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Abstract

In this thesis, a variety of topics related to high speed optoelectronic devices
and measurement techniques using ultrafast optical pulses are presented.

Following a brief introduction, the second chapter describes a Q-switched semi-
conductor laser using a multi-quantum well active layer both for gain and as an
intracavity loss modulator. While Q-Switching does not produce as short a pulse
as modelocking, it does offer the advantage of adjustability of the repetition rate
making it attractive as a source for digital communication links. It is also found
to be preferred to the similar approach of gain switching due to less demanding re-
quirements on the rf modulation power level and waveform. Results include a pulse
width of ~ 20 ps which is fairly independent of the repetition rate, and a limiting
repetition rate of 3.2 GHz. The onset of an irregular pulse train which limits the
maximum modulation frequency, is analyzed by a graphical approach.

The potential for optical interconnects has motivated a marriage between the
two technologies of Si VLSI and GaAs optoelectronics. Direct integration by the
growth of GaAs on Si had been impossible, but the MBE and MOCVD techniques
now enable the growth of such layers and of a quality suitable for devices. The third
chapter describes the operating characteristics of GaAs-on-Si lasers and photodiodes
with particular attention to their high speed performance. Both the lasers and pho-
todiodes show comparable high speed performance to similar structures fabricated
on GaAs, with most of the shortcomings being in their dc characteristics.

In the fourth chapter, a novel approach to improving the resolution of pho-
toconductive sampling is presented, called differential sampling. This technique
obviates the need for carrier lifetime reduction usually used to improve temporal
resolution, and is in principal only limited by a small (few ps) RC circuit time. An

analysis of the minimum detectable signal voltage shows the technique does quite
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well compared with lifetime reduction techniques which also tend to reduce mobility
and dark resistance. An experimental demonstration of this technique is presented
in chapter five. Using a two gap sampler, accurate measurement (10 ps resolution)
of a 60 ps pulse response from a photodiode is achieved using photoconductors with
a recovery time of only 150 ps. Performance near the fundamental Johnson noise
limit is also attained, though the minimum detectable signal is higher than predicted
due to low response of the photoconductors(probably due to poor contacts).
Finally, in chapter six, the possibility of retrieving an impulse response from its
autocorrelation is explored. The use of the logarithmic Hilbert transform for phase
retrieval has been discounted in the literature since most such work is concerned
with imaging problems for which it is not appropriate due to their symmetric nature.
However, causality and the decay nature of transient phenomena make this tech-
nique very suitable for use with the impulse response of passive devices. Conditions
for the validity of this technique for temporal problems are presented. Simulated re-
trieval of two functions with similar autocorrelations is demonstrated with sufficient
clarity to distinguish them, as well as showing good agreement with the original.
Practical limitations and aspects — such as noise, finite timé domain, etc. — are

also simmulated and discussed.
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Chapter 1

Introduction

In 1981 the colliding pulse modelocked (CPM) dye laser was introduced, cap-
able of generating 90 fs optical pulses which could be reduced to 30 fs using newly
developed pulse compression techniques. Later, optimization of the cavity design
resulted in 27 fs pulses which were subsequently compressed to an incredible 8 fs
which represents only 4 periods of the optical frequency. At the same time, syn-
chronously pumped systems were developed and offered commercially. Achievable
pulse widths were a more modest 1-5 ps but they offered greater versatility in
the way of tunability, available wavelength ranges through dye selection, as well
as more convenient operation. The availability of such sources has proven a very
valuable tool for studies of ultrafast phenomena in a diversity of fields including
biology, chemistry, solid state physics, and especially in high speed electronics and
optoelectronics.

