The Trellis Complexity of Block and Convolutional
Codes

Thesis by
Wei Lin

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

California Institute of Technology

Pasadena, California

1997
(Submitted February 26, 1997)

i

(© 1997
Wei Lin
All Rights Reserved

1l

To my parents
and brother Kui

v

Acknowledgements

It is my fortune and honor to read the degree of Doctor of Philosophy under the
guidance of Professor Robert J. McEliece, whose knowledge and wisdom provided me
inspiration and made this research possible. Working with him was a pleasure and a
great learning experience. I am greatly indebted to him for his unconditioned support
and enthusiastic encouragement, without which I could not overcome all difficulties
and finish this thesis. I learned from him not only the ways of doing research but also
the spirits of being a scholar. A world-class scholar and philosophically-correct Ph.D.
advisor, Bob McEliece deserves my life-long respect and appreciation which cannot
be expressed fully in language.

I would like to thank Drs. Aaron B. Kiely, Samuel J. Dolinar and Laura L.
Ekroot from JPL/NASA, Pasadena. Many suggestive email communications and
discussions with them gave me a lot of insights into the problems in Chapter 1 and
2. T would like to thank Aaron for his careful review and excellent comments, which
improved the quality of this thesis much. I would also like to thank Professor Paddy
G. Farrell in the Electrical Engineering Department, University of Manchester, U.K.,
for several discussions from which I benefited a lot. I would also like to thank @.
Ytrehus from the Department of Informatics, University of Bergen, Norway, for the
preprint of his paper and useful discussion regarding the problems in Chapter 5.
Private communications with Professor Alex Vardy in the Department of Electrical
Engineering, UIUC, were also very helpful.

I would like to thank the members of the dissertation defense committee: Profes-
sors Robert J. McEliece, P. P. Vaidyanathan, Richard M. Wilson, and Drs. Aaron B.
Kiely and Samuel J. Dolinar.

[also would like to thank Pacific Bell, National Science Foundation (NCR-9505975)
and Air Force Office of Scientific Research (AFOSR F4960-94-1-005) for their financial

support.

v

I would like to thank my friends (too many to list) in Caltech. Xin An, Chang
Liu, Tao Tan from Electrical Engineering, Sheng Wu from Chemistry, Yang Liu from
Biology and Qiao Lin from Civil Engineering have been very good friends and have
always offered warm support whenever requested. I would like to thank the friends I
lived with in the graduate house where I stayed for four years. I would like to thank
my fellow groupmates and good friends: Mohamed-Slim Alouini, Jung-Fu Cheng, Dr.
Sanjeev K. Deora, Bahadir Erimli, Masayuki Hattori, Gavin Horn, Hui Jin, Lifang
Li, Hongyu Piao, Aji Srinivas, Meina Xu and Zhong Yu. I would also like to thank
my colleagues in Tsinghua University, Beijing, China. They made my undergraduate
life joyful and colorful.

I would like to thank Lilian Porter, our secretary, for her excellent professional
services on office management and letter preparation. I also would like to thank
Robert Freeman, our system administrator, for his professional services on keeping
the computers working perfectly.

Finally, I would like to thank my mother and father, my aunt and my brother.
Without their meticulous early education and guidance, I could not have the chance

to be here. It is their unlimited love that keeps me going.

vi

Abstract

This thesis concerns the computational complexity of high performance decoding al-
gorithms. The primary objective is to design the most efficient maximum-likelihood
(ML) decoders for both block codes and convolutional codes. By efficient, we mean
an implementation of ML decoding algorithms on trellises that minimize the compu-
tational complexity (the total number of additions and comparisons). Trellises are
graph representations of codes. Since decoding complexity is completely determined
by the particular trellis employed, the problem is equivalent to constructing the min-
imal trellis (one that has the minimum number of edges, vertices and bifurcations)
for a given code.

There are four parts to this research. The first problem we attacked was to
construct the minimal trellises for block codes over the coordinate permutations. The
related problem of finding a coordinate permutation that minimizes the number of
vertices at a given depth in the minimal trellis for a binary linear block code [36] has
been proven to be NP—complete. Our approach was based on the concept of span of
the generator matrices, which connects the code parameters and the trellis complexity.
New bounds on measures of trellis complexity such as |F| (the total number of edges)
and |V| (the total number of vertices) were obtained from the analysis of the span
distribution. Aiming to minimize the total span in a generator matrix, an efficient,
effective “divide—and—conquer” algorithm and variants were proposed to search for
the optimal or a good trellis structure for any block code. For example, it took
about 12 minutes on a Sun Sparc Station 20 to find one optimal permutation for the
[48,24,12] QR code from 48! candidates.

By introducing the concept of trellis—canonical generator matrices and a simple
algorithm to compute one, we developed a general theory of minimal trellises for
convolutional codes. In this theory, punctured convolutional codes no longer have to

be treated as special cases. By then, the minimal trellises for block and convolu-

vii
tional codes were both well-defined. This allowed one to make a direct performance-
complexity comparison between block codes and convolutional codes.

The ratio of performance (measured by the asymptotic coding gain-ACG) and
complexity (measured by the logarithm trellis edge complexity-LTC) defines the cod-
ing efficiency. By means of the span analysis, we also proved a universal lower bound
on the complexity to performance ratio. It implies that f%% can never be smaller
than 1 for any code, block or convolutional. In some cases, the bound is optimal or
asymptotically optimal. The study suggests that optimal codes in terms of minimum
distance or free distance do not necessarily offer the best coding efficiency.

The last problem addressed in this dissertasion is the implementation of maximum-—
likelihood decoding and the computational complexity for convolutional codes. By
combining the optimal sectionalization technique [45] with minimal trellis theory,
a low complexity hybrid decoding algorithm was developed. For some partial unit
memory convolutional codes, its decoding complexity is significantly superior to other
known algorithms. There are two components of the computational complexity. One
is the edge metric computation cost §. We proved a lower bound on § which is
independent of the computation mechanism (sequential or parallel). This bound is
optimal in some cases. The other is the cost of the state metric updating which is
inferable from the trellis structure. This sets a lower bound on the computational
complexity for any implementation.

Finally we give a general review of research activities on this subject and present

a list of open problems.

viil

Contents
Dedication
Acknowledgements
Abstract
1 Introduction
1.1 Trellisevolution e
1.2 Trellis complexity measures
1.3 The minimal trellis
1.4 Trellis complexity bounds00
1.4.1 TheDLPbounds
1.4.2 Bounds based on tables of known best linear codes
1.4.3 Bounds based on the code’sspan
1.4.4 Permutation-invariant bounds L.
1.5 SUmMmary e e e
2 Permutation Trellis Complexity of Block Codes

2.1 Theproblem
2.2 The span distribution and PEC 0000
2.2.1 The A-sequence oo
222 Theboundson PEC
2.3 Thealgorithmso
2.3.1 The basic algorithm oo
2.3.2 Relaxation Lo
2.3.3 One optimal permutation for [48,24,12] QR code

2.3.4 Extending and puncturing

iii

iv

vi

G et

© o o O

2.4 SUMMATY e

The Trellis Complexity of Convolutional Codes

3.1 Introduction
3.2 The basic theory of convolutional codes
3.3 Minimal trellises for convolutional codes
3.4 The basic algorithm oo
3.5 The simplified algorithm 000

3.5.1 Thebasicencoder.

3.5.2 The canonical encodero

3.5.3 The simplified algorithm: ALG2
3.6 The Column Permutations
3.7 Conclusion

LTC versus ACG

4.1 Introduction L
4.2 Blockcodeso
421 Thetheorem
422 Someexamples o oo
4.2.3 The asymptotic analysis00
4.3 The convolutional codes
431 The LTC-ACGratio
4.3.2 Asymptotic analysiso 0oL
4.4 Moreexamples L Lo
4.5 Conclusion

Trellis Decoding Complexity

5.1 Imtroduction L
5.2 The basic algorithm o 0o
5.3 Two-step trellisdecoding

5.4 Hybrid trellis decoding algorithm

32
32
33
34
38

43
44

46
47

48
48
50
50
52
55
58
58
60
63
64

5.4.1 Edge metric computation.o oL 70

5.4.2 State distance updatingo 70

543 Cneexample Lo 71

5.5 Complexity bounds L oo 73
551 Lowerboundsonfe. 73

5.5.2 Upperboundson e 76

5.6 Bounds on arbitrary segmented trellises 77
57 Conclusion« . v o 78

6 Conclusion 79
A Good Permutations for Block Codes 82
B Tables of LTC versus ACG 87

Bibliography 95

xi

List of Figures

1.1 The tree structure for the [6,3,3] code. Those vertices in the same
ellipse can be merged. oL

1.2 One trellis for the [6,3,3] code. Those vertices in identical frame can

be merged. For example, the two vertices in squares are to be merged.

1.3 An efficient trellis for the [6,3,3] code.
1.4 The primitive structures of trellises for block codes. A: Extension. B:

Expansion. C: Merger. D: Butterfly.

2.1 An A-sequence achieving E(m;n, k), where the total span is m.

2.2 An A-sequence achieving E(m;n, k), where the total span is m and
there is at most one A* = k. The sequence is not presented in order. .

2.3 An A-sequence achieving E(m;n, k), where the total span is m and

there is at least one A* = k. The sequence is not presented in order. .
3.1 General Trellis Structure for Convolutional Codes.

4.1 The plot of LTC versus ACG for optimal (2,1, fi) codes. Small circles
represent codes with increasing memory. L.
4.2 A scatter plot of (ACG,LTC) pairs for the codes in the Appendix.
Convolutional codes are indicated with small circles and block codes

with 7S, . . e e e

A General Decoder.
5.2 a: Depth—1 trellis module. b: Depth—4 trellis module.

Ut
Uy

5.3 Viterbi Algorithm on a simple trellis module.

17

18

18

35

61

xii
5.4 The simplified structure of the primitive trellis module for (8,4,3,8)
PUM code. Each big vertex represents a set of vertices in the primitive
trellis. The sequence above the figure is the edge dimension profile. The
sequence below the figure is the state dimension profile.
5.5 An algorithm to compute code metrics.

5.6 a: Addition. b: Negation.

List of Tables

xiii

2.1 One optimal coordinate permutation for the [48,24,12]QR code.

Al
A2
A3

B.1
B.2
B.3
B.4
B.5
B.6
B.7

Code table of good permutations: Part I.

Code table of good permutations: Part IT.

Code table of good permutations: Part IIL.

Selected best (2,1,m) codes. (From pp.

Selected best (2,1,m) codes

(

(

Selected best (3,2,m) codes

Selected best (4,3,m) codes
(

Selected best (3,1,m) codes
Selected best (4,1,m) codes

, continued.
. (From pp. ¢
. (From pp.
. (From pp.
. (From pp.

85-88in[21])
(From pp. 85-88 in [21])

Selected block codes and PUM codes.

Chapter 1 Introduction

1.1 Trellis evolution

In this chapter, we give a brief introduction to the minimal trellis theory for block
codes. Facts to be used in the following chapters are presented without proofs. For
details and proofs, please read the partially tutorial paper by A. Kiely et al. [40].
The idea of representing block codes by trellises was originally introduced by Bahl
et al. [7]. Such trellises can be used as templates for encoding and decoding. There

are several possible definitions', but we shall use the following:

Definition: A trellis for a block code C over the symbol set A of ¢ elements? is a

triple 7 = (V, E, p) satisfying:

1. (Decomposition of V') V=, Vi,
where |V;| > 0 for any ¢, [V;NV;| = 0if i # j. An element of V is called a
vertex. We require |Vy| = |V,,| = 1. The unique vertex in V; is the root of the

trellis. The unique vertex in V,, is the sink of the trellis.

2. (Decomposition of E) E= U, E;,
where |E;| > 0 for any 4, |[E; N E;| = 0if ¢ 5 j. An element of E is called an

edge.

3. p: U XS E, where U CV x V x A such that p~'(E;) C Vi_; x V; x A and
lp~H(E;)| = |E;]. For any z € E, let p~*(z) = (a,b,¢), then a, b, ¢ are called the
tail, the head and the label of z, respectively.

4. A sequence didqds...d, over A is a codeword of C if and only if there is a

1For example, the tailbiting trellises [75] are different from our definition.
2In this thesis, we assume A = GF(2), unless otherwise specified. However, many of the gener-
alizations to GF(q) are straitforward.

2
sequence r1xyxs...T,, where z; € E;, such that a; € V4, b; = a;41, b, € V,, and
¢; = d;, where p~t(z;) = (¢4, bi, ¢;). The sequence x1z573 . .. T, is called a path

and cicacs . . . ¢, is the label of the path.

5. No two distinct paths have the same label. For any x € F, there is at least one

path containing x. For any v € V, there is at least one path containing v.

Merging is the primitive operation to produce a new trellis from an old one. It
includes two processes. Vertex merging: For two distinct elements of V;, v and v, a
new triple 7* is obtainable by deleting v, replacing every v in p~*(E) by u. Edge
merging: For two distinct elements of E;, if they have identical tail, head and label
under p, combine them as one edge. Repeat edge merging until |p~!(E;)| = |E;|.
Edge merging is only possible after vertex merging.

After merging operations, the new trellis may not be one for the same code. In
this thesis, we are only interested in “legal” mergings that do not change the code.
Definition: A trellis 7 is said to be redundant if there exist vertex or edge mergings
such that the merged triple 7~ is a trellis for the same code. On the other hand, an
efficient trellis is one without redundancy (which is in general not unique).

For an efficient trellis, it is easy to see that |V;| < min(¢g"™, ¢*).

If we draw a picture for a trellis, it is a labeled digraph. This justifies our using
graph terminologies such as edge, vertex, root, tail. The above definition excludes
the tree structure as a legal trellis. However, any trellis is obtainable from a tree by

mergings.
Example 1.1 The [6,3,3] shortened Hamming code

Consider the [6,3,3] code with generator matrix

111000
G=1011110
001011

———— B~ e — — ® — — — — - - -
e -
/ B — — Y@ — - — — — @ e {f
7/
e

— B — — ®— —B — — ——— - - -®

|
»-_-a_-»___.___»__ﬁ_q..e /}

=00~

e |

\-—.’»_—_0-_.»___—a—“»”_—o—‘%_n_G———p—kC/

e ———— : 0 - 1

Figure 1.1: The tree structure for the [6,3,3] code. Those vertices in the same ellipse
can be merged.

Figure 1.2: One trellis for the [6,3,3] code. Those vertices in identical frame can be
merged. For example, the two vertices in squares are to be merged.

e B — = : 0 . o1

Figure 1.3: An efficient trellis for the [6,3.3] code.

Figure 1.1, 1.2 and 1.3 depict how an efficient trellis is evolved from the tree
structure. It is further noted that it contains at most four primitive structures:
extension, expansion, merger and butterfly, as shown in Figure 1.4 [40]. (This is true

for binary linear block codes, but not true in general for nonlinear codes.)

The evolution algorithm for binary code:

Begin:
Construct the tree structure.
Merge all terminal vertices and do edge merging.
WHILE (The trellis has redundancy)
{

Do merging operations.

}

End.

The evolution algorithm will find an efficient trellis for any linear or nonlinear

binary code. The refined evolution algorithm can find the minimal trellis (to be

&G
& — B — — -8
A B
e — B — — &—-— 6
\\ .
e
o<
// \\\
F—pp S
C D
L e — . : 0 - |

Figure 1.4: The primitive structures of trellises for block codes. A: Extension. B:
Expansion. C: Merger. D: Butterfly.

defined) for both linear and nonlinear code® [51].

In the following discussion, we assume codes are linear, though some

results are applicable to nonlinear codes.

1.2 Trellis complexity measures

There are a number of different ways to measure the complexity of a trellis.

The total number of edges |E|, the total number of vertices |V| and the total

number of bifurcations (mergers) M.

The edge dimension profile e; = log, |F;| and the vertex dimension profile s; =
log, [Vil.
The maximum vertex dimension $,,,, = max(s;). The maximum vertex dimen-

SiON €, = max(e;).

The total span of a MSGM mg (See Chapter 2).

3The minimal trellis for nonlinear codes is not unique.

6

These complexity measures are related via the following equations.

M = |E|—|V|+1, (1.1)
E] = };2 (1.2)

vl = > 27, (1.3)
i=0
1=1 i=0

1.3 The minimal trellis

Among all possible trellis representations for a code, the one minimizing |F| is the

minimal trellis.
Theorem 1.1 A trellis is minimal if and only if it is efficient [51].

