
i+1/2 = pi(xi+1/2) = v(xi+1/2) + O(∆xk),

vR
i−1/2 = pi(xi−1/2) = v(xi−1/2) + O(∆xk).

(3.5)

The subscript i of p denotes that the polynomial is evaluated in cell Ii. The

superscripts L and R of vi±1/2 denote at which side of the cell edge (left or right)

the polynomial is evaluated.2

Given the location of Ii and the order of accuracy, k, a stencil based on r cells

to the left and s cells to the right of Ii, S(i) = {Ii−r, ..., Ii+s}, is defined, where

r + s = k − 1 and r, s ≥ 0. Then, there exists a unique polynomial of degree at

most k − 1 = r + s, denoted by p(x), whose cell average in each of the cells in

S(i) agrees with that of v(x). The unique polynomial of degree at most k, which

interpolates V (x) at the k+1 points, {xi−r−1/2, ..., xi+s+1/2}, is denoted P (x), and

2The polynomials in cells Ii and Ii+1 both are evaluated at xi+1/2, one on the left of the cell

edge, one on the right. A Riemann solver then computes the appropriate state at the cell edge.
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its derivative p(x). Then, it follows that

1

∆xj

∫ xj+1/2

xj−1/2

p(ξ)dξ =
1

∆xj

∫ xj+1/2

xj−1/2

P ′(ξ)dξ =
P (xi+1/2) − P (xi−1/2)

∆xj

=
V (xi+1/2) − V (xi−1/2)

∆xj
=

1

∆xj

(∫ xj+1/2

−∞

v(ξ)dξ −
∫ xj−1/2

−∞

v(ξ)dξ

)
= v̄j ,

(3.6)

where j = i − r, ..., i + s. The third equality holds true because P interpolates V

at the points xj±1/2 by definition. Uniqueness can be shown by considering two

functions, p1 and p2, whose cell-average values are both equal to that of v. Since

P approximates V to order k + 1 in Ii, then

P ′(x) = V ′(x) + O(∆xk) ⇒ p(x) = v(x) + O(∆xk), ∀x ∈ Ii. (3.7)

In order to calculate the reconstructed polynomial p(x), the Newton form of P ,

P (x) =
k∑

j=0

V [xi−r−1/2, ..., xi−r+j−1/2]

j−1∏

m=0

(
x − xi−r+m−1/2

)
, (3.8)

is differentiated to obtain:

p(x) =
k∑

j=1

V [xi−r−1/2, ..., xi−r+j−1/2]

j−1∑

m=0

j−1∏

l=0
l 6=m

(
x − xi−r+l−1/2

)
. (3.9)

Since the mapping from the given cell-average values to the interpolating polyno-

mial is linear, there exist constants, crj , that are functions of r, k, and ∆xj (but

not of v), such that

vL
i+1/2 = p(xi+1/2) =

k−1∑

j=0

crj v̄i−r+j = v(xi+1/2) + O(∆xk) (3.10)

is a kth order approximation to v(xi+1/2). Similarly, vR
i−1/2 =

∑k−1
j=0 c̃rj v̄i−r+j,

where c̃rj = cr−1,j . In order to determine the coefficients crj , the Lagrange form
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of P is more useful:

P (x) =

k∑

m=0

V (xi−r+m−1/2)

k∏

l=0
l 6=m

x − xi−r+l−1/2

xi−r+m−1/2 − xi−r+l−1/2
. (3.11)

Using the identity

1 =

k∑

m=0

k∏

l=0
l 6=m

x − xi−r+l−1/2

xi−r+m−1/2 − xi−r+l−1/2
, (3.12)

it follows that

P (x)−V (xi−r−1/2) =
k∑

m=0

(
V (xi−r+m−1/2) − V (xi−r−1/2)

) k∏

l=0
l 6=m

x − xi−r+l−1/2

xi−r+m−1/2 − xi−r+l−1/2
.

(3.13)

Futhermore,

V (xi−r+m−1/2) − V (xi−r−1/2) =
m−1∑

j=0

v̄i−r+j∆xi−r+j. (3.14)

Thus, taking the derivative,

p(x) =
k∑

m=0

m−1∑

j=0

v̄i−r+j∆xi−r+j

∑k
l=0
l 6=m

∏k
q=0

q 6=m,l

(
x − xi−r+q−1/2

)

∏k
l=0
l 6=m

(
xi−r+m−1/2 − xi−r+l−1/2

) . (3.15)

It should be noted that the following identity holds true:

k∑

m=0

m−1∑

j=0

≡
k−1∑

j=0

k∑

m=j+1

. (3.16)

Thus,

crj = (xi−r+j+1/2 − xi−r+j−1/2)
k∑

m=j+1

∑k
l=0
l 6=m

∏k
q=0

q 6=l,m

(
xi+1/2 − xi−r+q−1/2

)

∏k
l=0
l 6=m

(
xi−r+m−1/2 − xi−r+l−1/2

) .

(3.17)
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WENO reconstruction

The k candidate stencils, Sr(i) = {xi−r, ..., xi−r+k−1}, produce k different recon-

structions to v(xi+1/2):

p
(r)
i+1/2 =

k−1∑

j=0

crj v̄i−r+j = v(xi+1/2) + O(∆xk). (3.18)

In order to obtain a non-oscillatory 2k-1th-order accurate approximation of v(xi+1/2),

the k polynomials on Sr(i) are combined:

vi+1/2 =

k−1∑

r=0

ωrp
(r)
i+1/2 + O(∆x2k−1), (3.19)

where ωr are nonlinear weights. If v(x) is smooth in all candidate stencils, then

there are constants, dr, such that a convex combination of the polynomials is taken:

vi+1/2 =

k−1∑

r=0

drp
(r)
i+1/2 + O(∆x2k−1), (3.20)

where
∑k−1

r=0 dr = 1, dr ≥ 0. The weights ωr, are constructed based on dr. For

consistency, it is also required that
∑k−1

r=0 ωr = 1 and ωr ≥ 0. In order to satisfy

the accuracy requirement of Equation 3.19, ωr = dr + O(∆xk−1). This follows

from

k−1∑

r=0

ωrp
(r)
i+1/2 −

k−1∑

r=0

drp
(r)
i+1/2 =

k−1∑

r=0

(ωr − dr)p
(r)
i+1/2 −

(
k−1∑

r=0

(ωr − dr)

)
vi+1/2

=
k−1∑

r=0

(ωr − dr)
(
p
(r)
i+1/2 − vi+1/2

)
=

k−1∑

r=0

O(∆xk−1)O(∆xk) = O(∆x2k−1).

(3.21)

The weights can then be defined as

ωr =
αr∑k−1

s=0 αs

, αr =
dr

(ǫ + βr)2
, (3.22)
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where ǫ is a small parameter that prevents division by zero and the smoothness

indicators, βr, are the sum of the squares of the scaled L2 norms for all derivatives

of the interpolation polynomial over the interval (xi−1/2, xi+1/2):

βr =
k−1∑

l=1

∫ xi+1/2

xi−1/2

∆x2l−1 dlp(r)(x)

dxl
dx. (3.23)

If the solution is smooth, βr = O(∆x2), while βr = O(1) when discontinuities are

present. In practice, ǫ ≈ 10−5 − 10−7 (Jiang & Shu, 1996).

Further WENO extensions

Further improvements to the WENO methodology can be implemented. For in-

stance, artificial compression (Yang, 1990) may be used to obtain sharper con-

tact discontinuities. Tools to achieve higher-order accuracy include monotonicity-

preserving WENO schemes (Balsara & Shu, 2000), which preserve the monotonic-

ity of the reconstructed function, and Mapped WENO schemes (Henrick et al.,

2005), which provide more accurate weights.

Multidimensional ENO and WENO schemes can easily be implemented in

the FD formulation dimension by dimension (Shu, 1999). On the other hand,

a two-dimensional FV reconstruction is computationally intensive, because two

one-dimensional reconstructions are needed per grid point. Since the fluxes must

be averaged along the cell edges, a Gaussian quadrature rule is used in multiple

dimensions (Grasso & Pirozzoli, 2000; Titarev & Toro, 2004). After the WENO

reconstruction, qL
i+1/2,j and qR

i+1/2,j are reconstructed in the transverse direction,

thus yielding the values at j ± 1/2
√

3 required by the Gaussian quadrature.

The reconstruction is often performed in characteristic space because of the self-

similar nature of the Riemann problem for the Euler equations (2.1). In nonlinear

systems of equations, oscillations can develop in component-wise reconstruction

due to the interaction of discontinuities of different characteristic fields, regardless

of the CFL constraint (Harten et al., 1987; Qiu & Shu, 2002). Thus, a reconstruc-

tion in characteristic space is preferred. The variables are first locally decomposed
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onto the respective characteristic fields and then reconstructed; thereafter, they

are projected back into physical space (Shu, 1999). The advection equations are

already in characteristic form, so that the projection onto characteristic space is

trivial. Although this reconstruction is more expensive computationally, each field

is treated separately, thus avoiding collisions between characteristics.

The extensions to WENO discussed in this section have been implemented in

the present chapter for a uniform grid. However, for bubble collapse problems, a

non-uniform grid is used in order to provide high resolution near the bubble and

to prevent reflections from the boundaries to affect the solution, as described in

Section 3.7.3. The derivation of the polynomials, ideal weights, and smoothness

indicators for a non-uniform grid is provided in Appendix B.

3.3.3 The HLLC approximate Riemann solver

Because the Riemann problem resulting from the reconstruction is computationally

expensive to solve exactly, an approximate Riemann solver is used. Examples

thereof include the Roe (Roe, 1981) and HLL (Harten et al., 1983) solvers; the

Lax-Friedrichs solver is a special case of the HLL solver (Toro, 1999). Roe solvers

are less dissipative, but more computationally intensive. More importantly, they

do not preserve positivity (Einfeldt et al., 1991). This is a critical property when

computing problems where low densities and pressures are achieved; this situation

can occur in a number of compressible multicomponent flow calculations. Thus,

HLL solvers are favored, in particular the HLLC solver (Toro et al., 1994; Toro,

1999), because it resolves discontinuities more sharply, and isolated shockwaves

and contacts exactly (Batten et al., 1997). Given allowable left and right states,

the HLLC solver preserves positivity (Batten et al., 1997).

The HLLC solver is an extension to the HLL solver, whereby the contact dis-

continuity is restored. The HLLC flux can be written:

fHLLC =
1 + sign(s∗)

2

[
fL + s−(q∗L − qL)

]
+

1 − sign(s∗)

2

[
fR + s+(q∗R − qR)

]
,

(3.24)
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where the intermediate “star” state is defined as

q∗k = χk




ρk

ρks∗

Ek + (s∗ − uk)
(
ρks∗ + pk

sk−uk

)


 , χk =

sk − uk

sk − s∗
, (3.25)

where k = L,R. Following Einfeldt et al. (1991), the wave speeds are given by

s− = min
(
0, sL

)
, s+ = max

(
0, sR

)
, (3.26)

where

sL =
(
(u − c)ROE , uL − cL

)
, sR =

(
(u + c)ROE , uR + cR

)
. (3.27)

The intermediate wave speed is computed according to Batten et al. (1997):

s∗ =
pR − pL + ρLuL

(
sL − uL

)
− ρRuR

(
sR − uR

)

ρL (sL − uL) − ρR (sR − uR)
. (3.28)

Adapting the HLLC solver to the advection equation

Although hyperbolic, advection equations are not conservation laws, so it is not

immediately clear how to implement any approximate Riemann solver consistently

with the Euler equations. The Lax-Friedrichs, Roe, and HLL solvers have been

adapted to the advection equation (Abgrall, 1996; Shyue, 1998; Saurel & Abgrall,

1999b). In order to adapt the HLLC solver, it is tempting follow the same thought

process by considering two states connected by a wave moving at speed, ui. Equa-

tion 2.8 becomes, in semi-discrete form:

dφi

dt
= − ui

∆x

[
1 + sign(ui)

2

(
φL

i+1/2 − φL
i−1/2

)
+

1 − sign(ui)

2

(
φR

i+1/2 − φR
i−1/2

)]
.

(3.29)

It is easy to verify that this leads to the oscillation-free advection of an isolated in-

terface and propagation of isolated shocks. However, if the pressure varies strongly

for non-constant φ, the wavespeed in the advection equation, ui, is inconsistent
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with that of the contact discontinuity, s∗i±1/2, in the Euler equations. Equation 2.8

can be rewritten using the chain rule as

φt + gx − φux = 0, g = uφ. (3.30)

The second term is a conservative flux, and the velocity differentiation in the third

term allows the HLLC solver to be adapted. Integrating the advection equation

3.30 over a cell,

dφ

dt

∣∣∣
i
= − 1

∆x

(
gi+1/2 − gi−1/2

)
+

1

∆x

∫ xi+1/2

xi−1/2
φ

∂u

∂x
dx. (3.31)

This equation is exact. The following approximation is made to evaluate the

integral:

dφ

dt

∣∣∣
i
= − 1

∆x

(
gi+1/2 − gi−1/2

)
+

1

∆x
φi

(
ui+1/2 − ui−1/2

)
. (3.32)

Equation 3.32 is exact far from interfaces, where φ is assumed constant. At discon-

tinuities, shock-capturing schemes can achieve no better than first-order accuracy

(LeVeque, 2002); since the integral in Equation 3.31 is evaluated using a midpoint

rule and the derivative using a centered scheme, it is at worst second-order ac-

curate. Therefore, this approximation does not deteriorate the overall order of

accuracy of the method. Based on the conservative form of the advection equation

(Toro, 1999), the velocity in the source term is computed as

uHLLC =
1 + sign(s∗)

2

[
uL + s−(χ∗L − 1)

]
+

1 − sign(s∗)

2

[
uR + s+(χ∗R − 1)

]
.

(3.33)
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3.4 Interface-capturing scheme

3.4.1 Occurrence of oscillations at isolated interfaces

Since the present scheme is shock-capturing, isolated shockwaves and rarefaction

waves are treated appropriately. Across isolated material interfaces, the model

equations (2.1,2.8) preserve the pressure equilibrium (Shyue, 1998). The goal is to

provide a spatial discretization scheme that satisfies this condition.

To motivate the numerical method, the analysis of Abgrall (1996), Abgrall &

Karni (2001) and Shyue (1998) is followed, where the problem of the advection of

an isolated interface between two different gases at constant velocity is considered.

The kinematic and dynamic interface conditions require u and p to be uniform in

time and space; therefore, the Euler equations 2.1 become:

∂ρ

∂t
= −u

∂ρ

∂x
, (3.34a)

∂(ρu)

∂t
= −u

∂ρ

∂x
, (3.34b)

∂E

∂t
= −u

(
u2

2

∂ρ

∂x
+ p

∂Γ

∂x

)
. (3.34c)

Combining Equations 3.34a and 3.34b, du/dt = 0. Equation 3.34c and the equation

of state 2.6 yield dp/dt = 0 if
∂Γ

∂t
= −u

∂Γ

∂x
. (3.35)

In FV methods, the conservative variables, q = (ρ, ρu,E, ρΓ)T , are reconstructed.

However, the dissipation introduced in these variables, in particular in E and ρΓ,

does not maintain pressure equilibrium (Karni, 1994; Saurel & Abgrall, 1999b),

especially when using a nonlinear reconstruction such as WENO. For the same

reason, FD methods fail.

In order to preserve the pressure equilibrium in the discrete equations, the

behavior of the continuous equations 3.34 and 3.35 is emulated by reconstructing

u and p individually. Since the elements of the interpolating stencils are identical

near isolated interfaces, the equilibrium in these variables is preserved. Thus, the
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primitive variables, u = (ρ, u, p,Γ)T , must be reconstructed, rather than q. This

allows the kinematic and dynamic interface conditions to be preserved.

This has further implications for the advection equation. First, the specific

function, Γ(γ) = 1/(γ − 1), must be advected, not just any arbitrary function

of γ (Shyue, 1998). Thus, model equations 2.1 and 2.8 must be used. Also, the

advection equation must be discretized in a fashion consistent with the energy

equation (Abgrall, 1996; Saurel & Abgrall, 1999b). Coupling a level set equation

as in Fedkiw et al. (2000) does not necessarily guarantee this requirement and

might thus cause oscillations. It is straightforward to treat the case of Π∞ in an

analogous fashion (Shyue, 1998).

This analysis shows that, if the above conditions are not met, a discontinuity

in Γ causes an error in pressure at the interface, which generates oscillations that

propagate within the flow. Methods where there is no explicit discontinuity in Γ

(e.g., Ghost Fluid methods (Fedkiw et al., 1999; Abgrall & Karni, 2001)) or where

Γ does not enter the equations at interfaces (e.g., Pressure Evolution methods

(Karni, 1994, 1996)) are not affected by this problem.

3.4.2 Reconstruction of the primitive variables

At the beginning of each time step, the cell averages of the conservative quantities

are given. In order to reconstruct the primitive variables, the local average velocity,

v, and pressure, p, are defined:

vi ,
ρui

ρi

, pi ,
Ei − ρi

v2
i
2

Γi

. (3.36)

The average velocity, v, is analogous to the density-weighted average used in com-

pressible turbulence models (Favre, 1965). These variables, along with ρi and Γi,

are reconstructed using WENO. This provides the left and right states for the

Riemann problem at the cell edges.

To understand the impact of this methodology on the accuracy of the scheme,
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the sliding average of a function, q(x), is defined by

q(x) ,
1

∆x

∫ x+∆x/2

x−∆x/2
q(ξ)dξ, qi = q(xi), (3.37)

so that in smooth regions, q(x) = q(x)+O(∆x2). ENO and WENO reconstructions

have the following property (Harten et al., 1987; Shu, 1999):

q̃(xi) = qi, (3.38)

where q̃(x) is a pointwise approximation to q(x). Therefore, the reconstruc-

tion preserves the total amount of q in each cell. Equation 3.37 implies that

u(x) = u(x) + O(∆x2). Using Taylor series expansion, v(x) = u(x) + O(∆x2), so

that v approximates u(x) to the same order that u does. This justifies the defini-

tions in Equation 3.36, which are the building blocks of the reconstruction. From

Equation 3.38, given the reconstructed density, ρ̃(x), and momentum, ρ̃u(x), the

reconstructed velocity, ṽ(x), satisfies

ρ̃(x)ṽ(x) = ρ̃u(x). (3.39)

In other words, ṽ(x) is a high-order accurate approximation to the velocity, which

preserves the total momentum in each cell. Therefore, ρui+1/2 = ρi+1/2vi+1/2 to

high-order accuracy. Similarly, p̃(x) is a high-order accurate approximation to the

pressure, which preserves the total energy in each cell. The convergence analysis

presented in Section 3.6.1 indicates that the proper convergence rate is achieved.

Characteristic reconstruction can easily be implemented, as the characteristic vari-

ables are naturally expressed in terms of primitive variables. Furthermore, the

Euler equations 2.1 are still written in flux difference form (LeVeque, 2002):

fi+1/2 = f(i+1)−1/2. (3.40)

Equations 3.39 and 3.40 show that the numerical scheme is discretely conservative
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(LeVeque, 2002) for the Euler equations.

3.4.3 Oscillation-free advection of an isolated interface

The present scheme can be shown to maintain pressure equilibrium for the problem

of the advection of an isolated interface between two gases at constant speed, u.

Without loss of generality, the case |sk| > u > 0 is considered, so that q∗L = qL

and u∗L = uL = u. From the interface conditions, the velocity, u, and the pressure,

p, are uniform. Then, using the HLLC solver 3.24 and 3.33 and the reconstruction

of the primitive variables described above, the Euler and advection equations 2.1

and 2.8 can be marched forward by a time step:

ρn+1
i = ρn − ∆t

∆x
u
(
ρL

i+1/2 − ρL
i−1/2

)
(3.41a)

ρun+1
i = ρun

i − ∆t

∆x
u2
(
ρL

i+1/2 − ρL
i−1/2

)
(3.41b)

E
n+1
i = E

n
i − ∆t

∆x
u

[
u2

2

(
ρL

i+1/2 − ρL
i−1/2

)
+ p

(
ΓL

i+1/2 − ΓL
i−1/2

)]
(3.41c)

Γ
n+1
i = Γ

n
i − ∆t

∆x
u
(
ΓL

i+1/2 − ΓL
i−1/2

)
. (3.41d)

Since u is constant, ρun
i = ρn

i u. The equation of state (2.6) and equations (3.41)

can be combined to yield the velocity and pressure at the next time step:

un+1
i ,

ρun+1
i

ρn+1
i

= u, pn+1
i ,

E
n+1
i − (ρun+1

i )
2

2ρn+1

i

Γ
n+1
i

= p. (3.42)

Therefore, the present scheme maintains equilibrium in velocity and pressure for

the advection of an isolated interface. This can be generalized to fluids with

P∞ 6= 0 and to multiple dimensions. However, this derivation cannot readily be

extended to problems where interfaces interact with shockwaves; nevertheless, it

is demonstrated using difficult test cases that no oscillations are observed.
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3.5 Boundary conditions

Two types of boundary conditions are implemented: reflecting boundary condi-

tions, which represent a solid wall, and non-reflecting boundary conditions, which

reduce an infinite physical domain to a computational domain of finite size.

3.5.1 Reflecting boundary conditions

Reflecting boundary conditions are used to represent a solid boundary in inviscid

flow and are constructed such that the no-through-flow condition is satisfied. A

centerline approach is used, where scalar quantities (and the tangential velocity

component) are mirrored across the wall, while the normal velocity component

is reflected; thus, the wall is considered as an axis of symmetry.3 In Cartesian

rectangular coordinates, the situation is shown in Figure 3.1 for the first point

next to the wall. If larger stencils are required, the same procedure is used (e.g.,

for point N + 2, the values at N − 2 are used).

-

6

u

v
N − 1 N N + 1

ρN−1

uN−1

vN−1

pN−1

ΓN−1

ρN+1 = ρN−1

uN+1 = −uN−1

vN+1 = vN−1

pN+1 = pN−1

ΓN+1 = ΓN−1

Figure 3.1: Schematic of reflecting boundary conditions on a Cartesian grid.

In FV schemes, both the reconstruction and the flux calculation are affected

by this procedure. In the reconstruction, the WENO scheme does not need to be

modified at the wall: extra points are added at N + 1, N + 2, ..., with the value

specified as shown above. Therefore, the reconstruction retains its formal order

of accuracy throughout the domain. The reflected fluxes across the wall are then

3In viscous flows, an additional condition is required for the tangential velocity component.
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computed as follows:

ΓN+1/2 = ΓN−1/2, ρuN+1/2 = −ρuN−1/2, ρuvN+1/2 = −ρuvN−1/2,

(ρu2 + p)N+1/2 = (ρu2 + p)N−1/2, (u(E + p))N+1/2 = −(u(E + p))N−1/2.

(3.43)

3.5.2 Non-reflecting boundary conditions

Non-reflecting boundary conditions are constructed such that waves radiate out-

wards and that no incoming waves enter the domain, as described in Thompson

(1987, 1990). The theory is based on the characteristic form of the Euler equations

2.3, which can be written,

(
∂p

∂t
+ ρc

∂v

∂t

)
+ (v + c)

(
∂p

∂r
+ ρc

∂v

∂r

)
+

ρc2v

r
= 0, (3.44a)

(
∂p

∂t
− c2 ∂ρ

∂t

)
+ v

(
∂p

∂r
− c2 ∂ρ

∂r

)
= 0, (3.44b)

(
∂p

∂t
− ρc

∂v

∂t

)
+ (v − c)

(
∂p

∂r
− ρc

∂v

∂r

)
+

ρc2v

r
= 0. (3.44c)

In Cartesian rectangular coordinates, the geometrical source terms in 3.44a and

3.44c do not appear. The eigenvalues are λ1 = v − c, λ2 = v, and λ3 = v + c. The

following variables are then defined:

L1 = (v−c)

(
∂p

∂r
− ρc

∂v

∂r

)
, L2 = v

(
∂p

∂r
− c2 ∂ρ

∂r

)
, L3 = (v+c)

(
∂p

∂r
+ ρc

∂v

∂r

)
.

(3.45)

These variables represent the characteristic left- or right-moving waves. In order

to satisfy non-reflecting conditions for subsonic outflow, only outgoing waves are

allowed at the edges of the computational domain. This is done by computing the

appropriate values for L, as described in Table 3.2. The primitive equations can

then be written in terms of Li:

dp

dt
= −L3 + L1

2
− ρc2v

r
,

dv

dt
= −L3 − L1

2ρc
,

dρ

dt
=

1

c2

(
dp

dt
+ L2

)
. (3.46)
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Table 3.2: Computation of characteristic variables at the boundaries.

Sign of eigenvalue Left boundary Right boundary

u − c ≥ 0 L1 = 0 compute L1

u − c ≤ 0 compute L1 L1 = 0

u ≥ 0 L2 = 0 compute L2

u ≤ 0 compute L2 L2 = 0

u + c ≥ 0 L3 = 0 compute L3

u + c ≤ 0 compute L3 L3 = 0

The main practical issue with non-reflecting boundary conditions is that the

spatial discretization scheme must be modified near the boundaries, since the vari-

ables at points beyond the boundary are unknown. As a result, biased differencing

must be implemented. In the present case, a FV WENO5 scheme is used for the

interior points, so that the stencil consists of five points centered about i. Thus, for

both the second cell and the penultimate cell, one point is missing in the stencil,

i.e., an extra point would be required beyond the domain. For these cells, the

scheme is modified to a third-order accurate WENO scheme, which uses only a

three-point stencil. The first and last points are computed by differentiating the

variables using a fourth-order accurate one-sided difference scheme:

df

dx

∣∣∣
0

=
−25f0 + 48f1 − 36f2 + 16f3 − 3f4

12∆x
. (3.47)

Thus, the right-hand side is evaluated by computing the (discrete) derivatives of

average velocity and pressure (and cell-average ρ and Γ); no flux calculations are

required. It should be noted that the equations are not conservative at these points,

but this is not relevant, because the shocks are weak by the time they reach the

boundaries and the domain is large enough that reflections at the boundaries do

not contaminate the solution.
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This type of non-reflecting boundary conditions is not exact in multiple dimen-

sions, so that small amplitude waves may be reflected into the domain. However,

as described in Section 3.7.3, the domain is chosen to be large enough, and the

mesh stretching allows the waves to dissipate more as they propagate farther away.

3.6 Verification

In the present section, a number of problems have been chosen to confirm that

the method solves the equations accurately (verification stage). Validation of the

scheme is provided throughout Chapter 4 by comparisons with theory and exper-

iments.

In certain test cases, the present method is compared to a standard imple-

mentation of finite difference (FD) and finite volume (FV) WENO schemes. The

differences lie in the model equations used and the variables that are interpolated or

reconstructed using WENO, as listed in Table 3.3. The FD and fully-conservative

schemes are implemented using existing methods (Shu, 1997) and are expected to

behave in a similar fashion, since the model equations are identical. The quasi-

conservative FV scheme is implemented following Saurel & Abgrall (1999b) and

is expected to generate smaller oscillations than the former schemes. The present

scheme is not expected to generate oscillations. The time-marching is RK3TVD,

unless otherwise specified. WENOr denotes a WENO scheme of order r. The grid

and time stepping are uniform and ∆t/∆x = 0.2.

