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Abstract

This thesis deals with the two-dimensional (2D) multirate quadrature mirror fil-
ter (QMF) bank and new applications of 1D and 2D multirate filter bank concepts
to the periodic nonuniform sampling and reconstruction of bandlimited signals.
The potential use of multirate filter banks in the statistically optimal estimation of
signals in the presence of wide-sense cyclostationary noise is also examined. The
two-dimensional QMF bank is free from aliasing if and only if a certain polyphase
matrix product related to the filter bank possesses the 2D pseudo-circulant prop-
erty. A 2D FIR filter bank can be designed with the perfect reconstruction prbperty
if the polyphase matrix of its analysis filter bank is constrained to be a 2D lossless
matrix. A design example is included. The losslessness constraint is satisfied by
imposing a cascaded structure of first-degree lossless sections on the polyplase ma-
trix. A limited factroization theorem is derived for 2D FIR lossless systems where
the order in one of the two dimensions is limited to unity. In the a.rea/of nonuniform
sampling of multiband bandlimited signals, the filter bank approach is utilized to
derive a computationally efficient method for reconstructing bandlimited signals.
The above scheme can also be viewed as a mean of compress\ing and reconstructing
an oversampled bandlimited signal. It is shown that such a scheme has lower com-
putational complexity than traditional methods of sampling rate alteration. The
results can be extended to nonuniform sampling in two-dimensions using integer
lattices. A further application of the multirate filter bank is in signal estimation
in the presence of cyclostationary noise. The necessary and sufficient condition for
the filter bank to preserve the wide-sense stationarity of the input is derived. Sev-

eral applications where cyclostationary noise is present are indicated, and through



the use of simulations the performance of the optimal filter bank can be compared
with the conventional scalar optimal filter. The roundoff noise in orthogonal matrix
building blocks is analyzed, since these building blocks are commonly present in

filter bank implementations.



vi

Table of Contents

Content page
Acknowledgement iii
Abstract iv
List of Figures ix
List of Tables xiii
I. Introduction 1

1.1 Preliminaries and Mathematical Notations 1
1.2 Basic Building Block in Multirate Signal Processing 3
1.3 The QMF Bank and Related Issues 4
1.4 Outline of Thesis 10
II. Alias-cancellation and Distortion Elimination for Two-dimensional
QMF Banks 15
2.1 The Two-dimensional Filter Bank 15
2.2 Condition for Alias-cancellation 18
2.3 Distortion Elimination 23
2.4 FIR Perfect Reconstruction Systems 26
2.5 Design of Analysis Filters Using Lossless Polyphase Matrix 32

2.6 Block Filtering and Pseudo-circulants 37



vii

2.7 Extension to Multi-dimensions

III. Periodic Nonuniform Sampling and the Efficient
Reconstruction of Discrete-time Bandlimited Signals
3.1 Introduction
3.2 Compression and Reconstruction of Multi-band Signals
3.2.1 Reteining consecutive samples
3.2.2 Retaining non-consecutive sub-samples
3.2.3 Error due to the non-bandlimited nature
of the signal
3.3 Multilevel FIR Filters with Adjustable Response Levels
3.4 Comparison with Previous Methods for the Case
L=2,M=3
3.4.1 Design requirements for the filter bank
3.4.2 Improvement in efficiency compared to
previous methods
3.4.3 MPU comparisons
3.5 Extension to Two-dimensions
3.6 Finite Length Extrapolation of Bandlimited Signals
3.7 Signal Reconstruction from Sub-samples

3.8 Conclusion

IV. Random Process Inputs to QMF Bank and

Optimal Filtering of Cyclostationary Processes

4.1 Introduction

39

41
41
46
47
50

51

52

61

62

65
74
77
85
90

101

103

103



viii

4.2 Wide-sense Stationary Inputs to the QMF Bank
4.3 Estimation of Wide-sense Cyclostationary Processes
4.4 Applications where Cyclostationary Noise Arises

4.5 Conclusion

V. Roundoff Errors Generated by Orthogonal Matrix Building Bibcks
5.1 Introduction |
5.2 The 2 x 2 Orthogonal Block
5.3 General Orthogonal Blocks

5.4 Conclusion

Appendix A.
Appendix B.
Appendix C.

References

105
114
120

131

133
133
135
139

144

146
148
149

151



Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.
Fig.

ix

- List of Figures

1.1. Decimators and interpolators for one-dimensional signals.

1.2. A quadrature mirror filter (QMF) bank.

1.3. Polyphase representation of the QMF bank.

1.4. An equivalent representation of the polyphase structure.

1.5. The position of P(z) within the QMF bank.

1.6. Conventional sampling rate alteration: (a) rate reduction; (b)

rate increase.

2.1. The two-dimensional QMF bank.

2.2. One branch of the 2D QMF bank.

2.3. Two-dimensional polyphase representation of the QMF bank.
2.4. Alternative representation for the polyphase structure.

2.5. Position of the matrix P(z;, z;) in the filter bank.

2.6. An implementation of the degree-one lossless system, V;(23).

2.7. Magnitude response of the filter Hs(z2, 23).

3.1. Conventional sampling rate alteration: (a) down-sampling; (b)
up-sampling.

3.2. A periodic sub-sampling operation, represented by a multirate
filter bank.

3.3. Synthesis filter bank for reconstruction of z(n).

3.4. Division of the frequency region [0,27] into M equal intervals.

12

17
18
19
20
20
31

36

42

43
44

46



Fig. 3.5. Example of a bandlimited spectrum occupying 4 out of 7 inter-

Fig.
Fig.
Fig.

Fig.
Fig.
Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

vals.

3.6(a). Structure for a multiple-band multilevel filter.

3.6(b). Alternative structure for the multilevel filter.

3.7. Magnitude response of the prototype filter P(z), used in
Design Example 3.1.

3.8. Phase responses of G1(e’*) and G,(e’3v).

3.9(a). Magnitude response of the multilevel filter H(z2).

3.9(b). Phase response of the multilevel filter H(z).

3.10. Efficient implementation of the synthesis bank. (C is
a L x M matrix.)

3.11. Implementation of the synthesis filter bank using polyphase
components of a 3rd-band filter.

3.12. Band edge definitions for the functions T'(2) and A,(z).

3.13. Magnitude of the system transfer function T'(e’¥).

3.14. Magnitude of the alias-component weighting function 4, (e’).

5(a). The original bandlimited signal z(n)

3.15(a).
3.15(b). Magnitude of the Fourier transform X (e’¥).
3.15(c). The reconstructed signal z(n).

3.15(d). The transform of z(n).

3.16. The filter bank structure from Ref. [VA88d].

3.17. Polyphase representation of the synthesis filter bank.

3.18. Decimator and interpolator for 1D and 2D signals.

3.19. The samples retained by the decimation matrix D = (2 L )

0 2

3.20(a). Locations of the original signal spectrum and its alias

47
54

55

56
57
58

59

61

63
64
66
67
68
69
70
71
72
76
77

80



Fig.
Fig.

Fig.

Fig.

Fig.
Fig.
Fig.

Fig.

Fig.

Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

versions.
3.20(b). Two ways of partitioning the frequency plane.

3.21. logm(%:':) as a function of the number of missing samples, L.

3.23. Ioglo(%:i:) as a function of the number of missing samples, L.

).

3.24. The observed samples of y(n).

(=

oy

3.25. The extrapolated sequence z(n).
3.26. Magnitude (in dB) of the Fourier transform X (e/*).

3.27. For periodic sub-sampling, 1og10(§:i:) as a function of the

number of missing samples, L. Total length of sequence is constant,

K+L=81 (w,=%)
3.28. Comparison between the original signal y(n) and the

extrapolated signal Zmi,(n).

4.1. An alternative representation of the QMF bank.

4.2. The blocked versions of z(n) and Z(n).

4.3. Optimal estimation through block filtering.

4.4. A filter bank used in the optimal estimation of a wide-sense
cyclostationary random process.

4.5. Normalized MSE for various filtering schemes in Example 4.1.

4.6. Normalized MSE for various filtering schemes in Example 4.2.

81

83

91

92

93

94

95

96

99

100

107
110

115

117
121

122



Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

xii
4.7. Simulation results for Example 4.3.
4.8. Simulation results for Example 4.4.
4.9. Simulation results for Example 4.5.
4.10. Conversion from TDM signal z(n) to FDM signal y(r).
4.11. Conversion from FDM signal y(n) to TDM signal z(n).
4.12. Reconstruction of a randomly sampled analog waveform.
4.13. Reconstruction is performed using a digital optimal filter F(z)
followed by an ideal lowpass filter L(s).

4.14. A filter bank is used to reconstruct y,(t).

5.1. A 2 x 2 orthogonal building block with quantized outputs.

5.2. A single multiplier followed by a quantizer.

5.3. The lossless FIR lattice with quantizers.

5.4. p¢, ., as a function of the rotational angle with dynamic range
(0o/A = 5).

5.5. pe, ¢, as a function of py for small angles of rotation
(00/A = 5).

5.6. Pe, ., a8 a function of the rotational angle with dynamic range
(00/A = 10).

5.7. /;“,e, as a function of the rotational angle with dynamic range

(Uo/A = 25)

124
125
126
128
129
129

130
131

134

135

135

140

141

142

143



xiii
List of Tables

Table 2.1. Entries of v;’s and R for the optimized 2D filter bank.

Table 3.1. MPU comparisons for various L and M.

35

77



Chapter 1. Introduction

Multirate signal processing has received the attention of many researchers in the
past [CR83]. It basically involves the processing of digitally sampled signals at var-
ious sampling rates. The change in samplingrate is accomplish(id through devices ~
that are commonly called decimators and interpolators. The symbols for a decima~
tor and an interpolatdr are depicted in Fig. 1.1. One widely studied multirate signal
processing system is the quadrature mirror filter (QMF) bank. It has applications
in sub-band coding of speech and images [CR83] [WO86), spectral analysis [WA86],
voice privacy systems [CO87] and transmultiplexers [SC81]. The purpose of this the-
sis is to study the various engineering issues associated with the two-dimensional
QMF bank, and the application of the multirate filter bank as an efficient method
of recovering bandlimited signals from their periodically nonuniform samples. We
shall also look at the design of a multirate system as a statistically optimal filter

for estimating cyclostationary random processes.

1.1 Preliminaries and Mathematical Notations

A discrete-time signal, z(n), is a sequence of real or complex numbers [OP75].
The sequence can be doubly infinitely long. The z-transform of the signal z(n)
is defined as X(z) = 152 _, z(n)z™". The Fourier transform of z(n) (if it exists)
is given by X(z) evaluated on the unit circle z = /. We will write the Fourier
transform of z(n) as X(e’*). Notice that X (e’*) has period 27 in the variable w.

Following convention, when a transform X (e’) is plotted as a function of frequency,

the frequency scale used is that of normalized frequency f which is defined to be



v(n) w(n) w(n) y(n)
1D decimator 1D interpolator

Fig. 1.1. Decimators and interpolators for one-dimensional signals.

a linear time-invariant digital filter, its input z(n) and its output y(n) are related
by a convolution y(n) = %___ h(m)z{(n — m). The sequence h(rm) is the impulse
response of the filter. The filter can also be described by its transfer function H(2)
which is the z-transform of k(m), and the filter output is given by Y (2) = H (sz (2).
A finite impulse response (FIR) filter is one for which the impulse response is finitely
long. A causal filter is one for which the present output depends only upon the
present and past inputs, therefore its impulse response h(n) = 0 for all n < 0.
Combining the two properties, we see that the transfer function of a causal FIR

~! (i.e., it contains negative powers of z). For a causal

filter is a polynomial in z
FIR system H(z), the highest power in 27! will be called the order of the system,
while the degree of the system refers to the McMillan degree (which is defined as the
smallest number of delay elements necessary in realizing a sy;tem. Mathematically,
a delay element is represented by 2%, so if Y(2) = 271X (2) then in discrete time
y(n) = z\(n —1).) In a single-input/single-output (SISO) system, the order and
the degree of a system are the same. However, in a multiple-input/multiple-output
(MIMO) system (in which case the transfer function is a matrix, H(z)), the order

of the system will in general be different from its McMillan degree.

In the thesis, matrices are denoted by upper case bold letters and lower case



bold letters are column vectors. The (7,7)th entry of a matrix A is denoted by
[Al;; and the kth entry for the column vector a is [a]x. The notation AT means the
transposition of A, while A is the transposed conjugate. I is the identity matrix
of dimension k X k. If there is closed-form expressions for the individual entries of
A, then the matrix may be denoted as (a;;) where a; ; is the formula for the (7, k)th

entry. A diagonal matrix is written as

do d 0 ...
d 0 d ... O
diag. :1 =1 . :1 . : . (1.1)
dM—'l 0 0 e dM_1

The letter W stands for e~72*/M, The matrix W is an M x M DFT matrix, i.e.,
W = ( W* ). The columns of W are denoted as u. For any integer k, ((k))

denotes its residue modulo M.

The Kronecker product of two matrices is defined as followed

Qoo L P a, B a,B ... a,.,..B
a, L A o B a, B a,B ... a,...B
Ax_10 Qx-11 o+ Ogoyr ag_10B ax_ B ... ax,, B

(1.2)

For a matrix or a scalar that is a function z, such as H(z), the notation H,(2)
means conjugating the coefficients of the function. For example, if H(2) = a + bz™?
then H,(z) = a* + b*z"1. The tilde notation H(z) is used to denote HT (2~!). On

the unit circle, z = /¥, one can verify that ﬁ(ej“’) = Hi(e?).

1.2 Basic Building Blocks in Multirate Signal Processing
The processing of discrete-time signals having different sampling rates is known

as multirate signal processing [CR83]. The conversion of a signal at one sampling



rate to another that is at 3; of the original rate (where M is an integer) can be
accomplished by the use of a ‘decimator’, shown in Fig. 1.1 as the box with the

down-going arrow. The output w(n) is related to the input v(n) by the formula
w(n) = v(Mn). (1.3)

Thus, only one out of every M input samples are being kept by Phe decimator. In
this way, the sampling rate is reduced by 312 Such a straight forward method of
sampling rate alteration causes aliasing. Namely, the Fourier fransform of v(n),
(denoted as V(e’*) which is periodic with period 27), becomes stretched and the
adjacent terms start to overlap with each other. The effect of decimation in the

frequency domain can be described as
: 1 M1 :
W(e™) == > V(e“Mym) (1.4)
M m=0

where W = =% . For the purpose of increasing the sampling rate of a signal, the
device used is an ‘interpolator’, shown in Fig. 1.1 with the up-going arrow. The
output y(n) has a sampling rate that is M times that of w(n), the input signal.
The interpolator accomplishes the change in rate by simply filling in M — 1 zero’s

in between adjacent samples of w(n). Mathematically, this is described by

y(n) = {w(n/M) when n is divisible by M; (1.5)
0 otherwise.

The effects on the transforms of the signals is given by

Y (™) = W(e/*M). (1.6)

1.3 The QMF Bank and Related Issues
One commonly studied multirate system is the quadrature mirror filter (QMF)

bank [SM87a,VA87al, shown in Fig. 1.2. The filters, Hy(z), are called the analysis



z(n)

. . . .
. . . )
. . . '

L.HM_l(z)-’lM 1M Fua(2) - &(n)

Fig. 1.2. A quadrature mirror filter (QMF) bank.

filters for they split the incoming signal z(n) into M signals for the various purposes
of spectral analysis [WA86], sub-band coding [CR83], etc. Traditionally the filters
Hy(2) are bandpass filters with consecutive (disjoint) passbands and overlapping
transition bands so that the entire frequency axis is covered. In effect, the bank of
analysis filters splits the input signal z(n) into M sub-band signals in such a way
that each sub-band signal contains a portion of the frequency information of the
original signal. The sampling rate for each sub-band signal is reduced by a factor
of M therefore the total data rate (in terms of the number of samples per second)
for the M sub-bands is the same as the data rate of the original signal. There is an
advantage in quantizing and encoding the sub-band signals instead of the original
signal. As an example, in speech coding applications, the speech signal often has
an uneven energy distribution over its frequency range. A coding gain is realized if
some sub-bands can be encoded using fewer number of bit. The bit allocation for
each channel may be decided experimentally or it may be chosen so that a certain

overall distortion measure is minimized [JAY84] [WE88].

The original signal z(n) is reconstructed using interpolators and the bank of



synthesis filters Fi(z)’s. The synthesis filters are chosen to reduce the effects of
aliasing (caused by decimators) and amplitude and phase distortions (caused by
nonideal nature of the filters Hi(z) and Fi(2)). Using (1.4) and (1.6), one can show

that the reconstructed signal is given by

M-1
%(e*) = ﬁ_ > B() N By wm) x (e m). (1.7)

m=0

\w

The filter bank should be designed so that X (e/“) approximates X (e’*) as best as
possible. As seen from (1.7), X(¢/*) is a linear combination of the original spectrum
X (e?“) and its frequency shifted versions, X (e’“W). The frequency shifted terms, -
X(e™W™) with m # 0, are called the aliasing components or simply the alias
terms. So one of the requirements on the filter bank design is that the analysis and
synthesis filters should be chosen so that the alias terms are cancelled. This means

the two set of filters should satisfy the equations

ME_:I Fi(e)Hy(€“W™) =0 for m # 0. (1.8)

k=0

In the absence of aliasing, the output signal is related to the input by b'e (e7%) =
L X (&) T Fi(e™?) Hi (7). And we see there is still an overall distortion on
the signal. This can be written as X(e/¥) = T(e’*) X(e’*) where T(e’*) is called
the transfer function of the system in the absence of aliasing. One may make a
distinction between two types of distortions. One is caused by the amplitude of
T(e’*) which is a function of frequency w. Thus the spectrum of X(e/*) will in
general be different from the spectrum of X(e?“). The other type of distortion
comes from the complex phase of the transfer function. If one can design the filters
to satisfy (1.8) and T'(z) = c¢- 2™V, then the reconstructed signal #(n) = cz(n — N)
and so the original signal is recovered exactly except for a delay of N units in time

and a scale factor. Under these circumstances, the QMF bank is said to have the



perfect reconstruction property.

Following the notations in [VA87a), let us denote the analysis filter bank by

-Z o(2)
h(z) = 1:(2) . (1.9)

H M_l(Z)
The synthesis filter bank can be represented similarly by f7(z) = ( Fy(z) Fy(2) ...

Fyr-1(2) )T. Any scalar digital transfer function P(2) can be written in terms of its

polyphase representations [BE76]| either as
M-1
P(z) = > z7*P(zM) (1.10)
k=0
which is called the Type I polyphase representation, or as
M-1
P(z) = Y 27M*kQ, (M) (1.11)
k=0

which is referred to as Type II polyphase. The sub-filters Py(z) and Qi(z) are
known respectively as the Type I and Type II polyphase components of P(z). For

a filter bank h(z), it also has a polyphase representation as
1

Z—-l

h(z) = E(zM) : , (1.12)

5~ M+1
where E(z) is an M x M matrix, called the polyphase component matrix [VA87a]
of h(z). From (1.8), we see that Hi(z) = Y125 [E(2™)]x,2~". Thus the kth column
of E(z) contains the Type I polyphase components of H(z). The synthesis filter

bank can be written in terms of a polyphase component matrix as

f"’"(z)::(z"lr"f+1 "M 271 1) R(2M). (1.13)

Using (1.12) and (1.13), the QMF bank can be re-drawn as in Fig. 1.3. Since

E(z™) is a function of 2™ only, it can be interchanged with the decimators on
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; R(M) | B

21 —»lM —»TM - —bi-—\—vi(n)

b —>TM
—_— —»TM
v E(z) R(z) . .z—l
21 lM L S —>TM -bl——ri(n)

Fig. 1.4. An equivalent representation of the polyphase structure.

its right, provided that E(z™) is replaced with E(z). Similarly, R(2™) can be
interchanged with the interpolators, and as a result R(z™) is replaced by R(z). This
is illustrated in Fig. 1.4. Now by defining a new matrix P(z) = R(2)E(z) (Fig. 1.5),
Vaidyanathan et al. have shown that the necessary and sufficient condition for the
QMF bank to be free from aliasing is that P(z) must be a pseudo-circulant matrix
[VA87b)]. Furthermore, there is no magnitude distortion in the reconstructed signal
if and only if the matrix P(z) is lossless. A matrix P(z) is defined to be lossless if

it is stable and P~1(2) = P(z).



, oz
: Ay
.. P(z) T

Fig. 1.5. The position of P(z) within the QMF bank.

In order to obtain perfect reconstruction, (1.8) has to hold exactly, and one way of
obtaining this is to make R(z) = E~(z). This is impractical for IIR filters, because
if h(z) represents a stable IIR filter bank then the above choice of R(z) gives rise to
unstable synthesis filters. Even if h(z) is an FIR filter bank (which means E(z) is
a polynomial matrix in 2~!), E~1(2) will not in general be a polynomial matrix, so
for perfect reconstruction f(z) would be IIR in general and possibly unstable. The
only remaining choice is to constrain both E(z) and E~!(z) to be FIR, and one way
of achieving this is to constrain E(z) to be an FIR lossless matrix. For in that case,
E~l(z) = E(z) and the choice of R(z) = E(z) guarantees that perfect reconstruction
is achieved using FIR filter banks only. The filter bank design problem becomes
one of designing E(z), under the constraint that it must be FIR lossless, so that
the analysis filters Hi(z) are good filters. The study of lossless systems in [VA88c]
shows that any FIR lossless matrix may be factorized into a cascade of degree-one
lossless factors, and a structure for implementing a general FIR lossless system
E(z) is found for which the lossless property is inherent in the structure. This

means lossless constraint is automatically satisfied if we implement E(z) using the
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structure in [VA88c|, and the design process consists of optimizing the parameters

of the structure so that it will give rise to good analysis filters [DO8S8].

1.4 Outline of Thesis

In the following chapters, we shall look at the multirate filter bank for both one-
dimensional {1D) and two-dimensional (2D) signals. First, in Chapter II the theory
of [VA87b] is extended to the two-dimensional filter bank. Most of | the results in this
chapter can also be found in [LI188a). 'We will see how the 2D pseudo-circulant matrix
plays an important role in the two-dimensional QMF bank. Namely, the necessary
and sufficient condition for alias-cancellation is that the polyphase matrix product
P (21, z2) should be 2D pseudo-circulant. Similar to the 1D case, the system is free
from magnitude distortion if and only if P (2, 22) is 2D lossless. In the design of
2D QMF banks having perfect reconstruction property, one desires to impose the
lossless constraint on E(z;, z;) for similar reasons as in the 1D case. However, unlike
the results in [VA88c], we cannot find a general procedure for factorizing 2D FIR
lossless matrices. We will show that a factorization exists for a sub-class of these

madtrices.

