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Sunnnary 

A function from a field of characteristic pinto the 

same field is called periodic with period modulus M, if 

f (x+ ),l-) = f (x), where f is any element of M. 

For a Galois Field, GF(pt), there exist non-constant 

functions, periodic with any proper sub-modulus of the field. 

For any field of characteristic p, and any set, a , ,aL,•••, 

a~_,,a~, of elements, linearly independent with respect to 

the prime sub-field TT, n <. t, the functions: 

fca,;~) = )C~-ar-•x 

t(a,,a1.;x) = f(f<a,;a.1); f ca,;x.)) 

f (a, ,a2., ... ,an; x) = f ( fca,, ... , a'\'\-,; a"'); f<a,, ... ,a"_' \ ')( )) 

form a set of per~odic functions with moduli: (a 1 ),(a,.,a 1 ), .. ,. 

(a,, ..• ,an)• These functions are additive, linear with 

respect to 1T, and symmetric in the a\. Any function periodic 

with the modulus Mn in a GF(pt) may be represented by: 

where f(Ml'\;x) ::. f(a,, ..• ,a\'\;x), Mr,.= (a,, ... ,a"') and the 

bi are elements of the GF(pt). 

The latter part of the thesis is devoted to the consid­

eration of other possible bases for representation of all 

periodic functions over Galois fields. A definition of an 

orthogonal representation is given and sets satisfying the 



definition are exhibited for certain special cases, in 

particular fort even and n = t - 1. More generally, it 

is shown that, ir the GF(pt) is imbedded in the splitting 

field of a certain equation, a set of polynomials exist 

such that their values for elements of the GF( p t ) are in the 

latter fie ld and are orthogonal with respect to that field, 

although the polynomials require, for their simplest express­

ion in terms of the fi(M;x), coefficients fr om the s uper­

field. 
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1. Fields of Characteristic E· Basic Concepts and 

Definitions. 

All fields contain one and only one prime field, TI. 
This prime field is either isomorphic to a residue class 

modulo a prime integer p, or to the field of all rational 

numbers. In the first case, the field is said to have charac­

teristic p; in the second, characteristic O. If a field of 

characteristic p has a finite number of elements, it is 

called a Galois field. All such fields of given order are 

abstractly identical and have pt elements where tis a 

positive integer; tis the "index" of the field, GF(pt).( 3 )-i:-

The majority of the the orems to be deduced will concern 

Galois fields. Theorems applicable to all cornmutative 

fields of characteristic p will be specifically noted. The 

following equations, valid in any field of characteristic p, 

will be used in the sequel without further comment: 

Here the at are any elements of the field. 

The GF(pt) may be constructed by selecting a polynomial, 

irreducible modulo p, of degree t, and considering the pt 

* Numbers in parentheses refer to the corresponding entry 
in the bibliography. 
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residues modulo the polynomial and p. A tabulation of all 

quadratic and cubic fields, (t -=-2,3) such that pt < 100, is 

given in an appendix. 

The additive group of the GF(pt) is of type (p,p, ... p). 

Thus the subgroups are composed of pk elements, k ~ t, and 

are generated from a basis, (a,, ... ,ak), of any k elements 

linearly independent with respect to TT .(2 ) 

The multiplicative group of the field is cyclic. If 

pt= q, all members of the GF(pt) satisfy the equation: 

x4 - x = .Q .. Each element of the field possesses one and 

only one pth root, and, thus, one and only one pkth root. 

Further, if d = (m,q - 1), exactly (q - 1)/d elements are mth 

powers (i.e. have mth roots) in the field.Cl) 

2. Periodic Functions. 

In this section the notion of periodic functions over 

a field of characteristic p will be defined and some general 

properties of these functions will be discussed. The dis­

cussion will, of course, be confined completely to algebraic 

properties. Although a formal derivative exists, the lack 

of a valuation makes an analytic discussion impossible. In 

general, very little attention has been paid to the existence 

and algebraic properties of periodic functions in fields out­

dise of the customary real and complex number domains, 

although functions analogous to the common periodic functions, 
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but not necessarily periodic in the new domain, have been 

studied.(27,28,29) 

A large amount of work has been done, particularly by 

Garlitz, on the properties of special classes of polynomials 

in a Galois field.( 4 )-(25 ) inc. In general, this work has 

dealt with the polynomial domain itself, using the literal 

elements as indeterminates. In the present work, a special 

class of polynomials is considered not only for its own 

properties as polynomials, but also from the standpoint of 

the values attained when the variables are replaced by elements 

of the field. 

For Galois fields the limitation of the functions con­

sidered to polynomials is no real restriction since all 

functions defined for all members of the field with values 

in the same field may be represented by polynomials with 

coefficients in the GF(pt). 

Definition 2.1: A funct ion, f(x), defined over a field 

of characteristic p with values in the same field, is called 

periodic if an element a of the.field exists such that 

f(x+a) = f(x). The element 'a' is called a period of the 

function. 

Definition 2.2: A function f(x), defined as above, 

is k-tuply periodic, with periods a ,,a~,·••a~, if 

f(x+m 1a1 + m1 az + .•• +mkak) =-f(x), where them~ are arbitrary 
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members of the prime sub-field, TI, and the at are linearly 

independent with respect to Tr. 
The definitions have been phrased in the above manner 

to preserve the analogy with the ordinary case. However, 

it is clear that, if a is a period, the elements 2a, 3a, ... , 

(p - l)a are also periods. That is, instead of a single 

elementary period, there exists a period modulus M, where M 

is the modulus generated by a,, ... ,ak• Since the field is 

unordered, there is no particular period singled out from 

the modulus as the period of f(x). We thus have: 

Definition 2.3: The largest modulus generated by the 

periods of a periodic function is designated the period 

modulus, M, of the function. For any }A in M, f(X+J,1) = f(x), 

for every x of the GF, and for any JJ- not in M, f(x+ fl) f. f(x) 

for at l~ast one x of the GF. If the modulus consists of 

pk elements, the function is said to be k-tuply periodic. 

Any linearly independent set of k elements of M is. called 

a (complete) set of periods. 

Theorem 2.1: A non-constant function, f(x), over a 

GF' (p t) has at most t - 1 independent periods. 

Proof: If the function had t periods, M would contain 

pt elements, and would thus include every element of the 

GF(pt). Since f(x + fl) = f (x) , f- ~ M, f(x) would be constant. 