3.6.1 Convergence analysis

In order to assess the convergence of the present method, a smooth acoustics

problem in a single gas component is considered. The primitive variables are

perturbed about a steady state,

ρ(x, t) = ρo + ǫρ′(x, t), u(x, t) = ǫu′(x, t), p(x, t) = po + ǫp′(x, t), (3.48)
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Table 3.3: Comparison between the different FD and FV WENO schemes, list-

ing the model equations and variables that are interpolated/reconstructed using

WENO.

Scheme Model WENO variables

FD (2.1,2.9) (ρu, ρu2 + p, (E + p)u, ρuΓ)T

Fully conservative FV (2.1,2.9) (ρ, ρu,E, ρΓ)T

Quasi-conservative FV (2.1,2.8) (ρ, ρu,E,Γ)T

Present (2.1,2.8) (ρ, u, p,Γ)T

where ǫ is small. Using conservation of mass and momentum, and the definition

of the sound speed (Equation A.7), it can be shown that ρ, u, and p satisfy the

second order wave equation, with wave speed co, to first order in ǫ. The initial

perturbation is given by f(x) = sin8(πx), such that the initial conditions are

ρ(x, 0) = 1 + ǫf(x), u(x, 0) = 0, p(x, 0) =
1

γ
+ ǫf(x). (3.49)

As ǫ increases, the wave steepens and ultimately breaks, so that a shockwave forms.

When ǫ ≈ 0.4, the wave breaks within a period. Figures 3.2 and 3.3 compare the L1

and L∞ errors in density between the present and quasi-conservative FV schemes

for ǫ = 10−4 and ǫ = 0.1, respectively, after one period. The reference solution is

the solution computed with a much larger number of points (Nexact = 1280) than

those studied (N = 10, 20, 40, 80, 160). WENO3 and WENO5 are implemented

with the HLLC solver and without characteristic reconstruction, though there is

hardly any difference if different solvers or characteristic reconstruction are used

(Shu, 1999). The time-marching is handled using RK5.

The agreement between the two methods is excellent for ǫ = 10−4. A slight

departure from the −5 slope near N = 160 is observed in both methods, as the

“exact” solution is approached. The solution is still smooth for ǫ = 0.1, although

the wave starts to steepen. As anticipated, the convergence rate departs from the

expected slope, especially in the L∞ plot. The present method performs slightly
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Figure 3.2: L1 and L∞ errors in density for a smooth acoustics problem with

ǫ = 10−4 using WENO3 and WENO5 (C: quasi-conservative scheme; P: present

scheme); dashed and solid lines have slopes −3 and −5, respectively.

better than the quasi-conservative FV scheme when using WENO3, but slightly

worse when using WENO5. These discrepancies indicate different sensitivity to

the steepening of the waves. However, this feature is not very relevant in prac-

tical multi-dimensional computations because the discrepancy is small and the

resolution is rarely better than the highest (N = 160) shown here.

3.6.2 Isolated interface advection problem

The occurrence of oscillations is illustrated for the simplest possible test case,

namely the advection of a gas-gas interface, with the following initial states:

(ρ, u, p, γ)T
L = (1, 0.5, 1/1.4, 1.4)T , (ρ, u, p, γ)T

R = (10, 0.5, 1/1.4, 1.6)T . (3.50)

The domain is periodic with N = 100. The Lax-Friedrichs solver and the cor-
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Figure 3.3: L1 and L∞ errors in density for a smooth acoustics problem with

ǫ = 10−1 using WENO3 and WENO5 (C: quasi-conservative scheme; P: present

scheme); dashed and solid lines have slopes −3 and −5, respectively.

responding flux-splitting (Shu, 1999) are implemented in an effort to compare all

four schemes of Table 3.3. Figure 3.4 shows density, pressure, γ, and velocity pro-

files, as well as the residual mass, momentum, and energy, after subtraction of the

total values, after the interface has moved the length of the domain, for the finite

difference (FD), fully conservative finite volume (FV-F), and quasi-conservative

finite volume (FV-C) cases.

Even though the difference in γ is small, oscillations develop at the interface

at the first time step and propagate in the flow field thereafter. The FD and fully

conservative schemes behave in a similar fashion and generate larger oscillations

than the quasi-conservative FV scheme. Nevertheless, the interface is advected

at approximately the correct speed despite small errors in velocity due to the

oscillations. Although not shown here, the magnitude of the oscillations decreases

as the mesh is refined (Abgrall & Karni, 2001). On the other hand, oscillations
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Figure 3.4: Density, pressure, γ, and velocity, along with the residual mass

(dashed), momentum (dash-dot), and energy (solid), for the advection of a mate-

rial interface with the FD, fully conservative FV (FV-F), and quasi-conservative

FV (FV-C) schemes. The solid line denotes the exact solution.

are observed only at the round-off level when using the present scheme, as seen

in Figure 3.5, where the base velocity and pressure have been subtracted. All

schemes show discrete conservation to round-off error.

3.6.3 Shock-tube problems

Standard single-component shock-tube problems (Sod, 1978; Lax, 1954) were com-

puted and produced good agreement amongst the schemes in Table 3.3. However,

they are not shown here for conciseness. The present scheme with WENO5 and

the HLLC solver is used, and N = 100.
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Figure 3.5: Density, pressure, γ, and velocity, along with the residual mass

(dashed), momentum (dash-dot), and energy (solid), for the advection of a mate-

rial interface with the present scheme (the base u and p have been subtracted).

The solid line denotes the exact solution.

Strong shock in gases

The following multicomponent Sod problem with high pressure and density ratios

(Wackers & Koren, 2005) is considered:

(ρ, u, p, γ, P∞)T
L = (10, 0, 10, 1.4)T , (ρ, u, p, γ, P∞)TR = (0.125, 0, 0.1, 1.2)T .

(3.51)

Figure 3.6 shows density, pressure, γ, and velocity profiles at time 1.6, as well as

the residual mass, momentum, and energy, after subtraction of the total values.

Again, the computed solution agrees very well with the exact solution. Mass,

momentum and energy are conserved to round-off error; the divergence of these

values at large times illustrates that the shockwave is close to the boundary. In the

γ plot, there is more dissipation towards the left side of the interface, because of the
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Figure 3.6: Density, pressure, γ, and velocity along with the residual mass (solid),

momentum (dashed), and energy (dotted), for the modified Sod problem using the

present scheme at time 1.6. The solid line denotes the exact solution.

original density ratio; although not shown here, as N is increased, the computed

solution converges to the exact solution.

Gas-liquid Riemann problem

A more difficult shock-tube problem is the following gas-liquid Riemann problem

used to model underwater explosions (Cocchi et al., 1996; Shyue, 1998):

(ρ, u, p, γ, P∞)T
L = (1.241, 0, 2.753, 1.4, 0)T ,

(ρ, u, p, γ, P∞)TR =
(
0.991, 0, 3.059 × 10−4, 5.5, 1.505

)T
.

(3.52)

The gas is highly compressed, as illustrated by the large pressure and small density

ratios. Figure 3.7 shows density, pressure, γ, and velocity profiles at time 0.1, as

well as the residual mass, momentum, and energy after subtraction of the total
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values. The plot of P∞ is not included because it is similar to that of γ.
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Figure 3.7: Density, pressure, γ, and velocity, along with the residual mass (solid),

momentum (dashed), and energy (dotted), for the gas-liquid Riemann problem at

time 0.1. The solid line denotes the exact solution.

The computed solution agrees well with the exact solution and compares fa-

vorably to previous findings (Cocchi et al., 1996; Shyue, 1998). The wave speeds

are correct and there are no oscillations at the interface. Mass, momentum, and

energy are conserved up to round-off error.

Shock-interface interaction

The final one-dimensional test for oscillations and conservation is the interaction

of a strong shock with an interface. A Mach 8.96 shockwave travels in helium and

hits an air interface (Liu et al., 2003), with states:

(ρ, u, p, γ)T
L = (0.386, 26.59, 100, 1.67)T ,

(ρ, u, p, γ)T
M = (0.1,−0.5, 1, 1.67)T ,

(ρ, u, p, γ)T
R = (1,−0.5, 1, 1.4)T .

(3.53)
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This shock is very strong, as illustrated by the pressure ratio of 100 : 1. Initially,

the shock is located at x = −0.8, and the interface at x = −0.2. Figure 3.8 shows

density, pressure, γ, and velocity profiles at time 0.07, as well as the residual total

mass, momentum, and energy after subtraction of the base values. The problem

is solved using the present scheme with the Lax-Friedrichs solver.
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Figure 3.8: Density, pressure, γ, and velocity, along with the residual total mass

(dashed), momentum (dash-dot), and energy (solid), for the shock-interface inter-

action at time 0.07. The solid line denotes the exact solution.

Due to the respective impedances of the fluid components, one shock is reflected

backwards, while another shock is transmitted into the air. The computed solution

agrees well with the exact solution. The wave speeds are correct and there are no

oscillations at the interface. Mass, momentum, and energy are conserved up to

round-off error.
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3.6.4 Shock-bubble interactions

The previous examples show that the present method converges at the proper

rate, and that the correct waves speeds are obtained in one-dimensional problems.

The extension to two dimensions does not change this behavior. It is verified in

Titarev & Toro (2004) that the two-dimensional FV WENO schemes converge at

the proper rate. The extension of Section 3.3.2 to two-dimensions is trivial, as the

Euler equations are in flux-difference form and the reconstruction is conservative;

therefore, for two-dimensional problems similar to the previous one-dimensional

problems, conservation is satisfied.

An example of two-dimensional compressible multicomponent flow is the in-

teraction between a shockwave and a cylindrical bubble studied experimentally in

Haas & Sturtevant (1987), where a Mach 1.22 shockwave in air impacts upon a

Helium cylinder (ρHe = 0.138, γHe = 1.67). The bubble has a 50 mm diameter,

and the width of the shock-tube is 89 mm. Several numerical studies have been

undertaken, in which a non-conservative scheme with adaptive mesh refinement

(Quirk & Karni, 1996) and a FD-WENO5 scheme (Marquina & Mulet, 2003) were

used.

One-dimensional problem

The corresponding one-dimensional problem is first considered, to show conver-

gence and to understand the early wave interactions. WENO5 with characteristic

reconstruction is used, along with the HLLC solver; non-reflecting boundary condi-

tions (Thompson, 1987) are implemented. Figures 3.9 and 3.10 show density, pres-

sure, γ, and velocity profiles shortly before the left-moving transmitted shockwave

leaves the domain for the present and quasi-conservative FV schemes, respectively.

Results with 100 and 400 points are presented in order to show convergence.

The density plots depict the interface and certain waves quite well. However, a

better understanding of the wave interactions is achieved by considering the pres-

sure and velocity plots. Initially, the incident shockwave hits the bubble from the

left. Upon impact, a shockwave is transmitted into the bubble, whereas an expan-
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Figure 3.9: Density, pressure, γ, and velocity for the one-dimensional shock-bubble

interaction using the present scheme (dotted: N=100; solid: N=400).

sion wave is reflected. The shockwave inside the bubble propagates to the other

interface and, upon impact, generates a transmitted shockwave and a reflected

shockwave. This phenomenon continues as the reflected shockwave trapped in the

bubble impacts either interface. In Figures 3.9 and 3.10, the left-most wave is

the first transmitted shockwave; the next wave is the second transmitted shock-

wave after two reflections off the interface; the next wave is the internally reflected

shockwave after three reflections; and the right-most wave is the first transmitted

shockwave after one reflection upon the far interface. The two left-most waves are

propagating to the left and the two right-most to the right.

The quasi-conservative FV scheme clearly exhibits unacceptable oscillations,

especially in the pressure and velocity. On the other hand, such oscillations do not

occur when using the present scheme. Both schemes converge; the amplitude of

the oscillations present in the former scheme decreases as the mesh is refined, but

their frequency increases.
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Figure 3.10: Density, pressure, γ, and velocity for the one-dimensional shock-

bubble interaction, using the quasi-conservative FV scheme (dotted: N=100; solid:

N=400).

Two-dimensional problem

For the two-dimensional problem, a 800×400 grid is used with reflecting boundary

conditions along the top boundary and the centerline. The initial conditions are

specified from a FV discretization. For a given radius, the appropriate properties

are assigned inside and outside the bubble. Any cell that is crossed by the interface

is given properties weighted by the fraction of both fluids. The initial shockwave

is a straight discontinuity, with no smoothing.

Idealized Schlieren contours (Quirk & Karni, 1996; Marquina & Mulet, 2003),

which allow the visualization of the general wave structure, and density lines, which

show the details of the flow, are shown in Figure 3.11 for the present scheme. Frame

A is taken shortly after the shockwave has impacted the bubble, frame B shortly

before the first transmitted shockwave has left the domain, frame C shortly before
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the first reflection from the top wall leaves the domain, and frame D at a later

time. The pressure along the horizontal centerline and the vertical line at the

middle of the domain are plotted in Figure 3.12 at times corresponding to frames

A and B, respectively.

A B

C D

Figure 3.11: Idealized Schlieren images (top) and density lines (bottom) of an

interaction between a Helium bubble and a Mach 1.22 shockwave in air using the

present scheme.

The results are in good qualitative agreement with Haas & Sturtevant (1987),

Quirk & Karni (1996) and Marquina & Mulet (2003). The first wave interactions

(frame A) and the subsequent reflections off the wall and interface (frame B) are
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and B (solid) of Figure 3.11, using the present scheme and the quasi-conservative

FV scheme.

well captured. The Kelvin-Helmholtz instability that develops along the interface

and the jet formation (frames C and D) are consistent with prior findings. The

high-order accurate scheme allows the complex patterns due to the wave inter-

actions to be well resolved; no spurious oscillations are observed at interfaces or

shockwaves. The start-up error generated by the initial discontinuity is advected

by the flow, but has no dynamical effect. This could have been avoided by starting

the shockwave farther from the bubble (Quirk & Karni, 1996) or by breaking a

wave to form a shockwave.

On the other hand, Figure 3.13 shows that, when the quasi-conservative FV

scheme is used, oscillations are generated at the interface in the form of spurious

waves (frame A), as in the one-dimensional problem. Their main dynamical effect is

to perturb the interface; this triggers the Kelvin-Helmholtz instability earlier than
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A B

C D

Figure 3.13: Idealized Schlieren images (top) and density lines (bottom) of an

interaction between a Helium bubble and a Mach 1.22 shockwave in air, using the

quasi-conservative FV scheme.

expected (frames B and C), as might be the case with the scheme of Marquina &

Mulet (2003), which does not strictly suppress oscillations. The interface becomes

more smeared, which causes a decrease in the strength of the wave fronts that

pass through it. These undesirable features do not occur when using the present

method. The slight jaggedness of the two thin density lines inside the bubble in

frame A for both cases is attributed to the initial irregular contour of the bubble

on a Cartesian grid.
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3.7 Extension of the numerical methodology

3.7.1 Finite volume equations in cylindrical coordinates

Although a three-dimensional extension of the present numerical method is triv-

ial, its implementation is computationally expensive. Instead, an axisymmetric

extension is considered, since the bubble collapse problems considered here have

azimuthal symmetry. For simplicity, only the radial component is considered; the

axial component is treated as described in the previous sections.

In polar coordinates with azimuthal symmetry, the cell-average value of a func-

tion can be related to the cell-centered value using Taylor series:

2π

∆Vj

∫ rj+1/2

rj−1/2

f(r)rdr =
Fj+1/2 − Fj−1/2

rj∆r
= fj + O(∆r2), (3.54)

where F ′ = fr. However, the following expression also approximates the cell-

centered value of f to the same order of accuracy:

1

∆r

∫ rj+1/2

rj−1/2

f(r)dr
1

rj∆r

∫ rj+1/2

rj−1/2

rdr = fj + O(∆r2). (3.55)

This naturally leads to the definition of a linear cell-average value, as in Equation

3.37,

f̄j =
1

∆r

∫ rj+1/2

rj−1/2

f(r)dr, (3.56)

such that fjrj = frj + O(∆r2) = f̄j r̄j + O(∆r2). This follows the same idea as

the appropriately averaged velocity and pressure described in Section 3.4.2. Then,

the integral form of the radial component of Equations 2.2 can be re-arranged in
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the following semi-discrete fashion:

d

dt
ρ̄j = −

(ρv)j+1/2 − (ρv)j−1/2

∆r
−

(ρv)j+1/2 + (ρv)j−1/2

2rj
, (3.57a)

d

dt
ρvj = −

(ρv2 + p)j+1/2 − (ρv2 + p)j−1/2

∆r
−

(ρv2)j+1/2 + (ρv2)j−1/2

2rj
, (3.57b)

d

dt
Ēj = −

[v(E + p)]j+1/2 − [v(E + p)]j−1/2

∆r
−

[v(E + p)]j+1/2 + [v(E + p)]j−1/2

2rj
.

(3.57c)

Thus, the right-hand side consists of a convective flux and a geometrical source

term. The numerical fluxes obtained using the approximate Riemann solver can be

used to compute the source terms in Equations 3.57a and 3.57c. For the momentum

equation, the HLLC solver is applied to the variable, ρv2, in addition to the usual

flux, ρv2 + p, so that appropriate upwinding is achieved for the source term. The

form of Equations in 3.57 is similar to a finite difference discretization of the radial

component of Equations 2.2.

3.7.2 Boundary conditions at r = 0

In radial coordinates, the boundary conditions at the origin are similar to reflecting

boundary conditions. The main difference is that the cell width is half that of a

normal cell, as shown in Figure 3.14 below.

0 1
-�

∆r

Figure 3.14: Schematic of the grid points near the centerline

The radial component of Equations 2.2 are integrated over the cell, so that,

using the linear cell average from Equation 3.56, the following conditions are ob-
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tained at the centerline:

d

dt
ρ0 = −2

(ρv)∆r/2

∆r/2
,

d

dt
ρu0 = −2

(ρuv)∆r/2

∆r/2
,

d

dt
ρv0 = −2

(
ρv2 + p

)
∆r/2

− p̄0

∆r/2
,

d

dt
E0 = −2

(v(E + p))∆r/2

∆r/2
,

d

dt
Γ0 = 0,

(3.58)

where p̄0 is computed from the cell-average values of the conservative variables.

3.7.3 Computational domain

Domain size

Non-reflecting boundary conditions are employed to truncate the computational

domain and extend it to infinity (see Section 3.5). However, the scheme used

in the present work (Thompson, 1987, 1990) is not exact in multidimensions, so

that spurious waves are reflected back into the domain (Colonius, 2004). Although

these reflections are weak at the boundaries, they focus in the cylindrical geometry.

Thus, the domain is extended to a size large enough that the waves reflected at the

boundaries do not have time to contaminate the solution. Since these waves travel

at sonic speeds, the length of the domain is set by computing the distance traveled

by waves emitted during bubble collapse over the time of the collapse (computed

from the Rayleigh-Plesset equation 4.4). Furthermore, the stretching described in

the next section allows the outgoing waves to dissipate significantly on the coarse

grid far away from the bubble. Another way to prevent reflections is to implement

a buffer region (Colonius & Ran, 2002).

Mesh stretching

As remarked in the previous section, the domain must be large enough to prevent

reflections off the boundaries from contaminating the solution. Since the area of

interest is small, a static stretched grid is used to minimize the computational

effort.
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In order to prevent reflections due to an abrupt change in grid spacing, the

following infinitely smooth function is used:

h(x) = 2x0 − (x1 + x2) +
ln [cosh(a(x − x1))] + ln [cosh(−a(x + x2))]

a
, (3.59)

where x0 is determined by setting h(0) = 1. In the case of free-field Rayleigh

collapse, a = 4 and x1 = x2 = 1.83. Figure 3.15 shows the grid-stretching function.
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Figure 3.15: Grid-stretching function.

The resulting grid allows for high resolution near the bubble and a coarse mesh

far away. Because of the stretching, the grid is no longer uniform, as illustrated

in Figure 3.16, which shows the computational domain for the free-field Rayleigh

collapse (only one in ten points is included). Thus, the WENO scheme is extended

to account for the non-uniformity. In particular, the modified form of the poly-

nomials, the ideal weights, and the smoothness indicators were calculated based

on the grid, according to the equations listed in Appendix B. On the other hand,

the multidimensional reconstruction (Titarev & Toro, 2004), artificial compression

(Yang, 1990), and mapped-WENO scheme (Henrick et al., 2005) were not extended
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to non-uniform grid.
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Figure 3.16: Computational grid used for Rayleigh collapse (only one in ten cells

is shown.

3.7.4 Initial conditions

Volume fraction

The initial conditions for computational cells containing only gas or liquid are easily

specified. However, for cells that are intersected by the interface, the variables must

be assigned based on the fraction of gas and of liquid contained in the cell. By

definition, the volume fraction of gas is defined as ξij = VG
Vij

. Since the density in

a cell is given by the total mass of fluid divided by the cell volume, it follows that



76

the density of a cell is given by

ρij = ξijρG + (1 − ξij)ρL. (3.60)

Similarly, the impedance in a mixture is given by (Brennen, 1995):

1

ρc2
=

x

ρGc2
G

+
1 − x

ρLc2
L

. (3.61)

From Equations 3.60 and 3.61, the local mixture value of γ and P∞ can be specified:

1

γij
=

ξij

γG
+

1 − ξij

γL
, P∞,ij = P∞,L. (3.62)

Initial smoothing of the interface

In the finite volume formulation, the initial conditions for the bubble can be spec-

ified based on the volume fraction of gas in each cell. However, this leads to

corrugations of the bubble shape, due to the discretization of a circle onto a rect-

angular grid, as described in Section 3.8. Thus, the volume fraction function was

smoothed over a few grid points using the following function:

ξij =
1 − tanh

[
α
(√

x2
i + r2

j − Ro

)
/∆x

]

2
, (3.63)

where the coefficient, α ≈ 1 − 10, such that the bubble volume and circulation do

not change significantly.

3.8 Limitations of the numerical scheme

3.8.1 Inviscid simulations

The numerical solution to the multidimensional Euler equations in which shock-

waves interact with interfaces may exhibit ill-posed features. In particular, Sam-

taney & Pullin (1996) showed that the solution to the interaction between a shock

and a vortex sheet does not necessarily converge in a pointwise or weak sense.
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As discussed in Niederhaus et al. (2007), irregularities due to the discretization

of the initial conditions introduce a cut-off wavenumber for the Kelvin-Helmholtz

instability, so that the solution does not continuously depend on the initial con-

ditions. In the limit of infinite resolution, the wavenumber of these perturbations

tends to infinity, leading to the exponential growth characteristic of the Hadamard

instability (Joseph, 1989).

Such ill-posedness is not exhibited in nature, because of the regularizing ef-

fects of viscosity, surface tension, and other diffusive processes. From a numerical

standpoint, this problem may be lessened by initially smoothing interfaces over a

few grid points (Niederhaus et al., 2007), as described in Section 3.7.4. It should

be noted that both the shock- and interface-capturing capability of the present

method introduce numerical dissipation at shockwaves and interfaces, thereby nu-

merically smoothing gradients.

In order to illustrate such features, Figure 3.17 shows contours of vorticity and

lines of density for shock-induced collapse with ps/po = 353. Different resolutions

are included (∆xmin = 2.67 × 10−2, 1.33 × 10−2, 6.67 × 10−3). Only the half part

of the bubble is shown, 5.49 time units after the shock hit the bubble; evidence of

the transmitted shock can be seen in the vorticity plots.

As explained in Section 4.3.9, baroclinic vorticity is generated as the shock

intersects the interface, due to the misalignment of the density and pressure gra-

dients. In theory, only negative (clockwise) vorticity should be generated during

the process. However, positive vorticity is observed in Figure 3.17, especially near

the axis, r = 0. This can be attributed to the fact that grid-dependent perturba-

tions affect the small baroclinic term in this region. The perturbations wavelength

depends on the grid-spacing. As the grid is refined, the amplitude of the pertur-

bations increases, but the area over which they grow decreases. As a result, the

overall circulation is not affected by this, as shown in Figure 3.18.
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Figure 3.17: Vorticity contours (top) and density lines (bottom) for shock-induced

collapse (ps/po = 641) for different resolutions (left: ∆xmin = 2.67× 10−2; center:

∆xmin = 1.33 × 10−2; right: ∆xmin = 6.67 × 10−3).
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3.8.2 Resolution

For smooth problems, Section 3.6.1 showed good convergence properties. However,

when discontinuities such as shockwaves and interfaces are present, the method

reduces to first-order accuracy in those regions. As a result, a far greater number

of grid points are required in order to make meaningful predictions.

In order to illustrate this issue, Figure 3.19 shows the history of the bubble

volume for free-field Rayleigh collapse (ps/po = 353) for different resolutions until

the bubble reaches Vmin.
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Figure 3.19: Bubble volume history for different resolutions (ps/po = 353).

As the number of grid points is increased, the bubble volume appears to be

converging.4 Even though convergence is not completely achieved, the present

computations constitute the best possible effort based on the current computing

power to obtain solutions that can be used to carry out a parameter study.

4Although it was noted in Section 3.8 that pointwise convergence may not hold, the smoothing

introduced in Section 3.7.4 alleviates this ill-posedness, so that convergence does have a meaning

in the present computations.
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Because the grid is not aligned with the bubble interface, a shape instability

can be observed in idealized Schlieren contours; such grid-dependent effect may be

relevant to the instabilities shown in Nagrath et al. (2006). This feature depends

on the numerical dissipation of the scheme and therefore decreases as the resolution

is increased; this matter is further discussed in Section 4.3.3. Figure 3.20 depicts

density lines and Schlieren contours at different resolutions for free-field Rayleigh

collapse (ps/po = 353).

Figure 3.20: Density lines (top) and numerical Schlieren contours (bottom) for

∆x = 1.33 × 10−2 (left) and ∆x = 6.67 × 10−3 (right).

There appears to be a preferred direction of dissipation in the Schlieren con-

tours (at ∼ 45o). This may be explained by the fact that the numerical fluxes are

evaluated in the x and r directions separately, so that flow features at an angle

of 45o receive contributions from both directions. Yet, the density lines are less

distorted. Schlieren plots are useful because they allow both interfaces and shock-

waves to be visualized. This quantity is computed from the derivative of density

(see Section C.5), so that such effects are emphasized, and the interface tends to

look more diffuse than it really is.

The resolution also plays a role in the interfacial region. Because of the nu-

merical diffusion in the interface-capturing scheme, the interface spreads over a
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few grid points and thus has a finite thickness. The diffuse interface consists of

a mixture of gas and liquid with properties (γ and P∞) given based on the frac-

tion of each phase. This effect may become problematic when a large negative

pressure interacts with the interface, because the stiffness in this region can be

small, thereby leading to negative values of c2 and stopping the simulation. This

phenomenon sometimes occurs in the present simulations, but usually long after

collapse, so that the results are not affected.

3.9 Summary of the numerical method

A high-order accurate, quasi-conservative, shock- and interface-capturing scheme

was developed to simulate compressible multicomponent flow problems. A TVD

Runge-Kutta method is used for time-marching, while the spatial discretization

consists of a finite volume WENO scheme, where the average primitive variables

are reconstructed, and the HLLC solver, which is modified to solve the advection

equations.