In Chapter III, a new application for the multirate filter bank is presented. A
filter bank structure is used to reconstruct a bandlimited signal from its nonuniform
samples. (In this thesis, the nonuniform samples shall refer to samples taken on
a nonuniform grid which is periodically repeating.) Consider a signal z(n) that is
band limited to a certain frequency band, say ———If% <w< %} where L < M. This
means its Fourier transform X (e7*) is zero for —r < w < —i—;— and %} < w < 7. Here
L and M are restricted to be integers. If this is the sampled version of a continuous

time signal z,(t) with sampling frequency F samples/sec., then from the sampling
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theorem [SH49] [JE77] we know the sampling rate of z(n) can be reduced to & of
the original rate and the new samples will still represent the original signal. Thus

the data rate can be reduced by If‘—l

Given the sequence z(n) at the higher sampling rate, there are several ways of
reducing its data rate. One method is to convert z(n) back to a continuous-time
signal through lowpass filtering and then re-sample it at the lower rate. With the use
of multi-rate digital systems, the same can be achieved using interpolators, discrete-
time filters and decimators alone [CR83], so the need for an intermediate continuous-
time signal is eliminated (Fig. 1.6). In both of these methods, in order to obtain
a signal at the lower rate, a non-trivial filtering operation has to be performed.
The method which will be presented here has the advantage that the procedure for
compressing z(n) is simple. It requires no filtering in order to compress the signal.
We imagine that the time axis is divided into intervals of length M each, and the
compression scheme keeps only L out of M samples in each interval. This will be
called the ‘L out of M’ compression technique. This method of compression can
be viewed as a discrete-time version of the nonuniform sampling theorem [JE77].
Although the compression schéme is very simple, the tradeoff for this simplicity is
that the resulting compressed signal is not a uniformly sampled signal, and if we
want to convert it back to uniform samples the reconstruction process is somewhat

more complicated. The basic ideas of this method have already been treated in

[VA88d], and the two-dimensional equivalent can be found in [LI88c].

However, in Chapter III we will show that the above compression scheme can
be applied to multiband signals (Sec. 3.2), and the compressed signal can be re-

constructed in a manner which is far more efficient than what had been done in
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x(—anL > H(z) W > —uTM > F(z) lL >
(a) (b)

Fig. 1.6. Conventional sampling rate alteration: (a) rate reduction;

(b) rate increase.

[VA88d|] and [LI88c|. In particular, it will be shown that a polyphase approach
can be used to design and implement the reconstruction filters (Sec. 3.3). This
approach allows us to derive a structure and design procedure that will work for
arbitrary integers L and M. The procedure is based on the design of a single Mth-
band filter [MIN82| and its implementation in polyphase form. In contrast, the
structures presented in [VA88d] hold only for the speical cases of M = 3, L = 2 and
M =4, L = 3. Also the polyphase structure has lower complexity when compared
with the previous methods in [VA88d|. This presents a new and efficient way of
compressing and reconstructing bandlimited signals. Through the use of design ex-
amples (Sec. 3.4), we will show that the signal compression/reconstruction system
actually has lower complexity than the conventional means of rational sampling
rate alteration [CR83] (see, for example, Fig. 1.6 in this t}iesis). The algorithm
used in Mth-band filter design is presented in Appendix A. The analysis of noise in
our comp}'ession /reconstruction system is presented in Appendix C. A closed-form
expression can be derived for the noise gain. However, the exact value of the noise
gain depends upon the subsampling scheme chosen and the frequency bandlimits of

the multiband signal.

The above compression scheme is equally applicable to 2D bandlimited signals.
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By using general lattice sampling, the bandlimits for the 2D signals are not restricted
to rectangular shapes but rather they can be arbitrary parallelograms in the 2D
frequency plane (Sec. 3.5). We will also look at the sub-sampling and reconstruction
probleni in the wider context of bandlimited signal extra.pola,tioﬁ. In Sec. 3.6, an
energy minimization approach is proposed for extrapolating finite length signals that
are close to being bandlimited. This method can be applied to the sub-sampling
and reconstruction of bandlimited signals (Sec. 3.7). One may also refer to [LI89a]

for the material in Sec. 3.6 and 3.7.

In Chapter IV, random process inputs to the multirate filter bank is considered.
A necessary and sufficient condition is derived for which the filter bank will preserve
the wide-sense stationarity of the input. Also we will see how a multirate filter
bank can be used for the estimation or prediction of signals that are wide-sense
cyclostationary. The estimation of cyclostationary processes can be done using
block filtering [MA86]. However, due to the effects of blocking the estimator uses
data in an asymmetrical manner. By using the filter bank approach in Sec. 4.3, we
arrive at a solution that is different from the one obtained through block filtering.
In making the éstimation, it always uses the data symmetrically. In thé limiting
case where the filter order is allowe-d to be infinite, the two methods approach the

same theoretical optimal Wiener solution.
.

Finally, in Chapter V we study the problem of roundoff noise in common filter
bank structures. The noise is due to the finite word length computations performed
by orthogonal building blocks. We are interested in the cross-correlation of the
errors generated at the outputs of orthogonal matrix building blocks. These building

blocks are often found in lossless FIR and IIR lattices and in orthogonal digital
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filters. The material of this chapter can be found in [LI88b].
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Cilapter I1. Alias-cancellation and Distortion Elimmination for

Two-dimensional QMF Banks

2.1 The Two-dimensional Filter Bank

The extension of the one-dimensional (1D) quadrature mirror filter (QMF) bank
into 2D can be applied to the sub-band coding of images [WO86| and short-space
Fourier spectral analysis [WA86]. The 2D QMF bank (Fig. 2.1) has been investi-
gated in [VE84] [WOB86] [VA87c|, especially with regards to the perfect reconstruc-
tion of the input signal. In [VE84] the analysis and synthesis filters are separable
filters designed for the 1D QMF bank, and perfect reconstruction is achieved by
arranging the filter bank in a tree structure. In [VA87¢| a design approach based
upon 2D lossless matrices is used which guarantees perfect reconstruction and the
resulting filters are not restricted to be separable. However, there has not been a
general thedry of conditions for alias cancellation and perfect reconstruction in these
filter banks. In Sec. 2.2, the necessary and sufficient condition for the filter bank
to be free of aliasing is derived. The condition is based upon the pseudo-circulant
structure (to be elaborated later) of a polyphase matrix product P(z;,2;). In Sec.
2.3, we will show that for an alias-free QMF bank there is no magnitude distor-
tion if and only if the matrix P(z1,2,) is lossless. For the two-dimensional QMF
bank, perfect reconstruction can be achieved if one designs the analysis filter bank
such that its polyphase component matrix E(z;,2;) is FIR and lossless, in which
case the synthesis filter bank should have its polyphase matrix equal to E(zy,2;)
[VA87c]. A factorization theorem is shown to exist for 1D FIR lossless matrices
[DO88] and it has been applied to the design of 1D QMF banks. However, we have

not been able to find a general factorization theorem that will work for 2D systems.
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A factorization exists for a restricted class of 2D lossless systems. In Sec. 2.4, it is
shown that a sub-class of 2D FIR lossless matrices can be factorized into degree-one
factors. This factorization is presented in the hope that it will motivate one to work
out a theoremv for factorizing general 2D FIR lossless systems. A 2D QMF bank
design example based on lossless FIR polyphase matrices is presented in Sec. 2.5.
In Sec. 2.6, block filtering [BU72] [MIT78] [BA80| in 2D is considered and it will be
shown that the transfer matrix of a block filter has the 2D pseudo-circulant prop-
erty. The results presented in these sections can be generalized and extended to
multi-dimensional filter banks. For this we need to define what a multi-dimensional

pseudo-circulant matrix is. A recursive definition is given in Sec. 2.7.

A 2D QMF bank is shown in Fig. 2.1. The structure contains 2D decimators and
interpolators which are rate-varying building blocks. However, the overall output
signal Z(ny,ns) has the same sampling rate as the input. Fig. 2.1 can be thought of
as a periodic space-variant linear system. For such a system, the transform of the

output signal can be written in terms of the input as

. M;-1My—1

X(z,z) = 3 D X(20W, 2aW5*) Ai, (21, 22). (2.1)

k1=0 k3=0
The frequency-shifted versions of X(z;,2;) are known as the alias terms. In [VE84]
[WO86], the filter banks were designed so as to eliminate the alias terms from
X (21, 22). However, the design methods presented there is restricted to only sepa-
rable filters. We will derive a necessary and sufficient condition of alias-cancellation
for both separable and non-separable filters. This condition, similar to the one for
1D QMF banks in [VA88b], is based upon the pseudo-circulant property of certain

matrices. The elimination of magnitude or phase distortions are also discussed in

the context of pseudo-circulant matrices.
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1 Ho’o(zl, 22) 1 lM1 Mz P\l] Mz FO,O(zb Zz) -
L J L ] [ ] [ ]
[ J [ ] [ [ ]
[ 2 L J [ ] [ ]
o HMl-l,O(zl,zZ) *lMl,Mz -D-P'IJ,,MQ - FMl—I,O(ZI,ZZ) e
[ ] [ ]
[ ] ®
[ [ ]
[ ] [ ]
> Ho pm,-1(21,22) P thMz Bt ?Wx»Mz > Foa,-1(21,22) P
[ ] [ ] [ ] [ ]
[ ] [ ] [ ®
[ ] [ ] [ ] [ ]
->HM1—-1,M2—1(21, 2y F’thMz > (M1, M; *FM1—1,M,—1(21, 2y >

52(7’1«1, nz)

Fig. 2.1. The two-dimensional QMF bank.

A 1D M x M pseudo-circulant matrix in the variable z; has the following format:

160 : 1 CM-1
21 CM-1 Co CM-2 ( 9 2)
- 1c1 2y lcz Co

The entries ¢; can be either scalar constants or scalar functions of several variables
AN

21, 22,23, €tc. The 2D M N x M N pseudo-circulant matrix takes on the form

Py P, Py
z'Py_i Py Pn-2 (2.3)
=P, z'P, Py

where each P; is a 1D pseudo-circulant matrix as shown in (2.2). Note that for a

1D pseudo-circulant matrix, its entries need not be functions of one variable only.
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Similarly, for two dimensions the matrix entries can be functions of two or more
variables. Pseudo-circulant matrices of higher dimensions can be defined recursively

in terms of the lower dimension ones.

For any 2D digital transfer function H (2, 2;), there exists a rectangular poly-

phase representation for it as follows

M;~1M,;-1
H(z,z) = 3 3 5"z Hyyw(20,2"). (2.4)
k1=0 k2=0 .

The sub-filters, Hy, r,(21,22), are called the polyphase components of H(zy, 2;).

2.2 Condition for Alias-cancellation

We shall consider a QMF bank with M; x M; branches. Fig. 2.2 shows the
components of the (m; + myM;)th branch, where 0 < m; < M; and 0 < mg < M,.
Let z(ny,n;) be the 2D input signal and Z(n;,n,;) be the reconstructed signal.
%(ny,n,) is the sum of the output from all the branches. The QMF bank consists
of a parallel connection of these M; x M, branches. The 2D decimator works as
follows. Let u(ni,n2) be the input and w(n;,n;) be the output of the decimator,
then w(n;,ny) = u(n;M;,n,M;). In the z-transform domain, the effect of this

operation is

1 My-1M;-1

UMk M2y ks, 2.5
M1M2 £ kzz-_—o ( 1 1 2 2 ) ( )

W(Zl, 22) =

Similarly, the 2D interpolation can be described in the z-domain as W (z,2;)

= U(M, 2012),

A

z(ns, n—zl-*Hml,mg (21, 22)—’1M1, M,

15 M2 '_’thmz (217 22)‘_’.

Fig. 2.2. One branch of the 2D QMF bank.
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Let the analysis filter bank be denoted by h(z;,2;) and the synthesis filter bank

by f(z1,22), i.e.,

Hyo(21,22)

Hyo(21,22)
h(Z]_,Zz) = .

f(zl,22) =
HM1—1,M2-1(Z1, 22)

Define the vectors e(z;, 2;) and r(z;, 22) to be

Foo(z1, 22)

1
22—1
e(z1,22) = ez(2;) ® e1(21) = 5 ®
~M3+2
29
Z;M2+1
Z;M2+2
r(z1,2;) = ra(22) ®ri(e) = ...
z{l
1 )

then the analysis filter bank can be expressed as h(z;,2;) = E(21",

and similarly we can write the synthesis bank as f7

Fio(21,22) (2.6)
Fagy -1, M5-1(21, 22)
( 1
z{l
: and (2.7a)
z;M1+2
\zl—'Ml‘l'l
zl—l‘;ﬁ-l
zi— 1+2
® - , (2.7b)
zl_l
1

My zyz)e(zl,'z‘g) ’

).

(Z]_, 22) - r(Z]_, zZ)R(zin ’ zglz

The matrices E(21,2;) and R(z1, 22), which were defined in [VA87c], contain the
ployphase components of the analysis and synthesis filters respectively. The QMF
bank can now be re-drawn as in Fig. 2.3. The building block D represents M;

decimators and U denotes M, interpolators, each having the forms as in Fig. 2.2.

Similar to the 1D case, E(2}, 2?) and the column of decimators can be inter-
1(z1) \ R tv f1(21)
1 re1(20)5 vo b =3 f1(z
+ez(z2) = E(#2", ") b2 S R(", ™) Sl £2(22)p>
1(z1) ==Y f1(z1)

Fig. 2.3. Two-dimensional polyphase representation of the QMF bank
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e:(z) Syo ' bu B fi(z)
aSe
—e,(2;) : E (21, 22) (21, 22) ( ): fy(22) >
RNEI=T: =Fe

Fig. 2.4. Alternative representation for the polyphase structure.

changed. Performing the same operation on R(:a1 ,zé“’) and the interpolators, we
arrive at a representation for the QMF bank shown in Fig. 2.4. Let us define a
matrix P(zq, z;) as the product R(zy, z3)E(z;, ;) (Fig. 2.5), then the reconstructed

signal X (z1,2,) can be expressed in terms of X(21,2;) and the entries of P(2y, z;).

Let the signal at the (m; + m;M;)th input of P(z,, 2;) be denoted by G, m,
(21,2;). Similarly, let the (m; + myM;)th output of P(z1,2;) be Cp,m,(21,22)-
Using (2.5), the signal G, m,(21,22) for each branch of the analysis stage can be

written as

1 M;—-1M;z;~1 / /
—-m1 /M —~miky, —Mm2 M ~maky
>z W 2 W
1 2 2
MM,

Gm;,mz(zhzZ) = 1

=0 k2=0
X(2Mwk | M pk). (2.8)
Passing the signals through P(z;, 2), we get
~1M,;-1
c] 21,22 Z Z 21,22) 1+JM1.m1+m2M1Gm1.m2(z1’z2) (2‘9)
ml—O mz--O
e;(z1) Ao —hv f1(21)
-, Sl st
—>e;(2;) ' ¥ P(z,2;) t o 2 (z:)—
91(21) *D *U fl(zl)

Fig. 2.5. Position of the matrix P (2, 2;) in the filter bank.
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and after interpolating and recombining the above signals the reconstructed signal

can be expressed as

M;—-1M2-1

X (21, 2) Z Z S(0i-10) (a1~ (M, 2M2). (2.10)

Combining (2.8- 2.10), the reconstructed signal becomes
R M;-1M>-1
X(Z]_, 22) = Z Z X(zlwl"l , Zngkz)Akhkz (21, 22), (2.11)
k1=0 kz=0
where Ay, i,(21, 22) can be thought of as the weighting function associated with the

alias term X (2, W, 2,W?). It is given by

L -m, MHMfMi k k
Ak ks (21, 22) = [ty Me W mHER W, mek
" ’ MM m1=0 mq=0
Mi~1M-1 _
Z Z zi-—m1z%—mz [P(ZINﬁ?z}zwz)]i+]'M1,m1+m2M2' (2'12)
=0 Jj=0

In order to eliminate alias terms in (2.11), we must have Ago(21,22) # 0 and
Ag, k,(z1,22) = 0 for all other ky,k;. This condition is necessary and sufficient
for alias cancellation. (In the absence of aliasing, Aoo(z1,22) becomes the overall

tranfer function of the filter bank).

To examine the above condition more closely, we can re-write (2.12) as

1 M;-1M;-1 N o
M M, Z Wy ™ Wy A ma (21, 22) (2.13)
my

=0 m2=0

Ap, ko (21,22) =

N

where ;imhmz (21,2,) is defined appropriately according to (2.12). The sequence of
functions, {Ag, k,(21,22)}, is simply a 2D DFT of the sequence {Am—l,mz (21,22)},
so aliasing is cancelled if and only if flmhmz (z1,22) = Aop(21,22) for all my and m,.

This is the same as

Mi-1Mz—1 R
Z Z zi mxzz_mz[P(zfﬁ,Zéwz)]i-i-thmﬁ’m?Ml
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= zf'fl";z?““le,o(zl, z2) Vmy,m,. (2.14)
Introducing a new function
S(ZI,ZQ) - zfl‘_lzyrle,o(zl,zz), (2.15)

S(z1,22) can be written in terms of its polyphase components as
M;—1 M;-1 .
S(z1,22) = ) Z Sy 4, (2, 28 p Tl e, (2.16)
1,=0 1,=0

By subsituting this into (2.14) and equating like powers of z; and z;, we get

[P (21’ 22)]i+jM1 mi+maM; =

([ Sy —iima—i (21, 22) fori—m; <0and j—my <0
27 Sy it My,ma—i (215 22) for1—m; > 0and j — m, <0;
7 z{ISml_;,mz_ﬁMg(zl,zz) fori—m; <0and j —my > 0;

-1_-1 . .
21723 Sy it My ma—j+Mp(21,22) for i —m; > 0and 5 —m,y > 0.

(2.17)
A close examination of (2.17) shows that P(z;, z;) has the pseudo-circulant format
as given in (2.3), where each P; is 1D pseudo-circulant in z; as shown in (2.2).
The entries in the top row of each Py (2, z,) are given by S, (21, 2;). In conclusion,
the condition that is necessary and sufficient for alia,s-cancéllation is that P(z;, z,)
must be a 2D pseudo-circulant matrix. The top row of P(z;, ;) is related to the

polyphase components of §(z1, z;).

[P (21, 22)]o+km, = St (21, 22) (2.18)
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Once a,ﬁasing has been cancelled, the QMF bank becomes a linear shift-invariant
system, and the overall system tranfer function is 27 ™" 2;M#*15(2,, 2,). In other
words,

X(Z]_, Zz) = ZI—M1+IZ;M2+IS(21, Zg)X(ZI, 22). (2.19)

This result can be generalized for higher dimensional QMF banks.

~ Note that P(z;,2;) in (2.17) is not a Kronecker product of two 1D pseudo-
circulant matrices. Therefore, the results here cannot be derived directly from
[VA88D], except for the special case where Hp, m,(21,22) and Fp, m,(21,22) are
separable filters. In the case of separable filters, P(zy,2;) becomes a Kronecker
product of two one-dimensional matrices which have to be 1D pseudo-circulant. So

alias-cancellation is achieved in each dimension separately.

2.3 Distortion Elimination
Even without aliasing, the reconstructed signal suffers from an overall distortion
S(21,22). There are two types of distortion present in S(z;, 2;), viz., magnitude and

phase distortion. From (2.19), we see
| X (e, e¥2)] = [S (™1, )| | X (12, 77)]. (2.20)

Thus, there is a distortion in the magnitude of b'e (e1,e%2). This distortion is
eliminated if |S(e’“!,e/¥2)| = 1 for all w; and w,. This is the same as saying
S (21,22)8(21,22) = 1 (which is commonly called the allpass property). Given an

alias-free QMF bank, we now show that S(z;,2;) is an allpass function if and only

if the matrix P(21, 2;) is lossless, i.e., P(2y, z;) is stable and

f’(zl, Zz)P(le, 22) =1. (221)
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Let Piy+kqpt, (21, 22) denote the (lc1 + k,M;)th row of the matrix P(z;, 22). Since
the zeroth row of P(z1, 2;) contains all the polyphase components of S(2y, z3), we can
express S(z1, 2;) in vector form as S(z1,22) = p3 (2M, 20%2) -e(21, 23), where e(z1, 2;)
is defined pfeviously in (2.7). Due to the pseudo-circulant nature of P(zy, z,), we
can write 27 2;%25 (2, 2,) as

~

278 (1, 20) = Dlragae, (249, 2%) - e(en, 22) (2:22)

Withk; =0,...,M;—1and k; =0,..., M;—1, there are altogether M; M, equations

in (2.22). All of these equations can be written collectively as
e(21,22)S(21,22) = P(2M, 2M2)e (2, 2,) (2.23)
This leads to

.g‘(zl,zz)é(zl,zz)e(zl,zz)S(z1,22) = &(21,20) P(M, 2M2)P (22, 2M2) (2, 2,)
(2.24)
Since &(2y, 25)e(21, 22) = M1 M, and if we assume (2.21) holds, then

S(21,22)S(21,22) = 1. Thus the losslessness of P(z,2;) implies that S(z,2;) is

allpass.

We now consider the converse. Starting with (2.23), if we replace 2; with z wl’*

and 2, with z; W,?, the result will be
Az, z2)e(Wi, W) (Wi, 2 Wp) = P2, 202) A (21, z2)e (W), W) (2.25)

The matrix A(z, 2;) is diagonal with the form

1 1

-1 -1
2 21

A(z1,2;) = ® . . (2.26)

22"M2+1 zl"MH'i
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For 0 §~11 < M, and 0 <3 < M, there are altogether M; M, column equations all

of the same form as (2.25). Stacking these columns into matrix form, we can write
A(21,23) WS(21,22) = P(2}, 202)A (21, 2,) W, (2.27)

where S(z;, 2;) is diagonal whose (I; +1;M; )th entry is S (2, W}!, z,wzh). The matrix
w is- the result of stacking the cblumns, e(wlll, w;f), and it is the two-dimensional
DFT matrix. Now A(2y,2;) and W are both lossless. If S(zy, 22) is a stable, allpass
function, then S(21,22) is lossless also. The product of lossless matrices is also

lossless. Consequently, P(z;, 2z;) must be lossless, proving the desired converse.

For an alias-free QMF bank, it is free from phase distortion if and only if S(z,, 23)
has linear phase. For a causal, stable filter to have linear phase, it must be FIR.
Thus let S(2;,2;) be an FIR filter with order N;—1and N,—1, that is S(z1,22) =

Ny-—-1 Nao<l
2

-n) . —ng
ny=0 ng=05(n1’n2)zl Zg -

To obtain linear phase, the sequence {s(ni,ns)}
must be either éymmetric, s(n1,n2) = s(N; —1—ny, Ny —1—n,), or anti-symmetric
s(ny,ng) = —s(Ny—1—ny, N;—1—n,). For anti-symmetric FIR filters, the frequency
response is zero at (wy,w;) = (0,0). This means there is severe magnitude distortion
around that frequency, hence it is undesirable for QMF bank applications. Only

the symmetric FIR filter should be considered. For S(z, 22) to have a symmetric



26

impulse response its polyphase components must satisfy

21 ™ 23 " S(ny - k) (na-1)

for0<k<n;,0< < n,.

-m1+1_-m2
2 2 S(M1+"1—k).("2“)

forny <k <M;,0<1<n,.
Sk’l(zl,ZZ) = 9 - 1, US S g

2] -—m2+IS

29 (n1~k),(Mz+nz-1)
for0<k<ny,n <Il<M,.