Theorem 2.2: Given any proper submodulus, M., of the 
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GF(pt), there exists a (at least one) function, f{x), such 

that Mis the period modulus of f(x). 

Proof: We construct such a function as follows: Let 

the order of M be pk. Choose a complete set of periods, 

a 1 , •• • ,ak., and choose t - k other elements , ak+i, • •• ,at, 

such that the set, a,, ... .,at, form a linearly independent 

set., that is., each x of the GF(pt) may be uniquely represen-

ted as x = L. m. a , . 
i. l l 

We then define f(x) by: 
t 

f ( x) = . [ ml a i. • 
,:k+I 

This is a function of the required type for., clearly, the 

addition of an element of M to the argument does not change 

the corresponding value of the function., while for any 

modulus M') M, the value is changed by addition of an 

element of M' which is not in M. 

The appendix contains a description of a notation which 

facilitates the choices described above, and illustrations 

of functions using this notation. It is clear that, in 

general, many other functions of period modulus M exist. 

For example, a constant could be added to the value of the 

function for each argument. 

3. Singly Periodic Functions. 

The special theory, developing representations for all 

periodic functions over a modulus M1 consisting of p elements 

will now be developed as a basis for the general theory 
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covering arbitrary moduli. Let a be a generating element 

of M. Then: 

Theorem 3.1: xP - ap-l x is periodic with modulus M 

over any commutative field of characteristic p. 

Proof: Let )'- E: M, i.e. }A-= ma, m E 1T, then: 

Corollarz: 

(,,c ""y.)'p - ~t,-1 ( )( + f-) 

= (,c +Ynal - a._,_,(,c + rn~) 

=- xP - a.P-'x + mpa.r, - mo.I>; mP=m 

= "I'> - a.~-· t. 

,,k t,k- I x - a x is periodic with modulus M. 

The question arises as to whether a multiple periodicity 

may be concealed by the use of the above function. That is, 

is M the actual period modulus? 

If Mis not the period modulus, there is ab¢ M such 

that: 

( b )~-I b TI If k = l, this states that a = ) or a E , which con-

tradicts the assumption, b ¢ M. If k > l, the necessary 

bpk-1 pk-I t 
condition that =- o. , and b # ma in a GF(p ) is 

that (p t-1, :p t ... 1) > p - l. In this case there exists a 
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sub-field of order pk , and here the second type of function 

may be multiply periodic. This question will be returned to 

when the general doubly periodic function is obtained; the 

above function will then appear as a special case . 

Notation: From this point on, the notation, f( ) 

wil l be reserved for certain specific types of functions of 

which the function of Th. 3.1 forms the first example: 

f ( a ; x ) :: x., - at-- 1 x. . 

Theorem 3.2: f(a;bx) =. b"'f(~ ;~). 

Proof: b'\/ - at>-'bx =- bP( ,t- ( t l-1 
x). 

(Note the analogy with the sine or cosine function of 

ordinary analysis. I.e. sin bx has a period 1/b of the 

basic period.) 

Theorem 3.3: f(a;x) is 1) additive, and 2) linear 

with respect to TT. 
Proof: Evident on expansion of f(a;x+y) and 

f(a;mx). 

Theorem !2..!.!= 

k . 

i bl [ f(a; x)J L is periodic, with 
~:O 

period a, where the bi are arbitrary elements of the field , 

and where, for convenience of expression now and in the 

sequel, the convention [ f (a; )()] 
0 = I is adopted. 

Proof: Clear. 

Theorem 3.5: Any function which is periodic with 
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modulus M J a, over a GF(pt), may be represented in the 

form: 

where s ... pt-•. 

Proof: Let g(x) be a periodic function with a as 

a period. Select, from the field, elements, a1, ••• ,at, 

such that a, a~,··•,at form a linearly independent set. 
t 

The sums, t:= -mi.le. a.~ , where the ml\i.. range over TT, 
~c2. 

form a set of p t-l distinct elements which includes no 

element of M except O. For these non-zero elements, 

f( ) ..J. 0 f tl • I> .,,._\ .,,._, a"'-' a;x t- ; or, o 1erw1.se, X :. a.- X > x.r = r ) 

and ! € TT, a contradiction. 

The values of the function for the elements of the 

generated set completely determine the function. We thus 

have a set of equations: 

This is a set of s equations to be solved for s values 

of the bj. The determinant of these equations is clearly. 

of the Vandermonde type: 

0 0 0 

[ f Ca;fml,a.i.)]
5

-

1 
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The value of this determinant is then: 

TI f (a; E-mik at> TT [f (a~[ -n, .. 3,.) - f (a· L m.k a.:)] k k I j , lJ I. ) l l • 

This product is clearly non-zero, if: 

f(a;Ln\ja.i.) i:- fca,L1n,ka.i), j i: k. 

But: fca;L mi.jai) =- Lmi/<a;ai) by Th. 3 .3. 

Suppose: L.m .. f(a•a-)::; [lrt. fca · a.) 
L) ) I. 1.k , l 

Lem .. - n,.k> f ca. i a. -) = 0 
'J ' , " • 

Let mq - mik = mil : Lmu f Ca; a.i) -=- 0 

f ca> L l'\I ai > = 0 

and, thus, all ml~ o. This contradicts the assumption 

that j j k. Therefore the determinant is non-zero, and 

the solution is possible. 

We have now exhibited a complete set of functions, 

1, f(a;x), f~(a;x)., •.. , f 5 -' (a;x)., which suffice for the 

linear representation (with respect to the complete field) 

of any periodic function whose period modulus contains a. 

The specific set is chosen since it arises naturally from 

the important function: xP - x = f{l;x); f{a;x) = aPf(l;x/a). 

The properties of these and other complete sets for 

representation will be investigated after the development 
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of the theory of representations for the complete period 

modulus. {The theory of multiply periodic functions.) 

4. The Doubly Periodic Function. 

Before proceeding to the general case, the modulus 

of order p2 will be discussed. This case will serve as a 

guide to the higher orders, and is also interesting as the 

last in which the basic functions may conveniently be dis­

played in their entirety. 

Theorem 4.1: Let (a,b) be a basis of the modulus M, 

of order P2, then: 

b
.,1-, pa._, 

"i. - a ~ ~-• bti-• ( b"-' .,., ,,., X ------x + a -a:> x 
bt>-•_ a"-' 

is periodic with period modulus M. 