In [58], McEliece showed how to construct a minimal trellis from a generator
matrix. This trellis has n+ 1 levels of vertices and n levels of edges. The vertex levels
are called depths and are numbered from 0 to n; the edge levels are called stages
and are numbered from 1 to n. The sth stage of edges corresponds to the ith stage
of encoding or decoding using the trellis as well as the ith column in the generator
matrix. It was also shown that the minimal trellis simultaneously minimizes |E|, |V,
M and 8,440 [58, 80].

Let V,, be the n—dimensional vector space over the finite field GF(2). Given a

vector z = (x1, 22, Z3,...,ZLy) € V,,, let
L, = min{i: x; =1}, (1.5)
R, = max{i: x; =1} (1.6)

Then m, = R, — L, + 1 is called the span of z. [L,, R.] is the support of z. Any
entry in the support is active. The support of a code is the union of supports of all

codewords.

7

Definition: A generator matrix GT = (rg,71,72,...76_1)7 over V,, for a linear [n, k, d]

code is a minimal span generator matriz (MSGM) if and only if it satisfies the “LR”

properties, defined as follows:

L # Ly, if i#], (1.7)
R #R, if i#] (1.8)

The number mg = Y; m,, is the span of G.
Definition: At depth 4, the ith past code P; is the set of codewords whose support
are in [1,1]; the ith future code Fj is the set of codewords whose support are in [141,n].

These two sequences of subcodes are nested in the following manner:

{0} = P,CPCPC---CP,=C, (1.9)

The dimensions of these codes are denoted by:

pi = dim(P), (1.11)
fi = dim(F), (1.12)

and can be easily read from the MSGM: f; is the number of rows for which the
leftmost nonzero entry lies in column 7 + 1 or later, and p; is the number of rows for
which the rightmost nonzero entry lies in column ¢ or earlier. It follows that p; and

f; have the following properties,

0 = po<p1<p2---<p,=k,
E = fo>fizfo-->fn=0,

(

(
p; < pia+l, o i=1,00 7. (1.

(

—
N
o

[w—y
[
N’ ~— N’ ~——

Theorem 1.2 (Forney [27]).

si = k—fi—pi, {3-17)

€ = lﬂ——fi_;_l - Pi. (118)

Example 1.2 The [6,3,3] shortened Hamming code

Cousider the [6,3,3] code again. The following table demonstrates the connection

between the MSGM (shown in Example 1.1) and trellis complexities.

Position 01 2 3 4 5 6
Future code f; 3 21 0 0 00
Past code p; 0 001 1 2 3
Vertex dimensions; |0 1 2 2 2 1 0
Edge dimensione; | - 1 2 3 2 2 1
of activeelements | - 1 2 3 2 2 1

1.4 Trellis complexity bounds

1.4.1 The DLP bounds

Motivated by the idea of Generalized Hamming Weight (GHW) [84], Forney defined
the dimension/length profile (DLP) for block codes [28].
Definition: Let K;(C) be the maximum dimension of any subcode of an (n, k,d)

linear block code C' whose support size is no greater than ¢, 0 < i < n. The sequence

Ko(C), K1(C),- -+, K,(C) is the dimension/length profile.

Lemma 1.1

i < Ki{(C), (1.19)
fi £ K,i(C). (1.20)

9

Combining Thecrem 1.2 and Lemma 1.1, trellis complexities are lower bounded

by the DLP [28, 37, 40, 43, 84].

Theorem 1.3

S
=

|E]

V]

v

k— Ki(C) - K,_4(C),
k- Koo (C) - Ki(C),
= 2k——Kn_i‘1(C)—Ki(C)
X

v

v

3

n

Z ok—Ky—i(C)-Ki(C)
=0

Vv

(1.21)
(1.22)

(1.23)

(1.24)

The DLP bounds are not easy to apply, since the DLP is hard to compute for most

codes. Omne notable exception is that the DLP of the entire family of Reed-Muller

codes are completely determined in [37, 38]. It turns out that the DLP bounds hold

with equality for every RM code.

1.4.2 Bounds based on tables of known best linear codes

Let K(n,d) be the largest possible dimension of a linear block code of length n and

minimum hamming distance d. Then

Theorem 1.4 [22, 40]

8 =
e =2
E] >
vl =

Ki(C) < K(z,d).

k—K(i,d) — K(n—i,d),
k—K(n—i—1,d) — K(4,d),
i ok—K(n—i—1,d)~K(i,d)

=1
n

z k=K (n—id)-K(i,d)
i=0

(1.25)

(1.29)

These bounds are, in general, looser than the DLP bounds, but are, on the other

hand, easier to compute since tables of K (n,d) are available [14].

10
1.4.3 Bounds based on the code’s span

Since the sum of edge dimensions equals the total span of the MSGM (see lemma 4.1),
an analysis of the spatial distribution of the total span results in new lower bounds

on trellis complexities. We present these bounds in section 2.2.

1.4.4 Permutation-invariant bounds

For a fixed coordinate ordering, the minimal trellis structure is unique. However,
different permutations of the symbols yield different minimal trellises. It is not known
yet if for any code there exists one permutation which simultaneously minimizes all
trellis complexities.
Definition: A bound on trellis complexity is permutation-invariant if it holds for
any symbol permutation.

The DLP bounrds and the bounds based on the code tables are permutation-
invariant. The bounds based on the code’s span, in contrast, are not permutation-

invariant.

1.5 Summary

In this chapter, we defined the minimal trellis structure and associated trellis com-
plexity for block codes. The construction of a minimal trellis based on the minimal
span generator matrix was presented in [58]. If the symbol ordering is fixed, the
minimal trellis structure is unique and the trellis complexities can be read directly
from the MSGM. Lower bounds on trellis complexities were also presented.

The rest of the thesis is organized as follows. In Chapter 2, we investigate the
complexity of minimal trellises for block codes over all coordinate permutations. Our
approach is based on the concept of the span of a generator matrix, which connects the
code parameters and the trellis complexity. New bounds on trellis complexities such
as F (the total number of edges) and V (the total number of vertices) are obtained

from the analysis of the span distribution. Aiming to minimize the total span of

11
a generator matrix, an efficient, “divide-and—conquer” algorithm and variants are
proposed to search for the optimal trellis structure (corresponding to an optimal
coordinate permutation) for any block code.

In Chapter 3, by introducing the concept of trellis—canonical generator matrices
and a simple algorithm to compute one, we develop a general theory of the minimal
trellises for convolutional codes. In this theory, punctured conwvolutional codes no
longer have to be treated as special cases. By then, the minimal trellises for block
and convolutional codes are both well-defined. This allows one to make a direct
performance—complexity comparison between block and convolutional codes.

The tradeoff between performance (measured by the asymptotic coding gain—
ACG) and complexity (measured by the logarithm trellis edge complexity—LTC) is
the theme of Chapter 4. Via the span analysis, we prove a universal bound on the
complexity to performance ratio. It implies that %% can never be smaller than 1 for
any code, block or convolutional. In some cases, the bound is optimal or asymptoti-
cally optimal. The study suggests that optimal codes in terms of minimum distance
or free distance do not necessarily offer the best tradeoff.

Chapter 5 deals with the implementation of maximum-likelihood decoding and the
computational complexity for convolutional and block codes. By combining the op-
timal sectionalization technique [45] and the minimal trellis theory, a low complexity
hybrid decoding algorithm is developed. For some partial unit memory convolutional
codes, the resulting decoding complexity is significantly superior to other known al-
gorithms. There are two parts to the computational complexity. One is the edge
metric computation cost §. We prove a lower bound on § which is independent of the
computation mechanism (s2quential or parallel), and which is optimal in some cases.
The other is the cost of the state metric updating which is inferable from the trellis
structure. This establishes a lower bound on the computational complexity for any
implementation.

In the last chapter, we propose some directions for future research.

12

Chapter 2 Permutation Trellis
Complexity of Block Codes

2.1 The problem

If a block code C is being used on a memoryless channel, permuting the columns of
its generator matrix will not affect the code’s performance. But as Bahl et al. [7]
were the first to note, a coordinate permutation of C' may drastically alter its trellis
complexity. In this chapter, we measure the trellis complexity by the total number of
edges E(C) in a minimal trellis. However, the discussion extends to other complexity
measures.

Given an [n, k,d] linear code C' with generator matrix G, let the coordinates of
codewords be labeled, from left to right, as 1,2,3,...,n. Let S, be the permutation
group on {1,2,3,...n}. For any 0 € S, 0C denotes the code with generator matrix
o obtained by permuting the columns of G according to o. I'¢ is defined as the set
of codes equivalent to C, viz. I'c = {oC : 0 € S,,}. The permutation edge complexity
(PEC) of C is defined as

Fe = mip {B(C")} 2.1)

A similar definition applies to other trellis complexity measure.

In this chapter, we consider the problem of finding F¢ and a permutation achieving
it, for a fixed code. In section 2.2, we present a lower bound on the permutation
edge complexity via an analysis of the span distribution of a MSGM. It strongly
suggests that minimizing the total span will minimize E¢. A heuristic algorithm for

finding “good” coordinate permutations for a given code is presented in section 2.3.

13
2.2 The span distribution and PEC

In Lemma 4.2, we shall prove a relation between the total span and the edge di-
mension distribution, i.e., the sum of the edge dimensions equals to the total span.
It is well known [57, 58| that for a fixed column ordering, the edge complexity is
minimized by minimizing the total span in a generator matrix. But it is not clear if
the permutation edge complexity can be minimized by minimizing the permutation
total span. However, the total span is easier to handle. Many examples show that
the permutation total span and the permutation edge complexity can be minimized
simultaneously. We believe that this is true for most codes, if not all. In this sec-

tion, we shall further study the properties of the edge dimension distribution and its

connection with the total span and edge complexity.

2.2.1 The A-sequence

Let Aic be the number of active elements in the MSGM of a linear code C at column

position 7. AL, A%, ---, A% is a sequence! with many interesting properties.

Lemma 2.1 The above defined A-sequence has the following properties:

1.
> AL =mg £ the total span. (2.2)
i=1
2.
At — AL <1, where 1<i<n-—1. (2.3)
3.
1< AL < min(i,n —i+ 1, k). (2.4)
4. i
E(C) =Y 2%, (2.5)
i=1

11t is the edge dimension profile. But we denote it by A% instead of e; in order to introduce
A-sequences for the code.

14
5. For any i > 1, compare all pairs A and Aic_l. Suppose there are a greater, b

equal and c less, then

a+b=b+c=n—-1-a>k and a,c<k. (2.6)

Proof:

1. See the proof of Lemma 4.2.

2. A row is active at one column position if its entry is active. In a MSGM, at most

one row becomes active or inactive at each column position. At column position i, if

one row becomes active, A% is increased by 1 from A ', If one row becomes inactive
¢, is decreased by 1. If one row becomes active and another becomes inactive or

neither happens, A% stays. A% is necessary positive since we assume 1o zero columns.

3. AL reaches its maximum if and only if for any 1 < j < 1, A'}w is increased by 1

from its preceding. That means A% < i. By symmetry, A- <n+1—1i. In any case,

¢ must be smaller than k.

4. This sequence is in fact the edge dimension distribution. See Chapter 1.

5. Each greater means one more active row; each equal may mean one more active

row; each less means one less active row. Since there are k rows and a+b+c=n—1,

all follow. This is implied by conditions 2 and 3. @

Lemma 2.1 combined with the following lemma set tight conditions on the shape

of edge dimension distributions.
Lemma 2.2 [If the code’s minimal distance is d, then kd < mg < k(n + 1 — k).

Proof: The lower bound is proved in Lemma 4.1. To prove the upper bound, consider

the case when all AL’s reach their maxima (See part 3 of Lemma 2.1). B
Example 2.1 There are codes that attain the upper and lower bounds in Lemma 2.2.

For any Mazimum Distance Separable (MDS) Code, d = n — k + 1. The upper

bound and the lower bound meet. The total span and edge complexity are constant

15

over all coordinate permutations. Hence, MDS codes are the worst codes for trellis

representation.

Definition: An A-sequence for an [n,k,d] code of total span m is a sequence of

integers satisfying conditions 1,2,3 in Lemma 2.1. A,, ,; is the set of all A-sequences

of given m,n, k.

2.2.2 The bounds on PEC

Given a MSGM whose span is m, for a fixed code, there is more than one possible

A-sequence corresponding to m,n, k. Any true edge dimension distribution achieving

total span m is an A-sequence, but the reverse is not true. However, we can check if

the given MSGM corresponds to a good coordinate permutation.
Let
E(min, k)a, = ZZ“C
i=1

Then, define

E(m;n, k) = max E(m;n, k).,

m€~Am.n,k

E(m;n, k) = memin) E(m;n, k),.
m,n,k

Then the following hcld:

o

E(m;n, k) > E(m—1;nk) > ... >

E(m;n, k) > E(m—1;n,k) > ... > E(n;n, k).

Theorem 2.1 (Lower Bound)
Let

S ==

n+1—\/(n+1)2—4ml

.]

t:m+82~n5-s.

(n;n, k).

(2.10)

(2.11)

(2.12)

(2.13)

16

where |x| is the largest integer less than or equal to x. Then

E(m;n, k) = (n—2s+1t+4)2° — 4.

(2.14)

Proof: For the A-sequence attaining E(m;n, k), its elements must be as nearly equal

as possible. For example, if AL, = a+ s, AL = a, and s > 2, a > 1, we may increase

AZ, by one and decrease AL by one at the same time. The new sequence generates
c vy C q g

a smaller E(m;n, k), since 207371 4. 2a+1 < 9aFs 4 94 However, the above procedure

fails if A7, is saturated (i.e., reaches its maximum, see Lemma 2.1). Hence, for every

k, AL either attains its maximum or differs from all other unsaturated elements at

most 1. Its shape is depicted in Fig. 2.1.

The total span in the unshaded area is

s(n—2s+2)+s(s — 1),

and the shaded area contributes ¢ to the total span, where

0<t=m-—sn—2s+2)—s(s—1) <n-—2s,

0§tzm+52—ns—s<n—25.

Solving Eqn. (2.17), we obtain:

n+1—\/(n+1)2—4m
2

8§ =

Substituting this A-sequence into (2.7), (2.14) follows. B

Theorem 2.2 (Upper Bound, Case I)

Suppose

u=|vm-n+1] <k

o~
B
;_.-L
[

N

(2.16)
(2.17)

(2.18)

17

Al

I 2 3 4 .. n

Figure 2.1: An A-sequence achieving E(m;n, k), where the total span is m.

Then
E(m;n, k) = (3+a)2* + 2" +2(n — 2u — a) — 4, (2.19)
where
a=0, 0<b<u-—1.
m—n-—(u—1)?=alu—1)+b, and a=1 0<b<u-—1. {2.20)

(3

a=2 b=0.

Proof: In contrast to the proof of Theorem 2.1, elements of this A-sequence must be
as polarized as possible. The maximum of Als must be as large as possible. Fig. 2.2
portraits its shape where the sequence is not necessarily presented in order. The total

span in the unshaded area is:

n+ (u—1)>% (2.21)

Since u is the maximal number such that the sequence has shape as Fig. 2.2, the

shaded area has span

0<m-n—(u—1>2=alu—1)+b<2u-1. (2.22)

18

Solving (2.22), we get

u=|vm—-n+1]. (2.23)

Substituting this A-sequence into (2.7), the upper bound follows.

Al

n-2u+l

Figure 2.2: An A-sequence achieving E(m;n, k), where the total span is m and there
is at most one A* = k. The sequence is not presented in order.

Al

<k-1

12 3 4 . n
n-2k-1+2

Figure 2.3: An A-sequence achieving F(m;n, k), where the total span is m and there
is at least one A® = k. The sequence is not presented in order.

19
Theorem 2.3 (Upper Bound, Case II)

If
[Vm—n+1] >k,
let
m—n—2—k*+ 3k
= :
p— , (2.24)
s=m-n—2—k+3k—1k+I. (2.25)
Then
E(myn, k)= (1+2)2F +277 + 2(n — 2k — 1) — 2. (2.26)

Proof: Fig. 2.3 portraits the shape (the elements are not in order). The total span

in the unshaded area is:

B —3k+kl+n—2—1L (2.27)

The span in the shaded area satisfies
0<m-n—-2-k*+3k—lk+Il<k-1 (2.28)

Solving these inequalities gives the conclusion. B

Remarks: Theorems 2.1, 2.1, and 2.3 are similar to Theorems 4 and 6 in [40]. These
are independent work of Lin and Kiely et al., respectively. While the theorems in
[40] are applicable to g-ary codes, the results here give exact value for binary case.
Theorem 2.4 gives tighter bounds. The idea of presenting the A-sequence graphically,

which makes the proofs shorter and clearer, is from Kiely and Dolinar.
Example 2.2 The [8,4,4] extended Hamming code

For this code, one MSGM is
11110000

00111100
00001111
01100110

20
with m = 18. The corresponding A-sequence is (1,2,3,3,3,3,2,1). E(18;8,4) = 44,
which is equal to the permutation edge complexity. F(18;8,4) = 48.