-mi+1_-m3
2y 29 S(M1+m—k)1(M2+nz—l)

{ forny <k < My, ny, <l < M,.
: (2.28)

where n; and m; are unique integers that satisfy n; + m;M; = N; — 1 wi'gh 0 <
n1 < M, and similarly n; + meM; = N; — 1 with 0 < ny < M, — 1. (2.17) and
(2.28) together give us the necessary and sufficient condition for eliminating phase

distortion in the QMF bank.

2.4 FIR Perfect Reconstruction Systems

The QMF bank is said to have perfect reconstruction when %(n,n;) = ¢-z(n; -
Ni,n; — N;). Without loss of generality, the constant ¢ can be assumed to be
unity. In the z-transform domain, X (21,29) = 27Nz M X (z1,22), so the overall
system function is required to be Apo(z1,22) = 27 N‘z; N2 For simplicity, assume
that Ny — M, + 1 is divisible by M; so Ny — M; +1 = M,L,, and also Ny — M, + 1

is divisible by M; with No — My 4+ 1 = M,L,. From (2.15), we get S{z),2;) =

-M -
2] 1L122 MzL2 L

which in turn means P(21,2;) = 27" 25 L2] The only way to achieve
this is to make R(z;,2;) = 27" 2;%*E~1(2y,2,). This suggests possible ways of

designing QMF banks that have the perfect reconstruction property.

The problem basically involves the design of the analysis filters Hy, n(21, 22) so

that each of them is a good bandpass filter with passbands disjointed from each
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other. At the same time, the polyphase matrix of the analysis filter bank is con-
strained to be FIR and lossless, for if E(21, 22) is FIR and lossless then the polyphase
matrix for the synthesis filter bank is given simply by R(2y,2;) = z7 ¥ 25 Lafs( 21, 2,).
The above choice will guarantee perfect reconstruction. (The integers L; and L,
may be chosen to cancel out the highest positive powers of z; and z;, so that R(z;, 2)

contains no positive powers of 2, 2;. This is important for causality requirements.)

For the 1D QMF bank, the lossless polyphase matrix E(z) has been successfully
used in the design of analysis filters [VA87b]. This is due to the fact that there
exists a factorization theorem for one-dimensional lossless matrices. Let E(z) be
any M X M causal FIR lossless matrix. Since it is causal and FIR (i.e., it is a
matrix polynomial in z71), its determinant must be a polynomial in z7!. Due to
the lossless property, the determinant is an allpass function. For a polynomial to
be an allpass function, it must have the form of a monomial 2~¥X. The theorem in

[DO8S| allows us to represent E(z), as a product of matrix factors such as
E(z) = Vi(2)V2(2)... Vk(2)R, (2.29)

where R is an orthogonal matrix and the other factors V;(2;) have the form (I —
(1 — 27Y)v;v]). The vector v; is normalized to have unit norm, viv; = 1. One can
verify that each V;(2) is a lossless matrix and its determinant is z7'. In (2.29),
E(z) is completely characterized by the unit-norm vectors v; plus the orthogonal
matrix R, which in turn can be decomposed into a number of planar rotations. In
all, this giyes us the minimum number of parameters needed to characterize any
M x M causal FIR lossless matrix with determinant equal to z~%. By adjusting
these parameters by non-linear optimization procedures, one can generate analysis

filters having good desired response.
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The factorization of 2D FIR lossless matrices E(z;,2;) is much harder. It is
not known whether an equivalent factorization for 2D FIR lossless matrices exists.
However, under certain restrictive conditions, we can show that a factorization into
degree-one factors is possible. This is stated in the following lemma.

Lemma 2.1 Let E(z,2;) be an M x M causal FIR lossless matrix with order
equal to unity in the 2; variable and arbitrary order in 2, (i.e., i‘l(zl,zg) is a ma-
trix polynomial of the form E(z1, 2) = T} _o Tn-0€n, n, 21 " 2 " Where e, , are
M x M matrices.) Without loss of generality, one can write the determinant of

E(z, 2;) as 27 ¥12;%32 Under these conditions, the lemma states that E(z;,2;) can

be factorized as
E(Zl, 22) = V](Zg)Vg (Zz) e VJ (Zz)U(zl)V1+1(22) . .V}Q (22). (230)

where the factors V;(z;) have the form (I—(1—2;*)v;v!) with v; being an unit-norm
vector of length M. The factor U(z;) is a one-dimensional FIR lossless system, with

determinant equal to zl'K !, And J is some integer less than or equal to K.

To prove the above lemma, we will first show that E(z;, 2z;) can be factorized in

one of two ways,

E(Zl,ZQ) = V(ZQ)E(zl,Zz) (2316)
or E(z1,2) = E(21,2,)V(z). (2.31b)

The factor E(zl, 2,) is required to be causal, FIR and lossless. Since V(z;) is lossless,

the equations in (2.31) can be re-written as

E(z,2) = (I— (1 — z)vv)E(zy, 25) (2.32a)

-~

or E(z1,2) =E(z1,2){I - (1- 2z)vv). (2.32Db)
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Thus we see immediately that E(zl,zz) is FIR and lossless with determinant

(K2-1) " The degree of the determinant is reduce by one in the z; variable

N
when the factorization of (2.31a) or (2.31b) is carried out. To satisfy the causality

requirement, we need to have

Tej0=0 (2.33a)

viego = v
(in which case (2.31a) will follow) or

€p oV = €19V = 0 (233b)

which gives us the factorization of (2.31b). The lossless property states that
E(21,22) E(21,2) = I, and in particular the z;2;’-term, zy?-term, and 2y 1z92-term

of (21, 2,)E(21, 22) should be zero:

€1,5,€00 = 0, (2.34a)
€o,7,€00 + €1,7,€10 = 0, (2.34Db)
€,5,€10 = 0. (2.34c)

On the other hand, E(z;, 2,)E(z2y, 2;) = I and so

eO,Oél,Jz =0, . (234d)
€0,0€0,, 1+ €1,0€1,5, = 0, (2.34e)

.
e]_,oéo,.}2 =0. (234f)

We will assume that epp and e; are not both zero (otherwise one may factorize

out a trivial factor 2;'I from E(zy, 2;) ), and also e; 7, and e, 5, are not both zero.

The exsitence of a nonzero vector v that will satisfy either (2.33a) or (2.33b) is

proved as follows.
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1.) If &5, = 0, then from (2.34b) and (2.34c) we know & s,e00 = 0 and &; j,e; =
0. So by letting v! be a nonzero row of & ,, (2.33a) will hold;

2.) If &7, # 0 and &, j,e;0 = 0, then (2.33a) will hold with v! being a nonzero
row of & j,;

3.) Lastly, if &, # O and &, ,e;0 # O, then consider the matrix €0,7,€00
which is nonzero due to (2.34b). Post-multiplying both sides of (2.34f) by egg
gives us e; 085,00 = 0. Performing the same multiplication on (2.34e) gives us
€0,0€0,7,€0,0 + €1,08;,5,€00 = 0 which is reduced to €0,0€0,7,€00 = 0 by (2.34a). By

letting v be a nonzero column of & s,e00 we get (2.33b).

Hence, we have proved that at least one of the factorizations in (2.31) is possible.
By applying (2.31) recursively to E(zl, z3), the z;-degree of the determinant is
reduced by one each time. After repeating the process K, number of times, E(z, z,)

can be decomposed as
E(Zl, 22) = V](Zg). . .V] (Zz)W(Zl,Zz)VJ+1 (22) . ..\7}{2 (22). (235)

where W (zy,2;) is a causal FIR lossless matrix with determinant equal to 27 K1,
Now we claim that W (z;, 2;) does not contain any powers of z;. It does not contain
positive powers of z,, since in each step of the factorization we have ensured that
each factor is causal. Now, if Wz, z,) contains negative powers of z,, then the

factorization can continue and we get

- -~

W (z1,22) = W(21,23)V(22) or W(z1,2) = V(22)W(z1, 23) (2.36)

with W(zl, 23) being a causal FIR matrix with determinant equal to z;¥*2,! This
is impossible, so W(zy, 2;) is a function of z; only. We can write W(z;,2;) = U(z)
where U(2y, 2;) is a causal 1D FIR lossless matrix with determinant equal to z; X*.

Thus the factorization in (2.30) results.
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Fig. 2.6. An implementation of the degree-one lossless system, V(22).

Each of the V;(z;) factors in (2.30) can be implemented using one delay in z,.
A possible implementation is shown in Fig. 2.6 for V;(z;). The implementation for
U(z) is done using (2.29) where each V;(z;) again requires only one delay in z;. The
total number of delay elements needed for E(z;,2;) is K; + K,. This turns out to
be the minimum number of delays that is necessary for implementing E(z;, 22). Let
us assume that there exists a structure that requires a total of fewer than K; + K,
delays, then by changing all the z;! elements in that strucuture into z;! we can
obtain an implementation for E(z;, 2;) with fewer delays than K;+K,. But E(z;,2)
is a 1D FIR lossless system with determinant z; ***¥%) and in [VA88b] it has been
shown that the McMillan degree of such a system is K; + K. (For 1D systems,
the McMillan degree is defined to be the minimum number of delays necessary for
implementing the system.} This contradicts our initial assumption that there exists

a structure for E(z,, z;) which utilizes fewer than Ky + K, delays. Hence, K; + K,

is the minimum number of delay required for implementing E(z1, z3)

Similar result holds when E(z;, z;) has its order in z; equal to one and arbitrary

. 1. - -
order in z;. In other words, E(z1,2;) = ¥;12 271;2=0 €nyna?r 25 2.
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The above factorization holds for special cases of E(z;,z;). However, it is not

clear if a general causal FIR lossless matrix can be factorized in a similar way.

2.5 Design of Analysis Filters Using Lossless Polyphase Matrix

In lieu of a general structure that would represent all causal FIR lossless matrices,
an ad hoc method for designing the amalysis filters is suggested here. Take thecase
of My = M; = 2. The QMF bank has four branches. By requiring E(z;, 2;) to be a
lossless FIR matrix, the perfect reconstruction property can be obtained as shown
in Sec. 2.4. To impose the losslessness constraint on E(zy, 2;), it is restricted to

have the following form
E(Z1, 22) = RVL(Zz)VL_l(Zl) . .V4(22)V3(21)V2(22)V1 (21), (2.37)

where R is a 4 x 4 orthogonal matrix and V;(z) is of the form (I —(1 ——z”l)v,-v,r> as
discussed previously in Sec. 2.4. This structure is motivated by the ohe-dimensional
structure used in [VA88a| for 1D QMF design. Since each factor in (2.37) is lossless,
therefore the polyphase matrix is constrained to be lossless also. Each of the unit-
norm vectors v; can be characterized by three parameters, for example one can
write the vectors as (v;19;2vi3v:4)7 where v;; = cos(6;), vi 5 = sin(8;) cos(¢;), vis =
sin(6;) sin(¢;) cos(1), v; 4 = sin(;) sin(4;) sin(¢;). The orthogonal matrix R can be
characterized by 6 planar rotations. Thus E(z;,2;) is characterized by a total of

3(L + 2) parameters.

The order of the analysis filters is determined by L + 1. Since the anaylsis filter
bank is given by h(z,2;) = E(2, 22)e(z1, 2;), each the four filters are functions of
these parameter. The passbands of the analysis filters are decided by the particular

application in mind. For the purpose of our example here, we will choose the
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passband for Hp(z;,2;) to be a “fan” shaped region which is the union of two

triangle
{(wl,wz)]wl > 0, Wy > 0, w1+ wy < 7l'} U

{(wl,w2)|w1 <0, wy <0, wy +wy > —-7r}. (2.38)

The passband for H;(21,22) will be the above region shifted along the w; axis by .
The passband for Hj(z1, 22) is given by (2.38) shifted by = along the w, direction.
As for Hj(z1,2;), it passband region will consist of (2.38) shifted by = in both
directions. One can verify that the four filters have non-overlapping passbands and

the union of the four passbands covers the entire frequency plane.

The filters should be designed so that in the stopband region of each filter its
magnitude response is close to zero, | H;(e/“1,e7*2)| ~ 0. Let us define the stopband

energy of the filter H;(z) to be the integral

dwlde

E(’) —//H*(e"‘“ e’“”)H (erl sz) (2.39)

where the region of integration is the stopband region of the filter. With each

H;(z,2;) being an FIR filter of the form an_o Y L1 hi(ng,n) 2™ 2™, the quan-

ny=0

tity Eg‘) can be written as a function of the impulse response coeflicients, namely

-1
N E® = g,(0,0)4(0,0) + 2 > (0, n2)04(0, ny)

na=1

I-1 L-1

+23 > gi(ni,na)a(ng, n). (2.40)

ni=lny=-L+1

where g;(n1,n;) is the auto-correlation of hi(ny,ns) and o;(n1,n,) is given by
/ / cos(nyw; + nows)dwidws /47, The integrals in the expression for o;(ni,na)

can be evaluated either analytically or by numerical integration (if a close-form
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expression cannot be readily found). The impulse response coefficients are functions
of the parameters of E(z;, z;) in (2.37). Using an optimization algorithm, the total
stopband energy, E{®) + E{!) + E(® 4+ E{®, can be minimized with respect to the

3(L + 2) parameters.

If the stopband energy for each filter is sufficiently small, then the response of the
filter is close to zero in the stopband. This in turn guarantees that the passband
response is close to unity. The reason for this is as follows. Due to the lossless

S

property of E(zy, 2,),
3 -
2 Hi(z1,20) Hi(21, 21) = &(21, 22) B2, 2) B (21, m)e(21, ) = MuM;  (2.41)

On the unit bi-sphere, this means

3

Y H (€8, €2) Hy(e™, e2) = My M,. (2.42)
=0 .

Since the four filters have non-overlapping passbands, the passband of any one filter
will lie within the stopbands of the other three. If each filter H;(e’?, e*?) ~ 0 in
its respective stopband, then we know from (2.42) that H;(e’*1,e2) ~ M;M, in

its passband. Hence good stopband attenuation for all four of the filters will also

mean a good passband performance for the filters.

Design Example 2.1 To demonstrate the above design procedure, we let E(z;, z;)
have the form in (2.37) with L = 30. So there are 96 parameters in all. A mathemat-
ical library subroutine (ZXMIN in the International Mathematical and Statistical
Library) is used to minimize the total stopband energy as discussed before. The
subroutine is based on the quasi-Newton method for minimization. A local opti-

mum solution is listed in Table 2.1 in terms of the entries for each of the vectors
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vi | 0.290675 | -.875347 | -.028410 | 0.385316
V2 | 0.484210 | 0.502716 | -.047326 | 0.641863
Vs | 0.384203 | 0.015114 | -.103294 | -.064024
Va | -.626686 | -.622921 | 0.022367 | 0.467690
vs | 0.444359 | -.790436 | -.186446 | -.378147
Vo | 0.120461 | 0.438447 | -.680554 | -.572582
V7 | -490077 | -.303727 | -.795030 | 0.188418
Vs | 0.017604 | 0.770706 | 0.212216 | -.600553
Vo | 0.799441 | -.506313 | -.135045 | 0.293777
Vio | 0.361046 | -.754792 | -.063723 | -.543944
vii | 0.918421 | 0.123016 | 0.244872 | -.285319
Vis | 850465 | -.203020 | 0.485003 | -.013286
Via | 0735829 | 0.186510 | -.647566 | 0.066546
Vie | -.641008 | -.289323 | 0.707548 | 0.068281
Vis | 441061 | -.487900 | 0.753271 | 0.001003
Vie | 0.415231 | -.128779 | 0.649627 | -.623636
V17 | 0.026506 | -.099967 | 0.705148 | 0.701477
Vis | 0.065981 | 0.906860 | 0.371562 | -.187596
V1o | 0.001800 | 0.927606 | 0.090004 | -.362551
Vo | 0.846187 | -.086868 | 0.357704 | 0.385234
Va1 | -.599662 | -.078675 | 0.656369 | 0.450004
Vaz | 0.856627 | -.026813 | -.400761 | -.312357
Va3 | 0.736520 | 0.020068 | -.671718 | -.074089
Vaa | -735058 | -.102114 | 0.475132 | 472770
Vs | --583123 | -.154503 | 0.796474 | 0.041198
Ve | 0.065606 | -.053211 | 0.294922 | 0.010272
Va7 | 0.012881 | -.807459 | -.010576 | 0.589689
Vas | 0.549584 | -.185934 | 0.664653 | 0.470768
V2o | 0.276359 | 0.470955 | -.668846 | 0.504452
Vao | 0.150582 | 0.430369 | -.795841 | 0.388481
R | 0.170484 | -.248734 | 0.152732 | 0.939463

0.494943 | 0.496166 | 0.700010 | -.078459

~776960 | 0.539794 | 0.193391 | 0.259915

~345182 | -.632900 | 0.660740 | -.209042

Table 2.1 Entries of v;’s and R for the optimized 2D filter bank.
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v;’s and the entries of R. The magnitude response | Hs(e/“1, e/“)| is plotted in Fig.

2.7. It shows roughly the fan-shaped region of the passband.

There are several drawbacks to the above design method. One is that the struc-
ture in (2.37) might not be able to generate all FIR lossless matrices of a given order.
Second, as the filter order L + 1 increases, the amount of computation needed to
evaluate the stopband energy increases rapidly. Using fast algorithms, the num-
ber of multiplica,ﬁons required to compute the aﬁto—correlation of hi(ni,n2) is on
the order of L?log(L), while the sum in (2.40) requires about 2L* multiplications.

Therefore the time for each iteration increases on the order of L?log(L).

2.6 Block Filtering and Pseudo-circulants

Block implementation of digital filters has been explored by various authors in the
past [BU72] [MIT78] [BAS8O]. For a single-input single-output (SISO) filter, its input
consists of a sequence of numbers. Block filtering involves the conversion of this
serial input into parallel inputs in the form of a vector sequence. And the filtering
operation is performed on the sequence of vectors instead of on the original scalar
sequence. The aim is to increase computational speed through parallel processing,
and also certain effects due to the finite word-length of the filter, e.g., sensitivity
and noise gain, are reduced as a result of blocking. In [VA88b], it has been shown
how the pgéudo-circula.nt matrix is related to block filtering in one dimension. The
two-dimensional pseudo-circulant matrices discussed here also appear in the context
of 2D block filtering. Let y(ni,n2) be the output of the filter S(z1,2;) in response

to the input z(n,ns).

The blocked version of y(ny,n;) is defined as a sequence of vectors {yp(n1,n2)}
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where each vector has length MN and

Yarp-1 (77-1 ) nz)
yMz-z(nla nz)
ys(ni,ng) = : , (2.43)

Y1(n1, nz)
YO(nx, nz)

with each sub-vector defined as

y(n1M1 + M1 - 1,n2M2 + ‘l)
y(niM; + My — 2,n.M; + 1)
y,-(nl, nz) = . (2.44)
y(niM; + 1,n,M; +4)
y(nlMl, n2M2 + 1,)

The blocked version of z{n;,n,) is defined similarly. Taking the z-transforms of
ya(ni1,n,) and xp(n1,ny) respectively, it is possible to find a 2D matrix function
H(z, z;) that would relate the two as Yp (21, 2:) = H(z1,22)Xp(21, 22). The matrix
H(2y, 2;) describes a multi-input multi-output (MIMO) system. Here we will show
that H(z,, 2;) is pseudo-circulant, and the entries of the zeroth row of H(z;, z;) are
precisely the polyphase components of the original SISO filter S(z;,2;). As a result,

given S(z1,z;) we are able to find H(z,, 2;) directly.

Let Y}, ,,(21, 22) be the (I1,13)th polyphase component of Y (21, 22), then

[Y5(21,2))m+mem €quals the polyphase term associated with zyMit1t™

-Ma+l4m,
2, 2, 1.e.,

[YB(ZJ, 22)] = YMi-1-mi Ma—1-m, (21, 22). (2.45)

mi+maM

The same relationship holds between Xpg(z;,2;) and X (zy, z;).

Let us apply to the filter S(z1,22) an input z(n;,ns) having a z-transform of the

—(Mi—1-k) -~
21( 1 1)22(

form X (21,2.) = Mz=1-k2) then the output transform is given by

Y (21, 2) = 2y MRy MR (0 ). (2.46)
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We will let £y and k, be restricted to the range, 0 < k; < M; and 0 < ky; < M,.
Using the relationship in (2.45) which is also valid for X g(z1, 2), the blocked version

of X(24,2) is found to be

. 1 my = kl, mo = k2
[XB(zl’zz) ]m1+sz1 - {0 otherwise (2.47)

Hence the blocked output Yp(21,2:) equals the (ky + k2MiJth column of H(z, 23),

[YB (21, 22)] = [H(zh 22)]

mi+maM,

(2.48)
mi+moMy,k1+ka M,

When compared with (2.45), the above entry of H(21, 22) corresponds to the appro-

priate polyphase term of Y (2, 2z;). And from (2.46), we get

[H(Zl, 22)]

my+maMy,k1+ka M

= YM1—1—m1,M2-—1—-m2 (zli 22)

Sk11—m1,k2-—m2 (21,22) for ky > my, ky > my;
— AL Stimmat My ka-ma (21, 22) for ky <mq, kg > my;
25 Sky-my ky—mat+M; (215 22) for ky > my, kz < my;

21 25 Sty mmy My by —ma My (21, 22)  for by < my, kg < my. (2.49)
2.49

This shows that H(z1, 2;) has exactly the same form as the matrix P(zy, 22) in (2.17),
which is 2D pseudo-circulant. Thus H{zy, 2;) is a 2D pseudo-circulant matrix whose

first row is given by the polyphase components of S(z1, 23).

2.7 Extension to Multi-dimensions

In Sec 2.2, the condition for an alias-free 2D QMF bank is derived. It is
found that aliasing is cancelled if and only if the product of polyphase matrices,
R(z1,22)E(z1,20), is in the form of a 2D pseudo-circulant matrix. This can be gen-
eralized to multi-dimensional QMF banks. For example, in K dimensions with dec-

imation factors (My, M, ... Mk), the QMF bank will have MyM; ... Mg branches.
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Let M = Hf:o M. The necessary and sufficient condition for alias-cancellation is
that the matrix P(z;,...,2x) must be a K-dimensional pseudo-circulant matrix.

Since there are M branches, P(zy,...,2k) is an M X M matrix.

The pseudo-circulant property for K-dimensions can be defined recursively by
partitioning P(2i,...,2x) into-sub-matrices, each with dimensions Mix X MME Let
the (/,m)th sub-matrix be denoted by Qim(z1,...,2x) where 0 S‘ l,m < Mg. The

sub-matrices must satisfy the following relations:

Q QOm—-l(zl)-",zK) lsm’
(21 — 0, , 2.50
Qim(z1 zk) {ZKIQO,m—-l-‘-MK (21,-..,28) 1 >m, ( )

and each Qi m(21,...,2x) is pseudo-circulant in the first K — 1 variables.
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Chapter III. Periodic Nonuniform Sampling and the Efficient

Reconstruction of Discrete-time Bandlimited Signals

3.1 Introduction

In this chapter we shall study periodic nonuniform sampling as a potential means
for data compression of bandlimited signals, and the multirate filter bank concepts
discussed previously can be used to derive the compression and reconstruction pro-
cedures. It has been well-known that a bandlimited signal can in principle be re-
covered from its nonuniformly spaced samples provided the ‘average sampling rate’
exceeds the Nyquist rate. See, for example, [BL53] [JET7] [PAP77a] and references
therein. In the chapter we shall address the problem of efficient reconstruction of

the original signal from such samples.