Proof: Denote the function by f{a,b;x). Then, for 

m,n E. TT :f (a, b;x +ma+ nb) = 
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=f(ab·x) ) ) 

Remarks: 1) At least formally, the requirement 

that a and b be independent, is unnecessary. Let c-:: a.1>-l 

and d = b l>- 1 in the original expression of the function; 
d~+1 _ c\HI \> 1>-1 i 

the fraction is then: ---- =- d +d c +•··+d c l>- + c P 
d-c • 

Now, if c = d, each term is cP, and the sum is cP . There -

fore the function is, formally, xl>l_al>i-1> )( 1> ==-lfca;x)]p 

which is clearly periodic with periods a and b : ma. 
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2) It will be noted that the reserved notation 

was used for the function just established as doubly per­

iodic. The r eas on for this notation will be apparent in 

the immediate sequel. 
Pa_, - b Pi_, 3) (Cf. remarks following Th . 3 .1 . ) If a - , 

a p-, '/: b p-, , the middle, or xP, term will drop out. The 

... i--1 bp-l C b f:>-• - :i, P-·') p-1 final coefficient: - -

Thus the function reduces to the degenerate case: 

of the singly periodic type considered 

in t he corollary . 

Theorem 4.2: f( a ,b;x) is ident i cally equal to 

f(fca;b)>t(a,,o) 'i.e . t o: 

(x. P-aY-'xt -{ bl> -atH b>t>-, (){"-ar-, x). 

Proof: If a P-' : b p-, , the theorem is trivial. The 

( b P - aP-'b)"-' term: = o, and the forma l r educ tion of 

f (a, b; x ) to ( r (a;x)]P has already been demonstrated . 

Now : ( x.P -a.~-'x)P -(bP-a_l>- 1b)l'-1 {x.l- -a,11-1x) 
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The func-r; i on, 1'(a.,o;x), as originally written, is 

clearly ~ymmetric in a and b if p is odd. The symmetry 

is also immediate when p = 2 since, in this case, the -

signs may be replaced by + s igns. The symmetry of the 

second formulation is not directly evident but is estab­

lished by the identity just proven. 

Corollary: f(a,b;x) = f(f(a;b ) ;f(a;x)) = f (f(b;a) ;f(b;x)). 

The substitution operation used here may be compared 

to the basic operation used by O. Ore(~l) in connection 

with his work on polynomials over a finite field. The 

polynomials here are p-polynomials in the sense of Ore 

with coefficients in a finite field. For pt-polynomials, 
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Ore defined: F{x) x G{x) = F(G{x)). Here, a double substi~ 

tution on the two arguments of a single function, f(a;x), 

is used. 

5. The Basic General Periodic Function. 

Continuing the process by which f(a,b;x) was obtained 

from f(a;x) or f(b;x), an extended set of functions may be 

obtained: 

Notation: 1) t ( a,\ X) "' x" - al>-• x 

2) fca ,.,a2,; ><.) ::: f Cf (a1 ;a2.>; f ca,;x>) 

3) f (a,.,aa..,a 3 ; x) "' f ff ca,\a.z ;a.3); f<a,.,ai.; le)) 

• • • • • •••• • • • • • • • • 

n) fca,') ···> al\ ;x) = Hfca . ., ... )an·I ,al\); f (an-··-,al\-1 ;>O). 

Theorem 5.1: f(al, .. . ,an;x) is independent of the -
ordering of the ai.; i.e. symmetric in the ai.. 

Proof: The theorem has already been noted for the 

case n = 2; assume the theorem proved for all cases~ n -

and consider f(a, , ..• ,a~;x) and f(b, , .•. ,bn;x) where the 

b's are a new ordering of the a's. Now, f(b 1, ••• ,bn;x): 

Hence, by the induction hypothesis, the b~, i < n, may be 

rearranged to fall in the same order as the a's. If 

ai. = bn, the rearrangement may be carried out so that: 

1, 
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the original function may, by the same reasoning, be re-

a,1-1 .,a i. ,an ;x).. If we designate the two rearranged functions 

l) and 2): 

-r f (a,, ... ,a. i-1,a i.+t ') .. ")al\\ a ;,1] ~-· f ( a 1 , ••• ,a i.-1, a Lt I, .•. ,ah; X ) . 

2): [f<a,r•,ai._,,ai+,-,··· )al\_,.,a.i.; x)] t, 

-[ gt-( ai)- g.--, (a") g a i)]""'[ g\x) - gP·' (a") g (x)]. 

2) = [ gP (,c.) _ gti·•(a,) g (,<)] P 

-[ g"can) _ gtt·'ca.l) gca.l\)] i>-• [g" (,c.) - g ►·•caJ g ( x)l 

Let r :. [gl-·'(aJ-s"·'ca.n)J. 

Then l) - 2) = g to< x)y-"- s r--•ca.i.) r p-, [g ~(x) - 8 i,-, (ah) g (x)] 
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Thus, since 1) and 2) were (identically) equal to the 

original functions considered, these functions are also 

identical, and the theorem is proved . 

Theorem 5.2: f(a 1 , ••• ,an;x} is additive, and linear 

with respect to TT. 
Proof: The theorem has been proved for n : l; suppose 

it true for n - 1, and consider f(a
1

, ••• ,an;m{x+y)) 

-m[f Can- .. )a.n_,>an>]t'-• Hca,, ... ,all-• pt)+ f(a.
1

, ... ,an-,;y>] 

=m\ f ~ca,, ... .,an_,;x)-H<a,, ... ,ah-•)a0 )]tt-• f (a,, ... ,an-, ix) 
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Theorem E..!.2: f(al, .•. ,an;x) is periodic with the 

period modulus generated by the ai as basis. 

Now: 

Proof: By Th. 5.2: 

= fca,')···,al'\)x) +[. mi f (a,, ... )al\;a). 

f ca, ,a.~')· .. ,a11 >a.") 

= 0. 

But, by Th. 5.1, f(a1 , ••• an;x) is syrnmetric in the at and, 

thus, any ai may be placed in the final position of the 

period group. Therefore: 

f Ca,,a:zy··,ah ; at> = 0 

and fca,, ... )an1 )( t Ll\'\lat) = f(a,') ... ,a t\ )X). 