Example 2.3 The [2/,12,8] Golay code

Consider the Golay code with generator matrix:

1111 1111 0000 0000 0000 0000
0000 1111 1111 0000 0000 00600
0000 0000 1111 1111 0000 0000
0000 0600 6000 1111 1111 GOOO
0000 0000 0006 0000 1111 1111
0011 0011 1100 1100 0000 00600
0000 0060 G011 0011 1100 1100
0110 0110 0110 0110 0000 00600
0000 0000 0110 0110 0110 0110
0001 0001 0001 1110 1000 1000
0000 0101 0011 1001 1010 0000
0000 0011 0110 1010 1160 0000

The MSGM of the code shown above [27] has total span m = 136 and achieves
permutation edge complexity 3580. E(136;24,12) = 3068, which is 512 less. Since
uw=11 <k =12, ¢ = 1, b = 2, Theorem 2.2 tells E(136;24,12) = 8198, which
is much greater than the actual Fo. This shows that the actual edge dimension
distribution tends to approach the lower bound.

We can refine the bounds on E(m;n, k) if Apee = max{A, : 1 <14 < n} is known.
The set of A-sequence maybe reduced. The proof of the following theorem is similar

to that of Theorem 2.1, 2.2, and 2.3.

Theorem 2.4

E(m, Amag;n, k) = 3-24mee — 4 4 p.24mes L 20F L 0 (n—p — 24,,.) (2.29)

21
where m — 1 — (Amaz — 12 =0 (Apae — 1) +q, p>0, 0<qg< Apas — 2.

E(m, Apmaz;n, k) =324 4 4 g 2P L 9P (n 41 — 241000 — Q) (2.30)

where m — A2, =p-(n+1—24me)+q p>0, 0<qg<n—244.

Theorem 2.5 Suppose for o € S, m, the span of 0G is minimal over all permuta-

tions. Then

E(m;n, k) < Eg < E(m;n, k). (2.31)

If the actual edge complexity
E(eC) < E(m+1;n,k), (2.32)

then there exists a permutation such that the total span and the permutation edge

complexity are minimized. If

E(cC) =

I

(m;n, k), (2.33)

then o is such a permutation.

Example 2.4 The Hamming code in Ezxample 2.3 has the minimal total span and

the permutation edge complezity.

If the generator matrix of a code C is equivalent, under row operations and column

A 0
) (2.34)

permutations, to the form?:

0 B

where A, B are submatrices, 0 is zero matrix, then the span of C is the sum of spans
of subcodes generated by A and B. Its permutation edge complexity is the sum of

that of the subcodes.

2This is called “Direct—-Sum” code.

22
Finally, we show how the discussion here can be extended to other complexity

measures. Let sg = >~ 5:;. Then

56 = Yk-pi—f) =S (k—pi—f) (2.35)
=0 7=
e Sk —pi— o) — o (2.36)
=0

Hence, vg and mg are always minimized simultaneously. We thus can develop bounds

on the permutation vertex complexity [40].

2.3 The algorithms

In previous sections we have developed a number of lower bounds on the permutation-
trellis complexity of a given block code. In this section, we will describe a fast heuristic
algorithm we have developed which succeeds in finding a permutation with relatively

1 341

low edge complexity. The objective function used by the algorithm is the total span

of the code, rather than edge count.

2.3.1 The basic algorithm

This algorithm consists of three parts: the preprocessor, the permuter, and the post-
processor. The preprocessor consists of preliminary row operations, which put G into
either RRE or MS form, and then sort the rows so that the weight of row 1 is a min-
imum, the weight of row 2 in those positions where row 1 is zero is a minimum, the
weight of row 3, in those positions where rows 1 and 2 are both zero is a minimum,
etc. A generator matrix in this form is denoted as G;. If the columns of G are
viewed as k-bit binary expansions of integers in the range 0 to 2¥ — 1, then the “col-
umn permuter” arranges the columns in ascending order, with the resulting matrix
denoted as G,. Finally, the postprocessor converts the matrix G5 into MS form, G3,

so that the total span can be computed.

23

Example 2.5 (Simple Case)

Consider the cyclic [7,4,3] Hamming code with generator polynomial g(z) = z*+z+1,

then the corresponding cyclic generator matrix

123456 7
1011000\
010110 0]|

Gy = (2.38)
00107110
000101 1

which, having the LR property, is a MSGM (span=16), and is also already in “G;”

form. The decimal equivalents of the seven columns are as follows:

column: 1 2 3 4 5 6 7
decimal equivalent: 8 4 10 13 6 3 1

Thus, sorting the colurans into increasing order gives the matrix

7 6 2 5 1 3 4
0 060 61 11
0 061 1 0 06 1
0 101 0 10
110 0 0 0 1

Using the “minimal-span” algorithm algorithm given in [58], we obtain the fol-

lowing minimal-span form for Gs:

111106 00
0110100
Gy = (2.40)
0011110
0 000111

24

The span of (3 is seen to be 15, one less than that of i, and indeed this is the
minimal possible span among all column-equivalent versions of the original code C,

and the corresponding trellis has 36 edges, which is also minimal.

2.3.2 Relaxation

The basic greedy algorithm is myopic. If it falls into local minimum, it cannot jump

out and reach the global minimum.
Example 2.6 The relazation on the [5,3,2] code

Consider the [5,3,2] code with RRE generator matrix:

10011
G=|01001 (2.41)
00110}

If we sort the rows according to the basic algorithm, we obtain

1 2 3 45
01 0 0 1

Gi= 1100 11 (2.42)
0 01 10

If we reorder the columns into ascending order, we obtain

31 4 25
0 0 0 1 1

Go= |0 1 1 0 1 (2.43)
10100

The MS form of G5 is

6 0011
Gs=]01110 (2.44)
10100

which has span 8, and edge count 16, which is not the smallest possible. To overcome
this kind of problem, we can modify the algorithm to allow preliminary pairwise
column exchanges. For example, if we interchange columns 1 and 4 of the original

matrix G, and then apply the basic algorithm, we arrive at

10011\
Gi=10 1 10

11000}

Yok

which has smaller span (7) and edge count (14) than the previous permutation, and
indeed this permutation is globally minimal.

In this example, the exchange of one column representing an information bit and
one column representing a parity check bit is crucial to obtain the global minimum.
We call this relazation. There are two kinds of relaxation, i.e., deterministic and
stochastic. By deterministic, we mean the two columns to be exchanged are chosen
according to some pre—defined rules. By stochastic relaxation, on the other hand, the
columns are determined by random numbers generated according to some pre—defined
distribution functions. in either cases, the choice could be rejected. For example, to
expect the maximal impact on the code trellis structure, we would like to reject parity

check bit depending on only 1 or 2 information bits.
Example 2.7 The [24,12,8] Golay code

The search algorithm found one optimal permutation for [24,12 8] Golay code in short

time. See Example 2.4.

Example 2.8 The [48,24,12] extended quadratic residue code

26

Table 2.1: One optimal coordinate permutation for the [48,24,12]QR code.

000000000000000000000000000000000000111111111111
000006000000000000000000000000111111111111000000
000000000000000000000000000111000111111000111000
000000000000006000000000011011001001100100110110
0000000600000000000000000110010011010101001101100
000000060000000000000111011101010101106000100000
0000000000000000000110011001010106011111060000000
000000000000000000101011000111001060011001010000
000000000000000011000010101100016010011110006000
000000000000000110010000010110101110101000600000
0000000000000010100101100110100010011106000060000
000000000000011110111110000001100001000000000000
000000000000100601000001111110011110000000000000
000000000011010000010001011111100100000000000000
0000000001101100001010110000111100600000000000000
0000000010011101110110110010111010000600000000000
000000010111000101601110111000000000000000000000
000000101110100000101100110101000000000000000000
000001100000101000101011101110000000000000000060
000011011000110110101011000000000060000606C00000
000111000111001110100110000000000000000000600000
0011101101600111001110600600600060600666060600006006000
010101110001111111000000000006000000000000000000
1111111111110000000000006000000000000000000000000

The [48,24,12] self-dual code is the extended [47,24,11] QR code. One generator
polynomial of the [47,24,11] QR code is 1 + 2 + 2? + 2% + 2% + 25 + 27 + 2% +
20+ 212 4 28 g1 4+ 218 4 219 + 222, The modified algorithm found the following
optimal equivalent code in 12 minutes on a Sun Sparc 10 workstation. In 1996,
Berger and Be’ery gave another optimal permutation based on the “twisted squaring

construction” [9].

2.3.3 One optimal permutation for [48,24,12] QR code

If the dual distance d* is known, the bounds in Theorem 1.4 can be refined. Since the
dual code of [n, k, d, d*] code is an [n,n —k, d*, d] code, and since Forney (Theorem 3

in [28] and in many others) has shown that the DLP for the dual code C* is related

27
to the DLP for the primal code C by

K(C)=i—(n—k)+ K,_;(CH), fori=0,1,...,n, (2.45)

the following theorem follows:

Theorem 2.6
K(i,d)
pi < (2.46)
i—(n—k)+ K(n—1id")
K(n—1i,d)
fi < (2.47)
k—i+ K(i,d")
If we define
K (n,k,d,d") = min(K(i,d),i — (n — k) + K(n —i,d%)), (2.48)
we also have the lower bound
n—1
Ep > Z ok—K (nddt) =K}, (nk,didt) (2.49)
i=0

Consider the [48,24,12] extended quadratic residue code. Since this code is self-

dual, we have d* = 12 = d and

K(i,12) 0<i<24
i— 24+ K(48—4,12) 24<i<48
K (48 —,12) 24 < § < 48
fi < . (2.51)
24—+ K(i,12) 0<i<24

28
If we look up the tables of K (7,d) in [14], the above inequalities give the following
DLP of the code:

it 6 1 2 3 4 5 6 7 & 9 10 11 12
p,; 0 0 6 0 0 6 06 6 06 0 0 0 1
f,: |24 23 22 21 20 19 18 17 16 15 14 13 13

It 13 14 15 16 17 18 19 20 21 22 23 24

ps |1 1 1 1 1 2 2 2 3 3 4 5
fpp |12 11 10 9 8 8 7 6 6 5 5 5

and the values of p;, f; with 25 < i < 48 are given by the formula p; = fi; and
fi = pag—;. Substituting the DLP bounds into (2.49), we find that Ec > 860, 156.
The code we found achieves the DLP bounds, and so E = 860, 156 for the [48,24,12]
extended QR code [22, 9].

2.3.4 Extending and puncturing

The algorithm described in the previous section seems to work quite well for codes
of even length, but for odd length codes, its performance is sometimes disappointing.
We have discovered a useful trick that overcomes this problem in many cases. If
we have an odd-length [n, k] code C, we apply the algorithm to the extended, even
length, [n+1, k] code C’, obtaining a good permutation for C’. We then delete the
overall parity-column from the permuted, extended code.

If the extended code is invariant under a transitive permutation group, then any
column of the extended code can be deleted ([54], Corollary 8.15), so that by deleting
the column which reduces the span as much as possible, a good permutation for the

original code usually results.

Example 2.9 Consider the [15,5,7] code BCH with generator polynomial 1+z+x?+

.’13‘4 +5 +$8+$1‘0.

29

The optimal generator matrix of the extended code is:

0000000011111111
0000111111110000
0011001111001100
0101010110101010
1111111106000000

Deleting column 8 results in one good equivalent code.

2.4 Summary

In this chapter we studied the bounds on PEC given the total span of the generator
matrix. We also proposed efficient heuristic algorithms to search for optimal or good
permutations for any block codes.

In appendix A, we list computer simulation results of these algorithms on various

codes.

30

List of algorithms

The basic algorithm:

Preprocessor:

e Transform the original matrix into Row-Reduced Echelon form (sometime MS
form is enough). Then each column is either an information column or a parity

check column.

e Sort the rows: Let one row of least weight as the first row. Suppose the first
m rows have been chosen, row m + 1 is chosen to be one with least weight at

positions where previous chosen rows all are 0.
Permuter:

e Permuting the columns such that all 1’s in the first row are in one side. For
example, (0,0,1,0,1,1,0,1,1,0,0) is permuted to (0,0,0,0,0,0,1,1,1,1,1). At this

point, the input matrix can be represented as:

o 1

e Record the permutation if necessary. Then sead G, and G, to lower level
permuters to process rext row. This can be easily realized by divide—and—

conguer programming.

Postprocessor: Apply the “minimal-span” algorithm given in [58].

31

The modified algorithm:
Step 1: Setup termination conditions (i.e., the maximal number of iterations).
Step 2: Apply the basic greedy algorithm.
Step 3: Termination conditions are met? If yes, go to step 6. If no, go to step 4.
Step 4: Choose one information column and one parity check column.
Step 5: If choice is accepted, exchange them then go to step 2. Otherwise go to
step 4.
Step 6: End.

The algorithm for odd length codes:
Step 1: Add a parity check column to the original code.
Step 2: Apply the modified searching algorithm to the extended code.
Step 3: Delete the added column. Check LR conditions if necessary.

The algorithm for codes with transitive permutation group:
Step 1: Add a parity check column to the original code.
Step 2: Apply the modified searching algorithm to the extended code.
Step 3: Delete the column which reduces the span maximally. Check LR condi-

tions if necessary.

32

Chapter 3 The Trellis Complexity of

Convolutional Codes

3.1 Introduction

Since its introduction for convolutional codes, the trellis has proven to be a power-
ful tool for understanding and analyzing the dynamics of convolutional codes and
their decoding algorithms. This success spurred extensive research on minimal trellis
representation for block codes. For a long time, ironically, it seemed that people un-
derstood the minimal trellis structures of block codes very well but knew relatively
little about the minimal trellis structures of convolutional codes. In the recent work
of [61] and [73, 72], theories of minimal trellis representation for convolutional codes
were first presented. These advancements were motivated by the research on block
codes partially presented in previous chapters.

In this chapter, we shall answer the following questions concerning a convolutional

code:
e What is the minimal trellis structure?
e What is the trellis-canonical PGM?

e How can we obtain the minimal trellis structure and the trellis-canonical PGM?

[]

What properties should the trellis-canonical PGM have?

The rest of this chapter is organized as follows. In section 3.2, we briefly re-
view the fundamentals of algebraic theory of convolutional codes which is to be used
throughout the rest of this chapter. A complete treatment of this subject can be
found in [59]

Is

In section 3.3, we elaborate the idea of minimal trellis structure of

33
convolutional codes and define the trellis-canonical PGM. Section 3.4 presents a gen-
eral algorithm for finding the minimal trellis structure, given any PGM as input.
While the algorithm always terminates, it does not guarantee the output to be trellis-
canonical. However, as proved in section 3.5, for the class of most useful PGMs, viz,
the canonical PGMs, there exists a simpler algorithm which always terminates and
guarantees a trellis-canonical output. In section 3.6, we show that permutations can
reduce the trellis complexity of a convolutional code substantially. The last section

is the conclusion.

3.2 The basic theory of convolutional codes

An (n, k) binary convolutional code C is a k-dimensional subspace of F'(D)", where
F(D) is the field of rational functions in D over GF(2). A generator matrix G(D)
for C'is a k x n matrix over F(D) whose rows form a basis for C. It follows that any
convolutional code has a polynomial generator matrix (PGM) whose entries are all

polynomials. Hereafter, we only consider PGMs.

Let a PGM for C be
G(D) =Go+G1D+GyD?* + .- + G D" = (G;;(D)), (3.1)

where G, is a k x n binary scalar matrix, and G, ;(D) is a polynomial. Without loss
of generality, we assume Gy and G be non—zero. Denote the degree of a polynomial
P(D)=3%F%,a;D" be Lifay # 0 or P(D) = 0. Then, for each row i of G(D), define
its degree deg; = max;{degree of G, ;(D)}. The degree of a polynomial matrix is the
maximum degree of all its entries. The internal degree intdeg G(D) of G(D) is the
maximum degree of all its k x k minors. The external degree extdeg G(D) of G(D)
is the sum of its row degrees.