We shall be concerned only with discrete-time signals here so that nonuniform
sampling actually implies nonuniform dectmation. As a typical example of such an
operation, let z(n) be a o-bandlimited signal, i.e., a signal for which the Fourier
transform X (e’*) is zero for 0 < |w| < 7. We assume that o < £ where L and
M are positive integers with L < M. A common procedure [CR83] for compressing
the rate of such a signal by M/L would be to use an L-fold interpolator followed
by filtering and M-fold decimatién (see, for example, Fig. 3.1(a) where L = 2 and
M = 3). ’ghe output signal in Fig. 3.1(a) is at 2 times the original sampling rate
of z(n). This kind of compression scheme will be referred to as Method L. If the
original signal z(n), at its higher sampling rate, is needed, then Fig. 3.1(b) should

be used for re-converting to the higher rate.

The advantage of nonuniform decimation (Sec. IV of [VA88d|) in comparison

to this is the extreme simplicity of the compression technique. Building upon the
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x(_nlyz o L(z) (|3 - 13 o M) ]2
(a) (b)

Fig. 3.1. Conventional sampling rate alteration: (a) down-sampling;

(b) up-sampling.

~

previous results in [VA88d|, we shall derive a new reconstruction procedure for re-
covering z(n) from its nonuniformly decimated version, such that the computational
complexity is v\ery low. The new reconstruction procedure is applicable to a general
class of multi-band bandlimited signals (to be explained later) as well as to the

usual lowpass bandlimited signal.

A typical nonuniform decimation of a signal can be performed as follows: divide
the time axis n into consecutive intervals of length M and retain L out of M samples
in each interval. If this sub—samplirng pattern is periodically repeated, the signal z(n)
can be recovered from the nonuniformly decimated version, provided Lw/M > o.
One technique for such reconstruction has been outlined in [VA88d], by formulating
the problem as a multirate filter bank design problem. To be more specific, it
was noted that the nonuniform decimation can be represented by the network of
Fig. 3.2, where each box with the down-going arrow represents a uniform M-fold
decimator. The problem of reconstructing z(n) was posed as one of designing the
filters Fi(z), 0 < k < L—1, in Fig. 3.3 so that Z(n) approximates z(n) as closely as
required. It was noted that this problem is mathematically analogous to the problem
of designing the M channel QMF bank [SM87a,VA87a], as shown in Fig. 1.2. In
traditional QMF applications, the analysis filters are chosen to be good bandpass

filters having disjoint passbands and overlapping transition bands so that the whole
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x(z) s |~ z(nM)
51 lM L, z(nM — 1) |

L, 5L+ lM > z(nM — L+1)

Fig. 3.2. A periodic sub-sampling operation, represented by a

multirate filter bank.

frequency range from 0 to 27 are covered.

For the ‘nonuniform decimation and reconstruction’ application, however, the

analysis filters are given by

_[zk 0<k<L-1
Hk(z)“{o, L<k<M-1

(3.1)
and the task is to find a set of synthesis filters Fy(2), (Fig. 3.3), so that aliasing,
amplitude distortion and phase distortion are eliminated from Z(n) under the as-
sumption that z(n) is bandlimited. In [VA88d| it is shown how the filters F(z)
can be obtained to meet these requirefnents. The implementation of the synthe-
sis bank in [VA88d] was, however, done in a manner without taking into account
the close inter—relationship between the filters Fj(z) in order to minimize cost. For
example, a structure for the synthesis banks was pfesented in Sec. IV of [VA88d|

for the special case of M = 3,L = 2 (Fig. 17, [VA88d]) and for the M = 4,L = 3

case (Fig. 27, [VA88d]) but neither of these structures has the lowest possible com-
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z(nM) —"TM J Fo(2)
z(nM —1) ""TM Fi(2)
z(nM — L +1) \ z(n)

—{IM | Fyi(2)

Fig. 3.3. Synthesis filter bank for reconstruction of z(n).

plexity (for a given reconstruction accuracy). Part of the reason for this is that
in [VA88d|, even though a filter-bank approach was used, a polyphase formulation
[BE76],[VA87b] was not employed. For this same reason, the previous structures
presented in Figs. 17 and 24 of {VA88d] (which we shall refer to as Method II)

cannot be generalized to arbitrary L and M.

Here, the polyphase approach (to be called Method III) will be introduced in
order to obtain a new closed-form solution for the reconstruction filters. There are
several advantages to this approach. First, a unified structure is obtained which
works for arbitrary L and M. Second, the structure requires significantly fewer
computations than the ones in [VA88d], as we shall demonstrate in Sec. 3.4. Lastly,
the polyphase structure, when compared to the conventional means of sampling
alteration (Fig. 3.1) [CR83], proved to have a lower complexity. This advantage in

complexity is achieved only when the polyphase approach is adopted.

The reconstruction of bandlimited signals from nonuniformly spaced samples

can be achieved using iterative schemes [SAN63], [WI78]. The filter bank approach
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presented here avoids the use of iterations and furthermore, under finite filter length
constraints, one has control over the desired amount of alias term attenuation and

passband distortion.

In Sec. 3.2, a closed-form filter bank solution is presented for the problem of
compressing and reconstructing multi-band bandlimited signals, (i.e., signals which
are not necessarily lowpass, but have multiple frequency bands of nonzero energy).
A lowpass signal can be thought of as a special case of multi-band signals. The
main outcome is the fact that the synthesis filters Fj(z) which result in perfect
recovery of z(n) are multilevel filters, i.e., filters whose frequency responses are
piecewise constants, with each region of constancy having a length of 27 /M. This

is an extension of the result in [VA88d].

Since such a piece-constant filter function cannot be implemented in practice,
an approximétion to the ideal should be made using practical filters such as FIR
filters. This gets us into the problem of filter design. In Sec. 3.3, we show how the
multilevel specifications reflect into the polyphase components of the filters, thereby
a unified design procedure may be developed for these filters. Also the approach
of using polyphase components results in an efficient structure for implementing
these filters. It will be shown that all the L filters Fx(z), 0 < k < L — 1, can
be obtained by designing a stngle lowpass Mth-band filter [MIN82] and efficiently
using its polyphase components. (Even though any Mth-band filter design method
may be used for the lowpass filter design [NG88] [SAMS8S8|, we have included in
Appendix A our own Mth-band filter design method which is used to generate the
examples in this thesis.) The cost of the entire synthesis bank is equivalent to the

cost of a single Mth-band filter, and this is the key to the improved efficiency of
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the new structure. Using the new filter bank structure, we studied in Appendix C
the output noise gain due to noise in the subsampled signals. A complete design
example is presented in Sec. 3.4 for the M = 3, L = 2 case. The complexity of the
new structure is compared with a comparable design based on the previous structure
in [VA88d]. A comparison with Method I is also included. Finally in Sec. 3.5 we
summarize an extension of the 1D results to the case of 2D multi-band signals,
where the compression and reconstruction can be achieved by using generalized 2D

sampling lattices [ME83] [DU85] [VI88] [ANS8S].

3.2 Compression and Reconstruction of Multi-band Signals
Let the frequency axis from 0 to 27 be divided into M equal open intervals, each

having a length of 27 /M. This division is illustrated in Fig. 3.4. The M intervals

are labeled consecutively as: Iy, I,..., Ip—;. Thus we can define I, as
2
Imé{wl—]\—;m<w< %}(m-!»l)}, (32)
with m =0,1,...,M — 1. Now consider a band-limited signal z(n) with transform

X (€7%) that occupies only L out of the M frequency intervals. Fig. 3.5 shows an

example of such a signal with L = 4 and M = 7. Next, let us divide the time index

A | | | | ]
| [ ! [ }
| | | | l
I : I, : I : e o o : Ip—s : In—y
| | | : :
1 l I | | .
2 4r 6r 2n(M-2) 2x(M-1) w
0 M 74 M M el

Fig. 3.4. Division of the frequency region [0,27] into M equal intervals.
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21 w

0 2r U 6ér 87 10w 127
7 7 7 7 7 7

Fig. 3.5. Example of a band-limited spectrum occupying

4 out of 7 intervals.

n into intervals of length M each. Suppose L samples are retained out of M samples
in each interval. Let the sub-sampling pattern be the same for each interval. Since
X (e*) occupies only L out of M intervals, then one might expect that the above
sub-sampled signal will still contain enough information to recover z(n). This, as
we shall prove, is indeed the case. Such a sub-sampling and reconstruction process
can be used for the compression of z(n) and the advantage it has to offer is that

the compression scheme is extremely simple.

3.2.1 Retaining consecutive samp‘les

We first consider the case where the samples retained from the original signal are
z(nM),z(nM —1),...z(nM — L+1). This is represented in Fig. 3.2. Let the set of
integers E\é{lo, l1,02,...,11 1} represent all the frequency intervals in which X (e’*)
is nonzero. For example, in Fig. 3.5, the integers lo = 0,l; = 2,l; = 4 and I3 = 6.
The problem of reconstructing z(n) can be put into the multirate framework as in

Fig. 3.3. The reconstructed signal is Z(n) whose z-transform can be expressed as

(@) = 3 X(EW™)An(2). (3.3)

m=0
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In (3.3), the terms with m > O represent alias components caused by decimation.

The weighting function [VA88d] associated with each alias component is

An(2) = % 5;1 Wk 2=k By (2). (3.4)

To cancel aliasing, one would require that A, (2) = 0 for ‘m # 0. Once alias-
ing is cancelled, T(z)éAo(z) represents the overall transfer function of the sys-
tem. For perfect reconstruction, we require T(z) = 1 (or more éenerally T(z) =
cz™¥ with ¢ # 0). Representing the synthesis filter bank by the vector f(2) =
(Fo(2) Fi(z) ... Fp_1(2) )T, the conditions for alias cancellation can be expressed

in matrix form as

Ao(zg 1 1 ces 1 | T(2)
Az 1|1 w-1 y-(L-1 ;

I B vl IR : AREGE) = | |,
Aria(2) Loy p-ineoy :

| (3.5)

where A(z) is a diagonal matrix of the form

1 0 ... O
0 z' ... o0

AR = 5 . (3.6)
0o 0 ... zI#

In (3.5), the filters Fy(2) are the unknowns to be determined. Since there are more
equations than unknowns, so for T'(z) # 0 there might not exist a solution f(z) that

would satisfy (3.5) for all values of 2.

Let us examine (3.5) at steady state frequencies z = /. Since X(e’*) is band-
limited to the frequency intervals numbered {ly,!;,... {11}, not all alias terms are
present in each interval. For example in the interval I, (where p is an integer in the
range of 0 to M —1), the input spectral terms that are nonzero are X (e’ Wr~!*) with
k=0,...,L — 1. There are L nonzero terms, therefore only L out of M equations

in (3.5) need to be satisfied.
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Consider the frequency interval I, where p € L. For concreteness, let p =
l;. As mentioned previously, the nonzero terms are X(e/“W' '), The weighting
function associated with each of these terms is A(g,-1,))(¢’). The notation ((l;—Ix))

represents I, ~ [, modulo M. For alias cancellation, we require

A-n () = {(}(em) oros §_< Landk#g; (3.7)
Using (3.5), the L equations in (3.7) can be written as
1 Wl Yle=ig)(L-1) .
% 1 w:z-:, w(zl_z;)(L—l) A(e¥)E(e) = T(é"w) ‘ (3.8)
1 W=l Ylea—ig(E-1)

0
On the right-hand side of (3.8), the term T'(e’*) appears at the gth entry of the
column vector. The left-hand side of (3.8) can be factorized into

U T A (W) A(e%)f (), where U~ is a constant matrix given by

1wk ... phE-D
I 1 (L-1)
s (39)
1 Wi L Wil |

Notice that U~! is a Vandermonde matrix. Since {lo,!1,...,lz—1} are all distinct
integers within the range 0 to M —1, the matrix is nonsingular. By matrix inversion,

the solution for (3.8) is found to be
A(F)E(F) = MT(*)A(W ). (3.10)

The vector 1, is the gth column of U. For perfect reconstruction, set T'(e’*) = 1 in

(3.10).

Now for steady state frequencies w € I, where p ¢ L, the transform X(e*) is

zero within this interval. As a result, we may let T(e?¥) = 0 for w € I, without
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affecting the reconstructed signal, and the alias cancellation condition in (3.5) is

easily satisfied by choosing f(e’*) = 0.
In summary, the condition for the perfect reconstruction of z(n) is
A(e)f(e™) = Mb, for we I, (3.11)

where b, =0if p¢ L and b, = A(W™P)u, if p=1; € L. In the absence of aliasing,
the overall system transfer function T'(¢’*) has the following response

w 1 forw € I, where p € L;
T (3% = { P ) 3.12
(e ) 0 otherwise. ( )

As seen from (3.11), the frequency response of the filter, e~7** F} (e7*), has M bands
and within each band the response is a complex constant. Such a piecewise constant
function cannot be realized in practice. However, an approximate realization may
be achieved using FIR filters. In the next section, we shall derive an approximate
realization of (3.11) based on a polyphase approach which yields a structure that is

computationally more efficient than the one in [VA88d].

3.2.2 Retaining non-consecutive sub-samples

In Fig. 3.2, the sub-samples that we choose to retain are z(nM),z(nM —1),...
z{(nM — L + 1). Within a period of M samples, these sub-samples are chosen
consecutively. Such a choice always allows the missing samples to be reconstructed
using a filter bank. However, if one wishes, one can also choose arbitrary sub-
samples such as z(nM — ng),z(nM — ny),...z(nM — ny_;) with ng,n,, etc., being
distinct integers in the range of 0 to M — 1. The condition for alias cancellation in
(3.5) is replaced by

1 1 ces 1
1w WL W T(z)

M : : :
W-(M-Uno  Y~(M=1ny  -(M-Dnry 0
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where A'(2) is a diagonal matrix with entries: [A'(2)];; = z~™. The synthesis
filter bank can be derived in a way analogous to the consecutive sub-sampling case,

provided that the matrix in (3.9) is replaced by

Wheo  lomi - pplonses
Whino Whn L Whnr-a
: s (3.14)
Wie-no Yle—1ma Ylr-ing-

A difficulty is encountered at this point. For an arbitrary set of integers {no,ni,...
nr-1}, the matrix in (3.14) is not guaranteed to be nonsingular. If it is singular,
then a filter bank type of reconstruction filters may not exist. If we restrict ourselves

to consecutive sub-sampling, then a solution always exists.

3.2.3 Error due to the non-bandlimited nature of the signal

In the above analysis, we have assumed that the input signal z(n) is strictly
bandlimited. In cases where such an assumption is not satisfied, error is present in
the reconstructed signal. We shall analyze the frequency domain error, defined as
E(e) = X(e™) — X(¢/). This error can be expressed as E(e/*) =
<A0(ef“’) - I)X(ej“’) + =M, Ar(e™) X (e7“W*). For the case where w € I, with

p # L, all the weighting functions A, (e’*) are zero, therefore
E(e) = X (/). (3.15)

For the case where w &€ I, with p = [ then the error term is given by

M-~L-1 . .
E(C’w) = Z X(erWlk—lm)A((lk_zm)) (Cjw). (3.16)

m=0
The set {im} withm = 0,1,...M — L —1 is defined to be the complement of the set
{I}, so {{,,} U {It} = {0,1,...,M — 1}. Each of the alias term weighting function

in (3.16) can be expressed as

-1
A-iap(€) = 2 Wiy, forw e L. (3.17)
=0
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For a bandlimited signal, each of the alias terms in (3.16) is strictly zero. Such
an equality does not hold if the bandlimited condition is not satisfied. However,
if the signal is “almost bandlimited” then one may assume that the alias terms in
(3.16) are small in magnitude and so the error term E(e’*) will remain small in

magnitude.

3.3 Multilevel FIR Filters with Adjustable Response Levels

As observed earlier, the filters e~7* F}, (%) are multiple band filters with piece-
wise constant response. Such filters will be loosely referred to as ‘multilevel’ filters.
We shall first consider the general problem of designing and implementing an FIR
multilevel filter. For notational simplicity, H(z) is allowed to be noncausal. The
noncausality can be corrected later by adding a sufficient amount of delay. Let H(z)

have the following frequency response
H(e*) = d, forw € I, ‘ (3.18)

By decomposing H(z) into its polyphase components, H(z) = LM ! 27*E, (2M), it

can be shown that each of the polyphase terms has the form
Ei (M) = au WH2el*  w € I, (3.19)

where «a;’s are constants dependent on the response levels d,. Due to a periodicity
of 22 the response of Ei(e’“M) periodically repeats outside the interval I,. The
approximate equality in (3.19) is proved as follows. Let w, be any frequency point
in Iy, then

M-1
H(e*) = 3 ek E, (M) » dy, (3.20)
k=0
and a frequency-shifted version of the above equation can be written as
. 2% M-1 . .
H(e’(“’°+ﬁ”)) = Z Wrke=iwok g, (e7woM) dy. (3.21)
k=0
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The equations in (3.21), with 0 < p < M — 1, give us a system of M equations

Eo(ejwo) do

e—jon e:iwoM d
w 1( ) s :1 for wo € Ip. (3.22)
e—jwo(M—l)E'M_l(e]'WOM) dM—-l )

Clearly, d,’s do not depend on the value of wy, so on the left-hand side each term
e~k F, (¢7*oM) is approximately equal to a constant. Hence, we can write E;(e/“M)

as in (3.19). Substituting (3.19) into (3.22), we get an expression for a,

o do
w wfa‘ = d:l (3.23)
woF 2 Qpr-1 dr-1
By matrix inversion, «; is found to be
1 M-1
o = ﬁw-k/2 S" wtrg, (3.24)

p=0

Let us designate a new set of filters Gi(2™) = J-Ei(2™), then G (2™) satisfies
Gi(e*M) ~ WH2ed*  for w € L. (3.25)

If one has a design method for G¢(2™), then any multilevel filter having a desired

response of the form (3.18) can be synthesized as
M-1
H(z) =Y oz *Gy(z™) (3.26)
k=0

with oy obtained from (3.24). Notice that the ideal solution for Go(2™) in (3.25)
is Go(z™) = 1. This means that the impulse response k(n) satisfies h(Mn) = 0 for
n # 0. This is commonly called the Nyquist property or the Mth-band property
[MIN82]. Thus H(z) is an Mth-band filter. A structure for implementing H(2) is
shown in Fig. 3.6(a). This structure can be used in general to implement any Mth-
band filter H(z) having a multilevel frequency response as in (3.18). In Fig. 3.6(a),

by adjusting the values of a;’s one can change the response levels of the filter at



2“1L 1
GM_l(ZM)

Fig. 3.6(a). Structure for a multiple-band multilevel filter.

will. However, this structure does not allow one to control each band directly. For

that purpose, the structure in Fig. 3.6(b) should be used.

The remaining question is how the filters G)(z™) can be designed. Since the
behavior of Gy(z™) is independent of the values of d,, we will first design a very

simple prototype filter P(z) which is an Mth-band filter having a lowpass response:

P = {) frseloors o 021
In Appendix A, we included an algorithm for designing such a filter. It is based on a
modified version of the algorithm in [PAR72]. It generates an Mth-band FIR filter
with symmetric impulse response, and the filter has equiripples in the passband. For
simplicity, we will let P(z) be zero-phase (hence noncausal). The Type I polyphase
components of P(z) are defined as in (1.8). Due to the Mth-band condition and

(3.27), the zeroth polyphase term Py(2™) = . Since the response of P(z) is a
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Z_IL "Vmiﬁ;—_1 dar—1 _1\_1'!—
GM—l(zM)"D_—’

Fig. 3.6(b). Alternative structure for the multilevel filter.

special case of (3.18) with dg = dy—1 = 1 and d; = ... = dp—3 = 0, we can write
P(z) as
P(2) = Bo+ P12 1G1(zM) + . .. + Br-12"MT1Gpg1 (M), (3.28)

where the fB;’s are constants. According to the formula in (3.24), B is given by
B = L (WF? + W*?). Comparing (3.28) with (1.8), we get Py(z™) = BG4 (™).
Hence, Gi(2™) can be obtained as

M

Gx(2") = 2cos(kmw /M)

P(2M). (3.29)

Since the prototype filter has symmetric impulse response, this means the polyphase
components come in mirror image pairs Pi(z™) = zMPyr_(27M), and so Gi(2M)

= —zMGps_1(2M). This relation will be used later.

Design Example 3.1: Since the multilevel filter design is crucial to the recon-

struction algorithm, we shall demonstrate it with an example. Suppose we wish
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to design and implement a filter H(2) having 5 bands (so M = 5 ) and the filter

response is given to be

e/ forwe I,
le"’./‘ we .Il

H(ew)  { § wel (3.30)
%e""'/‘ w€ Is

e "2 forwel,
In order to make use of Fig. 3.6(a), we need to have a design for él(z5), .o Gy(28).

We will first design a prototype 5th-band filter P(z) whose response satisfies (3.27)

e. - PASSBAND RESPONSE
1.005
-
= 12,020 !
= 1.000 |
o -20.000
73 ~C4 . el 8
@ : . 995
e
(a8
w 0. 2
[
& 36,000
"
famn]
=
[—
= 000 | iy
Z  -18.000 W, n‘ m
< ” i ((c
. W H I

-50.0¢e¢ .
0. 0. 8@@ 0.500 0.800 1.000

NORMALIZED FREGUENCY

Fig. 3.7. Magnitude response of the prototype filter P(z), used in Design

Example 3.1.
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with M = 5. Using the algorithm in Appendix A, we obtain P(z) whose magnitude
response is shown in Fig. 3.7. It has passband edge at 0.38% and stopband edge at
0.427. The minimum stopband attenuation is —47dB, and the peak passband error
is 0.005. The order of the filter N — 1 = 126. From the polyphase components of
P(z), one can obtain G;(z™). The phase responses of G;(2™) and G;(2™) are plot-
ted in Fig. 3.8. This verifies that the filters obtained indeed have thecorrect phase
responses as indicated in (3.25). The filter H(z) is implemented as in Fig. 3.6(a)
with ak.compute‘d using (3.24). The magnitude and phase responses of H(z) are

shown in Fig. 3.9. As predicted, they match the desired response in (3.30).