The following algorithm is proposed to compute compressible multicomponent

flows based on the model equations 2.1 and 2.8:

Given the cell averages, qi and φi, at some time step, n,

1. Build the average primitive variables, ui,

2. Using WENO, reconstruct the primitive variables uL
i+1/2 and uR

i+1/2,

3. Build the conservative variables qL
i+1/2 and qR

i+1/2 and the fluxes fL
i+1/2 and

fR
i+1/2,

4. Use the HLLC solver to compute the numerical flux, fi+1/2,

5. Use the adapted HLLC solver to compute the right-hand side of the advection

equations, and

6. March qi and φi forward in time.

The reconstruction is applied to the local characteristic fields (Shu, 1999),

with the transformation matrices based on the primitive variables. This is done
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by multiplying ui by the left Roe matrix after step one, and uL
i+1/2 and uR

i+1/2

by the right Roe matrix after step two, where the matrices are given by Equation

2.5. This procedure requires approximately the same number of operations as a

standard WENO code, and is no more difficult to implement.

Verification was carried out using one-dimensional Riemann problems and two-

dimensional shock-bubble interaction in gases. The appropriate convergence rate

was achieved in smooth problems, no oscillations were generated at discontinuities,

and mass, momentum and energy were conserved to round-off levels.

The method is extended to a non-uniform grid and cylindrical coordinates

with azimuthal symmetry, in order to simulate bubble collapse problems. It is

noted that certain grid-dependent features may occur, but do not affect the results

significantly.
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Chapter 4

Dynamics of non-spherical bubble collapse

Results from the numerical simulations of Rayleigh collapse and shock-induced

collapse in a free-field and near a wall are discussed in the present chapter. First,

relevant analytical findings from spherical bubble dynamics are derived. Then, in

order to provide a qualitative understanding of the important features, the flow

field is visualized using contour plots. Next, the dynamics of bubble collapse are

considered in detail by examining a wide range of properties. Based on these

observations, the jet formation mechanism is discussed. Finally, the potential

damage caused by the shockwaves emitted during bubble collapse is studied.

4.1 Preamble: spherical bubble dynamics

Although the collapse in most cases of interest is non-spherical, spherical bub-

ble dynamics and the Rayleigh-Plesset equation are briefly discussed in order to

understand certain fundamental aspects.

4.1.1 Rayleigh-Plesset equation

The derivation of the Rayleigh-Plesset equation for spherical bubble collapse fol-

lows that of Brennen (1995). The domain, at the origin of which the bubble is

located, consists of an infinite sea of liquid, with boundary conditions at infinity,

u(∞, t) = 0, p(∞, t) = p∞(t). The flow is assumed incompressible in the liquid,

so that, using the kinematic boundary condition at the interface, the velocity field
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can be written u(r, t) = R2

r2 Ṙ, where R(t) is the bubble radius. Since this holds

anywhere in the liquid, the momentum equation,

∂u

∂t
+ u

∂u

∂r
= − 1

ρL

∂p

∂r
, (4.1)

can be integrated from infinity to the bubble interface to yield

−p∞(t) − p(R)

ρL
= R̈R +

3

2
Ṙ2. (4.2)

This equation is valid at the interface, where the pressure difference is balanced

by viscous and surface tension stresses: pB = p(R, t) + 4µLṘ/R − 2S/R, where

µL is the dynamic viscosity and S is the surface tension. If the bubble is assumed

to contain vapor at ambient temperature and non-condensible gas obeying an

adiabatic law, then the generalized Rayleigh-Plesset equation can be written

pV (T∞) − p∞(t)

ρL
+

pGo

ρL

(
Ro

R

)3γ

= RR̈ +
3

2
Ṙ2 +

4νLṘ

R
+

2S

ρLR
, (4.3)

where pV is the saturation pressure, pGo is the pressure of the non-condensible

gas, and νL is the kinematic viscosity. It is noted that the presence of vapor

simply provides a reduction in the pressure jump across the bubble interface. This

equation was first derived by Rayleigh (1917), who assumed a constant pressure at

infinity and neglected viscosity and surface tension, and later extended by Plesset

(1949) to include these effects.

In the present work, viscous and surface tension effects are neglected, the bub-

ble is assumed to contain only air, and the pressure is constant at infinity.1 Thus,

the following equation constitutes the model for the spherical collapse studies in

the present work:

RR̈ +
3

2
Ṙ2 =

pGo

ρL

[(
Ro

R

)3γ

− p∞
pGo

]
. (4.4)

1Based on these assumptions and on the problem description of Section 2.1, pGo = patm in the

present case, so that the relevant pressure ratio is p∞/patm.
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Noting that

d

dt
(R3Ṙ2) = 2R3ṘR̈ + 3R2Ṙ3 = 2R2Ṙ

(
RR̈ +

3

2
Ṙ2

)
, (4.5)

Equation 4.4 can be written:

1

2R2Ṙ

d

dt
(R3Ṙ2) +

pGo

ρL
− pGo

ρL

(
Ro

R

)3γ

= 0. (4.6)

Since R = R(t) and Ṙ = Ṙ(t), then Ṙ−1d/dt = d/dR. Thus, the Rayleigh-Plesset

equation can be integrated from Ro to R to yield2

Ṙ2 =
2

3

pGo

ρL

[
1

γ − 1

(
Ro

R

)3γ

− p∞
pGo

+

(
p∞
pGo

− 1

γ − 1

)(
Ro

R

)3
]

. (4.7)

Alternately, this expression can be derived by equating the kinetic energy of motion

in the liquid to the work done on the liquid by the bubble. Neglecting gas contents,

Rayleigh (1917) obtained an expression for the time it takes for the bubble to

collapse to zero size:

τc = 0.915

√
ρL

p∞
Ro. (4.8)

More generally, the ordinary differential equation 4.4 can be integrated numeri-

cally to obtain R(t). Figure 4.1 shows the history of the radius and of the interface

velocity for the Rayleigh collapse of a gas bubble with ps/po = p∞/pGo = 34. The

acceleration at early times and at collapse is depicted in Figure 4.2.

The initial collapse is driven by the pressure difference between the bubble and

infinity; R(t) changes slowly, since both Ṙ and R̈ are small in Equation 4.4. Af-

ter some time, the nonlinear velocity term becomes important, leading to a rapid

increase in the bubble wall velocity. Soon after, the gas pressure increases sub-

stantially due to adiabatic compression and overwhelms the other terms, causing

a large deceleration. As a result, the collapse is arrested and rebound ensues. Be-

2The initial condition, Ṙ(0) = 0, is used here. If the liquid is compressible, the initial interface

velocity is non-zero and can be approximated by Ṙ(0) ≈ −(ps − po)/ρLc2
L (Plesset & Prosperetti,

1977) in the case of Rayleigh collapse. See Section 4.3.2 for more details.
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Figure 4.1: Solution to the Rayleigh-Plesset equation for Rayleigh collapse

(ps/po = 34). Left: bubble radius; right: interface velocity.

cause there are no mechanisms for energy loss in Equation 4.4, the bubble rebounds

to its initial radius and the process is repeated.
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Figure 4.2: Acceleration of the bubble interface for Rayleigh collapse (ps/po = 34).

Left: early time; right: collapse. Note that the vertical scales are different.

Figure 4.2 shows that the the velocity increases according to two regimes during
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collapse. Initially, while R(t) ≈ Ro(1− ǫ), where ǫ is small, the velocity obeys the

following slow asymptotic growth:

Ṙ → −
[
2
p∞ − pGo

ρL

(
1 − R

Ro

)]1/2

+ O(ǫ2). (4.9)

On the other hand, for R ≪ Ro, the velocity asymptotes to the following fast

growth (Brennen, 1995):

Ṙ → −
(

Ro

R

)3/2
[

2p∞
3ρL

− 2pGo

3(γ − 1)ρL

(
Ro

R

)3(γ−1)
]1/2

. (4.10)

Just before the rebound, the last term of Equation 4.10 becomes large and must

be taken into account. Figure 4.3 shows a phase diagram for the velocity and the

radius. Initially, when R(t) ∼ Ro, the velocity follows the slow regime and then

transitions smoothly to the fast regime until the deceleration caused by the high

gas compression.
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Figure 4.3: Phase diagram for a bubble cycle in Rayleigh collapse (ps/po = 34).



88

4.1.2 Velocity and pressure fields in the liquid

The velocity and pressure distributions in the liquid depend on the velocity of the

bubble interface and the bubble pressure. The continuity equation provides an

expression for the velocity field within the liquid: the velocity is Ṙ at the bubble

interface and decreases as 1/r2 with distance.

Equation 4.1 can be integrated from infinity to any point in the liquid to yield

p(r) − p∞
ρL

=
(
R̈R + 2Ṙ2

) R

r
− 1

2
Ṙ2 R4

r4
, (4.11)

where, using Equation 4.4,

R̈R + 2Ṙ2 =
Ṙ2

2
+

pB − p∞
ρL

, (4.12)

and pB = pGo(Ro/R)3γ . The pressure at the bubble wall is pB and dominates

Equation 4.11 in the last stages of collapse, while the pressure tends to p∞ far

away from the bubble. In the region between, the terms on the right-hand side of

Equation 4.11 compete, so it is not immediately clear how the pressure distribution

behaves. To better understand this, Figure 4.4 shows the pressure as a function of

distance at different times for Rayleigh collapse with ps/po = 34.

At early times, the pressure monotonically increases from the low initial bubble

pressure to p∞. As the bubble collapses, the velocity of the bubble interface and the

bubble pressure increase, so that the liquid pressure rises. Between time t = 19.1

and t = 22.9 in Figure 4.4, the pressure in the vicinity of the bubble increases

beyond p∞, even though pB < p∞, to reach a maximum near the bubble, and

then decreases as 1/r with distance. The bubble radius at this maximum, r∗, is

calculated by substituting Equation 4.11 into Equation 4.1:

r∗ =
R

(
R̈R
2Ṙ2

+ 1
)1/3

. (4.13)

Clearly, this maximum exists only when R̈R + 2Ṙ2 > 0, or ρL
Ṙ2

2 + pB > p∞. The
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Figure 4.4: Pressure in the liquid as a function of distance for different times for

Rayleigh collapse (ps/po = 34).

value of the pressure maximum is then given by:

p(r∗) − p∞
ρL

=
3

2
Ṙ2

(
R̈R

2Ṙ2
+ 1

)
. (4.14)

In summary, the pressure distribution in the liquid initially decreases monotoni-

cally from infinity to that of the bubble. Then, when R(t) reaches a critical value

given by Equation 4.13, the velocity of the bubble wall and the bubble pressure

both achieve a high enough value that a bifurcation occurs and the pressure has

a maximum between infinity and R. This maximum moves towards the bubble

interface during collapse as the bubble wall speed increases, so that the maximum

pressure in the liquid over all time occurs at r = R at collapse. This analysis

is verified by considering the Rayleigh collapse problem (ps/po = 34) shown in

Figure 4.4. The pressure distribution is shown in Figure 4.5 for time t = 21.0 and

t = 21.1. Note that the scale has been adjusted for visualization purposes.

From the solution to the Rayleigh-Plesset equation, the first instance where

r∗ exists is at time, t = 21.067 (r∗ = 4.51). Then, it is observed that, for the
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Figure 4.5: Pressure in the liquid as a function of distance for different times to

highlight the bifurcation.

range of r considered in the solution to the Rayleigh-Plesset equation, the pressure

distribution in the liquid changes from being less than p∞ everywhere to having a

maximum near the bubble during the time interval, 21.0 − 21.1, as predicted by

the theory. It is important to realize that this high local pressure near the bubble

is not a cause, but a consequence of the acceleration of the bubble wall. This

follows from the fact that Equation 4.4 is only a function of the bubble variables

and the pressure at infinity, and does not depend on the details of the flow field in

between.

Equation 4.11 was derived by Rayleigh (1917), albeit in a different form, but

Benjamin (1958) was the first to understand its practical implications when con-

sidering the collapse of a cavity. He postulated that, if the liquid is compressible,

the advance of the pressure front would lead to the formation of a shockwave

originating in the liquid and propagating into the bubble. This phenomenon is

further studied in the numerical simulations (Section 4.5.1). The high local pres-

sure in the liquid is also observed when liquid compressibility is included into the

model (Hickling & Plesset, 1964; Fujikawa & Akamatsu, 1980). Franc & Michel
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(2004) considered the case of a bubble containing only vapor and predicted that

the maximum to occur in the liquid when R ≈ 0.63Ro.

4.1.3 Energy loss by radiation

Starting from the Rayleigh-Plesset equation 4.4, an expression for the energy bal-

ance is derived for the incompressible formulation. Equation 4.7 can be re-arranged

in the more enlightening form, for a control volume consisting of the bubble (Cole,

1948):

3

(
4π

3
R3ρo

)
Ṙ2

2
+

(
4π

3
R3 − 4π

3
R3

o

)
po −

∫ R

Ro

p(R)4πR2dR = 0, (4.15)

where the first term represents the kinetic energy of the radial flow, the second term

represents work done against hydrostatic pressure, po, by the liquid, and the third

term represents the work done by the (expanding/contracting) bubble against the

liquid, which is equivalent to the change in internal energy of the bubble.

The case of a compressible liquid is more complicated. The dilatation is defined

as λ = ∇ · u. Noting that

[
r
∂u

∂t

]∞

R

=

[
1

r

∂

∂t
(r2u)

]∞

R

=

∫ ∞

R

(
− 1

r2

)
∂

∂t
(r2u)dr +

∫ ∞

R

1

r

∂

∂r

(
∂

∂t
(r2u)

)
dr

= −
∫ ∞

R

∂u

∂t
dr +

∫ ∞

R
r
∂λ

∂t
dr,

(4.16)

the momentum equation 4.1 can be integrated from R to ∞ to yield:

−
[
r
∂u

∂t

]∞

R

+

∫ ∞

R
r
∂λ

∂t
dr +

[
u2

2

]∞

R

+

∫ po

p(R)

dp

ρ
= 0. (4.17)

This can be re-arranged as

−
[
r

(
∂u

∂t
+ u

∂u

∂r

)]∞

R

+

[
ru

∂u

∂r

]∞

R

+

∫ ∞

R
r
∂λ

∂t
dr +

[
u2

2

]∞

R

+

∫ po

p(R)

dp

ρ
= 0. (4.18)

Noting that ru∂u/∂r = ruλ − 2u2 and u(∞, t) = 0, the following form of the
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compressible Rayleigh-Plesset equation is obtained:

RR̈ +
3

2
Ṙ2 − RṘλ(R) +

∫ ∞

R
r
∂λ

∂t
dr +

∫ po

p(R)

dp

ρ
= 0. (4.19)

If the stiffened EOS is used, then

λ(R) = −
[

1

ρc2

dp

dt

]

R

= 3
γp(R)

ρc2

Ṙ

R
= 3

p(R)

p(R) + P∞

Ṙ

R
. (4.20)

Thus, the only term that causes difficulty is the integral term for the time rate

of change of λ. In principle, the momentum equation would have to be solved in

the liquid with appropriate boundary conditions at the bubble and at infinity to

compute ∂λ/∂t.

In order to obtain an equation for the balance of energy, the model of Herring

(1941) is followed. Although less accurate than that of Gilmore (1952),3 the inte-

gration term involving ∂λ/∂t is straightforward. For small-amplitude oscillations,

ρ and c are constant, and u satisfies the wave equation, so that λ does as well (i.e,

λ = f(r − cot)). Then,

∫ ∞

R
r
∂λ

∂t
dr = −co

∫ ∞

R

∂

∂r
(rλ)dr = coRλ(R). (4.21)

It is recommended to further add the correction term (Herring, 1941)

− 1

co

1

R

d

dt
(R2Ṙ2) =

2

3

d

dR
(R3Ṙ3), (4.22)

to the equation. Thus, the momentum equation 4.19 becomes:

RR̈ +
3

2
Ṙ2 +

po − p(R)

ρo
=

2

3

1

co

d

dR
(R3Ṙ3) +

R

ρoco

[
dp

dt

]

R

(
1 − Ṙ

co

)
. (4.23)

3The Gilmore equation (Gilmore, 1952) is written as

„

1 −

Ṙ

c

«

RR̈ +
3

2

„

1 −

1

3

Ṙ

c

«

Ṙ2 =

„

1 +
Ṙ

c

«

h +
R

c

dh

dt
.

where the enthalpy is given by dh = dp
ρ

.
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Equation 4.23 can then be integrated with respect to R to yield a balance of energy:

3

(
4π

3
R3ρo

)
Ṙ2

2
+

(
4π

3
R3 − 4π

3
R3

o

)
po −

∫ R

Ro

p(R)4πR2dR

= 4

(
4π

3
R3ρo

)
Ṙ2

2

Ṙ

co
+

∫ R

Ro

1

co

[
dp

dt

]

R

(
1 − Ṙ

co

)
4πR3dR.

(4.24)

The left-hand side of the equation represents conservation of energy for incom-

pressible motion, i.e., Equation 4.15. Thus, changes in this value due to the

right-hand side must be caused by energy radiation due to the compressibility of

the liquid. Recalling that [dp/dt]R = −3γp(R)Ṙ/R, the right-hand side consists

in a correction of order O(Ṙ/co) to the incompressible expression.4 The first term

on the right-hand side is a correction to the kinetic energy and the second term

is a correction to the work done by the bubble. Equation 4.24 is used to compute

the radiated energy in Section 4.5.3.

4.1.4 Non-spherical perturbations

Large positive and negative accelerations occur during bubble collapse and lead to

the catastrophical growth of small perturbations. Birkhoff (1954) and Plesset &

Mitchell (1956) considered the spherical equivalent to the planar Rayleigh-Taylor

instability. The bubble radius may be perturbed using Lagrange polynomials (ax-

isymmetric spherical harmonics), so that the resulting radius is given by

Rs(t) = R(t) +
∑

n

an(t)Pn(cos θ), (4.25)

where |an| ≪ R. The Rayleigh equation 4.4 still holds, but the amplitude of each

mode is governed by the following ordinary differential equation:

än + 3
Ṙ

R
ȧn − (n − 1)

R̈

R
an = 0. (4.26)

4Cole (1948) suggests to discard terms in Ṙ/co. However, this leads to the cancellation of the

entire right-hand side, so that the incompressible energy balance is recovered.
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This second-order ordinary differential equation can be integrated simultaneously

with the Rayleigh-Plesset using appropriate initial conditions for an(0) and ȧn(0).

During collapse, Ṙ < 0, while R̈ ≥ 0 until just before the rebound. This analysis

is used to understand the jet formation mechanism in Section 4.4.

4.2 Flow visualization

In order to understand the general flow features of non-spherical bubble collapse,

numerical Schlieren and pressure contours in the xr-plane are shown. The calcula-

tion of the numerical Schlieren fields, which is based on the density gradient and is

discussed further in Sections 3.8.2 and C.5, provides means to visualize both inter-

faces and shocks. The finest grid spacing for all cases is ∆xmin = 6.67× 10−3, ex-

cept for Rayleigh collapse near a wall under cavitation conditions, where ∆xmin =

10−2. This is due to the fact that a larger domain is required because of the slow

process, in order to prevent reflections from the boundaries, as discussed in Sec-

tion 3.5. Two types of collapse are considered: Rayleigh collapse under cavitation

conditions (ps/po ≈ 34) and shock-induced collapse of a pre-existing nucleus or

bubble (ps/po = 353), both in a free field and near a wall.

4.2.1 Free-field collapse

Free-field Rayleigh collapse with p/po = 34

First, Rayleigh collapse driven by an initial pressure ratio of ps/po = 34 in a free-

field is considered. Figure 4.6 shows pressure and numerical Schlieren contours, at

tcL/Ro = 0.87, 13.1, 22.6, 24.4, 26.1, 29.0.

As discussed in Section 4.3.2, the initial conditions for Rayleigh collapse con-

stitute a Riemann problem along the interface. In frame 1, the expansion wave is

propagating radially outwards, while the corresponding shockwave is converging

within the bubble.5 The shock has converged at the center of the bubble in frame

2, though this is barely visible in the figure. The bubble then collapses, while the

5The shock amplitude is too small to be noticed on the plots.
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Figure 4.6: Pressure (top) and numerical Schlieren (bottom) contours for Rayleigh

collapse in a free field (ps/po = 34) at tcL/Ro = 0.87, 13.1, 22.6, 24.4, 26.1, 29.0.

shock propagates radially outwards, eventually hitting the interface and reflecting

almost in its entirety due to the large impedance mismatch. This effect is minor

and does not lead to significant instabilities, such as Richtmyer-Meshkov. Because

the bubble is contracting, the internal shock strengthens and converges again at

the center of the bubble in frame 3. The flow is rushing to fill the void left by the

collapsing bubble, as illustrated by the radial variations in the pressure field. The

bubble starts to compress significantly in frame 4, as the shockwave propagates

within the bubble. As expected from the analysis of Section 4.1.2, a region of high

pressure is visible in the liquid just outside the bubble. The minimum volume and
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consequently maximum bubble pressure are achieved in frame 5; pressure waves

are radiated away from the bubble. As the bubble rebounds, the interface becomes

distorted, as illustrated in frame 6. This results from instabilities in the last stages

of collapse where the acceleration changes sign (Brennen, 2002) and is discussed

further in Section 4.3.3.

The case of Rayleigh collapse driven by an initial pressure ratio of ps/po = 353

is similar. Because of the larger pressure ratio, the initial expansion wave and

the shockwave propagating within the bubble are sharper, the collapse time is

shorter, the pressure pulse released upon collapse is stronger, and the interfacial

instabilities are enhanced.

Free-field shock-induced collapse with p/po = 353

The collapse of a bubble due to the passage of a shock with a pressure ratio of

ps/po = 353 is considered. Figure 4.7 shows pressure and numerical Schlieren

contours, at tcL/Ro = 1.65, 5.13, 7.19, 7.93, 8.70, 9.70.

When the left-moving shock hits the bubble, an expansion wave is reflected

because of the impedance mismatch between water and air, while a weak shockwave

is transmitted into the bubble in frame 1. After reaching the top of the bubble,

the external shock diffracts until it intersects the r = 0 axis; the shock along r = 0

thus lags the main front. Meanwhile, the internal shock focuses within the bubble

over a wider area, but not at the center, as seen in frame 2. The proximal bubble

end flattens as it accelerates, while the internal shock reflects within the bubble

in frame 3. Eventually, the proximal end involutes, so that the re-entrant jet is

manifest in frame 4. A region of high pressure is visible behind the jet, where the

interface velocity is the highest, similarly to the free-field Rayleigh collapse. The

jet impacts the distal side in frame 5 and generates a large water-hammer pressure;

a precursor shock is emitted prior to this event. The shock emission is carefully

examined in Section 4.5.1. While the water-hammer pressure propagates radially

outwards in frame 6, the bubble takes the form of a vortex ring and convects

downstream.
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Figure 4.7: Pressure (top) and numerical Schlieren (bottom) contours for shock-

induced collapse in a free field (ps/po = 353) at tcL/Ro = 1.65, 5.13, 7.19, 7.93,

8.70, 9.70.

4.2.2 Collapse near a wall

Rayleigh collapse near a wall with ps/po = 34

First, Rayleigh collapse driven by an initial pressure ratio of ps/po = 34 near a wall

(Ho/Ro = 1.5) is considered. Figure 4.8 shows pressure and numerical Schlieren

contours at tcL/Ro = 1.16, 26.1, 28.1, 29.3, 30.4, 32.7. The wall is denoted by the

grey region on the left of the domain.

In frame 1, the initial expansion is propagating radially outwards and reflects

off the wall back onto the bubble, while the shock converges within the bubble. The
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Figure 4.8: Pressure (top) and numerical Schlieren (bottom) contours for Rayleigh

collapse near a wall (ps/po = 34, Ho/Ro = 1.5) at tcL/Ro = 1.16, 26.1, 28.1, 29.3,

30.4, 32.7.

presence of the wall is communicated to the bubble via the reflection of the initial

expansion. As a result, the pressure decreases locally along the bubble interface

after the passage of the expansion. Because the strength of the expansion decreases

with distance, it does not affect the proximal side as much. During the collapse,

the bubble migrates towards the wall. The proximal side flattens in the direction

normal to the wall (Rattray, 1951; Plesset & Chapman, 1971), as shown in frame 2.

These features result from the presence of the wall, as the flow of liquid attempting

to fill the void left by the collapsing bubble is retarded. A region of high pressure
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forms in the liquid behind the proximal end (Blake et al., 1986; Best & Kucera,

1992), after that end involutes. In frame 3, the air within the bubble is already

highly compressed as the re-entrant jet directed towards the wall forms. Upon

reaching its minimum volume in frame 4, the kidney-shaped bubble generates a

pressure pulse propagating radially outwards, though it is stronger in the direction

of the jet. This pulse hits the wall in frame 5. In the meantime, the bubble has

taken the shape of a vortex ring that is convecting towards the wall as it expands

and collapses, as observed in frame 6. The interface appears to have broken up

upon the impact of the jet; this feature is caused by the dissipation of the numerical

scheme and the finite grid size.

Again, the flow features of a Rayleigh collapse driven by an initial pressure

ratio of ps/po = 714 are similar. As in the free-field case, a more violent collapse

occurs because of the larger pressure ratio.

Shock-induced collapse near a wall with ps/po = 353

The shock-induced collapse of a bubble near a wall (ps/po = 353, Ho/Ro = 1.5)

is considered. Figure 4.9 shows pressure and numerical Schlieren contours, at

tcL/Ro = 1.01, 4.56, 7.00, 7.90, 8.60, 9.80. The wall is denoted by the grey region

on the left of the domain.

The collapse is characterized by a combination of the effects observed in free-

field shock-induced collapse and Rayleigh collapse near a wall. The left-propagating

incoming shock reflects off the bubble as an expansion wave, while a weak shock is

transmitted into the bubble (frame 1). Then, the external shock diffracts around

the bubble and reflects off the wall; the shock at r = 0 lags the main front because

of the diffraction. In frame 2, the external shock passes over the bubble again,

while the initial internal shock focuses; a second shock is transmitted within the

bubble, from the left this time, because of the interaction of the external shock

reflected off the wall with the distal side of the bubble. Although not visible in

the plots, waves are reflected between the bubble and the wall. The far end of the

bubble flattens in frame 3; the internal shock structure is highly complex. As noted
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Figure 4.9: Pressure (top) and numerical Schlieren (bottom) contours for shock-

induced collapse near a wall (ps/po = 353, Ho/Ro = 1.5) at tcL/Ro = 1.01, 4.56,

7.00, 7.90, 8.60, 9.80.

previously, a region of high pressure behind the jet is observed in frame 4. The

re-entrant jet hits the distal side in frame 5, after emitting a precursor shockwave.

The water-hammer pressure generated in the liquid reflects off the wall in frame

6 and interacts with the rebounding bubble, which has now taken the form of a

vortex ring. Upon reflection off the bubble, the amplitude of the pressure wave

inverts because of the impedance mismatch, so that a tensile wave is reflected back

to the wall.
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4.3 Dynamics of collapse

In the present section, the dynamics of non-spherical collapse are characterized

and certain properties of the re-entrant jet are studied.

4.3.1 Time scales in bubble collapse

In order to illustrate the chronology of the events that occur during bubble collapse,

Figure 4.10 shows a schematic of the different important phenomena that occur

during free-field shock-induced collapse for ps/po = 353. The events of interest are

listed in Table 4.1 and Figure 4.11 shows the time at which each of these events

occurs as a function of the initial pressure ratio across the shock. In the case of

Rayleigh collapse near a wall, tdif is irrelevant, but tshock still occurs because of

the shock released due to the initial set-up, as explained in Section 4.3.2.

