
Fast Algorithms for Spanwise Periodic Incompressible
External Flows: From Simulation to Analysis

Thesis by
Wei Hou

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2025
Defended December 12, 2024

ii

© 2025

Wei Hou
ORCID: 0000-0001-8023-6395

All rights reserved

iii

ACKNOWLEDGEMENTS

First, I would like to thank my advisor Tim Colonius for being a wonderful mentor.
I came to Caltech as a naive college graduate. Tim showed me how to, in his words,
"do scholarly research" and taught me the importance of communicating my ideas.
Working with Tim is like a challenging but rewarding journey: Only at the end of
the voyage can you finally begin to realize and appreciate how far you have come,
and I could never have traveled this far without Tim’s guidance.

I would also like to thank my committee members, Guillaume Blanquart, Jane Bae,
and John Sader, for the valuable feedback and comments.

During my years at Caltech, I really appreciate all the people in the Colonius
group: Omar, Michael, Vishal, Rahul, Caroline, Soto, Jose, Ethan, Hyeoksu, Franz,
Michael, Chris, Ke, Liam, Jean, Marcus, Ben, Ethan, Akhil, Isabel, Shunxiang,
Lennart, Spencer, and Mauro. My life at Caltech is so much better with you guys.
Especially, I would like to thank Liam for helping me with Richardson through all
the outages and upgrades. Now that the responsibility falls on Hyeoksu, I am sure
that Richardson is in good hands. Also, I would like to thank Ke for helping me
understand IBLGF-AMR and appreciate its beauty and complexity. And Caroline,
thank you for keeping IBLGF-AMR alive. I cannot wait to see what the future holds.

In addition, I would like to thank my undergraduate advisor and lifetime mentor,
Prof. Jeff Eldredge. You set me on the path of doing research and helped me
countless times throughout my research career. For this, I am forever grateful.

Most importantly, I would like to thank my family, especially my parents, for always
supporting and encouraging me.

Lastly, I want to thank anyone who is reading this thesis. I hope you find it useful
and, more importantly, enjoy the time you spent reading it.

iv

ABSTRACT

External flows over spanwise-homogeneous geometries are ubiquitous in science and
engineering applications (Mittal and Balachandar, 1995; Mittal and Balachandar,
1997; Dong and Karniadakis, 2005; Lehmkuhl et al., 2013). In this thesis, we pro-
pose algorithms to simulate and analyze these flows using the lattice Green’s function
(LGF) approach. The LGF is the analytical inverse of a discrete elliptic operator
that automatically incorporates exact far-field boundary conditions and minimizes
computational expense by allowing snug computational regions encompassing only
vortical flow regions. By combining LGFs with adaptive mesh refinement (AMR)
and immersed boundary (IB) methods, we present two numerical algorithms spe-
cially designed for spanwise periodic incompressible external flows: one to directly
solve the nonlinear equations of motion and one to compute stability and resolvent
analyses.

For these algorithms, the LGFs of the screened Poisson equation must be computed
at runtime. To enable efficient flow simulation and analysis algorithms, we propose
a fast numerical algorithm to tabulate these LGFs. We derive convergence results
for the algorithms and show that they are orders of magnitude faster than existing
algorithms. Armed with the LGF for the screened Poisson equation, we further
develop algorithms to solve the Navier-Stokes equations and associated linearized
eigenvalue problems.

We present two applications of these algorithms. We perform simulations to validate
the starting vortex theory proposed by Pullin and Sader (2021), and we perform
stability analyses of flow past a rotating cylinder with a control cylinder in its wake.

v

PUBLISHED CONTENT AND CONTRIBUTIONS

Hou, Wei and Tim Colonius (Dec. 2024a). “An adaptive lattice Green’s function
method for external flows with two unbounded and one homogeneous directions”.
In: Journal of Computational Physics 519, p. 113370. issn: 0021-9991. doi:
10.1016/j.jcp.2024.113370. url: http://dx.doi.org/10.1016/j.
jcp.2024.113370.
W. H. participated in the conception of the project, derived and implemented the
algorithm, performed numerical experiments, and wrote the manuscript.

– (2024b). “Fast and robust method for screened Poisson lattice Green’s func-
tion using asymptotic expansion and Fast Fourier Transform”. In: arXiv preprint
arXiv:2403.03076. url: https://arxiv.org/abs/2403.03076.
W. H. participated in the conception of the project, derived and implemented the
algorithm, performed numerical experiments, and wrote the manuscript.

Sader, John E. et al. (2024). “The starting vortices generated by bodies with sharp
and straight edges in a viscous fluid”. In: Journal of Fluid Mechanics 992, A15.
url: https://doi.org/10.1017/jfm.2024.515.
W. H. implemented the numerical model and performed numerical experiments.

Hou, Wei and Tim Colonius (2023). “Three-dimensional stability and resolvent
analysis of external flows over spanwise-homogeneous immersed bodies”. In:
AIAA AVIATION 2023 Forum, p. 3414. url: https://arc.aiaa.org/doi/
10.2514/6.2023-3414.
W. H. participated in the conception of the project, derived and implemented the
algorithm, performed numerical experiments, and wrote the manuscript.

https://doi.org/10.1016/j.jcp.2024.113370
http://dx.doi.org/10.1016/j.jcp.2024.113370
http://dx.doi.org/10.1016/j.jcp.2024.113370
https://arxiv.org/abs/2403.03076
https://doi.org/10.1017/jfm.2024.515
https://arc.aiaa.org/doi/10.2514/6.2023-3414
https://arc.aiaa.org/doi/10.2514/6.2023-3414

vi

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . iv
Published Content and Contributions . v
Table of Contents . v
List of Illustrations . viii
List of Tables . xv
Chapter I: Introduction . 1

1.1 Fast algorithm for computing LGF of the screened Poisson operator . 2
1.2 Fast �ow simulation and analysis algorithms 3
1.3 Applications of the simulation and analysis algorithms 4
1.4 Summary . 4

Chapter II: Fast and robust method for screened Poisson lattice Green's func-
tion using asymptotic expansion and Fast Fourier Transform 6
2.1 Introduction . 6
2.2 Lattice Green's function of the two-dimensional screened Poisson

equation . 7
2.3 Fast evaluation and compact support at large22 9
2.4 Calculation of the lattice Green's function at arbitrary nonzero22 . . 15
2.5 Convergence rate of the trapezoidal rule approximation 18
2.6 Fast Fourier Transform method for solving the lattice Green's function 24
2.7 Numerical experiments . 28
2.8 Application 1: lattice Green's function of the three-dimensional Pois-

son equation with one periodic direction 35
2.9 Application 2: random walks with killing on a two-dimensional

rectangular lattice . 37
2.10 Conclusion . 39

Chapter III: An adaptive lattice Green's function method for external �ows
with two unbounded and one homogeneous directions 41
3.1 Introduction . 41
3.2 Governing equations and Fourier expansion 43
3.3 Spatial discretization . 45
3.4 Lattice Green's functions . 47
3.5 Temporal discretization . 53
3.6 Multilevel mesh . 55
3.7 Adaptation . 58
3.8 Algorithm summary . 61
3.9 Parallelization and performance . 62
3.10 Veri�cation . 66
3.11 Transitional and turbulent �ow over a circular cylinder 67

vii

3.12 Summary . 74
Chapter IV: Three-dimensional stability and resolvent analyses of external

�ows over spanwise-homogeneous immersed bodies 75
4.1 Introduction . 75
4.2 Problem statement . 76
4.3 Derivation and discretization of governing equations 78
4.4 Results . 87
4.5 Conclusions . 97

Chapter V: The starting vortices generated by bodies with sharp and straight
edges in a viscous �uid . 98
5.1 Introduction . 98
5.2 Numerical method for solving the Navier-Stokes equations 102
5.3 Maximal time for the existence of the starting vortices generated by

a �at plate . 104
5.4 Direct numerical simulations of a �at plate 107
5.5 Joukowski airfoil . 119
5.6 Conclusions . 122

Chapter VI: Stability analysis of the �ow past a rotating cylinder with a control
cylinder in the Wake . 125
6.1 Introduction . 125
6.2 Problem Setting . 125
6.3 Background Problems . 126
6.4 Stability Analysis . 128
6.5 Results . 129
6.6 Concluding Remarks . 131

Chapter VII: Concluding remarks and future work 132
Bibliography . 135
Appendix A: IB terms for Fourier coe�cients 145
Appendix B: Compatibility condition on! � 1

0 in a multilevel mesh 148
Appendix C:(8

:–= is Hermitian when%8
= = %8� 1

= 149
Appendix D: Additional time constraint for the existence of Type I and II

vortices generated by a �at plate . 150

viii

LIST OF ILLUSTRATIONS

Number Page

2.1 Error of� # for various2atU1 = 0•75. We randomly choose 5 points

within the square»0–10º2 and evaluate their� # approximation using

various # at di�erent 2. We compare the resulting� # with the

solution obtained by evaluating� 2 at those points using Eq. 2.5. We

also show the error bounds given by Thm. 2.3.2. 14

2.2 Relative error of#̂ 0?¹nº, i.e. ¹#̂ 0?¹nº � #̂ >?C¹nºº•#̂ >?C¹nº, across a

range ofn and2•
p

U1. 26

2.3 Error of the trapezoidal rule approximation of� 2¹=– <º with various

?CB, U1, =, and < . Across all the cases,2 = 0•3. The error is

computed by referencing the analytical expression using Eq. 2.5.

The error bound is computed using Eq. 2.99. 30

2.4 Error of the trapezoidal rule approximation of� 2¹=– <º with various

?CB, U1, =, and< . Across all the cases,2•
p

U1 = 0•01. The error

is computed by referencing the trapezoidal rule approximation with

10–000quadrature points. 31

2.5 The maximum absolute error and speedup factors of computing

� 2¹=– <º when 2 = 0•3 and U1 = 0•5. The error is computed by

comparing the numerical integration results to the trapezoidal rule

approximations with2# 0?¹nº quadrature points. 32

2.6 The maximum absolute error and speedup factors of computing

� 2¹=– <º when 2 = 0•1 and U1 = 0•5. The error is computed by

comparing the numerical integration results to the trapezoidal rule

approximations with2# 0?¹nº quadrature points. 33

2.7 The maximum absolute error and speedup factors of computing

� 2¹=– <º when 2 = 0•01 and U1 = 0•5. The error is computed

by comparing the numerical integration results to the trapezoidal

rule approximations with2# 0?¹nº quadrature points. 34

ix

2.8 The maximum error and speedup factors when computing� 2¹=– <º

using the trapezoidal rule with FFT, without FFT, and numerically

integrating the Bessel function representation using the transform

proposed in (Doncker, 1978). The maximum absolute error is ob-

tained by comparing the values from evaluating the trapezoidal rule

approximation of� 2 using2# 0?¹nº quadrature points. The stars and

the dashed line in the maximum absolute error plot indicate that some

values in the numerical integration did not converge. 35

2.9 Convergence study of solving the Poisson equation using the three-

dimensional Poisson LGF with one periodic direction. The ratio

� G3• � G2 = 2c is held constant across all cases. Within each series,

the ratio between� G1 and� G2 is �xed. Di�erent series have di�erent

ratios of� G2 and� G1. The dashed line indicates the expected second-

order convergence rate. 38

2.10 The return probability,%A4CDA=, at various=– <at di�erent kill prob-

abilities ?: . 40

3.1 Variable placement in theG� H plane for a Fourier interpolation

sampling point in theI direction. 45

3.2 Convergence of� ¹=– <º for = = < = 1280and various= compared

with the analytical convergence rate. 49

3.3 Spectral convergence of� ¹<– <º for various< 50

3.4 Convergence of� ¹=– <º for < = 1280and various=. 50

3.5 Parallel e�ciency for a varying number of computational nodes

for computational meshes of various sizes. The parallel e�ciency

is measured by solving one RK3 step using di�erent numbers of

computational nodes. Each node contains 48 computational cores.

The simulations are conducted on TACC Stampede3 supercomputer

(Stampede3 User Guiden.d.) with Intel Xeon Platinum 8380 2.3GHz

CPUs. 64

3.6 Error in the streamwise velocity compared to the base solution using

di�erent numbers of re�nement levels (0 � # ; � 3). The solid lines

represent the! 2 error, and the dashed lines represent the! 1 error. . . 67

3.7 Error convergence of the numerical solution from our solver. The

error is computed by simulating the evolution of an Oseen vortex for

C2 = 0•5 and compared against the analytical solution. 68

3.8 Lift and drag coe�cient history of the simulation 69

x

3.9 Vorticity magnitude atC*1 • � = 367•5. The non-dimensionalized

vorticity, 8 � •* 1 , magnitude ranges from0 (blue) to 5 (red). 70

3.10 Streamwise vorticity contour plot atC*1 • � = 367•5 at l G� •* 1 =

0•5 (red) andl G� •* 1 = � 0•5 (blue). 70

3.11 Q-criterion isosurface at& = 100* 1 • � . The isosurface is colored by

the vorticity magnitude fromjj8 jj� •* 1 = 20(blue) to50(red). The

correspondingG� Hcomputational mesh is shown in the background.

The mesh gets increasingly �ne as the gray darkens. The compu-

tational domain is truncated in this �gure. The full computational

domain is adaptive and extends to 23D downstream. 72

3.12 Fourier spectrum of lift coe�cient. 73

3.13 Drag coe�cient and lift coe�cient time evolution duringC*1 • � 2

»100–145¼. 73

4.1 Variable placement of one cell in: C� Fourier interpolation sampling

point. 80

4.2 Fixed point and mesh topology used to conduct stability analysis for

the case of'4 = 40– U= 5•5– _= 1•0. 88

4.3 Vorticity distribution of the most unstable mode at'4 = 40– U=

5•5– _= 1•0. 89

4.4 Fixed point and mesh topology used to conduct stability analysis for

the case of'4 = 100– U= 1•0– _= 0•915. 90

4.5 Vorticity distribution of the most unstable mode at'4 = 100– U=

1•0– _= 0•915. 91

4.6 Two di�erent meshes used to show the independence of mesh topology. 92

4.7 Comparison of the resolvent norm between two meshes. 92

4.8 Resolvent normjj' ¹l º j j of �ow past a circle at Re = 100 over a range

of l from 0.0 to 1.5 . 93

4.9 Streamwise component of optimal forcing mode atl = 1•0452. . . . 93

4.10 Streamwise component of optimal response mode atl = 1•0452 . . . 93

4.11 Base �ow for �ow past two cylinders used in the structural stability

analysis. The main cylinder (large black circle) is centered around

the origin, and the control cylinder (small black circle) is centered

aroundG2• � = 1•2, and H2• � = 0•7 with 3• � = 0•1. The �ow

around the control cylinder is magni�ed. 94

4.12 Computational mesh for the stability analysis of the �ow past a cylin-

der with a control cylinder in the wake. 94

xi

4.13 Unstable mode computed using the linear stability analysis. 95

4.14 Distribution of eigenvalues of LNSE for various control cylinder lo-

cations atG2 = 1•2� andH2 2 f0•5�– 0•6�– 0•7�– 0•8�– 0•9�– � g.

Because the LNSE is a purely real system in this case and all eigen-

values will appear in complex conjugate pairs, we only show the

eigenvalues with positive imaginary parts. 95

4.15 Comparison of �ow perturbation growth rates between estimates from

linear stability analysis and those from experimental data (Strykowski

and Sreenivasan, 1990) for'4 = 63, �xed streamwise location of the

control cylinderG2• � = 1•2, and varying horizontal location of the

control cylinder. The growth rates obtained from linear stability

analysis agree with the experimentally measured values. 96

5.1 Starting vortex generated by a �at plate that moves suddenly. (a)

Schematic showing the �at plate with its translational and angular

velocities. TheGandH-components of the Cartesian frame are always

parallel and perpendicular to the plate, respectively; the origin is at the

plate center (this di�ers from PS21). (b) Phase plane for the starting

vortices generated at the trailing (right) edge of the plate for zero

initial angle-of-attack,U0 = 0, where< and ? are the translational

and rotational power-laws in (5.1), respectively. Plate rotation is away

from the three-quarter-chord position, i.e.,3 < 1•2. The critical line

(solid and diagonal blue line) is (5.6). Nominal shapes of Type I, II

and III vortices are illustrated (dashed lines). Type I and II vortices

are independent ofV �
 00•* 0, de�ned in (5.4), whereas Type-III

vortices are swept further downstream with decreasingV. 99

5.2 Sample computational mesh (grey region) of the DNS for a �at plate

showing vorticity distribution (red and blue colors);< = 2, ? = 0,

3 = 0 (rotation about plate center),V = 3•175, Re � 2* 0•a =

5,040, wherea and 2 are the kinematic viscosity and plate chord,

respectively, with uniform spatial discretization� G= 2•5 � 10� 42.

(a) Snapshot of the entire computational domain for) = 0•060. (b)

Time evolution of the mesh near the trailing edge of the plate. The

computational mesh spatially adapts to discretize regions of �nite

vorticity only. The scale bar applies to all plots. Further details are

provided in Section 5.2. 103

xii

5.3 Regions of the¹<– ?º-phase plane where Type I, II and III vortices of a

�at plate exist for0 Ÿ) �) obs, using two choices of) obs = 0•01(�rst

row) and 0.1 (second row); left column (V̂ = 0•5) and right column

(V̂ = 2). The shaded (green) regions correspond to parameter values,

¹<– ?º, where the (small time) starting vortices�obeying the self-

similar form described by (5.9)�are expected to hold at the given

observation time,) obs. Results given for rotation about the plate

center,3 = 0, and a nominal multiplicative factor ofX= 0•1¹� 1º in

(5.16). Type-I like and Type-III like vortices are not self-similar, but

have shapes resembling those of Type I and III vortices, respectively. 106

5.4 Flat plate. Type-I vortex:< = 2, ? = 0, and3 = 0 for Re = 5,040.

Comparison of DNS (colored vorticity plots) with SVT (solid black

lines), showing leading (left) and trailing (right) edges. The leading

and trailing edges are at the ends of the green horizontal lines. The

central section of the plate is not shown. Red and blue colors denote

DNS vorticity regions of opposite sign. The color thresholds to white

when the vorticity magnitude is less than 1% of the maximum value;

this applies to all �gures in this study. Scale bars of one-tenth of a

chord length, i.e.,0•12, are given. 109

5.5 Flat plate. Type-I vortex:< = 2, ? = 0, and 3 = 0 for Re =

5,040. DNS vorticity distribution in the trailing-edge wake region

for V̂) = 0•048and) = 0•015, also plotted in the lower left-hand cor-

ner of Figure 5.4. (a) Three-dimensional perspective plot of vorticity

distribution showing the trailing-edge wake and the vorticity distri-

bution along the plate. Vorticity data is smoothed using a 3-point

moving average across neighboring grid points in the direction paral-

lel to the plate. (b) Segmentation of the wake region into two distinct

spatial regions described in the text. The mesh boundary indicated is

automatically generated by the LGF procedure; see Figure 5.2. . . . 110

5.6 Flat plate. Type-I vortex:< = 0, ? = 0, 3 = 0, V̂ = 1, and Re=

8,000. Description as for Figure 5.4. 112

5.7 Flat plate. Type-II vortex:< = 0, ? = 2, and3 = 0 for Re= 32,000.

Description as for Figure 5.4. 113

xiii

5.8 Flat plate. Type-II vortex:< = 0, ? = 2, and3 = 0 for Re= 32,000;

for) = 0•096 and V̂ = 0•0625(top left-hand entry of Figure 5.7).

(a) Dimensionless vorticity distribution,2l •* 0, plotted across the

trailing-edge wake at the spatial positions,G•2 = 0•51, 0.52, 0.53,

0.54, 0.548; the last position is the end of the trailing-edge vortex as

per (5.18), and the trailing edge is atG•2 = 0•5; see Figure 5.1. (b)

Dimensionless velocity jump,W•* 0, across the trailing-edge vortex.