2.500
=
(a8
L 0.300
_
=
=
0.100
=
—
Ll
2 -0.100
o
Q.
w
o .
Gy(e?3v
o o} N 1(e7)
< ) Go(e'*)
[a T
-0.500 - ~ - -
. 0.200 0.400 0.600 0.800 1.000

NORMALIZED FREGQUENCY

Fig. 3.8. Phase responses of G1(e73) and Gy (e73%).
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Now we will return to the synthesis filter bank in (3.11). Each filter 27 F;(z) has

a multilevel response of the form
e ' F(f¥) = Mb,); forwe I, (3.31)

so it can be implemented as ¢;o + Y3 " ¢; ,27*G,(z™). The constants ¢;, are given

by ¢;p = W2 E}ﬁal W~*[b,);. An approximate realization of (3.11) is given by

Fo (Z) €o,0 Co,1 ces Co,M-1 1
2—1F1 (Z) _ €10 C1,1 e Ci,M-1 Z_lGl(ZM)
Z—L+1FL-1(Z) ¢L-10 €CL-11 ... CL_1M-1 z_M+1GM—1(ZM)

(3.32)
Let the matrix in (3.32) be denoted as C and let B be a matrix whose pth column

is by, then the two are related by

1 0 0
o Wi ... 0

C=BW!| wgz : : (3.33)
0 0 ... WiM-

The overall synthesis filter bank can now be implemented as

Fy(z) It o ... 0 1

Fi(z 0 -L+2 271G, (M

e | ‘ ; C :1( ) (3.34)
Fr_4(2) 0 0 o1 ZMH1G 1 (2M)

This is depicted in Fig. 3.10. The extra delays are added to make the system causal.
Notice that we have put the filters G;(z¥) at the end. Since Gy(z) = —2Gp_1(27}),

the pair of filters G;(2M) and Gps_x(2¥) may share the same multipliers.

In Appendix B, we show that C has L entries that are unity and L(L — 1)
entries that are zero. Using (3.34) and (A.8) in Appendix B, one can verify that
the retained samples of z(n) are not recomputed. In Appendix C, we analyze

the problem which occurs when the subsampled signals are corrupted by noise. A



61

s .
22
: = Gi(2")
®
z71 CT : :
I A—
[ )
—> ' ~M+2 '
2 'GM_Z(ZM)
~M+1
= "G (2M)

Fig. 3.10. Efficient implementation of the synthesis bank.
( Cis a L x M matrix.)

closed-form expression is derived for the noise gain, but in order to evaluate the
noise performance the bandlimits of the signal and the subsampling pattern have

to be first given.

3.4 Comparison with Previous Methods for the Case L =2, M = 3

We will'examine in greater detail the case where the frequency scale is divided
into three intervals Iy, I; and I;. Consider a signal z(n) which is bandlimited to
w € Iy and w € I,. The band limits of the signal can also be thought of as being
.—%;—’ < w < %, 50 z(n) has the same band limits as in Section IV A of [VA88d].
We should be able to sub-sample z(n) by retaining 2 out of every 3 samples. Using

the filter bank in Fig. 3.2 with M = 3 and L = 2, the sub-samples taken are
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z(3n) and z(3n — 1). This sub-sampling pattern is the same as in [VA88d]. For
the purpose of this section, W = e~/ 5. Substituting the appropriate integers from

L = {lo,11} = {0,2} into (3.9), we get

U= (1 uﬁ?) (3.35)

This matrix is nonsingular, so the reconstructability of the missing samples is theo-
retically guaranteed. From U, the matrix C may be found, and the synthesis filter
bank is given by

1

>=(z(—)1 (1))(1 (1) _01) {:Gl(zz) : (3.36)
272G, (2°)

In order to obtain G;(2*) and G4(23), we will start with the design of a prototype
3rd-band filter P(z) that satisfies the lowpass response in (3.27) with M = 3. After

P(z) is obtained, it can be decomposed into its polyphase components
2 -1 3 -2 3
P(z) = 312 Py(2°) + z27“Py(2°). (3.37)

According to (3.29), we let Gy(z) = 3P;(z) and G;(z) = —3P,(z). The structure
that implements (3.36) is drawn in Fig. 3.11. The extra delay =¥ is added to make

the system causal, since originally we took P(z) to be a zero-phase FIR filter.

3.4.1 Design requirements for the filter bank

Because of the FIR approximation in (3.25), two types of errors are introduced
into Z(n). One is due to the imperfection of T(z) which causes a distortion in the
original signal. This distortion can be measured in terms of the passband error of
T(e?*). As seen from (3.12), the passband of T(e’*) is defined to be the frequency

intervals where X (e’*) is nonzero. For the current example, the passband is the
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Fig. 3.11. Implementation of the synthesis filter bank using
polyphase components of a 3rd-band filter.

union of I and I,. In practice there will be a transition band in T'(z), so its band
edges cannot go right upto :"é"—' and %’5. Instead the passband edge will be at some
frequency w, < 2. This situation is illustrated in Fig. 3.12(a). Let us define a

transition bandwidth for T(z) as Awp = ¥ — w,. What this means in terms of the
signal z(n) is that X(e’*) really should be bandlimited to —w, < w < w,. So there
has to be a guard band between the actual bandlimit of z(n) and 2¢. The synthesis
filter bank‘is to be designed so that Awy is less than the width of the guard band.

Also the passband error for T'(z) should be below a prescribed tolerance.

Other sources of error are the alias terms in (3.3) which are not eliminated
completely. Each alias term, X (e™ W*), is attenuated by A, (e’*), so a good measure
for the error will be the stopband attenuation of A;(e’*). The stopband of A(e’)
is defined to be the intervals in which the alias term X (e’ W¥) is nonzero. For the
current example, the stopband of A;(z) is Iy and I;. For A,(z), it is located at I,

and I. Again in practical designs, A,(z) will have a nonzero transition bandwidth.
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Awy é—-; — Awy

Fig. 3.12. Band edge definitions for the functions T'(z) and A,(z).

If the transition bandwidth of A;(z) is defined as in Fig. 3.12(b), then for effective
alias cancellation Aw, is required to be less than the width of the guard band. The
minimum stopband attenuation in A;(z) is also important, for that determines how
much of the aliasing error is allowed. Using (3.5) with M = 3, we see |4,(e/)| =
|41 (e™7“)}, therefore the stopbands of A;(e’“) and A,(e’) have the same attenuation

and the transition bandwidth is the same for both functions.

By substituting (3.36) into (3.5) and using the polyphase relations G,(2) =
3P1(z) and Gy(z) = —3P,(z), we get

T(z) =z 'P(z) and Ay(z) = z'W (P(zw ) — 1). (3.38)
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Thus, the passband error of 7'(2) is the same as the passband error of P(z), and T(z)
has the same passband edge as P(z). In (3.38), the function P(2W) — 1 on the unit
circle can be derived from a right shifted version of P(e’*) and then subtracting one |
from it. Therefore the passband of P(z) becomes the stopband of A4;(z), and the
passband error of P(z) equals the stopband error of A;(z). Also Aw, is the same
as Awgr. Suppose the synthesis filter bank is to satisfy the following requirements:

peak passband error of 0.001 in T'(z),

minimum stopband attenuation of —60dB in A;(z), and (3.39)

Awr = Awy = 0.0347.
We will start with the design of a 3rd-band prototype filter P(z) using the algorithm
in Appendix A. Its passband edge should be set at 33’5 — Awr. The passband error of
P(z) can at most be 0.001. This implies that the stopband attenuation of A;(z) is
at least —~60dB, so both passband and stopband requirements in (3.39) are satisfied.
The lowest order needed for P(z) turns out to be N —1 = 94. From the polyphase
components of P(z), the filters G;(2) and G3(z) are obtained. The synthesis filter
bank is implemented in Fig. 3.11 z~% = 27*. The magnitude responses of T'(z)

and A;(z) are plotted in Figs. 3.13 and 3.14, respectively.

As a demonstration, the signal z(n) in Fig. 3.15 (a) is bandlimited to 2, this
is seen from its Fourier transform X(e’*) as plotted in Fig. 3.15 (b). We can
sub-samplt\a z(n) and perform the reconstruction using the filter bank structure of
Fig. 3.11. The reconstructed signal Z(n) and its transform are plotted in Fig. 3.15 (c)

and (d), respectively.

3.4.2 Improvement in efficiency compared to previous methods

Let us label the reconstruction scheme described by (3.36) as Method III. Since
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> l3 ~T3 z: > l;C :z_K
271y S
{l3 =l — > Grlz) e+ Gr(2) b

™

Fig. 3.16. The filter bank structure from Ref. [VA88d].

the order of P(z) is 94, each of the filters, G;(2*) and G;(2%), requires 32 multipliers
for its implementation. But since P(z) has symmetric impulse response, Gz(z%) =
—2°G4(273). Therefore the two filters may share the same multipliers, and the the

total number of multipliers is only 32.

We shall now compare Method III with our previous method derived in Section
IV A of [VA88d]. It will be called Method II here. The filter bank structure used for
Method II is reproduced in Fig. 3.16. Since the filters given in [VA88d] is designed
using a different set of specifications, they cannot be used for comparison here.
One can verify that the transfer function and the alias term weighting functions
associated with the structure in Fig. 3.16 are given by T(z) = z7'G(z), 41(2) =
1271G.(2) [1 —jV3+ (V3 +5)Gr(2)|, and Az(z) = 127'GL(2) |1 — jv/3 — (V3 +
J)G H(z)]. In order for the structure to satisfy the same specifications as in (3.39),
the lowpass filter G (z) needs to have: a minimum stopband attenuation of —60d.B;
peak passband error of 0.001; passband edge at %"— — Awr and stopband edge at
2% + Awy. The requirements for the Hilbert transformer Gy (z) are: peak passband

error of 0.002; band edges at Aw, and 7 — Awy (chosen for reasons of symmetry
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as described in [VA88d]). By designing linear phase FIR filters to satisfy these
requirements, the filter order for G (z) turns out to be 96 and the filter order of
Gx(z) is 98. Due to the linear phase of Gr(2), it requires only 49 multipliers.
The Hilbert transformer has anti-symmetric impulse response. Since |Gg(e’)| is
symmetric with respect to 7/2, the filter can be designed such that about half of
its impulse response coefficients are zero. Therefore Gg(z) would require a total
of 25 multipliers. Including the two multipliers 1 — ¢ and s in Fig. 3.16, the total
number of multipliers for Method II is 76. In summary, for the same specifications
in (3.39) Method III requires 32 multipliers, while Method II needs 78. The saving

is by more than a factor of two.

At this point, it will be interesting to compare the complexity of Method III
with that of the conventional method of sampling rate alteration [CR83], depicted
here as Fig. 3.1(a). The conventional method shall be referred to as Method I.
The interpolation filter L(2) is a half-band filter. The specifications in (3.39) was
based upon the assumption that the bandlimit of z(n) is at most ¥ — Awy. After
interpolation, the signal at the output of the interpolator will be X(2*). This means
the baseband signal has a bandlimit of § — A_;vz: (this becomes the passband edge
for L(z)). The image term starts at ¥ + 227 which defines the stopband edge for
L(z). To n\leet similar requirements as in (3.39), L(2) should have a peak passband
error of 0.001 and a minimum stopband attenuation of —60dB. A 22nd order linear

phase half-band filter is sufficient, and the complexity is only 6 multipliers. The

center impulse coefficient is exactly one half, so it is not counted.

Method I has a complexity of 6 multiplications, in order to compress the signal

z(n). Method II and III on the other hand, do not involve any compression cost.
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It should however be noted that the compressed output of Method I (Fig. 3.1(a)
) is a useable signal (because it is a uniformly compressed version) whereas the
compressed version in Method II or III is not directly useable without reconverting
to the uniform sampling format. A common ground for comparing Method I with
Methods II and III can be established as follows: suppose we wish to reconstruct
the uniformly sampled signal z(n) at the original oversampled rate. From the above
discussion we know that Method II [VA88d] requires 78 multipliers and Method III
requires 32 multipliers. For Method I, in order to obtain an approximation to the
original z(n), we have to use the non-integer interpolation scheme [CR83] shown in

Fig. 3.1(b), where M(z) is a 3rd-band filter [MIN82].

At the input to M(z), the baseband signal has a bandlimit of § — 24z (which
defines the passband for M(z)). The filter must also be able to eliminate image
terms starting at 3 + 9—‘;1. For the same pass and stopband error specifications as
in L(2), the order for M(z) turns out to be 190. Again taking into account the
linear phase and 3rd-band property, M(z) has only 65 distinct multipliers. So the
cost of implementing Fig. 3.1(a) and (b) combined is 72 multipliers. This is less
than Method II. However, Method III is more efficient than both. In conclusion,
for applications where the signal needs to be compressed for transmission and then
restored to the original rate, the nonuniform sub-sampling approach with polyphase

synthesis filter bank gives us a system with lower complexity than the conventional

method of Fig. 3.1.

3.4.3 MPU comparisons
Comparisons can also be made in terms of the number of multiplications per

unit time (MPU). The time unit is taken to be the time interval between adjacent
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samples of z(n). The sampling rate of z(n) is denoted as f,, so the time unit is 1/f,.
In Fig. 3.1, one can derive the smallest possible MPU by using the polyphase re-
arrangement in [HS87|. For Fig. 3.1(a), let the order of the half-band filter L(2) be
Ny, —1. The filter L(z) can be decomposed into its 6-fold polyphase components as
shown in [HS87|, and these components are made to operate at the lower sampling
rate of f,/3. Using [HS87| and the fact that L(z) has linear phase, the number of
MPU’s is reduced to about I—V-Iﬁ'tl For our current example, that will be 2 MPU.

Suppose that the third-band filter M(2) has order Nps — 1, then each of the two

Nas—2 or Nps-3

non-trivial polyphase components of M(z) has an order of either £ =,

depending on whichever one is an integer. Due to linear phase, the two polyphase
components are mirror images of each other. Again using [HS87] the polyphase
components can be made to operate at the lower rate of f,/3. The linear phase
property of M(z) can also be exploited in this case. Together the number of MPU’s
for Fig. 3.1(b) is reduced to about }(J + 2) where J is the order of the polyphase
components. For the current example, J = 63 and the number of MPU’s is about

22.

In order to achieve the smallest MPU for Method III, the structure in (3.36) has

to be re-written as

1 1

ED-Co ) )@ |) eo

The matrix R7(2%) is the polyphase component matrix of f(2). It is a function of 23
only, so it can be interchanged with the interpolators provided 23 is replaced with
z. This is illustrated in Fig. 3.17. The exchange is necessafy so that the filters in
R (z) are operating at the lower rate. As discussed previously, Gi(2) and Gy(z) are

mirror image polynomials so they may share the same multipliers. Hence, we only
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Fig. 3.17. Polyphase representation of the synthesis filter bank.

need 32 multipliers in implementing R(z). The MPU for Fig. 3.17 is %"1 which is
about 11. In terms of MPU, Method III is still more efficient than the combination
of Fig. 3.1(a) and (b). Here Method II is omitted, since it is worse than the other

two methods.

For several other combinations of L and M, we have compared Methods I and
III in terms of the numbers of MPU’s. The reconstruction accuracy is specified to
be: 2 minimum attenuation of 50dB for the alias terms and a peak passband error
of 0.003. The transition bandwidth, Awg, is taken to be 0.037. The results of the
comparison are listed in Table 3.1. We would like to point out that, except for the
case of L = 2, Method III requires a smaller number of MPU’s than Method I.
Furthermore, for a fixed M the number of MPU’s decreases as L increases. This
can be explained by the fact that for larger L we are keeping a larger proportion of
the total number of samples, as a result the average amount of computation that

needs to be performed is smaller.
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Il
oo

L=2 L=+4 L=26 L
Method | I II I I I 11 I
M=5|136 144 |40.8 | 6.4
M=7)103 154|306 |16.0 | 51.4| 5.1
M=9| 83 [14.2|25.0(20.0|41.6 |14.6| 58.3 |44

III

Table 3.1. MPU comparisons for various L and M.

3.5 Extension to Two-dimensions

The above reconstruction scheme can be extended to two-dimensional multi-band
signals. We will consider the generalized decimation using integer lattice [ME83]
[DU85| [VI88] [AN8S]. For the 2D decimator in Fig. 3.18, the matrix D is a non-

singular integer matrix whose entries are denoted by [VI88]

d d
D= ( u 12). 3.41
da1  dag (3-41)

Let Z be the set of all integers. The matrix D in effect defines a sublattice Ap
which consists of all the points (n,#) in Z% such that (n,?)T = D(m,Mm)T for
some (m,Mm) € Z% A coset of Ap is an integer shifted version of the lattice.
Over the entire plane ZZ%, there are M distinct cosets where M is the magnitude

of the determinant of D. A set of polyphase shift vectors is any set of M integer

v(n,h) w(n,n)  w(n,n) y(n,n)
2D decimator 2D interpolator

Fig. 3.18. Lattice decimator and interpolator for 2D signals.
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vectors which will generate all the distinct cosets of Ap. For a given D, the set of
polyphase shift vectors is not unique. A polyphase representation for 2D systems

may be defined as
P(z1,23) = Z 27y M Py (28 28 g2 p002) (3.42)

where (n;, 73;) is a set of polyphase shift vectors for D. For rectangular sub-sampling,

one can simply set dj2 = dg; = 0.

In Fig. 3.18, 2D decimation is described by the input/output relation w(n,?) =

v(din + diafi, dain + daofi). In terms of z-transforms,
W(Zl, 22) (343)

M~1
dao /M _—day M —doii
— Z V(zlzzl 2 21/ W d22tm—daitm

== —dla/Mzgn/Mw—dlgtm+dn?m)'

) #1
m=0

”~

The set of integer vectors, (tm,tm), is a complete set of polyphase shift vectors for

DZ. The interpolation process is given by

y(n,A) = {w(&”ﬁmﬁa =fugduf) if (n,f) € Ap; (3.44)
otherwise.

And in the transform domain,
Y (21, 22) = W (2511 2821 g2 i), (3.45)

Combining (3.43) and (3.45), the overall effect of decimation followed by interpola-
tion is
1 M-1 . -
Y(zlsZZ) = H Z V(led22t""'d21t"‘,zzw—d”t""l'd“t"‘), (3.46)
m=0Q

If we pick the shift vector (to,%5) to be (0,0), then in the above summation the

m = 0 term is the original signal V'(z1, 2;), while the rest are alias terms.
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As an example, for the following decimation matrix

D= (g ;) (3.47)

the samples on the 2D plane that are retained are indicated by circles in Fig. 3.19.
This forms the sublattice Ap. Besides the sublattice, there are 3 distinct cosets
which are generated by shifting Ap by the following polyphase shift vectors: (1,0) ,
(1,1) and (2,1). Together with the null vector, (0,0), they constitute a complete set
of polyphase shift vectors for D. In order to find the locations of the alias terms in
(3.46), we need to have a complete set of polyphase shift vectors for D?. A particular
set is given by (tm,tm) = {(0,0) , (0,1), (1,1), (1,2)}. Substituting (t,n,tm) into
(3.46), we see that the first alias term (m = 1) is the original spectrum shifted by
(0, +7) in the two-dimensional frequency plane. This is illustrated in Fig. 3.20(a)

where the diamond shapes represent the original spectrum and its alias terms. The

second alias term (m = 2) comes from the original sprectrum shifted by (v, %),

and the third term has a frequency shift of (7 , %1)

Consider again the general form of D in (3.41). A closer examination of (3.45)
reveals that W (e/“1, e/“2) is map unto Y(ej(dﬁ“’l‘d““”)/M,ej(‘d12“‘1+d11“’2)/M). So the
interpolation process in effect maps the c.ontent of the frequency plane 0 < w; < 2w,
0 < wz < 27 unto a smaller parallelogram whose corners are given by the four points

[ANsS]:

=

27 2
(0,0); i dyz, —d12); M(—dn, du); 'A—l‘(dzz — dg1, —dya + d11). (3.48)

We will let the parallelogram defined above be our baseband region Iy, then the
other bands are shifted versions of I,. As seen from (3.46), the band I, (with

m=1,...,M — 1) can be thought of as the baseband I, frequency-shifted by the
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Fig. 3.20(a). Locations of the original signal spectrum and its alias versions.
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vector 2—R"(am, ) Where a,, = dosty — dyitm and Gm = —diot, + dirtm. (Notice that
for a given decimation lattice, there are mahy possible ways of partitioning the 2D
frequency plane and for each partitioning the baseband region is defined differently.
For example, using the decimation matrix in (3.47) two ways of partitioning the
frequency plane are shown in Fig. 3.20(b). The following derivation of the recon-
struction filter bank holds irrespective of the way in which the frequency plane is

partitioned.)

For a multi-band signal z(n,?), suppose its transform X(e“?,e?“?) is nonzero
in only L out of a total of M bands, then we can sub-sample the signal by tak-
ing L samples out of M without any loss of information. Let the L bands for
which X(e’“?,e72) is nonzero be represented by the set £ = {lo,...l;_1}, and let
the vectors (n;,7;) with ¢ = 0,1,...,M — 1 be a complete set of polyphase shift
vectors for the sampling matrix D, then the L sub-samples can be represented by
z(dyun+dish — ni,dyn+dpfi—f;) with ¢ =0,1,... L—1. The sub-sampling oper-
ation can be implemented in terms of 2D decimators and delay elements, z; ™2, Ai
The reconstruction procedure is analogous to the 1D case (Fig. 3.3) except 2D

interpolators and synthesis filters I:"k(zl, 2z;) are used. The conditions for alias can-

cellation can be summarized as

T(zl, 23)
N -}—VA(ZI,Zz)f(Zl, Zz) = (.) . (349)
M :
0

The vector f(zl,zz) = ( ﬁ’o(zl,zg) Fl(zl,zz) f*‘L_l(zl,zg) )T is the 2D synthesis
filter bank. Similar to (3.13), A(z,2) is a diagonal matrix and V is a M x L

constant matrix. They are defined as follows:

-

[A(21,22)}i5 = MM, [V]p,; = WomiY —asfi (3.50)
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27

: P
T \ 27

Fig. 3.20(b). Two ways of partitioning the frequency plane.
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As in the 1D case, a solution for (3.49) may not exist for all z;,z;. However, we
can take advantage of the fact that X(e’“,e’¥?) is zero in some frequency regions.
For any frequency region I,, there will be only L nonzero spectral terms. They
are X(zlw(“""“’k),zzw(ap"a‘k)) where k = 0,1,...,L — 1. Thus only L equations
in (3.49) need to be satisfied. The existence of a solution depends upon the non-

singularity of a L X L matrix Y whose (k,%)th entry is given by ~
[Y]is = Wenmiyiuhi (3.51)

This is the 2D extension of the matrix in (3.14). One has to be careful here with
regards to which set of sub-samples to pick. For an arbitrary set of sub-samples,
the matrix Y is not guaranteed to be nonsingular. Assuming that it is nonsingular
and denoting the gth column of Y-1by d,, the solution for the synthesis filter bank

can be expressed as
A(er, )R (™, €2) = Mb, for (w1,ws) € Iy, (8.52)

with b, = 0 when p & £, and b, = A(W~%, W~%)ii, when p = I, € L. Using the
polyphase approach, the 2D filter bank can be implemented as in a fashion that is
analogous to (3.34)

-~

f(z1,2) = A(27 %, 27 1) Ci(21, 22). (3.53)

The vector §(z;,2;) has M entries. Each entry is a polyphase component filter
of the form 2™z ™ G(2{"282,28122822). The filter Gi(2;,2,) has the following

frequency response:

G eI giwz) o giwilnidas—fiidiz)/M jwz(~nida1+fidn)/M 3.54
b]

{

The filter é;(z1,22) can be designed as a separable filter, and the design procedure

for 1D is applicable here. However, the overall filter bank is not separable.
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3.6 Fin~ite Length Extrapolation of Bandlimited Signals

The problem of sub-sampling and reconstruction of bandlimited signals can be
thought of as being related to the problem of bandlimited signal extrapolation. In
the sub-sampling and reconstruction case, the number of samples that we kept (or
that we are given at the receiver end) is a fixed fraction of the total missing samples.
While, for signal extrapolation the number of samples given is only an infinitesimal
fraction of the missing samples. As the length of the extrapolated signal becomes
infinitely long, that fraction goes to zero. In the sub-sampling case, the missing
samples can always in theory be reconstructed exactly, so the solution is unique.
For discrete-time signal extrapolation, there does not exist an unique bandlimited
extrapolation. In fact for a given set of samples and a fixed band limit, there exists
infinitely many possible extrapolations that would satisfy the bandlimited condition.
However, if we consider only finite length signals, then the two problems become
very similar for in both cases the number of missing samples and the number of

known samples are finite.