A k x n polynomial matrix G(D) is called basic if, among all polynomial matrices

of the form T(D)G(D), where T(D) is a nonsingular k& X & matrix over F(D), it has

34

the minimum possible internal degree, i.e.,

intdeg G(D) < intdeg T(D)G(D).

A k x n polynomial matrix G(D) is called reduced if its external degree cannot be

reduced by a sequence of elementary row operations, i.e.,
extdeg G(D) < extdeg T(D)G(D).

where T'(D) is a square polynomial matrix whose determinant is a nonzero scalar. A
PGM G(D) for the convolutional code C' is canonical if and only if it is both reduced
and basic. It turns out that every PGM is equivalent to a canonical PGM.

Suppose G(D) is canonical. Then, deg; is called the Forney index of row 7. Let the
Forney indices be denoted by f1 < fo < --- < fi. The largest Forney index f, = L is
the memory of the code and the sum m = f; + fo+ f3 + - + fi is the degree of the

code.

3.3 Minimal trellises for convolutional codes

The dynamics of a convolutional code can be depicted by a finite state machine. If we
assume the starting point be the zero state and make time expansion of the finite state
diagram, we construct a conventional trellis for this code. This trellis in principle is
infinite but has a very regular structure consisting of a short initial transient section
called the head and repeated copies of what we shall call the trellis module. In a
truncated trellis there is also a section called the fail. In each trellis module, there
are 2™ initial states and 2™ final states. In general, the conventional trellises for
convolutional codes have a regular structure as shown in Figure 3.1. Thus we may
concentrate on one trellis module instead of the whole trellis to analyze such trellis
complexity measurements as the number of edges, the number of vertices and the
spatial distribution of these edges and vertices, all with respect to each information

bit.

Head

Module 1

Figure 3.1: General Trellis Structure for Convolutional Codes.

A convolutional code has many trellis modules other than the conventional one.
The minimal trellis modules are those which are simpler than others, in terms of
some trellis complexity measurements. Based on minimal trellis modules, the minimal
trellis structure is built. To demonstrate this idea, consider the discrete semi-infinite

generator matrix G* for a convolutional code.

Go

G*

I

A convolutional code is thus like a block code with infinite length. The techniques
developed in [58, 42] can be used to construct the minimal trellis. As we shall see,
however, the situation is more complex than for block codes.

If we concatenate the L + 1 matrices Gy, G1,Ga, -+, G, we obtain a k x (L + 1)n

Module 2

G
Go

G
Gy
Go

scalar matrix, which we denote by G:

G =

Module 3

(GO Gl Gy -~

36
Then

G* = (3.4)

where S(-) is the shift-right-one-block operator. We call each shifted version of G a
layer of G*. For example, S 3(C?) represents the third layer in G*.

Each trellis module corresponds to one compilete vertical section of G*, i.e.,

Gr
Gr-

oy
1

(3.5)
G
Gy

According to the trellis theory for block codes [58], if there are e; active elements

in the i** column of G, the number of edges in the corresponding trellis module is

o
7=1

If the number of active elements can be reduced in a trellis module, the edge com-
plexity measurement, defined as the number of edges per information bit, can be
reduced.

Unlike block codes, it is not enough to put the matrix G into LR-form [58]. For

two different rows 7, 7 in G, it may happen that

In other words, with respect to G*, row 7 in one layer of G* has identical right end
with row j in the next layer. Therefore, the spanlength of row i or j could be reduced

further.

37
Definition: A PGM G(D) is LR-minimal if for any two different rows of G*, r; and
r;, the following holds:

(b) R, # R,,. (3.8)

The following lemma says that it is not necessary to check Eqn. (3.7) and (3.8)

for all rows in G*.

Lemma 3.1 A PGM G(D) is LR-minimal if and only if for any two different rows
m é’, 1 and j,

(a) L; # L; mod n. (3.9)
(b) R; # R; mod n. (3.10)

Proof: Without loss of generality, suppose G(D) to be LR-minimal, and L;—L; = s-n
for some 4, 7 and s > 0, then s # 0. But the left end of row j in the s layer of
G* is L; + s - n, which is equal to the left end of row ¢ in the first layer of G*. This
contradicts the LR-minimal assumption. So Eqn. (3.7) and (3.8) imply Equn. (3.9)
and (3.10).
Similarly, if Eqn. (3.9) and (3.10) hold, then G(D) must be LR-minimal. 5
The conditions (3.9) and (3.10) or (3.7) and (3.8) are therefore both called the LR

properties of convolutional codes. In practice, conditions (3.9) and (3.10) are usually
more convenient to use.
Definition: A PGM is trellis-canonical if it is canonical and, in one trellis module,

minimizes
e the total number of edges.
e the total number of states.

e the total number of bifurcations.

Lemma 3.2 A PGM is trellis-canonical if and only if it is canonical and LR-minimal.

38
Proof: It follows that the LR-properties minimize the total number of edges per
information bit, the total number of states per information bit, as well as the total

number of bifurcations per information bit and some other complexity measurements

simultaneously. See [58, 80].
Thus, obtaining the minimal trellis structure is equivalent to obtaining the trellis-

canonical PGM.

3.4 The basic algorithm

The question now arises as to how to reduce the trellis complexity for a given con-
volutional code. Analogous to what we did with block codes, the main objective is
to reduce the number of active elements in a trellis module. If the LR properties do
not hold on G*, further reduction of trellis complexities is possible. Since the scalar
generator matrices for convolutional codes are infinite, we can not simply apply row
operations on G*.

In general, there are five cases to be considered. For some classes of convelu-
tional codes, the problem can be simplified. We don’t consider the effect of column
permutations until section 3.6.

In what follows, we assume 7 < j and let the m** row of the polynomial generator
matrix G(D) be denoted by Row|[m].

For any two rows r; and r; in G*, let the corresponding rows in G(D) be Row[I],

RowlJ], respectively.

CASE I:
GCD(Row[m]) # 1 (3.11)

i.e., the greatest common divisor of the m* row of G(D) is a nonzero scalar. We

divide Row[m| by its GCD.

39
CASE II:
L., =1L, and R, >R, (3.12)

If r; and r; are in the same layer, it is enough to add Row[J] to Row[I]. If r; and r;
are in different layers, there exists some positive integer s such that D? is a divisor of

every entry in Row[I]. In other words, the rule of CASE I applies first.

CASE III:
R, =R, and L, <L, (3.13)

o

If r; and r; are in the same layer, it is enough to add Row|[J] to Row[i]. If r; and r;

are in different layers, there exists a positive integer s such that the row operation:

Rowl[I] = Row[I]| + D* - Row|J] (3.14)

will shorten the spanlength.

CASE 1V:
Ly, = Ly, and R, <R, (3.15)

CASE V:
R,,

(3

= R,, and L, > L, (3.16)

In these two cases, if r; and r; are in the same layer, it is enough to add Row[I] to
Row[J]. If r; and r; are in different layers, there exists some positive integer s such

that D® is a divisor of every entry in Row[/]. Then return to CASE L.
Example 3.1 The (3,2) code

Consider the code with PGM:

G(D) = (3.17)

40
This code is LR-minimal. But it is not trellis-canonical. This example shows that we

must consider CASE 1.

Now we come to an algorithm to find the trellis-canonical PGM with a general
PGM as input. The algorithm calls & subroutine CHECK_GCD(Row_Vector) to
check CASE I on the PGM.

The subroutine to check CASE I: CHECK_GCD(Row_Vector).

Begin:

IF (GCD(Row Vector) # 1)
Row_Vector=Row_Vector/GCD(Row_Vector);

RETURN(Row_Vector).

End.

However, the algorithm actually examines the LR properties on G instead of G*
and does all operations on G(D). After any row operation on G(D), subroutine
CHECK_GCD(Row_Vector) is called again. The output PGM is guaranteed LR-
minimal. In the algorithm, ¢, j are different integers and 0 < i, 7 < k—1. sis a

non-negative integer.

The algorithm for general PGMs: ALG1.

Begin:
FOR (m = 0 to k — 1) CHECK_GCD(Row[m]);
WHILE (LR properties do not hold on G)
{
IF ((Ri=Rj+s-n)and (L; < L;j+s-n))
{
Rowli] = Row[j]D* + Rowli];
CHECK_GCD(Rowli]);
}
IF (L; = L; and R; > R;)

1
<
(8

Row[i] = Rowlj] + Rowlil;

CHECK_GCD(Rowli]);

}

IF ((L2 = Lj and Rz < Rj) or (Rz = Rj and Lz Z Lj))

{

Rowlj] = Row[j] + Rowli];

CHECK_GCD(Rowlj});

}

End.

Theorem 3.1 The algorithm ALG1 is convergent.

Proof: Without loss of generality, assume L, = L; + sn. Since

GCD(Rowl[i]) = GCD(Row[j]) =1

42
after calling the GCD checking subroutine, s must be 0. If R; > R;, adding row j to
row ¢ will reduce the total of active elements in G. This corresponds to adding Row[n]
to Row[m]. If R; < R;, adding row i to row j will also reduce the total number of
active elements in G. This corresponds to add Row[m] to Row(n]. Since the total

number of active elements in G is finite, it will terminate after a finite number of

steps. &

3.5 The simplified algorithm

Definition: A PGM is strictly row-reduced if the spanlength of the corresponding G

can not be reduced by an operation of the form
Row[m] = Row[n]D*® + Row[m], (3.18)

where s is some integer and m # n.

In fact, this property is equivalent to the LR properties.
Theorem 3.2 A PGM is strictly row-reduced if and only if it is LR-minimael.

Proof:
Not LR-minimal== not strictly row-reduced.
If the LR properties fail, then for two different rows in G and some s > 0, there

are four cases:

1. L,=L,+s-nand R, > R,+s-n
Row[m] = Row[n]D* + Row[m] will reduce the spanlength of G.

2. Lp,=L,+s-nand R, <R,+s-n
Row(n] = Row[m]D~* + Row|n] will reduce the spanlength of G.

3. R,=R,+s-nand L,,>L,+sn
Row(n] = Row[m]D~* + Row|n] will reduce the spanlength of G.

43
4. R, =R,+s-nand L, < L,+5s-n
Row[m] = Row[n]D* + Row[m] will reduce the spanlength of G.

Thus, the PGM must be not strictly row-reduced.
Not strictly row-reduced=— not LR-minimal.

If an operation like Eqn. (3.18) can reduce the spanlength of G, either
L,=L,+5s5-n
or
R,=R,+s-n

will be true, since Lrowfnips = Ln + 8- 1 and Rpoypps = R, + s+ n. Here s may be

negative. Both cases imply that the PGM is not LR-minimal. B#

3.5.1 The basic encoder

Lemma 3.3 A PGM G(D) is basic if and only if

k

where A;(D) are determinants of k x k minors of G(D).

Proof: For a proof of this lemma, see [59]. &

For basic PGMs to be LR-minimal, it is not necessary for them to be strictly
row-reduced.
Definition: A PGM is row-reduced if the spanlength of the corresponding G can not
be reduced by an operation of the form of Eqn. (3.18) where s > 0.

Theorem 3.3 A basic PGM G(D) is LR-minimal if and only if it is row-reduced.

Proof: Let the greatest common divisor of row i be d;(D), then Ax(D), the deter-
minants of & X k minors of G(D), are all divisible by d;(D). Since G(D) is basic,
d;(D) =1 from Lemma 3.3.

44
Suppose G(D) is not LR-minimal, then CASE II, III, IV, V might be true. In any
of these four cases, operations like (3.18) can reduce the spanlength of G and s > 0,
as we saw in the previous section. Hence, G(D) is not row-reduced.
If G(D) is not row-reduced, then an operation like (3.18) that reduces the span of

G will necessarily reduce the span of G* or G(D) is not LR-minimal. &
Lemma 3.4 If a PGM is LR-minimal, then it is reduced.
Proof: To prove this theorem, we need a result in [59].

Lemma 3.5 Let the indicator matriz Gy of PGM G(D) be
Giqli, j) = coefficient of D7 in G, ;(D)

where f; s the degree of row i of G(D). Then G(D) is reduced if and only if Giq has

rank k.

Now we examine the indicator matrix G4 of a basic PGM which is LR-minimal.
G4 has the same right end set as G. Since G (D) is LR~-minimal, G has LR property.
Therefore, G;4 has R property, which means G;4 has rank k.

Theorem 3.4 A basic PGM is trellis-canonical if and only if it is row-reduced.

Proof: If a basic PGM is trellis-canonical, it must be LR-minimal. From Theorem
3.3, it is also row-reduced.
If a basic PGM is row-reduced, then it is LR-minimal. Lemma 3.4 guarantees

that it is reduced, too. Thus, the PGM is trellis-canonical. B

3.5.2 The canonical encoder

Theorem 3.5 A canonical PGM is trellis-canonical of and only if it is row-reduced.

Proof: This follows from Theorem 3.4 and the fact that canonical PGMs are basic.

45
3.5.3 The simplified algorithm: ALG2

For the class of basic PGMs, a simplified algorithm readily follows from the theorems

in the preceding section. All symbols have the same meanings as in ALGI.

The algorithm for basic PGMs: ALG2.

Begin:
WHILE (LR properties do not kold on G)
{
IF ((Ri=Rj+s-n)and (L; < L;j+s-n))
Rowli] = Row[j]D* + Rowli];
IF (L; = L; and R; > R))
Row[i] = Row[j] + Rowi];
IF (Ly=L;and R; < Rj) or (R; = Rj and L; > L; })
Row[j] = Row[j] + Rowli];

End.

Theorem 3.6 The algorithm ALG2 terminates correctly.

Proof: ALG2 is basically the same as ALG1, so it terminates. Since basic PGMs will
still be basic after any number of elementary row operations, ALG2 needs not worry
about GCD of any row in G(D) at any time. When ALG2 terminates, the result
PGM is basic and row-reduced, i.e., trellis-canonical. B

Hence, in general, we would reduce the code to be basic then apply ALG2.

46
3.6 The Column Permutations

To illustrate the effect of column permutations on the trellis complexity of convolu-
tional codes, we counsider the (8,4,3) partial-unit-memory code with canonical gener-

ator matrix [1]:

11111111 00000000
11101000 11011000

D) = + D
10110100 10101100
10011010 _ 10010110

Applying ALG2 to this code, we obtain the canonical-minimal PGM for this code:

11111111 00000000

00016111 i 11611600
G(D) = +

01001011 10101100

00101110 | (0111010 J

The matrix for the corresponding trellis module turns out to be:

o T S o S O oo S O S S
O e O = O O kO
N - S < S S N = T =
e e S S S < B = S
N S T = =)
e R = S = S = S o B = S e B
T e s T B e B e B
O kel e DD O O

The number of edge symbols in one trellis module is 480. Since it represents four
bits, it follows that the trellis complexity is 120 symbol-edges! per information bit.

However, if column permutations are allowed, the permutation (01243567) results

If one edge corresponds to 3 symbols, it counts 3 symbol-edges.

47

in an equivalent code whose PGM is:

11111111 00000000
11110000 11011600

G(D) = + D.
10101100 106110100
10011010 10001110

The trellis-canonical form of this code is:

11111111 00000000
00001111 11011000

- + D.
01010011 10110100
00110110 00111010

The trellis complexity turns out to be 104 symbol-edges per information bit.

3.7 Conclusion

In this chapter, we have shown that every convolutional code has a unique minimal
trellis structure, which is usaally much simpler than the conventional trellis structure.
We also presented algorithms to construct the minimal trellis for any convolutional
code. These results allow us to make a direct performance-complexity comparison for

block and convolutional codes, which we do in the next chapter.

48

Chapter 4 LTC versus ACG

4.1 Introduction

In Chapter 1, we presented the minimal trellis theory for block codes. Algorithms
were developed in Chapter 2 to search the minimal trellis structures for various codes.
The results in Chapter 3, on the other hand, enable us to obtain the minimal trellis
structures for convolutional codes. Since the minimal trellis structure determines the
computational complexity of the Viterbi decoding algorithm or its variants, we are
now in a good position to make a comparison of convolutional codes and block codes.

What is LTC?

In this chapter, the trellis complexity is restricted to mean the number of trellis
edges per information bit. Since this number is typically large, we use logarithmic
trellis complexity (LTC) which is the base-2 logarithm of trellis complexity. Let |E]!
be the total number of edges in the minimal trellis for block codes or the minimal
trellis module for convolutional codes, then

LTC = log, i—f—l (4.1)

However, the comparison is not yet complete. For example, if there is no coding
at all, the LTC would be minimal, but any decoding is meaningless. Thus, the coding
performance is an indispensable ingredient in this discussion.