DNS is evaluated by numerically integrating the vorticity distribution,

l , across the wake. SVT forW•* 0 is (5.18). Note that the chord

length,2 = 20. 114

5.9 Flat plate. Type-III vortex:< = 0, ? = 0•5, and3 = 0 for Re =

32,000. Description as for Figure 5.4. 116

5.10 Flat plate. Zoomed-in version of leading-edge vortex in bottom right-

hand plot of Figure 5.9;< = 0, ? = 0•5, 3 = 0 at Re= 32,000. 116

5.11 Flat plate. Type-III vortex:< = 1, ? = 2, and3 = 0 for Re= 45,255.

Description as for Figure 5.4. 117

5.12 Flat plate. Di�erent vortex types at leading and trailing edges:< = 1,

? = 2, V = 0•707, and3 = � 1•2 for Re = 45,255. Results for3 = 0

correspond toV̂ = V•2 = 0•354and are given in the middle row of

Figure 5.11. Remainder of description as for Figure 5.4. 118

5.13 The two symmetric Joukowski airfoils considered in this study. Each

has a sharp and straight trailing edge, which is evident by their upper

and lower surfaces being tangent at the trailing edge. The Joukowski

parameter,' , is de�ned in Eq. (3.29) of Hinton et al. (2024) and

speci�es the airfoil thickness. 120

5.14 Joukowski airfoils. Type-II vortex:< = 0, = = 2, V = 1, W = 0•25,

for Re = 8,000; here2 is the chord of the airfoil. Leading (left) and

trailing (right) edges of the airfoils are shown. Description as for

Figure 5.4. 121

xiv

5.15 Joukouski airfoil. Type-II vortex:< = 0, = = 2, for Re = 8,000.

Dimensionless velocity jump,W•* 0, across the trailing-edge vortex.

DNS is evaluated by numerically integrating the vorticity distribution

across the wake. SVT forW•* 0 is (5.21a). (a) Thinner airfoil,

' = 1•1. (b) Thicker airfoil, ' = 1•5, where DNS data is shown to

the spatial extent predicted by SVT; DNS data extends slightly further

downstream. These plots correspond to trailing-edge wakes shown

in the central column of Figure 5.14. 123

6.1 Flow past a rotating cylinder with a control cylinder in its wake. . . . 126

6.2 Perturbation of growth rates for variable vertical control cylinder

locations with a �xed horizontal location atG2• � = 1•2. Previously

shown in Chapter 4. 127

6.3 Parameters space for which the �ow past a rotating cylinder is unstable

at '4 = 60. The contours are isocontours of perturbation growth rate.

Contours are in increments of 0.02. 127

6.4 Computational grid used to solve one of the eigenvalue problems.

The grid density increases as a factor of 4 as the color darkens. 129

6.5 Parameters space for which the �ow past a rotating cylinder is unstable

at '4 = 60 when there is a small control cylinder in the wake. The

contours are isocontours of perturbation growth rate. Contours are

in increments of 0.1. 130

6.6 Comparison of the perturbation growth rate<¹ _º for the �ow past a

rotating cylinder at'4 = 60between with and without a small control

cylinder in the wake. 130

6.7 Comparison of the perturbation growth rate<¹ _º for the �ow past a

rotating cylinder at'4 = 60between with and without a small control

cylinder in the wake at higher rotational rates. 131

xv

LIST OF TABLES

Number Page

3.1 Runge-Kutta scheme Butcher Tableau used in our implementation . . 54

3.2 E�ciency comparison between methods for the 2D screened Poisson

problems (JPCG and bJPCG (Borrell et al., 2011)) and the 3D Poisson

problem (Nek5000 (Fischer, Lottes, and Tufo, 2007; Hosseini et

al., 2016)) in incompressible �ow. The JPCG and bJPCG values

are based on those reported (Borrell et al., 2011) for theb = 0

parameter value in their screened Poisson problem, which represents

the worst case. The Nek5000 value is based on the time to run

one GMRES iteration (Hosseini et al., 2016) in their Poisson solver

and the expected number of iterations for the GMRES algorithm

to converge, estimated from the number of iterations for the JPCG

method to converge (Borrell et al., 2011). 65

3.3 Comparison of lift and drag statistics with previous studies. Numer-

ical results from KMS99 - Kravchenko, Moin, and Shari� (1999),

MB97 - Mittal and Balachandar (1997). The experimental results are

from Wieselsberger (1922) and Norberg (2003). 71

3.4 Drag coe�cient, lift coe�cient, and Strouhal number comparison

between present numerical method and experimental data for the

�ow past a cylinder at'4 = 12–000. 74

5.1 DNS parameters used for the �at plate. Starting-vortex type, as pre-

dicted by SVT, is in the �rst column. For3 = � 0•5, vortices generated

at the leading edge (LE) and trailing edge (TE) are speci�ed using

the format: LE-TE. Reynolds number, Re, and spatial discretiza-

tion, � G•2, used in each simulation are listed. The two symmetric

Joukowski airfoils employ� G•2 = 2•5 � 10� 4 and Re = 8,000. 108

5.2 Flat plate. Type-I vortex:< = 2, ? = 0, and3 = 0 for Re = 5,040.

Total dimensionless circulation,� 0 � � 0•¹ * 00º, in the trailing-edge

vortex for the plots reported in Figure 5.4. Comparison of results

for � 0 obtained by integrating the DNS vorticity distributions (�rst

entry in parentheses) to the predictions of SVT (second entry in

parentheses). 109

xvi

5.3 Flat plate. Type-I vortex:< = 0, ? = 0, 3 = 0, V̂ = 1, and

Re = 8,000. Total dimensionless circulation,� 0 � � 0•¹ * 00º, in the

trailing-edge vortex for the plots reported in Figure 5.6. Description

as per Table 5.2. 112

5.4 Flat plate. Type-II vortex:< = 0, ? = 2, and 3 = 0 for Re =

32,000. Total dimensionless circulation,� 0 � � 0•¹ * 00º, in the

trailing-edge vortex for the plots reported in Figure 5.7. Description

as per Table 5.2. 115

5.5 Flat plate. Type-III vortex:< = 0, ? = 0•5, and3 = 0 for Re =

32,000. Total dimensionless circulation,� 0 � � 0•¹ * 00º, in the

trailing-edge vortex for the plots reported in Figure 5.9. Description

as per Table 5.2. 116

5.6 Flat plate. Type-III vortex:< = 1, ? = 2, and 3 = 0 for Re =

45,255. Total dimensionless circulation,� 0 � � 0•¹ * 00º, in the

trailing-edge vortex for the plots reported in Figure 5.11. Description

as per Table 5.2. 117

5.7 Flat plate. Total dimensionless circulation,� 0 � � 0•¹ * 00º, in the

trailing-edge vortex for the plots reported in Figure 5.12. Description

as per Table 5.2. 119

5.8 Joukowski airfoil. Total dimensionless circulation,� 0 � � 0•¹ * 00º,

in the trailing-edge vortex for the respective plots reported in Fig-

ure 5.14; where0 is the half-chord of a Joukowski airfoil for' = 1.

The entry positions in this table (and corresponding times,)) coin-

cide with Figure 5.14. Description as per Table 5.2. 121

1

C h a p t e r 1

INTRODUCTION

In this thesis, we discuss algorithms designed for a speci�c type of �uid �ow:

spanwise periodic incompressible external �ow. In its name, there are three main

adjectives: spanwise periodic, incompressible, and external. Incompressibility is a

straightforward word that does not need further introduction and is embedded within

the governing equations. As such, I will discuss the remaining two words and their

mathematical and physical implications in the subsequent paragraphs.

"External" means that the �ow we are interested in is situated on an unbounded

domain. Speci�cally, we have immersed bodies in some unbounded �uid domain.

The �ow is generated by the immersed body moving in the said �uid. This un-

bounded domain has two implications: �rst, the boundary condition is only posed

at in�nity; second, the �ow is restricted only by the immersed body without the

presence of any other boundaries, so �ow structures can exist in a wide range of

scales. These two characteristics pose their corresponding challenges. Tradition-

ally, one can solve these problems using di�erent numerical techniques such as

unstructured meshes (Mittal and Balachandar, 1995; Borrell et al., 2011; Fischer,

Lottes, and Tufo, 2007) and overset methods (Steger, Dougherty, and Benek, 1983;

Tang, Jones, and Sotiropoulos, 2003). Although these methods are compatible with

�exible nodal distribution and grid resolution, they su�er from the requirements

of unbounded computational domains or posing non-trivial boundary conditions

(Mittal and Balachandar, 1996; Lai and Peskin, 2000; Yu, 2021). Moreover, they

are subject to remeshing when the immersed body moves or deforms. By combin-

ing lattice Green's function method (LGF), adaptive mesh re�nement (AMR), and

immersed boundary (IB) method, one can devise e�cient numerical frameworks to

simulate external �ows (Liska and Colonius, 2017; Yu, 2021; Yu, Dorschner, and

Colonius, 2022).

"Spanwise periodic" means that the �uid �ow we are simulating and studying repeats

itself in the spanwise direction. Spanwise periodicity is used to model the �ow

past an immersed body with in�nite span and constant cross-section. Namely, an

in�nitely long cylinder with arbitrary cross-section. This spanwise periodic model

stems from experimental observation (Williamson and Roshko, 1988; Williamson,

2

1996; Mittal and Balachandar, 1995; Mittal and Balachandar, 1997). As a result,

one can leverage this property to devise e�cient numerical algorithms for �ow

analysis and simulations. Indeed, based on di�erent discretizations, the treatment

for spanwise periodicity can vary. Posing spanwise periodic boundary conditions

after discretizing the PDE can lead to a circulant matrix that is diagonalizable

by means of discrete Fourier transform (Borrell et al., 2011). However, in this

thesis, we take a di�erent approach by discretizing the governing equations after the

Fourier transform (Mittal and Balachandar, 1996). By doing so, we can variably

truncate the Fourier series for further computational savings. In addition, we propose

e�cient numerical algorithms that can leverage LGF, AMR, and IB methods and

are compatible with the spanwise periodicity nature.

By understanding the challenges and opportunities associated with the properties

of spanwise periodic incompressible external �ows, we created corresponding sim-

ulation and analysis algorithms that enable us to e�ciently study this particular

type of �ow. Enabled by these algorithms, we studied various �ows that have

both theoretical and practical importance. Overall, this thesis can be divided into

three components: novel algorithms for computing the LGF of the screened Pois-

son operator and their analysis, simulation and analysis algorithms based on the

LGF techniques, and the study of various �ow phenomena using the simulation and

analysis algorithms.

1.1 Fast algorithm for computing LGF of the screened Poisson operator

Given an invertible discrete elliptical operator, its LGF is its inverse in free space.

The LGF of the �nite di�erence Poisson operator is well studied and has readily

available asymptotic expansion formulae for e�cient numerical evaluation (Du�n,

1953; Du�n and Shelly, 1958; Martinsson and Rodin, 2002). As a result, this LGF

has been applied to e�ciently solve many problems arising from discretizing partial

di�erential equations (Liska and Colonius, 2014; Liska and Colonius, 2016; Liska

and Colonius, 2017; Dorschner et al., 2020; Yu, 2021; Yu, Dorschner, and Colonius,

2022; Caprace, Gillis, and Chatelain, 2021; Balty, Chatelain, and Gillis, 2023).

However, to simulate spanwise periodic external incompressible �ows via Fourier

expansion, instead of the Poisson equation, the screened Poisson equation arises.

As such, we need the corresponding LGF to solve the pressure-Poisson equation in

the Fourier expansion formulation. Yet, e�cient algorithms to evaluate this LGF

were not readily available. In Chapter 2, we introduce a set of new algorithms to

e�ciently evaluate the LGF of the screened Poisson operator. Correspondingly,

3

we present rigorous convergence bounds for these algorithms and computational

complexity analysis in di�erent scenarios. By comparing to existing methods to

evaluate the LGF of the screened Poisson operator, we demonstrate that our methods

show signi�cant improvement in terms of both speed of robustness.

Although our motivation lies in solving numerical partial di�erential equations

arising from �uid mechanics, the applications of this particular LGF extend to

many other �elds of science and engineering. We demonstrate this by showing two

applications of our algorithms: solving a three-dimensional Poisson equation with

one periodic dimension and computing the return probability of a two-dimensional

random walk with killing (Lawler and Limic, 2010).

1.2 Fast �ow simulation and analysis algorithms

Equipped with the fast algorithms for tabulating the LGFs of screened Poisson

equations, we are ready to leverage the LGFs to create numerical algorithms to

conduct simulations and �ow analyses. In Chapter 3 and Chapter 4, we proposed

two algorithms related to spanwise periodic external incompressible �ows.

In Chapter 3, we present an algorithm that leverages the LGFs, AMR, and the

immersed boundary (IB) method to simulate spanwise periodic external incom-

pressible �ows e�ciently. In this algorithm, we Fourier-expand the velocity and

pressure and time evolve the resulting Fourier coe�cients of the velocity and pres-

sure instead of time evolving velocity and pressure directly. Then we adapted an

existing half explicit Runge-Kutta method by Yu (2021). Combining the Fourier

coe�cient formulation of the Navier-Stokes equations, AMR, LGF, and the IB

method, we created a fast �ow simulation algorithm tailored for spanwise periodic

incompressible external �ows. The algorithm is then veri�ed and validated through

a range of numerical simulations and tests.

With the fast numerical simulation algorithm, we hope to leverage its advantages

to create a stability analysis and resolvent analysis algorithm. In Chapter 4, we

combine the same components that enhance the e�ciency of the �ow solver, i.e.,

LGF, AMR, and the IB method, and devise a computational advantageous form of

the discretized linearized Navier-Stokes equations (LNSE), which is the key to create

e�cient linear stability analysis and resolvent analysis. In addition, we leveraged

the fast multipole method (FMM) to further enhance the computational e�ciency.

The resulting algorithm is validated by various numerical experiments involving

both canonical and non-canonical examples of resolvent and stability analysis.

4

1.3 Applications of the simulation and analysis algorithms

With the aforementioned numerical algorithms, we can solve a wide range of in-

teresting problems. In this part, we present three numerical studies we conducted

using the above algorithms.

In Chapter 5, we �rst apply the two-dimensional version of the �ow solver to study

the early time behavior of the �ow �eld generated by bodies with straight and sharp

trailing edges that are translating and rotating in the viscous �uid. Examples of such

geometries are �at plates and Joukowski airfoils. Using the inviscid �ow model,

Pullin and Sader (2021) showed that there are three types of early-time trailing edge

vortex behaviors: a vortex sheet, a vortex roll-up, and a combination of these two.

In addition, the behavior is purely determined by the rate of pitching and translating

of the immersed body. In this chapter, we conducted a series of direct numerical

simulations (DNS) at high Reynolds numbers to show that the theoretical results

derived from the inviscid �ow model manifest themselves in the Navier-Stokes

equations where viscosity is present.

Also, in Chapter 6, we conducted a sequence of stability analysis of the �ow

past a rotating cylinder with a control cylinder in its wake. As demonstrated by

Strykowski and Sreenivasan (1990), for the �ow past a stationary cylinder, putting

a control cylinder in the wake of the main cylinder suppresses the onset of vortex

shedding. Meanwhile, as shown by Pralits, Giannetti, and Brandt (2013), if we

consider the �ow past a rotating cylinder, with no control cylinder in the wake, the

rotational motion also has a stabilizing e�ect when the rotational rate is below a

certain threshold. One question we ask is: If these two stabilizing mechanisms

are combined, can we stabilize the �ow even further? To answer this question, we

conducted a set of three-dimensional stability analyses of the �ow past a rotating

cylinder with a control cylinder in the wake across a vast parameter space. What

we found is that combining those two stabilizing mechanisms will suppress the

two-dimensional instabilities while slightly exciting three-dimensional instabilities.

1.4 Summary

In this thesis, we will present various numerical techniques and algorithms to inves-

tigate the spanwise periodic external incompressible �ows. This thesis is organized

as follows: in Chapter 2, we present novel techniques to compute the LGF of the

screened Poisson equation; in Chapter 3, we present a �ow simulation algorithm

combining LGF, AMR, and the IB method; in Chapter 4, we present a stability

5

analysis and resolvent analysis framework; in Chapter 5, we present a numerical

study enabled by the algorithm we proposed in Chapter 3; �nally, in Chapter 6, we

present an application enabled by the linear stability analysis algorithm proposed in

Chapter 4.

6

C h a p t e r 2

FAST AND ROBUST METHOD FOR SCREENED POISSON
LATTICE GREEN'S FUNCTION USING ASYMPTOTIC

EXPANSION AND FAST FOURIER TRANSFORM

This chapter is adapted from Hou and Colonius (2024b). As we mentioned in the

previous chapter, the prerequisite from all subsequent �ow simulation and analysis

algorithms is an e�cient way to tabulate the lattice Green's function (LGF) of the

screened Poisson equation. In this chapter, we present three algorithms to com-

pute the entries of this LGF. Speci�cally, we derive an asymptotic expansion and

a trapezoidal rule approximation of this LGF. In addition, we derive the conver-

gence properties and computational complexities of these approximations and their

accompanying numerical algorithms. We present several numerical experiments

to demonstrate the speedup o�ered by the proposed algorithms. Even though our

motivation lies in solving the Navier-Stokes equations, we recognize that our algo-

rithms for tabulating the LGF have more extensive applications. We demonstrate

this point by showing two more applications: solving the three-dimensional Poisson

equation with one periodic dimension and computing the return probability of a

two-dimensional random walk with killing.

2.1 Introduction

The discrete screened Poisson equation for a: -dimensional space with parameter

22 ¡ 0 is de�ned as

! 2D¹nº = 22D¹nº¸
:Õ

9=1

�
� U9D¹n � e9º ¸ 2U9D¹nº � U9D¹n ¸ e9º

�
= 5¹nº 8n 2 Z: –

(2.1)

wheree1, ...,e: are the coordinate vectors ofR: , andU1,...,U: ¡ 0are the anisotropy

coe�cients. The 22 term is sometimes called the screening term (Kazhdan and

Hoppe, 2013). The LGF is the fundamental solution of the equation above. It

plays a role in physics (Kotera, 1962; Katsura and Inawashiro, 1971; Katsura and

Inawashiro, 1973), mathematics (Madras, 1989; Lawler and Limic, 2010), and

engineering (Cserti, 2000; Kazhdan and Hoppe, 2013). Theoretical aspects of the

LGF of the screened Poisson equation have been studied extensively (Morita and

Horiguchi, 1971; Katsura and Inawashiro, 1971; Katsura and Inawashiro, 1973;

7

Michta and Slade, 2021; Maassarani, 2000; Du�n, 1953; Du�n and Shelly, 1958).

While the LGF of the Poisson equation has an asymptotic expansion at arbitrary

orders (Du�n, 1953; Du�n and Shelly, 1958; Martinsson and Rodin, 2002), the

LGF of the screened Poisson equation does not (Gabbard and Rees, 2024b).

Existing theoretical analysis of the LGF of the screened Poisson equation su�ces

the need for qualitative applications (Kotera, 1962; Katsura and Inawashiro, 1973).

However, accurate computation of this LGF is needed for quantitative applications

(Cserti, 2000; Gillman and Martinsson, 2010; Kazhdan and Hoppe, 2013; Liska and

Colonius, 2017; Caprace, Gillis, and Chatelain, 2021; Gabbard and Rees, 2024b).

Thus, in this chapter, we focus on its computational aspects. After reviewing

previous results (Section 2.2), we �nd an asymptotic expansion in terms of the

associated value of22 and establish the decay rate when22 is relatively large (Section

2.3). Next, for small22, we derive a one-dimensional integral representation of

the LGF (Section 2.4). The same one-dimensional integral representation is also

applicable to the LGF of the Poisson equation. We then show that, for screened

Poisson equation LGF, the error of a trapezoidal rule approximation can be strictly

bounded and converges exponentially fast (Section 2.5). By exploiting the structure

of the integrand, we propose a Fast Fourier Transform (Cooley and Tukey, 1965)

method for batch evaluation of the LGF (Section 2.7). We show that our algorithm

is robust and highly e�cient.

We provide two examples to demonstrate how our algorithm can be used in practice.

The �rst example (Section 2.8) is to use the LGF of the screened Poisson equation

to solve for the LGF of the three-dimensional Poisson equation with one periodic

dimension. The second example (Section 2.9) is to use the LGF of the screened

Poisson equation to compute the return probability of a two-dimensional random

walk with killing.

2.2 Lattice Green's function of the two-dimensional screened Poisson equa-

tion

2.2.1 De�nition and two-dimensional integral representation

We consider Eq. 2.1 with: = 2, denoten = ¹=– <º, and useD¹nº and D¹=– <º

interchangeably. SinceU1– U2 ¡ 0, by re-scaling the coe�cients, we can make

U1 = 1 or U2 = 1. Thus, without loss of generality, we assume0 Ÿ U1 � 1 and

U2 = 1.