6. The General Representation Theorem. 

In the last section, a function, periodic with any 

desired period moduius, has been exhibited. The further 

problem of exhibiting all periodic functions with a given 

period modulus will now be considered together with the 

relationship between a function periodic over a modulus, M, 

and one with an associate modulus, bM, where bis an 

arbitrary non-zero element of the field. 
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Notation: Let Mn be the modulus generated by a, , ... ,a~. 

f(a,, •• • ,an;x) = f(M"';x). 

Theorem g: f(M'h;cx) = ct>" f(c-• M"';x); c is an arbi­

trary non-zero element of the field. 

Proof: The theorem has been proved for n = l; assume 

it for n - 1. f (a,, ... ,a"'; t x.) 

Thus, 

k 

Theorem 6 .2 : to bi [ f < M,.; x.) t is periodic with 

modulus Mn• 

Proof: Evident. 
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Theorem 6 .3: f (M"';x) + O, if x ¢ M . 

Proof: The theorem has been noted for n = 1 in the 

proof of Th. 3.5. Assume it for n - 1. By the method 

previously used, if: f(a , , ..• ,a"' ;b) = O, 

f ( a 1 , • • • , a 1\ _ , ; b ) = mf ( a 1 , • • • ., a -n _ 1 ; a"' ) . 

Then: f(e. , , • ., .,,ah- I ;b - ma.,) -= 0 by Th. 5.2 

and b - man f:(a,, ••• ,a"'_1 ), by induction hyp.; 

or b € (a , , ••. ,an). 

Remarks: 1) To this point the theorems deduced in 

the last two sections have l) been valid for any commutative 

field of characteristic p, and 2) not depended on the inde­

pendence of the a i • If dependent a i are included, the 

resulting function will, in general, be a pk power of the 

basic function for the modulus, but the content of the 

theorems is unchanged. 

The following general representation theorem, however, 

makes use of the elementary fact that a minimal basis 

exists (components linearly independent with respect to TT), 

and is valid only over the GF(pt). This theorem is a 

generalization of Th. 3.5 in that it gives a constructive 

method for the representation of any function with a given 

period modulus in terms of the basic f-function for the 

modulus. 

Th. 3.5, of course, gives a complete representation 
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theory in the sense that any periodic function over any 

modulus whatsoever can be represented. The purpose of the 

next theorem is to provide a representation in terms of 

functions appropriate to the full modulus. 

Theorem .§.d_: Any function, g(x) whose period modu­

lus has the basis, a,,a 2, ••• ,a~, over the GF(pt), may be 

represented by: 

S-1 

gcx) =?; bJfca,,. ... la";x>]\ 

Proof: Select a complete basis for the field: 

a 1 ,a1, ••• ,a~,c, ,c~,•••,ct-n• The values of g(x) are 

completely determined by the values assigned to the pt -~ 

elements: tnik E. Tf. This yields pt-n 

equations with exactly the same conditions for linearity 

and non-vanishing determinants as obtained in Th. 3.5. 

The theorem then follows in precisely the same manner. 

7. Othe1" Basic Sets of F1unctions. 

The functions f(t\;x) used in the previous investiga­

tions as the basic functions were chosen for the following 

reasons: 

1) They arise naturally from the important, and 

'primitive', periodic function: xP - x. 

2) The powers of the f-functions are easily shown 
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to form a complete basis by means of the Vandermonde 

determinants which arise . 

3) The operation of changing the modulus to a more 

inclusive one results in a simple and interesting operation 

on the basic functions. 

However, of course, other bases exist. In general, 

a set, ¢, "> ••• , ¢s S - pt-l'I. , - . 

will be a basis over M~ if and only if the determinant of 

the c. . is not zero. If this condition is met, the ri can 
Jl 

be solved for in terms of the ¢j• Then, clearly, any 

function expressed in the f's can be expressed in the ;,' s . 

On the other hand, if the determinant is zero, the ¢j 

cannot form a complete set since some periodic functions, 

e.g. the fl cannot be expressed in terms of the ¢ ,s. 

In the development of general sets of ¢'s, the 

Vandermonde type of determinant is of greatest interest 

since this type furnishes a guaranteed non-vanishing con­

di tion and, due to the peculiar behavior of additive 

operations in a GF, is essentially the only such type 

available. 

The primary question regarding a basis for the repre ­

sentation of periodic functions is: "Is the basis orthog­

onal?" That is, is there an analogue of the fundamental 
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properties of a set of orthogonal functions in analysis: 

J ..L . ..1... = J .. ? .,.,~ ~, lJ • 

Defin1 tion L.1: A set of functions, tpi.(."f.J, periodic 

with a modulus Mn, will be called a completely orthogonal 

set if: 

1) The set forms a complete basis for the representa-

tion of all periodic functions with Mn as modulus, and 

2) [ 
+;. ~j = 0 if i :/;- j I and L ~t ~ o) 

Gr GF 

the SUlll being taken over all elements of the GF(pt). 

Theorem 7.1: No completely orthogonal set exists. 

Proof: Consider any member of the set, ¢L. Since 'A 
is periodic with Mn as modulus, +f is also. But then 

[~!CK) : 0, for each value which ¢f takes on is 
Gf 

assumed pn times by reason of the periodicity. 

This result, however , remains analogous to the 

results with the usual periodic functions. The orthogonality 

principle for sin nx, for example, applies solely to inte­

grals (sUllls) taken over the range of a period, rather than 

over the whole field. 

In this case, a 'period' will correspond to a maxi­

mal set for which the function takes on no repeated values 

which are induced by the periodicity. That is, a set of 

elements bL such that no two elements, bt, bj, are 

'congruent mod M'II' ; bl - bj € M implies i =- j. 
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The simplest such set is a complement of Mn,Mn, 

obtained by writing a complete basis of the field: 

a,, ~ ... , B.n, b,, ... , bt-n, and considering the modulus, 

(b,, ..• ,bt_,,). 

Definition 7.2: A period interval is a set of pt-n 

elements such that the difference of no two of the elements 

is coatained in M~. 

Theorem 7.2: If~(~) is any periodic function with 

d if d d t-1'1 modulus M", an ,, ••• , , is any set forming a period 

interval, then the sum of the values of ~Cxl over the set 

of the di, is equal to the sum over Mn = (b,, •• • ,bt_,,} ... 

t. • ti b
1

, ••• , b 11 . 

Proof: It will be sufficient to prove that ~ C bl) ... ¢ (di.) 

where the d's are, if necessary, reordered. 