Usually Ej/Ny, the ratio of energy per information bit to noise spectral density to
achieve some specified error probability, is the measure of a communication system.
The amount of improvement of a coded system over uncoded systems is measured

by the saving in E,/Np. Assuming a Gaussian channel and BPSK modulation, the

IAssume the optimal permutation. If the optimal permutation is unknown, we use the best
known results.

49

asymptotic coding gain reflects the “merit” of a particular coding scheme or the
amount of improvement as the decoded bit error probability goes to zero. On the
other hand, for non-Gaussian channel and many popular modulation schemes such
as Trellis Coded Modulation (TCM) and Multi-Level Coded Modulation (MLCM),
the coding gain heavily depends on the signal constellation and the symbol-to-signal
mapping besides the code itself. Under such a circumstance, there does not exist an
omnibus quantity to exactly measure the coding gain. To preclude this dilemma, we
employ ACG as the index of coding performance.

What is ACG?

The asymptotic coding gain (ACG) is defined as the product of the code rate and

the minimal (block codes) or free (convolutional codes) distance.

ACG = %d = Rd (4.2)

There are several advantages to using the ACG as the coding performance mea-
suremernt.
e ACG is a simple, neat combination of the most important code parameters.

e ACG is independent of any particular modulation technique or channel condi-

tions.

¢ ACG does have practical implication. It reflects the coding gain for Gaussian

channel and BPSK modulation when the signal-to-noise ratio is large.

e It is broadly agreed that Gaussian channel and BPSK is the benchmark on

testing binary codes.

What is the comparison?

In a fair comparison of codes, there are two criteria.

1. The ACG which iacicates the coding performance. After all, we use codes to
combat errors in communication. Thus the higher the ACG, the better the

code.

50

BO

The LTC-ACG ratio which measures the coding efficiency. This quantity helps
one select the best code meeting the performance or complexity specifications.
While there are many codes achieving the ACG requirement, they do not have
the same coding complexity. A smaller LTC-ACG ratio means saving in decod-

ing effort.

In this chapter, we shall examine the relationship between LTC and ACG for both
block codes and convolutioral codes. Since it is extremely difficult to compute the
exact LTC-ACG ratio for most codes, we present a universal lower bound, which is
similar to a result in [43]. In section 4.2, block codes are considered. Section 4.3 ad-
dresses convolutional codes. The comparison between block codes and convolutional

codes is discussed in sections 4.3 and 4.4.

4.2 Block codes

4.2.1 The theorem

In this section we shall derive a lower bound on the LTC-ACG ratio by bounding
the total number of edges in the minimal trellis in terms of n, k, and d. This can be

done by studying the properties of a MSGM.
Lemma 4.1 For any [n,k,d] linear code, mg > kd.

Proof: Each row of the MSGM is itself a non-zero codeword. There are at least d
non-zero entries in each such codeword. Hence m,, > d. Summing over all rows leads

to the conclusion.
Lemma 4.2 For any [n, k,d] linear code, 3 e; = mg.

Proof: An entry a;; in the generator matrix is called active if L,, < 7 < R,.. We

shall count the number of active entries in two ways. The number of active elements

inrow r;is {7 : L, < j < R, }|, which is m,.. Thus the total number of active
i J i -.7 K z

elements is the sum of all row spans, i.e., mqg.

51

On the other hand, the number of active elements in column j is

I{Z Ly, <5< RmH

Thus Y, e, = mg. B

k—{ij+1<L,}
k— fir1—p;

€5

Theorem 4.1 For any linear block code

LTC > ACG — logy R.

Proof: By the arithmetic-geometric inequality,

£l

Hence

Lrc

v

v

vl

v

>

n(ZZi “y

Sl

n2™% (By Lemma 2).

ACG — log, R.

- ’{Z] > Rh}

Corollary 4.1 LTC > ACG, with equality if and only if R = 1.

Proof: Since R <1, —logy, R > 0. Then LTC > ACG.

(4.6)

(4.10)
(4.11)

(4.12)

(4.13)
(4.14)

52
If LTC = ACG, R must be 1.
5

For the [n,n, 1] code, ACG = 1. Since ¢; = 1, LTC = log, szsﬁ =1=ACG.

4.2.2 Some examples

Example 4.1 The [n,n — 1,2] parity—check code.

11 0 --- O
01 1 0
0 0 -+v «ov ...
60 -~ 1 1

The MSGM for the [n,n — 1, 2] code.

Its minimal trellis has 4(n — 1) edges. Thus LTC = 2.

The ACG is
on 1
n
Hence
Lrc o
ACG n-—1'

Note that this ratio is always strictly greater than 1 but it approaches 1 as the

code length goes to infinity. Hence (4.6) is asymptotically tight in this case.

Example 4.2 The [n, 1, n] repetition code.

(111---1}

The MSGM for the [n, 1,n] code.

The ACG is 1 and
LTC =1+logyn.

Therefore, the LTC-ACG ratio is

LrcC

m :1-{—10g2n.

Since R = 1/n, the bound (4.6) is exact in this case.

53
Example 4.3 First order Reed—Muller codes.

In [37, 38], the optimal trellises for Reed-Muller codes were completely determined.
For the first order RM codes, n = 2™,k =m -+ 1,d = 2" and ACG = 21

The edge dimension distribution is:

dimension: 1 2 3 - m—1 m

number of : 2 2 2% ... gm~% gm-l

(This means that there are two stages with edge dimension one and so on)

Then

E = 2+ 227! (4.15)
i=1
gm+l 4
= 24— (4.16)
6
Therefore
LTC 2(log,(4™! +8) — log, 6(m + 1)) (417)
ACG m+1 '
and
Lrc
i =4, .
N YolE (4.18)

The left end (L;) set is {0,2% 2, -+ 2™~} The right end (R;) set is {2™—1,2™ —
20—1,..-,2m —2m"1 _ 1}, The total span

m-+1

meg = Y (Ri—L;i+1) (4.19)

=1
m-+1 m-+1

= D (Ri+1)- > L (4.20)
i=1 i=1
m—1]

= (2™ — 211 4 2™ (4.21)
i=0

= (m—1)2"+2 (4.22)

o4

From 4.11
—1)2m + 2
rre > ™ i T2 o, R (4.23)
2
= m—1+g+m—log2(m+l). (4.24)
Thus
. LTC
Jim —me 24

which coincides with the exact value. But (4.6) gives 3 as a lower bound.

The following theorem is a stronger result than Theorem 3 in [44], with a simpler
proof. It shows that we can also obtain lower bounds on other trellis complexities as

well.

Theorem 4.2 Let S0, = max{s;}, then

o(d— 1
n—1 N
Proof:
Y8 = nk+k=> fi—> pi (4.26)
i=0 i=0 i=0
[n—1
= nk+k—=> fi=> pi—-k—k (4.27)
i=1 =0
i=1
Since sg = s, = 0, we have
(n = 1)8mae ZZSi:mg-kzkd—k, (4.29)
=0

ie.,

-1 —
Smaz = k(d) > k(d 1). (4.30)
n—1 n

55
&

4.2.3 The asymptotic analysis

To study the asymptotic behavior of the LTC-ACG ratio, we first note that in [43],
some asymptotic results on S, were presented. These results are closely related to
the discussion in this chapter. In the sequel, S, is the symmetric permutation group
of order n. Rpq(x) is the McEliece—Rodemich—-Rumsey—Welch [63] upper bound,
given by

Rpae(z) < min 1+ g(v?) — g(u® + 2zu + 22), (4.31)

~ T 0<ui-2

where
g(u) = Ha((1 = V1—12)/2), (4.32)
and Hy(z) is the binary entropy function defined as
Hy(z) = —zlogyz — (1 — x) log, (1 — z). (4.33)

Ronaz(z) is strictly less than any other known upper bound, thus providing the best

bound in the following theorems.

Theorem 4.3 [43] For any sequence of block codes with parameters (n,kn,d,), if

limy oo &2 = R, im0 % = § and RS # 0, then

™mar R - Limaz
lim inf > > Finas (L9)
n—oo n (L—1)

for any integer L > 2.

56

In the original statements in [43], s, is replaced by
8" = min{Smaee : Sp acts on the column vectors}.

However, there is no real difference.

Theorem 4.4 Let C be a sequence of block codes with parameters (n,k,,d,) such
that lim,, o %" = R, lim, —C% =06 and Ré £ 0, then
LrcC R — Rppau (L)

. N | |
M inf e 2 P R (L — 1) (4:35)

Proof: Since s; <e¢; < s; +1,
Qsmam S 226" - |E| S nzsmaz"r‘l.
i

We have
Smaz IOg k < Lrc < Sppaz + 1 + IOg—’Z

which implies

Jim ©C = Jiy e (4.36)
Hence
B g = e)
_ hn;;:’:f%?_ (4.38)
> max R Rmax(Lé}. (4.39)

L>2 R6(L-1)

57
Corollary 4.2

LTC
o S
Jim inf GoC 2 2 (4.40)

Proof: By the Plotkin bound, ¢ < —;— Suppose § = 0.5, then L6 > % Note that

Roae(z) = 0if 2 > 0.5. With L =2, (4.35) becomes:

T
im inf ¢

> 2. (4.41)

If § < 0.5, let L =[3]. It is easy to check that L§ > I and L > 1. Substituting
L in (4.35), we have

LTC 1
lim in > = .
Am it 756 2 SIoD) (442)
1
> - 4.43
— 5 +1-1) (4.43)
= 2 (4.44)

Unfortunately, (4.40) does not cover Ezample 1 to Example 3 and many popular
codes, including higher order RM and BCH codes. Combining (4.6) and (4.40) gives

the following asymptotic lower bound for linear codes.

Theorerm 4.5 For any sequence of linear codes with fixed R, 4,

TN
e
o
&3]

p——

. . LTC 2 ifR6>0
Him inf >)
nose ACG 1 ifRE=0

58
4.3 The convolutional codes

4.3.1 The LTC-ACG ratio

A convolutional code is of infinite length. But if we retain the first M rows of the
scalar generator matrix and ignore the rest, the resulting subcode is in fact a block
code. If M is large enough, the minimal trellis (without column permutation) of the
block code mainly consists of the trellis modules. This simple observation allows us
to approximate convolutional codes by block codes.

The sth truncation of an (n, k) convolutional code is an [n(fx + s), ks] block code
whose generator matrix G° is just the first ks rows of the scalar generator matrix
G*. Denote the sth truncation of the code C by C®. If G* corresponds to the trellis-

canonical generator matrix for the convolutional code, G* is a MSGM for C°.

Lemma 4.3 Let LTC, be the trellis complexity index of code . (The subscript is

omitted when understood.) Then

lim L7C¢qs = LTCe.

§—00

Proof: If s is sufficiently large, the minimal trellis for C* contains s — f;, copies of the

trellis module, in addition to a head and a tail whose matrix forms are:

Gy Gy Gy -+ Gp

G Gy .- GL2
Ghead = ° '

Go

G - G Gp Gy

59

Then
(s — fu)lE| +

Etail I + lEhead!
ks

LTCe = log,

where |Eygi1l, |Fread| and |E| are the number of edges in the tail, the head and one
trellis module, respectively.

Apparently,

0 < |Buwil < frlEl, (4.46)
0< IEhea.d’ < fk!E[(447)

The trellis complexity index for C'® can thus be bounded by

- E)| E
log, gf__fM < LTCgs < log, w (4.48)
ks ks
Note that n, k and fj are fixed.
Let s go to infinity:
: s—fe . 1Bl \El s+ fu
lim log, £ 1 log, ngl < lim LTCps < log, |_/’<:— + lim log, . (4.49)
—10a, Bl oy 1Bl _
LTCe = log, k < lim LTC¢» < log, = LTCe (4.50)
Theorem 4.6 For any convolutional code C,
LTC > ACG —log, R. (4.51)

Proof: Since every codeword of C? is a codeword of C*™ and C,

d* > d > dppee. (4.52)

60

From Theorem 4.1,

ks
LTCgs > ACGgs — logy ——.
o= e T ()
Thus
LTC = SlLrgOLTCCs (4.53)
.k

> lim ;{d —log, R (4.54)
> ACG —logy R. (4.55)

Corollary 4.3 For any convolutional code,

LTC

4.3.2 Asymptotic analysis

In this section, we shall investigate the asymptotic behavior of the LTC-ACG ratio
for convolutional codes. However, what asymptotic analysis means here is a little
different. For block codes, we examine a sequence of codes whose length, dimension
and minimum distance all are variable, but whose relative distance and rate converge
to some number, respectively. For convolutional codes, we study properties of a
sequence of codes of variable memory f; (usually in increasing order), but with fixed
values of n and k. Figure 4.1 shows that for the best-known (2,1, fx) convolutional
codes, the LTC-ACG ratio approaches, and then crosses, the line of slope 2, as the
memory increases. In fact, we can prove that this is true for any nondegenerate
sequence of convolutional codes. To do this, we will continue to employ block codes
to “approximate” convolutional codes.

Consider the sequence of block codes Cf% , which are the sth truncations of an
(n,k) convolutional code Cy, with free distance dy,. If fi and s approach infinity
independently, we can hardly expect a meaningful result, so hereafter let s = Afj for

some constant A > 1.

61

LTC vs. ACG

T ! T T

LTC

ACG

Figure 4.1: The plot of LTC versus ACG for optimal (2,1, fr) codes. Small circles
represent codes with increasing memory.

62

For this sequence, the rate is convergent:

fm s = ALK (4.57)
a-en(fi+s) 1+X n '
A
= — R 4.5
1+ (4.58)
> 0. (4.59)
The asymptotic relative distance would be
des
§ = lim —2 (4.60)
fr—rco n(]k -+ S)
1 dCs
= — 1i L (4.61
n(l+ A) fkl—gnoo fr (4.61)
1 dy
= ———— lim —%. 4.62
n(l -+ /\) fkl—l;noo T& ()
Definition: A sequence of convolutional codes is degenerate if
d
lim inf -2 = 0. (4.63)
fk—mo ,fk

For a nondegenerate sequence whose relative distance is convergent, from Theorem

4.5, we have

LTCes 1 LTCeos
lim inf e = lim inf T
fr—ro0 n(fk -+ S) n(l - /\) fr—ro0 fk
ACG’C;Ic
> 2 1 —_— 4.64
= % he n{fr + s) (464)
Lemma 4.4
LTCe: — LTCY,
lira Te = (4.65)
Jg—roo Jk

Proof: From (4.49) we have

log., A=1 LTCos — LTC
P82 < lim I e < lim)
Jr—ro0 fr fr—r00 fr fe—ro0 fr

A+l
log, &~

63

ie.,
LTCes — LTC
| lim L fk’ < lim < - 0,

where ¢ is a constant. B3

Theorem 4.7 For any nondegenerate sequence of convolutional codes with fixed n
and k,

Lrcy
lim inf ——% > 2.
fkggoln ACGf -

k

Proof: First divide the sequence into subsequences such that the relative distance of
each subsequence is convergent. For each subsequence, from Lemma 4.4 and equation

(4.64)

Lre limy, oo inf 222
lim inf =2 = —2 L (4.66)
fr—o0 ACGfN Rhmfk—)oo f}’:e
LTCC;
limy, inf k
ot I (4.67)

i d e
Rlimy, o0 —ick =

ACGops

(Fits)
T kT (4.68)

Tk
20 Rn(l+X) (4.69)

1+ A Rlimy, o 22

3 d ree
1+ Aimy, o e

T
2\
= —— > 2 4.71
14+ A ()

2n(1 4 A)limyg, oo

v

R limfk_,oc

v

(4.70)

since A can be arbitrarily large.

The theorem follows by taking the minimum over all subsequences. &

4.4 More examples

In the appendix, we list the ACG and the LTC for a large number of “good” convo-

lutional codes, and a few block codes. Plots are also presented to offer better visual

64
understanding of the LTC-ACG ratio. In Fig. 4.2 we show a scatter plot of collected
(ACG,LTC) pairs to provide a direct comparison. In all these plots, there is one line
of slope one and one of slope two. Theorem 4.1 and 4.6 guarantee that all points
are above the line of slope one. It is interesting that the plots reveal that for most
“oood” convolutional codes of relative small memory, the LTC-ACG ratios fall in
the 1.5 ~ 2.0 region. For example, for the (8,4,3,8) PUM code, it is 1.68. For the
“NASA” standard (2,1,6,10) code, the ratio is 1.60 which is smaller than any other
known “good” codes. For block codes, the LTC-ACG ratio is generally above the
slope two line, implying worse efficiency. This partially supports the general belief

that block codes are “worse” than convolutional codes.