Table 4.1: Events of interest during bubble collapse.

Symbol Description

tdif The external shock has diffracted about the bubble.

tshock The internal shock has traversed the bubble.

tvjet The maximum jet velocity is achieved.

tcon The bubble shape becomes concave.

tΓ̇max
The rate of change of circulation achieves its maximum.

tΓmax The circulation achieves its maximum.

tR̈ The gross interface acceleration changes sign.

τc The bubble achieves its minimum radius (collapse time).

The time at which the external shock has diffracted over the bubble is es-

sentially constant, because the shock speed does not vary much for the range of

pressure ratios considered (ps/po = 34 − 714). The time it takes for the internal

shock to traverse the bubble depends on the transmission of the incoming shock
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Figure 4.10: Chronology of events in free-field shock-induced collapse (ps/po =

353).
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Figure 4.11: Chronology of events as a function of the pressure ratio across the

shock for free-field shock-induced collapse.

and decreases essentially linearly with the pressure ratio across the shock, as ex-

pected from the analysis of Section 4.3.2. These shock-propagation phenomena

are not influenced by the bubble collapse.

On the other hand, the other quantities follow a 1/
√

ps/po behavior charac-

teristic of the collapse time described in Section 4.3.7. In the case of low pressure

ratios, the time at which the maximum circulation is achieved is almost identical
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to the collapse time, while the time at which the internal shock has traversed the

bubble is much shorter. However, as the pressure ratio is increased, the collapse is

so rapid that the jet almost catches up with the internal shock. Another interesting

observation is that, except for the very shock pressure ratios, the bubble becomes

concave just before the rate of change of circulation reaches its maximum, thus

suggesting a link between the two mechanisms.

In the range of parameters considered in the present study, the generation of

the water-hammer pressure is essentially simultaneous with the time when the

minimum volume is achieved. Thus, the wave merge into a single front (Sankin

et al., 2005), so that the two events are undistinguishable at a certain distance

from the collapse point.

4.3.2 Initial motion of the interface

In Rayleigh collapse, the problem is started by instantaneously raising the liquid

pressure (or decreasing the bubble pressure). In the present compressible for-

mulation, this corresponds to a gas/liquid Riemann problem across the interface.

In the limit of small time, this problem reduces approximately to the traditional

one-dimensional planar problem. Similarly, when the shockwave intersects the

bubble in shock-induced collapse, the conditions along r = 0 are those of a Rie-

mann problem across the interface; for interface points off-axis, the problem is

fully multi-dimensional. As a result of such initial conditions, an expansion wave

is released into the liquid, while a shockwave propagates radially inwards in the

bubble, as observed in Section 4.2. This discontinuous feature of the problem for

Rayleigh collapse is introduced because the bubble growth is neglected and ap-

propriate initial conditions must be specified. When considering the compressible

Rayleigh-Plesset equation, Plesset (1969) used the following initial condition:

Ṙo ≈
∫ h

0

dh

c
≈ p(Ro) − po

ρLcL
. (4.27)
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This expression is derived by re-arranging the Gilmore equation and retaining the

terms relevant for the initial conditions; it is in fact a linearization of Equation

A.24 in Appendix A, which is the normal shock relation for velocity. In the case of

shock-induced collapse, the initial velocity can be estimated using linearized shock

relations (Thompson, 1984),

uCD ≈ 2up ≈ 2
ps − po

ρLcL
, (4.28)

where up is the particle velocity behind the incoming shock. This expression is

valid for the interaction of a shock and an interface between two fluids with very

different acoustic impedances and where the fluid in which the shock is propagating

has the higher impedance.

Figure 4.12 shows the initial velocity of the interface, uCD, as a function of the

initial pressure ratio across the interface for Rayleigh collapse and shock-induced

collapse. Results from the simulations and from the corresponding one-dimensional

Riemann problems are included, as well as the linearized approximations given by

4.27 and 4.28. The velocities are negative because the shock is propagating from

right to left, and the position of the interface is calculated as described by Equation

C.12 of Appendix C after one time-step.

The agreement between the simulation and the exact solution to the one-

dimensional Riemann problem is good, though there are deviations in the shock-

induced collapse results for large pressure ratio. Small differences stem from the

approximation to determine the jet position and from the fact that the data is only

generated at a finite time. For a given pressure ratio, the interface velocity in the

shock-induced collapse is twice the particle speed behind the shock, as expected

from Equations 4.27 and 4.28.

The strength of the transmitted shock along r = 0 just after refraction can

be evaluated by solving the one-dimensional Riemann problem. Then, the Mach

number of the transmitted shock can be expressed using Equation A.25, with

P∞ = 0 in the bubble. Figure 4.13 shows the pressure ratio and the Mach number
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Figure 4.12: Initial velocity of the interface for Rayleigh collapse and shock-induced

collapse for the simulations and different theoretical models.

of the transmitted shock as a function of the pressure ratio and Mach number of

the incoming shock in water. Given that the pressure ratio across the transmitted

shock in Rayleigh collapse is 1+αx, where x is the initial pressure ratio across the

interface, the pressure ratio across the transmitted shock is approximately 1+2αx,

as expected from the linearized shock relations (e.g., Equation 4.28).

Figures 4.12 and 4.13 illustrate that the initial motion of the bubble is well

captured. As the bubble collapses, the behavior deviates from that of the one-

dimensional problem and focusing takes place, so that the velocity of the interface

and shockwave increases. As a result of the focusing, the strength of the shock

propagating within the bubble (i.e., the transmitted shockwave, in shock-induced

collapse) increases.
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shock for Rayleigh collapse and shock-induced collapse.

4.3.3 Interfacial instabilities

Because of the large accelerations occurring during bubble collapse, the interface

is prone to small-scale perturbations that grow catastrophically in a finite time. In

particular, Rayleigh-Taylor, Richtmyer-Meshkov, and Kelvin-Helmholtz instabili-

ties are relevant in the bubble collapse problems considered in the present work.

In this section, these flow features are considered on a small scale (i.e., short-

wavelength perturbations).

As described in Section 4.1.4 for spherical bubbles, the interface is most un-

stable just before the rebound, when Ṙ < 0, while R̈ ≥ 0. Then, high-frequency

perturbations are expected to grow. This effect is illustrated in Figure 4.14, which

shows numerical Schlieren contours of free-field Rayleigh collapse with ps/po = 353

at tcL/Ro = 7.46, 7.63, when R̈ is reaches its largest (positive) value. This occurs

late in the collapse, so that the scale is magnified. As noted in Section 3.8, cor-

rugations in the initial conditions due to the fact that the interface is not aligned
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Figure 4.14: Numerical Schlieren contours for Rayleigh collapse for ∆x = 1.33 ×
10−2 (top) and ∆x = 6.67× 10−3 (bottom), at tcL/Ro = 7.46 (left) and tcL/Ro =

7.63 (right).

with the grid develop into interface perturbations. This phenomenon on a larger

scale is further considered as a mechanism of jet formation in Section 4.4.

A possible mechanism for the Richtmyer-Meshkov instability is the interaction

between the internal shock (generated from the initial conditions) with the col-

lapsing interface. However, the impedance of the liquid is so large that it acts

almost like a solid wall and completely reflects the shock back into the bubble. On

a larger scale, the interaction of the incoming shockwave with the bubble leads to

Richtmyer-Meshkov instability, as described in Section 4.4. However, Richtmyer-

Meshkov instability plays a role on a large scale in the formation of the re-entrant
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jet, as described in the next sections.

Contrary to the corresponding problem in gases shown in Section 3.6.4, the

Kelvin-Helmholtz instability is not particularly pronounced in shock-induced bub-

ble collapse because the collapse time is too short for such vortical structures to

develop.

4.3.4 Measure of non-sphericity

A quantitative measure of the bubble non-sphericity is given by the ratio of the

projected bubble area to the length of the perimeter, as described by equation C.8

in Appendix C. A value of 0.5 corresponds to a spherical collapse, while a value

of zero implies that the interface has greatly deformed. Figure 4.15 shows the

history of the non-sphericity for Rayleigh collapse in a free-field and near a wall

(Ho/Ro = 1.5,∞, ps/po = 353, 714) and shock-induced collapse in a free-field and

near a wall (Ho/Ro = 1.5,∞, ps/po = 353). The results are plotted until collapse.

In all cases, the initial portion of the collapse is spherical. The shape becomes

non-spherical only late in the collapse and reaches a most non-spherical shape

at collapse. Instabilities develop even during the free-field Rayleigh collapse, so

that the bubble does not remain completely spherical and is most non-spherical

at collapse. The maximum non-sphericity depends greatly on the initial pressure

ratio for shock-induced collapse and on the initial stand-off distance, for Rayleigh

collapse near a wall, as shown Figure 4.16.

The bubble non-sphericity defined in Equation C.8 is a difficult quantity to

compute numerically, as illustrated by the scatter in the results for free field shock-

induced collapse. Nevertheless, the overall behavior is expected, as a collapse

driven by a larger pressure ratio or closer to the wall leads to a more non-spherical

shape. This quantity is even more difficult to measure experimentally. Another

measure of non-sphericity of the collapse that is less difficult to measure in exper-

iments is the sum of the velocities of the jet and distal side, vj + vd, as described

in Section 4.3.5.
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353, 714) and shock-induced collapse (ps/po = 353) in a free-field and near a wall

(Ho/Ro = 1.5).

4.3.5 Maximum jet velocity

The maximum jet velocity, vj , is an important quantity in non-spherical bubble

collapse. As described in Section 4.5.2, when the jet hits the distal side, which

moves at some velocity, vd, a water-hammer pressure is generated, with significant

potential for damage (Huang et al., 1973). In the present problems, the jet velocity

is independent of the initial bubble radius because there is no additional length

scale associated with the problem. As shown in Section 5.1, this is not true in

shockwave lithotripsy, where the pulse has a finite width.

Free-field collapse

Figure 4.17 shows the maximum velocity of the jet and distal side as a function of

the initial pressure ratio for free-field Rayleigh collapse and shock-induced collapse.

The difference and sum of the velocities are also plotted. For Rayleigh collapse,
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Figure 4.16: Maximum bubble non-sphericity as a function of the pressure ratio

for free-field Rayleigh collapse and shock-induced collapse (left), and of the ini-

tial stand-off distance for shock-induced collapse with ps/po = 353 and Rayleigh

collapse near a wall with ps/po = 714 (right).

there is no jetting; the velocity is that of the bubble wall.

As expected, the velocities of the jet and distal side increase with the initial

pressure ratio. In Rayleigh collapse, vj = −vd, by symmetry; in shock-induced

collapse, |vj | ≫ |vd| for reasons explained in Section 4.4.4. High jet velocities

are achieved (up to 1250 m/s for the highest pressure ratio); for pressure ratios

representative of SWL, vj ≈ 1000 m/s. The velocity difference is used in the

calculation of the water-hammer pressure (Section 4.5.2). Although not shown

here, the maximum jet velocity is observed slightly before the minimum volume

is reached because of the finite time it takes for it to slow down as it is about to

impact the distal side.
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Collapse near a wall

Figure 4.18 shows the maximum velocity of the jet and distal side, as a function

of the initial stand-off distance, for Rayleigh collapse with a pressure ratio of

ps/po = 34. Results from the experiments of Philipp & Lauterborn (1998) and the

simulations of Plesset & Chapman (1971), Blake et al. (1986), and Zhang et al.

(1993) are included.

The present simulations show that the jet velocity increases as the initial stand-

off distance to the wall decreases. As the stand-off distance is increased, the

behavior becomes closer to that of free-field Rayleigh collapse, thus suggesting

that a more non-spherical collapse leads to a higher jet velocity. The maximum

jet velocity measured in the computations is vj = 107 m/s, at Ho/Ro = 1.05.

The experiments and some of the prior simulations show different trends. In the

experiments, the maximum jet velocity is measured by calculating the slope of



112

-

00

000

00

1 2 3 4 5

8

8

.

.

.

Simulations
Philipp & Lauterborn (1998)

Blake et al. (1986)
Plesset & Chapman (1971)

Zhang et al. (1993)

Ho/Ro

u
m

a
x
/c

L

Figure 4.18: Maximum velocity of the jet and distal side as a function of the initial

stand-off distance for Rayleigh collapse near a wall (ps/po = 34). Empty symbols:

the velocity of the distal side of the corresponding filled symbols.

the position of the jet; the error bars in the original article are large, and such

measurements are difficult to make precisely from photographs. There is scatter

in the prior numerical simulations results as well. The main reason for the lower jet

velocity (and possibly the different trend) in the present simulations of Rayleigh

collapse is that the bubble initially contains a large amount of non-condensible

gas, as described in Section 2.2.5. Thus, the bubble does not achieve as small a

volume because the collapse is arrested by the gas compression sooner. In this

case, the conditions at collapse for this case may not be exactly the same as those

in nature. These issues are discussed in greater detail in Section 4.5.4.

Figure 4.19 shows the velocity of the jet and distal side, as a function of the

initial stand-off distance, for shock-induced collapse (ps/po = 353) and Rayleigh

collapse (ps/po = 714) near a wall. The velocities (jet and distal side) asymptote

to the values of the free-field Rayleigh collapse and shock-induced collapse with
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Figure 4.19: Maximum velocity of the jet and distal side as a function of the initial

stand-off distance for shock-induced collapse near a wall (ps/po = 353).

the same pressure ratio (see Figure 4.17). Near the wall, the jet velocity increases

dramatically and reaches a maximum of 2250 m/s for RCW and 2047 m/s for

SICW. These results are consistent with those obtained by Jamaluddin (2005).

Interestingly, the maximum (near the wall) and asymptotic (far from the wall) jet

velocities are similar in both cases, though the distribution within Ho/Ro ≈ 1.1−
2.0 shows significant discrepancies. The velocities of the distal side are similar near

the wall, as expected since the pressure doubling occurs almost instantaneously

there, but then diverge larger Ho/Ro, since the shock does not have time to reflect

back to the bubble and thus affect the collapse. A similar behavior is observed in

the collapse time (Section 4.3.7).

4.3.6 Jet size

An important reason for computing the characteristic size of the jet is to determine

the flow regime that occurs within the jet. Because high curvatures and small
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scales are achieved, viscous and surface tension effects may be important. In order

to determine the characteristic size of the jet, free-field shock-induced collapse is

considered. Figure 4.20 shows the outline of the bubble for two different shock

pressure ratios, ps/po = 71, 282.
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Figure 4.20: Jet outline for free-field shock-induced collapse for ps/po = 71 at

tcL/Ro = 20.1 (left) and for ps/po = 282 at tcL/Ro = 11.0 (right).

The characteristic size of the jet l is taken as the length between the x-axis and

the point where the jet outline first becomes horizontal, as shown by the arrows in

Figure 4.20. In both cases, this occurs just before the bubble achieves its minimum

volume. The shape of the bubble at that time depends on the pressure ratio across

the shock: for a higher pressure ratio, the jet becomes wider, more similar to the

experiments of Bourne & Field (1992), in contrast to the results for lower pressure

ratios, which lead to a more prominent vortex ring structure similar to the shock-

bubble interaction in gases of Haas & Sturtevant (1987).

As the pressure ratio across the shock increases, both the width of the jet and

the size of the bubble at that time increase, as seen in Figure 4.21, which shows

the jet size and the height of the bubble (top of the bubble in Figure 4.20) as a

function of the pressure ratio across the shock. The aspect ratio of the bubble

becomes more elongated in the vertical direction in Figure 4.20 as the shock Mach
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number is increased.
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free-field shock-induced collapse.

Based on the maximum jet velocities attained in Figure 4.17 and on the jet

size shown in Figure 4.21, Reynolds numbers ranging from 8.80× 102 − 3.37× 103

and Weber numbers ranging from 6.79×103 −5.79×104 are achieved for a bubble

with a 10 µm radius. However, at the instant shown in Figure 4.20, the jet has

already decelerated by approximately 30 % from its maximum value, so that the

effective Reynolds number may range from 2.50×102 −1.04×103 and the effective

Weber number may range from 2.04× 103 − 1.74× 104. Thus, viscous and surface

tension effects may be important locally for small bubbles.

4.3.7 Collapse time

The collapse time of a bubble strongly depends on the pressure ratio driving the

collapse, as suggested by Equation 4.8. Figure 4.22 shows a comparison between

the collapse time computed from the Rayleigh equation 4.4 and the results of the
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numerical simulations for free-field Rayleigh collapse and shock-induced collape.

As discussed earlier, the bubble volume is not always spherical in the simulations,

so that the minimum volume is considered to determine the collapse time. The

time origin in shock-induced collapse is taken as the time when the shock first hits

the bubble.
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Figure 4.22: Collapse time as a function of the initial pressure ratio for free-field

Rayleigh collapse and shock-induced collapse.

The agreement between the present results and the solution to Equation 4.4

is very good. Though not manifest here, compressibility effects lead to a slight

deviation from the Rayleigh-Plesset curve for higher pressure ratios. The collapse

time for shock-induced collapse is approximately one time unit greater than that

of Rayleigh collapse for the same pressure ratio. This effect accounts for the time

it takes for the shockwave to propagate over the span of the bubble; if the collapse

time is taken as the average between the collapse time when the shock first hits

the bubble and that when the shock ends its diffraction about the bubble, the

collapse times for Rayleigh collapse and shock-induced collapse are approximately
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equal. The collapse time scales with 1/
√

ps/po − 1, as expected from the Rayleigh

equation 4.4.

The presence of the wall retards the flow of liquid filling the void created by the

collapsing bubble, so that the overall collapse is slower. Based on a perturbation

analysis of the Rayleigh-Plesset equation, Rattray (1951) derived the following

first-order correction for this effect:

τr = τc

(
1 + 0.205

Ro

Ho

)
+ O

((
Ho

Ro

)2
)

. (4.29)

From a series of high-speed photographs, Vogel et al. (1988) calculated a prolonga-

tion factor, k1, that depends on the initial stand-off distance and ranges between

1 − 1.3. Thus, for bubble collapse near a wall, t12 = 2τck1, where t12 is the time

between the generation of the bubble and the collapse, which is determined by

measuring the time between the acoustic signal of each event.
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Figure 4.23 shows the collapse time as a function of the initial stand-off distance

computed from the results of Rattray (1951), Vogel et al. (1988) and from the

present computations. The experimental collapse time is computed by using the

tabulated data in Lindau & Lauterborn (2003).6 The top set of data corresponds

to cavitation bubble collapse (ps/po = 34), while the bottom set relates the shock-

induced collapse (ps/po = 353 for shock-induced collapse, ps/po = 714 for Rayleigh

collapse).

As expected, the presence of the wall delays the collapse. The presence of the

wall is communicated to the bubble by the reflection of the expansion wave released

by the initial Riemann problem. Consequently, the pressure driving the collapse is

reduced as the expansion propagates over the bubble, thus leading to a longer col-

lapse time. This phenomenon also occurs in incompressible simulations, in which

the effect is felt instantaneously due to the effective infinite speed of propagation

of the wave. The agreement between the present results and the experiments is

very good in Rayleigh collapse under cavitation conditions. However, the model of

Rattray (1951) slightly overpredicts the results. In shock-induced collapse, shock

reflection off the wall results in pressure doubling, so that the effective pressure

ratio driving the collapse is the same as for Rayleigh collapse with ps/po = 714.

Close to the wall, the pressure doubles almost instantaneously, so that the delay

between free-field shock-induced collapse and Rayleigh collapse observed in Figure

4.23 agrees with the results shown in Figure 4.22. For bubbles farther from the

wall, the collapse starts when the shock first impacts the bubble. Thereafter, the

shock must travel twice the stand-off distance before interacting with the bubble

again, at which point the bubble has already started its collapse due to the ini-

tial compression caused by the incoming shock. The doubling then only affects a

small portion of the collapse. Thus, as the initial stand-off distance increases, the

collapse time tends to that of free-field shock-induced collapse with ps/po = 353,

for which τc = 8.92. Since the shock Mach number is close to unity, the collapse of

6Because the initial bubble pressure is initially assigned atmospheric value in the simulations

(see Section 2.1.1), a scaling factor of
p

patm/pv is used to compare to experiments.
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bubbles farther away than Ho/Ro ≈ 4.5 are unaffected by pressure doubling. This

analysis shows that the collapse time in shock-induced collapse is of the same order

as the time it takes for the shock to propagate within the liquid. The expected

behavior is achieved for Rayleigh collapse with ps/po = 714.

4.3.8 Displacement of the bubble centroid

Theory and experiments have shown that the bubble moves towards the wall as it

collapses (Benjamin & Ellis, 1966; Plesset & Chapman, 1971). In order to preserve

its Kelvin impulse during collapse (Vogel et al., 1989), the bubble accelerates

towards the wall. In shock-induced collapse, the bubble migrates in the direction

of propagation of the shockwave because of the fluid entrainement behind the

shock. The history of the bubble displacement in Rayleigh collapse is compared

to the experiments of Vogel et al. (1989) in Figure 4.24. In the experiments,

Ho/Ro = 2.15, while Ho/Ro = 2.0 in the simulation.
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Figure 4.24: History of the bubble displacement for Rayleigh collapse near a wall

(simulations: Ho/Ro = 2.0; experiments by Vogel et al. (1989): Ho/Ro = 2.15).
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The initial behavior of the bubble is well captured until collapse (τc ≈ 0.2 ms).

Early in the collapse, the bubble moves slowly towards the wall. Its motion then

progressively accelerates during the collapse. At collapse, the bubble has migrated

by a significant amount towards the wall. The impact of the jet on the distal side

further accelerates the bubble and causes it to take the form of a vortex ring, which

convects towards the wall. The numerical results diverge from the experimental

results thereafter, because certain effects important at collapse are not modeled

(e.g., mass transfer). As noted in the experiments of Tomita & Shima (1986) and

Vogel et al. (1989), the bubble moves closer to the wall with each collapse.
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function of the initial stand-off distance.

The position of the bubble centroid at collapse is the origin of the emitted

shockwave. Since the amplitude of the shock generated upon collapse is expected

to decrease with distance (see Section 4.5.4), the consequence of this migration is

that the measured wall pressure is higher (Tomita & Shima, 1986), even though
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a collapse near the wall is gentler. Figure 4.25 shows the bubble displacement at

collapse for Rayleigh collapse (under cavitation conditions) and for shock-induced

collapse with ps/po = 25 in order to compare to the experiments of Shima et al.

(1984).7

In Rayleigh collapse, the influence of the wall is small on bubbles that are

initially far away, such that their centroid does not migrate significantly. Bubbles

initially close to the wall show a larger displacement towards the wall. In shock-

induced collapse, there is a net velocity towards the wall after the passage of the

shock. However, there is no effective flow after the shock reflection off the wall.

Thus, the displacement is larger in the case of shock-induced collapse, especially

for larger Ho/Ro. As in Rayleigh collapse, a bubble initially close to the wall

feels its effect more significantly and migrate towards it by a larger amount. The

simulations agree well with the experiments. Further comparisons are made with

the experiments of Shima et al. (1984) in Section 4.5.4.

4.3.9 Bubble circulation

In the non-spherical bubble collapse considered in the present work, baroclinic

vorticity is generated due to the misalignment of the pressure and density gradients

present during the interaction between various types of waves and the bubble

interface. The vorticity equation for inviscid flow is written as

∂ω

∂t
+ (u · ∇ω) = (ω · ∇)u− ω(∇ · u) +

∇ρ ×∇p

ρ2
. (4.30)

This expression can be integrated over the whole domain to obtain an equation

for the time rate of change of circulation for shock-bubble interactions (Haas &

Sturtevant, 1987):

Γt =

∫

S

∇ρ ×∇p

ρ2
· dS, (4.31)

7The shock amplitude in the experiments of Shima et al. (1984) is 5 MPa, which is the value

measured upon reflection off the wall. Thus, the amplitude of the incoming shock in the present

simulations is 2.5 MPa.
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where the area is a slice through the domain in the radial direction, through

r = 0. The circulation is computed over the top-half domain, since, by symmetry,

the bottom half has the opposite sign. From Equations 4.30 and 4.31, all the

circulation generated in the present problems is expected to be caused by baroclinic

vorticity. In theory, because the gradients of pressure and density are infinite, the

resulting vorticity field consists of a vortex sheet along the interface. However,

because of the numerical diffusion in the simulations, the vorticity is spread over a

wider area along the interface and the gradients are spread over a few grid points.

Figures 4.26 and 4.27 show the total circulation and rate of change of circulation for

free-field shock-induced collapse (ps/po = 353) and Rayleigh collapse near a wall

(ps/po = 353, Ho/Ro = 1.5). In addition, the positive and negative contributions

to the circulation are plotted.
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for free-field shock-induced collapse (ps/po = 353).

In both problems, all of the circulation is due to baroclinic vorticity, as the

transmitted wave propagates within the bubble. Furthermore, primarily negative
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(clockwise) vorticity is generated until collapse. The circulation increases until it

reaches a maximum before the rebound. In both cases, the continuous increase

in circulation may be due to vortex-accelerated vorticity deposition (Peng et al.,

2003), where baroclinic vorticity is generated due to the acceleration of the bubble

interface. When the bubble volume decreases, the amplitude of the internal shock-

waves increases because of focusing and the intensity of the vortex sheet increases.

The interactions becomes very complex in the last stages of collapse.
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In shock-induced collapse, the baroclinic vorticity is generated due to the inter-

action between the shockwave and the interface. The transmitted shock propagates

through the bubble, generating negative vorticity. The small deviation in Γt at

tcL/Ro ≈ 7 is due to the (non-spherical) convergence of the shock within the bub-

ble. After the shock reflects off the distal side at tcL/Ro ≈ 8, positive vorticity

is generated as the internal shock propagates in the opposite direction, thereby

decreasing the circulation. However, the circulation continues to increase after
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this process, possibly due to vortex-accelerated vorticity deposition (Peng et al.,

2003). The large initial oscillations in the rate of change of circulation are caused

by the sharp pressure gradient across the shock.

In Rayleigh collapse near a wall, baroclinic vorticity is generated due to the

interaction between the initial expansion that reflects off the wall and the interface.

The transmitted expansion wave propagates through the bubble, thus generating

negative vorticity. The kink observed at time tcL/Ro ≈ 6.5 is caused by the

reflection of the internal shock off the distal side. As the wave propagates back,

vorticity of the opposite sign is generated, thus causing the decrease. This process

then continues upon each reflection. The circulation increases rapidly as the bubble

enters the fast collapse regime.

Based on Equation 4.31, it is expected that in shock-induced collapse the cir-

culation increases linearly with ps/po and decreases linearly with ρB/ρL. Figure

4.28 shows the circulation after the propagation of the internal shock through

the bubble as a function of the pressure ratio (holding the density ratio constant

at ρB/ρL = 1.22/998) and density ratio (holding the pressure ratio constant at

ps/po = 353, 641). In the pressure plot, the maximum circulation and the circula-

tion when the internal shock hits the distal side are included.

As expected from Equation 4.31, the circulation after the passage of the shock

increases linearly with the pressure ratio. The maximum circulation does not

follow this trend initially, but later does. As discussed in Section 4.3.2, the speed

of the transmitted shock does not change significantly with the pressure compared

to the jet speed. For a small pressure ratio, the jet speed is low enough that the

transmitted shock can reflect internally several times. For larger pressure ratios,

the jet speed becomes so large that it almost catches up with the shock, so that

the maximum circulation occurs just around when the shock hits the distal side.