8

The LGF, denoted as� 2¹nº = � 2¹=– <º, is the solution of

»! 2� 2¼¹=– <º = X0=X0< – lim
j=j¸j < j!1

� 2¹=– <º = 0– (2.2)

whereX8 9denotes the Kronecker delta. The Fourier transform method allows the

solution to be written as (Katsura and Inawashiro, 1971)

� 2¹nº =
1

¹2cº2

¹

� 2
4� 8n�/ 1

f ¹/ º ¸ 22
3/ – (2.3)

where� 2 = »� c– c¼2 is the integration domain, and with/ = ¹b1– b2º, the function

f ¹/ º is:

f ¹/ º = 2U1 � 2U1 cos¹b1º ¸ 2 � 2 cos¹b2º• (2.4)

From Eq. 2.3, it is clear that� 2¹=– <º = � 2¹j=j–j< jº so it su�ces to consider

=– <� 0.

For2 = 0, we recover the standard 2D Poisson equation, and the corresponding LGF

can be represented using an asymptotic expansion valid to arbitrarily high order-of-

accuracy (Martinsson and Rodin, 2002). In practice, one typically precomputes LGF

near-�eld values and uses these asymptotic expansions for far-�eld values (Liska and

Colonius, 2014). However, when2 < 0, a high-order asymptotic expansion does

not exist, and we must rely on numerical integration for all values. Thus, e�cient

computation is essential.

2.2.2 Representations using special functions

The values of� 2 can be expressed using Appell's double hypergeometric functions

(� 4):

Theorem 2.2.1.(Katsura and Inawashiro, 1971).The solution of� 2¹=– <º can be

written as

� 2¹=– <º =
1

2< ¸ =¸ 1

1
0< ¸ =¸ 1

¹< ¸ =º!
=!< !

1
0

� U1

0

� =
�
1
0

� <

� 4

"

¹< ¸ = ¸ 1º•2–¹< ¸ =º•2 ¸ 1– =̧ 1– <¸ 1;
� U1

0

� 2
–
�
1
0

� 2
#

– (2.5)

where

0 = 1 ¸ U1 ¸ 22•2• (2.6)

9

Evaluating� 2 using Thm. 2.2.1 requires evaluating Appell's double hypergeometric

function which is not available in common libraries and contains a doubly in�nite

sum. Thus in most numerical applications of the LGF, the Bessel function rep-

resentation (Koster and Slater, 1954; Maradudin, 1960; Katsura and Inawashiro,

1971; Maassarani, 2000; Delves and Joyce, 2001) of� 2¹=– <º is used to compute

the LGF (Liska and Colonius, 2017; Dorschner et al., 2020; Yu, Dorschner, and

Colonius, 2022; Gabbard and Rees, 2024b). The Bessel function representation is

a way to write� 2¹=– <º as an improper integral of the Bessel function. The speci�c

formulation reads

� 2¹=– <º = 8=¸ < ¸ 11
2

¹ 1

0
4� 8¹2¸ 2U1¸ 22ºC•2� =¹U1Cº� < ¹Cº3C– (2.7)

where� : ¹Cº is the Bessel function of the �rst kind (Abramowitz and Stegun, 1948).

This formulation is hard to integrate numerically because of the highly oscillatory

and slowly decaying integrand. One can further simplify it to a more computationally

advantageous form:

� 2¹=– <º =
¹ 1

0
4�¹ 2¸ 2U1¸ 22ºC�=¹2U1Cº�< ¹2Cº3C– (2.8)

where� : ¹Cº is the modi�ed Bessel function of the �rst kind (Abramowitz and Stegun,

1948).

When evaluating the above integral, there are two challenges: e�ectively evaluating

the function�= and accurately approximating the improper integral. In practice,

for the �rst challenge, one can compute the modi�ed Bessel function using existing

numerical libraries (Schäling, 2011; Virtanen et al., 2020; The mpmath development

team, 2023). However, this function is still de�ned as an in�nite series or integral and

can be computationally expensive. For the second challenge, the improper integral

can either be approximated by integrating up to a large value or be evaluated using

a variable transformation (Doncker, 1978). The former can be computationally

expensive and unstable, and the latter can create a singularity at the origin. Indeed,

it has been reported that numerical evaluation of the LGF of the screened Poisson

equation can fail catastrophically (Gabbard and Rees, 2024b). In the rest of the

chapter, we introduce two methods to e�ciently compute the LGF.

2.3 Fast evaluation and compact support at large22

In this section, we derive a series expansion for� 2. From the expansion, we can

obtain two unique properties of the LGF of the screened Poisson equation: (a)

10

exponential convergence in series expansion, and (b) exponential decay inj< j ¸ j =j.

We will later show the duality between them. These two properties give a fast

method to evaluate the LGF at relatively large22 and a fast way to solve the screened

Poisson equation by applying the LGF.

2.3.1 Series expansion

Recall the LGF,� 2, at an arbitrary pointn can be written as:

� 2¹nº =
1

¹2cº2

¹

� 2
4� 8n�/ 1

f ¹/ º ¸ 22
2/ – (2.9)

where the functionf ¹/ º reads

f ¹/ º = 2U1 � 2U1 cos¹b1º ¸ 2 � 2 cos¹b2º• (2.10)

We de�ne

d¹/ º = 2U1 cos¹b1º ¸ 2 cos¹b2º– _= 2 ¸ 2U1• (2.11)

Thus, we can write:

f ¹/ º = _ � d¹/ º– (2.12)

and thus we can write Eq. 2.3 as

� 2¹nº =
1

¹2cº2

¹

� 2
4� 8n�/ 1

_ � d¹/ º ¸ 22
3/ • (2.13)

Now since

d¹/ º 2 »�_– _¼) j d¹/ º j Ÿ _ ¸ 22– (2.14)

and22 ¡ 0, we can expand the integral formally as

� 2¹nº =
1

¹2cº2

¹

� 2
4� 8n�/ 1

_ ¸ 22

1
1 � d¹/ º•¹_ ¸ 22º

3/

=
1

¹2cº2

¹

� 2
4� 8n�/ 1

_ ¸ 22

1Õ

: =0

�
d¹/ º

_ ¸ 22

� :

3/

=
1

¹2cº2

1
_ ¸ 22

1Õ

: =0

�
_

_ ¸ 22

� : ¹

� 2
4� 8n�/

�
d¹/ º

_

� :

3/ •

(2.15)

To show that this series converges, it su�ces to show that the dominated convergence

theorem applies. That is, as long as we can �nd an integrable function that dominates

the sequence of the integrand, the equation above holds, which leads to the following

lemma:

11

Lemma 2.3.1.Fix n 2 Z2. De�ne

5: ¹/ º = 4� 8n�/ 1
_ ¸ 22

:Õ

;=0

�
d¹/ º

_ ¸ 22

� ;

• (2.16)

Then 5: is dominated by a constant:

j 5: j �
1
22

• (2.17)

Proof. Consider

j 5: j =

�
�
�
�
�
4� 8n�/ 1

_ ¸ 22

:Õ

;=0

�
d¹/ º

_ ¸ 22

� ;
�
�
�
�
�

� j 4� 8n�/ j

�
�
�
�

1
_ ¸ 22

�
�
�
�

�
�
�
�
�

:Õ

;=0

�
_

_ ¸ 22

� ; �
d¹/ º

_

� ;
�
�
�
�
�

�

�
�
�
�

1
_ ¸ 22

�
�
�
�

�
�
�
�
�

:Õ

;=0

�
_

_ ¸ 22

� ;
�
�
�
�
�

�

�
�
�
�

1
_ ¸ 22

�
�
�
�

1
1 � _•¹_ ¸ 22º

=
1
22

•

(2.18)

Thus, 5: is dominated by1•22. ƒ

Since the integration domain� 2 is �nite, 5: is integrable. As a result, the dominated

convergence theorem applies, so the series expansion of� 2¹nº given in Eq. 2.15

converges to� 2¹nº. With Eq. 2.15, we can de�ne an approximation of� 2.

De�nition 2.3.1.1. The # -term approximation of� 2¹nº, denoted as� # ¹2–nº, is

de�ned as

� # ¹2–nº =
1

¹2cº2

1
_ ¸ 22

� 1Õ

: =0

�
_

_ ¸ 22

� : ¹

� 2
4� 8n�/

�
d¹/ º

_

� :

3/ • (2.19)

We can bound the error of this# -term approximation with the following theorem.

Theorem 2.3.2.The truncation error from the# -term approximation of� 2¹nº is

bounded by

jn# ¹nºj = j� 2¹nº � � # ¹2–nºj �
1
22

�
_

_ ¸ 22

� #

8n 2 Z2• (2.20)

12

Proof. Fix n 2 Z=, and the truncation error is:

n# = � 2¹nº � � # ¹2–nº

=
1

¹2cº2

1
_ ¸ 22

1Õ

: =#

�
_

_ ¸ 22

� : ¹

� 2
4� 8n�/

�
d¹/ º

_

� :

3/ •
(2.21)

The error,n# , can be bounded by the following:

jn# j =

�
�
�
�
�

1
¹2cº2

1
_ ¸ 22

1Õ

: =#

�
_

_ ¸ 22

� : ¹

� 2
4� 8n�/

�
d¹/ º

_

� : ¸ #

3/

�
�
�
�
�

�

�
�
�
�
�

1
¹2cº2

1
_ ¸ 22

�
_

_ ¸ 22

� # 1Õ

: =0

4c2
�

_
_ ¸ 22

� :
�
�
�
�
�

=
1

_ ¸ 22

�
_

_ ¸ 22

� # 1
1 � _•¹_ ¸ 22º

=
1
22

�
_

_ ¸ 22

� #

•

(2.22)

Since this error bound is independent ofn, it is true for alln. ƒ

2.3.2 Analytical expressions of the# -term approximation

It turns out that each term in the series representation of� 2 can be analytically

computed as functions of multinomial coe�cients. To do so, we de�ne

6: ¹nº =
1

4c2

¹

� 2
4� 8n�/

�
d¹/ º

_

� :

3/ – (2.23)

so that we can write

� # ¹2–nº =
1

_ ¸ 22

� 1Õ

: =0

�
_

_ ¸ 22

� :

6: ¹nº• (2.24)

Now we can focus on those6: ¹nº terms alone. The following theorem gives an

analytical expression of6: ¹nº.

Theorem 2.3.3.The function6: ¹=– <º is nonzero if and only if: � j =j ¸ j < j and

: � j =j � j < j is even. In that case,

6: ¹=– <º =
1
_:

¹: � =� < º•2Õ

;=0

U=¸ 2;
1

:

;– =̧ ;–¹: � = � 2; � < º•2–¹: � = � 2; ¸ < º•2

!

(2.25)

where
:

0– 1– 2– 3

!

=
: !

0!1!2!3!
(2.26)

is the multinomial coe�cient.

13

Remark 2.3.3.1.A way to e�ectively evaluate Eq. 2.25 without numerical over�ow is

using the log Gamma function, which is relatively well-behaved. With this result, for

a �nite : , one can e�ciently evaluate6: directly using built-in log game functions,

e.g., thelgammafunction in C++ or using existing numerical packages such as

Boost (Schäling, 2011) andSciPy (Virtanen et al., 2020).

Remark 2.3.3.2.This theorem completes the entire asymptotic expansion of� 2.

This expression can also be derived from the perspective of a random walk with

killing. Similar results for the LGF on square lattices (U1 = 1) have been derived

using a random walk argument (Michta and Slade, 2021).

Proof of Thm. 2.3.3.We directly expand the integral form of6:

6: ¹nº =
1

4c2

¹

� 2
4� 8n�/

�
d¹/ º

_

� :

3/

=
1

4c2

1
_:

¹

� 2
4� 8n�/ ¹2U1 cos¹b1º ¸ 2 cos¹b2ºº: 3/

=
1

4c2

1
_:

¹

� 2
4� 8n�/

:Õ

;=0

:

;

!

¹2U1 cos¹b1ºº; ¹2 cos¹b2ºº: � ;3/

=
1

4c2

1
_:

:Õ

;=0

:

;

!

U;
1

¹

�
4� 8=1b1 ¹2 cos¹b1ºº;3b1

¹

�
4� 8=2b2 ¹2 cos¹b2ºº: � ;3b2•

(2.27)

A direct calculation shows that

¹

�
4� 8=b¹2 cos¹bºº?3b =

8>>>>><

>>>>>
:

2c ©
­
«

?

¹? � =º•2

ª
®
¬

if ¹? � =º � 0 and¹? � =º is even

0 otherwise•
(2.28)

Plugging this expression into Eq. 2.27, we obtain the desired result. ƒ

In Figure 2.1, we demonstrate the error convergence rate of the LGF approximated

by � # at selected values of¹=– <º at U1 = 0•75 compared with corresponding

error bounds given by Thm. 2.3.2. The error is computed by comparing against

the analytical values computed using the Appell function representation given in

Eq. 2.5. The analytical values are computed to 50 decimal places using the Python

packagempmath(The mpmath development team, 2023). This �gure shows that for

a �xed point, the error from the� # approximations monotonically decreases as#

increases. The monotonicity arises from the fact that6: is nonnegative.

14

Figure 2.1: Error of� # for various2 at U1 = 0•75. We randomly choose 5 points
within the square»0–10º2 and evaluate their� # approximation using various# at
di�erent 2. We compare the resulting� # with the solution obtained by evaluating
� 2 at those points using Eq. 2.5. We also show the error bounds given by Thm. 2.3.2.

2.3.3 Spatial decay of the lattice Green's function

Fix =– <� 0. With n = ¹=– <º,

� =¸ < ¹2–nº =
1

_ ¸ 22

=¸ < � 1Õ

: =0

�
_

_ ¸ 22

� :

6: ¹nº• (2.29)

By Thm. 2.3.3,6: ¹=– <º = 0 for : Ÿ = ¸ < . As a result,� =¸ < ¹2–nº = 0. Thus, by

Thm. 2.3.2, we can write

j� 2¹nºj = j� 2¹nº � � =¸ < ¹2–nºj = jn=¸ < j �
1
22

�
_

_ ¸ 22

� ¹=¸ < º

• (2.30)

Thus,� 2¹=– <º decays exponentially fast as= ¸ < increases.

Although this result is immediate from Thm. 2.3.2 and Thm. 2.3.3, it has at least

two important implications.

First, when approximating� 2 on a large domain using� # , the number of terms

in � # we need to evaluate decreases as< ¸ = increases. By only evaluating those

nonzero terms, we can achieve signi�cant computational savings when evaluating

each term of� 2.

Second, when solving the screened Poisson equation using� 2 to a certain precision,

we need only convolve� 2 within regions where� 2 is larger than the prescribed

15

precision. In this way, applying� 2 can be made much more computationally

e�cient.

As it is evident from the error estimates in Thm. 2.3.2, when22 is large, one can

approximate� 2 to the machine precision using only a few terms, and we only need

to evaluate a small number of� 2 since it decays exponentially fast. As a result,

when22 is large, it is favorable to evaluate the LGF using Eq. 2.19.

2.4 Calculation of the lattice Green's function at arbitrary nonzero 22

For smaller values of22, evaluating� 2 using Eq. 2.5 and Eq. 2.19 becomes more

expensive. To resolve this problem, we introduce a one-dimensional integral for-

mulation of� 2 through the following theorem:

Theorem 2.4.1.The value of� 2¹=– <º for any=– <2 Z and2 ¡ 0 can be written

as:

� 2¹=– <º =
1

2c

¹ c

� c

48\=

 j< j

3\
 � 1•

(2.31)

where

 =
q ¸

p
q2 � 4
2

– q= _ ¸ 22 � 2U1 cos¹\ º– _= 2 ¸ 2U1• (2.32)

Proof. We �rst rewrite the governing equation (Eq. 2.2 without the far �eld boundary

condition) as

_� 2¹=– <º � ¹ � 2¹=– <� 1º ¸ � 2¹=– <¸ 1ºº

= U1¹� 2¹= � 1– <º ¸ � 2¹= ¸ 1– <ºº � 22� 2¹=– <º ¸ X0=X0< • (2.33)

The# -term discrete Fourier transform in the �rst coordinate is

~� #
2 ¹:– <º =

•2Õ

==1� # •2

� 2¹=– <º4� 2c8:=• # • (2.34)

We �rst impose that� 2¹=– <º is periodic in= with periodicity# (assuming that#

16

is even); we later relax periodicity in the limit# ! 1 . Consider the following:

~� #
2 ¹:– < � 1º ¸ ~� #

2 ¹:– < ¸ 1º � _ ~� #
2 ¹:– <º

=
•2Õ

==1� # •2

�
� 2¹=– <� 1º4� 2c8:=• # ¸ � 2¹=– <¸ 1º4� 2c8:=• # � _� 2¹=– <º4� 2c8:=• # �

=
•2Õ

==1� # •2

»� 2¹=– <� 1º ¸ � 2¹=– <¸ 1º � _� 2¹=– <º¼4� 2c8:=• #

=
•2Õ

==1� # •2

�
22� 2¹=– <º � U1� 2¹= � 1– <º � U1� 2¹= ¸ 1– <º � X0< X0=

�
4� 2c8:=• # •

With the periodicity assumption, we can write

•2Õ

==1� # •2

�
22� 2¹=– <º � U1� 2¹= � 1– <º � U1� 2¹= ¸ 1– <º

�
4� 2c8:=• #

=
•2Õ

==1� # •2

� 2¹=– <º
�
224� 2c8:=• # � U14� 2c8:¹=¸ 1º•# � U14� 2c8:¹=� 1º•# �

=
•2Õ

==1� # •2

� 2¹=– <º4� 2c8:=• # ¹22 � 2U1 cos¹2c: • # ºº

=»22 � 2U1 cos¹2c: • # º¼~� #
2 ¹:– <º

and
•2Õ

==1� # •2

X0< X0=4� 2c8:=• # = X0< • (2.35)

As a result, we have

~� #
2 ¹:– < � 1º ¸ ~� #

2 ¹:– < ¸ 1º = »_ ¸ 22 � 2U1 cos¹2c: • # º¼~� #
2 ¹:– <º � X0< • (2.36)

On the one hand, if< < 0, we have

~� #
2 ¹:– < � 1º ¸ ~� #

2 ¹:– < ¸ 1º ¸ »2U1 cos¹2c: • # º � _ � 22¼~� #
2 ¹:– <º = 0• (2.37)

This type of recurrence relation can be solved by assuming the following ansatz

(Buneman, 1971):
~� #
2 ¹:– <º = ~� #

2 ¹:–0º• j< j• (2.38)

By directly plugging in our recurrence relation, can be solved using

 ¸ 1• = _ ¸ 22 � 2U1 cos¹2c: • # º := q# • (2.39)

17

To enforce the condition that� 2¹=– <º ! 0 asj< j ! 1 , we needj j ¡ 1. Thus,

the appropriate quadratic root is

 =
q# ¸

q
q2

� 4

2
• (2.40)

On the other hand, if< = 0, we have

~� #
2 ¹:–� 1º ¸ ~� #

2 ¹:–1º ¸ »2U1 cos¹2c: • # º � _ � 22¼~� #
2 ¹:–0º = � 1• (2.41)

Substituting the equation of , we obtain the solution of~� #
2 ¹:–0º as

2 ~� #
2 ¹:–0º• � q# ~� #

2 ¹:–0º = � 1) ~� #
2 ¹:–0º =

1
 � 1•

• (2.42)

Thus, the expression of~� #
2 ¹:– <º comes out to be

~� #
2 ¹:– <º =

1
 � 1•

1
 j< j

• (2.43)

With the expression of~� #
2 ¹:– <º, we take the inverse discrete Fourier transform to

obtain� 2¹=– <º

� 2¹=– <º =
1
#

•2Õ

: =1� # •2

42c8:=• # ~� #
2 ¹:– <º =

1
#

•2Õ

: =1� # •2

42c8:=• # 1
 � 1•

1
 j< j

•

(2.44)

Now, we are ready to take# to in�nity. To do so, de�ne

\ : = 2c: • #– � \ = 2c• #• (2.45)

The expression of� 2¹=– <º becomes

� 2¹=– <º = � \
•2Õ

: =1� # •2

48=\: 1
 � 1•

1
 j< j

(2.46)

where

 =
q# ¸

q
q2

� 4

2
– q# = _ ¸ 22 � 2U1 cos¹\ : º• (2.47)

Note that now the summands are composed entirely of\ : , without direct involvement

of # . By taking# to in�nity, we are creating a Riemann sum. Since the function

de�ning the summands is bounded and continuous, the Riemann sum converges,

and we write

lim
!1

� \
•2Õ

: =1� # •2

48=\: 1
 � 1•

1
 j< j

=
1

2c

¹ c

� c
48=\ 1

 � 1•
3\

 j< j
(2.48)

18

where

 =
q ¸

p
q2 � 4
2

– q= _ ¸ 22 � 2U1 cos¹\ º• (2.49)

As a result, can write

� 2¹=– <º =
1

2c

¹ c

� c

48=\

 � 1•
3\

 j< j
• (2.50)

Since we have taken# to in�nity, � 2¹=– <º does not have to be periodic anymore.ƒ

Remark 2.4.1.1.The proof of Eq. 2.4.1 generalizes the techniques presented by

Buneman (1971), where the author only considered the case of22 = 0 andU1 = 1.