Now di."" b" -t ai., where ai is a member of the Mn, since 

the complete modulus of the field is the direct sum of Mn 

and M,, . Therefore, 

. by the periodicity. Furthermore, the set of b's must be 

exhausted; for, suppose di.= bi.+ ai., and dj :: bi.+ aj, then 

di. - dj £ M contradicting the assumption. 

Thus, in the further work., the interval for summation, 

corresponding to (- TT., TI) for sin rue, will be the set M,,. 

Definition 7.3: A basic interval is a complementary 

group to M,,.,Mn• 
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Definition 1..:1,: A set of functions, ¢t(x>, with 

period modulus M~, is said to be orthogonal if: 

1) The set forms a complete basis for representation 

of periodic functions with modulus M.,,, and 

2) 

the summation being taken over all elements of Mn• 

This definition, as will be shown in the next section, 

is non-vacuous. Orthogonal systems, as defined, exist. 

8. Orthogonal Systems of Functions . 

Theorem 8.1: The set: is not 

an orthogonal set. 

Proof: If the set consists of more than two functions, 

select i and j so that i + j = 2k. Then, if: 

contradicting the basic condition. If there are only two 

functions, 1 and f (Mn;x), theorem 6 .4 shows that f2 {II\, ;x) 

is a simple multiple of f{Mn;x) and, thus, the sum of ¢,~i 

and of ¢ ~ will vanish or not vanish together, which is 

again a contradiction. 

Th~~ 8 .!2: For the case t ~ 2, the following set 
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of functions is orthogonal: 

where we define o0 = 1 to simplify the notation. I.e., 

f 
,,_, 

,is_, :: ( a ; ><). 

To aid the proof of this theorem, two le~.mas will be 

proved. The first of these is also valid when t > 2. 

Lemma l: For all i < p - 1, L f\a,'IC) = 0. 
R 

Proof: Select a sub-set of M, consisting of the 

multiples of a single element, say bj, by the elements of 

TI. Subdivide Minto mutually exclusive classes whose repre­

sentatives are bk+ mbj . 

The sum of ri(a;x) over each class is equal to O, for: 

11-1 

p-1 

= f)f cbk) + rnf <bj>Ji· 

= ~t" cbk) + i.f'-1cbk)f cbj> L.m 

i.(i.-t) fi.-Z b f 2 b ~ 2. + ~ ( k) · ( j) L lTI +··· 

and [ mJ is divisible by p when j < p - 1. 
'11:0 

Lemma 2: For t = 2., [ ft,-•ca;x) :/: 0. 
M 

Proof: If the sum were zero, then, for any function, 

g(x), with modulus M = (a), 
,,_, . 

i g(,c) : ~ i Oli. fl(a;X) = 
M r, L•O 
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But this is impossible since a function, g(x), periodic 

with modulus M can be constructed so that the function over 

M has any assigned values whatsoever. 

The proof of the original theorem will now be given 

for p odd. The case 22 can be proved in an analogous 

manner, or simply verified. 

For, 

l) The set is a basis. The determinant is: 

0 0 

3) 

(2a.>"'~-5) 

0 

(~·•),fi 

<p-1) I l.. 

" Tl [crn-n)aP] :/ 0. 
m>n 
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The lemmas have shown this for 1 ~ p - 1, but 2) demon­

strates that all powers of f(a;x) are reducible to powers 

~P - l, and that only those powers which are multiples of 

p - 1 reduce to fl>-•ca ;1.). 

4) 
1 Thus, in the expansions of 'Pk ~ 1, and ¢ k , 

reduced by the use of 2), only the coefficients of f P·•(a;x) 

need be considered. In ~k' this coefficient is: 

2.<kal't>-•l + i<ka>~<.,·•>+···+ z<ka>P'r-•l+cka.la,<i,-,l -a."1• ► 

t,-• 
2 terms 

In ¢1< ~l' the coefficient is: 

cka.fl'·•> +ckal'~-z1da.l +··· + <lalcp-•l - a""· r 

= k .. - l., at-a.- ► - a'1._., 0 if 1th k 1 i = , ne er nor s p . k-1 

If k == p, the coefficient 1s: 

<1►<1>·•> -1) at>
1
·' = <lP·• -1) al>'·t, = 0. 

5) Therefore, 

Thus an orthogonal set has been exhibited for the 

special case, n : l, t = 2. It will be noted that, in place 
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of the constant which usually begins such a set, there is 

here the function, r~-• {a;x), which is a constant equal 

to -a~~-~, by 2) of the above proof, except over the 

modulus M, where the value is zero. 

A complete generalization of this theorem does not 

exist. The statement is, however, capable of some exten­

sion. The simplest case occurs when M 11 "' Mt-, ; for then 

Mt-, consists of only p elements, and the expansion of¢<~) 

in terms of f(Mt-, ;x) also has at most p terms. The 

following theorem may be obtained: 

Theorem 8.3: If tis even, the set: 

forms an orthogonal set where a is a fixed element of the 

For the proof of this theorem, lemmas which are 

extensions of Lemmas 1 and 2 are needed: · 

Lemma 3: The first p - 2 powers of f(Mt-, ;x) have 

sum zero over Mt_ 1 , while f ~-• (Mt _1 ;x) has s. non-zero sum. 

Proof: Mt-t consists of the multiples of a single 

element, b 1 , by the elements of TT. 
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Lemma 4: rP(M •x) = a,.., f(M ·x) where «
0 

is 
t-1' 0 t-1' 

a fixed element of the GF(pt)$ 

Proof: By Th. 6.4: 
.,_, 

= ~/Jif"cMt_1;x). 

Clearly, ,id 0· = o, since fP has no constant term. The high-

f .. M i,t-1 pt•l p 
est power of x in: < t-, ,~) -= (>t + Y.X +···) 

is evidently pt- t • If a power higher than the first of 

f(Mt_,;x) were present in the expansion of fP, a higher 

power of x would occur. Thus: 

/3i. ; 0) i. -1- \ ; and /J " .-v'" I #1 • 

In the field-identity, fP( Mt-, ;x) =- 13 1 f (Mt-, ;x), choose a 

value of x not in Mt- i, so that f (Mt-, ;x) # 0. Then: 

Note: It can easily be shown, though it is not germane 

to the present theorem, that: 

where (a 1, ••• ,at_,) is the basis of Mt-i• 
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If and only if tis even, there exists an (at least 

one) element, c, of the GF(pt), such that cP-• = -1, when 

pis odd. Let ca0 = 0t. .. With this remark, the main 

theorem is ready for proof: 

1) The set forms a basis. This is proved precisely 

as in Th. 8 .2 • 

2) Again, as in the previous theorem: 

and 

l=fi.cMt_,;x) I= o, 
"'t-1 

r-• I i.. 