These observations can be related to the density plot. A departure from the linear

relationship in Γmax is observed in cases where the transmitted shock has had

time to reflect multiple times within the bubble before the jet hits the distal side

(low pressure ratio, high density contrast). In the plot of the density, the linear



125

dependence appears to hold if the density contrast is not too large. If the density

is smaller than that of air, there will be little difference in the circulation.
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4.4 Jet formation mechanism in shock-induced collapse

Based on the results presented in the previous section, jet formation in shock-

induced collapse is discussed qualitatively by considering several mechanisms that

have been proposed previously (e.g., flow induced by the passage of the shock,

non-spherical perturbations and baroclinic torque) and a new one (the transient

nature of shock propagation). Observations on jet formation in Rayleigh collapse

near a wall are provided at the end of the section.
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4.4.1 Flow induced by the passage of the shockwave

In studies of ignition and propagation of explosive reactions, Dear & Field (1988)

and Bourne & Field (1992) considered the shock-induced collapse of two-dimensional

cavities in a water/gelatin matrix. Linearized shock dynamics relations are em-

ployed to show that the speed of the proximal interface increases in such a way

that a jet forms. Using self-similarity and linearized relations, Tulin (1969) showed

that jets may form upon the impingement of weak shockwaves on curved inter-

faces. Ohl & Ikink (2003) further remarked that the flow induced by the shock

would emphasize the jetting phenomenon.

The initial motion of the interface can be treated analytically. As noted by

Haas & Sturtevant (1987), as the shock passes over a fluid inhomogeneity, the

shape of the volume changes due to compression and shear. In the simplest con-

figuration of a homogeneous medium, a circle of diameter, D, deforms into an

ellipse of major axis, D, and minor axis, D(1 − up/vs), where vs and up are the

velocities of the shock and of the fluid induced by the shock. However, if the fluids

are different, oblique interactions lead to shear, as exemplified by the baroclinic

vorticity generated along the interface described in Section 4.3.9.

The initial velocity of the interface just after the interaction with the shock can

be calculated by extending the analysis of Section 4.3.2 and considering the refrac-

tion of an oblique shock at an interface between two different fluids (Henderson,

1989). The initial velocity at r = 0 is completely radial with respect to the bubble,

whereas it is completely tangential at the top of the bubble. In between, the di-

rection of the velocity vector with respect to the bubble wall changes smoothly, so

that the interface velocity is largest at r = 0. From Equation 4.28 and using basic

geometry, the radial velocity imparted by the passage of the shock to the bubble

is given by Dear & Field (1988): vf = 2up cos θ, where up is the particle velocity

behind the shock and θ is the angle with respect to the horizontal (x-axis) in the

present configuration. The bubble shape (in two dimensions) resulting from such

a velocity condition is specified along the interface can be computed: as the shock

interacts with a given point on the interface, this point moves with a constant
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velocity with components, (vf cos θ, vf sin θ), where θ is the angle with the hori-

zontal. Figure 4.29 shows results for a large pressure ratio across the shock (Dear

& Field, 1988) and for two pressure ratios representative of the present work. The

initial shape and the shape at a time equal to the collapse time for the relevant

pressure ratio are included.
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In the problem considered by Dear & Field (1988), a jet forms in a finite time for

an initial shockwave of 0.26 GPa8 due to the flow imparted by the shockwave as it

refracts through the bubble, as shown in the left frame of Figure 4.29. However, no

comparison of the time scales between the theory and the experiment are provided.

The non-dimensional time it takes for the jet to travel to the bubble center is given

based on the normal shock relations in the liquid:

td =
1

2up
=

1

2

√
γ+1
2

(
ps

po
− 1
)

po

ρLc2L
+ 1

(
ps

po
− 1
)

po

ρLc2L

. (4.32)

This characteristic formation time is to be compared to the collapse time of a

bubble, which is τc ≈ 1/
√

(ps/po − 1)po/ρLc2
L. If the bubble had been spherical in

the experiments, the collapse time corresponding to this pressure ratio would be

8It is not clear that the weak shock approximations hold for such a pressure ratio.
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τc ≈ 3, so that the proposed mechanism for jet formation would be relevant for the

pressure ratio considered by Dear & Field (1988). In the range of pressure ratios

considered in this work, up is much smaller, so that the jet does not have time to

develop before collapse, as shown in the middle and right frames of Figure 4.29.

Thus, this mechanism alone is not sufficient to be responsible for jet formation

under the current conditions.

4.4.2 Non-spherical perturbations

As illustrated in the previous section, the passage of the shockwave perturbs the

bubble shape and velocity. Thus, the non-spherical perturbation analysis discussed

in Section 4.1.4 may be relevant to jet formation. After the passage of the shock,

the bubble is no longer strictly spherical. This shape can be described using modes

n = 0, 1, 2 in Equation 4.25.9 In particular, the initial perturbations, a0(0) =

−0.010, a1(0) = −0.027, and a2(0) = −0.018, represent the bubble interface very

well after just after the passage of the shock. In addition, the initial velocity of the

translational mode is non-zero: ȧ1(0) = uCD = −0.027. Equation 4.26 can then

be integrated numerically in time until collapse. The history of the amplitudes are

shown in Figure 4.30, along with the initial perturbed bubble shape (just after the

passage of the shock, t = 1.95) and the shape at collapse (t = 8.95).

The amplitude of modes 0 and 2 does not grow significantly until the last stages

of collapse, while that of mode 1 grows from the beginning, due to the non-zero

velocity perturbation.10 Mode 2 first becomes positive, leading to a deformation in

the direction opposite to the jet. This is due to the fact that the initial perturbation

first compresses the bubble, so that it relaxes during collapse. Although a jet is

starting to develop, this occurs too late in the collapse to be the sole mechanism

responsible for jet formation.

9Mode 0 corresponds to a volumetric perturbation, mode 1 to a translational perturbation

(and is constant, from Equation 4.26), and mode 2 to a spheroid perturbation.
10If the perturbation velocity of mode 1 had been zero, a1(t) = 0 and the jet would not have

formed.
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The present results however are not strictly applicable, because the amplitude

of the perturbations is not small for very long. In particular in the case n = 1, a1

is already not much smaller than R early in the collapse. Thus, nonlinear effects

are no longer negligible and may therefore play a role in the jet formation.

4.4.3 Flow induced by baroclinic vorticity

In studies of shock propagation in non-uniform media, Haas & Sturtevant (1987)

conducted experiments of shockwaves in gases interacting with gaseous cylinders

and concluded that the baroclinic vorticity generated by the passage of the shock-

wave over the bubble was the mechanism responsible for jet formation. Haas &

Sturtevant (1987) and later simulations of Picone & Boris (1988) and Quirk &

Karni (1996) showed that the configuration of the problem led to qualitatively

different behavior, depending on whether the gas within the cylinder is heav-
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ier/lighter. If the impedance of the bubble is lower, then the usual jet forms in

the direction of propagation of the shockwave and the bubble becomes a vortex

ring. In the inverse configuration, the bubble eventually takes the form of a pair

of vortex lines, with no obvious jet. This latter case has been observed in the

experiments on shock-droplet interactions of Joseph et al. (1999).

The effect of baroclinic vorticity can be assessed by adapting the Richtmyer-

Meshkov instability analysis of Haas & Sturtevant (1987) for shock-bubble interac-

tions. The main difference lies in the fact that the volumetric changes are substan-

tial in the present case. Thus, the base flow is assumed to consist of a spherically

collapsing bubble, which is provided by the simulation of Rayleigh collapse. In

other words, the interfacial velocity difference at the jet location between shock-

induced collapse and Rayleigh collapse, vj,SIC − vj,RC , is expected to be equal to

the perturbation velocity obtained in a Richtmyer-Meshkov analysis. The bubble

can be considered to be a perturbation of amplitude, η = Ro, and of wavelength,

λ = 2Ro. The wavenumber for a sphere is k =
√

2/Ro, so that the perturbation

velocity at the jet location is:

v = kηV A, (4.33)

where V is the change in translational velocity due to the passage of the shock (for

the corresponding one-dimensional Riemann problem) and

A =
ρ2 − ρ1

ρ2 + ρ1
(4.34)

is the Atwood number. In the present case, the base flow is the Rayleigh col-

lapse, so that V = uCD,SIC − uCD,RC , where uCD is calculated as in Section

4.3.2. For ps/po = 353 and for an air bubble in water, A = −0.998, so that

v ≈ −
√

2(uCD,SIC − uCD,RC) = −1.81 × 10−2, using the measurements from Sec-

tion 4.3.2. From Figure 4.31, the velocity difference is v ≈ −1.65 × 10−2, thus

showing reasonable agreement. The same calculation was carried out for different

Atwood numbers and is shown in Table 4.2. Again, the perturbed velocity is cal-

culated from Equation 4.33 using the velocity difference from the initial Riemann
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problem in Rayleigh collapse and shock-induced collapse, while the measured ve-

locity is the difference in the simulations between the jet velocity and the velocity

of the distal side. The measurements are difficult to perform because the data is

recorded at discrete times and must therefore be interpolated. Nevertheless, the

agreement between the theory and the computations is good. Thus, the present

analysis shows that baroclinic effects add a net velocity in the direction of prop-

agation of the jet. However, this mechanism is not sufficient to be the lone cause

of jet formation.

Table 4.2: Perturbation velocity due to baroclinic vorticity for shock-induced col-

lapse (ps/po = 353).

A v/cL (Eq. 4.33) v/cL (measured)

−0.998 −1.81 × 10−2 −1.65 × 10−2

−0.952 −1.73 × 10−2 −1.40 × 10−2

−0.885 −1.60 × 10−2 −1.28 × 10−2

−0.782 −1.41 × 10−2 −1.10 × 10−2

−0.607 −1.09 × 10−2 −9.50 × 10−3

4.4.4 Transient nature of shock propagation

In the previous three sections, it is shown that the effects of the flow induced by

the passage of the shock, the baroclinic vorticity and the non-spherical perturba-

tions alone are not sufficient to generate a re-entrant jet in shock-induced collapse.

However, these effects ignore the fact that the passage of the shock over the bubble

is a transient process is ignored: the proximal side is subjected to the pressure in-

crease sooner than the distal side, because of the finite speed of propagation of the

shock. Thus, the proximal portion of the bubble is expected to contract under the

effect of the shock before the distal side does. Though the sound speed in water is

often assumed infinite, it is approximately only five times larger than that in air.

In certain cases, the time it takes for the external shock to propagate around the
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bubble is almost half of the collapse time, as shown in Section 4.3.1.

In order to provide a qualitative understanding of the process, the velocity of

the jet and distal side for ps/po = 353 are shown in Figure 4.31. The top plot shows

the history of the velocity of the jet and distal side for shock-induced collapse.

The middle plot includes results for Rayleigh collapse and for the Rayleigh-Plesset

equation as well; in shock-induced collapse, t = 0 is taken to be the time when

the shock first hits the bubble for the jet velocity and when the shock diffracts

to r = 0 for the velocity of the distal side.11 The bottom plot shows the bubble

non-sphericity. The corresponding phase diagram, which displays the velocity of

the proximal side with respect to its position, is shown in Figure 4.32.

The top plot of Figure 4.31 shows that the proximal side follows the slow regime

described in Section 4.1.1; on the other hand, the distal side only starts its motion

at t ≈ 4.5. The proximal side enters the fast regime at t ≈ 7 and undergoes

significant acceleration, while the distal side is still in the slow regime when the

jet impacts it.

By comparing the trajectories of shock-induced collapse to those of Rayleigh

collapse in the middle plot of Figure 4.31, it is clear that the distal side follows

the motion of spherical collapse driven by a ps/po = 353 pressure ratio. However,

because of the delay due to the finite speed of propagation of the shock in water,

the distal side is still in its slow regime when the jet impacts it.

Furthermore, the velocity of the proximal side (jet) is slightly higher in shock-

induced collapse than in Rayleigh collapse. After t ≈ 3 in the middle plot, the

acceleration is nearly the same in both cases, so that there is an approximately

constant velocity difference between the two cases, until t ≈ 5. This effect is

attributed to the baroclinic vorticity, as discussed in Section 4.4.3. Thus, the higher

velocity allows the proximal side to enter the fast regime sooner. As illustrated

by the bottom plot of Figure 4.31, the bubble starts to becomes non-spherical

as it enters the fast regime in shock-induced collapse.12 In the fast regime, the

11In both cases, the impulse due to the initial Riemann problem has been subtracted, so that

both curves start at v = 0.
12Then, as discussed in Section 4.3.3, the interface becomes Rayleigh-Taylor unstable even in
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acceleration is higher in Rayleigh collapse, as observed in the phase diagram of

Figure 4.32, because the collapse is spherical.

The reason that the velocity of the proximal side (jet velocity) is higher in

shock-induced collapse is now clear. While the distal side is contracting more

slowly, the proximal side keeps on accelerating in the fast regime and can therefore

penetrate the bubble to a greater amount, until impact with the distal side. In the

spherical case, the collapse is arrested sooner, because the trajectory of the distal

side is the exact opposite of that of the proximal side.

The delay in the contraction of the distal side is a direct consequence of the

transient nature of shock propagation; because the proximal side starts to contract

sooner than the distal side, it enters the fast regime much sooner. In light of this

observation, the previous findings that each of the effects considered previously

(flow induced by the passage of the shock, non-spherical perturbations and baro-

Rayleigh collapse.
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clinic vorticity) adds a net velocity to the proximal side, allows the fast regime to

be achieved sooner. Though this analysis still does not paint the full picture of jet

formation, it sheds additional light on the matter.

4.4.5 Rayleigh collapse near a wall

In Rayleigh collapse near a wall, based on potential theory, Plesset & Prosperetti

(1977) argued that the interfacial velocity farthest from the wall must be highest

during collapse, because of the flow induced by the image bubble. However, this

effect is minor. Following the ideas of Benjamin & Ellis (1966), Vogel et al. (1989)

explain that a pressure gradient across the bubble is created by the retardation of

the flow because of the solid boundary. In order to preserve its Kelvin impulse,

the bubble accelerates towards the wall as it collapses, so that the velocity of the

interface farthest from the wall must grow much faster than that of the opposite

side, thus leading to the formation of a jet. Philipp & Lauterborn (1998) extend

this explanation by remarking that the fluid volume above the bubble is accelerated

and focused during collapse. From boundary integral simulations, Best & Kucera

(1992) remark that a high pressure is computed behind the bubble increases during

collapse due to the acceleration towards the wall, and that this pressure drives the

jet into the bubble. However, Section 4.1.2 shows that this peak pressure is a

consequence of the acceleration of the bubble interface, not a cause for it. This

high pressure behind the bubble has also been observed in experiment (Ward &

Emmony, 1991).

The ideas developed in the previous section are used to better understand

jet formation in Rayleigh collapse near a wall. Figure 4.33 shows the history

of the velocity of the jet and distal side, and of the bubble non-sphericity, for

Rayleigh collapse near a wall with ps/po = 353 and Ho/Ro = 1.2, 1.5, 2.0, 5.0.

The solution to the Rayleigh-Plesset equation for spherical collapse with the same

initial pressure ratio is also provided.

The history of the jet velocity follows the same behavior for the different stand-

off distances until the collapse time of the farthest bubble. This indicates that the
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Figure 4.33: Speed of the jet and distal side (top) and bubble non-sphericity

(bottom) for Rayleigh collapse near a wall (ps/po = 353, Ho/Ro = 1.5).

wall does not significantly affect the flow on the proximal side. Deviations occur

only in the late stages of collapse. On the other hand, the velocity of the distal
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side (closest to the wall) is very different because the wall retards the flow. In

the present compressible framework, the presence of the wall is communicated to

the bubble by the reflection of the initial expansion wave back onto the bubble.

As a result, the pressure driving the bubble collapse decreases as the expansion

propagates over the bubble. This phenomenon would also occur in incompressible

simulations (Plesset & Chapman, 1971; Blake et al., 1986; Zhang et al., 1993),

where it would happen instantaneously because the sound speed is effectively infi-

nite in such cases. The strength of the expansion wave decreases with distance, so

that this effect is not as severe on the proximal side. Thus, the pressure driving the

collapse on the proximal side is essentially unchanged, while that driving the distal

side is reduced. Hence, the contraction of the proximal side approximately follows

the behavior of free-field collapse, while that of the distal side is lessened because

of the reduced local pressure. The proximal side then enters the fast regime much

sooner than the distal side. Since the distal side is contracting much more slowly,

the proximal side can propagate farther because nothing arrests its motion, thus

forming the jet. Furthermore, as noticed by Vogel et al. (1989), parts of a bubble

with a higher curvature collapse faster, thus providing another mechanism that

leads to a higher jet velocity.

4.5 Damage potential of single-bubble collapse

For the initial stand-off distances considered in the present work, the potential for

damage of bubble collapse is related to the shockwaves that are emitted during

collapse. First, these shockwaves are characterized. Then, the water-hammer

pressure and the radiated energy are investigated. Next, measurements for the

wall pressure are provided. Finally, the dependence on the shock amplitude is

studied and the shielding effects of the bubble are considered.
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4.5.1 Shock emission

In the present simulations, the emission of three main types of shockwaves are

observed during bubble collapse:

1. A precursor shockwave generated inside the bubble by the piston-like motion

of the jet,

2. A gas compression shockwave due to the compression of the gas inside the

bubble, and

3. A water-hammer shockwave caused by the impact of the jet onto the distal

side.

In experiments of Rayleigh collapse near a wall and shock-induced collapse (Ohl

et al., 1999; Lindau & Lauterborn, 2003), the water-hammer and gas compression

shockwaves are observed, though Sankin et al. (2005) notes that, if the camera

speed is not fast enough, the shocks will have merged into one front by the time

it is visualized. Ohl et al. (1999) further postulate the generation of a “tip-bubble

shockwave” caused by the compression of a gas pocket between the jet tip and the

distal side; however, Lindau & Lauterborn (2003) argue that this feature is simply

part of the water-hammer shock.

In order to visualize the sequence of shockwave emission, line plots of pressure,

axial velocity, γ and density along the axis, r = 0, and the corresponding contours

are shown. In the line plots, the first line is black, the second is red, the third is

blue and the fourth is green. Only a small part of the domain is considered and the

scales of the different plots of the same quantity are different in order to highlight

the important features.

Free-field Rayleigh collapse

First, free-field Rayleigh collapse with ps/po = 353 is considered to understand the

initial wave dynamics and how the gas compression shockwave is produced.
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Figure 4.34: Initial flow field for free-field Rayleigh collapse (ps/po = 353) at

tcL/Ro = 2.84, 4.26, 5.15, 6.04. Top: pressure, velocity, density, and γ profiles

along r = 0; bottom: pressure and numerical Schlieren contours.

Figure 4.34 shows the initial behavior of the problem at tcL/Ro = 2.84, 4.26,

5.15, 6.04. As discussed in Section 4.3.2, the shockwave released by the initial

Riemann problem at the interface is weak. While propagating to the center of the

bubble, it focuses until it converges at the origin, thereby achieving a relatively

high pressure. The wave then propagates back outwards and reflects off the in-

terface, which is moving radially inwards due to the collapsing bubble. Because
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of the high impedance mismatch, the shock is reflected almost perfectly. These

reflections occur multiple times and do not significantly affect the dynamics of

collapse initially.
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collapse at tcL/Ro = 7.10, 7.46, 7.72, 8.79. Top: pressure, velocity, density, and γ

profiles along r = 0; bottom: pressure and numerical Schlieren contours.

Figure 4.35 depicts the behavior at tcL/Ro = 7.10, 7.46, 7.72, 8.79, just before

and after collapse. As discussed in Section 4.1.2, the pressure behind the interface

increases to a value higher than p∞ when the bubble pressure and the interface
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velocity reach a critical value; this is difficult to see in Figure 4.35 because of

the scale. The pressure due to the intersection of the internal shock is now more

substantial within the bubble. The kinks in the pressure profiles are caused by the

reflection of the shockwave trapped within the bubble. The local interface velocity

decreases due to the compression of the gas before the bubble reaches its minimum

volume. At this stage, the gas compression shock is emitted and propagates in

the liquid. The bubble expands and a shockwave propagates radially outwards.

The bubble contents remain at a high pressure and density in the initial stages of

rebound. The bubble interface undergoes a large change in acceleration at collapse,

so that its shape becomes distorted. As described in Section 4.5.4, the amplitude

of the shock front decays as 1/r.

Rayleigh collapse near a wall

Rayleigh collapse near a wall with Ho/Ro = 1.5 and ps/po = 714 is considered to

illustrate the emission of the precursor and water-hammer shockwaves.

Figure 4.36 presents the results at tcL/Ro =5.04, 5.17, 5.30, 5.43, just before

the water-hammer. Inside the bubble, the shock released by the initial Riemann

problem at the interface is trapped and reflects internally. Because the bubble walls

are moving inwards, the amplitude of the shock increases with each reflection. As

the bubble collapses, the jet speed and the pressure behind the proximal side

increases according to the phenomenon described in Section 4.1.2. This feature

has been observed in prior experiments (Ward & Emmony, 1991) and simulations

(Blake et al., 1986; Best & Kucera, 1992; Zhang et al., 1993). It was even postulated

by Best & Kucera (1992) that this high pressure drives the jet into the bubble.

However, as noted in Section 4.1.2, this high pressure is a consequence of the

increasing interface speed, not a cause for it. The motion of the jet causes the

gas on the proximal side of the bubble to compress, ultimately leading to the

formation of a left-moving shockwave (the precursor shock) due wave steepening

(at x/Ro ≈ 2.9 on the green line at t = 5.43). During this process, the jet acts

like an advancing piston. However, unlike the predictions of Benjamin (1958), this
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Figure 4.36: Flow field just before the impact of the jet onto the distal side for

Rayleigh collapse near a wall (ps/po = 714, Ho/Ro = 1.5) at tcL/Ro =5.04, 5.17,

5.30, 5.43. Top: pressure, velocity, density, and γ profiles along r = 0; bottom:

pressure and numerical Schlieren contours.

phenomenon clearly occurs inside the bubble. The resulting shock may be the one

observed in the experiments of Ohl et al. (1999) and Lindau & Lauterborn (2003).

Figure 4.37 presents the results at tcL/Ro = 5.56, 5.69, 5.82, 5.95 just after

the water-hammer. The precursor shock is seen exiting the bubble. When the

jet hits the distal side, a sharp pressure discontinuity is produced. At this stage,
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Figure 4.37: Flow field just after the impact of the jet onto the distal side for

Rayleigh collapse near a wall (ps/po = 714, Ho/Ro = 1.5) at tcL/Ro = 5.56, 5.69,

5.82, 5.95. Top: pressure, velocity, density, and γ profiles along r = 0; bottom:

pressure and numerical Schlieren contours.

the bubble is highly compressed, so that it emits a gas compression shockwave

simultaneously with the water-hammer pressure.
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Free-field shock-induced collapse

Free-field shock-induced collapse (ps/po = 353) is considered to study the diffrac-

tion of the incoming shock, and the generation of the water-hammer shock.
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Schlieren contours.

Figure 4.38 shows the diffraction of the incoming shock about the bubble at

tcL/Ro = 3.73, 4.20, 4.39, 4.85. Initially, a portion of the incoming shockwave is
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transmitted, while most of it is reflected. As the incoming shock propagates past

the top of the bubble, it diffracts off its surface and intersects with itself along

r = 0. This phenomenon starts the collapse on the distal side. A small-amplitude

compression wave propagates into the bubble from the distal side and interacts

with the transmitted shock, which is being focused.
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velocity, density, and γ profiles along r = 0; bottom: pressure and numerical

Schlieren contours.
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Figure 4.39 shows the jet formation at tcL/Ro = 8.40, 8.68, 8.96, 9.24. In the

latter stages of collapse, the pressure behind the proximal side increases signifi-

cantly due to the acceleration of the bubble interface. Similarly, the pressure at

the distal side increases, but to a lesser extent, because the interface velocity has

not yet reached the fast growth regime. The small kink observed within the bubble

is the shock transmitted into the bubble at the first shock-interface interaction;

the transmitted shock has reflected off the distal side and is traveling back towards

the proximal side.

Figure 4.40 shows the generation of the water-hammer pressure wave at tcL/Ro =

9.43, 9.61, 9.80, 9.99. The gas within the bubble is highly compressed at this time

and the shock dynamics within the bubble are more complex. The precursor shock,

generated by the piston-like motion of the jet, is more difficult to identify than

in the previous section, because the internally reflected shock interfers with it.

It exits the bubble just before the water-hammer occurs. A sharp discontinuity

develops in the pressure and velocity in the liquid on the proximal side due to the

impact of the jet onto the distal side. The water-hammer shock generated by this

process propagates through the bubble and is sharper in the direction of motion

of the jet. The amplitude of the precursor shock is much smaller than that of the

water-hammer shock.

Figure 4.41 shows the propagation of the waves after the water-hammer at

tcL/Ro = 10.2, 10.5, 10.7, 11.2. The maximum pressure (approximately 4.33 GPa)

and jet velocity are achieved in Figure 4.41. The water-hammer shock propagates

radially outwards. As shown in Section 4.5.4, the pressure decays as 1/r.

4.5.2 Water-hammer pressure

When a high-speed liquid impacts a solid, a water-hammer pressure is generated

and obeys the equation (Huang et al., 1973)

pwh = ρLcLvj
ρScS

ρScS + ρLcL
, (4.35)
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Figure 4.40: Flow field when the water-hammer is generated for free-field shock-

induced collapse (ps/po = 353) at tcL/Ro = 9.43, 9.61, 9.80, 9.99. Top: pressure,

velocity, density, and γ profiles along r = 0; bottom: pressure and numerical

Schlieren contours.

where ρS is the solid density and cS is the sound speed in the solid. In the present

work, the re-entrant jet always hits the distal side first, which consists of water

and moves at a velocity, vd. The jet may hit the wall afterwards, but its velocity is

greatly reduced by the impact. Thus, the water-hammer shock is always generated

within the liquid in the problems of interest. For such a water/water impact, the
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Schlieren contours.

water-hammer equation reduces to

pwh ≈ ρLcL∆v

2
, (4.36)

where ∆v = |vj − vd|. The properties of the jet are measured according to the

procedure described in Appendix C. Figure 4.42 shows the water-hammer pressure
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computed based on Equation 4.36 and measured in the simulations for free-field

shock-induced collapse, shock-induced collapse near a wall (ps/po = 353) and

Rayleigh collapse near a wall (ps/po = 714). Results for free-field Rayleigh collapse

are not included because no jet is generated in this case.
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Figure 4.42: Water-hammer pressure as a function of the shock amplitude for free-

field shock-induced collapse (left) and of the initial stand-off distance for shock-

induced collapse (ps/po = 353) and Rayleigh collapse (ps/po = 714) near a wall.

As expected, the water-hammer pressure increases with increasing pressure

ratio for free-field shock-induced collapse. The agreement between the theory

and the simulation is good initially. However, the theory slightly underpredicts

the measured water-hammer pressure. In the case of collapse near a wall, the

maximum water-hammer pressure occurs at small Ho/Ro. The agreement between

the values measured in the simulations with the theory is acceptable in shock-

induced collapse, though the theory is underpredicted again. In Rayleigh collapse

near a wall, the re-entrant jet forms and impact the distal side until Ho/Ro ≈ 2.5;

beyond this distance, the emitted shockwave is caused by the compression of the
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gas, because the jet does not penetrate the bubble sufficiently to impact the distal

side and generate a water-hammer shock. The maximum value is achieved near

the wall, where pwh,max ≈ 1.49 GPa, in agreement with Jamaluddin (2005).