In that case, only has one root, so there is no need to identify the correct root.

Using similar techniques, one can show that, when22 = 0 andU1 Ÿ 1, the corre-

sponding LGF is

� 0¹=– <º � � 0¹0–0º =
1

2c

¹ c

� c

�
48=\

 j< j
� 1

�
3\

 � 1•
– (2.51)

where

 =
q ¸

p
q2 � 4
2

– q= _ � 2U1 cos¹\ º• (2.52)

The proof follows from the proof of Thm. 2.4.1.

Remark 2.4.1.2.In contrast to Eq. 2.8, the integral in Eq. 2.31 has a �nite integration

domain and an integrand consisting of elementary functions only. As a result,

numerical integrating Eq. 2.31 is faster and more stable.

2.5 Convergence rate of the trapezoidal rule approximation

We cannot reduce the one-dimensional integral presentation of� 2¹=– <º any further.

Thus, we need to evaluate it numerically. It turns out, however, that the trapezoidal

rule approximation yields an exponential convergence rate for this particular integral.

To show this, we �rst invoke the following general theorem on the convergence rate

of trapezoidal rule approximations (Trefethen and Weideman, 2014):

Theorem 2.5.1.(Trefethen and Weideman, 2014) Let

� =
¹ c

� c
E¹\ º3\• (2.53)

For any positive integer# , de�ne the trapezoidal rule approximation:

� # =
2c
#

#Õ

: =1

E¹\ : º (2.54)

19

where \ : = 2c: • # � c. SupposeE is 2c periodic and analytic and satis�es

jE¹\ º j Ÿ " in the strip� W Ÿ=¹ \ º Ÿ Wfor someW ¡ 0. Then for any# � 1,

j� # � � j �
4c"

4W# � 1
– (2.55)

and the constant4c is as small as possible.

Using the above theorem, we can show the following result regarding the convergence

rate of the trapezoidal rule approximation for Eq. 2.31.

Theorem 2.5.2.Let U1 2 ¹0–1º and

E¹\ º =
48\=

 j< j

1
 � 1•

– q= _ ¸ 22 � 2U1 cos¹\ º– =
q ¸

p
q2 � 4
2

• (2.56)

Let

� =
¹ c

� c
E¹\ º3\ (2.57)

and � # be its trapezoidal rule approximation. Then for any positive real number,

W2, satisfying

W2 Ÿ log©
­
«

1 ¸
22

2U1
¸

s �
1 ¸

22

2U1

� 2

� 1ª
®
¬

– (2.58)

for any# � 1, we have

j� # � � j �
4c"

4W2# � 1
– (2.59)

where" is

" = sup
j=¹ \ º jŸW2

�
�
�
�
48\=

 j< j

1
 � 1•

�
�
�
� • (2.60)

Before proving the above theorem, we �rst prove the following technical lemma

Lemma 2.5.3.For \ 2 C,

jU1 cos¹\ º j Ÿ _•2 ¸ 22•2 � 1) q2 � 4 8 RŸ0• (2.61)

Proof of Lemma 2.5.3.We prove this lemma by contradiction. Assume

q2 � 4 = E2 RŸ0• (2.62)

20

We rewrite this equation as:

¹_ ¸ 22 � 2U1 cos¹\ ºº2 = 4 ¸ E (2.63)

We solve forU1 cos¹\ º:

U1 cos¹\ º =
1
2

h
_ ¸ 22 �

p
4 ¸ E

i
• (2.64)

Since

jU1 cos¹\ º j =

s �
1
2

¹_ ¸ 22º �
1
2

<¹
p

4 ¸ Eº
� 2

¸
�
1
2

=¹
p

4 ¸ Eº
� 2

– (2.65)

we have

jU1 cos¹\ º j �
1
2

¹_ ¸ 22º �
1
2

j<¹
p

4 ¸ Eºj ¡
1
2

¹_ ¸ 22º � 1• (2.66)

Thus, we have a contradiction. ƒ

Proof of Thm. 2.5.2.To use Thm. 2.5.1, we need to �nd a strip within which our

speci�c E¹\ º is analytic

E¹\ º =
48\=

 j< j

1
 � 1•

– q= _ ¸ 22 � 2U1 cos¹\ º– =
q ¸

p
q2 � 4
2

• (2.67)

Inspecting the above expression, we know thatE¹\ º is analytic in a strip if, in which,

 � 1• < 0 andq2 � 4 8 RŸ0.

We �rst �nd a strip in which � 1• < 0. To do so, we only need to pick any �nite

Wsuch that

 � 1• < 0 8\ 2 C : j=¹ \ º j Ÿ W• (2.68)

We have

 � 1• =
p

q2 � 4– (2.69)

so

 � 1• = 0 () q2 = 4 () q = � 2• (2.70)

Directly plugging in the expression ofq, we obtain:

cos¹\ º =
1
U1

�
_
2

� 1 ¸
1
2

22
�

• (2.71)

To facilitate the discussion, we denote the two possible values on the RHS as:

q¸
< =

1
U1

�
_
2

¸ 1 ¸
1
2

22
�

– q�< =
1
U1

�
_
2

� 1 ¸
1
2

22
�

• (2.72)

21

A necessary condition for Eq. 2.71 to be satis�ed is

exp¹=¹ \ ºº = q¸
< �

p
¹q¸

< º2 � 1 or exp¹=¹ \ ºº = q�
< �

p
¹q�

< º2 � 1 (2.73)

In addition, we notice that

1

q�
< ¸

p
¹q�

< º2 � 1
=

q�
< �

p
¹q�

< º2 � 1

¹q�
< ¸

p
¹q�

< º2 � 1º¹q�
< �

p
¹q�

< º2 � 1º
= q�

< �
p

¹q�
< º2 � 1•

(2.74)

Consequently,

log¹q�
< ¸

p
¹q�

< º2 � 1º = � log¹q�
< �

p
¹q�

< º2 � 1º• (2.75)

Since the logarithm function is a monotonically increasing function and thatj log¹q�
< ¸

p
¹q�

< º2 � 1ºj = j log¹q�
< �

p
¹q�

< º2 � 1ºj, to ensure analyticity within the strip, we

need

j=¹ \ º j Ÿ W:= log¹q�
< ¸

p
¹q�

< º2 � 1º• (2.76)

We then focus on the second condition regarding , i.e.

q2 � 4 8 RŸ0• (2.77)

Since the function4G¸ 4� Gmonotonically increases withGwhenG� 0, within the

strip of j=¹ \ º j Ÿ W, we have

j cos¹\ º j � j 4=¹ \ º j•2 ¸ j 4�=¹ \ º j•2 Ÿ
1
2

¹4W¸ 4� Wº

=
1
2

�
q�

< ¸
p

¹q�
< º2 � 1 ¸ q�

< �
p

¹q�
< º2 � 1

�
= q�

< •
(2.78)

Thus,jU1 cos¹\ º j Ÿ ¹_•2� 1¸ 22•2º, so by Lemma 2.5.3,q2 � 4 8 RŸ0. Considering

 � 1• < 0, we know thatE¹\ º is analytic within the strip. If we pick anyW2 Ÿ W,

we have

jE¹\ º j � " = sup
j=¹ \ º jŸW2

�
�
�
�
48\=

 j< j

1
 � 1•

�
�
�
� • (2.79)

We write

q�
< =

1
U1

�
_
2

� 1 ¸
1
2

22
�

=
1
U1

�
1 ¸ U1 � 1 ¸

1
2

22
�

= 1 ¸
22

2U1
• (2.80)

Thus, we can �ndWto be:

W= log©
­
«

1 ¸
22

2U1
¸

s �
1 ¸

22

2U1

� 2

� 1ª
®
¬

• (2.81)

And by Thm. 2.5.1, we conclude with the desired result. ƒ

22

Remark 2.5.3.1.The essence of Thm. 2.5.2 is to show that the integrand in Eq. 2.31

is analytic with the stripj=¹ \ º j � W2 for anyW2 satisfying

W2 Ÿ W= log©
­
«

1 ¸
22

2U1
¸

s �
1 ¸

22

2U1

� 2

� 1ª
®
¬

• (2.82)

In this sense, a more concise version of Thm. 2.5.2 can be stated. However, we

prefer the verbose version due to its central role in developing the algorithms that

will be introduced in the subsequent sections.

Remark 2.5.3.2.Investigating Thm. 2.5.2 further, we can understand the e�ect of=

in the error in Eq. 2.60 better. We can write

" = sup
j=¹ \ º jŸW2

�
�
�
�
48\=

 j< j

1
 � 1•

�
�
�
� � 4W2=

"

sup
j=¹ \ º jŸW2

�
�
�
�

1
 j< j

1
 � 1•

�
�
�
�

#

• (2.83)

Then the error estimate becomes

j� # � � j �
4c4W2="
4W2# � 1

=
4c"

4W2¹# � =º � 4� W2=
�

4c"
4W2¹# � =º � 1

(2.84)

where

" = sup
j=¹ \ º jŸW2

�
�
�
�

1
 j< j

1
 � 1•

�
�
�
� • (2.85)

Thus, we only need to increase# as fast as= to maintain the same accuracy.

Corollary 2.5.3.1. Let [2 ¹0– 22•U1º, # ¡ = � 0. Following the de�nitions of

Thm.2.5.1, we have

j� # � � j �
4c" [

4W[¹# � =º � 4� W[=
– (2.86)

where

W[= log

1 ¸
[
2

¸

r �
1 ¸

[
2

� 2
� 1

!

– " [=
1

2
p

22•U1 � [
• (2.87)

Proof of Corollary2.5.3.1.Since[2 ¹0– 22•U1º, we have

W[= log

1 ¸
[
2

¸

r �
1 ¸

[
2

� 2
� 1

!

Ÿ log©
­
«

1 ¸
22

2U1
¸

s �
1 ¸

22

2U1

� 2

� 1ª
®
¬

(2.88)

By Thm. 2.5.2 and Rmk. 2.5.3.2, we have

j� # � � j �
4c" 0

[

4W[¹# � =º � 4� W[=
(2.89)

23

where" 0
[is

" 0
[= sup

j=¹ \ º jŸW[

�
�
�
�

1
 j< j

1
 � 1•

�
�
�
� • (2.90)

We can �rst put an upper bound onj cos¹\ º j within the stripj=¹ \ º j Ÿ W[as

j cos¹\ º j � j 4W[•2j ¸ j 4� W[•2j = 1 ¸ [•2• (2.91)

By Lemma 2.5.3,q2 � 4 8 RŸ0 within the stripj=¹ \ º j Ÿ W[. Thus, for
p

q2 � 4, we

only take the principal branch. That is,

p
q2 � 4 = jq2 � 4j1•248Arg¹q2� 4º•2• (2.92)

SinceArg¹q2 � 4º 2 ¹� c– cº, we have

<¹
p

q2 � 4º ¡ 0• (2.93)

Also,

<¹ qº � _ ¸ 22 � 2jU1 cos¹\ º j � _ ¸ 22 � 2U1¹1¸ [•2º = 2¸ ¹ 22 � [U1º ¡ 2• (2.94)

Combined with the previous result, we obtain a lower bound ofj j

<¹ q ¸
p

q2 � 4º ¡ 2– and j j =

�
�
�
�
�
q ¸

p
q2 � 4
2

�
�
�
�
�
¡ 1• (2.95)

Then we can write

" 0
[= sup

j=¹ \ º jŸW[

�
�
�
�

1
 j< j

1
 � 1•

�
�
�
� � sup

j=¹ \ º jŸW[

�
�
�
�

1
 � 1•

�
�
�
� = sup

j=¹ \ º jŸWU

�
�
�
�
�

1
p

q2 � 4

�
�
�
�
�
•

(2.96)

Further, we can put a lower bound onjq2 � 4j, i.e.

jq2 � 4j = jq � 2jjq ¸ 2j

= j_ ¸ 22 � 2U1 cos\ � 2jj_ ¸ 22 � 2U1 cos\ ¸ 2j

� j _ � 2 ¸ 22 � 2U1¹1 ¸ [•2ºjj_ ¸ 2 ¸ 22 � 2U1¹1 ¸ [•2ºj

= ¹22 � [U1º¹4 ¸ 22 � [U1º

¡ 4¹22 � [U1º•

Thus, we can bound" 0
[using

" 0
[= sup

j=¹ \ º jŸW[

�
�
�
�

1
 j< j

1
 � 1•

�
�
�
� �

1

2
p

22 � [U1

:= " [• (2.97)

24

Finally, we conclude with

j� # � � j �
4c" 0

[

4W[¹# � =º � 4� W[=
�

4c" [

4W[¹# � =º � 4� W[=
• (2.98)

ƒ

Remark 2.5.3.3.Although the bound in Corollary 2.5.3.1 is looser than the one

given in Thm. 2.5.2, it provides us with an a priori estimation of the error from

the trapezoidal rule approximation of� 2, depending only on# � = and [. This

bound will be useful when we introduce the numerical framework to evaluate the

trapezoidal rule approximation in the next section.

2.6 Fast Fourier Transform method for solving the lattice Green's function

As we have established the convergence rate of the trapezoidal rule approximation

of � 2, we also notice that the speci�c form of the trapezoidal rule approximation

of Eq. 2.31 is precisely the inverse discrete Fourier transform. As a result, one can

utilize the inverse Fast Fourier Transform (Cooley and Tukey, 1965) to e�ciently

evaluate the values of� 2. In this section, we introduce this algorithm.

2.6.1 A priori error estimate

Fix < � 0. To evaluate� 2¹=– <º for arbitrary=, for a prescribed error tolerancen, we

need to estimate the size of our trapezoidal rule approximation. Let� #
2 ¹=– <º denote

the # -term trapezoidal rule approximation of� 2¹=– <º. By Corollary 2.5.3.1, for

any[2 ¹0– 22•U1º, we can have an error estimate:

j� 2¹=– <º � � #
2 ¹=– <ºj �

2" [

4W[¹# � =º � 4� W[=
�

2" [

4W[¹# � =º
– (2.99)

where

W[= log

1 ¸
[
2

¸

r �
1 ¸

[
2

� 2
� 1

!

– " [=
1

2
p

22•U1 � [
• (2.100)

Without loss of generality, we assume= = 0. Theoretically, one can optimize over

both[and# to use the fewest number of quadrature points,# >?C¹nº, to satisfy the

error tolerance using the trapezoidal rule approximation. Given an error tolerance

n, to solve for# >?C¹nº, we solve the following optimization problem:

arg min
#–[

2

subject to log
�

2" [

n4W[#

�
� 0

[2
�
0–

22

U1

�
•

(2.101)

25

If we denote the resulting solution aŝ# >?C¹nº, then # >?C¹nº =
�
#̂ >?C¹nº

�
. This

problem can be hard to solve numerically. For example, we found that using MAT-

LAB's fmincon function with default parameters sometimes diverges. Meanwhile,

extensive parameter tuning is undesirable in applications.

Alternatively, one can approximate# >?C¹nº using a function# 0?¹nº by �xing a

small parameterX ¡ 0 and let[= ¹1 � Xº222•U1. The corresponding minimum#

to satisfy a prescribed error tolerancen is

0?¹nº =
�
#̂ 0?

�
– #̂ 0? =

1
W[

log

1

n¹2•
p

U1º
p

2X� X2

!

(2.102)

We can bound#̂ 0?¹nº using #̂ >?C¹nº. Let [>?Cdenote the value of[for which

#̂ >?C¹nº is obtained, and[0? = ¹1 � Xº222•U1. We consider two cases:[>?C¡ [0?

and[>?C� [0?.

If [>?C¡ [0?, we have:

#̂ >?C¹nº =
1

W[>?C

log

1

n
p

22•U1 � [>?C

!

�
1

W[>?C

log

1

n
p

22•U1 � [0?

!

=
W[0?

W[>?C

#̂ 0?¹nº

(2.103)

Sincelog¹1 ¸ Gº is a concave function, for anyAV 2 »0–1¼:

AV log¹1 ¸ Gº =
�
1 � AV

�
log¹1º ¸ AV log¹1 ¸ Gº � log¹1 ¸ AVGº

)
log¹1 ¸ Gº

log¹1 ¸ AVGº
�

1
AV

•
(2.104)

Since[0? Ÿ 22•U1, we have

W[>?C

W[0?

�
W22•U1

W[0?

�

22•U1
2 ¸

r �
1 ¸ 22•U1

2

� 2
� 1

[0?

2 ¸
q �

1 ¸ [0?

2

� 2
� 1

�
1

¹1 � Xº2
• (2.105)

Thus, we have

#̂ 0?¹nº �
1

¹1 � Xº2
#̂ >?C¹nº• (2.106)

If [>?C� [0?, we have:

#̂ >?C¹nº �
1

W[0?

log

1

n
p

22•U1

!

=
log

�
1

n
p

22•U1

�

log
�

1
n
p

22•U1

�
¸ log

�
1p

2X� X2

� #̂ 0?¹nº• (2.107)

26

Figure 2.2: Relative error of̂# 0?¹nº, i.e. ¹#̂ 0?¹nº � #̂ >?C¹nºº•#̂ >?C¹nº, across a
range ofn and2•

p
U1.

Thus, for this case, we have

#̂ 0?¹nº �

©
­
­
­
­
«

1 ¸
log

�
1p

2X� X2

�

log
�

1
n
p

22•U1

�

ª
®
®
®
®
¬

#̂ >?C¹nº (2.108)

As n
p

22•U1 ! 0, the ratio between the two log functions in the above inequality

converges to 0 logarithmically.

In summary, we have obtained that

#̂ 0? � #̂ >?C¹nº � max

©
­
­
­
­
«

1 ¸
log

�
1p

2X� X2

�

log
�

1
n
p

22•U1

� –
1

¹1 � Xº2

ª
®
®
®
®
¬

• (2.109)

In practice,#̂ 0? is much closer to#̂ >?C. We tuned MATLAB'sfmincon function to

obtain#̂ >?C¹nº for a set of parameters and compared them with#̂ 0?¹nº at X= 0•01.

The resulting relative error is shown in Figure 2.2. The �gure shows that the

relative error decreases asn decreases and2•
p

U1 decreases. Speci�cally, practical

applications normally requiren � 10� 8. Within this range, the relative error is

within 1%.

27

When2•
p

U1 becomes small, we can give a straightforward estimate of how# 0?¹nº

changes as2•
p

U1 varies. Assuming2•
p

U1 � 1, we have

W[= log

1 ¸
[
2

¸

r �
1 ¸

[
2

� 2
� 1

!

�
[
2

¸

r �
1 ¸

[
2

� 2
� 1 �

p
[• (2.110)

Then we can write

#̂ 0?¹nº �
1

¹2•
p

U1º¹1 � Xº

�
log

�
1

n
p

2X� X2

�
¸ log

�
1

2•
p

U1

� �
• (2.111)

As we can see from the equation above, we have

#̂ 0?¹nº � $
�
� log¹2•

p
U1º

¹2•
p

U1º

�
– (2.112)

and similarly for# 0?¹nº.