3) The reduction of L. 9>~ :I- 0, and L ~k ,!>1 = O, 

again proceed in the manner of Th. 8.2. 

This method is clearly not applicable to the case 

where p and tare odd since no arrangement of the type used 

can possibly result in a cancellation in the summation of 

L <fk ¢ 1 while retaining a fixed, non-zero, sum in the 

[ c-/>: . The lack of a (p - l)st root of -1 in these cases 

has an analogue in the necessary introduction of i = .J-=r­
in ordinary analysis. If the GF(pt) is imbedded in a 

• field where the (p - l)st root of -1 exists, then the 

expansion of periodic functions of the given modulus over 
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the original field is possible in terms of a set of ¢k 

similar to the above, but with coefficients from the super 

field. 

These remarks are not intended to indicate that no 

orthogonal set exists in the case where tis odd, but 

merely that the simple sets of Theorems 8.2 and 8.3, yield­

ing Vandermonde determinants in terms of the f's, fail to 

exist. However, as previously remarked, the Vandermonde 

determinants offer the only method known to the writer to 

yield sets which for general values of p and tare 

guaranteed bases. 

Theorem 8.4: When tis odd, no orthogonal set, with 

a Vandermonde determinant in the f-functions, exists for 

the representation of functions with modulus Mt_,. 

Proof: Assume the existence of the set: 

Then the coefficient off ~ 1 after the reduction of r 2
~-

2 

which must be zero. 

lit - /Ji 
/31< -/Ji 

.,_, 
+ OL 0 "' 0, 
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which is impossible when t odd for odd primes p. 

It might, however, be possible to obtain an orthogonal 

basis by taking a smaller period modulus. This problem may 

be illustrated by the case t = 3, n = 1, which will be 

worked out in detail. 

Lemma~: If t ~ 3, all powers of f(a;x) less than 

p2 - 1 have sum zero over M. 

Proof: Let the basis of M be (b,,bi)• 

= me+ nd. 

[ lY\ i = 0 if p - 1 f i, and thus the only cases of concern 

occur when j and i - j are both divisible by p - 1. This 

implies that i its elf is di visible by p - 1. Let i = k( p - 1), 

and consider 
(

k<p-1) ) , k > 1 
I c~-1) ' 

In the numerator, [k(p - l)]t, p will appear k - 1 
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times, asp, 2p, ... ,{k - l)p. In the denominator, p will 

appear { 1 - 1) + {k - 1 - 1) times! or k - 2 times. 

Therefore the binomial coefficient is divisible by p, and, 

thus, zero, in the field. The lemma then follows since 

the smallest power which is ?llot affected by the argument 

is given by k = p + 1, or i = p2 - 1. 

For this power, the sum over Mis clearly not zero 

by an argument of the same type as that given for the 

(p - l)st powers in the earlier theorems. 

Lemma 6: When t ""3, 

= -

Proof: 

and the lennna follows. 

these lemmas give sufficient information to obtain the 

coefficients of interest in the expansion of ¢>k ci61 • When 

the product is reduced by the application of Lemma 6, the 
1 

coefficient of f P -, { a ;x) will be: 
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ttt_, J. 1 

~ k +~It-~ i- ·· ·+ ,i' -•♦ t__l )(/.3 p-1+···+ A l>·•) +(_.:J_) 
k 1 1 \' ;1'-1 k .,..,1 al'-1 > 

which must be zero. 

Then 

or there exist elements, x, such that: 

It is easy to show that this equation is not, in general, 

solvable in the GF{p3 ). In fact, considering the case 

a ~ 1, and multiplying by x: 

~ t> l x" -><..I>-)(. " 0 or )l : xP ,._ ){ , 

"3 t> 2. " 0 
a. 

and ,c. -)( -x. = or xfl =-)(► +it. 

Subtracting, 2. )(. )> : 0 or )( : 0, 

which does not satisfy the original equation. 

That the condition [ ¢k # 0 is met by the system is 

clear if t,11k .,_ ,,dl in the above. The resulting coefficient 

is - a r:, i_ f> • The set has been chosen in such a way that if 

/3k ~ (3 1 , k ~ 1, the ¢k automatically form a basis. 

Furthermore, the equation xl>i - c~ _, - dx = 0 clearly has no 
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multiple roots in any superfield, and the roots in the 

splitting field of the equation form a modulus. 

Thus, if the GF(p3) is imbedded in the splitting field 
2 J 1 3 

of: x" -a.'p -P x., - a I> - P x -=- 0 , as a super field, an 

orthogonal set will be given by the indicated set of t6k if 

the /jk. are taken as the roots of the equation. 

The ¢k(x) in this case, considered as functions over 

the original field, are periodic functions wi t h the given 

modulus, and are then within the scope of Th. 3.5. There 

is, therefore, a representation of the 'P1<<1t) in terms of 

the f(a;x) with coefficients in the original GF(p3). 

Hence, in a sense, an orthogonal set has been demonstrated, 

although the actual form of the function has not been 

presented within the given field. 

Although the detailed work has been carried out only 

for the case t: 3, the generalization is immediate, and 

gives as the final major theorem: 

Theorem.§_&: In the case n ~ 1, p odd, there exists, 

in general, no orthogonal set of the type: 

t•I 

f pt•q, ~ ' 
.;bk = {;j /Jk f • (a;){) 

with fjk in the GF(pt). However, if the original field is 

imbedded in the splitting field of: 
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= 0 ) 

and the ;dk chosen as the roots of this equation, the 

resulting set furnishes an orthogonal system with respect 

to the original field for the representation of periodic 

functions whose modulus contai_ns a, over the GF(pt). 

It may be noted that, in this case, no special 

results obtain for the even values of t. If t -= 4, and a :a 1, 
1'>3 _,z. l> 

the defining equation becomes: X - x. - )( - ~ = 0 

which, on raising to the pth power, yields: 

.,4 113 "2. I> 
X -)( -X ->C. =0. 

Thus: 
► 3 2 

X = Xt> + >I. ► + ,c. 

.,'Z. b h 3 

or X =- - X r , and X r = - >(. 