For the present range of Ho/Ro, the jet always impacts the distal side first and

subsequently decelerates. Hence, the water-hammer is always generated within

the liquid. If the bubble is close enough to the wall, the jet may hit it directly

at collapse. This is the case in the experiments of Tomita & Shima (1986), Vogel

et al. (1989) and Philipp & Lauterborn (1998), where Ho/Ro < 1.13 However, as

shown by the history of the jet velocity in Section 4.4, the jet greatly decelerates

after impacting the distal side. Thus, the distal side would have to be extremely

close to the wall in order for the jet to hit the wall at a very high speed.

4.5.3 Radiated energy

The collapse of a cavitation bubble is accompanied by the emission of a shockwave,

which is an exhibition of energy loss via liquid compressibility during the process.

Vogel et al. (1989) report that the average energy loss of a cavitation bubble during

the first collapse is 84 %, and that up to 90 % of that fraction is due to the emission

of sound. From Equation 4.37, the amount of acoustic radiation is given by:

Erad = 4

(
4π

3
R3ρo

)
Ṙ2

2

Ṙ

co
+

∫ R

Ro

1

co

(
−3γpB

Ṙ

R

)(
1 − Ṙ

co

)
4πR3dR, (4.37)

Because the collapse is not purely spherical, R and Ṙ are computed as described

in Section C.2.4. The total energy is given by

Etot =
4

3
πR3

o(ps − po). (4.38)

Figure 4.43 shows the fraction of the normalized radiated energy, Erad/Etot,

and the maximum average bubble pressure as a function of the initial pressure

13The initial shape of bubbles for which Ho/Ro < 1 is not spherical. It is therefore not clear

how to make comparisons between such bubbles and spherical bubbles.
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ratio for free-field Rayleigh collapse and shock-induced collapse, while Figure 4.44

shows the fraction of radiated energy and the maximum bubble pressure as a

function of the initial stand-off distance for Rayleigh collapse with ps/po = 714

and shock-induced collapse with ps/po = 353 near a wall.
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Figure 4.43: Fraction of radiated energy and maximum bubble pressure as a func-

tion of the pressure ratio for free-field shock-induced collapse.

In free-field collapse, even though the dynamics of collapse shown in Section

4.3 and the bubble pressure depend significantly on the pressure ratio, the energy

radiated in shock-induced collapse is very close to that radiated during Rayleigh

collapse, though it is a little bit higher in the case of low pressure ratios. This

suggests that the details of the collapse are not very important, but that the

pressure driving the collapse, ps/po, is the parameter that governs the energy

radiation, regardless of the type of collapse (shock-induced collapse or Rayleigh

collapse).

In collapse near a wall, the energy radiated and the pressure increase with the

initial stand-off distance, which is consistent with the experiments of Vogel et al.
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Figure 4.44: Fraction of radiated energy and maximum bubble pressure as a func-

tion of the initial stand-off distance for Rayleigh collapse near a wall.

(1989), though much lower. This trend may appear somewhat contradictory, in

that energy is expected to go into the jet formation (Brennen, 2002). However, this

can be related to the fact that the collapse becomes more spherical farther away

from the wall, as shown in Section 4.3.4. For a given pressure ratio, a spherical

collapse achieves a smaller radius and therefore a higher pressure, so that more

energy is radiated (or lost). As a result, the rebound is smaller than for non-

spherical collapse, where the bubble loses less energy and is therefore capable to

rebound to a greater size.14

14This analysis of acoustic radiation during bubble collapse was motivated by experimental

observations made by Dr. Michael Bailey and Wayne Kreider at the University of Washington,

Seattle, who noticed that the rebound time of non-spherical bubbles is longer and the rebound

size is larger than for spherical bubbles.
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4.5.4 Wall pressure

As a measure of the damage potential of bubble collapse, the pressure along the

wall is recorded in shock-induced collapse and Rayleigh collapse.

Shock-induced collapse near a wall

Figure 4.45 shows the history of the wall pressure at different locations along the

wall (r/Ro = 0, 1, 2, 4), for two different initial stand-off distances in shock-induced

collapse near a wall (ps/po = 353, Ho/Ro = 1.2, 2.0).
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Figure 4.45: History of the wall pressure at different locations along the wall for

shock-induced collapse near a wall (ps/po = 353). Left: Ho/Ro = 1.2; right:

Ho/Ro = 2.0.

The two situations show similar features. The pressure is initally atmospheric

and suddenly increases when the shock reflects off the wall. As described in Sec-

tion 4.5.6, the bubble interferes with the incoming shock in that a small portion is

reflected, while the main shock diffracts about the bubble. Thus the shock in the

shadow of the bubble is not as strong and is slightly delayed. After the shock re-
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flects off the bubble and inverts its phase, the wall pressure decreases. Then, a large

and sharp pressure rise occurs due to the water-hammer shock. The subsequent

increases and decreases are caused by later reflections between the water-hammer

shock and the bubble. Significant tension may be achieved as expansion waves re-

sulting from the shock reflection off the interface due to the impedance mismatch

impact the wall, as shown in the plot for Ho/Ro = 2.0. For small initial stand-off

distances, the distal side barely moves, as shown in Section 4.3.5, and the bubble is

very close to the wall. Thus, the wall pressure increases sharply along r = 0 due to

the water-hammer shock, but the measurements off-axis decrease rapidly. On the

other hand, when the bubble is initially farther from the wall, the decrease in the

wall pressure off-axis is smaller. This illustrates the fact that the water-hammer

shock is a spherically propagating wave, so that, far from the wall, the wave ap-

pears nearly planar. Furthermore, as observed in the contour plots of the previous

sections, the water-hammer shock is stronger in the direction of propagation of

the jet; even though the shock propagates radially outwards, its strength is not

uniform. Even in the case Ho/Ro = 1.2, the impact of the jet onto the wall is

negligible.

The maximum wall pressure is thus of interest when estimating the potential

damage. Figure 4.46 shows the maximum wall pressure as a function of the location

of the bubble at collapse15 for shock-induced collapse with ps/po = 353, at different

positions along the wall (r = 0, 1, 2, 4).

The pressure is very high along the centerline and decays as 1/r. Values up to

2.3 GPa are achieved locally; these are consistent with the results of Jamaluddin

(2005). Off the axis, the pressure is lower for bubbles very close to the wall; this

may be explained by the fact that for such bubbles the shock propagates almost

parallel to the wall, so that there is little reflection. The fact that bubbles initially

near the wall migrate towards it significantly leads to higher wall pressures (Tomita

& Shima, 1986), even though the collapse is more gentle near the wall. Based on

15During collapse, the bubble moves towards the wall, so that this displacement must be taken

into account when computing the pressure dependence on r, as explained in Section 4.3.8.
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the 1/r relationship observed in Figure 4.46, a bubble needs to be located within

Hmax ≈ 7.9 in order to generate a pressure as large as the incoming shockwave. In

the experiments of Tomita et al. (1983) and Shima et al. (1984), a crossover value

of approximately 7 is found for a 5 MPa shock. As noted in Section 4.3.8, this

corresponds to a pressure ratio of ps/po = 25 in the present simulations. Figure

4.47 provides a comparison of the present simulations with those experiments,

where the wall pressure (averaged over the area of a hydrophone) and the wall

pressure normalized by the incoming shock pressure are plotted as a function of

the initial stand-off distance.

The same trend is observed in the experiments and in the simulations. Far

from the wall, the pressure decreases with initial stand-off distance; near the wall,

the pressure is not as high because it is averaged over a large area. However, the

present simulations overpredict the wall pressure. In the experiments, the shock
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Figure 4.47: Maximum wall pressure as a function of the initial stand-off distance

for shock-induced collapse (ps/po = 25). Left: pressure in MPa; right: pressure

normalized by incident shock.

is generated by an imploding bubble, so that the amplitude of the shock decreases

with distance; a calibration is performed to determine where the origin of the

explosion must be located so that a 5 MPa shock impacts the bubble. Thus, the

effective pressure collapsing the bubble after the reflection of the shock off the wall

is lower than 5 MPa in the experiments. Because of the subtleties in representing

the physics of the explosion process (Tanguay, 2004), the shock is planar with a

constant amplitude in the present simulations, thus explaining the higher measured

pressures. The effect of a finite pulse width is studied in Section 5.2.2.

In order to determine the extent of the potential damage, the area over which

the pressure due to bubble collapse is larger than that of the incoming pulse is

calculated. Figure 4.48 shows the wall pressure and its corresponding logarithm

as a function of radial distance for ps/po = 353 and Ho/Ro = 2.0. Several pressure

profiles are shown, in addition to the maximum recorded pressure at any position.
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Because the water-hammer shock propagates spherically outwards, the pressure

is inversely proportional to the radial distance from the origin of the shock (Hickling

& Plesset, 1964; Fujikawa & Akamatsu, 1980), so that, along the wall,

pwall(r) =
c1√

H2
c + r2

+ c2, (4.39)

where Hc is the distance from the collapse location to the wall for a particular

Ho/Ro, and c1 and c2 are constants that can be determined if two pressure mea-

surements are known. Equation 4.39 is the dashed curve in Figure 4.48, which

matches the results very closely. This equation confirms the fact that the shock

resulting from the collapse of a bubble far away from the wall (large Hc) looks

essentially planar. Since the numerical simulation does not last long enough to

show when the wall pressure due to the bubble collapse crosses over the shock

pressure, the radius of the area over which the wall pressure is larger than that of
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the pulse is computed using Equation 4.39:

Lr =

√(
a

ppulse − b

)2

− H2
c , (4.40)

where ppulse is the pressure of the incoming pulse. In this particular case, Lr/Ro ≈
6.3, meaning that the area over which the pressure due to bubble collapse is larger

than that of the incoming shock is 40 times larger than the projected area of the

bubble. Thus, although bubbles undergoing shock-induced collapse are initially

small (Ro ≈ 10 µm) and collapse to an even smaller size, the area over which they

exert a pressure higher than that of the pulse is much larger (Rarea ≈ 40 µm).

Rayleigh collapse near a wall

Figure 4.49 shows the maximum wall pressure as a function of the location of the

bubble at collapse for Rayleigh collapse with ps/po = 34, at different positions

along the wall (r/Ro = 0, 1, 2, 4).
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collapse for Rayleigh collapse (ps/po = 34).
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As observed in Hickling & Plesset (1964) and Fujikawa & Akamatsu (1980) for

free-field Rayleigh collapse, the amplitude of the shockwave emitted upon collapse

decays as 1/r. The departure from the 1/r curve close to the wall is due to the

fact that the collapse is less energetic; the presence of the wall leads to a slower

collapse. Thus, even though bubbles near the wall migrate towards it by a greater

amount than bubbles initially farther away, as described in Section 4.3.8, the more

gentle collapse due to the presence of the wall, as described in Section 4.3.7, leads

to a lower wall pressure. As illustrated previously, for a collapse very close to the

wall, the pressure measured farther up along the wall (off-axis) is not as high as

that of a bubble collapsing farther away from the wall.

Figure 4.50 shows the wall pressure as a function of the initial stand-off dis-

tance in order to compare to the experiments of Tomita & Shima (1986). In the

simulations, the pressure is averaged over an area equivalent to that of the hy-

drophone used in the experiments. The ratio of the radius of the hydrophone to

that of the bubble is Ro/Rhyd = 0.63.
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Figure 4.50: Averaged wall pressure as a function of the initial stand-off distance

for Rayleigh collapse with (ps/po = 34).
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Though the overall trend is captured, the results of the simulations show pres-

sures lower than those obtained in the experiments. This is primarily due to

the fact that the bubble is filled with non-condensible gas only in the simulations.

From Rayleigh-Plesset analysis, the compression of the non-condensible gas arrests

the bubble collapse and causes rebound. Thus, the minimum radius at collapse is

larger in the simulations than it would be for a vapor bubble with the same initial

radius, which contains far less non-condensible gas. For a bubble with little gas

content undergoing spherical Rayleigh collapse, the asymptotic velocity at collapse

is described by Equation 4.10. Thus, the minimum radius and bubble pressure can

be expressed as

Rmin

Ro
=

[
pGo

(γ − 1)(p∞ − pv)

]1/3(γ−1)

,
p(Rmin)

pGo
=

[
pGo

(γ − 1)(p∞ − pv)

]γ/(γ−1)

.

(4.41)

As an example, the equilibrium radius of a bubble is approximately 10 µm and

the maximum radius is approximately 1 mm in SWL. If the bubble only consists

of gas at equilibrium, the partial pressure of the gas at maximum radius is then

approximately 10−6patm, at which point the bubble mainly consists of vapor. This

leads to a minimum radius of Rmin/Ro ≈ 2 × 10−5. In the present simulations,

the bubble consists of gas at ambient pressure initially (i.e., at pGo = patm), which

then leads to a larger minimum radius (Rmin/Ro ≈ 0.1) and therefore to a much

lower bubble pressure.

4.5.5 Dependence on the shock amplitude

The dependence of the wall pressure on the shock amplitude and initial stand-off

distance can be useful when considering shock propagation through a bubble cloud

near a solid surface. Figure 4.51 shows the dependence of the wall pressure on the

shock Mach number for shock-induced collapse with Ho/Ro = 2.0.

As expected, the wall pressure increases with increasing shock Mach number
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and matches the linearized shock relations, which are derived from Equation A.27:

pwall,shock = 2

(
po +

4

γ + 1
ǫ

)
, (4.42)

where the factor of two accounts for pressure doubling and M = 1 + ǫ, with

0 < ǫ ≪ 1.

The damage due to the bubbles closest do the surface can be assessed by com-

bining the present analysis with a model for shock propagation through bubbly

mixtures (Kameda & Matsumoto, 1996; Kameda et al., 1998). As the shock prop-

agates through the cloud, it becomes attenuated, such that the bubbles nearest

to the wall, which are likely to cause the most damage based on the analysis of

Section 4.5.4, only feel a fraction of the original pressure ratio. Thus, if the initial

stand-off distance and the shock amplitude are known, the results of this section

can be used to predict the potential damage due to the shock-induced collapse

of a single bubble. This can then be averaged over a given area to represent the
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damage due to multiple bubbles. It should be noted that each collapsing bubble

emits a shockwave upon collapse, so that a given bubble is also subjected to such

shockwaves.

4.5.6 Shielding

It has been shown in the previous sections that the effect of a bubble – in particular

its collapse – can greatly amplify the pressure in shock-induced collapse near a wall.

However, its mere presence causes part of the incoming shock to be reflected, so

that the full extent of the shock is not felt along the wall. In other words, the

bubble shields the wall. Figure 4.52 illustrates this effect by showing the pressure

of the incoming shock along the wall at r/Ro = 0, 1, 2, 4 as a function of the initial

bubble stand-off distance for shock-induced collapse with ps/po = 353.
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Figure 4.52: Maximum wall pressure due to the shock as a function of the initial

bubble stand-off distance for shock-induced collapse near a wall (ps/po = 353).

As expected, far from the axis (r/Ro = 4), the effect of the bubble is not felt

and the wall pressure is that due to the shock. Conversely, at r/Ro = 0, the
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pressure is greatly influenced by the presence of the bubble, which has reflected a

portion of the incoming shock. For r/Ro = 2 (i.e., outside of the shadow region),

the presence of the bubble affects the pressure at large Ho/Ro. This is due to the

fact that the shockwave diffracts around the bubble; this effect propagates from

the curved part of the shock all the way to main front. Close to the axis, the

pressure change due to the incoming shock is minimal for bubbles close to the

wall. However, as the bubble is farther, the diffracted wave has time to intersect

with itself and in fact strengthens as it propagates downstream. This phenomenon

explains why the pressure is greater along the axis than at r/Ro = 1, where the

shock is curved, if the wall is far enough away. For bubbles very far from the wall,

it is expected that the shockwave has had time to steepen again in the region near

the axis to achieve a normal front.

4.6 Summary of the bubble collapse results

Results from numerical simulations of bubble collapse have been presented in this

section. Overall, the simulations showed good agreement with the theory and

experiments. For certain quantities, the results for Rayleigh collapse under cavi-

tation conditions did not match the experimental results very well, because mass

transfer is not included in the physical model.

The flow visualizations indicate that the following scenario occurs in bubble

collapse near a wall, for the range of stand-off distances, Ho/Ro = 1.05 − 5. A re-

entrant jet forms during collapse. When the jet impacts the distal side, it generates

a large water-hammer pressure wave that propagates in the liquid and impacts the

nearby solid surface. A gas compression shock is generated almost simultaneously

and merges with the water-hammer pressure front. The strength of the shock is

highest in the direction of propagation of the jet. Thus the damage mechanism in

this case can be considered as a combination of two previously proposed damage

mechanisms: the emission of the gas compression shock (Rayleigh, 1917) and the

direct impact of the jet onto the solid surface (Kornfeld & Suvorov, 1944).
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The dynamics of the collapse were characterized by considering a number of

properties of the bubble and of the jet. The initial motion of the bubble and the

collapse time match analytical results well. Jet velocities on the order to thousands

of meters per second are achieved. The finite speed of propagation of shock affects

certain properties of the collapse. If the bubble is located far from the wall, the

reflected shock interacts with it late during the collapse, leading to a less energetic

process.

The jet formation in shock-induced collapse was investigated qualitatively. Sev-

eral mechanism are shown to play a role: the growth of non-spherical perturbations,

baroclinic vorticity and the transient effects of shock propagation. In Rayleigh

collapse near a wall, the presence of the wall leads to lower pressures driving the

collapse.

The sequence of shockwave emission was determined. The previously observed

gas compression and water-hammer shockwaves were visualized, and a precursor

shock, generated by the piston-like motion of the jet, was observed. As a measure of

damage due to single-bubble collapse, the pressure was computed along a nearby

solid surface. Wall pressures on the order GPa were measured. The pressure

decayed as 1/r, and it was determined that a bubble within a distance of 8Ro

generates as large a pressure as the incoming shock. For bubbles very close to the

wall initially, the region over which the pressure due to bubble collapse is larger

than that of the shock extends to 6Ro along the wall. For small initial stand-off

distances, the bubble migrates significantly towards the wall; however, the collapse

is gentler because of the presence of the wall, so that the wall pressure is in fact

slightly lower than expected by the 1/r relationship.
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Chapter 5

Single-bubble collapse in shockwave

lithotripsy

The results obtained in the previous chapter are now set into the context of shock-

wave lithotripsy (SWL).1 First, the effect of the finite width of the lithotripter

pulse is discussed. Then, shock-induced collapse and Rayleigh collapse in the con-

text of shockwave lithotripsy are considered. Finally, a mechanism of comminution

for medium-sized stones and fragments is presented.

5.1 Modeling of the lithotripter pulse

The focal region of a lithotripter is characterized by a cigar-shaped region where

the wavefront is nearly planar. For simplicity, the stone is assumed larger than

this focal zone, which is much larger than a pre-existing spherical bubble. The

lithotripter pulse is modelled as a compressive shock front of constant amplitude

followed by a long expansion tail that typically includes a negative (tensile) pres-

sure. The experimental waveform measured at the focus of an electro-hydraulic

lithotripter is shown in Figure 1.4; other types of lithotripters generate at least

qualitatively similar waveforms. The waveform can be represented by the following

1Results presented in this section have been submitted to the Journal of the Acoustical Society

of America. Some sections may be redundant to some of the results in Chapter 4.



166

analytical function (Church, 1989):

p(t) = 1 + 2pse
−αt cos

(
ωt +

π

3

)
, (5.1)

where α = 4.5 and ω = 3.665 in non-dimensional units; the parameters are chosen

to closely match the waveform in a Dornier HM3 lithotripter. The pulse amplitude,

ps, and characteristic time, T , are defined in Figure 5.1; in particular, T is equal

to the second zero of the function given by Equation 5.1 (i.e., the time when the

pressure becomes positive again after the first tensile region). The pulse width is

then given by σ = MsT , where Ms is the shock Mach number. In the present

simulation, the values of α and ω lead to a nominal value of σ = 6.75 mm. Typical

peak positive pressures at the focus range from 9−114 MPa and negative (tensile)

pressures as low as −10 MPa have been measured (Coleman & Saunders, 1989).

In the present work, the amplitude of the compressive front is approximately 35

MPa with a very short rise time, while the tensile component is −10 MPa. The

positive pressure lasts for approximately 1 µs, while the negative pressure lasts for

4 µs.

In practice (Zhong et al., 1993; Cleveland et al., 2000), kidney stones have a

finite impedance, approximately three to five times that of water. However, in the

present work, the kidney stone is assumed to have infinite impedance, so that all

waves are completely reflected, with no losses; thus, upon reflection of the pulse

off the stone, the pressure doubles. This can be understood by considering the

reflection of a planar shockwave in water off a solid surface, as illustrated in Figure

5.2. As noted in Thompson (1984), the change in velocity across the reflected

shock has the same magnitude as the change in velocity across the incident shock

and u1 = u3 = 0. Using this information and Equations A.17a and A.17b from

Appendix A,

[p]r

[
1

ρ

]

r

= [p]r

[
1

ρ

]

i

. (5.2)

Combining this equation with Equation A.22, the following expression can be
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Figure 5.1: Pressure waveform of a lithotripter pulse at the focus.

derived:

(p3 − p2)

(
γ+1
γ−1 + p3+P∞

p2+P∞

γ+1
γ−1

p3+P∞

p2+P∞

+ 1
− 1

)
= (p2 − p1)

(
γ+1
γ−1 + p2+P∞

p1+P∞

γ+1
γ−1

p2+P∞

p1+P∞

+ 1
− 1

)
. (5.3)

In the case of gases, P∞ = 0, so that the relationship between p3/p2 and p2/p1

is usually nonlinear, unless the shocks are very weak and the acoustic limit is

achieved. In the context of SWL, P∞ ≫ p2, p3 ≫ p1, so that

p3 = 2p2 − p1 ≈ 2p2. (5.4)

Thus, the pressure at the wall doubles upon reflection.

5.2 Shock-induced collapse in SWL

As described in Chapter 4, the potential for damage of shock-induced collapse is

tremendous. However, it has not yet been considered for SWL.
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Figure 5.2: Planar shock reflection off a solid surface. The dotted line denotes a

particle path.

5.2.1 General observations of shock-induced collapse

In order to illustrate the general flow features, shock-induced collapse for a baseline

case with ps/po = 353, Ho/Ro = 2.0, σ/Ro = 135 is considered. In physical

parameters, this corresponds to a 35 MPa shock impacting a 50 µm bubble initially

located 100 µm away from the solid surface. A qualitative description of the events

is presented in Figure 5.3. Slices across the computational domain through the

centerline show numerical Schlieren (top) and pressure contours (bottom). The

location of the interface is highlighted in black in the pressure plot and the dark

area on the left of each frame denotes the wall.

The results are very similar to those of Section 4.2.2. When the left-moving

shock hits the bubble, an expansion wave is reflected because of the high impedance

mismatch, while a weak shock is transmitted (frame 1). The shock then diffracts

off the bubble and intersects along the axis. Thereafter, the lithotripter pulse

reflects off the wall and effectively doubles the local pressure; the transmitted shock

focuses, but not exactly in the center of the bubble (frame 2). The bubble proceeds

to collapse non-spherically, while complex wave interactions take place within the

bubble (frame 3). The distal side flattens and starts to involute. At collapse,

the jet has penetrated the bubble and impacts the distal side; this generates a
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water-hammer shockwave, which propagates spherically outwards (frame 4). The

strength of the shock is higher in the direction of the jet. The bubble then takes

the shape of a vortex ring and convects towards the wall, while the water-hammer

shockwave reflects back onto the bubble (frame 5). As the bubble expands again,

the shock interacts with it and reflects back onto the wall as an expansion wave

(frame 6).

Figure 5.3: Pressure (top) and numerical Schlieren (bottom) contours for shock-

induced collapse in SWL (ps/po = 353, Ho/Ro = 2.0, σ/Ro = 135) at tcL/Ro =

5.12, 9.77, 11.9, 12.8, 14.0, 15.3.
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Bubble dynamics

To better understand the bubble dynamics, the history of the bubble volume,

stand-off distance, jet velocity and velocity of the distal side are plotted in Figure

5.4. After the passage of the shock (tcL/Ro ≈ 4), the bubble begins to collapse.

In the initial stages, the collapse is slow, as seen in the early migration of the

bubble towards the wall and increase in jet velocity. The external shock reaches

the distal bubble side at tcL/Ro ≈ 6, inducing the distal side to move. In the latter

stages, high interfacial velocities are achieved; the bubble collapses to a very small

size and accelerates towards the wall. The jet eventually impacts the distal side,

causing a large deceleration of the interface; this occurs slightly before the bubble

reaches its minimum volume.
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Figure 5.4: History of the bubble volume and displacement (left) and velocity of the

jet and of the distal side (right) for shock-induced collapse in SWL (ps/po = 353,

Ho/Ro = 2.0, σ/Ro = 135).

Upon the impact of the jet onto the distal side of the bubble, a water-hammer

pressure is generated. For the impact of a liquid jet onto a liquid surface, the
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water-hammer equation simplifies to

pwh =
ρLcL|vj − vd|

2
, (5.5)

where vj is the jet velocity (vj ≈ 1120 m/s) and vd is the velocity of the distal side

(vd ≈ 364 m/s). The local sound speed and density at the moment of impact are

1330 m/s and 1400 kg/m3, so that the computed water-hammer pressure is 1.5

GPa. In the simulations, the local pressure at the jet is 1.8 GPa, giving reasonable

agreement. This analysis illustrates that very high velocities and pressures occur

during the process. Comparisons with experimental findings are provided for the

velocity in Section 5.2.2.

Wall pressure

The wall pressure is an important quantity indicative of the damage potential of

bubble collapse. Figure 5.5 shows the history of the wall pressure for different

locations along the wall and pressure profiles along the wall. First, the lithotripter

pulse hits the wall at tcL/Ro ≈ 7. The pressure along the centerline (r/Ro = 0) is

slightly lower and delayed compared to other locations because, when the initial

pulse impacts the bubble, a portion of the wave is reflected. In other words, the

bubble shields the wall by an amount that depends on Ho/Ro. The shock then

reflects off the wall and impacts the bubble again. Because of the impedance

mismatch, the amplitude inverts, so that, upon the interaction with the resulting

expansion wave, the wall pressure decreases at tcL/Ro ≈ 9. The large pressure

rise then observed is caused by the water-hammer shock generated upon collapse;

hence, the pressure due to bubble collapse is thus much larger than that due to

the pulse. Later in the wall pressure history, negative pressures (tension) are

achieved due to the reflection of the water-hammer shock onto the bubble and the

subsequent inversion in the amplitude.

Similarly to Section 4.5.4, the wall pressure obeys Equations 4.39 and 4.40.