2.6.2 Fast Fourier Transform based fast evaluation algorithm

Now, we introduce the algorithm to compute� 2. Suppose we would like to compute

all the values of� 2¹=– <º for a �xed < and a range of= 2 »0– !¼within some error

tolerancen. We �rst de�ne:

5¹\ º =
1

 j< j

1
 � 1•

– q= _ ¸ 22 � 2U1 cos¹\ º– =
q ¸

p
q2 � 4
2

• (2.113)

With these, the algorithm to compute that set of� 2 is shown as Algorithm 1.

Since� 2¹=– <º is real for all= and< , we can utilize the inverse real Fast Fourier

Algorithm 1 FFT-Based LGF Evaluation

1: procedureTrapzoidal Rule with FFT (2– U1– !– <– n)

2: Compute# 0
?CB¹nº =

�
1
2

�
1

WU
log

�
1

n¹2•
p

U1º
p

2X� X2

�
¸ !

� �

3: # ?CB= max¹# 0
?CB¹nº– !º

4: Declarev 2 R# ?CB

5: for k = 0,1,...,# ?CB� 1 do
v¹: º = 5¹c: • # ?CBº

6: end for
7: H = irFFT (v, 2# ?CB)
8: for k = 0,1,...,# ?CB� 1 do

H¹: º = H¹: º ¸ ¹� 1º: 5¹cº•¹2# ?CBº
9: end for

10: ReturnH
11: end procedure

28

Transform (irFFT). Note that to correctly compute� 2 using Algorithm 1, we need

to set the correct number of output in theirFFT function to2# ?CB. Otherwise, the

resulting FFT algorithm is di�erent from the trapezoidal rule approximation, and

the numerical results do not converge to� 2 exponentially. Also, the correction term

in the second for-loop results from comparing the formula ofirFFT against the

formula of the trapezoidal rule approximation. The di�erence,A, is

A=
1

2c
2c

2# ?CB

48:c

 j< j

1
 � 1•

=
1

2# ?CB

¹� 1º:

 j< j

1
 � 1•

=
¹� 1º:

2# ?CB
5¹cº• (2.114)

We note that for a �xed¹=– <º, = < ! and a �xed error tolerancen, the resulting

� 2¹=– <º value from Algorithm 1 is di�erent from the values obtained by directly

evaluating the trapezoidal rule. This is because the number of quadrature points used

to evaluate� ¹=– <º using Algorithm 1 is higher than# 0?¹nº. The higher number

of quadrature points ensures that� 2¹!– < º satis�es the required error tolerance.

Algorithm 1 is best applicable when# 0? � ! . In that case, the average operation

count to evaluate an entry of� 2 is

$� 0E6 �
$ ¹! log¹# 0?ºº

!
� $ ¹log¹# 0?ºº• (2.115)

By using FFT, one can take advantage of the ubiquity of the highly optimized

FFT libraries such as FFTW (Frigo and Johnson, 1998) and cuFFT (NVIDIA

Corporation, 2024). Thus, we not only speed up our computation in terms of

reduced computational complexity but also bene�t from the optimization in the

software and hardware aspects. In the case that# 0? � ! , depending on the

computer architecture, it might be more e�cient to directly evaluate the trapezoidal

rule approximation term by term. In that case, the average computational complexity

is $ ¹# 0?º.

2.7 Numerical experiments

In this section, we assess the performance of the trapezoidal rule approximation

with FFT (Algorithm 1) and the direct trapezoidal rule approximation (without

FFT) by comparing them to two existing methods: evaluating Appell's double

hypergeometric function representation in Thm. 2.2.1 and numerically integrating

Eq. 2.8 using Gauss-Kronrod quadrature (Doncker, 1978). All the computations

are done on an Apple Silicon M1 chip. The code used in this section is available

online* .
* The code for all the numerical experiments in this section can be found inhttps://github.

com/WeiHou1996/Fast-Screened-Poisson-LGF.

29

First of all, we demonstrate the error bound Eq. 2.99 of the trapezoidal rule ap-

proximation. In Figure 2.3, we compare the trapezoidal rule approximation with

the Appell's double hypergeometric function representation Eq. 2.5 at2 = 0•3 for a

range of# ?CB(the number of quadrature points) andU1. With only 40 quadrature

points in the trapezoidal rule approximation, the error converges to less than10� 7

across all the cases. The small errors establish the validity of the trapezoidal rule

approximation and our implementation. When2 Ÿ 0•3, we cannot evaluate Appell's

double hypergeometric function within a reasonable amount of time. Thus, in that

case, we use the trapezoidal rule approximation with a su�ciently high number of

quadrature points as the reference value. In Figure 2.4, we demonstrate the error of

the trapezoidal rule approximation at2•
p

U1 = 0•01. In two of the sub�gures, the

absolute error violates the error bound when= is small. However, those errors are

below10� 13, indicating the e�ects of the �nite precision arithmetic.

In the exercise above, we used Python'smpmath(The mpmath development team,

2023) package to evaluate the Appell's double hypergeometric function, and we used

NumPy(Harris et al., 2020) to evaluate the direct trapezoidal rule approximation. We

do not directly compare the runtime of these two methods as the underlying numer-

ical packages are implemented using di�erent programming languages. However,

as a point of reference, the time to evaluate� 2¹=– <º for all ¹=– <º 2 »0–9¼2 at

2 = 0•3 using the Appell's double Hypergeometric function representation takes

7.22 seconds while evaluating the trapezoidal rule approximation (without FFT) to

an absolute error below10� 10 takes 0.00216 seconds.

We also compare our algorithms with numerically integrating the Bessel function

representation using Eq. 2.8. Speci�cally, we usedSciPy's scipy.integrate.quad

function andscipy.special.ive function to numerically integrate Eq. 2.8. Inte-

grals over �nite ranges are computed using the Gauss-Kronrod quadrature. Integrals

with in�nite ranges are �rst mapped onto a �nite interval and then evaluated using

the Gauss-Kronrod quadrature (Doncker, 1978). We measure the performance of

the trapezoidal rule approximation with and without FFT by de�ning a speedup

factor compared to evaluating the LGF using the Bessel function representation.

Given a set of values of LGF to compute, the speedup factor for a speci�c method,

M , is:

Speedup Factor=
Runtime using the Bessel function representation

Runtime using methodM
• (2.116)

30

(a) # ?CB= 20, andU1 = 1. (b) # ?CB= 20, andU1 = 0•64.

(c) # ?CB= 40, andU1 = 1. (d) # ?CB= 40, andU1 = 0•64.

Figure 2.3: Error of the trapezoidal rule approximation of� 2¹=– <º with various
?CB, U1, =, and < . Across all the cases,2 = 0•3. The error is computed by
referencing the analytical expression using Eq. 2.5. The error bound is computed
using Eq. 2.99.

31

(a) # ?CB= 1000, U1 = 1. (b) # ?CB= 2000, U1 = 0•64.

(c) # ?CB= 1000, U1 = 1. (d) # ?CB= 2000, U1 = 0•64.

Figure 2.4: Error of the trapezoidal rule approximation of� 2¹=– <º with various
?CB, U1, =, and< . Across all the cases,2•

p
U1 = 0•01. The error is computed by

referencing the trapezoidal rule approximation with10–000quadrature points.

32

(a) Average absolute error.

(b) Runtime speedup.

Figure 2.5: The maximum absolute error and speedup factors of computing� 2¹=– <º
when2 = 0•3 andU1 = 0•5. The error is computed by comparing the numerical
integration results to the trapezoidal rule approximations with2# 0?¹nº quadrature
points.

In Figs. 2.5, 2.6, and 2.7, we compare our algorithms with numerically integrating

the Bessel function representation with a large integration upper bound, presenting

both error and speedup. We set2 = 0•3–0•1–0•01 and U1 = 0•5 and evaluate

all � 2¹=– <º for ¹=– <º 2 »0–99¼2 using three methods: numerically integrating

the Bessel function representation with large and varying integration upper bounds

() <0G), evaluating the trapezoidal rule approximation directly without FFT, and

evaluating the values of the LGF in batch using FFT (Algorithm 1). In all these

methods, the absolute error tolerance is set to10� 10. When2 = 0•3, the speedup

factor is around 6 for the trapezoidal rule approximation without FFT and around

500 for the trapezoidal rule approximation with FFT. When2 = 0•1, the advantage

of the trapezoidal rule approximation is more prominent. The speedup factors are

33

(a) Average absolute error.

(b) Runtime speedup.

Figure 2.6: The maximum absolute error and speedup factors of computing� 2¹=– <º
when2 = 0•1 andU1 = 0•5. The error is computed by comparing the numerical
integration results to the trapezoidal rule approximations with2# 0?¹nº quadrature
points.

around 20 and 1650 without and with FFT, respectively. At2 = 0•01, numerically

integrating the Bessel function representation cannot reach satisfactory accuracy. In

contrast, the trapezoidal rule approximations are able to reach the desired accuracy,

with signi�cant speedup factors. These three cases demonstrate the e�ciency and

robustness of the trapezoidal rule approximation and Algorithm 1.

Finally, in Figure 2.8, we present the error and speedup of our algorithm compared

to numerically evaluating the Bessel function by mapping the in�nite integration

interval to a �nite one (Doncker, 1978). We �xU1 = 0•5 and vary2 between0•001

and0•2. We evaluate the values of� 2 within the square»0–99¼2 with an absolute

error tolerance of10� 10. When evaluating� 2 using the Bessel function represen-

34

(a) Maximum absolute error.

(b) Runtime speedup.

Figure 2.7: The maximum absolute error and speedup factors of computing� 2¹=– <º
when2 = 0•01 andU1 = 0•5. The error is computed by comparing the numerical
integration results to the trapezoidal rule approximations with2# 0?¹nº quadrature
points.

tation, the numerical quadrature can diverge when2 is small. However, this does

not happen with the trapezoidal rule approximation. Also, even when converged,

numerically integrating the Bessel function representation does not always satisfy

the prescribed error tolerance. In contrast, the trapezoidal rule approximations not

only consistently satisfy the error tolerance but also greatly reduce the runtime. The

trapezoidal rule approximation reaches a speedup factor of at least 15 without using

FFT and a speedup factor of at least 1000 when using FFT.

We note that numerically integrating the Bessel function representation struggles

to satisfy the required error tolerance, especially when2 is small. The reason

is that the integrand in the Bessel function representation, Eq. 2.8, decays at the

35

(a) Maximum absolute error.

(b) Runtime speedup.

Figure 2.8: The maximum error and speedup factors when computing� 2¹=– <º
using the trapezoidal rule with FFT, without FFT, and numerically integrating the
Bessel function representation using the transform proposed in (Doncker, 1978).
The maximum absolute error is obtained by comparing the values from evaluating
the trapezoidal rule approximation of� 2 using2# 0?¹nº quadrature points. The stars
and the dashed line in the maximum absolute error plot indicate that some values in
the numerical integration did not converge.

rate ofexp¹� 22Cº•Cand is highly oscillatory (Abramowitz and Stegun, 1948). As

2 becomes small, the integral becomes increasingly pathological and di�cult to

evaluate numerically.

2.8 Application 1: lattice Green's function of the three-dimensional Poisson

equation with one periodic direction

An immediate application of� 2 is solving the discretized three-dimensional Pois-

son equation with one periodic direction. Consider a discretization of the three-

36

dimensional Poisson equation with constant spatial resolutions� G1, � G2, and� G3

in each of the three spatial dimensions. The resulting discretized Poisson equation

reads

3Õ

8=1

2

� G2
8

D¹nº �
1

� G2
8

D¹n ¸ e8º �
1

� G2
8

D¹n � e8º

!

= 5¹nº• (2.117)

In addition, we assume that the solution is periodic in the third direction and

unbounded in the �rst two directions. To solve the Poisson equation, we can �nd a

corresponding LGF and apply discrete convolution. The LGF satis�es:

3Õ

8=1

2

� G2
8

� ¹nº �
1

� G2
8

� ¹n ¸ e8º �
1

� G2
8

� ¹n � e8º

!

= XZ3
¹nº (2.118)

whereXZ3
: Z3 ! R is de�ned as:

XZ3
¹nº

8>><

>>
:

1 if n = 0

0 otherwise•
(2.119)

This equation can be readily solved if we can solve the following equation

3Õ

8=1

¹2U8� ¹nº � U8� ¹n ¸ e8º � U8� ¹n � e8ºº = XZ3
¹nº (2.120)

whereU2 = 1, U1 = � G2
2• � G2

1, andU3 = � G2
2• � G2

3.

Suppose the solution is assumed to be# ? periodic in=3, with n = »=1– =2– =3¼, we

can write

� ¹nº = � ¹=1– =2– =3º = � ¹=1– =2– =3 ¸ # ?º• (2.121)

We de�ne the discrete Fourier transform of a# ? periodic discrete function5

~5: = F »5¼¹: º =
? � 1Õ

==0

5¹=º4� 82c:=• # ? (2.122)

and its inverse

5¹=º = F � 1» ~5¼¹=º =
1

?

? � 1Õ

: =0

~5: 482c:=• # ? • (2.123)

Thus, there exists a set of Fourier coe�cientsf ~� : g: such that

� ¹=1– =2– =3º =
1

?

? � 1Õ

: =0

~� : ¹=1– =2º482c:=3• # ? • (2.124)

37

And the LHS of Eq. 2.120 can be written as:

1
?

2
6
6
6
6
4

? � 1Õ

: =0

482c:=3• # ? ! ^¹: º ~� : ¹=1– =2º

3
7
7
7
7
5

(2.125)

where

^¹: º =
q

2U3 � 2U3 cos¹2c: • # ?º• (2.126)

Applying discrete Fourier transform to both sides of Eq. 2.120 gives

! ^¹: º ~� : ¹=1– =2º = X0=1X0=2• (2.127)

By de�nition, ~� : ¹=1– =2º = � ^¹: º ¹=1– =2º. Thus, we �nd

� ¹=1– =2– =3º =
1

?

? � 1Õ

: =0

482c:=3• # ? � ^¹: º ¹=1– =2º• (2.128)

Using Algorithm 1 and the approximation in Eq. 2.19, one can e�ciently compute

the values of� ^¹: º and evaluate� using inverse Fast Fourier Transform. We use this

result to solve a Poisson equationr 2q = � 5 with the following analytical solution

q¹G– H– Iº =
exp¹� 64G2 � 4H2º

2 � cos¹I º
• (2.129)

We obtain the source term5by taking�r 2q. The computational domain is»� 1–1¼�

»� 4–4¼ � »0–2c¼. The convergence result is shown in Figure 2.9.

2.9 Application 2: random walks with killing on a two-dimensional rectan-

gular lattice

Consider a random walk with killing on a two-dimensional rectangular lattice

(Madras, 1989; Lawler and Limic, 2010). When the walker is at location¹=– <º, it

can behave in �ve di�erent ways with certain probabilities. It can either move up,

down, left, or right for one step. It can also decide to stay at¹=– <º forever (i.e.

killed). We assume that the probabilities are all strictly positive and de�ned by:

P¹¹= ¸ 1– <ºº = P¹¹= � 1– <ºº = ?1–

P¹¹=– <¸ 1ºº = P¹¹=– <� 1ºº = ?2–

P¹stay at¹=– <º foreverº = ?: := 1 � 2?1 � 2?2•

(2.130)

We can compute the probability of a random walk starting at an arbitrary point

¹=– <º and eventually returning to the origin. Let this probability be denoted as

d¹=– <º. We can write

d¹=– <º = ?1d¹=¸ 1– <º ¸ ?1d¹=� 1– <º ¸ ?2d¹=– <� 1º ¸ ?2d¹=– <¸ 1º (2.131)

38

Figure 2.9: Convergence study of solving the Poisson equation using the three-
dimensional Poisson LGF with one periodic direction. The ratio� G3• � G2 = 2c is
held constant across all cases. Within each series, the ratio between� G1 and� G2
is �xed. Di�erent series have di�erent ratios of� G2 and � G1. The dashed line
indicates the expected second-order convergence rate.

with the terminal conditiond¹0–0º = 1. The above equation is satis�ed everywhere

in Z2 except at the origin. At the origin, we have

d¹0–0º = ?1d¹1–0º ¸ ?1d¹� 1–0º ¸ ?2d¹0–� 1º ¸ ?2d¹0–1º ¸ � ¹?1– ?2º (2.132)

where� ¹?1– ?2º is an undetermined function to satisfy the conditiond¹0–0º = 1.

With U1 = ?1• ?2, we can rewrite the governing equation ofd¹=– <º as

! ^¹?1–?2ºd¹=– <º =
1
?2

X0=X0< � ¹?1– ?2º (2.133)

where

^¹?1– ?2º =

s
1 � 2?1 � 2?2

?2
• (2.134)

By de�nition, we have

d¹=– <º =
1
?2

� ¹?1– ?2º� ^¹?1–?2º ¹=– <º• (2.135)

To determine� ¹?1– ?2º, we use the terminal condition ofd¹0–0º = 1 and Eq. 2.132

to �nd

� ¹?1– ?2º =
1

1 ¸ 2?1
?2

� ^¹?1–?2º ¹1–0º ¸ 2� ^¹?1–?2º ¹0–1º
• (2.136)

In the equation above, we can compute� ^¹?1–?2º ¹1–0º and� ^¹?1–?2º ¹0–1º using the

integral in Thm. 2.4.1 through the trapezoidal rule approximation in Eq. 2.54. Then

39

we can compute the return probability at all other locations using either direct

trapezoidal rule approximation or Algorithm 1. A sample return probability (with

?1 = 0•2¹1 � ?: º– ?2 = 0•3¹1 � ?: º) with various?: is shown in Figure 2.10.

2.10 Conclusion

In this chapter, we studied the two-dimensional lattice Green's function (LGF) of

the screened Poisson equation on rectangular lattices. In particular, we proposed

two e�cient ways to compute the LGF, depending on the22 term.

When22 is large, we conducted an asymptotic expansion to give an approximation

formula of the LGF. We showed that this approximation exponentially converges

towards the true values of the LGF. Using the approximation formula, we also

established the decay rate of the LGF towards in�nity.

Although the asymptotic expansion exponentially converges toward the entries of

the LGF, when22 is small, approximating LGF using the asymptotic expansion

becomes prohibitively expensive. To remedy this, we derived a one-dimensional

integral representation of the LGF. In addition, we showed that the trapezoidal rule

approximates this one-dimensional integral exponentially fast. By exploiting the

properties of the integrand and the trapezoidal rule approximation, we devised a

fast algorithm for batch-evaluating the values of the LGF using the Fast Fourier

Transform. To enhance the algorithm's robustness, we proposed a simple yet accu-

rate estimate of the minimum number of quadrature points needed for a prescribed

error tolerance. Compared to existing formulations such as the Appell's double

hypergeometric function representation and the Bessel function representation, the

resulting algorithm demonstrates high robustness and e�ciency when evaluating

the LGF.

Finally, we demonstrated how our algorithms can be e�ciently used to tabulate the

LGF and solve two application problems � the three-dimensional Poisson equation

with two unbounded directions and one periodic direction, and the return probability

of a random walk with killing on a rectangular lattice.

40

(a) Return probability at various< with = = 0.

(b) Return probability on the diagonal (= = <).

Figure 2.10: The return probability,%A4CDA=, at various=– <at di�erent kill proba-
bilities ?: .

41

C h a p t e r 3

AN ADAPTIVE LATTICE GREEN'S FUNCTION METHOD FOR
EXTERNAL FLOWS WITH TWO UNBOUNDED AND ONE

HOMOGENEOUS DIRECTIONS

This chapter is adapted from Hou and Colonius (2024a). In this chapter, we describe

a �ow simulation algorithm specially designed for external �ows with spanwise

periodicity. We leverage the lattice Green's function, adaptive mesh re�nement,

and immersed boundary method to create an algorithm suitable for handling �ows

around complex geometries and resolving a large range of length scales from the

�ow structures.