Substituting in the original equation: 

or x = 0 is the only solution in the field. 

9. Miscellaneous Results. 

In this section, several results will be presented 

which, while they have no direct connection with the 
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development of the main theory, are interesting in them­

selves or illustrative of that theory. 

a. The analogue of the sin nx system. 

In the set: 

a reordering may be made as follows: 

jo{~)= 

~ < 11:) =a.~-•+ ac.l'·.t f <M; x) +··· 

y,,. c~>-= a"·' -1- 2.« ►•2 fcM;x.) t··· 

f ., •• cM, x) 

+ f ►·'cM,x) 

+ P ... cM;x> 

The reordering is made so that fork I O., the new V~ is 

equal to the original ¢ 1, where 1 = + in lT. It is 

immediately apparent that the above set is identical with 

the ¢,k Cx), and, also, that for k ~ 0., JP11. (>l) = jb, Ck K). 

Thus an analogy is established between the function., sin x, 

and ]b,<~), with the previously noted difference in the 

replacement of a constant term by the semi-constant, ft:>·•()(). 

The function, i/1. (X) , is, in general, neither odd nor even 

since it is used to represent all periodic functions of 

the given modulus. 

b. The number of periodic functions for given p and t. 
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The total number of distinct polynomials which may 

be written for a GF{pt), subject to the identity, xq ax, 

where q: pt , i~ qq. The question may be asked: How many 

of these are periodic? 

In the expansion of the singly periodic functions, 

there occur pt -, sunnnands, and the coefficients of each 

sunnnand may take on pt values; there are 

moduli. Thus. there are Pt - 1 ( nt) ~t-, 
, ~-I I" 

distinct 

periodic 

functions. If the pt constant functions are discarded, 

the remainder may be grouped into classes of essentially 

distinct periodic functions. There are classes of associates, 

each with pt - 1 members, the classes of functions differing 

only in the constant term containing pt members. There then 

remain: 

(~t)pt-1 - pt 
(pt-,)pt =-

The discussion has included all periodic functions. 

It is easily seen that, for a given modulus, the number of 

periodic functions whose modulus contains the given one is 
t-n 

{pt)~ , where n is the index of the modulus. A similar 

argument with respect. to division into classes may be made. 

A tabulation for the purpose of comparison is presented in 

the appendix. 

c. Derivatives of periodic functions: 

Again in analogy to the usual theory of periodic 
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functions where the derivatives are also periodic, the 

question may be raised: Are the formal derivatives of the 

periodic polynomials over a field of characteristic p also 

periodic? 

This question may easily be answered for Galois 

fields by consideration of the formal derivative of ri(Mn;x) 

which is i•r•-1(M11 ;x)·Df(M,,;x). But Df(M11 ;x) is simply the 

coefficient of x in f(M,,;x) since the latter is a p-polynom­

ial . Call that coefficient~, and the result is 

i .(3 f i -, (M11 ;x ). Since all periodic functions may be 

expressed as i;. f ~ CM 11 ; x), it is clear that the formal 
L 

derivative of any per iodic function is also a periodic 

function with the same or a more inclusive modulus . 

It is pointless to discuss the formal integral of a 

periodic function since the integral of such a function is 

not merely indefinite to the point of a constant but to any 

polynomial consisting of terms of the type xnP . 

10. Unsolved and Unf ini shed Pr obl ems. 

There follows a partial 11st of problems left 

unfinished or unsolved by this thesis. 

1) Application of the results to higher congruences 

and diophantine equations. 

2) Extension of the representation theory to more 

general fields of characteristic p. This will require 
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discussion of the convergence of infinite series of the 

functions used in this paper in finite sums. 

3) Completion of the orthogonal set theory and 

possible application to algebraically complete fields of 

characteristic p. 

4) Matric discussion of the operators involved and 

the application of matrices to the orthogonal set theory. 

5) The possible existence of a more 'natural' set 

of functions than the present f-functions for description 

and representation of the properties of periodic functions. 

(The jtl
1 

function does not meet the condition since it does 

not exist for all fields and is inherently more complicated 

than the f's.) 

6) The group-theoretic problem in which the functions 

are considered as endomorphism operators. This problem is 

closely allied to the ~irst and fourth. 
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APPENDIX 

In this appendix some specific and numerical 

examples will be given of the functions covered by the 

main body of the thesis, and a convenient tabulation of 

the simpler finite fields is presented. 

a. Table of finite fields 

The following table gives for all p, t : 2, 3, 

pt< 100, a complete tabular presentation of the GF(pt) in 

a double notation for convenience of both addition and 

multiplication . For each field, an irreducible polynomial 

of degree tis given in terms of x and as a vector , e .g., 

x2 ~ x + 1: (1,1,1). The left hand table gives the vector 

form of the residues of the basic irreducible polynomial 

which form the GF(pt), followed by the first primitive 

element occuring in the tabulation (designated by 'a') 

raised to the corresponding exponent. For simplicity both 

connnas and initial zeros are omitted from t he vectors, e.g . 

x + 1 is represented by 11 . The right hand table gives the 

exponent of 'a' followed by the vector representation. 

The two tables thus form a set of 'logs' and 'antilogs' 

for multiplication, while addition may be performed on the 

vector set by ordinary addition, reduced for each digit 

mod p. Starred elements are primitive. 

The vector representation also yields a convenient 
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method for choosing linearly independent sets. Any set 

of elements, each with a different number of digits in 

the tabulation, is linearly independent, and any linearly 

independent set is equivalent to a set of this type. 

These statements may readily be verified by considering 

the residues which the vectors represent. 

Vector Exponent 

0 

1 a3 

{1-10 a 

~-11 a2 

32: 

Vector Exponen t 

0 

1 a8 

2 a4 

10 a6 

*11 a 

*12 a7 

20 a2 

{t,21 a3 

~-22 a5 

Square Fields 

x2 + x+ l : (l,1,1) 

Exponent Vector 

1 10 

2 11 

3 1 

x2+ 1 • (l,O,l) • 

Exponent Vector 

1 11 

2 20 

3 21 

4 2 

5 22 

6 10 

7 12 

8 1 
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x2 + X + 1 : (1,1,1) 

Vector Exponent E xponent Vector 

0 

1 a24 1 12 

2 al8 2 33 

3 a6 3 13 

4 al2 4 40 

10 al6 5 41 

11 a20 6 3 

~:-12 a 7 31 

13 a3 8 44 

-i:-14 al7 9 34 

20 alO 10 20 

21 a21 11 23 ~ 

22 al4 12 4 

➔123 all 13 43 

-.1-24 al9 14 22 

30 a22 15 42 

-l!-31 a7 16 10 

-l!-32 a23 17 14 

33 a2 18 2 

34 a9 19 2 4 

40 a4 20 11 

-ll-41 a5 21 21 

42 al5 - 22 30 

*43 al3 23 32 

44 a8 24 1 
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x2 + 1 : ( 1., 0., 1) 

Vect. Exp. Vect. Exp. Exp. Vect. Exp. Vect. 