4.5 Conclusion

In this section, we studied the performance/complexity tradeoff for block and convo-

lutional codes. An interesting analogy to real life is

Investment N Lrc
Profit ~— ACG’

We first obtained bounds on the LTC-ACG ratio by examining the span distribution
for block codes. The connection of these bounds with the work of [43] has been
discussed. The powerful span analysis produced even stronger result.

Intuitively, all theorems regarding block codes can be generalized to convolutional
codes, and we did use block codes to approximate convolutional codes. But caution
is still needed to avoid plausible arguments. The generalization is thus subtle. Al-
though empirical study suggested that block codes usually have worse efficiency than

convolutional codes, it is too early to conclude that block codes are worse.

65

LTC vs. ACG

I T T T T T

LTC

ACG

Figure 4.2: A scatter plot of (ACG,LTC) pairs for the codes in the Appendix. Con-
volutional codes are indicated with small circles and block codes with *’s.

66

Chapter 5 Trellis Decoding Complexity

5.1 Introduction

Since its introduction in 1967, the Viterbi Algorithm (VA) has been recognized as an
attractive decoding technique for convolutional codes. Unfortunately, the complexity
of the standard VA prohibits its use in many applications. Recently, extensive research
has been done on reducing the decoding complexity of Viterbi-like algorithms for
block codes [22, 37, 38, 40, 45, 57, 58, 64]. This in turn spurred research on low
complexity maximum likelihood decoding for convolutional codes [33, 60, 61, 72].

By decoding complexity, we mean the number of addition equivalent operations
required per decoded information bit. In chapter 3 (also see [60]), a complexity lower
bound for bit—by-bit Viterbi decoding was given. A general algorithm for achieving
this lower bound was proved. However, even lower decoding complexity is achievable
by grouping consecttive channel outputs and using group-by-group Viterbi decod-
ing. To achieve this, we propose a Hybrid Trellis Decoding Algorithm (HTDA), which
exploits secticnalization techniques for block codes [45]. Hole and Ytrehus recently
proposed a Two—Step Trellis Decoding Algorithm (TSTDA) for decoding Partial Unit
Memory (PUM) convolutional codes [33]. The TSTDA also takes advantage of group-
ing channel outputs. But the HTDA is applicable to most codes while the TSTDA
is efficient only for codes with parallel branches (e.g., PUM codes). We shall see that
the HTDA is more efficient than the TSTDA even for some PUM codes.

In section 5.2, the basic Viterbi decoding algorithm is briefly analyzed. Section 5.3
contains a concise description of the TSTDA. In Section 5.4, the HTDA is detailed.
An example is presented to show that the HTDA is more efficient than the TSTDA for
PUM codes, which in turn is superior to the standard VA for comparable punctured
codes [33]. In section 5.5, we shall discuss the bounds on the decoding complexity of

the HTDA.

67
5.2 The basic algorithm

An optimal decoder (Figure 5.1) produces an estimate v of the transmitted sequence u
given the channel output r, such that the a posteriori probability P(v|r) is maximized.
If all codewords are equally likely to be transmitted, this is tantamount to maximizing

P(r|v), the likelihood of r given v.

Channel Ouiput Decoder Output
r v

Decoder

Figure 5.1: A General Decoder.

Assume a memoryless channel which outputs real numbers. Let f;(-) be the chan-
nel transition probability densities, where i € GF(2). The optimal decoding strategy

may as well maximize any monotonic increasing function of P(r|v). For example,

D(r,v) & S (=1)%m(r;) = 2P(x|v) — 3 (log fo(r;) +1log fi(r;)) (5.1)

1 I3

is such a function, where m(r;) = log(fo(r;)/ fi(r:)). Hereafter we assume the optimal
decoder input is m(r;). Then a simplified VA can be employed in decoding.

The Viterbi algorithm is best understood by examining the trellis structures for
convolutional codes. In Chapter 3 we defined the minimal trellis for convolutional
codes. However, the internal structure of a treilis module may vary. For example,
the trellis module considered in Chapter 3 is of depth! n where the label length of
each edge is one (the primitive trellis). A depth-1 trellis module is one whose label
lengths are n for all edges. Figure 5.2 shows two trellis modules for the same code. A
general trellis module may have m depths and multiple label lerngths, provided that

>m .Ul = n, where [l; is the label length of depth 4. (This is analogous to the trellis

IThe meaning of depth and stage in this Chapter is different from that in Chapter 1.

68

“segmentation” for block codes [45].) On the other hand, the trellis complexity of
any “segmentation” of the trellis module is completely determined by the minimal

trellis structure proposed in chapter 3.

Stage i Stage i+1

depth 1 depth 2 depth 3 depth 4
w 0

Stage i Stage i+1
0 0000 0 0
1007
0110
7 =] 1 1
1111
a b

Figure 5.2: a: Depth—1 trellis module. b: Depth—4 trellis module.

Now consider the simple trellis module shown in Figure 5.3. There are four states,
00, 01, 10 and 11. Let 1%} be the label of the edge from state 01 to state 11. di, denotes
the distance accumulated up to stage ¢ at state 00. To update the distance of state
00 at stage i + 1 with decoder input r, first the edge metrics D(13,r) and D(133,r)
are computed and added to di, and d',, respectively. The VA chooses the smaller
number as the updated dj, and the corresponding path as the survivor. After all four

states have been updated, the VA either chooses a survivor as its output or repeats

the same procedure on the identical module with a different received vector.

There are three kinds of computations (measured by the number of addition equiv-
alent operations) involved in the VA: the computation of edge metrics, Pg; the ac-
cumulation of distance, P4; and the updating of state distance, Py. If one trellis

module represents k information bits, we define the decoding complexity of the VA

69

Stagei received ¥ Stage i+]

00 e A 00
\ ot
3 e o1

Figure 5.3: Viterbi Algorithm on a simple trellis module.

as
Pg+ Py + P,
Tva = = kA L (5.2)

For a depth—n trellis module, an algorithm to compute vy 4 was given in chapter
3 (also see [60, 61]). However, more efficient decoding is possible using general trellis
modules. The TSTDA and the HTDA introduced in this paper use depth-1 trellis

modules, though HTDA is applicable to general trellis modules.

5.3 Two-step trellis decoding

In [33], a two-step trellis decoding procedure for high rate convolutional codes was
presented. A set of edges is called a paraliel branch if every edge originates from the
same state and ends on the same state as well. The TSTDA first decodes all parallel
branches by a local Viterbi decoder, then constructs a simplified trellis module where
every parallel branch is replaced by the survivor chosen by the local Viterbi Decoder.
The VA is then applied to this reduced trellis module to complete the decoding.
The efficiency of the TSTDA is heavily dependent on the existence of parallel
branches. The higher the percentage of parallel branches, the more efficient the
algorithm. Thus it is suitable for partial unit memory convolutional codes, which

have many parallel branches.

70
5.4 Hybrid trellis decoding algorithm

For convenience of analysis, we may divide trellis decoding into two distinct processes.
The first is to compute edge metrics. The second is to accumulate and update state
distances. In the TSTDA, the two processes are interweaved to achieve lower decoding
complexity. In fact, keeping these two processes separated leads to more efficient
decoding. Since the computation effort required by the second process is essentially
determined by the infrastructure of the trellis module chosen, e.g., the number of
edges and states used, little saving can be expected. We shall therefore focus on

reducing the cost of edge metric computation.

5.4.1 Edge metric computation

Let the edge label set be C, which is a [n, k*, d] linear block code. For each edge e,

its matric is

i(-nféri, (5.3)

i=1
where 1. is the edge label. For a single codeword in C, n — 1 additions are required
to compute its metric. Since different codewords may share internal results, more
efficient methods are available for computing the metrics [45]. For example, once the
metric for (0010101) is known, the metric for (1101010) can be obtained by negation.
Let 8¢ be the minimal number of addition equivalent operations required to compute
all metrics. ¢ is more than a function of n, £* and d, but heavily depends on the

infrastructure of the code.

5.4.2 State distance updating

This part of the computation is primarily determined by the number of edges and
number of vertices in a trellis module. One exception is that when there exist parallel
branches. In this case, the HTDA compares all edge metrics in a parallel branch and
selects the smallest one before accumulating state distance rather than accumulating

the state distance for every edge before comparing and selecting the smallest one.

71
Denote the reduced computation for distance accumulating and distance updating by

P and P}, respectively. The decoding complexity of the HTDA is then

6c + P, + P,

THTDA =~ (5.4)
5.4.3 One example
Consider the (8,4,3,8) PUM code with the trellis-canonical generator matrix
11111111 00000000
01010011 11110000
G(D) = + D (5.5)
00110110 01011100
00001111 01100110

whose primitive trellis is demonstrated in Figure 5.4.

(V)

vi 3 4 5 6 5 6 5 4

Figure 5.4: The simplified structure of the primitive trellis module for (8,4,3,8) PUM
code. Each big vertex represents a set of vertices in the primitive trellis. The sequence
above the figure is the edge dimension profile. The sequence below the figure is the
state dimension profile.

By grouping the eight sections, a depth-1 trellis is obtained. There are 128 edges

in this trellis and 2 parallel edges between any pair of vertices. The edge label set is

72

a [8,5,2] block code whose generator matrix is:

11111111
01010011
00110110
00001111
01100110

Because of the presence of the all-one vector, it is enough to compute the metrics for

the [8,4,2] code with generator matrix

01010011
00110110
00001111
01100110

We do this by computing the first four bits and the last four bits separately, then
combining them using 16 additions. The first four bits form a [4,3,2] code and can
be split again into two [2,2,1] codes. Each [2,2,1] code needs 2 additions. To get the
metrics for the [4,3,2] code from the two [2,2,1] codes, 8 additions are enough. The last
four bits form a [4,2,2] code. Similarly, 8 additions are enough to compute its metrics.
Thus, to compute the edge metrics for the [8,5,2] code requires only 9 additions per
decoded information bit. This number is smaller than that required by any algorithm
in [45]. Because the two parallel edges in each parallel branch are complementary
(defined in example 5.1), comparison is not needed to select the survivor. It turns
out that the HTDA requires only 25 additions and 14 comparisons to decode each
information bit, compared to 42 additions and 22 comparisons for the TSTDA [33]
and 88 additions and 22 comparisons for the VA on a depth-n trellis [60]. Clearly
the HTDA is significantly superior for this code.

73
5.5 Complexity bounds

In this section, we will investigate decoding complexity bounds for the HTDA. As we
have seen, the HTDA consists of two parts: the computation of edge metrics, which
depends on the label set and the state distance accumulating and updating which
is determined by the structure of the trellis module. In [45], various techniques to
compute edge metrics were presented. Each of them produces an upper bound for 0.
However, the discussion in [45] is very specific. To improve their results, we will prove
some general lower bounds as well as upper bounds for §:. These bounds are shown
to be exact in some cases. The bounds do not depend on the computation mechanism
employed. Since the computation of state distance accurnulating and updating can
be accurately computed from the trellis structure, we are not interested in bounds

for this part of the computation.

5.5.1 Lower bounds on 0,

To derive the bounds on edge computation, it is necessary to express the problem in
rigorous mathematic language.

Problem Formulation: Given a subset (code) C = {c,¢,...,cn} of the vec-
tor space V,, over GF(2) and n real numbers r1,rs,...,r,, for each codeword ¢; =
{cj,c5,...,ct} € C, let its metric M, = 5" (—=1)%r;. For an algorithm A € A* as in
Figure 5.1, where A* is the set of all algorithms using allowed operations (which are
to be defined) to compute My, k = 1,..., N, let the number of addition equivalent

operations used be 05. Then 6 = minpe 4+ 04.

It is quite difficult to exactly compute ¢ in general, but not the bounds.
Example 5.1 Gray Code.

Suppose the code is the whole vector space V,,. There are 2" codewords. Two code-
words ¢, and ¢ are said to be complementary if ¢, +c, =1 forany i € {1,2,...,n}.

Since M, + M, = 0, only one of them actually needs computing. Thus the 2" vectors

74

L An Algorithm using
' Additions M;

5 | Shiftings M,

. Negations .
rn i . MN

Figure 5.5: An algorithm to compute code metrics.

of V,, are divided into two disjoint sets, as shown for n = 3:

T To T3 ™ T2 T3

¢t 1 0 O cs 0 1 1

c 1 0 1 cg O 1 0

cg 1 1 1 ce 0 0 O

cs 1 1 0 cg 0 0 1
A B

In group A the codewords are in Gray code order. This requires 2 additions to
compute M,,. Since M., = M., — 2rs, M., = M., — 2rs, M., = M., + 2r3, only one
addition is needed to compute each of them. It turns out that only 5 additions are

necessary to compute all 8 codeword metrics. In general we have

b <2" ' +n—2. (5.6)

We shall prove that this is also the best we can do.

However, it is not clear yet what kinds of operations are legal in this computing,.
In the above example, only three elementary operations, i.e., addition, negation and
shifting, were used. Hereafter, we shall assume that only these three operations are
legal. This assumption is reasonable because in all modern computers, the addition
of two real numbers can be regarded as a unit of complexity. (In some cases this
complexity may be partially transferred to hardware.) Since shifting does not produce

any metric, we incorporate it with the other two operations. Figure 5.6 depicts the

79

two major operations, addition and negation.

A C

(a) C=A+B. (b) B=-A.

Figure 5.6: a: Addition. b: Negation.

Theorem 5.1 Let C be a binary code consisting of N vectors of length n, and suppose

there are k pairs of codewords which are complementary. Then

o> N+n—k—2. (5.7)

Proof: For any codeword ¢, we may construct a directed tree 7T, showing the process
of computing M, for a given algorithm. For example, if ¢ = 1001, Figure 5.3 is such
a tree for some algorithms. The vertices representing the n real numbers are initial
vertices while all others are called operation vertices. The vertex representing M.
is called the root. Each operation vertex corresponds one operation and the result.
Every vertex has at most one out degree and two in degrees. Each tree is the minimal
representation of the process of computing M, in the sense that deleting any edge or
vertex won't produce M,.

We number all trees such that the root value of 7, can’t be generated by T;
1 <4 < j or their subtrees. This ordering is always possible. This implies that any
two trees have at least one different operation vertex.

Now we count the number of distinct operation vertices in the forest of all trees.
In T3, there are at least n — 1 operation vertices. Note that the root of 75 is not in
T1, the root of T3 is not in 77 or T3, or in general the root of T} is not in 7; for any

1 < j; all these roots are distinct operation vertices. Thus there are at least N +n —2

76

distinct vertices in the forest. Since in the best case, k roots are negation operations,

the theorem follows. B

Corollary 5.1 Let C be a [n,k,d] linear code, then

24n—2 if1gcC
2lain—2 if1ecC.

0 >

Example 5.2 Hadamard Code.

Consider the order—2" Hadamard code. It has 27 codewords and distance 2*~!. The
DFT algorithm requires n2” additions to compute its metrics. The lower bound of

Theorem 5.1 is 2*™!1 — 2 additions.
Example 5.3 The [8,5,2] code in section 5.4.3.

The lower bound is 22 additions, compared to 32 additions in the actual algorithm.

5.5.2 Upper bounds on 4.

Any algorithm gives an upper bound. In [44], four different upper bounds were given.
Since we at most compute the metrics for the whole vector space, (5.6) is a simple
upper bound. The “brute force” computing algorithm which computes each metric
independently is obviously the worst case. For each codeword, exactly n— 1 additions
are necessary. Assuming there are k pairs of complementary codewords, only N — k

metrics need to be computed. Therefore, we have

Theorem 5.2 Let C be a (n, N,d) code with k pairs of complementary codewords.
Then
b <min{2" ' +n—2 (n—1)(N -k} (5.9)

Example 5.4 The whole vector space.

77
For the whole vector space, assuming £ = n and 1 € C in Corollary 5.1, the upper
bound and the lower bound coincide, which proves the optimality of Example 5.1.
For a pair of complementary vectors, Theorem 5.1 gives the lower bound n — 1, which

is also identical with the upper bound given by Theorem 5.2.