Equation 4.39 is the dashed curve in Figure 4.48, which matches the computations
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Figure 5.5: History of the wall pressure (left) and pressure profiles along the wall

(right) for shock-induced collapse in SWL (ps/po = 353, Ho/Ro = 2.0, σ/Ro =

135).

very closely. Using Equation 4.40, the radius of the area over which the wall

pressure is larger than that of the pulse is Lr/Ro ≈ 10. Thus the area over which

the pressure due to bubble collapse is larger than that of the lithotripter pulse is

100 times larger than the projected area of the bubble. Thus, although bubbles

undergoing shock-induced collapse are initially small (Ro ≈ 10 µm) and collapse

to an even smaller size, the area over which they act is much larger (Rarea ≈ 100

µm).

5.2.2 Damage potential of shock-induced collapse in SWL

As a measure of the damage potential of shock-induced collapse in SWL, the

maximum wall pressure generated by bubble collapse is considered in the following

parametric study. The dependence initial stand-off distance and pulse width is

studied. The dependence on the pulse amplitude is almost identical to the results
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in Section 4.5.5 and is therefore omitted.

Dependence on the initial stand-off distance

The distance at which bubbles are likely to cause damage is of great importance

for practical purposes. The dependence of the wall pressure along the centerline on

the stand-off distance for ps/po = 353 and σ/Ro = 135, 1350 is shown in Figure 5.6

to illustrate the effect of small and large isolated bubbles in SWL (holding σ fixed).

Because the bubble migrates towards the wall, the stand-off distance at collapse

is considered, since this is when the shockwave is emitted. The same number

of computational points are used across the bubble for each σ/Ro. Because the

extent of the potential damage scales with the initial bubble radius, the pressure

is averaged over the first ten cells in the case σ/Ro = 1350, so that the area over

which the pressure is recorded is the same in both cases.

As expected, bubbles close to the wall generate a higher pressure (up to 2.4

GPa), which decays as 1/r as remarked in the previous section. In addition, for the

range of Ho/Ro considered here, the wall pressure along r = 0 is much higher than

that of the incoming pulse. As noted in Chapter 4, bubbles with σ/Ro → 1350

that collapse within approximately 8 Ro generate a pressure higher than that of

the incoming pulse. The results show that the smaller bubble generates higher wall

pressures; however, the extent of the damage scales with the initial radius. This

phenomenon is due to the fact that the high pressure of the compressive part of the

pulse is exerted over a longer time for a bubble that is small compared to the pulse

width. As a generalization, the results indicate that the collapse of a bubble that

is large compared to the pulse width (e.g., cavitation bubble) is much more gentle

than that of a small bubble (e.g., gas nucleus). The dependence of the bubble

dynamics on the pulse width is investigated in the next section. Experiments have

measured wall pressures up to approximately 11 MPa for shock-induced collapse

(Shima et al., 1984).
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distance for two different bubble sizes (ps/po = 353).

Dependence on the pulse width

The main difference between the shock-induced collapse studied in the previous

chapter and that in SWL is the finite width of the pulse. As shown in Figure 1.4,

the pulse in SWL has a width, σ, so that the ratio, σ/Ro, is an important parame-

ter. Changing this quantity leads to two possible interpretations: a variable pulse

width (which is a property of the lithotripter) or a variable initial bubble radius

(which depends on the bubble population). The limit, σ/Ro → ∞, corresponds to

the previously studied shock-induced collapse, which consits of a stepwise change

in pressure. Table 5.1 lists the range of pulse widths and initial bubble radii

representative of SWL conditions for shock-induced collapse.

In order to understand the effect of the pulse width in SWL, Figure 5.7 shows

the collapse time and the bubble displacement, Figure 5.8 depicts the maximum in-

terfacial velocity (jet and distal side) and the water-hammer pressure for free-field

collapse with ps/po = 353, Figure 5.9 shows the bubble pressure and normal-
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Table 5.1: Representative values of the pulse width and initial bubble radius for

an electro-hydraulic lithotripter.

σ/Ro σ (for Ro = 10 µm) Ro (for σ = 6.75 mm)

67.5 0.675 mm 100 µm

135 1.35 mm 50 µm

337.5 3.70 mm 20 µm

675 6.75 mm 10 µm

1350 13.5 mm 5 µm
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ized radiated energy at collapse, and Figure 5.10 depicts the maximum circula-

tion and circulation after the transmission of the internal shock as a function of

the non-dimensional pulse width. The dashed lines represent the limiting case of

σ/Ro → ∞ (i.e., a stepwise increase in pressure, followed by no expansion). For

the parameters considered in the present study, the collapse time occurs before the

arrival of the negative tail of the pulse (at tcL/Ro ≈ 23). Thus, the dynamics of

collapse are only affected by the compressive portion of the pulse.
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Figure 5.8: Maximum velocity of the jet and of the distal side (left) and measured

and computed water-hammer pressure (right) as a function of the pulse width for

free-field shock-induced collapse in SWL (ps/po = 353).

The results show that the dynamics are sensitive to the pulse width. As the

pulse width is increased, the behavior of the bubble tends to that resulting from

the interaction with a shockwave that has infinite width (denoted by the dashed

line); the data for σ/Ro = 675 are already close to the asymptotic value.

The behavior of the wall pressure in shock-induced collapse near a solid surface

follows a similar trend, as seen in Figure 5.11, though the asymptote is achieved



177

0

0

00
0000000

0

0

00
0000000

1

1

1

1

2

2

2

2 44 88

.

.

.

.

.

.

σ/Roσ/Ro

p
bu

b,
m

a
x
/ρ

L
c2 L

E
r
a
d
/E

to
t

Figure 5.9: Bubble pressure and normalized radiated energy at collapse as a func-

tion of the pulse width for shock-induced collapse in SWL (ps/po = 353).

0

0

0

0
000000

1

1

2

3

5

.

.

.

σ/Ro

Γ
/R

o
c L

Figure 5.10: Circulation of the transmitted shock and maximum circulation as a

function of the pulse width for shock-induced collapse in SWL (ps/po = 353).



178

for larger values of σ/Ro. This phenomenon may be understood by the fact that

the pulse subjects the bubble to a high pressure over a shorter time when σ/Ro is

small, as shown schematically in Figure 5.12. An alternate view is to hold σ fixed,

so that the bubble radius is the variable, as discussed previously.
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Figure 5.11: Wall pressure along the centerline as a function of pulse width for

different initial stand-off distances in SWL with ps/po = 353.

In experiments of shock-induced collapse of a gas bubble near an aluminum

foil (Philipp et al., 1993), a pressure ratio of ps/po ≈ 650 is used. The pulse width

in this case is σ ≈ 10 mm and the range is σ/Ro = 11.4− 20.8, which corresponds

to large bubbles. A trend similar to the present results is observed for the collapse

time, which falls in the range τccL/Ro = 6.51 − 9.36, as a function of the pulse

width (or initial bubble radius). The collapse time decreases with increasing pulse

width, eventually asymptoting to the value represented by a stepwise increase in

pressure. Jet velocities of approximately 600-700 m/s are achieved in this range of

σ/Ro; the present simulations yield a jet velocity of 660 m/s for ps/po = 353 and

σ/Ro = 67.5. Although the parameters are different, similar orders of magnitude



179

-

00

000

000

0000

000

00000

12

2

4

4

4 6

8

8

.

.

.

.

.

σ/Ro

tcL/Ro

p
/ρ

L
c2 L

Figure 5.12: Waveform for increasing pulse widths.

and trends are achieved in the simulations. In free-field experiments with lower

pulse amplitude (Ohl & Ikink, 2003) (ps/po = 100 − 200), jet velocities up to 150

m/s are achieved for Ro = 50 µm, while jet velocities of 360–700 m/s are achieved

in the simulations. In these experiments however, the rise time is much slower

than in the simulations, and measured values constitute lower bounds limited by

the resolution of the laboratory equipment.

5.2.3 Rayleigh collapse in SWL

The damage potential of shock-induced collapse has been considered so far. The

second type of collapse that occurs in SWL is Rayleigh collapse, where a vapor

bubble collapses due to the pressure difference across the interface, ∆p ≈ patm−pv.

The present discussion focuses on how the wall pressures generated by Rayleigh

collapse compare to those generated by shock-induced collapse in SWL.

Experiments (Tomita & Shima, 1986) show that wall pressures up to 11 MPa

are achieved for Ho/Ro & 1. In these experiments, large bubbles (Ro = 3.5, 5.1
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mm) are generated using electrodes, and the radius of the hydrophone is 2.775 mm.

The pressure measurements constitute an average over the area of the hydrophone,

so that a higher local pressure is expected to be achieved over a smaller area.

Numerical simulations with the same parameters were carried out. However, wall

pressures four to five times smaller were obtained (∼ 2.5 − 3 MPa) at similar

stand-off distances, for the reasons explained in Section 4.5.4.

Nevertheless, interesting information can be obtained. Taking as a specific case

the results for Ho/Ro = 1.05, the wall pressure averaged over an area of radius

2.775/5.1 is 2.2 MPa. However, the maximum local pressure measured along the

wall in the simulations (which occurs at r = 0) is 2.6 MPa. This seems to indicate

that the local wall pressure achieved in an isolated Rayleigh collapse may not be

larger than the pressure of the incoming lithotripter pulse at all.

Experiments of shock-induced collapse of air bubbles were carried out Tomita

et al. (1983), using a shock amplitude of 5 MPa. Wall pressures of approximately

10 MPa were obtained with similar hydrophones, which may have led one to believe

that the pressures achieved in shock-induced collapse are similar to those resulting

from Rayleigh collapse. However, the shock amplitudes in SWL are five to ten

times larger and, according to Section 4.5.5, the resulting wall pressure due to

bubble collapse increases linearly.

Thus, wall pressures higher than those of the incoming pulse are generated in

shock-induced collapse. Based on current experiments and simulations, it is not

clear that Rayleigh collapse leads to wall pressures higher than 35 MPa (i.e., the

pulse amplitude), though ample evidence exists that the pitting of solid surfaces

may occur due to the collapse of cavitation bubbles Philipp & Lauterborn (1998).

On the other hand, when subjected to a 35 MPa shock, a wall pressure on the

order of 1 GPa may be generated locally upon collapse. Therefore shock-induced

collapse has a greater potential for damage in SWL than Rayleigh collapse, even

though the bubbles are typically smaller than in Rayleigh collapse.

Though shock-induced collapse therefore appears to bear a prominent role in

the stone comminution mechanism, the high pressures generated during such a
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process may lead to negative effects in SWL. For instance, if the bubbles collapse

in unwanted ares (e.g., near tissue), significant trauma may occur upon their shock-

induced collapse (Evan et al., 2002).

5.3 Stone comminution

5.3.1 Spallation and cavitation

One of the important stone comminution mechanisms is the wave propagation

within the stone, such as spallation (Gracewski et al., 1993; Xi & Zhong, 2001)

or constructive interference of shear waves (Cleveland & Sapozhnikov, 2005). Be-

cause kidney stones are principally made of calcium (Zhong et al., 1993), they are

brittle, so that they are more likely to fail in tension. In spallation, lithotripter

pulses propagate through the stone and, upon reflection from the distal side of the

stone, invert their amplitude. For stones greater than a critical size, this large neg-

ative pressure superposes over the tensile part of the incoming pulse, thus creating

a magnified tensile region near their posterior end. In addition, the shockwave

propagating in the water generates shear waves, which may interfere construc-

tively within the stone to generate high tension. This latter phenomenon greatly

depends on the geometry of the stone.

Another important stone comminution mechanism is cavitation erosion. After

the passage of the tensile part of the pulse, bubbles gather along the surface of

the stone; there, they grow and collapse, thereby generating shockwaves (Xi &

Zhong, 2001; Pishchalnikov et al., 2003). When a single bubble collapses near a

solid surface, a re-entrant jet directed towards the surface forms and penetrates the

bubble (Plesset & Chapman, 1971). The direct impact of this jet onto the surface

can cause significant damage (Tomita & Shima, 1986; Philipp & Lauterborn, 1998)

and has been regarded as the primary cause of cavitation erosion in SWL (Crum,

1988).

The individual effect of each of the two mechanisms described above is difficult

to assess. (Zhu et al., 2002) conducted experiments seeking to isolate each effect.
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When cavitation is suppressed, it is shown that the stress waves in the stone are

strong enough to cause spallation, due to the superposition of the tensile waves

reflected off the end of the stone with the negative part of the incoming pulse.

However, this occurs only if the stone is larger than half the wavelength of the

incoming pulse; smaller stones do not fail in this fashion. On the other hand,

if only cavitation is allowed, the stones do not spall, but pitting is observed on

the anterior surface. When both cavitation and shockwaves are allowed, both

spallation and pitting occur, and the process is far more efficient.

5.3.2 A comminution mechanism for medium-sized stones

The present results show that a large localized pressure is generated along the

stone surface due to bubble collapse, especially in the case of shock-induced col-

lapse. This high pressure explains the pitting along the proximal surface of the

stone (Philipp & Lauterborn, 1998). In addition, the pressure wave generated by

bubble collapse propagates through the stone and, after reflecting upon the stone

end, inverts its amplitude. Thus, a phenomenon similar to spallation may occur.

Furthermore, the propagation of this pressure wave along the edge of the stone may

generate shear waves. However, because the pressure decays as 1/r, such effects

would be more important for smaller stones. This phenomenon may explain why

the combined effect of shock propagation within the stone and cavitation leads to

the most efficient stone comminution rate (Zhu et al., 2002).

To verify this hypothesis, the hydrodynamic simulations discussed throughout

this thesis were prescribed as an input for the propagation of elastic waves within

the stone, using the code of Cleveland & Sapozhnikov (2005). In this model,

the kidney stone is assumed to behave as a linear, isotropic, elastic solid. Thus,

Newton’s second law,
∂vi

∂t
=

1

ρo

∂τij

∂xj
, (5.6)

and Hooke’s law,
∂τij

∂t
= λδij

∂vk

∂xk
+ µ

(
∂vi

∂xj
+

∂vj

∂xi

)
, (5.7)
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are solved using a time-domain finite difference method (FDTD). Here, vi is the

velocity in the ith direction, τij is the stress tensor, δij is the Kronecker delta

function, ρo is the density, and λ and µ are the Lamé coefficients.

For the elastic waves simulations, the computational domain consists of a kid-

ney stone immersed in water. Values of ρo, λ and µ representative of water and

kidney stones are used. The pressure along the stone surface is specified from the

hydrodynamic simulations as a time-varying boundary condition for the elastic

waves simulations. The wave propagation within the stone does not affect the wall

pressure; in other words, there is only a one-way coupling between the hydrody-

namics and the wave propagation. The full coupling between fluid dynamics and

solid mechanics presents many difficulties and constitutes a field of studies in itself

(Wardlaw & Luton, 2000; Dowell & Hall, 2001).

Contours of the maximum tensile stress over the course of the simulation are

plotted in Figure 5.13 and 5.14 for large (Rstone = 2 mm) and small (Rstone = 1

mm) spherical stones. The units for the stresses are MPa, and the white line

denotes the stone outline. In these figures, the bubble collapses below the stone

and is initially located at Ho/Ro = 1.5, with Ro = 100 µm.

High tensile stresses are observed on the proximal side. The shock generated

upon bubble collapse reflects off the stone back onto the bubble. As it subsequently

reflects off the bubble, the amplitude of the shock inverts, thereby generating the

large tension in the water on the proximal side of the stone. As a result, a large

tensile wave is transmitted into the stone and leads to a tension of approximately

100 MPa. The tensile stress contours on the proximal side are similar for both

stone sizes, because they result from the same bubble collapse.

The shock generated upon collapse propagates through the stone. As it reflects

off the distal side, the shock inverts its amplitude and converges along the vertical

axis, leading to a high tension (approximately 100 MPa) on the distal side of the

stone. As expected, this effect is more severe for the smaller stone, because the

amplitude of the shock strength decays as 1/r within the stone as well.

Thus, bubble collapse leads to damage on the proximal side of the stone due to
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Figure 5.13: Maximum tensile stress (in MPa) for a 2 mm radius stone over the

course of the elastic waves simulation.

the high pressure and subsequent tension, as reported in the literature. In addition,

the propagation of the pressure wave generated upon collapse leads to spallation-

like damage towards the distal end of the stone. Kidney stones typically have

tensile strength on the order of 1 MPa (Cohen & Whitfield, 1993; Lokhandwalla

& Sturtevant, 2000), so that both effects are expected to be important.

Based on this analysis, a more comprehensive picture of stone comminution is

painted:� Spallation/shear waves due to the incoming pulse breaks the stone into

smaller bits,� Spallation due to single-bubble collapse further fragments the resulting pieces,

and
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Figure 5.14: Maximum tensile stress for a 1 mm-radius stone over the course of

the elastic waves simulation.� Cavitation erosion grinds the remaining fragments to an even smaller size,

while eroding the surface of larger pieces.

5.4 Summary of the SWL results

In the present chapter, bubble collapse in the context of shockwave lithotripsy is

studied. The main difference with the previously studied shock-induced collapse

is that the lithotripter pulse has a finite width. As the width is increased, the

behavior tends to that of shock-induced collapse considered previously.

Shock-induced collapse is established as an important comminution mechanism

in SWL. It is shown that the area on the wall over which the pressure due to bubble

collapse is larger than that of the lithotripter pulse is 100 times larger than the
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projected area of the bubble.

Furthermore, it is shown that bubble collapse in the vicinity of kidney stones

may lead to two types of damage. First, the high pressures and tensions generated

along the surface may cause pitting. In addition, the reflection and inversion of

the amplitude of the pressure wave off the distal side of the stone leads to a high

tension near the distal end of the stone. This latter mechanism is likely to be

important only for small- to medium-sized stones.
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Chapter 6

Concluding remarks

This chapter summarizes the work conducted in the present research and provides

an outlook for possible future directions.

6.1 Summary and conclusions

In the present work, a new numerical framework was developed to simulate in an

accurate and robust fashion compressible multicomponent flows with shocks. This

method was then used to conduct a fundamental study of non-spherical bubble dy-

namics and investigate the potential damage inflicted by bubble collapse in general.

The results were then cast in the context of shockwave lithotripsy (SWL), in an

attempt to better understand the role of bubble collapse in the stone comminution

mechanism.

The numerical method is based on the quasi-conservative shock- and interface-

capturing schemes of Abgrall (1996). The Euler equations, closed by a stiffened

equation of state and augmented by appropriate advection equations, are solved.

In order to achieve high-order accuracy and avoid interface oscillations, a finite

volume WENO formulation was implemented by reconstructing average primitive

variables, and the HLLC approximate Riemann solver was extended to the advec-

tion equations. The resulting numerical method is oscillation-free for the advection

of a material interface and for isolated shock-wave problems; no oscillations are

observed in more complex problems, such as multicomponent Riemann problems
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and shock-bubble interactions. Furthermore, mass, momentum and energy are

conserved to round-off levels. The numerical method was verified using an exten-

sive series of test problems and thereafter extended to cylindrical coordinates and

to a stretched grid in order to compute axisymmetric bubble collapse.

Numerical simulations of Rayleigh collapse and shock-induced collapse, the

two main types of collapse in SWL, were carried out either in a free field or near a

solid wall. The flow visualizations showed that, during the non-spherical collapse,

a re-entrant jet formed towards the wall and/or in the direction of propagation

of the shock. The jet eventually impacts the distal side, thus generating a strong

water-hammer pressure wave. At this instant, the minimum volume is achieved.

For the range of parameters considered in the present study, the water-hammer

shock is always generated within the liquid and then propagates radially outwards.

The strength of the shock is highest in the direction of propagation of the jet.

This phenomenon can be considered a combination of the two previously proposed

damage mechanisms: the emission of the gas compression shock (Rayleigh, 1917)

and the direct impact of the jet onto the solid surface (Kornfeld & Suvorov, 1944).

The dynamics of non-spherical bubble collapse were characterized by consider-

ing a number of properties of the collapse. The initial motion of the bubble showed

good agreement with theoretical predictions based on the corresponding Riemann

problem. The collapse time indicated good agreement with theory and experi-

ments. The transient effect of the finite speed of propagation in shock-induced

collapse near a wall was highlighted, as the effective pressure doubling driving the

collapse is achieved almost immediately for bubbles close to the wall, but much

later for bubbles farther away. The bubble is spherical during most of the collapse

and becomes non-spherical only late in the latter stages. In addition, it was shown

that a bubble migrates towards the wall during collapse, in good agreement with

experiments. Jet properties were measured; velocities up to 100 m/s in Rayleigh

collapse near a wall and up to 1000 m/s in shock-induced collapse were achieved.

The jet size was measured to show that viscous and surface tension effects are

mostly negligible in the present study.
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The re-entrant jet formation mechanism was studied in detail for shock-induced

collapse. It was determined that a number of phenomena played a role, such as

the growth of non-spherical perturbations, baroclinic vorticity and the transient

effects of shock propagation. In Rayleigh collapse near a wall, it is shown that

the contraction of the distal side is reduced because expansion waves generated

initially decrease the local pressure driving the collapse.

The sequence of shockwave emission was studied. A precursor shockwave is

generated by the piston-like motion of the jet, which leads to wave breaking within

the bubble. Further shockwaves are emitted due to the compression of the gas

within the bubble (gas compression shock) and the impact of the jet onto the distal

side (water-hammer shock). The water-hammer pressure was tabulated based on

theory and measurements in the simulations; local pressures on the order of 1

GPa are achieved. The jet always impacts the distal side first, so that the water-

hammer shock is generated in the liquid. The jet may impact the wall; however,

for the range of stand-off distances considered here, the jet velocity at that instant

is small.

Prompted by experimental observations, the energy radiated during collapse

was studied. It was determined that the acoustical energy radiated during collapse

decreases as the collapse becomes more non-spherical, thus leading to longer and

larger rebounds in non-spherical cases because of the fact that more energy is

retained.

As a measure of damage due to single-bubble collapse, the pressure was com-

puted along a nearby solid surface. For a 35 MPa shock, jet velocities up to several

hundreds of meters per second and local wall pressures on the order of 1 GPa were

measured locally. The pressure decayed as 1/r. It was determined that a bubble

collapsing within a distance of 8 Ro from the wall generates as large a pressure

as the incoming shock. In addition, the extent of the region where the pressure

is larger than that of the incoming shock can range up to 6 Ro along the wall

for bubbles initially close to the wall. Because bubbles migrated towards the wall

during collapse, a higher wall pressure was measured; however, the presence of
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the wall led to a gentler collapse, so that the resulting wall pressure was slightly

lower than than expected from the 1/r relationship. It was further shown that the

bubble locally shields the wall from the incoming shock.

The results from Rayleigh collapse and shock-induced collapse were cast in

the context of SWL. The main characteristic of the lithotripter pulse is its finite

width, so that the collapse depends on the size of the bubble relative to that of

the pulse: a bubble large compared to the pulse width leads to a gentler collapse

than a smaller one.

Shock-induced collapse is established as an important comminution mechanism

in SWL. It is shown that the area on the wall over which the pressure due to the

bubble collapse is larger than that of the lithotripter pulse is 100 times larger than

the projected area of the bubble. However, if such a collapse occurs in unwanted

areas, it has the potential to lead to trauma.

By using the present results as input for elastic waves simulations in kidney

stones, it was shown that the pressure waves generated during bubble collapse

may lead to damage within the stone, in addition to erosion along its surface.

Depending on the geometry, the shock generated by the collapse may reflect as an

expansion wave off the end of the stone, thus creating a high tension within the

stone. Spherical stones of small to medium sizes are more likely to be affected by

this phenomenon, which would explain why the combination of shock propagation

within the stone and cavitation is the most efficient means to break kidney stones.

6.2 Suggestions for future work

The present work opens new avenues in the study of bubble collapse via numerical

simulations. On one hand, extensions of the model and numerical method would

allow the implementation of more accurate physical conditions. On the other hand,

the present methodology could be used to solve analogous problems.
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6.2.1 Physical model

The governing equations can be improved by including additional physical effects,

such as viscosity and heat transfer, surface tension and phase change, and turbu-

lence modeling. These features would allow more accurate simulations in certain

regions.

The resulting diffusive terms (mass transfer, viscous effect and heat transfer)

may be treated in a flux formulation, so that the numerical method does not need

to be modified significantly. These terms introduce additional time scales and

non-dimensional numbers (Schmidt, Reynolds and Prandtl numbers), so that the

CFL condition must be modified to take these into account.

The implementation of surface tension and phase change involves modifications

to the model (source terms in the equations of motion) and to the numerical

method. The WENO reconstruction and the Riemann solver would have to be

extended accordingly. An additional non-dimensional number (Weber number)

would account for surface tension, while further modeling in the form of mass and

energy conservation equations at the interface would be required for phase change.

The flows resulting from interactions between shockwaves and interfaces are

likely to be turbulent. Thus, turbulence modeling is required to account for the

energy dissipation at the small scales. However, subgrid-scale modeling in the

presence of shockwaves and interfaces is extremely challenging.

6.2.2 Numerical method

Although the problems considered in the present work are axisymmetric, in general

bubble collapse in SWL is three-dimensional. The two-dimensional Cartesian code

can be extended to three dimensions trivially. However, the computational cost

would be significantly higher, so that the code would need to be parallelized, e.g.,

using the Message Passing Interface (MPI). This would require the domain to be

decomposed into sub-domains; each processor would then solve the problem on a

given sub-domain, given appropriate boundary conditions.
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With regards to the implementation of turbulence modeling for the present

problems, it is far from clear how this can be done in a fashion consistent with the

current shock-capturing framework, because the numerical dissipation introduced

to stabilize the solution near discontinuities may overwhelm the small scales of

turbulence. A hybrid methodology where dissipation is introduced near shocks

and interfaces may constitute a starting point, though its stability may be an

issue.

6.2.3 Extension to related problems

Using the present framework, a number of related bubble collapse problems may

be solved for general engineering applications or shockwave lithotripsy. Though

a more extensive investigation of single-bubble collapse in SWL problems could

be carried out (e.g., multiple bubbles, different wall impedances), the following

methodology could be applied to underwater explosions, for which the relevant

problem configurations are similar.

Problems relevant to the dynamics of bubble clouds and shock propagation in

bubbly mixtures include Rayleigh collapse and shock-induced collapse of multiples

bubbles in a row. In these fundamental problems, the distance between the bubbles

and the initial radius are expected to be important governing parameters. An

additional problem of interest is the interaction between a shockwave and a bubble

at different phases in its cycle (i.e., out of equilibrium), where the optimal phase for

maximum potential damage could be determined. Bubble collapse near different

fluid media can be simulated. In addition, traveling cavitation can be considered,

in which a bubble in a stagnation point flow travels towards the wall. These

problems can be simulated by using the present code and simply changing the

initial conditions.

Extending the code to three dimensions would allow the configuration of the

problem to be changed. For instance, the direction of propagation of the shockwave

could be changed, and multiple bubbles in a wide range of configurations could be

considered, while more complex geometries could be implemented. More general
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traveling cavitation could be considered.

When considering bubble collapse near solid surface, the surface is assumed

to be perfectly reflecting. In reality, there are coupled interactions between the

solid body and the fluid. This coupling may be taken into account on a simple

level by implementing an Immersed Boundary Method and prescribing appropriate

conditions for the solid. A more refined solid mechanics method can be coupled

to the present scheme to solve the full problem, and fracture mechanics may be

implemented. However, adequate and efficient communication between the two

simulations is challenging. With such models, bubble collapse near different types

of solid media can be simulated, which are situations that occur often in bio-

engineering applications.

The present numerical method is not restricted to solving problems involving

bubbles. Indeed, general compressible flows with interfaces may be computed.