0 

1 a48 34 8 26 1 12 25 65 

2 a32 35 a27 2 43 26 34 

3 a40 *36 a41 3 42 27 35 -·· --
4 al6 ~ 40 a28 4 30 28 40 

5 aB *41 al7 5 64 29 13 -·--
6 a24 42 a3 6 22 30 55 

,-. 

10 a12 43 a2 7 62 31 15 

11 a22 44 a38 8 5 32 2 

4j~l2 a 45 a45 9 53 33 24 

➔t-13 a29 *46 8 47 10 61 34 16 ----
~:-14 a35 50 a20 11 63 35 14 

➔t-15 a31 *51 8 37 12 10 36 60 

16 8 34 52 a42 13 26 37 51 
,.., ...... - ~-

20 a44 53 a9 14 33 38 44 

-¾-'-21 al9 54 a39 15 23 39 54 

22 a6 55 a30 16 4 40 3 

23 8 15 *56 a43 17 41 41 36 

24 8 33 60 a 18 25 42 52 
- ... 

25 8 18 61 a 19 21 43 56 
- · 

~6 al3 ➔t-62 a7 20 50 44 20 -·-
30 a4 *63 all 21 32 45 45 

'1~31 8 23 -~64 a5 22 11 46 66 

32 8 21 *65 8 25 23 31 47 46 _, ...... ...,... .. -,._ .. 
33 al4 __,._ ........ "-"--~·..----~- .... 

66 a46 
-~·-- 24 6 48 1 
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Cubic Fields 

. x3 + x + 1 : ( l, o, 1, 1 ) 

Vect. Exp. Vect. Exp. Exp. Vect. Exp. Vect. 

0 ~uoo a2 4 110 

~no1 a6 1 10 5 111 
! 

a4 1*110 
~-·'"'' 

2 100 6 101 
i I •:}111 a5 3 11 7 l 

x3+ 2x+ 1 : (l,0,2.,1) 

Vect. Exp. Vect. Exp. Exp. Vect. Exp. Vect. 

0 

1 a26 ~-112 all 1 10 14 20 

2 al3 120 a4 2 100 15 200 

*10 a 121 al8 3 12 16 21 

-i~ll a9 ia22 a7 4 120 17 210 ---·-
-r.-12 a3 ~00 al5 5 212 18 121 

20 al4 ~01 a25 6 111 19 222 

21 al6 202 a8 7 122 20 211 --
22 a22 ~-210 al7 8 202 21 101 

--··~-.--
:i,.oo a2 211 a20 9 11 22 22 

~-101 a21 ~~12 a5 10 110 23 220 ------
102 al2 ~20 a23 11 112 24 221 

, . .,., ___ 
110 alO 221 a24 12 102 25 201 

--·--
111 a6 -¾Z22 al9 

•·H•---.-
13 2 26 I 1 
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b. The theory applied to the fields, GF(32 ) 

and GF(33). 

In the notation of part a of the appendix, choose 

M :. -a. (11,101), M~ =- TT . Also choose F(O) "'O, F(l): l, 

F(2) = 2, and the doubly periodic function becomes: 

X • 0 l 2 10 11 12 20 21 22 • 

F(x): 0 1 2 2 2 1 1 .1 2 

X • 100 101 102 110 111 112 120 121 122 ,o 

F(x ): 2 0 l l 2 0 0 l 2 

X • 200 201 202 210 211 212 220 221 222 • 

F(x): 1 2 0 0 l 2 2 0 1 

If the first line only is considered, a periodic 

function over the GF(32 ) is represented with M1 :-. {11); 

M, =- 1T • 

The basic function for the GF(32 ) case is: 

x3 - (ll)2x = x3 - (20x) = x3 + (lO)x. The function 

actually represented is (12)(x3 + (lOx). 

The basic function for the GF(33) case is: 
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The function presented is: (222) [x9 _.. (22 )x3 + ( 102 )x]. 

Returning to the GF(32), 

f( (ll);x) = x 3 + (lO)x, 

r2( (11) ;x},. x6 -t- (20)x4 + 2x2. 

The orthogonal set, using the 1/t -functions, is: 

~ (i)"' f1
((u);K) ::. X.6 +(~O)X4- +-l.i.1. 

11, Cr.)= f'(c11);><) + (11)
3f(c11>;x) + {11) 6 

= x. 6 
+(1o)x 4 ~(.Z.l)K 3 ~ i.xL+ (11)~ + (10) 

The f-functions, in terms of the -y., -functions, are: 

I= (10)(~+1/:~~> 

f ( <u); ~) = (u.)CY.,1 - '¥,') 

f ~(< u) pc) = ¥'0 , 

The values of the~ -functions for M, are: 



(48) 

X 1/{ ~ ¥'i, 
?,t,!£. 

0 
¥.z l/lf ~o~ ~¥Ii. it:~~ 

0 0 (10) (10) 0 2 2 0 0 2 

1 (20) 2 1 2 l 1 (10) (20) 2 

2 (20) 1 2 2 1 1 - (20) (10) 2 

Totals: l l l 0 0 0 

Thus the orthogonal properties are verified for the 

~-functions of the given modulus. 

c. The number of periodic functions for certain 

fields. 

Field Polynomials Periodic Functions Classes (Cf. 9b) 

22 256 48 3 

32 387,420,489 2916 40 

52 8 .8 • 1034 58,593,750 97,656 

72 6 .6 • 1082 5,425,784,582,792 2,306,881,200 

23 16,777,216 28672 511 

33 4.4 • 1038 99,132,767,304,831 141,214,768,240 

The table displays the relative rarity of the 

periodic functions more clearly than the literal relation 

given in Section 9b. It also shows the large number of 

functions involved for all but the simplest fields and 

the rapid increase with the complexity of the field. 
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