For continuous-time bandlimited signals, it is possible to extrapolate the signal
from a given finite segment of it. Various methods exists for such an extrapolation
[GE74] [PAP75] [PAP77a] [HO81]. The attempt to do the same for discrete-time
bandlimjttid signals shows that the extrapolation in such a case is not unique. An
unique solﬁtion exists if one imposes the constraint that the extrapolated signal

should have minimum norm [JAI81] [SU84|.

In any practical algorithm, the extrapolated signal can only be finite in length.
If we consider only finite length signals, then the problem of sub-sampling and

reconstruction becomes very similar to the one of extrapolation. A general problem
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may be stated as follows: for a given band limit and a finite time interval, several
samples are given and one is to find the missing samples so that the overall signal

is “as bandlimited as possible.”

One method of finding the missing samples will be presented. The overall signal
generated will have the minimum out-of-band energy among all permissible extrap-
olations. This is done by directly minimizing the out-of-band energy of the signal.
With a bandlimit of A%'Ir and by taking the number of the observation samples to
be L/M of the total number of samples, this method can be applied to the sub-
sampling and reconstruction of lowpass bandlimited signals. Such an application is

explored in the next section.

Let y(n) be an unknown bandlimited sequence with only K samples available
to us. For notational simplicity, we shall assume y(n) to be a real sequence. Its
Fourier transform Y (e¥) is zero for w outside the frequency range |w| < w,. Let
the locations of the given samples be denoted by an integer function f(k) with

k=0,1,..., K— 1. In other words, the observed samples of y(n) are

y(£(0)), w(f(1)), y(f(K - 1)). (3.55)

Here, we assume f(0) < f(1) < ... < f(K — 1). The problem is to extrapolate
these samples into a longer yet finite sequence z(n) of length (2N +1). The length
of z(n) should be long enough so that all the observed samples of y(n) lie within it.

The extrapolated sequence z(n) matches the observed data, so
z(f(k)) =y(f(k))  for k=0,1,...,K — 1. (3.56)

A further requirement on z(n) is that it should be almost bandlimited to |w| < w,,
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just as f/(n) is. One way of obtaining a nearly bandlimited extrapolation is to

minimize the out-of-band energy of z(n) subject to the constraint in (3.56).

For convenience, we define a complementary function f'(l) with [ = 0,1,...
2N — K so as to indicate the positions of the missing samples. For example, if
N =5, K =3 and f(k) = {-1,0,1}, then the function f'(!) will be f'(l) = { -5,

—4, -3, -2, 2,3, 4, 5}.

The out-of-band (or stopband) energy of the extrapolated sequence is given by

1 27— w,
Es - /
2 Wy

Denoting the sequence z(n) by a vector x = ( z(—N) z(-N +1) ... z(N) )%, one

N 2

;N z(n)e~ "

dw (3.57)

can rewrite (3.57) as

E, =xTQx (3.58)
where the (2N + 1) x (2N + 1) matrix Q is defined to be

2x—w,
[Qlk. 1/ gy, (3.59)

~ 21 Ju,

The above integral can be carried out analytically, and a closed-form expression for

Qis

[Q]k,l = _sirzk!lt:;r!w. otherwise. (3.60)

In the extrapolation problem, certain samples of z(n) are fixed, namely the observed
samples y(f(k)). Now by separating the observed samples and the samples to be

extrapolated, we can write (3.58) as

E, = y3 Qo¥o + 2y; QiX1 + X} Qax1. (3.61)
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where y, is a K-dimensional vector containing the observed samples, i.e., [yo]i =
z(f(k)) = y(f(k)). Similarly, x; is of dimension 2N + 1 — K containing the extrap-

olated samples with [x;]; = z(f'({)). The matrices Q; are given by

[QO}k,l = [Q]f(k)+N,f(z)+N, (3.62a)
1Q1lk: = [Qlrry+N.@)+n> (3.62b)
(Qzlks = [Q]f'(k)+N,f'(z)+N~ (3.62c¢)

The dimension of each matrix is defined appropriately according to (3.61). Notice
that Q: is a symmetric positive definite matrix. The symmetry is due to the sym-
metry of Q itself. And since xTQ,x; represents the stopband energy of a finite
length sequence, i.e.,

IN-K 2

ST z(f/(1))e D) dw, (3.63)

1 /2r—w,
27 Ju, 1=0

this means x7 Q,x; > 0 for any non-zero x;. Hence the positive definite nature

of Q, is established. The inequality is strict because a finite length nonzero se-
quence cannot be bandlimited. Due to Parseval’s relation and (3.63), we also have

xT Qqx; < xTx; for any non-zero x;.

In (3.61) the vector y is fixed, and the only variables are contained in x;. Thus,
we seek to minimize the stopband energy E, over the (2N + 1 — K)-dimensional

vecotr space of x;. Differentiating E, with respect to x;
grad E, = 2QTy, +2Qux,, (3.64)

shows that the minimum energy is obtained by

X1 = — Q3 Q] ¥o. (3.65)
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The above unconstraint minimization of E, sometimes leads to extrapolations whose
norm is much larger than the norm of the observed data. This is specially true when
Q2 becomes ill-conditioned. In conventional bandlimited extrapolation [PAP75]
(where the given data are in the. middle and one tries to extrapolate on the two
ends), the problem has been noted to be ill-conditioned. We shall demonstrate this
numerically by calculating the condition number of the Q; matrix, Amax/Amin, as a
function of the number of missing samples. Let us denote the number of missing
samples as I and the number of observed samples as K. Figure. 3.21 shows on
a logarithmic scale the reciprocal of the condtion number as a function of L, and
curves for the following values of K are plotted: K = 10,20,30,...,60. The ban-
dlimit w, is chosen to be 7/2. We see that the condition number of Q; grows very
fast as the number of missing samples increases. For a fixed number of missing sam-
ples L, increasing the number of observations does not help very much in lowering
the condition number. For K > 40, the condition number is almost an exponential
function of L. The same observation can be made for the case when the bandlimit
is reduced to 7 /3 (Fig. 3.22) except that the growth rate is slower than before. The

pattern remains as w, is reduced to = /5 (Fig. 3.23).

As the matrix becomes ill-conditioned, the extrapolated portion of the sequence
can have large amplitudes. A common way to combat this phenomenon is to con-
strain the norm of the extrapolated portion, this was done for the ideal infinite
length case [JAI81]. For a finite length sequence, to constrain the extrapolated
portion of the sequence one can include the norm bf X; in the objective function to
be minimized, e.g.,

min{Es + a‘xfxl}. (3.66)
X1
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The weighting factor « is chosen to be greater or equal to zero. The optimum

solution becomes
x1, = —(Qz + oI) "' QTy,. , (3.67)

This solution has the property that it yields the lowest stopband energy among all
x; vectors with the norm x{x; = ¢, where the quantity ¢ = x7 x;,. The matrix
(Q:z + ol) is guaranteed to be non-singular for @ > — Ay, where A\min is the smallest

eigenvalue of Q.

As a demonstration, let only 15 data points be given from an unknown sequence
y(n) as shown in Fig. 3.24. In this case, K = 15 and f(k) = k — 7 with 0 < k < 14.
We wish to obtain an extrapolation z(n) of length 55 which is bandlimited to

|w| < m/3. The sequence should be centered around z(0). Therefore N = 27 and

1-27 for0<1<19

' —_—
f) = {l —12 for 20<1 < 39. (3.68)

Applying (3.67) with o = 0.01, the resulting extrapolated sequence z(n) is com-
puted and it is shown in Fig. 3.25. By examining the Fourier transform of z(n)
(Fig. 3.26), one can verify that z(n) is almost bandlimited to |w| < 7/3. The peak

amplitude of X (e’) in the stopband is less than —30dB.

3.7 Signal Reconstruction from Sub-samples

The solution in (3.65) can be applied to the reconstruction of finite length se-
quences which are almost bandlimited. For example, suppose y(n) is a known se-
quence (see Fig. 3.28) extending from y(—40) to y(40) and it is nearly band-limited
to |w| < 27/5. Then one might expect that the sequence can be compressed by

a factor of 5/2. One compression technique would be to divide the time axis into
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intervals of length 5 and retain 2 samples in each interval. As shown previously
successful reconstruction of the original signal from its compressed version is shown

to be possible with the use of filter banks.

The use of (3.65) presents another method for reconstruction. A periodic sub-
sampling scheme is chosen here so that we can ensure the retained samples are
evenly spread out between —40 to 40. A scheme which retains samples that are
evenly spread out will work better than one that retains all the samples in the
middle. In the case where all the observed samples are in the middle, we have
seen that the matrix Q is ill-conditioned. For the periodic sub-sampling scheme,
the condition number on Q: is small, provided that the ratio of the number of
missing samples to the total number of samples, FL-FE’ does not exceed w,/m. This
is demonstrated in Fig. 3.27 where the reciprocal of the condition number is plotted
against the number of missing samples (L). The total number of samples is held
constant at K + L = 81. With the given bandlimit of w, = 2/5%, we see that for
K exceeding § X 81 the condition number grows rapidly. One wants to keep the
condition number small, so that if noise exists in the observation data it will not be
amplified significantly. Having K restricted to K < 2(K + L), so with 81 sa.mples
in y(n) the largest number for K is 32. If 32 samples are kept using a periodic

sub-sampling scheme, then we can be sure that Q. is well conditioned.
\.

Let the-samples that are retained be

y(—39), y(-37), y(—34), y(—32), y(—29), ...y(38). (3.69)

Thus, starting from y(—40), in every period of 5 samples two samples are retained.

This constitutes a periodic sub-sampling of the original sequence y(n). With the
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help of >(3.65), the missing samples are interpolated so that the total sequence z(n)
has minimum stopband energy subject to the constraint in (3.56). Fig. 3.28 shows
an example of y(n) and the reconstructed signal z(n). For comparison, y(n)—0.15 is
plotted. The displacement of 0.15 is needed to distinguish between the two signals,

since the two are nearly identical.

The reconstruction error is given by e(n) = y(n) — z(n). Since e(f(k)) = 0 due
to (3.56), we shall consider the f'(I) samples only. Let the vectors e, y; and x;
be defined as [e;]; = e(f'(!)), [y1i = y(/'(!)) and [x;]; = z(f'(!)). The stopband

energies of y(n) and z(n) are given respectively by
E, = yi Qoyo + 2y Quy1 + ¥ Qa2y1,

E, =y3 Qoyo + 2y3 Qux; + X1 QuX;. (3.70)
From (3.65) and (3.70) we get
Ey —E;, = (Y1 - x1)TQ2(Y1 - Xl)
= el Qqe;. (3.71)
Since Q, is symmetric positive definite, let {q;} be its orthonormal set of eigenvec-

tors and let ); be its eigenvalues. Expressing the error vector e; as e; = Y2V ¥ giq;,

the energy difference in (3.71) becomes

.

IN-K
E,—E.= Y X6, (3.72)
=0
while eTe, = Y%~ 3,2, Hence, the norm of the error vector is related to the

energy difference E, — E,. In particular, upper and lower bounds for eTe, can be

stated as
By—F o Bv= L

/\max /\min

(3.73)
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In (3.73), since E, represents the minimum stopband energy possible E, > E,
always and as y(n) becomes more band-limited (in the sense that E, decreases),
the upper and lower bounds decrease with it. Also the particular sub-sampling

pattern chosen (which determines Q) will have an effect on the error.

3.8 Conclusion

The nonuniform sub-sampling and reconstruction of a multi-band bandlimited
s-ignal can be achieved using multi-rate filter banks. The synthesis filters required
for perfect reconstruction have multilevel frequency responses. They are not realiz-
able, however, they can be approximated by FIR filters. We considered in general
the problem of designing and implementing multilevel filters, and showed that they
can be obtained using a lowpass Mth-band filter as a prototype. A new structure
was presented for implementing the synthesis filter bank. For the case of signals
bandlimited to 2—3"-, this structure was demonstrated to be computationally much
more efficient than the method in [VA88d] and the traditional non-integer decima-

tion /interpolation scheme.

The 1D results in Sec. 3.2 - 3.4 can be generalized to two-dimensional bandlim-
ited signals. By using an integer lattice decimation scheme, the sub-bands take
on the shape of parallelograms. The reconstruction filter bank for 2D can be de-
signed sta;ting from 1D prototype filters, even though the resulting filter bank is

not separable.

In Sec. 3.6, we consider the finite-length extrapolation problem. For any given
observation data, the problem of finding a finite-length extrapolation which is al-

most band-limited can be formulated as an energy minimization problem. The
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energy quantity to be minimized is the out-of-band energy of the extrapolated se-
quence z(n). By differentiating this energy with respect to the undetermined values
of z(n) and. then setting the derivatives to zero, the optimal z{n) can be found. The
solution involves the inversion of a positive definite Toeplitz matrix. In the case
when the extrapolated samples are too large, an extra term may be added to the

objective function to be minimized. This constrains the norm of the extrapolated

sequence.

As shown for the example in Sec. 3.7, the above method can be used to re-
construct almost band-limited signals from their sub-samples. The sub-sampling

can be periodic as in Sec. 3.2, but the present method allows for any scheme of

sub-sampling.
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" Chapter IV. Random Process Inputs to QMF Bank and

Optimal Filtering of Cyclostationary Processes

4.1. Introduction

In this chapter, we shall consider the effects of random process [PAP65] inputs
to the multirate filter bank. Since the filter bank is not a time-invariant system, for
an input random process z(n) that is wide-sense stationary (WSS) the output Z(n)
will ﬁot necessarily be WSS. We will derive in Sec 4.2 the necessary and sufficient
condition under which the wide sense stationarity of the input is preserved. In
order to obtain the above mentioned condition, we stated and proved two facts
concerning random processes and their blocked version. Fact 4.1 deals with a wide
sense cyclostationary (WSCS) process [GAT5] and its ‘blocked’ version. It states
that a random process is WSCS with period M if and only if its M-fold blocked
version is WSS. Fact 4.2 deals with a WSS process and its blocked version. It asserts
that a process is WSS if and only if its blocked version is WSS and the blocked vector
random process has a power spectral density matrix that is pseudo-circulant. Using
these two facts, the necessary and sufficient condition for the filter bank to preserve
wide-sense stationarity is derived as Theorem 4.1. It turns out that the filter bank
has to satisfy a weaker set of alias cancellation conditions, namely that all the terms
X(zW*) (0 < k < M) should be cancelled except for one. The resulting output
Z(n) is sin;ply the filtered version of a modulated input. So far the significance of

Theorem 4.1 has been purely academic.

In Sec. 4.3, we will look at the problem of estimating a WSCS random process
from a noise corrupted version of it. The noise is allowed to be WSCS also. There are

several ways of approaching the problem. One is to design a single filter that would
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minimize the mean square error averaged over a period of M [GAT75]. The optimal
filter can be found through the use of the ‘averaged’ correlation function. Another
approach is to block the random process into a vector random process [MIT78]
[BA80] and apply multi-channel estimation [MA86] to the blocked version. In this
way, the means square error of estimation may be minimized for each time instance.
However, due to blocking effects the filters are asymmetrical with respect to the
observed samples used for estimation. We shall show that this can be corrected
by going to a filter bank formalism. The two methods yield the same theoretical

solution in the limit where the filter order is allowed to approach infinity.

In Sec. 4.4, several applications where cyclostationary noise arises are presented.
They are in the areas of multirate QMF bank [CR83] [VA87a], digital transmulti-
plexers [SC81], and the sampling of analog waveforms by multiple A/D converters
operating in parallel where the timing jitter in the sampling process introduces a
cyclostationary error. The effects of such cyclostationary errors could potentially

be reduced by using the filtering scheme discussed above.

For a random process z(n), its statistical auto-correlation function is denoted as
Rxx(ny,ny). This notation will be used for both stationary and non-stationary pro-
cesses. The auto-correlation function is defined to be Rxx(nl,ng)éEx(nl)z*(nz).

N

A wide-sense stationary random process is one for which Ez(n) = Ez(n + k) for all

integers n and k, and

Rxx(nl,ng) = Rxx(nl + k,nz + k) Vke Z. (4.1)

The statistical cross-correlation function between z(n) and y(n) is denoted by
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Rxy (nl,~ ns). The correlation functions are defined as
Rxy(ny,ng) éEar:(nl)y" (ng). (4.2)

‘Two random processes are jointly wide-sense stationary (WSS) if they are indi-
vidually WSS and their cross-correlation function has the property Rxy(ni,ns) =
Rxy(ny+k,ny + k) for all k € Z. For a vector random process w(n), its statistical

correlation function is a matrix which is defined as
Ruww (n1, n2) 2Ew (n)w! (ns). (4.3)

The functions in (4.1-4.3) have two-dimensional z-transforms which will be denoted
by Sxx(21,22), Sxv(21,22) and Sww (21, 22) respectively. Notice that for wide-sense
stationary processes, Sxx (e, ¢/“2) reduces to the form 5(w)é(w; +ws) where §(w)

is what is commonly called the power spectral density function of z(n).

A random process is called wide-sense cyclostationary (WSCS) with periodicity

M if its statistical mean satsifies Ez(n) = Ez(n + kM) for all n and k and
Rxx(nl, nz) = Rxx(’nl + kM, ns + kM) Vny,ng, k€ Z. (4.4)

A WSS process can be thought of as being WSCS with an arbitrary period M.

4.2. Wide-sense Stationary Inputs to the QMF Bank

Let z(n) be the input to an M-fold maximally decimated filter bank. Assuming

x

that z(n) is wide-sense stationary, one might ask the question what conditions the

analysis and synthesis banks should satisfy in order for the output Z(n) to remain

WSS.

A sufficient conditon is that the filter banks should cancel aliasing for any arbi-

trary input z(n). In that case, we can write Z(n) = 3°___ t(n — m)z(m), since
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the whole system acts like a linear time-invariant system and t(n) are the impulse
response coefficients of the system transfer function. For a linear time-invariant
system, the wide-sense stationary property is preserved [PAP65]. The condition for
alias-cancellation can be stated in terms of the analysis and synthesis filters H,(2)

and Fi(z) [VA8Ta]. The filter bank output can always be written as

X M-1 M-1 .
X(z) = ’1(14" X X(W) X H(W)R(). (4.5)

X (zW*) are the alias terms of X(z), and we shall call ¥M ;! H,(2W*) Fy,(2) the alias-
term weighting functions. Denoting these functions as A;(z), they can be expressed

in matrix form

AQ(Z)

Al(Z) _

AM._.l(Z)

Ho(;)J Hi(z) ...  Hua(2) Fo2)
Ho(zWM-1)  Hi(zWM-1) ... Hy_1(zW¥Y) Fr-1(2)

Aliasing is cancelled for all input z(n) if and only if 4;(2) =0for7=1,2,...M —1.

In deriving a condition that is both necessary and sufficient, we shall make use of
the blocked version of z(n). In Fig. 4.1(a), let the output from the kth decimator be
denoted as wy(n), then wi(n) = z(nM — k). The blocked version of z(n) is defined
as

w(n) = (wo(n) wi(n) ... wy-1(n))7. (4.7)

A relation between z(n) and w(n) may be stated as follows.

Fact 4.1 The random process z(n) is WSCS if and only if the vector process
w(n) is WSS.
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o o (n) vo(n) —IM 3(n)

w1 (n) vi(n) =M

flLlM — wps—1(n) vM_l(n)*TM _’Tz
(a) (b)

Fig. 4.1. The blocked versions of z(n) and of Z(n).

Proof of Fact 4.1: The cross-correlation function between w;(n) and wi(n) can

be written as

Rww,(n1,n2) = Rxx(niM — i,n,M — k). (4.8)
If z(n) is wide-sense cyclostationary, then for any integers k and ! (0 < k,l < M —1)
Rww,(n1,n2) = Rxx(niM — t,nsM — k)
= Rxx(niM — i —IM,n,M — k — IM) Vi
= Rww,(ni—lLing—1) Vi (4.9)

This means w;(n) and wi(n) are jointly WSS for all combinations of ¢ and k, there-

fore w(n) is WSS.

\

Conversely, if w(n) is WSS, then each entry of Rww (n1, n,) satisfies the property

Rw w,(n1,n2) = Rw,w,(n1 — l,ns — ) for every integer . Therefore
Rxx(niM —1i,n:M — k) = Rxx(niM — ¢ — IM,n, M — k — IM) VI (4.10)

which proves that z(n) is WSCS. n
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For the case where z(n) is WSS, the following fact pertains to the z-transform

matrix Sww (21, 22) which is defined in (4.4).

Fact 4.2 The random process z(n) is WSS if and only if w(n) is WSS and the

matrix Sww(2,271) is pseudo-circulant in z.

Proof of Fact 4.2: If z(n) is WSS, then it is WSCS for any M, so by Fact 4.1

w(n) is WSS. Furthermore, the entries of Rww (n1,n,) are related to each other as
Rww,(n1,n2) = Rxx(niM — i,n:M — k)

= Rxx(nlM,nzM —k+ t)

_ | Rwow,_;(n1,n2) for k —1 > 0; (4.11)
" | Rwow,_iyn(n1 — 1,m3)  otherwise. )
The z-transform of the above relation is
| Swow,_i(21, 22) for k — ¢ > 0;
Sww, (21, 22) = { 21 'Swow,_;ias(#1,22)  otherwise. (4.12)
As a result, the matrix Sww (21, 22) has the following structure
Swow, (21, 22) Swow, (21,22) ... Swowy,_,(21,22)
27 Swowae (21,22)  Swewo(21,22) .. Swown_,(21,22) (4.13)
2 Swow, (21, 22) 20 Swawa(21:22) ... Swew,(21, 22)

This shows Sww(21,2;) is pseudo-circulant in 2;. In particular Syw(z,27?) is
AN

pseudo-circulant in z.

Now if w(n) is WSS, then (4.10) holds. Furthermore, if Sww(z,2z7!) is pseudo-

circulant in z, then

_ | Rwew,_;(n,—n) fork—:>0
Rww,(n,—n) = { Ryow,—izne(n+1,-n+1) fork—:i<0. (4.14)
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This in turn means Rxx(nM — ¢,—nM — k) = Rxx(nM,—nM — k + 1) for 0 <
k,i < M — 1. Combining the above equation with (4.10) one can then show that

Rxx(n1,n2) satisfies the WSS property. |

Facts 4.1 and 4.2 are true also for Z(n) and its blocked version v(n) (Fig. 4.1(b))
where the block version is defined as v(n) = (vo(n) vi(n) ... v#-l(n))T. With the
help of the above two facts, we shall now prove that the QMF bank preserves the
wide-sense stationarity of the input if and only if the filter bank satisfies a modified
set of alias-cancellation conditions. This is stated as Theorem 4.1 whose proof will

occupy the remainder of this section.