3.1 Introduction

The lattice Green's function (LGF) is the analytical inverse of a discrete elliptic op-

erator on an unbounded domain (lattice). Due to its value in numerical applications

(Liska and Colonius, 2016; Cserti, 2000), its computation (Buneman, 1971; Mar-

tinsson and Rodin, 2002; Katsura and Inawashiro, 1971) and asymptotic behavior

(Martinsson and Rodin, 2002; Katsura and Inawashiro, 1973) have been studied

thoroughly. In addition, the LGF can be adopted to solve the Poisson equation

with various boundary conditions (Gabbard and Rees, 2024b; Caprace, Gillis, and

Chatelain, 2021; Balty, Chatelain, and Gillis, 2023) and in various dimensions

(Caprace, Gillis, and Chatelain, 2021; Balty, Chatelain, and Gillis, 2023). In par-

ticular, for incompressible �ows, the LGF can be combined with the immersed

boundary method (IB) (Peskin, 2002) to create an e�cient and parallel algorithm

(Liska and Colonius, 2016). E�ciency can be further enhanced with a multilevel

LGF framework for adaptive mesh re�nement (AMR) (Dorschner et al., 2020; Yu,

2021). In these methods, LGF is used to solve the pressure-Poisson equation and/or

vorticity-streamfunction equation. The use of LGF ensures that the solution is

de�ned everywhere in the free space (without imposition of arti�cial boundary con-

ditions) yet only a �nite set of active cells is needed to time-step the �ow. This yields

a snug, adaptive domain that encloses only the evolving vorticity �eld, truncated at

a small threshold value at the boundary.

However, LGF methods have not been applied to solve the incompressible Naiver-

Stokes equations with spanwise periodicity. In practice, a wide class of interesting

42

geometries and �ows exhibit such span-wise periodicity. Among these �ows are

the �ow past bodies with in�nite spans and a constant two-dimensional cross-

section, such as circular cylinders and unswept airfoils. Although a wide variety

of other methods have been developed for these �ows (e.g. Dong and Karniadakis

(2005), Mittal and Balachandar (1997), and Lehmkuhl et al. (2013)), the multilevel

LGF method promises greater computational e�ciency while exactly preserving the

asymptotic structure of the irrotational outer solution.

In this chapter, we extend the multilevel framework that combines LGF, IB, and

AMR (Yu, 2021) to solve fully 3D �ows with one homogeneous direction. We

exploit the spanwise periodicity by using a Fourier expansion of the �ow vari-

ables (velocity, pressure, and IB forcing) and derive the evolution equations of the

corresponding Fourier coe�cients. This formulation enables us to compute the

nonlinear convective term via the (dealiased) Fast Fourier Transform (FFT). We

develop a staggered-grid strategy that hybridizes the second-order �nite-volume

discretization for the inhomogenous directions with the Fourier expansion in the ho-

mogeneous one, while maintaining desired discrete conservation and other mimetic

properties associated with the original 3D �nite-volume discretization. In addi-

tion, we adaptively truncate Fourier coe�cients to make the spanwise resolution

consistent with the �nite-volume AMR grid.

With one periodic direction, the pressure is determined by a discrete screened Pois-

son equation for which we derive formulas and algorithms to evaluate the LGF. This

particular LGF poses a unique challenge in two aspects. First, the discrete screened

Poisson equation involves a continuous coe�cient such that the corresponding LGF

varies nonlinearly with it. A large number of these LGFs would thus be required,

and it is desirable to have a fast way to evaluate them at runtime. In contrast to the

regular Poisson equation, the existing polyharmonic asymptotic expansion does not

apply to the LGF of the screened Poisson equation (Du�n, 1953; Du�n and Shelly,

1958; Martinsson and Rodin, 2002; Gabbard and Rees, 2024b). Thus, we need

to directly compute the LGF through numerical integration. To address both chal-

lenges, we adapt the spectrally convergent trapezoidal rule approximation presented

in Chapter 2 for fast evaluation of this LGF. Similar challenges are also present in

the handling of the viscous term. Thus, we derive and compute the LGF for the

appropriate integrating factor for the viscous term. In addition, we provide algo-

rithms for LGF of the integrating factor for the viscous Laplacian (the heat equation

kernel), which allows us to employ a half-explicit Runge-Kutta (IF-HERK) method

43

for time advancement (Liska and Colonius, 2017).

The chapter is arranged as follows. We introduce the Fourier-transformed Navier-

Stokes equations with IB forcing in Section 3.2. Then, in Section 3.3, we derive a

spatial discretization in terms of corresponding discrete operators. In Section 3.4,

we develop LGFs for the screened Poisson operator and integrating factor. In the next

sections, we adapt several previous algorithms to the spanwise homogenous case,

speci�cally the time marching method (Section 3.5), multilevel application of the

LGF (Section 3.6), and the domain and mesh adaptation strategies (Section 3.7). The

overall algorithm for the incompressible Navier-Stokes equations is then summarized

in Section 3.8. Subsequently, in Section 3.9, we describe the parallelization strategy

computational e�ciency. In Section 3.10, we empirically demonstrate the (overall

�rst-order) convergence of the scheme. Finally, in Section 3.11, we validate the

algorithm by computing �ow past a cylinder at'4 = 300, and we highlight the

ability of our algorithm to tackle large problems by computing the turbulent �ow

past a cylinder at'4 = 12–000.

3.2 Governing equations and Fourier expansion

Physically, the problem under consideration is an in�nite-span cylinder (axisI) of

arbitrary cross-section moving (including acceleration) in theG� Hplane through an

otherwise quiescent, viscous, incompressible �uid. Invoking homogeneity, we re-

strict I to a periodic section of a speci�ed length2. For real-valued5 = 5¹G– H– I– Cº,

we write the truncated Fourier series

5¹G– H– I– Cº � ~f 0¹G– H– Cº ¸
•2Õ

: =1

h
~f : ¹G– H– Cº42c8: I•2 ¸ ~f : ¹G– H– Cº4� 2c8: I•2

i
– (3.1)

where

~5: ¹G– H– Cº = F: »5¼:=
1
2

¹ 2•2

� 2•2
5¹I º4� 8I2c:

2 3I• (3.2)

Let u and 8 = r � u be the velocity and vorticity, and? be the pressure, all

nondimensionalized with respect to a speci�ed velocity scale, length scale, and

density. In physical space, the incompressible Navier-Stokes equations with the IB

formulation are (Liska and Colonius, 2017)

44

mu
mC

¸ 8 � u0 = �r � ¸
1

'4
r 2u ¸

¹

� ¹Cº
f � ¹/ – CºX¹^ ¹/ – Cº � xº3/ –

r � u = 0–

u� ¹/ – Cº =
¹

R3
u¹x– CºX¹x � ^ ¹/ – Cºº3x•

(3.3)

Here,x andx0 = x � X¹Cº denote the coordinates in the inertial reference frame

and those in the non-inertial reference frame, respectively. The non-inertial frame

translates with the trajectoryX¹Cº and rotates with angular velocity
 ¹Cº. u is

the velocity vectors in the inertia reference frame.u0 is the velocity vector with

respect to the non-inertial reference frame. The two velocities are related through

u = u0 ¸ uA whereuA = 3X¹Cº
3C ¸
 ¹ tº � x0 := [¹Cº ¸
 ¹ tº � x0. In this equation,mmC

is the derivative inCwith x0 held constant, andr the gradients with respect tox0.

Correspondingly,� = ? � 1
2 juAj2 � 1

2 ju0 j2 where? is the pressure.

If we denote the immersed boundary points in the non-inertial frame as^ 0¹/ – Cº,

we can rewrite the boundary condition

u� –0¹/ – Cº ¸ [¹Cº ¸
 ¹Cº � ^ 0¹/ – Cº =
¹

R3
u¹x– CºX¹x � ^ ¹/ – Cºº3x• (3.4)

Note that the convolution integral is taken in the inertial coordinates. The Dirac

delta function uses the relative position between the immersed boundary surface and

the coordinates in the inertial reference frame. Thus, we are only sampling inertial

frame velocity on the immersed boundary and equate the values to the inertial frame

velocity boundary condition, on each single point parameterized by/ andC.

In Fourier space, these equations read

m~u :

mC
¸ F : »8 � u0¼= � er : ~� : ¸

1
'4

fr 2
: ~u :

¸
¹

� ¹Cº2�

~f � –:¹/ 2� – CºX2� ¹^ 2� ¹/ 2� – Cº � x2� º3/ 2� –

er : •~u : = 0–

eu� –:¹/ 2� – Cº =
¹

R2
~u : ¹x2� – CºX2� ¹x2� � ^ 2� ¹/ 2� – Cºº3x2� –

(3.5)

where
er : •~u : =

m~D:

mG
¸

m~E:

mH
¸

2c8:
2

~F : – (3.6)

er : ~� : =
�
m~� :

mG
–
m~� :

mH
–
2c8:

2
~� :

�)

– (3.7)

45

Figure 3.1: Variable placement in theG� Hplane for a Fourier interpolation sampling
point in theI direction.

er 2
: ~D: =

m2 ~D:

mG2
¸

m2 ~D:

mH2
�

�
2c:

2

� 2

~D: • (3.8)

Details for the Fourier transform of the IB terms are given in Appendix A.

Since the body and �ow are homogeneous in theI direction, we simplify the

boundary condition equations to

u� ¹/ 2� – Cº =
¹

R2
~u0¹x2� – CºX2� ¹x2� � ^ 2� ¹/ 2� – Cºº3x2� : = 0–

0 =
¹

R2
~u : ¹x2� – CºX2� ¹x2� � ^ 2� ¹/ 2� – Cºº3x2� : < 0•

(3.9)

We can evaluate the nonlinear term using a de-aliased pseudo-spectral approach

(Orszag, 1971b), i.e. we discretize the inverse transform to the DFT, form the

product in physical space via padded inverse transforms, and transform the product

back to its truncated Fourier coe�cients. Padding via the3•2 rule is su�cient since

the equations involve at most quadratic nonlinearity.

3.3 Spatial discretization

To develop a framework that is best suited for the hybridized discretization, we place

all �nite-volume cells with their centers aligned with the evenly-spaced sampling

points for Fourier interpolation. TheGandHcomponents of velocity are placed on

the faces, and theI component of velocity is at the cell center. One can visualize

the resulting data �eld as a collection of evenly-spaced slices that appear as a 2D

�nite-volume method depicted in Figure 3.1.

With this staggered mesh, we now de�ne discrete operators and enumerate some of

their properties. In this section, we use boldfaced variables, e.g.g = »61– 62– 63¼) ,

46

to denote 3-component vector �elds and non-boldfaced variables, e.g.6, to denote

scalar �elds. The operators are:

ˆ Divergence on: C� Fourier coe�cient:

� : g = D G61 ¸ D H62 ¸ ¹ 2c8:•2º63• (3.10)

ˆ Gradient on: C� Fourier coe�cient:

� : 6 = »�D)
G6–�D)

H6–¹2c8:•2º6¼) • (3.11)

ˆ Curl on : C� Fourier coe�cient:

� : g = »�D)
H63� ¹ 2c8:•2º62–¹2c8:•2º61¸D)

G63–�D)
G62¸D)

H61¼) • (3.12)

ˆ Laplacian on: C� Fourier coe�cient:

! : 6 = �D)
GD G6 � D)

HD H6 � ¹ 2c: •2º26• (3.13)

In the equations above,D denotes a forward �nite di�erence derivative, for example,

D G6¹8– 9º = »6¹8¸ 1– 9º � 6¹8– 9º¼•� G. The operators mimic some properties of the

continuous operators, namely� : = � � �
: and! : = � � �

: � : (where the superscript�

denotes the conjugate transpose).

Let u0–== »D=– E=– F=¼) be the velocity in the non-inertial frame at the=C� slice and

8 = = »l =–G– l =–H– l =–I¼) be the vorticity on that slice, we discretize the nonlinear ad-

vection terms in rotational form by de�ningT =¹8– 9º = »# =–G¹8– 9º– #=–H¹8– 9º– #=–I¹8– 9º¼) ,

and writing

=–G¹8– 9º =
1
2

l =–H¹8– 9º»F=¹8– 9º ¸ F=¹8� 1– 9º¼

�
1
4

l =–I¹8– 9º»E=¹8– 9º ¸ E=¹8� 1– 9º¼

�
1
4

l =–I¹8– 9̧ 1º»E=¹8– 9̧ 1º ¸ E=¹8� 1– 9̧ 1º¼–

=–H¹8– 9º =
1
4

l =–I¹8– 9º»D=¹8– 9º ¸ D=¹8– 9� 1º¼

¸
1
4

l =–I¹8¸ 1– 9º»D=¹8¸ 1– 9º ¸ D=¹8¸ 1– 9� 1º¼

�
1
2

l =–G¹8– 9º»F=¹8– 9º ¸ F=¹8– 9� 1º¼–

=–I¹8– 9º =
1
2

»l =–G¹8– 9ºE=¹8– 9º ¸ l =–G¹8– 9̧ 1ºE=¹8– 9̧ 1º¼

�
1
2

»l =–H¹8– 9ºD=¹8– 9º ¸ l =–H¹8¸ 1– 9ºD=¹8¸ 1– 9º¼•

(3.14)

47

Let T ¹8 –uº be the collection of the nonlinear advection term across all slices,

evaluated using8 –u with Eq. 3.14. Inserting the discrete spatial operators in

Eq. 3.5, we obtain a system of (index 2) di�erential-algebraic equations (DAE)

3~u :

3C
¸ F : »T ¹8 –uº¼= � � : ~@: ¸

1
'4

! : ~u : ¸ %¹Cº) ~f : –

� : ~u : = 0–

%¹Cº ~u : = eu� –:–

(3.15)

where@is a pressure-like variable. In this equation, the Fourier coe�cients of the

nonlinear term are evaluated with the pseudo-spectral approach discussed above.

%¹Cº is the IB interpolation operator. There are second- and higher-order accurate

discretizations of this operator (Gabbard, Gillis, et al., 2022; Ji, Gabbard, and Rees,

2023; Gabbard and Rees, 2024a; Verzicco, 2023), but considering compatibility

with the exact imposition of the boundary conditions and mimetic properties of the

�nite-volume discretization, together with the availability of AMR, we prefer the

�rst-order-accurate discrete delta function approach (Peskin, 2002). In addition,

when the immersed body is time-invariant, the linear system associated with the

IB forcing possesses the desired Hermitian property (later shown in Section 3.5

and Appendix C). Any discrete delta function can be used in the formulation; the

calculations below utilized a three-point delta function (Roma, Peskin, and Berger,

1999)

q¹Aº =

8>>>>><

>>>>>
:

1 ¸
p

� 3A2 ¸ 1–jAj Ÿ 0•5–
1
6 ¹5 � 3jAj �

p
1 � 3¹1 � j Ajº2º–jAj 2 »0•5–1•5º–

0 otherwise•

(3.16)

3.4 Lattice Green's functions

3.4.1 Lattice Green's function of! :

In solving Eq. 3.15, substituting the momentum equation in the divergence-free

constraint gives rise to an inhomogeneous screened Poisson equation,! : D= 5 that

must be solved at each time sub-step. We utilize the lattice Green's function (LGF)

on a formally in�nite grid to solve this system. For each: , we can �nd a LGF,

� : : Z2 ! R, of the operator! : such that

¹! : � : º¹=– <º = ¹� Gº2XZ¹= � < º– lim
=–<!1

� : ¹=– <º = 0 (3.17)

48

whereXZ : Z ! f 0–1g is the Kronecker delta function and de�ned as:

XZ¹=º =

8>><

>>
:

1 if = = 0–

0 if = < 0•
(3.18)

As a result, we can solve the inhomogeneous screened Poisson equation using this

LGF (Katsura and Inawashiro, 1971; Martinsson and Rodin, 2002):

! : D= 5) D¹=– <º = ¹! � 1
: 5º¹=– <º :=

Õ

0–1

¹� Gº2� : ¹=� 0– <� 1º 5¹0– 1º• (3.19)

We call the sequencef � : ¹=– <ºg=–< the LGF kernel.

When: < 0, we can write the LGF kernel as (Buneman, 1971):

� : ¹=– <º � � : ¹0–0º =
1

2c

c¹

� c

�
1 �

48\<

 j=j

�
3\

 � 1•
(3.20)

where

 =
0 ¸

p
02 � 4
2

– (3.21)

and

0 =

4 ¸
�
2c: � G

2

� 2

� 2 cos¹\ º

!

• (3.22)

Finally,

� : ¹0–0º =
1

21 2� 1

1
2

–
1
2

; 1;
�
2
1

� 2
!

– (3.23)

where1 = 2 ¸ 2
�

c: � G
2

� 2
. We note that the integral in Eq. 3.20 is increasingly

oscillatory with increasing< . However, as the integrand is periodic, it can be

approximated with spectral convergence using the trapezoidal rule (Trefethen and

Weideman, 2014). Further, one can show that the number of quadrature points

needed to evaluate this integral at most increases linearly with< . However, we do

note that the spectral convergence rate of the numerical approximation is dictated

by 0. Speci�cally, as we show in Chapter 2, the approximation error of an N-point

trapezoidal rule approximation (n#) is bounded by

jn# j �
2"

4W2# � 1
– (3.24)

whereW2 is any positive real number satisfying:

W2 Ÿ log©
­
«

1 ¸
U2

2
¸

s �
1 ¸

U2

2

� 2

� 1ª
®
¬

:= ^2– U=
2c: � G

2
– (3.25)

49

Figure 3.2: Convergence of� ¹=– <º for = = < = 1280and various= compared with
the analytical convergence rate.

and" is

" = sup
j=¹ \ º jŸW2

�
�
�
�¹1 �

48\<

 j=j
º

1
 � 1•

�
�
�
� • (3.26)

In our implementation, this integral is evaluated for each: , < , and= using the

adaptive trapezoidal rule (Schäling, 2011) with relative tolerance of10� 10. This

algorithm halves the integration step size (i.e. double the quadrature points) until

the tolerance is achieved. The convergence of this approximation is empirically

demonstrated in Figure 3.2. The threshold10� 10 is chosen to achieve su�cient

precision in subsequent computations with the LGF without excessive computational

expense or the need to invoke quad-precision arithmetic. Due to the periodicity of

the integrand, the relative error is typically much less than the threshold10� 10, often

reaching the machine epsilon (Schäling, 2011).

To determine the required number of quadrature points for practical computations,

we consider a worst-case scenario. First, consider that monotonically increases

with U, which also monotonically increases with: � G•2. We thus consider the case

where: = 1 and2• � G= 1200which provides a conservative estimate for the lowest

value of : � G•2 likely to be encountered in applications. To further simplify the

matter, we observe that� ¹=– <º = � ¹j=j–j< jº, so, without loss of generality, we can

assume=– <� 0. In addition, since ¡ 1, the higher the value= is, the greater j=j,

and the smaller the oscillatory term in the integrand. Thus, the worst case happens

50

Figure 3.3: Spectral convergence of� ¹<– <º for various< .

Figure 3.4: Convergence of� ¹=– <º for < = 1280and various=.

when< is large and= is small. However, since� ¹<– =º = � ¹=– <º (Katsura and

Inawashiro, 1971), we can always write� ¹=– <º = � ¹max¹=– <º–min¹=– <ºº. Thus

the oscillation of the integrand is the most severe when< = = and they are both

large. Computed errors for a range of< are shown in Figure 3.3. To further illustrate

the point that increasing=when holding< constant will not exacerbate the e�ects of

oscillation during numerical integration, we hold< = 1280and vary= in Figure 3.4.

51

Returning now to the case: = 0, the far-�eld boundary condition imposed on� :

is not achievable, since the fundamental solution logarithmically diverges in 2D

(Martinsson and Rodin, 2002). However, eliminating this term provides an inverse

that is unique up to a constant. This constant can be absorbed into the pressure and

need never be determined explicitly. However, when we introduce the multilevel

LGFs (Section 3.6), we shall need to impose a compatibility constraint so that the

arbitrary constant is the same regardless of resolution. Let� ;
0 denote the kernel

on the;C� re�nement level (0 is the coarsest grid), we can write the compatibility

condition as the following:

� ;
0¹nº = � 0

0¹nº �
;

2c
log¹2º 8n 2 Z2• (3.27)

We detail the derivation of this compatibility condition in Appendix B.

With a compact source term,! � 1
: provides the solution at any point on an in�nite

lattice. However, to march the solution (and the source) to the next time, we only

need to evaluate the action of applying! � 1
: on the support of its source (including a

bu�er region to allow the solution to adapt). To ensure the accuracy of the solution

and adapt to the evolving vortical �ow region, we adopt the domain adaptation and

�velocity refresh� algorithms developed for the 3D inhomogeneous case (Liska and

Colonius, 2016; Liska and Colonius, 2017). Further details of these techniques will

be provided in Section 3.7.