5.6 Bounds on arbitrary segmented trellises

Consider a minimal trellis module whose G is a m x n matrix of row dimension k. The
state dimensions are sg, 1, -+, S, = So and the edge dimensions are ey, ey, -+, e,. If

the minimal trellis module is partitioned into L sections, and the state dimensions

are Sy, = 80, Stys Stas " * S, _y1St;, = Sn, then edge dimension in section [is
t1—1
* 1
e =ey+ > (e;—si). (5.10)
i=t;.1+1

Assume the label set of section [is an [ny, k] code Cj, then the decoding complexity

of this sectionalized trellis module is

L
S5 4 G, — 2%%) (5.11)

=1

addition equivalent operations.
There are parallel edges in the trellis only if there are constant rows in the poly-
nomial generator matrix. Suppose there are 27 parallel edges between some pairs of

vertices in section /, the decoding complexity would be

2
(2% 4+ 2570 4 g, — 2%4) (5.12)
i=1

addition equivalent operations. In the case these 2F' edges in each parallel branch are

complementary pairs, the decoding complexity reduce to

L
S5 425 g, — 2%), (5.13)

i=1

78
5.7 Conclusion

In this chapter, we have studied the practical trellis decoding complexity and its
relation with the abstract trellis complexity. A Hybrid Trellis Decoding Algorithm
(HTDA) for convolutional codes was proposed and compared with Two—-Step Trellis
Decoding Algorithm (TSTDA) [33]. The HTDA is shown to be superior, in terms
of decoding complexity, to the TSTDA and the standard Viterbi Algorithm (VA) for
comparable punctured codes. Upper and lower bounds on the decoding complexity

of the HTDA are also presented. These bounds are exact in some cases.

79

Chapter 6 Conclusion

Shannon’s original theory showed that channel capacity is attainable via coding.
However, it did not provide clues about how to construct such codes and how to
decode. It has thus been a major focus of communication research to devise codes and
(especially recently) low complexity decoding algorithms that approach the promised
(by Shannon) performance limits.

Observing the prolific research on the trellis complexity of error-correcting codes
and lattices and the interplay of coding and computational complexity, the IEEE
Information society published a special issue on codes and complexity. (November,
1996, IEEE Trans. Inform. Theory.) This special issue includes 32 papers covering
five topics: the treliis complexity of block codes and lattices, dynamical systems
and convolutional codes, decoding algorithms and performance/complexity tradeoff,
coding and computational complexity and symbolic dynamics and constrained codes.
All these papers are well-written and mostly self-contained. Any reader interested in

doing research in the above areas is strongly recommended to read the special issue.

Finally, we now present some interesting open problems to conclude this thesis.

The permutation trellis complexity of block codes.

e Open Problem 1: In Chapter 2, we showed that the permutation trellis com-
plexities are closely related to the permutation total span. We also developed
algorithms minimizing the permutation total span of block codes. A number of
optimal or good permutations for many codes thus were obtained. Behind the
success, however, it has not been proved if other permutation trellis complexi-
ties could be minimized by minimizing the permutation total span. We do not
even know if the total span and the edge complexity could be minimized by one

permutation for an arbitrary code. Any proof or counter-example to the above

80

questions is highly desired.

¢ Open Problem 2: In [36], the authors proved that the problem of finding a
column permutation that minimizes the number of vertices at a given depth
in the minimal trellis for a binary linear block code is NP—complete. Is the
problem of finding one optimal coordinate permutation (see Chapter 2) for a
binary linear block code also NP-complete? A proof of the above statement is
highly welcome. Also, more effort should be devoted to find more powerful fast

algorithms to find the optimal permutations for various codes.
The minimal trellis structure of convolutional codes.

e Open Problem 3: In the computer-aided search for the permutation edge
complexity of the (8,4,3,8) partial unit memory code, surprisingly, we found that
each of the 8! = 40 326 coordinate permutations had minimal edge complexity
either 120 or 104. This strongly suggests an equivalence among permutations,
which if understood theoretically, could make it simpler to find the permutation
trellis complexity and even one permutation achieving it. Block codes also

demonstrate this phenomenon.
The complexity/performance tradeoff.

e Open Problem 4: The plots in chapter 4 and the tables in appendix A showed
that an optimal convolutional code (in terms of free distance) does not necessar-
ily offer the best complexity /performance ratio. Thus, in an engineering point
of view, we would like to know what kind of codes offers the best complex-
ity /performance ratio, provided that the performance is above a given thresh-

old.

e Open Problem 5: On the other hand, the matrix G of the trellis—canonical
PGM falls in the category of “low-complexity templates”. One interesting ques-
tion is what is the best convolutional code (in terms of the free distance) that

a given template can support.

81
e Open Problem 6: More accurate bounds on the LTC/ACG ratio would also

be welcome.
The trellis decoding complexity.

e Open Problem 7: The implementation of Viterbi-like algorithms is quite a
different problem. It deals with the trellis sectionalization, the metric computing
scheme and the VLSI design, etec. Thus, calculating the decoding complexity
(the total number of addition equivalent operations) is a very important but

complex engineering problem.

¢ Open Problem 8: We proved lower bounds on the metric computation com-
plexity in chapter 5. But more work is needed to do to improve the bounds and

design optimal computing scheme.

¢ Open Problem 9: The birth of Turbo codes and Turbo decoding algorithms
has opened a new frontier for modern telecommunication research. Recent
research showed that the Turbo decoding algorithm is related to the backward-
forward propagation algorithm (in learning theory) and belief propagation in
Bayesian network (in artificial intelligent theory). Like the Viterbi algorithm,
Turbo decoding algorithm can be classified as “decoding on graph”. Under cer-
tain conditions, the Turbo decoding algorithm reduces to the Viterbi algorithm.
We believe that the study of all these algorithms will open a new page in the

kistory of communication and coding theory and eagineering.

82

Appendix A Good Permutations for
Block Codes

In this appendix we present tables listing some interesting binary block codes, together
with our current best estimate of their permutation trellis complexities. In the table,
the “Upper Bound” represents the fewest edges in any BCJR trellis for a permutation
of the listed code that our algorithm has been able to find in limited time. The
“Complexity” is the average trellis complexity over information space dimension,
which is the number of edges in the best trellis found so far, divided by the number
of information bits k in the code. This is a rough measure of the decoding complexity
per decoded bit, if the Viterbi algorithm is used on the trellis. The “Lower Bound”
is the bound from eqn. (2.49) (except for the [7,4,3,4] Hamming code). The codes

parameters are, from left to right, length, dimension, distance, and dual distance.

83

Remarks:
e The x means that the permutation found by the search algorithm is optimal.

e One optimal permutation of the [24,12, 8, 8] extended Golay code was discovered

by Forney in [27].

e Kasami et al. in [37, 38] first showed that the standard permutation of Reed-
Muller codes is optimum, which based on the results of [84]. These results
include some codes in the table such as the [8,4, 4, 4] self-dual code, [16,5, 8, 4]

BCH code, [16,11,4,8] BCH code, [32,6,16,4] BCH code, [32,26,4,16] BCH
code, and [32, 16, 8, 8] BCH code.

o The optimal permutation of the [32, 21,6, 12] BCH code corresponds to 14,972

edges in the optimal trellis [83].
e The [17,9,5,6] QR code is from [39].

e The generator matrix for the [31,10,12,5] JMG code is

1000000000101610111100100101001
(0100000000111111000101101111011
0010000000010100110111111011111
0001000000101001101111110111110
0000100000111001100011001010101
0000010000011001111010110000011
0000001000110011110101160000110
0000000100001101010111100100101
0000000010011010101111001001010
00006000001110101011110010010100

84

Table A.1: Code table of good permutations: Part L.

Code Upper Bound Complexity Lower Bound

[7,4,3,4] 36 9 26

Hamming code

[8,4,4,4]x
Sel f—dual] code 44 11 44

BOI wote 156 31.2 148
BOM oone 300 42.8 172
boH o 196 17.8 148
[172 344 172
L7t 420 60 236
BOH e 252 22.9 259

DR 412 45.8 380

85

Table A.2: Code table of good permutations: Part II.

Code Upper Bound Complexity Lower Bound
[égségc’féi] 732 81.33 508
G 3068 255.7 2684
s 3580 208.3 3580
(31,10.12.5] 7068 706.8 3484
81.10,12.5) 7500 750 3484
L1678 5884 367.75 4796
i o 684 114 684
82,1 L12.6] 11804 1073.09 5948
[32,16,8,8]* 6396 399 75 63965

BCH code

86

Table A.3: Code table of good permutations:

Part IIL

Code Upper Bound Complexity Lower Bound

52,21,6.12) 17340 825.7 8316

o e 1180 45.4 1180

o 794620 33109.2 645116
o 860156 35839.8 860156

[64,29,10,8 95839228 2.46 106 161020

164,45,8,16) 1739004 38644.5 143868

lo4,51.6.24) 231228 4533.88 82556

o 5676 99.6 5084

180,40,16,16] 1937899516 4.845 107 146931708

Self—dual code

87

Appendix B Tables of LTC versus ACG

In this appendix, we list the ACG and the LTC for a large number of good convo-
lutional codes, and a few block codes. The Partial-Unit-Memory codes are from [1].
Other convolutional codes are from various publications but all could be found in
21].

From left to right, The parameters of PUM codes are read as length, dimension,
degree, free distance. For all other convolutional codes they are read as length, dimen-
sion, memory, free distance. For block codes, the parameters are length, dimension,

distance.

88

Table B.1: Selected best (2,1,m) codes. (From pp. 85-88 in [21])

Code LTC ACG LTC-ACG Ratio
(2,1,2,5) 4 2.5 1.60
(2,1,3,6) 5 3 1.67
(2,1,4,7) 6 3.5 1.71
(2,1,5,8) 7 4 1.75
(2,1,6,10) 8 5 1.60
(2,1,8,12) 10 6 1.67
(2,1,10,14) 12 7 1.71
(2,1,11,15) 13 7.5 1.73
(2,1,12,16) 14 8 1.75

89

Table B.2: Selected best (2,1,m) codes, continued. (From pp. 85-88 in [21
L

Code LTC ACG LTC-ACG Ratio
(2,1,14, 18) 16 9 1.78
(2,1,15,19) 17 9.5 1.79
(2,1,16,20) 18 10 1.80
(2,1,18,22) 20 11 1.82
(2,1,21,24) 23 12 1.92
(2,1, 23, 26) 25 13 1.92
(2,1,25,27) 27 13.5 2.00
(2,1,27,28) 29 14 2.07
(2,1, 30, 30) 32 15 2.13

90

Table B.3: Selected best (3,2,m) codes. (From pp. 90 in [21])

Code LTC ACG LTC-ACG Ratio
(3,2,2,3) 3.58 2.00 1.79
(3,2,3,4) 5.00 2.67 1.87
(3,2,4,5) 6.00 3.33 1.80
(3,2,5,6) 7.00 4.00 1.75
(3,2,6,7) 8.00 4.67 1.71
(3,2,7,8) 9.00 5.33 1.69
(3,2,8,8) 10.00 5.33 1.88
(3,2,9,9) 11.00 6.00 1.83
(3,2,10,10) 12.00 6.67 1.80

91

Table B.4: Selected best (4,3,m) codes. (From pp. 90 in [21])

Code LTC ACG LTC-ACG Ratio
(4,3,3,4) 5.00 3.00 1.67
(4,3,5,5) 7.00 3.75 1.87
(4,3,6,6) 8.00 4.50 1.78
(4,3,8,7) 10.00 5.25 1.90
(4,3,9,8) 11.00 6.00 1.83

92

Table B.5: Selected best (3,1,m) codes. (From pp. 89 in [21]})

Code LTC ACG LTC-ACG Ratio
(3,1,2,8) 458 2.67 1.72
(3,1,3,10) 5.58 3.33 1.68
(3,1,4,12) 6.58 4.00 1.64
(3,1,5,13) 7.58 4.33 1.75
(3,1,6,15) 8.58 5.00 1.72
(3,1,7,16) 9.58 5.33 1.80
(3,1,8,18) 10.58 6.00 1.76
(3,1,9,20) 11.58 6.67 1.74
(3,1,10,22) 12.58 7.33 1.72
(3,1,11, 24) 13.58 8.00 1.70
(3,1,12,24) 14.58 8.00 1.82
(3,1,13,26) 15.58 8.67 1.80

93

Table B.6: Selected best (4,1,m) codes. (From pp. 89 in [21})

Code LTC ACG LTC-ACG Ratio
(4,1,2,10) 5.00 2.50 2.00
(4,1,3,13) 6.00 3.25 1.85
(4,1,4,16) 7.00 4.00 1.75
(4,1,5,18) 8.00 450 1.78
(4,1,6,20) 9.00 5.00 1.80
(4,1,7,22) 10.00 5.50 1.82
(4,1,8,24) 11.00 6.00 1.83
(4,1,9,27) 12.00 6.75 1.78
(4,1,10,29) 13.00 7.25 1.79
(4,1,11,32) 14.00 8.00 1.75
(4,1,12,33) 15.00 8.25 1.82
(4,1,13,36) 16.00 9.00 1.78

94

Table B.7: Selected block codes and PUM codes.

Code LTC ACG LTC-ACG Ratio

Sel f—[?zfﬁ] Code 3.46 2.00 1.73
o e 8.22 4.00 2.06
pa2I68 8.64 4.00 2.16
el ety ode 15.13 6.00 2.52
Paritgblyz;;éz} Code 2.00 %(nn—qll P

Repet[z’it;ﬂcode 1+ logyn 1 1+logyn
P 6.70 4.00 1.68
(2412,7,12) 15.58 6.00 2.60
(24,12,10,16) 18.58 8.00 9.32

95

Bibliography

1

K. Abdel-Ghaffar, R. J. McEliece, and G. Solomon, “Some Partial-Unit—
Memory Convolutional Codes,” JPL TDA Progress Report, vol. 42-107,
(November 1991), pp. 57-72. Also see Proc. 1991 International Symposium
on Information Theory, p. 196.

A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan, “Priority En-
coding Transmission,” the Special Issue on Codes and Complexity of IEEE
Trans. Inform. Theory, vol. IT-42, pp. 1737-1744, November 1996.

N. Alon, and M. Luby, “A Linear Time Erasure—Resilient Code with Nearly
Optimal Recovery,” the Special Issue on Codes and Complexity of IEEE Trans.
Inform. Theory, vol. I'T-42, pp. 1732-1736, November 1996.

J. J. Ashley, “A Linear Bound for Sliding-Block Decoder Window Size, I1,”
the Special Issue on Codes and Complexity of ITEEE Trans. Inform. Theory,
vol. I'T-42, pp. 1913-1924, November 1996.

J. J. Ashley, R. Karabed, and P. H. Siegel, “Complexity and Sliding-Block
Decodability,” the Special Issue on Codes and Complexity of IEEE Trans.
Inform. Theory, vol. I'T-42, pp. 1925-1947, November 1996.

J. J. Ashley, B. H. Marcus, and R. M. Roth, “On the Decoding Delay of En-
coders for Input—Constrained Channels,” the Special Issue on Codes and Com-
plexity of IEEE Trans. Inform. Theory, vol. IT-42, pp. 1948-1956, November
1996.

L. R. Bahl, J.Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Linear
Codes for Minimizing Symbol Error Rate,” IEEE Trans. Inform. Theory, vol.
IT-20, pp. 284-287, March 1974.

8]

[11]

[12]

[16]

96
M. Bellare, D. Coppersmith, J. Hastad, M. Kiwi, and M. Sudan, “Linearity

Testing in Characteristic Two,” the Special Isste on Codes and Complexity of

IEEE Trans. Inform. Theory, vol. IT-42, pp. 1781-1795, November 1996.

Y. Berger, and Y. Be’ery, “The Twisted Squaring Construction, Trellis Com-
plexity, and Generalized Weights of BCH and QR Codes,” the Special Issue
oa Codes and Complexity of TEEE Trans. Inform. Theory, vol. IT-42, pp.
1817-1827, November 1996.

G. Bégin, and D. Haccoun, “High-Rate Punctured Convolutional Codes:
Structure Properties and Construction Technique,” IFEE Trans. Comm., vol.

COM-37, pp. 1381-1385, December 1989.
E. R. Berlekamp, Algebraic Coding Theory. New York: McGraw-Hill, 1968.

I. Bocharova, and B. Kudryashov, “Nonsyndrome Maximum Likelihood De-
coding of Linear Codes Using a Trellis,” Proc. 4th International Workshop
on Algebraic and Combinatorial Coding Theory, (September 1994, Novogrod,
Russia), pp. 35-39.

G. Brassard, C. Crépeau, and M. Santha, “Oblivious Transfers and Inter-
secting Codes,” the Special Issue on Codes and Complexity of IEEE Trans.
Inform. Theory, vol. IT-42, pp. 1769-1780, November 1996.