Theorem 4.1 The random process output %(n) is WSS for every WSS input
z(n) if and only if the QMF bank satisfies the conditions that, for some integer p

in the range 0 < p < M — 1, the alias-weighting functions A;(z) = 0 for ¢ # p.

The sufficiency of the above condition is not surprising, since it merely means
X(z) = Ap(2)X(2WP) which is equivalent to saying £(n) is the output of a filter
Ap(2) in response to the modulated input z(n)W?". If z(n) is WSS, then both
the modulated input and Z(n) are WSS. Hence the condition in Theorem 4.1 is

sufficient.

.

Now, we shall prove that it is also necessary. With the filter bank represented

as in Fig. 4.2, we see
SVV (zl,zz) = P(zl)Sww (zl,zg)PT(zz). (4.15).

If Z(n) is to be WSS for every WSS input z(n), then by Fact 4.2 the system P(z)

must do two things: (a.)v(n) should be WSS for every WSS w(n); (b.) Syv(z,27?)
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- ta #(n)
. far
v P(z) .
z_lLlM - TM—.T

Fig. 4.2. An alternative representation of the QMF bank.

as given in (4.15) must be pseudo-circulant for every matrix Syw(z,27?) that is
pseudo-circulant. The requirement in (a.) is automatically satisfied due to the fact

that P(z) is a linear time-invariant system.

Since Sww (2, 27!) is pseudo-circulant in z, it can be factorized [VA88D] as

D(zM)WAww (2) W!D(z~ %), where both Aww (2) and D(z) are diagonal matrices

with
1 0 0
0 =z ... 0 ,
DE=|. . . | (4.16)
6 0 . Z’M“

If we define a matrix Ayy (2) associated with Syy(z,271) as in Syv (2,271) = D(2)
W Ayy(z) W' D(27%) and also define L(z) = WID(z"%)P(z)D(z4)W, then by

letting 7 = z;' = z in (4.15) we get
Avv(2) = L(2)Aww (2)L(2). (4.17)

The matrix Ayy (2) is diagonal if and only if Syvy (2, 271) is pseudo-circulant. In con-
clusion, to make Z(n) WSS for all WSS input we must design L(z) such that Ayy (z)
is diagonal for any diagonal matrix Aww(2). This imposes a certain structure on

L(z) (and hence on P(z) ).



111

We will now derive the necessary structure on L(z). Since Aww/(2) is diagonal,

the (7, k)th entry of Ayy(2) will be given by

M-1

[Avv(@)ix = 2 (L)l Aww (2) s L (2) i - (4.18)

=0

If we let 7 # k, it is necessary that [Ayv(2)]ix = O for arbitrary diagonal Aww(z),
and so [L(z)])i,[L(2)]ix = O for each I. On the unit circle z = €/, this means
[L(e’)]:a[L(e™)]5,; = O which is equivalent to [L{e’*)};;[L(e’)]ey = 0. This means
for every column of L(z) there can be af most one non-zero entry. L(z) can be
factorized into PyAL(2) where Ay(2) is diagonal with its kth diagonal entry equal
to the non-zero element in the kth column of L(z). In cases where the kth column
of L(z) is all zero, the corresponding diagonal entry in Aj(2) becomes zero. In the
matrix Pz, we shall set its entries to unity wherever the corresponding entries in
L(z) is non-zero. If L(z) has null columns, then we set the topmost entry of the
corresponding column in Py to be unity. The remaining entries of Py, are then all
set to zero. In this way, it is guaranteed that each column of P has one and only

one non-zero element. Defining the product WP AL (2)W! to be C(z), we get

[C(2)ix = 21 WAL (2)],, W . (4.19)

The sequence p(l) is obtained from P by the rule that [Pp],q); is non-zero for

1=0,...,M—1.

N
Since P(z) = D(zﬁ)C(z)D(z‘ﬁ) and for the system P(z) to be realizable it
must not contain fractional powers of z, this imposes certain conditions on C(z).
For simplicity of notations, we shall look instead at the conditions on C(2*), which

is related by

P(zM) = D(2)C(:M)D(27!) = D(2) WP AL (zM)W'D(27). (4.20)
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In order for P(z™) to be a function of z™, we require that z~*¥[C(2™)]; , must
be a function of zM. The entries of C(z™) can also be expressed in polyphase
[C(zM)]ix = bii(2M)e(z), where b],(z¥) is a vector containing the polyphase

components for the (7, k)th entry and e(2) = (1,2z7%,...,2~M+)T,

On the other hand, from the relation
PLAL(2M) = WID(z")P(zM)D(2)W (4.21)

where the right-hand side contains only integral powers of z, we can conclude that
A-(2M) contains no fractional powers of z. Thus, the diagonal entries of Az(z™)

can be written in polyphase form
] M-1
ALz = 22 27" Na(2). (4.22)
n=0

Substituting (4.22) into (4.19), the polyphase components of [C(2™)]; x are found

to be
b?:k(zM) =
Wwir(0) /\o,o(zx) )‘0,1(2':;) )‘OvM“l(z];)
wir() Aolz A1(z Am-1(2
u}: diag. : 1’0(- ) 1,1(- ) .. . '1( ) ' (4'23)
WHD | Onono(#™) Anecra(e™) o Meapea(2¥)

Recall that u, is the kth column of the DFT matrix W. The matrix of A;,(zM)’s
will be denoted by ©(z™). Since we require z~*"¥[C(2™)];; to be a function of 2™,
the entry [C(zM )]i,x has only one non-zero polyphase component. That component
is the ((M — ¢ + k))th entry of bY,(2™). Denoting that entry by b, x(2™) one can
write

W ir(0)

wir(1)

(0 ... bix(z) ... 0)=nul diag. O(z), (4.24)

Wip(.M-l)



113

where b.:k (2) occurs at the ((M — ¢ + k))th entry on the left-hand side of (4.24).
For k =0,1,...,M — 1, there are M row equations in (4.24). By stacking the rows

together, they can be written as

bi o(2) wir(0)
. b; 1(z wir(1)
( 0 I‘) diag. ’1,( ) = W1 diag. . O(z). (4.25)
Inm-i O : :
bipa-1(2) Wi
Setting ¢ = 0, one gets an expression for @(z) as
bo,o(z)
bo1(z
O(z) = A—IJ—Wdiag. 0’13( ) (4.26)
bor-1(2)
Substituting it back into (4.25), we get
wir(0)
wir(l) 0 L
~1 — A £
w W_QGMJO) (4.27)

Wir(M-1)
with ¢; being a scalar constant dependent on the index :. To solve for p(l), one can
use the fact that p(l) = satisfies (4.27) with ¢; = 1. Thus the general solution for
(4.27) is p(l +1) = (( p(!) + 1 ))a. The constant ¢; = W), so the choice of p(0)

remains arbitrary within the range 0 < p(0) < M. And

0 | '
P :( P(")). 4.28
L IM~P(0) 0 ( )

In summary, the necessary and sufficient condition for the output to remain WSS

for arbitrary WSS input is that P(2) should be of the form

0 I(0)

P@:D@ﬁW(wﬂm it

) AL(z)WID(z™%). (4.29)
The choice for p(0) remains arbitrary.

The right-hand side of (4.6) can be re-written in terms of P(z) as

WID(2)PT(2M)r(z). Substituting (4.29) into (4.6), we find that A,()(2) =
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Mz'M:Ll[AL(zM)}M_p(o),M_p(o) and all the remaining A;(z) terms are zero. This
means the filter bank produces the output X(z) = & X (2W?®) A ()(2) in response

to X(z). Thus, the condition in Theorem 4.1 is shown to be necessary. |

4.3 Estimation of Wide-sense Cyclostationary Processes

A common problem encountered in optimal filtering is the estimation of a
random process signal y(n) from a noise corrupted version of the signal z(n) =
y(n) + g(n). (We assume here that the signals y(n) and z(n) are real.) It is com-
monly assumed that y(r) and g(n) are jointly WSS. The best linear estimator is a
linear time-invariant filter which takes z(n) as the input and produces an estimate
#(n) such that the mean square error of estimation E|y(n) — §(n)|* is minimized.

If no restriction is placed upon the filter, the optimal solution is given by [PAP65]

B Sxy (Z)

H(z) = Sxx(2) @)

(4.30)

However, the above solution may turn out to be IIR and unstable. If one restricts
H(z) to be an FIR filter, then the stability problem is avoided. For an FIR filter
that would estimate y(n) from the 2N + 1 samples z(~N),z(~N +1),...,z(N),

the optimal filter coefficients are given by [PAP65]

Rxx(0) Rxx(-1) ... Rxx(-2N) h(—N)
1 Rxx(1) Ryxx(0) ... Rxx(1-2N)||A(1-N)
Bax(@N) Bxx@N-1) ...  Be(0) h(N)

Rxy(~N)

_ | Bxy(1-N)

Ry (V)
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v i(n)
, i
T T(2) .7
< lM_ TM——T

Fig. 4.3. Optimal estimation through block filtering.

where Rxx(l) = Ez(n)z(n + 1) and Ryy(l) = Ez(n)y(n +1). The filter H(z) =

N _wh(n)z ™.

n=

Now if we consider the case where y(n) and z(n) are not jointly WSS, but
rather are jointly WSCS, then the output of H(z) will not be WSS. Also the error
y(n) — §(n) is WSCS, thus it is not possible to minimize the mean square error
Ely(n) — §(n)|* for every n. However, one can still find a filter H(z) that would

minimize the error averaged over one period [GAT75], & SM ! Ely(n) — §(n)|*. The

n=0

optimal FIR solution satisfies a similar equation as (4.31) with fi’xx(l) replaced by

i M- Rxx(n,n+1) and ny(l) replaced by ﬁ M-I Rxy(n,n +1).

A second approach would be to use block filtering (Fig. 4.3). Using block filtering,

N
one may minimize the mean square error for each n individually. Let us define the

blocked version of z(n) to be w(n) as in Fig. 4.1(a) and the blocked version of y(n)

to be v(n),

z(nM) - y(nM)
x(nM —1) y(nM —~ 1) (4.32)

w(n) = v(n) =

z(nM — M +1) \ y(nM — M + 1)
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From Lemma 4.1, we know that w(n) and v(n) are WSS. If we assume each entry of

T(z) is an FIR filter of length 2N + 1, then one may write T(z) = 0._y UT(n)z™"

n=

and
N

¥(n) = ;wa(n — m)U(m). (4.33)

This corresponds to the case of multi-channel estimation [MA86| where v(n) is the

signal and w(n) is signal plus noise. The optimal filter coefficients are given by

Rww(0) Rww(-1) ... Rww(-N) U(-N)
RWW(l) RWW(O) wa(l—N) U(l-—N)
Ryw(N) Ryw(N-1) ... Ruw(0) U(N)
Ryv(-N)
R -
= WV(% ) (4.34)
Rwv(N)
where Ryw(l) = Ew(n)wT(n + 1) is the auto-correlation matrix of w(n) and

Rwv(l) = Ew(n)vT(n +1) is the cross-correlation matrix between w(n) and v(n).
By taking N to infinity, we arrive at the ideal Wiener solution for block filtering
which in the time domain satisfies
S Ruw(n— m)U(m) = Ry (n), (4.35)
therefore in the frequency domain T(z) = Swv(2)Syw(z). Equation (4.34) may
also be written in terms of the correlation functions Rxx(ni,n2) and Rxy (n1,n2).
If we let the kth column of the coefficient matrix in (4.34) be denoted as s, then
the dimension of sy is 1 x (2L + M) where L = MN and the vector satisfies the
relationship
Rxy(L,—k)
R:41(0,0)s = Fr (L . bk (4.36)
Ryy(—L - M +1,—k)
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Hy(2) l M
HM—1(Z ‘lM

Fig. 4.4. A filter bank used in the optimal estimation of a

wide-sense cyclostationary random process.

with R,z (n1,72) being a (2L + M) x (2L + M) matrix whose (¢,k)th entry is
defined as Rxx(n, — 1,ny — k). By writing n as Ml — k where 0 <k < M — 1, we
see from Fig. 4.3 that the estimate §(n) is produced by the kth outpﬁt of T(z) at

time /. In terms of si, this means
g(n) =(w(I+ N)w™(l+ N —-1) ... wT(l—=N))s;
=(z(n+k+NM) ... z(n+k—NM—-M+1))s;. (4.37)

Notice that in making the estimate §(n) the (2N + 1)M samples of data used are
z(n+k+ I\VM) to z(n+k— NM — M +1). These samples are not centered around
z(n). If one desires to have an estimator which uses the data symmetrically around
the sample to be estimated, then a filter bank of the type shown in Fig. 4.4 may be

used.

Let us consider only the case where Hy(z) is an FIR filter of the form Hy(z) =

E;’nz_J hx(m)z™™. At any time instance n; we can write n = Ml — k where 0 <
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k < M —1 and the output §(n) is produced by the kth branch of the filter bank at

time instance [, i.e.,
J

g(n) = D z(n— m)hg(m). (4.38)

m=~J

We shall define a vector of impulse response coefficients, h;, as
(hi(=L) hi(—=L+1) ... hi(L))". Then the estimation error can be written in
terms of hy, as e(n) = y(n) — (z(n+J) z(n+J—-1) ... z(n—J))h;and the

mean square error becomes
Ele(n)|* = Ryy(n,n) —2(Rxy(n+ J,n) ... Rxy(n—J,n))Th,

+hi Ras+1y(n + J,n+ J)hs. (4.39)

The matrix R(zs4+1)(n+ J,n+ J) is defined before in the comments following (4.34).
Due to the cyclostationary property and n = M ~ k, the mean square error can

also be written as
Ele(n)|2 = Ryy(—-—k, -—k) -_ 2 ( ny(J - ’C, -—]C) . ny(°~J — k, ~k) ) hk

+h} Resiny(J — k,J — k)hy. (4.40)

Thus the mean square error is a function of k£ and not of [. By choosing h; properly
one can minimize E|e(MI — k)|* for all I. As a result Ele(n)|? is minimized for all

time n. The optimal filter coefficients are obtained from the linear equations

Rxy(J — k,—k)
Ryy(J —k—1,—k
Rases(7-k7-k)hy = xr (7 )

(4.41)
Rxy(~J — k, —k)
From (4.38), one sees that Fig. 4.4 estimates y(n) from the samples z(n+J), z(n+

J—1) ..., z(n— J). These samples are centered around z(n). Thus the estimator

in Fig. 4.4 will be different from the one in Fig. 4.3.
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In the limiting case where the filter order goes to infinity, the two estimators give
the same estimate. This can be shown as follows. By comparing (4.37) with (4.38),
we see that the vectors sy and hj play comparable roles in the estimation of §(n).
The optimai Sy is given by (4.36) and h; by (4.41). If we increase.the filter order
for both structures to infinity (i.e., let L in (4.36) and J in (4.41) go to infinity),

then s and h; become the same except for a linear shift in their components.

The performance of each of the filtering schemes mentioned above can be eval-
uated through simulations. We shall let the signal y(n) be a WSS auto-regressive
Gaussian process. It is generated by passing white Gaussian noise through an all-
pole IIR filter. The noise g(n) is chosen to be WSCS with a periodicity of 2. The
noise can be generated by interleaving two mutually uncorrelated white Gaussian
processes, g1(n) and g;(n). The two processes are made to have different variances,

of and o2. (If the two variances are the same, then the combined noise source g(n)

will be WSS.)

By fixing 07 and o3, we shall evaluate each of the filtering schemes by computing
the mean square error (MSE) at the output, i.e., E(y(n)—§(n))* where the expected
value is approximatéd by the time averaged value. Let us denote the output MSE
due to optimal scalar filtering as o2,, the output MSE due to optimal block filtering
(Fig. 4.3) as of and the MSE due to filtering by a multirate filter bank as ¢%,. With
o} being the unfiltered noise power (which is taken to be (o} + 0%)/2), we shall

define the normalized MSE for each filtering scheme as, 02,/02, 0} /0% and 0%,/0?

respectively.

Example 5.1 For a simulation run with ¢? = .5 and o} = .1, the normalized

MSE is plotted in Fig. 4.5 as a function of tlie filter order. For the scalar filter case,
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the filter order is simply the order of the single filter. For the multirate filter bank
(Fig. 4.4), the filter order is taken to be the order of any one of the filters, H;(z).
In the block filtering case, we take the filter order to be M Ng — 1 where Np is the
length of the block filter T(2) in Fig. 4.3. As Fig. 4.5 shows, block filtering and the
filter bank approach have similar performance, while both methods have a gain of

about 3dB over the single filter case.

Example 5.2  For cases where the difference between o, and o, is wider, one
expects that the interleaved noise process g(n) will be further away from being
WSS. Therefore both the filter bank and the block filtering approach will show an
increased advantage over the conventional single filter. The simulation results for
o} = .5 and 0} = .005 is shown in Fig. 4.6. It shows that the filter bank has a noise

reduction of 10dB over the single filter.

IV. Applications where Cyclostationary Noise Arises

In a multirate QMF bank, noise could arise in each of the sub-band channels.
The noise can be due to the encoding of the sub-band signals or due to noise
that is commonly present in any communication channel. If one models the noise
in each channel as an additive WSS noise source, then the noise at the output
of the filter bank is also additive. However, the output noise will in general be
WSCS. Let us denote the output noise as g(n). If one makes the assumptions that
the synthesis filters are good bandpass filters with non-overlapping passbands and
sharp transition bands, and that the noise source in each channel is uncorrelated

with the other noise sources, then g(n) would be close to being WSS.

Example 5.3 This is demonstrated by the simulation results in Fig. 4.7, where

a two-channel QMF bank is used and the noise at the output of the filter bank



121

431040 ¥311714

Jueq 487 |1y

butasyfLy 3o01q 4

493( L4 9(burs 7

¥ ojdurexy ut sowayds BulIo}|y SNOLIRA J0f SN POZI[RULION *G'§ *Bi

000" S1-

ASWH G3ZITUWAON



122

"'y o|durexy ul sourayds Suldy[y snolrea 10] S PIZIRWION 9’y S1q

000° 05 000" 0b

41040 491114

4931 t4 9Lbuls

002" 0t 000" 0 000" 01 0

T

4-butaalts 320149

-

000" SC-

000°S1-

000" S-

3SW 03ZITUHYON



123

g(n) is generated by adding twe uncorrelated white Gaussian noise sources to the
two sub-band channels. The signal y(n) is the same as in Example 5.1 and 5.2.
And one tries to estimate y(n) from y(n) + ¢g(n). The particular two-channel QMF
bank used is Filter #48F in [VA88a] where the filters are designed by optimizing
the two-channel lossless FIR lattice. The filters have stopband attenuation of 70dB
and a normalized transition bandwidth of .051. Designating the-two noise sources
as g1(n) and g;(n), their variances are chosen to be: o = .5 and o = .005. So
just as in Example 5.2 (see Fig. 4.6), the two noise sources have widely different
variances. However, in the QMF case Fig. 4.7 shows that the resulting noise process
g(n) is close to being WSS (as measured by the difference between the MSE due to

scalar filtering and the MSE due to optimal filter bank).

Example 5.4  If the assumption that the synthesis filters are good bandpass
filters is violated, then g(n) is no longer close to being WSS. As an example, we have
replaced the QMF bank used in Example 5.3 by a lower order filter bank, namely
Filter #8A in [VA88a]. With the new filter bank, the stopband attenuation is at
least 41dB. The normalized transition bandwidth is .1474. Simulation results are
plotted in Fig. 4.8. It shows a wider difference in performance between the optimal

scalar filter and the optimal filter bank.

Example 5.5  Going back to the higher order filter bank, we will now show
that as the two channel noise sources become correlated the resulting noise g(n)
moves away from being WSS. To generate two correlated noise sources, a pair of
uncorrelated Gaussian white noise processes is passed through a 2 x 2 orthogonal
matrix building block. If the input noise sources are chosen with different variances,

such as ¢? = .5 and 0% = .005, then the outputs from the matrix building block
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will in general be correlated. Simulation shows that if these two correlated noise
sources are added to the channels of the QMF bank, then the resulting g(n) is less

WSS (Fig. 4.9) as compared to the case with uncorrelated noise sources (Fig. 4.7).

A multirate structure which is closely related to the QMF bank is the digital
transmultiplexer [SC81]. In Fig. 4.10 we have drawn in terms of multirate building
blocks a structure that converts a time-division-multiplexed (TDM) signal w(») into
a frequency-division-multiplexed (FDM) signal y(n). In Fig. 4.10, the input signal
z(n) is the TDM signal whose polyphase components, z;(n)’s, are the individual
messages being multiplexed. The signal z(n) is corrupted by additive WSS noise,
a(n). The filters F;(z), similar to the analysis filters in the QMF bank, are good
bandpass filters with non-overlapping passbands and svharp transition bandwidths.
In general, the signals z;(n)’s could have different statistics. If we assume that each
one of them is WSS, then the TDM signal will be WSCS. However, if one further
assumes that each message signal z;(n) is uncorrelated with the other messages
(and provided that the filters F;(z) are good), then the FDM signal, y(n), is close
to being a WSS process. Now consider the WSS noise a(n). Except for a few
special cases (such as a(n) being white noise), the polyphase components a;(n) are
correlated with each other. Hence, the resulting noise at the output, b(n), is WSCS.
The cyclostationarity of b(n) can also be seen from the fact that the filter bank in
Fig. 4.10does not satisfy the necessary and sufficient condition in Theorem 4.1 of
Sec. 4.2, (otherwise the transmultiplexer can be replaced by a single modulator and
a time-invariant filter). Hence, in general a WSS noise source will produce a WSCS
output. In conclusion, at the output of the transmultiplexer in Fig. 4.10, the signal

is WSS while the noise is WSCS.
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z(n) X Alar zo(n) + ao(n) v o R(z) o
M alntal) | M Fi(z)
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P zm-1(n) o Foyy(2 ] y)

W +ap-1(n) TM Fua(?) +b(n)

Fig. 4.10. Conversion from TDM signal z(n) to FDM signal y(n).

In Fig. 4.11, the conversion of a FDM signal into a TDM signal is depicted. The
FDM signal, y(n), is corrupted by WSS noise due to transmission over a communi-
cations channel. The filter bank structure in Fig. 4.11 does not saLtisfy the condition

in Theorem 4.1, therefore the output noise d(n) is in general WSCS.