To accelerate the application of! � 1
: , we adopt an interpolation-based kernel-

independent fast multipole method on a block-wise decomposed grid (Liska and

Colonius, 2014). This algorithm not only achieves linear complexity but also lends

itself to e�cient parallelization.

3.4.2 Integrating factors (� 8
:–=)

The availability of the LGF provides an opportunity to use an integrating factor

to march the viscous term without an associated time step restriction, enabling the

application of an RK-type explicit DAE solver (Liska and Colonius, 2016). To

implement this in the present method requires �nding the LGF for the integrating

factor,� : ¹Cº, that solves the following linear ODE system on an in�nite lattice:

3� : ¹Cº
3C

=
1

'4
! : � : ¹Cº– � : ¹0º = �– (3.28)

where� is the identity operator.

52

We �rst denote the kernel of� 0¹Cº as � 0¹Cº, which can be written as(Liska and

Colonius, 2017):

� 0¹Cº¹nº =
1

4c2

¹

�

exp
�
� 8n•/ ¸

f ¹/ ºC
'4 � G2

�
3/

=
Ö

@2n

�
exp

�
� 2C

'4 � G2

�
�@¹

2C
'4 � G2

º
�

– (3.29)

wheref ¹/ º = 2 cos¹b1º ¸ 2 cos¹b2º � 4, � = ¹� c– cº2, and�=¹I º is the modi�ed

Bessel function of the �rst kind of order=. For : < 0, � : can be found in terms of

� 0. The resulting expression is

� : ¹Cº = exp

"

�
�
2c:

2

� 2 C
'4

#

� 0¹Cº• (3.30)

This solution can be veri�ed as follows. The IC follows by evaluating the expression

atC= 0

� : ¹0º = exp¹0º� 0¹0º = �– (3.31)

and Eq. (3.28) follows by

3� :

3C
= exp

"

�
�
2c:

2

� 2 C
'4

#
3� 0

3C
�

�
2c:

2

� 2 1
'4

exp

"

�
�
2c:

2

� 2 C
'4

#

� 0 (3.32)

= exp

"

�
�
2c:

2

� 2 C
'4

#
1

'4
! 0� 0 �

�
2c:

2

� 2 1
'4

� : (3.33)

=
1

'4
! 0� : �

�
2c:

2

� 2 1
'4

� : (3.34)

=
1

'4

"

! 0 �
�
2c:

2

� 2

�

#

� : – (3.35)

�
1

'4
! : � : • (3.36)

Note that the kernel associated with� : ¹Cº decays faster than any exponential, which

can be exploited in the fast multipole solution by restricting the source of any target

to its vicinity (Liska and Colonius, 2016).

53

3.5 Temporal discretization

To discretize Eq. 3.15 in time, by imposing the integrating factor, we can rewrite the

system by denoting~v: = � : ¹Cº ~u : and ~1: = � : ¹Cº ~@: , so we have:

3~v:

3C
¸ � : ¹CºF: »T ¹8 –uº¼= � � : ~1: ¸ � : ¹Cº%¹Cº) ~f : –

� : ~v: = 0–

%¹Cº� � 1
: ¹Cº~v: = eu� –:•

(3.37)

We adopt a half-explicit Runge-Kutta (IF-HERK) method for these DAE (Brasey

and Hairer, 1993; Liska and Colonius, 2017). For the present method, this can be

stated as

1. Initialize: set~u0
:–= = ~u :–= andC0

= = C=

2. Multistage: for8= 1–2– •••– B, solve the linear system
"
¹� 8

: º� 1 ¹& ¹8� 1º
:–= º�

&8
:–= 0

"
~u8

:–=

_̂8
:–=

#

=

"
r8

:–=

Z8
:–=

#

• (3.38)

3. Finalize: set~u :–=̧ 1 = ~uB
:–=, _:–=̧ 1 = ¹ ~0B–B� Cº� 1_̂B

:–=, andC=¸ 1 = CB
=

where

&8
:–= =

"
� �

:

%8
=

#

– _̂8
:–= =

"
~@8
:–=
~58
:–=

#

– Z8:–= =

"
0

¹eu� –:º8
=

#

• (3.39)

The terms appearing in the linear system are

u8� 1
= = F � 1¹f ~u8� 1

:–=g: º– 8 8� 1
= = F � 1¹f � : ~u8� 1

:–=g: º (3.40)

whereF � 1 is evaluated using (de-aliased) inverse Fast Fourier Transform (iFFT).

Furthermore

� 8
: = � :

�
¹ ~28 � ~28� 1º� C

¹� Gº2'4

�
– 68:–= = � ~08–8� CF: »T ¹8 8� 1

= –u8� 1
= º¼ (3.41)

where for all: , F: »T ¹8 8� 1
= –u8� 1

= º¼is evaluated using FFT. Then the following are

recursively computed for8 ¡ 1 and 9 ¡ 8using:

� 8
:–= = � 8� 1

: � 8� 1
:–=– �1:–= = ~u0

:–= (3.42)

F8– 9
:–= = � 8� 1

: F8� 1– 9
:–= – F8–8

:–= = ¹ ~08–8� Cº� 1
�
68

:–= � &8� 1
:–=_̂

8
:–=

�
• (3.43)

54

0 0 0 0
1/3 1/3 0 0
1 -1 2 0

0 3/4 1/4

Table 3.1: Runge-Kutta scheme Butcher Tableau used in our implementation

And we compute:

A8
:–= = � 8

:–= ¸ 68
:–= ¸ � C

8� 1Õ

9=1

~08– 9F
8– 9
:–=– C8= = C= ¸ ~28� C• (3.44)

With this time discretization, at the=C� time step in8C� stage for the: C� Fourier

coe�cient, we have the following linear system:

" 8
:–=

2
6
6
6
6
6
4

~u8
:–=

~@8
:–=
~58
:–=

3
7
7
7
7
7
5

=

2
6
6
6
6
6
4

¹� 8
: º� 1 � : ¹%¹8� 1º

= º)

� �
: 0 0

%8
= 0 0

3
7
7
7
7
7
5

2
6
6
6
6
6
4

~u8
:–=

~@8
:–=
~58
:–=

3
7
7
7
7
7
5

=

2
6
6
6
6
6
4

r8
:–=

0

¹eu� –:º8
=

3
7
7
7
7
7
5

(3.45)

where(8
:–= = %8

=� 8
: ¹� � � : ! � 1

: � : º¹%8� 1
= º) , which we will show, in Appendix C,

that it is Hermitian when%8
= = %8� 1

= . � 8
: refers to the integrating factor associated

with ! : . ! � 1
: refers to the lattice Green's Function (LGF) of! : . We will explain

how to apply them in subsequent sections.

We can solve the linear system arising from the IF-HERK method using a block LU

decomposition. As a result, the steps to solve this system are:

~@�
: = � ! � 1

: � �
: r8

:–=–

(8
:–=

~58
:–= = %8

: � 8
: »r8

:–= � � : ~@�
: ¼ � ¹eu� –:º8

=–

~@8
:–= = ~@�

: ¸ ! � 1
: � �

: ¹%8
=º) ~58

:–=–

~u8
:–= = � 8

: »r8
:–= � � : ~@8

:–= � ¹ %8� 1
= º) ~58

:–=¼•

(3.46)

Note that this block LU decomposition method does not have splitting error due to

the use of the integrating factor (Liska and Colonius, 2017). The advantage is that the

divergence-free constraint and the boundary conditions are satis�ed exactly (Taira

and Colonius, 2007; Liska and Colonius, 2017). In our current implementation

of this algorithm, we use a 3rd order scheme with the Butcher Tableau shown in

Table 3.1.

Apart from the second equation of Eq. 3.46, the remaining equations can be solved

directly through the application of LGF and the integrating factor. The second

55

equation in Eq. 3.46 corresponds to the projection step to compute the IB forcing

in order to satisfy the boundary condition (Taira and Colonius, 2007; Liska and

Colonius, 2017). In similar algorithms designed for general 3D �ows (Liska and

Colonius, 2017; Yu, Dorschner, and Colonius, 2022), the conjugate gradient method

is employed to solve for the IB forcing. In that case, it is estimated that the linear

system associated with IB forcing is a3# ! by 3# ! dense system where# ! is

the total number of IB points, and the constant3 arises from the three velocity

components. In the case of general 3D �ows, the number of operations needed

to solve such a linear system is$ ¹# 3
! º (Liska and Colonius, 2017). In addition,

due to the sequential nature of matrix factorization and back-substitution (Liska

and Colonius, 2017), directly solving for IB forcing using numerical factorization

becomes less desirable than the conjugate gradient method.

For �ows with one homogeneous direction, the immersed body has a uniform 2D

cross-section across the span-wise direction giving# ! = # I # 2� , where# I is the

number of Fourier coe�cients in the truncated Fourier series, and# 2� is the number

of IB points used to represent the 2D cross-section. To solve for the Fourier coef-

�cients of the IB forcing using the evolution equations of the Fourier coe�cients

(Eq. 3.5), we solve for# I independent3# 2� by 3# 2� dense linear systems instead

of one 3# ! by 3# ! dense linear system. Thus, the operation count for using a

direct solver in our scenarios decreases to$ ¹# I ¹# 2� º3º = $ ¹# 3
! • # 2

I º. More im-

portantly, due to the independence among those# I linear systems, the application of

numerical factorization and back-substitution can be e�ciently parallelized. Thus,

unlike the method to solve for IB forcing in the general 3D �ow solver algorithm, we

solve the IB forcing using direct LU factorization instead of the conjugate gradient

method. In our implementation, the dense linear system is solved using ScaLA-

PACK(Blackford et al., 1997) wrapper from PETSc(Balay et al., 2022). According

to our numerical experiments, solving for IB forcing directly takes less than3% of

the total computational time when using the LU factorization.

3.6 Multilevel mesh

To resolve thin boundary layers, particularly with the IB method, adaptive mesh re-

�nement is needed (Mittal and Balachandar, 1997; Lehmkuhl et al., 2013; Yu, 2021).

For Cartesian grids, a wide range of adaptive mesh re�nement (AMR) algorithms

have been proposed to locally re�ne the computational mesh (Berger and Oliger,

1984; Berger and Colella, 1989; Popinet, 2003; Burstedde, Wilcox, and Ghattas,

2011; O�ermans et al., 2020; Gillis and Van Rees, 2022). These local re�nement

56

methods focus on re�ning patches of the computational mesh according to speci�c

re�nement criteria. To enhance the scalability of the mesh re�nement process,

octree-based methods have been proposed (Popinet, 2003; Burstedde, Wilcox, and

Ghattas, 2011). Further, these octree-based methods can be combined with wavelet

methods to enable more e�cient multiresolution methods (Schneider and Vasilyev,

2010; Gillis and Van Rees, 2022).

For our solver, the main requirement for AMR methods is compatibility with the

application of the LGF. Thus, we adapted an existing adaptive mesh re�nement

approach that has proven e�cient and accurate when combined with LGF (Yu, 2021).

This AMR approach uses an octree structure (Burstedde, Wilcox, and Ghattas, 2011;

Gillis and Van Rees, 2022) to recursively re�ne the fully 3D computational mesh.

We implemented a quadtree counterpart of this approach to apply to each 2D slice

in theG� Hplane for each Fourier coe�cient. Adaptation of this AMR algorithm

to our hybrid method is detailed in the remainder of this section.

3.6.1 Multilevel mesh on a Cartesian grid

We �rst review the salient features of the algorithm of Yu (2021). We start by

constructing a composite grid consisting of multiple computational grids with in-

creasing resolutions,f RQ
0 –RQ

1 – •••–RQ
g, whereinRQ

: is generated by evenly dividing

each computational cell inRQ
: � 1 into23 smaller cells,3 being the physical dimension

of the problem. The composite grid is the Cartesian product of this series of grids:

RQ =
#Ì

: =0

RQ
: • (3.47)

Then the AMR grid is de�ned by partitioning the entire computational domain

into # ¸ 1 smaller pairwise-disjoint domainsf
 0–
 1– •••
 # g. De�ne the restriction

functional as:

� : ¹ 5º¹nº =

8>><

>>
:

5¹nº if n 2
 : –

0 if n 8
 :

– (3.48)

and the values on the AMR computational grid are de�ned through the Cartesian

product of these restriction functionals

� =
#Ì

: =0

� : • (3.49)

The operator� restricts the region we need to compute the numerical solutions to

 =
#Ì

: =0

RQ
: \
 : • (3.50)

57

Thus, the solution is de�ned in the subspace
 . To communicate the information

across di�erent levels of mesh, we also de�ne interpolation and coarsening operators

from level; to level: as%;! : (interpolation when; Ÿ : and coarsening when; ¡ :).

To estimate the information5on level: given the information across the AMR grid

5̂, we compute:

5: =
#Õ

;=0

%;! : 5̂;• (3.51)

Then to apply LGF on the AMR mesh from a source term5̂, we use the following

(Yu, 2021):

q¹nº =
 #
9=0

" 9� 1Õ

8=0

%
&
8! 9!

� 1
0–85̂8

!

¸ ! � 1
0– 9

#Õ

8=9

%&
8! 95̂8

!#

– (3.52)

where%
&
8! 9 is a commutative projection operator (see Eq. 30-32 in Yu, Dorschner,

and Colonius (2022)). We use! � 1
0–;to denote the action of applying LGF of Laplacian

on level; in the re�nement mesh. In this equation, at level9, the �rst term recursively

computes the solution at level9 induced from the solution at coarser levels. The

second term computes the solution induced by the source on level9and the source

interpolated from �ner levels. The �rst term is accumulated when computing the

solution from the base level to the �nest level. We can directly use this method to

apply! � 1
: for each Fourier coe�cient. To achieve additional speedup when applying

LGFs, a fast and parallel multilevel elliptic equation solution method is employed

(Dorschner et al., 2020; Ying, Biros, and Zorin, 2004; Liska and Colonius, 2014).

3.6.2 Multilevel in Fourier space

To exploit the multilevel mesh in theG� Hplane, we must also locally truncate the

Fourier series such that the resolution inI is comparable to the local resolution in the

G� Hplane. Considering the spectral convergence inI , compared to the low-order

convergence of the �nite volume discretization in theG� Hplane, it is expected that

the mesh in theI direction needs to be re�ned, at most, as fast as the rate we re�ne

the mesh in theG� Hplane.

However, for spanwise homogeneous �ows, the �ow �eld is not homogeneous

everywhere in the presence of the immersed body, especially when the boundary

layer is laminar. In the far wake, the length scales tend toward homogeneity, but,

near the immersed body, variation in theG� Hplane can be much more rapid than

that of theI -direction (Smith, 1986; Williamson, 1996). One example of such

58

inhomogeneity is the �ow past a circular cylinder. In the shear-layer transition

regime ('4 � 1–000 � 200–000), two shear layers are forming from the side of

the cylinder. Those shear layers and the associating Kelvin-Helmholtz instability

are essentially 2D. Thus, to resolve the shear layers, we only need to re�ne the

computational grid in theG� Hplane. However, downstream of the shear layers,

the �ow transitions to three-dimensional turbulence, and comparable resolution is

required in all three directions. To optimally treat these situations, we modify the

spanwise re�nement. Far from the body, if there are;A4 5re�nement levels, on level

;, we retain# ; = # 0 � 2; Fourier coe�cients, where# 0 is the number for the base

(coarsest) mesh. Near the body, we cap the number of Fourier coe�cients, even as

we re�ne theG� Hgrid by an additional;033 levels.

We now elaborate on how we apply the LGF on the multilevel mesh in both Fourier

space and theG� Hplane. For the: C� Fourier coe�cient, we �nd an ; such that

02;� 1 � : Ÿ # 02; . We know that computational cells on level; � 1 need only

retain the �rst# 02;� 1 Fourier coe�cients. That is, we may assume the: C� Fourier

coe�cient is zero for all computational cells on level; � 1. Similarly, the: C�Fourier

coe�cient is zero for all computational cells on levels 0 through; � 1. Thus, the

: C� Fourier coe�cients and the associating source terms5̂: are zero on those levels.

We do not need to apply! � 1
: on levels 0 through; � 1, nor need we consider source

terms from those levels since they are to be truncated. With this strategy, we can

simplify the procedure that applies! � 1
: in Eq. 3.52 so that the index of the �rst term

begins at8= ; rather than8= 0, resulting in signi�cant computational savings.

Conversely, for the: C� Fourier coe�cient, the corresponding coarsest level that! � 1
:

need be applied is given by:

; = max
��

log2

�
: ¸ 1
0

� �
–0

�
= max

�
;A4 5�

�
log2

�
0 � 2;A4 5

: ¸ 1

� �
–0

�
• (3.53)

Similar to applying! � 1
: , applying discrete operators (divergence, gradient, curl),

interpolation operators, and the integrating factor� 8
: follows a similar strategy. For

an operator operating on the: C�Fourier coe�cient, the coarsest level,;, the operator

needs to be applied on is also determined by Eq. 3.53. Thus. that operator only

needs to be applied to grid points on levels greater than or equal to;.

3.7 Adaptation

So far, we have introduced the steps to time integrate the discretized Navier-Stokes

equations using the IF-HERK method and LGF. In addition, the computational grid

59

spatially adapts to the vortical region, which we term base-level adaptivity, and

adaptively re�nes the mesh in a block-wise fashion. For adaptation, we adopt the

strategies developed for the fully inhomogeneous case (Liska and Colonius, 2016;

Yu, 2021); we provide a brief summary of the algorithms here.

3.7.1 Base-level (domain) adaptation

The assumption that allows us to constrain our computational domain to a �nite

one is that the vortical region is in general compact (exponentially decaying). The

strategy is to add or delete cells (block-wise) when the vorticity near the boundary

exceeds or falls below a threshold value. However, the surface de�ning the threshold

value must adapt in time as the vorticity evolves in the boundary layer and wake

regions. Additionally, it is sometimes pertinent to alter the threshold in the far wake

as, for long times, the vorticity decays slowly.

To these ends, we denote the active cell region in the base level

 BD??
0 =

�
x 2 R2 :

Í
8 j� 8r8¹xºj2

max
x

Í
8 j� 8r8¹xºj2

� n0

�
– (3.54)

where r8 is the nonlinear term (Lamb vector) in the time-discretized equations

(Eq. 3.44) and� : the discrete divergence operator for the: C� Fourier coe�cient. n0

is some prescribed cuto� threshold. The
Í

8is the sum across all Fourier coe�cients.

Thus, the term
Í

8 j� 8r8¹xºj2 is approximately the magnitude of the source term for

the pressure-Poisson equation at locationx across all Fourier coe�cients. To ensure

that
 BD??
0 is captured by our computational domain, we additionally put a region

(
 bu�) of bu�ering computational cells around
 BD??
0 . These additional computation

cells are those at a �xed distance# 1 from m
 BD??
0 . We periodically update
 BD??

0 by

incorporating grid cells from
 bu� to satisfy Eq. 3.54. The detail of how to choose

1 is discussed in (Liska and Colonius, 2016).

Each time we incorporate computational cells from
 bu� into
 BD??
0 , a newm
 BD??

0

is e�ectively de�ned, and we need to compute the velocity �eld in the newly

incorporated region
 bu� . To do so, we solve the vorticity-streamfunction equation

to �ll in the velocity in
 bu� . Let ~uD
: be the: C� Fourier coe�cient of velocity before

solving the vorticity-streamfunction equation and~u0
: be the values after, we solve

the velocity within
 bu� using:

~8 : = � : ~uD
: –

~u0
: = � � �

: ! � 1
: 1
 BD? ?

0
~8 : •

(3.55)

60

where1
 BD? ?
0

is the indicator function of the set
 BD??
0 . Namely, when �ll in the

velocity in the bu�ering region, we only use the vorticity within
 BD??
0 . We term

the above procedure as velocity padding.

3.7.2 Velocity refresh

When applying the integrating factor� 8
: through convolution, the support of the

associating kernel is unbounded. However, we can still accurately evaluate this

convolution with
 BD??
0 using only the values within
 BD??

0 and
 bu� . To that end,

we use two facts: the integrating factor decays faster than any exponential (Liska

and Colonius, 2016), and velocity in
 BD??
0 can be obtained by solving a vorticity-

streamfunction equation. Thus, we employ a two-step approximation to evaluate the

action of� 8
: within
 BD??

0 .