This includes the interaction of a droplet with high-speed gas flows or shockwaves,

explosions near the ocean surface, the impact of liquid jets onto solid structures,

breaking ocean waves, shock propagation in non-uniform media, or the impact of

tidal waves on structures.
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Appendix A

The stiffened equation of state

In this appendix, additional relationships are derived for the stiffened equation of

state. Certain thermodynamic quantities are required for the numerical scheme,

and shock relations are necessary to set up appropriate initial conditions.

A.1 Definitions

A.1.1 Isentropic flow

The stiffened equation of state (Harlow & Amsden, 1971) is given by

1

γ − 1
p +

γP∞

γ − 1
= E − ρ

u2

2
. (A.1)

For perfect gases, γ is the ratio of specific heats and P∞ = 0; for water, Section

A.2.1 presents derivations for γ and P∞. Starting with the Gibbs equation,

de = Tds − pdv = Tds +
p

ρ2
dρ, (A.2)

where, s is the entropy, T is the temperature and v is the specific volume, the

internal energy e = e(ρ, p) can be expressed:

de =
∂e

∂p

∣∣∣
ρ
dp +

∂e

∂ρ

∣∣∣
p
dρ =

1

γ − 1

dp

ρ
− p + γP∞

γ − 1

dρ

ρ2
. (A.3)
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For isentropic conditions, ds = 0, so that

∂e

∂ρ

∣∣∣
s

=
p

ρ2
. (A.4)

In a region where γ and P∞ are constant (i.e., polytropic gas, where γ 6= γ(T )),

Equation A.3 can be reorganized using Equation A.4, so that, along an isentrope,

d(p + P∞)

p + P∞
= γ

dρ

ρ
⇒ p + P∞

P∞
=

(
ρ

ρo

)γ

. (A.5)

The latter equation is in a form similar to the Tait equation of state for water,

where γ = 7.15 and P∞ = 3000 atm (Thompson, 1984).

A.1.2 Thermodynamic quantities

Since p = p(e, ρ),

dp =
∂p

∂e

∣∣∣
ρ
de +

∂p

∂ρ

∣∣∣
e
dρ. (A.6)

Using Equation A.4, the sound speed squared can be expressed

c2 =
∂p

∂ρ

∣∣∣
s

=
p

ρ2

∂p

∂e

∣∣∣
ρ

+
∂p

∂ρ

∣∣∣
e
. (A.7)

For the stiffened equation of state with constant γ and P∞,

∂p

∂e

∣∣∣
ρ

= (γ − 1)ρ,
∂p

∂ρ

∣∣∣
e

= (γ − 1)e. (A.8)

Therefore,

c2 = γ
p + P∞

ρ
. (A.9)

The enthalpy, h = (E + p)/ρ, using 2.6 and A.9, is given by:

h =
c2

γ − 1
+

u2

2
. (A.10)
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From Equation A.5, the specific volume can be written as:

v =
α1/γ

(p + P∞)1/γ
, (A.11)

where α is some constant. Therefore,

∂v

∂p

∣∣∣∣∣
s

=
−α

1

γ

γ
(p + P∞)−

γ+1

γ

∂2v

∂p2

∣∣∣∣∣
s

=
α

1

γ

γ

(
1

γ
+ 1

)
1

(p + P∞)
2γ−1

γ

=
γ + 1

γ2

(p + P∞)−2

ρ
.

(A.12)

Using these results and Equation A.9, the fundamental gasdynamic derivative is

given by:

Γ =
ρ3c4

2

∂2v

∂p2

∣∣∣∣∣
s

=
ρ3c4

2

γ + 1

γ2

1

ρ(p + P∞)2
=

ρ3c4

2

γ + 1

γ2

1

ρ(ρc2/γ)2
=

γ + 1

2
.

(A.13)

A.1.3 Riemann invariants

From the primitive form of the Euler equations 2.1 and the definition of the speed

of sound, the following characteristic equations are obtained:

du ± c

ρ
dρ = 0, along

dx

dt
= u ± c. (A.14)

Using the definition of the speed of sound A.9 and the isentropic relation A.5,

∫
c

ρ
dρ =

√
γ

p + P∞

ργ

∫
ρ

γ−3

2 dρ =

√
γ

p + P∞

ργ−1ρ

1

γ − 1
ρ

γ−1

2 =
2

γ − 1
c. (A.15)

Thus, Equation A.14 becomes:

u ± 2

γ − 1
c = const along

dx

dt
= u ± c. (A.16)
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A.2 Rankine-Hugoniot relations

A shock traveling at speed, s, with constant γ and P∞, is considered, in the frame

of reference of the “unshocked” fluid. The goal is to express all the properties of

the “shocked” fluid in terms of the properties of the “unshocked” fluid and the

pressure jump across the shock.

-

p, ρ, u

s

po, ρo, uo

=⇒ -

p, ρ, u − uo

s − uo

po, ρo, uo = 0

Figure A.1: Schematic of the reference frames for the shock.

The shock relations can be written for the Euler equations using a traveling

wave analysis, where the brackets represent a jump in properties:

−(s − uo) [ρ] + [ρu] = 0, (A.17a)

−(s − uo) [ρu] +
[
ρu2 + p

]
= 0, (A.17b)

−(s − uo)

[
ρe + ρ

u2

2

]
+

[
u

(
ρe + ρ

u2

2
+ p

)]
= 0, (A.17c)

Equation A.17a can be rewritten

ρ(s − u) = ρo(s − uo), (A.18a)

ρo

ρ
= 1 − u − uo

s − uo
, (A.18b)

Rearranging A.17b:

p − po = ρo(s − uo)(u − uo), (A.19a)

(s − uo)
2 =

p − po

ρo

(
1 − ρo

ρ

) , (A.19b)

where Equation A.18a was used for A.19a and Equation A.18b was used for Equa-
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tion A.19b. Equation A.17c can be rearranged:

(
e +

u2

2

)
ρ(s − u) =

(
eo +

u2
o

2

)
ρo(s − uo) − uopo (A.20a)

e − eo =
(u − uo)

2

2
−
(

ρo

ρ
− 1

)
po

ρo
, (A.20b)

where Equations A.18a and A.19a) were used for Equation A.20b. Thus, using

Equations A.18b and A.19b, Equation A.20b can be written as:

e − eo =
p + po

2

(
1

ρo
− 1

ρ

)
. (A.21)

Then, using Equation A.21 and the equation of state 2.6:

ρ

ρo
=

γ+1
γ−1

p+P∞

po+P∞

+ 1

γ+1
γ−1 + p+P∞

po+P∞

. (A.22)

Equation A.19b can be used with the definition of the speed of sound A.9 and

Equation A.22 to find the shock speed:

s = uo + co

√
γ + 1

2γ

(
p

po
− 1

)
po

po + P∞
+ 1. (A.23)

Equation A.19a can be used with the definition of the speed of sound A.9 and

Equation A.23 to find the velocity:

u = uo +
co

γ

(
p
po

− 1
)

po

po+P∞√
γ+1
2γ

(
p
po

− 1
)

po

po+P∞

+ 1

. (A.24)

It follows from Equation A.23 that the shock Mach number is given by:

Ms =
s − uo

co
=

√
γ + 1

2γ

(
p

po
− 1

)
po

po + P∞
+ 1, (A.25)
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and the shock strength (nondimensional pressure difference) by:

Π =
p − po

ρc2
o

=
1

γ

(
p

po
− 1

)
po

po + P∞
. (A.26)

The pressure jump across the shock can be re-written in terms of the Mach number:

p

po
= 1 +

2γ

γ + 1
(M2 − 1)

(
1 +

P∞

po

)
. (A.27)

A.2.1 Determination of γ and P∞

The Hugoniot data for shock speed vs. particle speed in water is almost linear,

as shown in Figure A.2 (Cocchi et al., 1996). Thus, as an approximation, us
∼=

co+αup, where co = 1647 m/s, α = 1.921 (slope of the dotted line), and us = s−uo,

up = u − uo. From the Rankine-Hugoniot relations A.18b, A.19a, and A.22:

us =

√

c2
o +

(
γ + 1

4
up

)2

+
γ + 1

4
up. (A.28)

Figure A.2: Shock speed vs. particle speed in water. Reprinted with permission

from Cocchi et al. (1996).
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Equation A.28 can then be rearranged to express γ:

γ = 2α

(
1 +

1

Ms

)
− 1. (A.29)

Thus, given a shock Mach number (or us) and the slope, α, from the experimental

data, γ can be determined. Then, P∞ is obtained by rearranging the equation of

state (2.6):

P∞ =
ρoc

2
o

γ
− po, (A.30)

where po is taken to be the ambient pressure (atmospheric). Table A.2.1 lists

values of γ and P∞ that are used in the literature, along with the corresponding

shock Mach number. For the present work, because the pressure ratios are such

that the shock Mach number is close to unity, the values of γ and P∞ are set as

the limiting values as Ms → 1. For the Tait equation, the corresponding shock

Mach number would be less than unity, making the present analysis inconsistent.

Table A.1: Values of γ, P∞ used in the literature, with the corresponding shock

Mach number.

Reference Ms γ P∞

Cocchi et al. (1996) 1.445 5.50 4.92 × 108 Pa

Saurel & Abgrall (1999b) 2.466 4.40 6.15 × 108 Pa

Tait Eq. 0.892 7.15 3.94 × 108 Pa

Present work 1.005 − 1.050 6.68 4.05 × 108 Pa

A.3 Expansion waves

The isentropic relations derived from (A.5) can be used in an expansion fan. For

example, given the pressure distribution,

ρ

ρo
=

(
p + P∞

po + P∞

)1/γ

,
c

co
=

(
p + P∞

po + P∞

) γ−1

2γ

. (A.31)
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To determine the velocity, the fact that expansion waves are simple waves is

used. Figure A.3 shows an xt-diagram for this case.

-

6

x

t

L

1

2 2′

3

R

Figure A.3: Space-time diagram for expansion waves.

The points 2 and 2′ are equivalent. First, the left-moving expansion wave is

considered. The C+ characteristics emanating from L have uniform conditions.

Therefore, in the entire left-hand plane,

2

γ − 1
c + u =

2

γ − 1
cL + uL ⇒ u2 = uL +

2

γ − 1

(
1 − c2

cL

)
cL. (A.32)

Along each of the fan (C− characteristics):

u − 2

γ − 1
c = const, along

dx

dt
= u − c. (A.33)

In view of equation (A.32), this can be rewritten as:

u = const, along each
dx

dt
=

γ + 1

2
u − γ − 1

2
uL − cL. (A.34)

The value of u will be different on each C−, but the family of negative character-

istics will be a family of straight lines, so that

x

t
=

γ + 1

2
u1 −

γ − 1

2
uL − cL. (A.35)

The same holds for the right-moving expansion wave:

u2 = uR − 2

γ − 1

(
1 − c2

cR

)
cR,

x

t
=

γ + 1

2
u3 −

γ − 1

2
uR + cR. (A.36)
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Appendix B

WENO reconstruction on non-uniform grids

In the present section, the polynomials, ideal weights and smoothness indicators

for fifth-order accurate WENO on a non-uniform grid are derived.

B.1 WENO polynomials

For WENO5 (k = 3), third-order accurate polynomials constitute the building

blocks. For a non-uniform grid, Equation 3.18 can be modified to the following

form (Shu, 1997):

p(r)(x) =
k∑

m=0

m−1∑

j=0

v̄i−r+j∆xi−r+j

∑k
l=0
l 6=m

∏k
q=0

q 6=m,l

(
x − xi−r+q−1/2

)

∏k
l=0
l 6=m

(
xi−r+m−1/2 − xi−r+l−1/2

) , (B.1)

where r denotes the left-most cell. Given the polynomials, the smoothness indica-

tors are given by:

βr =

k−1∑

l=1

∫ xi+1/2

xi−1/2

(
xi+1/2 − xi−1/2

)2l−1

(
∂lp(r)(ξ)

∂ξl

)2

dξ. (B.2)

The polynomials are combined to achieve fifth-order accuracy using ideal weights

as follows:

pi+1/2 = d0p
(0)
i+1/2 + d1p

(1)
i+1/2 + d2p

(2)
i+1/2, (B.3)
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where the ideal weights have the following properties: dr ≥ 0,
∑

r dr = 1. A

Mathematica worksheet was used to compute the polynomials, ideal weights, and

smoothness indicators.

B.2 Polynomial values at cell edges

x = xi+1/2

r = 0 :

p
(0)
i+1/2 = v̄i −

(
xi+3/2 − xi+1/2

) (
xi+1/2 − xi−1/2

)
(
xi+5/2 − xi−1/2

) (
xi+5/2 − xi+1/2

) (v̄i+2 − v̄i+1)

+

(
xi+1/2 − xi−1/2

) [(
xi+3/2 − xi−1/2

)
+
(
xi+5/2 − xi+1/2

)]
(
xi+3/2 − xi−1/2

) (
xi+5/2 − xi−1/2

) (v̄i+1 − v̄i) .

(B.4)

On a uniform grid, this simplifies to: p
(0)
i+1/2 =

(
−1

6

)
v̄i+2 + 5

6 v̄i+1 + 2
6 v̄i.

r = 1 :

p
(1)
i+1/2 = v̄i +

(
xi+1/2 − xi−1/2

) (
xi+1/2 − xi−3/2

)
(
xi+3/2 − xi−3/2

) (
xi+3/2 − xi−1/2

) (v̄i+1 − v̄i)

+

(
xi+1/2 − xi−1/2

) (
xi+3/2 − xi+1/2

)
(
xi+1/2 − xi−3/2

) (
xi+3/2 − xi−3/2

) (v̄i − v̄i−1) .

(B.5)

On a uniform grid, this simplifies to: p
(1)
i+1/2 = 2

6 v̄i+1 + 5
6 v̄i +

(
−1

6

)
v̄i−1.

r = 2 :

p
(2)
i+1/2 = v̄i +

(
xi+1/2 − xi−1/2

xi+1/2 − xi−5/2
+

xi+1/2 − xi−1/2

xi+1/2 − xi−3/2

)
(v̄i − v̄i−1)

−
(
xi+1/2 − xi−1/2

) (
xi+1/2 − xi−3/2

)
(
xi−1/2 − xi−5/2

) (
xi+1/2 − xi−5/2

) (v̄i−1 − v̄i−2) .

(B.6)

On a uniform grid, this simplifies to: p
(2)
i+1/2 = 11

6 v̄i +
(
−7

6

)
v̄i−1 + 2

6 v̄i−2.



205

x = xi−1/2

r = 0 :

p
(0)
i−1/2 = v̄i +

(
xi+1/2 − xi−1/2

) (
xi+3/2 − xi−1/2

)
(
xi+5/2 − xi−1/2

) (
xi+5/2 − xi+1/2

) (v̄i+2 − v̄i+1)

−
(

xi+1/2 − xi−1/2

xi+3/2 − xi−1/2
+

xi+1/2 − xi−1/2

xi+5/2 − xi−1/2

)
(v̄i+1 − v̄i) .

(B.7)

On a uniform grid, this simplifies to: p
(0)
i−1/2 = 2

6 v̄i+2 +
(
−7

6

)
v̄i+1 + 11

6 v̄i.

r = 1 :

p
(1)
i−1/2 = v̄i −

(
xi+1/2 − xi−1/2

) (
xi−1/2 − xi−3/2

)
(
xi+3/2 − xi−3/2

) (
xi+3/2 − xi−1/2

) (v̄i+1 − v̄i)

−
(
xi+1/2 − xi−1/2

) (
xi+3/2 − xi−1/2

)
(
xi+1/2 − xi−3/2

) (
xi+3/2 − xi−3/2

) (v̄i − v̄i−1) .

(B.8)

On a uniform grid, this simplifies to: p
(1)
i−1/2 =

(
−1

6

)
v̄i+1 + 5

6 v̄i + 2
6 v̄i−1.

r = 2 :

p
(2)
i−1/2 = v̄i −

(
xi+1/2 − xi−1/2

) [(
xi+1/2 − xi−3/2

)
+
(
xi−1/2 − xi−5/2

)]
(
xi+1/2 − xi−5/2

) (
xi+1/2 − xi−3/2

) (v̄i − v̄i−1)

−
(
xi+1/2 − xi−1/2

) (
xi−1/2 − xi−3/2

)
(
xi−1/2 − xi−5/2

) (
xi+1/2 − xi−5/2

) (v̄i−1 − v̄i−2) .

(B.9)

On a uniform grid, this simplifies to: p
(2)
i−1/2 = 2

6 v̄i + 5
6 v̄i−1 +

(
−1

6

)
v̄i−2.

B.3 Ideal weights

Only two weights are required because d1 = 1 − d0 − d2.

x = xi+1/2

d0 =

(
xi+1/2 − xi−5/2

) (
xi+1/2 − xi−3/2

)
(
xi+5/2 − xi−5/2

) (
xi+5/2 − xi−3/2

) ,

d2 =

(
xi+3/2 − xi+1/2

) (
xi+5/2 − xi+1/2

)
(
xi+3/2 − xi−5/2

) (
xi+5/2 − xi−5/2

) .
(B.10)
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On a uniform grid, this simplifies to: d0 = 3
10 , d1 = 6

10 , d2 = 1
10 .

x = xi−1/2

d0 =

(
xi−1/2 − xi−5/2

) (
xi−1/2 − xi−3/2

)
(
xi+5/2 − xi−5/2

) (
xi+5/2 − xi−3/2

) ,

d2 =

(
xi+3/2 − xi−1/2

) (
xi+5/2 − xi−1/2

)
(
xi+3/2 − xi−5/2

) (
xi+5/2 − xi−5/2

) .
(B.11)

On a uniform grid, this simplifies to: d0 = 1
10 , d1 = 6

10 , d2 = 3
10 .

B.4 Smoothness indicators

As Equation B.2 shows, the smoothness indicators have a unique value within a

computational cell, regardless of where they are evaluated.

r = 0 :

β0 =
4

9

(
xi+1/2 − xi−1/2

)
(
xi+3/2 − xi−1/2

)2 (
xi+5/2 − xi−1/2

)2 (
xi+5/2 − xi+1/2

)2

×
{

81
(
xi+1/2 − xi−1/2

)3 [
(v̄i+2 − v̄i+1)

(
xi+3/2 − xi−1/2

)
− (v̄i+1 − v̄i)

(
xi+5/2 − xi+1/2

)]2

+
[{

−
(
xi+3/2 − xi+1/2

) [
(v̄i+2 − v̄i+1)

(
xi+3/2 − xi−1/2

)
− (v̄i+1 − v̄i)

(
xi+5/2 − xi+1/2

)]

+ (v̄i+2 − v̄i+1)
(
xi+3/2 − xi−1/2

) (
xi+1/2 − xi−1/2

)
+ (v̄i+1 − v̄i)

(
xi+5/2 − xi+1/2

)2}3

−
{[(

xi+1/2 − xi−1/2

)
+
(
xi+3/2 − xi−1/2

)]

×
[
(v̄i+2 − v̄i+1)

(
xi+3/2 − xi−1/2

)
− (v̄i+1 − v̄i)

(
xi+5/2 − xi+1/2

)]

− (v̄i+1 − v̄i)
(
xi+5/2 − xi+1/2

) (
xi+5/2 − xi−1/2

)}3
]

× 1

(v̄i+2 − v̄i+1)
(
xi+3/2 − xi−1/2

)
− (v̄i+1 − v̄i)

(
xi+5/2 − xi+1/2

)
}

.

(B.12)

On a uniform grid, this simplifies to

β0 =
13

12
[(v̄i+2 − v̄i+1) − (v̄i+1 − v̄i)]

2 +
3

12
[(v̄i+2 − v̄i+1) − 3 (v̄i+1 − v̄i)]

2 .
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r = 1 :

β1 =
4

9

(
xi+1/2 − xi−1/2

)
(
xi+1/2 − xi−3/2

)2 (
xi+3/2 − xi−3/2

)2 (
xi+3/2 − xi−1/2

)2

×
{

81
(
xi+1/2 − xi−1/2

)3 [
(v̄i+1 − v̄i)

(
xi+1/2 − xi−3/2

)
− (v̄i − v̄i−1)

(
xi+3/2 − xi−1/2

)]2

+
[{(

xi+1/2 − xi−1/2

) [
(v̄i+1 − v̄i)

(
xi+1/2 − xi−3/2

)
− (v̄i − v̄i−1)

(
xi+3/2 − xi−1/2

)]

+ (v̄i+1 − v̄i)
(
xi+1/2 − xi−3/2

)2
+ (v̄i − v̄i−1)

(
xi+3/2 − xi−1/2

)2}3

−
{(

xi+1/2 − xi−1/2

) [
(v̄i+1 − v̄i)

(
xi+1/2 − xi−3/2

)
− (v̄i − v̄i−1)

(
xi+3/2 − xi−1/2

)]

− (v̄i+1 − v̄i)
(
xi+1/2 − xi−3/2

) (
xi−1/2 − xi−3/2

)
− (v̄i − v̄i−1)

(
xi+3/2 − xi−1/2

)2}3
]

× 1

(v̄i+1 − v̄i)
(
xi+1/2 − xi−3/2

)
− (v̄i − v̄i−1)

(
xi+3/2 − xi−1/2

)
}

.

(B.13)

On a uniform grid, this simplifies to

β1 =
13

12
[(v̄i+1 − v̄i) − (v̄i − v̄i−1)]

2 +
3

12
(v̄i − v̄i+1)

2 .

r = 2 :

β2 =
4

9

(
xi+1/2 − xi−1/2

)
(
xi−1/2 − xi−5/2

)2 (
xi+1/2 − xi−5/2

)2 (
xi+1/2 − xi−3/2

)2

×
{

81
(
xi+1/2 − xi−1/2

)3 [
(v̄i − v̄i−1)

(
xi−1/2 − xi−5/2

)
− (v̄i−1 − v̄i−2)

(
xi+1/2 − xi−3/2

)]2

−
[{(

xi−1/2 − xi−3/2

) [
(v̄i − v̄i−1)

(
xi−1/2 − xi−5/2

)
− (v̄i−1 − v̄i−2)

(
xi+1/2 − xi−3/2

)]

+ (v̄i − v̄i−1)
(
xi−1/2 − xi−5/2

)2
+ (v̄i−1 − v̄i−2)

(
xi+1/2 − xi−3/2

) (
xi+1/2 − xi−1/2

)}3

−
{[(

xi+1/2 − xi−1/2

)
+
(
xi+1/2 − xi−1/2

)]

×
[
(v̄i − v̄i−1)

(
xi−1/2 − xi−5/2

)
− (v̄i−1 − v̄i−2)

(
xi+1/2 − xi−3/2

)]

+ (v̄i − v̄i−1)
(
xi−1/2 − xi−5/2

) (
xi+1/2 − xi−5/2

)}3
]

× 1

(v̄i − v̄i−1)
(
xi−1/2 − xi−5/2

)
− (v̄i−1 − v̄i−2)

(
xi+1/2 − xi−3/2

)
}

.

(B.14)
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On a uniform grid, this simplifies to

β2 =
13

12
[(v̄i − v̄i−1) − (v̄i−1 − v̄i−2)]

2 +
3

12
[3 (v̄i − v̄i−1) − (v̄i−1 − v̄i−2)]

2 .
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Appendix C

Post-processing

In this section, the methodology to calculate the properties of the bubble and of

the re-entrant jet is explained.

C.1 Interface location

Although the interface is smeared over a few grid points, its actual location is

required to compute certain variables (e.g., jet properties). For this purpose, the

location of the interface is taken to be given by ξint(γ = 1.42).

C.2 Bubble properties

C.2.1 Bubble volume

In order to calculate the bubble volume, the volume fraction of gas, ξ, is first

computed based on the distribution of γ from Equation 3.62:

ξij =
γG

γij

γij − γL

γG − γL
, (C.1)

Then, the bubble volume is computed by summing the volume of gas in each cell

leading to an averaged radius:

VB =
∑

ij

ξij∆Vij ⇒ R =

(
3

4π
VB

)1/3

. (C.2)
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In cylindrical coordinates,

∆Vij = 2πrj∆rj∆xi. (C.3)

The collapse time is taken to be the time at which the bubble volume is minimum.

C.2.2 Bubble position

The position of the bubble is computed by determining its center of “volume”

along the x-axis (its radial position will always be zero). This is done by taking

the average position of all the cells that contain mainly gas:

H =

∑
ξij≤ξint

ξi

Nξij≤ξint

, (C.4)

where Nξij≤ξint
is the number of cells for which ξ < 0.5.

C.2.3 Bubble pressure

In Rayleigh-Plesset models, the pressure within the bubble is assumed to be uni-

form. However, results from the numerical simulations show clear variations within

the bubble, especially due to the propagation of shockwaves. Thus, the bubble

pressure is computed by taking the average value of the pressure within the bub-

ble, as follows:

pB =

∑
ij pijξij∆Vij

VB
. (C.5)

C.2.4 Bubble non-sphericity

By considering the xr-plane passing through r = 0, the length of the bubble

outline can be computed. To do so, coordinates of the interface are recorded by

interpolating the x-value for rj ,∀j, and the r-value for xi,∀i. Starting with the

first pair along r = 0, these pairs are ordered by considering the distance with

all the other points. Then, the length of the bubble is computed by adding the



211

distance between each point (first order approximation):

LB =
∑

i

√
(xi+1 − xi)2 + (ri+1 − ri)2. (C.6)

Similarly, the area of the bubble can be computed by “integrated” the area within

the bubble outline:

AB =
∑

i

(ri+1 − ri)
xi+1 − xi

2
. (C.7)

The ratio,

ν =
AB

R̄LB
, (C.8)

provides a measure of non-sphericity of the bubble, where R̄ is an average value

for the bubble radius. For a spherical collapse, ν = 1/2; for a highly non-spherical

ν → 0. The average radius is computed from the bubble area,

R̄ = Ro

√
AB

AB,o
=

√
A

π
. (C.9)

Furthermore, taking the time-derivative of R̄,

Ṙ ≈ ˙̄R =
R̄n+1 − R̄n

∆t
, (C.10)

allows the approximation of the speed of the bubble wall when computing quanti-

ties such as the radiated energy.

C.3 Circulation

The total circulation of the domain is computed by summing up the vorticity

projected onto the area of each cell:

Γ =

∫

A
ω · dA =

∑

ij

ωij∆xi∆rj. (C.11)

Thus, the circulation is computed along an xr-plane that passes through r = 0.
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C.4 Jet properties

The position, pressure, density, and sound speed of the jet (and of the distal side)

are taken to be the local values of these variables at ξi,0 = ξint by using linear

interpolation:

ηjet = ηi,0 +
ξint − ξi,0

ξi+1,0 − ξi,0
(ηi+1,0 − ηi,0) , (C.12)

where η is any of the aforementioned variables. The speed of the jet (and of the

distal side) is computed by computing a first order derivative of the position:

vjet =
x

(n)
jet − x

(n−1)
jet

∆t
, (C.13)

where the superscript denotes the time level.

C.5 Numerical Schlieren contours

Plots of the density gradient are generated in order to emulate experimental

Schlieren images, adapting the methodology of Quirk & Karni (1996). This allows

waves and interfaces to be visualized on the same plots. The following function of

the density gradient is plotted:

fij = exp

(
−α

|∇ρ|
max |∇ρ|

)
, (C.14)

where α = 40 for air and α = 400 for water, in order to observe waves in both

fluids simultaneously.
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