As a second application, let us consider the sampling of a continuous waveform
by an analog-to-digital converter. Let y,(t) be the continuous-time signal to be
sampled at the rate of % samples/sec. However, due to timing error in the A/D
converter the samples obtained are not y,(nT) but instead are y,(nT + 7(n)) where
7(n) is a random process. This can be modeled as in Fig. 4.12 with the input signal
Ya(t) being multiplied by a train of impulses 372 §(nT+7(n)). The output which
is taken to be a discrete-time sequence is denoted as z(n) = y,(nT +7(n)). We shall
assume that the timing error 7(n) is second order stationary (SOS). That means its
second order probability density function fr(r;,7,;n1,n;) is a function of ny — n,
only. Assuming further that z,(t) is WSS and the signal z,(nT) is independent

of the error 7(n), then the error introduced by 7(n) can be modeled as a WSS
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Z/(")+ | Hy(2) rlM zo(n) + do(n) TM R
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Fig. 4.11. Conversion from FDM signal y(n) to TDM signal z(n).

ya(t), <X> z(n) = yo(nT + 7(n)) o D/A || Fy(s) _,_?A/a(t)

s(t) =2 _6(t —nT — 7(n))

Fig. 4.12. Reconstruction of a randomly sampled analog waveform.

random process. We can write z(n) as y(n) + g(n) where g(n) is the noise term,

and y(n), g(n) are jointly WSS.

The interpolation is done by converting w(n) back into an impulse train in
continuous-time and then filtered by an interpolation filter F,(s). The resulting
output §,(t) will be jointly WSS with y,(¢). Since y,(t) is bandlimited (in the sense
that Ryy(to + t,%0) as a function of ¢ is bandlimited to || < %), the interpolation
filter should satisfy

m

F.(70) =0 for || > T

(4.42)

The passband of the filter can be chosen so'that E(§,(t) — ya(t))? is minimized.
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y“(;»(t) %}-———-”‘(") Fz) L pya ] 2 |80

5(t) = ZR2-o 8(t = nT — 7(n))

Fig. 4.13. Reconstruction is performed using a digital optimal
filter F(z) followed by an ideal lowpass filter L(s).

The filter F,(s) in Fig. 4.12 can be redrawn as in Fig. 4.13 where F,(s) is
separated into a digital filter F'(z) and an ideal lowpass filter L(s). The passband
of L(s) is | < %. The only function for L(s) is to interpolate the discrete-time
signal so that the output is in continuous time. The optimal filtering is provided
by F(z) alone. Let the output of F(z) be §(n), then minimizing the mean square
error E(f,(t) — ya(t))? is the same as minimizing E({(n) — y(n))?. So the problem

is equivalent to estimating y(n) from z(n) in the WSS case.

In situations where the sampling rate required for A/D conversion is high, it
might be more cost effective to use several A /D converters in parallel each operating
at a slower rate. With M A /D converters, each of them would only be required to
operate at a sampling rate of % where % is the original sampling rate, and each
unit would have a time offset of % where 0 < k < M — 1. Let the samples taken by
the kth converter be denoted as z;(n), we can write zx(n) = y,(nMT — kT + 1 (n))
where 7,(n) represents the timing error for the kth converter. By interleaving the

samples from the M converters, one obtains a discrete-time signal z(n) that is at

the higher sampling rate. The signal z(n) can be written as z(n) = y,(nT + 7(n))



131

D/A p L(s)

.HM_]_(Z)

Fig. 4.14. A filter bank used to reconstruct y,(t).

and 7(n) is a random process given by

r(n) = T,c(";;’“) where k = ((M — n)). (4.43)

If one assumes that the processes 7x(n) (0 < k < M — 1) are all jointly second
order stationary, then T(n) becomes a second order cyclostationary process. As a
result, we may model z(n) as z(n) = y(n) + g(n) where g(n) being the noise due
to the timing error is WSCS. To recover y,(t), we‘ can first estimate y(n) using
the methods discussed previously for WSCS processes. The estimated signal §(n) is
then passed through a lowpass interpolation filter to obtain §,(t). This is illustrated

.
in Fig. 4.14 where a filter bank is used for the estimation.

4.5 Conclusion
In Sec. 4.2, we see that the QMF bank will preserve the wide-sense stationarity
of its input if and only if the filter bank satisfies a modified set of alias-cancellation

conditions. The conditions state that among all the aliasing terms plus the original
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term only one term should remain at the output. This is equivalent to modulating

the input by &’ 5" and then passing it through a linear time-invariant filter.

In Sec. 4.3, the problem of estimating a WSCS random process signal from
another WSCS random process is addressed. We show that the multirate filter bank
can be used as the optimal estimation filter. Such an estimator is different from the
one commonly obtained through block filtering approach. Both methods converge
to the same theoretical optimal solution when the filter order is taken to infinity.
The above estimation problem could arise in the analog-to-digital conversion of
continuous-time waveforms when several A/D converters are used in parallel in

order to achieve a higher sampling rate.
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Chapter V. Roundoff Errors Generated by Orthogonal
Matrix Building Blocks

In the study of QMF banks, a recent trend has been towards the use of loss-
less systems in the design and implementation of the analysis/sythesis filter banks
[VA89]. Lossless systems also have applications in the area of low sensitivity filter
design, orthogonal filters and lattice filters [DEWS80] [HE83] [RA84] [VA85]. In
[VA88c], it is shown how orthogonal matfices can be used as the basic building
blocks for realizing lossless systems. In the analysis of roundoff noise in conven-
tional digital signal processing structures, a commom assumption made by most
researchers [JAC70] [MU76] [BA85] have been that the noise can be modeled as an
additive white Gaussian noise which is uncorrelated to the signal being quantized,
and each noise source is uncorrelated with the rest. For the case of orthogonal
building blocks, some have argued that due to the special structure of the orthog-
onal matrix, the output signals from an orthogonal matrix building block could be
correlated. Hence the roundoff errors produced by the quantization of these output
signals could have a nonzero cross-correlation. A nonzero cross-correlation will be
of some siginficance, for it can affect the noise power estimate at the output of the
overall system. In this chapter, we will investigate numerically this cross-correlation

between the roundoff errors.
.

5.1. Introduction

In this chapter, we are interested in the roundoff errors produced by the multi-
plication of a vector by an orthogonal matrix. In particular, one would like to know
if the errors at the outputs are correlated to each other. The type of quantization

being considered here is fixed point rounding. In other words, if B is the number
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of bits used for representing numbers in the range of [0, 1], then any real number a

in that range will have a roundoff value of

= 27 %K if 284 — l_zBaJ < _;.;
o= {2"3 (K +1) otherwise, (5.1)

where K = [2Ba]. The step size A for the above quantization scheme is defined to
be 278. Fig. 5.1 shows the case of a 2 x 2 orthogonal matrix, where (z1,z;)7 is the
input vector quantized to B bits. The result of the matrix-vector multiplication,
(y1,92)7, is then quantized to B bits also. The errors generated are defined to be

€1 = 91 — y1 and €2 = {3 — y;. In the analysis of the roundoff errors, we shall make

use of the results in [BA85].

We are interested in orthogonal matrices here, because they appear in several
low-sensitivity implementations of digital filters, such as the Gray-Markel lattice
[GR73], orthogonal filters [DEWS80] [HE83] [RA84] [VA85], and the lossless FIR
lattice structure [VASG]. Applications of these orthogonal matrices in multirate filter
banks have also been reported recently [VA87al], [VA88a]. For example, consider
the lossless FIR lattice as shown in Fig. 5.2. The location of the quantizers are
exactly at the output of each 2 x 2 orthogonal matrix (denoted in the figure by R;).
According to common assumptions [JAC70] [MU76], the noise generated at each

quantizer is assumed to be uncorrelated to all the other noise sources. However

1 Y1 > Q 1)
. R . R = < m mz)
2 Y2 " Q Y2 —m; Mo

Fig. 5.1. A 2 x 2 orthorgonal building block with quantized outputs.



135

— > Q > Q> - Q b
R1 Rz e o ° RN

—p - Q 1 - Q 1 — - Q P

Fig. 5.2. The lossless FIR lattice with quantizers.

since the entries of the 2 X 2 orthogonal matrix are related to each other as sines
and cosines of the same angle 8, one might think that the roundoff errors would
be correlated in some ways. In this paper, this issue is addressed in a quantitative

way, and the answer is provided by simulation results.

5.2. The 2 x 2 Orthogonal Block

Consider the case of a signal passing through a multiplier followed by a quantizer
with quantization level A, where A = 278, as shown in Fig 5.3. The error produced
by the quantization process had been analyzed in [BA85]. The input u has a
quantization level of A also. Let the multiplier value be N/L where N is an odd
integer and L is a positive power of two. Thus the product y has a quantization
level of NA /L, which is then rounded off to B bits, producing §. The quantization

error ¢ (defined to be § — y) can be expressed in terms of the input u as [BA85]
L-1 + 27k
€ = Z EL,N(k)e’TA‘“ (52)
k=0

.
The sequence &z n(k) contains the DFT coefficients to the periodic sequence

O
-

Fig. 5.3. A single multiplier followed by a quantizer.
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{£1(n)} where I(n) is the modulo L solution to the equation I(n) + nN = 0 Mod L
[BA85]. An explicit formula for €1 x(k) is given by [BA85]

5‘% when k =0 Mod L;

érn(k) = { (—1)kA (1 +jcot(7rm(k)/L)> otherwise, (5:5)

with m(k) being the unique modulo-L solution to the equation m(k)N +k = 0 Mod
L.

In this paper, we shall apply (5.2) to the analysis of roundoff errors generated by
orthogonal matrices. The case of the 2 X 2 orthogonal matrix is shown in Fig. 5.1.

The vector ¥y = (y1,y2)7 is related to the input by

y=2(3)= (% ) (2) (54

The entries m; and m; are the quantized values of cos(f) and sin(#) repectively,
where @ represents the angle of rotation for the orthogonal matrix R. Assume the
level of quantization for these multipliers is A; = 2781, then m; can be written as
MiMA, and m, as MM A; with M; and M, being relatively prime integers. Since

z; and z; are quantized to B bits, let z; = n; A and z; = n, A, then we get
Y1 = (n1M1 + TLzMz)MAlA

Yo = (—n1M2 -+ nng)MAIA (55)

Due to the fact that M; and M, are relatively prime, there exist integers n; and
n, to make niM; + noM, = 1. This means y; has a quantization level of MA;A.
The same holds for y,. Both needs to be quantized back to a level of A, producing
1 and §,. Defining two numbers u; = y; /(M A;) and u; = y3/(MA,), it is clear

that both u; and u, have B bits to the right of the binary point. The case of the
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single multiplier in Fig. 5.3 becomes applicable here by making the identification
of uy with u, y; with y and MA; with the multiplier value % As a result, (5.2)

becomes
L-1 -2k
&1 =y En(k)eia™ (5.6)
k=0
Similarly, the expression for ¢, is

-1 »
&=y & n(k)el TR (5.7)

Assume that €; and €; have zero mean. From (5.6) and (5.7), expressions for the

variances and cross-correlation between ¢; and €; can be found.

L-1
E[Eﬂ =F E 8N,L(k1) eN,L(kz)ejZ%(kl‘*'kz)%]

kl,kz:O

L-1 e g

Z gN,L(kl)EN,L(kz)E [e" MA LA \F1TR2 m] (5.8)
k1,k2=0

= 2x (ky +kq)

Z é‘NL kl)eNL(kg) [ ‘"”1°“2“(M151+M2z2):|
ky,ka=0

Defining the joint characteristic function of z; and z, as

O (wy,ws) = E[ef(w1z1+wzzz)] (5.9)
then (5.8) becomes
= 2may (ks + ko) 2maea(ky +
Elel] = > > Enplki)énp(kz)®( I(LL 2), 2(11113 2)) (5.10)

k1=0 k2=0

Using (5.7), an expression for E[e?] can also be found

1Lt 2mMy (ky + ko) 2wy (ky + Kk
Bldl= Y. Y tvalk)enalbe(- el t k) 2malltha)y =g )
k1=0 ko=0 .

Similarly, the cross-correlation between the two errors €; and ¢, is

L-1 L-

Eleres) = Y Z En,(k1) 5NL(k2)

k170 ko=0



138

27!'(M1k1 - Mgk;)) 27T(M2k1 + Mlkz)

¢ .
( LA ’ LA )

(5.12)

The common assumption being made about roundoff errors in digital filters is that
they are uncorrelated with each other and the error is uncorrelated with the signal.
For the case of the 2 x 2 orthogonal matrix, we will see how the cross-correlation of
its errors behave in terms of the cross-correlation between the two inputs. Let the
cross-correlation coefficient between ¢; and €; be defined as

E[61€2]

W (613

p€1,€2

Obviously, p., ., will depend on the probability distribution of z; and z,. However,
it is not clear how p., ., is related to the correlation of the two inputs. If (5.13) is
small enough for most inputs commonly encountered, then one may safely assume

that €; and ¢; are uncorrelated.

In order to calculate (5.13), assumptions need to be made about the joint prob-
ability distribution of z; and z,. Let us assume that the joint probability density

of z; and z, follows a Gaussian envelope,

fxixa(znz) =B Y 6(z1— mA,z, — nA)x

m,n=-o00

e-trromatR0-R), (5.14)
The constant B is chosen such that the total probability is normalized to one. oy
AN

is the variance of the Gaussian envelope. It is different from the variance of z; and

of z;. Similarly, po is not the same as p,, ,,.

For the input distribution given in (5.14), one can verify that the errors €; and ¢,
have zero means. Furthermore, if the inputs are uncorrelated, i.e., po = 0 in (5.14),

then the errors are automatically uncorrelated as well.
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From~(5.14), the characteristic function ®(w,,w;) of z;,z; can be found, and
substituting it into (5.10) through (5.12) the variances and the cross-correlation of
the two errors can be calculated. Note that for a given distribution function, such as
the one in (5.13), the quantities E[e}] , E[e2] and E[e;€;] depends on the ratio oo/ A.
They do not depend on oy and A individually. Therefore, we will use 0o/A as a
parameter for the input distribution. This is commonly referred to as the dynamic

range of the input.

With a quantization level of A = A; = 278, we shall examine the behavior of
Pe,c; a8 the rotational angle and the dynamic range vary. With a dynamic range
of (00/A) = 5, the correlation coefficient p,, ¢, is plotted in Fig. 5.4 as a function
of @ for several values of pg. As Fig. 5.4 shows, the cross-correlation between the
two errors can be quite high for certain angles (such as § = 36° and 38°). Also, the
correlation between the errors is large when the orthogonal matrix has small angles
of rotation. Fig. 5.5 plots p., ¢, as a function of py for small angles of §. Here, for
small enough angle ( § < 3° the error cross-correlation becomes comparable to the

cross-correlation of the inputs.

As we go to inputs with larger dynamic range, the magnitude of p, ., tends to
decrease, with the exception of a few particular values of §. Fig. 5.6 represents
the case of 22 = 10 and Fig. 5.7 shows the result for ¢ = 25. Further numerical

computation shows that p., ., goes to zero, as the dynamic range increases.

5.3. General Orthogonal Blocks

The expression in (5.6) and (5.7) can be generalized to any K x K orthogonal
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matrix. With x = (z,,...,zx)7 as the input, the unquantized output is
1
y=|%|=rx (5.15)
Yk

Assuming each entry of R is quantized to B, bits, we can write these entries as
[Rli i, = M;, i, MA,, where the ged(M;, ;,) = 1. The quantization level of y is at
MAA. Let MA; = ¥ as in (5.2), then following argument similar to the 2 x 2

case, the error ¢; can be written as

L-1
& =Y & n(k)e TaxTm, (5.16)
k=0
where m;2(M:y ... M;x)T. Defining the joint characteristic funtion of X to be

Oy (w) = E[eijx] with w = (wy,...,wk)7T, the error variance is given by

Elel] = i i: Er,n (k1) Er v (k2) ¥

k1=0 k2=0

271'(]61 + kz)

Ok IA

m;). (5.17)

Similar to (5.12), the cross-correlation between any two errors is

L-1 L-1

Eleiei,] = Y, > Epn(ki)érn(ke)x

k1=0ko=0

2T

T (kami, + kpm,) (5.18)

Dk

5.4. Conclusion

The roundoff errors generated by orthogonal matrix multiplications were ana-
lyzed. The variance for each error can be expressed in terms of the characteristic
function of the input, so can the cross-correlation between any pair of errors. For
the 2 x 2 case, by assuming the input distribution to have a jointly Gaussian enve-

lope, the cross-correlation between €; and €; is computed for various different input
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dynamic ranges. It is found that for most angles of rotation the cross-correlation
between the two errors decreases rapidly as the dynamic range of the input goes up.
However, for a few particular values of § the cross-correlation between the errors

remains high even for large dynamic range.

A special case arises when the angle of rotation is very small. The cross-
correlation between the errors becomes comparable to the cross-correlation of the

input signals.
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Appendix A.

We now describe the design procedure for the Mth-band FIR filter used in Sec.
3.3. Let P(z) be the Mth-band filter with a desired response as in (3.27). We will
assume that the allowable maximum passband and stopband errors are the same. If
the pass and stopband requirements are different, it can be accomodated by making
a minor modification to the procedure. The procedure takes as inputs: the filter
order N — 1 and a passband edge w, < %’ The stopband edge w, is fixed to be
4% — wp. The output will be the impulse response coefficients of P(z). The desired
pass and stopband errors is achieved by adjusting the filter order through trial and
error. (As a lower bound, the order estimation formula for linear phase equiripple
filters [PAR72] may be used.) We shall write P(z) as Ei-’%‘l p(n)z™" where
N — 1 is even and N—;—l is restricted to be a multiple of M. Let y—g—l be denoted

as J. Assuming that the impulse response is symmetric, we get p(—n) = p(n).

Furthermore, due to the Mth-band property p(nM) = 0 for n # 0 and p(0) = ﬁ—
On the unit circle, the respose of P(z) can be expressed as
P(e*) = p(0) + 2 Ep ) cos(nw) (A.1)

The function P(e’*) can be viewed as a polynomial of cos{w) of order J — 1. Thus,
there will be at most J — 2 extremal frequency points in the range 0 < w < 7.
An extremal frequency point is defined to be a point on the frequency axis where

AN
§P(e¥) —0.

fw

The method used here follows closely the design algorithm of [PAR72]. As in
[PAR72], the extremal frequencies of P(e’*) are first assumed to be known by
initially guessing their locations. Since there are only ;7(M — 1) coefficients of

the impulse response undetermined and the band edges w, and w, are already
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predetermined, we only have control over 37(M —1) —1 of the extremal frequencies.
Let the set of frequency points be: {wo,ws,...,wg-1} with K = %(M —1)—1. The
first point, wo, will always be set to zero. The rest are ordered so that wy > wi—;.
Let us assume that the first 2+ extremal frequencies (including wy) lies within the

passband, therefore Wz, < Wp, while War > Wy

For k < 237 — 1, we impose the following alternation conditions
P(e“) = 14 (—1)**16 (A.2)

and at the passband edge P(e’**) = 1 — 6. Similarly, in the stopband the function

P(e) is constrained to satisfy the conditions: P(e’“*) = § and
P(&“*) = (~1)**1§ for k> 2—]\’2. (A.3)

The conditions (A.2) and (A.3) together with the conditions at w, and w, give us
37 (M — 1) + 1 equations in all. Since there are the same number of unknowns (the
J

% (M — 1) impulse coefficients plus the error §), we can solve this linear system of

equations.

With the unknown p(n)’s determined, the actual extrema of P(e’*) can be lo-
cated by computing and searching through a dense grid of, say, 1000 points. The
first 237 extrema in the passband and the first K — 275 extrema in the stopband
will be kept. The values of w; are set to the new extremal frequencies, and by
substituting these new values into (A.2) and (A.3) we obtain a new system of linear
equations. By solving the system of equations, a new set of p(n) can be obtained
and the process repeats until there are no more changes to the set {wo,wy,...,wx-1}

from one iteration to the next.



148

Fig. 3.7 shows us the result |P(e’*)| at the termination of the above algorithm

with M =5, N — 1 =120, wp, = 0.387 and w, = 0.427.

Appendix B.

The matrix C as defined in (3.33) has at most M L — L? non-trivial entries, i.e.,
entries whose values are other than 0 or 1. Consider first the product BW!, Let us
denote the entries of B as b;;, and the entries of U as u;,. Since the pth column
of B is zero whenever p & L, we can delete those columns from B and as a result

the corresponding row of Wt are also deleted. The matrix product BW' becomes

bO,lo bO,h [ bO,lL_.l 1 VV—'I0 e W—IO(M—l)
Bwt _ bl,lo bl,ll e bly‘L—l 1 W“lx . W_II(M_I)
br-14o br-1gy ... br_1g_, 1 Wl . Wwlk-(M-1)

(A.4)
Given that the /;th column of B was defined to be A(W ~**)u,, we can write b;;, =
u; (W, Writing out the matrix multiplication in (A.4) explicitly for each entry,

we get

L-1
BW!; . Z big W™ = S gy Whliom), (A.5)
k=0

Remember that u;; are the entries of U and the matrix U~!'is defined in (3.9). In

(A.5), when ¢ — m = 0 the above summation is reduced to

AN

1 for:=0;
1. )
BW; ,Z‘Ou'k {0 fori=1,...,L—1. (A.6)

Similarly, for (( — m)) =

L-1 .
_ , _f1 fori=1;
BW'; (-1 = k;”‘:kw = {o fori =0,2,...,L —1. (47)

We can write down similar expressions for ((: — m)) = 2,3,...,L — 1. As a result,



149

the matrix BWT has the form

1 x x x X x 0 0 0
1 0 x x x x x 00
| -
BW" = 1 0 0 x x x x x 0 (4.8)
1 0 0 0 x ... x X x X

Here we display BW for the special case of L = 4, but the general pattern is readily
discernable. In general, there will be L one’s and L(L — 1) zero’s in the matrix.
Substituting (A.8) back into (3.33), one can verify that there are only ML — L?

non-trivial entries in C.

Appendix C

Let us assume that each of the sub-sequences z(nM — k) is corrupted by un-
correlated white noise of equal variance o?. For the purpose of noise analy51s, the
reconstruction filter bank (shown in Fig. 3.10) can be re-written in terms of its

polyphase representation

0 ... 0 1 7,.Gi(z™) To,L11G2(2M) cee TorayGror(2M
0 e e 1 0 TIYLGz(ZM) TI,L+1G3(zM) .o T]_ M- IGM—L+1 ZM)
1 .. 0 0 1 pGL(E™) rosipnnGrn(ZM) oot riiaiGaoi(2M)
1
-1
# (A.9)
e
The scalar factors, rn, ; , are related to the entries of the C matrix as
Tm,k = Cm,k+m—L+1- (A.lO)

From the polyphase matrix above, we see that Z(nM + k) = z(nM + k — L — 1) for
k =0,...,L — 1. Thus, the retained samples are produced directly at the output

without any computation, and the noise variance for these output samples is o2.

For the case of Z(nM + k) where L < k < M — 1, the noise analysis is as follows.

Assuming that G;(z)’s are ideal filters, each of the filters has a noise gain of unity.
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Therefore the noise gain from the mth input of the polyphase matrix to the kth
output is simply |rmk|?. If one assumes that the L noise sources at the input are

uncorrelated, then using (A.5) and (A.10) the noise variance at the kth output is

given by
L-1 L-1 ) L-1,L-1 2
02 > |rmil’ =03 D |BWmksm-rs1| =05 3| tmaWnEE1 0 (411)
m=0 m=0 m=0"n=0
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