First, we truncate the integrating factor kernel to have a compact support by thresh-

olding the value of the kernel. Due to the fast decay, we can accurately approximate

the action of� 8
: by only applying the integrating factor kernel within this compact

region.

Second, nearm
 BD??
0 , the source region of the approximated� 8

: operator extends

outside of
 BD??
0 . We assume that this additional source region is contained in some

 IF. Since this region is outside of
 BD??
0 , the vorticity within
 IF is negligible.

Thus, we can compute the velocity in this region using vorticity-streamfunction

equation as in Eq. 3.55. This step is called velocity refresh.

Combining these two steps, we can accurately approximate the action of� 8
: within

 BD??
0 by carefully de�ning
 IF and the source region of� 8

: . The speci�c procedure

of properly truncating the integrating factor kernel and de�ning
 IF can be found in

(Liska and Colonius, 2016). We note that the vorticity-streamfunction equation only

needs to be solved periodically to ensure accurate simulation. In fact, the frequency

we need to solve the vorticity-streamfunction equation depends on
 IF.

It is shown that we can overlap
 IF with the bu�ering region we de�ned for velocity

padding (Liska and Colonius, 2016). That is
 IF =
 bu� . As a result, we can

compute a corresponding maximum time step=A such that we only need to conduct

velocity refresh every=A time step.

3.7.3 Adaptive re�nement

As the �ow develops, the high vorticity and high velocity gradient regions change.

As a result, the computational grid needs to adapt to the evolution of the �ow. In our

61

algorithm, this step is done by tracking the high vorticity region and locally re�ning

the mesh accordingly. Recall that the AMR grid decomposes the entire computa-

tional domain into a sequence of pairwise disjoint domainsf
 ;g; . To adaptively

re�ne the computational mesh, we partition each
 ; into smaller computational

blocks. As shown in Section 3.6, the adaptive re�nement in the spanwise direction

is determined by the adaptive re�nement in theG� Hplane. Thus, it is su�cient

to consider the re�nement criterion for the 2D plane formed by the inhomogeneous

directions. In this part, the vorticity is used as the criterion for adaptation. We

specify a re�nement factorU 2 ¹0–1º and a deletion factorV 2 ¹0–1º. When a

computational block is on level;, we re�ne the block if any pointx in that block

satis�es:

(¹xº =
Õ

:

j j ~8 : ¹xºj j22 ¡ U ;<0G � ; (<0G– (3.56)

and coarsen the block if every pointx in that block satis�es:

(¹xº =
Õ

:

j j ~8 : ¹xºj j22 Ÿ VU;<0G � ; (<0G– (3.57)

wherejj ~8 : ¹xºj j2 is the 2-norm of the: C� Fourier coe�cient of vorticity vector at

point x. Using Parseval's identity, we have:

1
2

2•2¹

� 2•2

Õ

82f1–2–3g

l 2
8¹G– H– Iº3I

=
1Õ

: =�1

j j ~8 : ¹xºj j2

�
•2Õ

: =� # •2

j j ~8 : ¹xºj j2•

(3.58)

Thus,(¹xº approximates the squared! 2 norm of the vorticity at eachx location.

In addition, we solve the vorticity-streamfunction equations to pad velocity when

new blocks are re�ned using Eq. 3.55. This is to �ll in the Fourier coe�cients of

velocities in the newly re�ned blocks, as those Fourier coe�cients were previously

set to zero due to the truncation of the Fourier series from the multilevel nature in

Fourier space.

3.8 Algorithm summary

Algorithm 2 summarizes the required steps to march the solution forward by#

time steps. Let=0 be the desired frequency (number of steps) to adapt the domain

62

and/or resolution, and let=A be the desired frequency (number of steps) to conduct

velocity refresh. When simulating �uid �ows with this algorithm,=0 should be

chosen according to the resolution requirements, and=Ashould be chosen according

to the procedure detailed in (Liska and Colonius, 2017).

Algorithm 2 Time Marching using IF-HERK, IB, and LGF

1: procedureTime Marching (~u :–0– C5)
2: = = 0
3: while = Ÿ # do
4: if =%=0 = 0 then
5: Perform domain adaptation
6: Perform velocity padding using Eq. 3.55
7: else if =%=A = 0 then
8: Perform velocity refresh using Eq. 3.55
9: end if

10: set ~u0
:–= = ~u :–= andC0

= = C=
11: for each stage82 f1–2–3gdo
12: Computeu8� 1

= and8 8� 1
= using inverse FFT

13: Compute68
:–=, A8

:–= according to Eq. 3.41 and Eq. 3.44
14: Solve the system of equations shown by Eq. 3.45 using the block LU

decomposition as detailed in Eq. 3.46
15: end for
16: Setting~u :–=̧ 1 = ~u3

:–=, _:–=̧ 1 = ¹ ~03–3� Cº� 1_̂3
:–=, andC=¸ 1 = C3

=
17: = = = ¸ 1
18: end while
19: end procedure

3.9 Parallelization and performance

We adopted a server-client model for parallelization based on decomposing the

domain into pencils that correspond to blocks in theG� Hplane. That is, all Fourier

coe�cients (regardless of the number) are stored on the same processor, which

avoids data transfer to accomplish the FFT. Each block is assigned a computational

load according to their roles during the time-stepping routine, and a load balancing

algorithm distributes those blocks into di�erent processors (Yu, Dorschner, and

Colonius, 2022).

However, since direct solvers are used to solve for IB forcings, we need to devise

a corresponding parallelization strategy. Suppose we are solving systems with#

Fourier coe�cients and" parallel client processes. Two separate parallelization

strategies are devised for the case when# ¡ " and# � " , respectively.

63

ˆ When# ¡ " , each linear system is only solved using one process, and each

process is tasked with solving one or more linear systems. Speci�cally,# %"

processes are allocated to handled# • " e dense linear systems, and the rest

processes are allocated to handleb# • " c dense linear systems.

ˆ When# � " , multiple processes are allocated to solve one linear system, and

each process is assigned only one linear system. Speci�cally," %# linear

systems are each solved by a group ofd" • # eprocesses, while the rest linear

systems are each solved by a group ofb" • # c processes.

We report a modest scaling test for a varying number of leaf octants (16000, 31360,

and 64000), spreading across 3 re�nement levels (;A4 5 = 1, ;033 = 1, ;<0G =

2). Each octant is a 6 by 6 grid cell. The blocks on the �nest level have 16

complex Fourier modes. We de�ne parallel e�ciency as the speedup divided by the

number of computational nodes, benchmarked against the runtime obtained using 4

computational nodes. We computed the parallel e�ciency by evaluating one RK3

step using various numbers of computational nodes. The resulting parallel e�ciency

is shown in Figure 3.5. The strong scaling is consistent with the corresponding fully

inhomogeneous LGF method (Dorschner et al., 2020; Yu, Dorschner, and Colonius,

2022). The simulation size is restricted by the memory required by the algorithm.

Further re�nements to the parallelization will be implemented in the future.

As discussed previously (Liska and Colonius, 2014; Yu, Dorschner, and Colonius,

2022), the LGF approach to the Poisson inversion is extremely e�cient given the

complex and adaptive domain. On a per-point basis, only purely FFT based algo-

rithms are likely to be more e�cient, but the required rectangular domain would

waste many points for the �ows we compute.

For the speci�c case of incompressible �ow solver with one Fourier diagonaliz-

able direction, we can make a direct comparison with the Jacobi and block-Jacobi

Preconditioned Conjugate Gradient methods (JPCG and bJPCG) employed in an

unstructured-mesh solver (Borrell et al., 2011). The authors also reported solution

times for a direct Schur-complement based decomposition method (DSD), but we

refrain from comparisons as such a method requires precomputing the Cholesky

factorization and would be prohibitive in an adaptive algorithm. Our method is

compared to JPCG and bJPCG in Table 3.2, where the computational rate for the

Poisson solution is reported* . For our code, the test is performed in the context of
* The simulations by the bJPCG and JPCG are done using PowerPC 970MP 2.3GHz CPUs(Borrell

64

Figure 3.5: Parallel e�ciency for a varying number of computational nodes for com-
putational meshes of various sizes. The parallel e�ciency is measured by solving
one RK3 step using di�erent numbers of computational nodes. Each node contains
48 computational cores. The simulations are conducted on TACC Stampede3 su-
percomputer (Stampede3 User Guiden.d.) with Intel Xeon Platinum 8380 2.3GHz
CPUs.

the '4 = 300 and '4 = 12–000 cylinder �ows„ to be discussed in Section 3.11,

which were computed using 256 CPU cores (2 computational nodes on Bridges-2

supercomputer) and 2000 CPU cores (25 computational nodes on Stampede2 su-

percomputer), respectively. Our algorithm is about an order of magnitude faster for

'4 = 300 case, and 4 times faster for the'4 = 12–000 case. The latter case was

impacted by deteriorating parallel performance on the associated large grid of about

400 million cells.

In addition, for the more general case of simulating incompressible external �ows

et al., 2011).
„ The '4 = 300cylinder �ow is simulated on the Bridges-2 supercomputer (Brown et al., 2021)

with AMD EPYC 7742 2.25GHz CPUs. The'4 = 12–000 cylinder �ow is simulated on the
Stampede2 supercomputer (Stanzione et al., 2017) using Intel Xeon Platinum 8380 2.3GHz CPUs.

65

Case Computational Rate (cpu� ` s/pts)
JPCGb = 0 83.1
bJPCGb = 0 79.8
Nek5000 55.6
Present ('4 = 300) 7.1
Present ('4 = 12–000) 19.4

Table 3.2: E�ciency comparison between methods for the 2D screened Poisson
problems (JPCG and bJPCG (Borrell et al., 2011)) and the 3D Poisson problem
(Nek5000 (Fischer, Lottes, and Tufo, 2007; Hosseini et al., 2016)) in incompressible
�ow. The JPCG and bJPCG values are based on those reported (Borrell et al., 2011)
for theb = 0 parameter value in their screened Poisson problem, which represents
the worst case. The Nek5000 value is based on the time to run one GMRES iteration
(Hosseini et al., 2016) in their Poisson solver and the expected number of iterations
for the GMRES algorithm to converge, estimated from the number of iterations for
the JPCG method to converge (Borrell et al., 2011).

with one periodic direction, we can compare with the spectral element incompress-

ible �ow solver Nek5000 (Fischer, Lottes, and Tufo, 2007) simulating the �ow past

a wing section (Hosseini et al., 2016). In (Hosseini et al., 2016), the runtime of one

GMRES (generalized minimal residual method) iteration for their Poisson solver

is reported…. However, solving the Poisson equation requires many GMRES itera-

tions. As indicated by (Borrell et al., 2011), the number of iterations for the JPCG

method to solve the Poisson equation is 217. In addition, the conjugate gradient

method (used by the JPCG method) has better convergence properties than GMRES

(Trefethen and Bau, 2022). Thus, the number of iterations for the JPCG method to

converge can serve as a lower-bound estimate of the number of iterations required

for the GMRES algorithm to converge. As such, we compare the computational

rate for Nek5000 to compute 217 GMRES iterations to the computational rate of

our method, also in Table 3.2. Our method is roughly 8 times faster than Nek5000

for the '4 = 300case and roughly three times faster for the'4 = 12–000case.

The computational e�ciency reported here could potentially be further improved

with enhancements to the parallelization strategy and other optimizations, but as

it stands we believe our algorithm is competitive with (and potentially faster than)

other state-of-the-art incompressible �ow solvers.
…The GMRES iteration is computed on the Cray-XC40 computer Beskow at PDC (KTH) using

Intel Xeon E5-2698v3 Haswell 2.3 GHz CPUs (Hosseini et al., 2016).

66

3.10 Veri�cation

As discussed above, the �ow solver described in this paper is an extension of a fully

3D incompressible �ow solver (Liska and Colonius, 2017; Yu, 2021). In these pa-

pers, the authors veri�ed the method by solving the �ow past an impulsively starting

sphere. To verify the modi�ed solver for one homogeneous and two unbounded

directions, we provide two examples: �ow past an impulsively starting cylinder and

the evolution of an Oseen vortex (Panton, 2024).

We compute the �ow past a cylinder with diameter� and '4 = 100 using 16

complex Fourier coe�cients (31 terms when evaluating Fourier series) and the

following initial vorticity distributions:

l =–I = exp¹� =2 � j Aj2• � 2º• (3.59)

We obtain an initial velocity by solving the discrete 2D Poisson equation and the

screened Poisson equations from the vorticity-streamfunction equation. We run the

simulation for 1.024C*1 • � and used a uniform grid simulation with� G0• � = 0•005

as the reference solution. We consider cases where the base spatial resolutions

� G10B4satis�es� G10B4• � G0 2 f4–8–16–32–64gand the �nest level resolution� G5 8=4

satis�es� G5 8=4• � G0 � 4. In each mesh topology,;<0G = ;A4 5= # ; , ;033 = 0. On

;C� level, we re�ne a squared region centered at the origin with an edge length of

3•84� •2; . Mathematically, on;C� level, we re�ne the region de�ned by the following

set:

 A
; =

�
¹G– Hº :

�
�
�
G
�

�
�
� Ÿ

1•92
2;

–
�
�
�
H
�

�
�
� Ÿ

1•92
2;

�
• (3.60)

The error is shown in Figure 3.6. We normalize! 1 error by the! 1 norm of the

reference solution and! 2 error by the! 1 norm of the reference solution and the size

of the domain. Both! 1 and! 2 error show a �rst-order convergence, as expected

for our 2nd-order �nite-volume scheme with �rst-order immersed boundary method

treatment (Tornberg and Engquist, 2004; Mori, 2008; Taira and Colonius, 2007;

Colonius and Taira, 2008).

Second, to verify that our �ow solver converges to the solution of the Navier-Stokes

equations, we compare the evolution of an Oseen vortex to the exact solution (Panton,

2024)

D\ ¹C– Aº =
[2

2 ¸ 2

[2
2A

�
1 � exp

�
A2'4

4C

��
• (3.61)

To verify our solver, we initialized the velocity pro�le atC0 and marched forC2 time

units. The numerical solution is then compared against the analytical solution to

67

Figure 3.6: Error in the streamwise velocity compared to the base solution using
di�erent numbers of re�nement levels (0 � # ; � 3). The solid lines represent the
! 2 error, and the dashed lines represent the! 1 error.

obtain the error. Our speci�c choice of parameters is:

C0 =
'4

[2
2

– C2 = 0•5– '4 = 100– [2 = 2•24181• (3.62)

The above parameters are chosen such that the maximum velocity is 1, which is

obtained whenC= C0 andA=
p

G2 ¸ H2 = 1. We hold the mesh topology �xed with

three levels of re�nement. Following the notation of the previous example, at level

;, the re�nement region is de�ned as

 A
; =

�
¹G– Hº : jGj Ÿ

11•2
2;

–jHj Ÿ
11•2
2;

�
• (3.63)

The set of spatial resolution we consider is� G10B42 f0•08–0•04–0•02–0•01g. The

time-step size is �xed at� C= 0•00625. The ! 2 and! 1 errors of the x-component

velocity are shown in Figure 3.7 and demonstrate the expected second-order con-

vergence.

3.11 Transitional and turbulent �ow over a circular cylinder

To demonstrate the new algorithm on transitional and turbulent �ows we consider

�ow over a circular cylinder at'4 = 300and 12,000.

68

Figure 3.7: Error convergence of the numerical solution from our solver. The error is
computed by simulating the evolution of an Oseen vortex forC2 = 0•5 and compared
against the analytical solution.

3.11.1 '4 = 300

Flow over a circular cylinder at'4 = 300has been extensively studied numerically

and experimentally (Mittal and Balachandar, 1997; Kravchenko, Moin, and Shari�,

1999; Norberg, 2003). At still lower'4 , the �ow undergoes a series of bifurcations

and by'4 = 300, the most prominent instability is termed mode-B and consists of

vortex shedding modulated by three-dimensional streamwise vortex pairs. These

form horseshoe-shaped vortices downstream that are stretched in the streamwise

direction (Williamson, 1996). Furthermore, the number of horseshoe vortices

decreases downstream due to a subharmonic instability (Mittal and Balachandar,

1997). Previous numerical studies (Mittal and Balachandar, 1995; Mittal and

Balachandar, 1997) determined that su�cient spanwise resolution is imperative to

obtain accurate estimates of the lift and drag coe�cients and the Strouhal number

of vortex shedding.

In our simulation, we use a spanwise period of2 = 12� where� is the diameter of

the cylinder, with 288 Fourier coe�cients at the �nest re�nement level. Three levels

of re�nement (;<0G = ;A4 5= 3, ;033 = 0) are used, and thus the number of Fourier

coe�cients for computational cells on the coarsest level is 36. The base resolution is

set to beG10B4• � = 0•08. The mesh at each re�nement level is increasingly re�ned

with a factor of 2. Thus, the resolution on the �nest level is� G3• � = 0•01. The

69

Figure 3.8: Lift and drag coe�cient history of the simulation

adaptive mesh re�nement algorithm locally re�nes and coarsens the computational

domain with a re�nement factor ofU = 0•25 and a deletion factor ofV = 0•7. The

time step size is chosen as� C*1 • � G3 = 0•75.

To e�ciently simulate this �ow, we initialized the simulation by �rst computing

the �ow in 2D. After we reach a temporally periodic solution, we initialize the 3D

simulation using the 2D solution as the zeroth Fourier coe�cient. At the beginning

of the 3D simulation, a small (on the scale of10� 5) random vortical perturbation is

introduced, with the expectation that the resulting �ow becomes independent of the

speci�c perturbation (Mittal and Balachandar, 1997). Integrating forward in time

results in the lift� ! and drag� � coe�cients shown in Figure 3.8, where the dashed

line denotes the initiation of the 3D simulation.

The three-dimensional instability is slow to develop, reaching a signi�cant amplitude

only by C*1 • � = 175 and saturating thereafter. The �ow is (approximately)

stationary afterC*1 • � = 225. These dynamics are similar to what has been

previously observed (Mittal and Balachandar, 1995; Mittal and Balachandar, 1997).

The vorticity magnitude and streamwise vorticity atC*1 • � = 367•5 are shown

in Figures 3.9 and 3.10, respectively. We can clearly observe the three-dimension

mode-B vortices forming in the wake near the cylinder and the elongated horseshoe

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	List of Tables
	Introduction
	Fast algorithm for computing LGF of the screened Poisson operator
	Fast flow simulation and analysis algorithms
	Applications of the simulation and analysis algorithms
	Summary

	Fast and robust method for screened Poisson lattice Green's function using asymptotic expansion and Fast Fourier Transform
	Introduction
	Lattice Green's function of the two-dimensional screened Poisson equation
	Fast evaluation and compact support at large c2
	Calculation of the lattice Green's function at arbitrary nonzero c2
	Convergence rate of the trapezoidal rule approximation
	Fast Fourier Transform method for solving the lattice Green's function
	Numerical experiments
	Application 1: lattice Green's function of the three-dimensional Poisson equation with one periodic direction
	Application 2: random walks with killing on a two-dimensional rectangular lattice
	Conclusion

	An adaptive lattice Green's function method for external flows with two unbounded and one homogeneous directions
	Introduction
	Governing equations and Fourier expansion
	Spatial discretization
	Lattice Green's functions
	Temporal discretization
	Multilevel mesh
	Adaptation
	Algorithm summary
	Parallelization and performance
	Verification
	Transitional and turbulent flow over a circular cylinder
	Summary

	Three-dimensional stability and resolvent analyses of external flows over spanwise-homogeneous immersed bodies
	Introduction
	Problem statement
	Derivation and discretization of governing equations
	Results
	Conclusions

	The starting vortices generated by bodies with sharp and straight edges in a viscous fluid
	Introduction
	Numerical method for solving the Navier-Stokes equations
	Maximal time for the existence of the starting vortices generated by a flat plate
	Direct numerical simulations of a flat plate
	Joukowski airfoil
	Conclusions

	Stability analysis of the flow past a rotating cylinder with a control cylinder in the Wake
	Introduction
	Problem Setting
	Background Problems
	Stability Analysis
	Results
	Concluding Remarks

	Concluding remarks and future work
	Bibliography
	IB terms for Fourier coefficients
	Compatibility condition on L0-1 in a multilevel mesh
	Sik,n is Hermitian when Pin = Pi-1n
	Additional time constraint for the existence of Type I and II vortices generated by a flat plate