A. E. Brouwer, and T. Verhoeff, “An Updated Table of Minimum-distance
Bounds for Binary Linear Codes,” IEEE Trans. Inform. Theory, vol. I'T-39,
pp- 662-677, March 1993.

J. B. Cain, G. C. Clark, and J. M. Geist, “Punctured Convolutional Codes
of Rate (n-1)/n and Simplified Maximum Likelihood Decoding,” IEEE Trans.
Inform. Theory, vol. IT-25, pp. 97-100, January 1979.

G. C. Clark, Jr., and J. B. Cain, Error-Correction Coding for Digital Commu-

nications. New York: Plenum Press, 1981.

[17]

[20]

23]

[25]

97
G. D. Cohen, S. Litsyn, and G. Zémor, “On Greedy Algorithms in Coding
Theory,” the Special Issue on Codes and Complexity of IEEE Trans. Inform.
Theory, vol. IT-42, pp. 2053-2057, November 1996.

D. J. Costello, Jr., “Free Distance Bounds for Convolutional Codes,” IEEE
Trans. Inform. Theory, vol. IT-20, pp. 356-365, May 1974.

D. G. Daut, J. W. Modestino, and L. D. Wismer, “New Short Constraint
Length Convolutional Code Constructions for Selected Rational Rates,” IEEE
Trans. Inform. Theory, vol. IT-28, pp. 794-800, September 1982.

U. Dettmar, and U. Sorger, “On Maximum Likelihood Decoding of Unit Mem-
ory Codes,” Proc. 6th Swedish—~Russian International Workshop on Informa-

tion Theory, (August 1993), pp. 184-188.

A. Dholakia, Introduction to Convolutional Codes with Applications. Boston:
Kluwer Academic Publishers, 1994.

S. Dolinar, L. Ekroot, A. B. Kiely, R. J. McEliece, and W. Lin, “The Permu-
tation Trellis Complexity of Linear Block Codes,” Proc. 32nd Annual Allerton
Conf. on Communicaiion, Control, and Computing, (September 1994), pp.

60-74.

I. Dumer, “Suboptimal Decoding of Linear Codes: Partition Technique,” the
Special Issue on Codes and Complexity of IEEE Trans. Inform. Theory, vol.
IT-42, pp. 1971-1686, November 1996.

F. Fagnani, and S. Zampieri, “Dynamical Systems and Convolutional Codes
Over Finite Abelian Groups,” the Special Issue on Codes and Complexity of
IEEE Trans. Inform. Theory, vol. IT-42, pp. 1892-1912, November 1996.

G. D. Forney, Jr., “The Viterbi Algorithm,” Proc. IEEE, Vol 61, pp. 268-276,
March, 1973.

[26]

[27]

[30]

[32]

133]

98
G. D. Forney, Jr., “Convolutional Codes I: Algebraic Structure,” IEEE Trans.
Inform. Theory, vol. IT-16, pp. 268-278, November 1970.

G. D. Forney, Jr., “Coset Codes — Part II: Binary Lattices and Related
Codes,” IEEE Trans. Inform. Theory, vol. IT-34, pp. 1152-1187, September
1988.

G. D. Forney, Jr., “Dimension/Length Profiles and Trellis Complexity of Lin-
ear Block Codes,” IEEE Trans. Inform. Theory, vol. I'T-40, pp. 1741-1752,
November 1994.

G. D. Forney, Jr., and M. D. Trott, “The Dynamics of Group Codes: State
Spaces, Trellis Diagrams, and Canonical Encoders,” IEEE Trans. Inform. The-
ory, vol. I'T-39, pp. 1491-1513, September 1993.

G. D. Forney, Jr., and A. Vardy, “Generalized Minimum-Distance Decoding
of Euclidean—Space Codes and Lattices,” the Special Issue on Codes and Com-
plexity of IEEE Trans. Inform. Theory, vol. IT-42, pp. 1992-2026, November
1996.

G. D. Forney, Jr., R. Johannesson, and Z.-X. Wan, “Minimal and Canonical
Rational Generator Matrices for Convolutional Codes,” the Special Issue on
Codes and Complexity of IEEE Trans. Inform. Theory, vol. I'T-42, pp. 1865~
1880, November 1996.

D. Haccoun, and G. Bégin, “High—Rate Punctured Convolutional Codes for
Viterbi and Sequential Decoding,” IEEE Trans. Comm., vol. COM-37, pp.
1113-1125, November 1989.

M. F. Hole, and @. Ytrehus, “Two-Step Treilis Decoding of Partial Unit Mem-
ory Convolutional Codes,” IEEE Trans. Inform. Theory, vol. IT-43, pp. 324~
330, January 1997.

[34]

[36]

[38]

99
H. D. L. Hollmann, “Bounded—Delay—Encodable, Block-Decodable Codes for
Constrained Systems,” the Special Issue on Codes and Complexity of IEEE
Trans. Inform. Theory, vol. IT-42 pp. 1957-1970, November 1996.

B. Honary, G. Markarian, and M. Darnell, “Trellis Decoding for Block Codes,”
Proc. 8rd IEE Int. Symp. on Comm. Theory Appl., (July 1993, Ambleside,
U.K.), pp. 79-93.

G. B. Horn, and F. R. Kschischang, “On the Intractability of Permuting a
Block Codes to Minimize Trellis Complexity,” the Special Issue on Codes
and Complexity of IEEE Trans. Inform. Theory, vol. I'T-42, pp. 2042-2048,

November 1996.

T. Kasami, T. Takata, T. Fujiwara, and S. Lin, “On the Optimum Bit Orders
with Respect to the State Complexity of Trellis Diagrams for Binary Linear
Codes,” IEEE Trans. Inform. Theory, vol. IT-39, pp. 242-245, January 1993.

T. Kasami, T. Takata, T. Fujiwara, and S. Lin, “On Complexity of Trellis
Structure of Linear Block codes,” TEEE Trans. Inform. Theory, vol. I'T-39,

pp. 1057-1064, May 1993.

A. D. Kot, and C. Leung, “On the Construction and Dimensionality of Linear

Block Code Trellises,” Proc. 1993 ISIT, p. 291.

A. B. Kiely, S. Dolinar, R. J. McEliece, L. Ekroot, and W. Lin, “Trellis Decod-
ing Complexity of Linear Block Codes,” the Special Issue on Codes and Com-
plexity of IEEE Trans. Inform. Theory, vol. IT-42, pp. 1687-1697, November
1996.

F. R. Kschischang, “The Trellis Structure of Maximal Fixed-Cost Codes,” the
Special Issue on Codes and Complexity of IEEE Trans. Inform. Theory, vol.
IT-42, pp. 1828-1838, November 1996.

F. R. Kschischang, and V. Sorokine, “On the Trellis Structure of Block Code,”
IEEE Trans. Inform. Theory, vol. IT-41, pp. 1924-1937, November 1995.

100
[43] A. Lafourcade, and A. Vardy, “Lower Bounds on Trellis Complexity of Block
Codes,” IEEE Trans. Inform. Theory, vol. IT-41, pp. 1938-1954, November
1995.

[44] A. Lafourcade, and A. Vardy, “Asymptotically Good Codes Have Infinite Trel-
lis Complexity,” IEEE Trans. Inform. Theory, vol. IT-41, pp. 555-559, March
1995.

[45] A. Lafourcade, and A. Vardy, “Optimal Sectionalization of a Trellis,” IEEE
Trans. Inform. Theory, vol. IT-42, pp. 689-703, May 1996.

[46] K. Larsen, “Short Convolutional Codes with Maximal Free Distance for Rate
1/2, 1/3, and 1/4,” IEEE Trans. Inform. Theory, vol. IT-19, pp. 371-372,
May 1973.

[47] G. S. Lauer, “Some Optimal Partial-Unit-Memory Codes,” IEEE Trans. In-
form. Theory, vol. IT-23, pp. 540-547, March 1979.

[48] W. Lin, and R. J. McEliece, “Asymptotic Coding Gain and Trellis Complex-
ity,” Proc. 33rd Allerton Conference on Communication, Control, and Com-

puting, (October 1995), pp. 313-322.

[49] W. Lin, and R. J. McEliece, “Hybrid Trellis Decoding for Some Convolu-
tional Codes,” Proc. 1996 Conference on the Information Science and Systems,

Princeton, (March 1996), pp. 572-577.

[50] W. Lin, and R. J. McEliece, “Trellis-Canonical Generator Matrices for Con-
volutional Codes,” accepted, ISIT 1997.

[51] W. Lin, A. Kiely, and R. J. McEliece, “The Evolution of the Trellis for Block

Code,” In preparation.
prep

[52] H.-A. Loeliger, and T. Mittelholzer, “Convolutional Codes Over Groups,” the
Special Issue on Codes and Complexity of IEEE Trans. Inform. Theory, vol.
IT-42, pp. 1660-1686, November 1996.

[53]

59]

[60]

[61]

[62]

[63]

101
K. Lumbard, and R. J. McEliece, “Counting Minimal Generator Matrices,”
Proc. 1994 IEEE Inter. Symp. Inform. Theory, (June 1994, Trondheim, Nor-
way), p. 18.

F. J. MacWilliams, and N.J.A. Sloane, The Theory of Error-Correcting Codes.

Amsterdam: North-Holland, 1977.

J. L. Massey, “Foundations and Methods of Channel Coding,” Proc. Inter.
Conf. on Inform. Theory and Systems, NTG-Fachberichte, vol. 65, pp. 148-
157, 1978.

R. J. McEliece, The Theory of Information and Coding. Reading, Mass.:
Addison—Wesley, 1977.

R. J. McEliece, “The Viterbi Decoding Complexity of Linear Block Codes,”
Proc. 1994 ISIT, (June 1994), p. 341.

R. J. McEliece, “On the BCJR Trellis for Linear Block Codes,” IEEFE Trans.
Inform. Theory, vol. IT-42, pp. 1072-1092, July 1996.

R. J. McEliece, “The Algebraic Theory of Convolutional Codes,” chapter in
the Handbook of Coding Theory, in preparation.

R. J. McEliece, and W. Lin, “The Trellis Complexity of Convolutional Codes,”
Proc. 1995 ISIT, (September, 1995), p. 131.

R. J. McEliece, and W. Lin, “The Trellis Complexity of Convolutional Codes,”
the Special Issue on Codes and Complexity of IEEE Trans. Inform. Theory,
vol. IT—42, pp. 1855-1864, November 1996.

R. J. McEliece, and R. P. Stanley, “The General Theory of Convolutional
Codes,” JPL TDA Progress Report, vol. 42-113 (May 1993), pp. 89-98.

R. J. McEliece, E. R. Rodemich, H. Rumsey, Jr., and L. R. Welch, “ New Upper
Bounds on the Rate of a Code via the Delsarte-MacWilliams Inequalities,”

IEEE Trans. Inform. Theory, vol. IT-23, pp. 157-166, March 1977.

[64]

[65]

[66]

167]

[68]

[69]

[71]

[72]

102
D. J. Muder, “Minimal Trellises for Block Codes,” IEEE Trans. Inform. The-
ory, vol. IT-34, pp. 1049-1053, September 1988.

E. Passke, “Short Binary Convolutional Codes with Maximal Free Distance
for Rate 2/3 and 3/4,” IEEE Trans. Inform. Theory, vol. IT-20, pp. 683-688,
September 1974.

L. C. Perez, J. Seghers, and D. J. Costello, Jr., “A Distance Spectrum In-
terpretation of Turbo Codes,” the Special Issue on Codes and Complexity of
IEEE Trans. Inform. Theory, vol. I'T-42, pp. 1698-1709, November 1996.

J. Rosenthal, J. M. Schumacher, and E. V. York, “On Behaviors and Convo-
lutional Codes,” the Special Issue on Codes and Complexity of ITEFE Trans.
Inform. Theory, vol. I'T-42, pp. 1881-1891, November 1996.

L. J. Schulman, “Coding for Interactive Communication,” the Special Issue
on Cedes and Complexity of IEEE Trans. Inform. Theory, vol. I'T-42, pp.
1745-1756, November 1996.

P. Schuurman, “A Table of State Complexity Bounds for Binary Linear
Codes,” the Special Issue on Codes and Complexity of IEEE Trans. Inform.
Theory, vol. IT-42, pp. 2034-2042, Noverber 1996.

B.-Z. Shen, K. K. Tzeng, and C. Wang, “A Bounded-Distance Decoding Algo-
rithm for Binary Linear Block Codes Achieving the Minimum Effective Error

Coefficient,” the Special Issue on Codes and Complexity of IEEE Trans. In-
form. Theory, vol. IT-42, pp. 1987-1991, November 1996.

V. Sidorenko, G. Markarian, and B. Honary, “Code Trellis and the Shannon
Product,” Proc. 7th Joint Swedish—Russian International Workshop on Infor-

mation Theory, (June 1994), pp. 220-224.

V. Sidorenko, G. Markarian, and B. Honary, “Minimal Trellis Design for Linear

Codes Based on the Shannon Product,” the Special Issue on Codes and Com-

[73]

7]

78]

103
plexity of IEEE Trans. Inform. Theory, vol. IT-42, pp. 2048-2053, November
1696.

V. Sidorenko, and V. Zyablov, “Decoding of Convelutional Codes Using a
Syndrome Trellis,” IEEE Trans. Inform. Theory, vol. IT-40, pp. 1663-1666,
September 1994.

M. Sipser, and D. A. Spielman, “Expander Codes,” the Special Issue on Codes
and Complexity of IEEE Trans. Inform. Theory, vol. I'T-42, pp. 1710-1722,
November 1996.

G. Solomon, and H. C. A. van Tilborg, “A Connection Between Block and

Convolutional Codes,” SIAM J. of Appl. Math, vol. 37, no.2, Oct. 1979.

D. A. Spielman, “Linear-Time Encodable and Decodable Error-Correcting
Codes,” the Special Issue on Codes and Complexity of IEEE Trans. Inform.
Theory, vol. IT-42, pp. 1723-1731, November 1996.

J. Stern, “A New Paradigm for Public Key Identification,” the Special Issue
on Codes and Complexity of IEFE Trans. Inform. Theory, vol. IT-42, pp.
1757-1768, November 1996.

V. Tarckh, and I. F. Blake, “Trellis Complexity Versus the Coding Gain of
Lattices I,” the Special Issue on Codes and Complexity of IEFE Trans. Inform.
Theory, vol. IT-42, pp. 17961807, November 1996.

V. Tarckh, and I. F. Biake, “Trellis Complexity Versus the Coding Gain of Lat-
tices I1,” the Special Issue on Codes and Complexity of IEEE Trans. Inform.

Tneory, vol. IT-42, pp. 1808-1816, November 1996.

A. Vardy, and F. R. Kschischang, “Proof of a Conjecture of McEliece Regard-
ing the Expansion Index of the Minimal Trellis,” the Special Issue on Codes
and Complexity of IEEE Trans. Inform. Theory, vol. I'T-42, pp. 2027-2034,
November 1996.

81]

82]

84]

85]

87]

104
V. V. Vazirani, H. Saran, and B. Sundar Rajan, “An Efficient Algorithm for
Constructing Minimal Trellises for Codes over Finite Abelian Groups,” the

Special Issue on Codes and Complexity of IEFEE Trans. Inform. Theory, vol.
IT-42, pp. 1839-1854, November 1996.

A. J. Viterbi, “Error Bounds for Convolutional Codes and an Asymptotically
Optimum Decoding Algorithm,” IEEE Trans. Inform. Theory, vol. IT-13, pp.
260-269, April 1967.

Xjao-an Wang, and Stephen B. Wicker, “The Design and Implementation of
Trellis Decoders for Some BCH Codes,” submitted to IEEE Trans. Inform.
Theory, 1996.

V. K. Wei, “Generalized Hamming Weights for Linear Codes,” [EEE Trons.
Inform. Theory, vol. IT-37, pp. 1412-1418, September 1991.

J. K. Wolf, “Efficient Maximum Likelihood Decoding of Linear Block Codes,”
IEEFE Trans. Inform. Theory, vol. I'T-24, pp. 76-80, January 1978.

@yvind Ytrehus, “Ascetic Convolutional Codes,” Proc. 33nd Annual Allerton
Conf. on Communication, Control, and Computing, pp. 382-390, (October
1995).

V. Zyablov, and V. Sidorenko, “Soft Decision Maximum Likelihood Decoding
of Partial Unit Memory Codes,” Problems of Information Transmission, vol.

28, No. 1, pp. 18-22, January—-March 1994.