In this last category, the emergence of the ultrashort pulse technology was com-
plemented by new fabrication technologies such as molecular beam epitaxy (MBE),
metal-organic chemical vapor deposition (MOCVD), and submicron lithography.
These techniques have spawned a multitude of novel high speed devices including
high electron mobility transistors (HEMT), resonant tunneling diodes, quantum
well lasers and optical modulators, etc. Ultra short optical pulse capabilities have
been instrumental in the characterization of most of these high speed devices, serv-
ing both as an ideal source for impulse excitation of devices, as well as forming the
basis for new sampling techniques. While several such sampling schemes have been
developed, the two most notable have been electro-optic sampling — with an ex-
ceptional resolution of ~ 300 fs — and photoconductive sampling with a resolution

of 2-10 ps but much better sensitivity.
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Prior to the development of these techniques, high speed measurement in the
time domain was basically limited to conventional sampling oscilloscopes (resolution
of 25-35 ps) as well as more exotic sampling using Josephson junctions which had
better resolution, but were inconvenient and not readily available. It is difficult to
imagine how present day high speed optoelectronics could have developed without
the measurement capabilities afforded by new optical pulse techniques.

In this thesis, a variety of topics related to high speed optoelectronic devices
and measurement techniques using ultrafast optical pulses are presented.

While modelocked dye lasers are a must for the shortest optical pulses, a laser
diode source would be much preferred due to its convenience, compactness, and
efficiency. The second chapter describes a Q-switched semiconductor laser using a
multi-quantum well active layer both for gain and as an intracavity loss modulator.
While Q-Switching does not produce as short a pulse as modelocking, it does offer
the advantage of adjustability of the repetition rate making it attractive as a source
for digital communication links. It is also found to be preferred to the similar
approach of gain switching due to less demanding requirements on the rf modulation
power level and waveform. Results include a pulse width of ~ 20 ps and a limiting

repetition rate of 3.2 GHz.

In the early days of GaAs development, many speculated that Si technology
would be replaced by the “superior” GaAs. It is now clear that Si is here to
stay particularly in applications utilizing the highly developed VLSI capabilities.
However, the potential for optical interconnects has motivated at least a marriage
between the two technologies. Direct integration by the growth of GaAs on Si had
been impossible, but the MBE and MOCVD techniques now enable the growth
of such layers and of a quality suitable for devices. The third chapter describes

the operating characteristics of GaAs-on-Si lasers and photodiodes with particular
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attention to their high speed performance. Both the lasers and photodiodes show
comparable performance to similar structures fabricated on GaAs.

In the fourth chapter, a novel approach to improving the resolution of pho-
toconductive sampling is presented, called differential sampling. This technique
obviates the need for carrier lifetime reduction usually used to improve temporal
resolution, and is in principal only limited by a small (few ps) RC circuit time. An
analysis of the minimum detectable signal voltage shows the technique does quite
well compared with lifetime reduction techniques which also tend to reduce mobility
and dark resistance. An experimental demonstration of this technique is presented
in chapter five. Using a two gap sampler, accurate measurement (10 ps resolution)
of a 60 ps pulse response from a photodiode is achieved using photoconductors with
a recovery time of only 150 ps. Performance near the fundamental Johnson noise
limit is also attained, though the minimum detectable signal is higher than predicted
due to low response of the photoconductors (probably due to poor contacts).

Finally, in Chapter 6, the possibility of retrieving an impulse response from
its autocorrelation is explored. The use of the logarithmic Hilbert transform for
phase retrieval has been studied in the literature mostly in connection with imaging
problems for which it is not appropriate due to their symmetric nature. However,
causality and the decay nature of transient phenomena make this technique very
suitable for use with the impulse response of passive devices. Simulated retrieval of
two functions with similar autocorrelations is demonstrated with sufficient clarity

to distinguish them, as well as showing good agreement with the original.
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Chapter 2
Q-Switched Quantum Well Laser

2.1 Introduction

The technique of Q-switching to produce short, high power pulses from a laser
is almost as old as the laser itself [1]. The basic principle is to raise the cavity losses
of the laser to a high level to suppress lasing, and thus enable the gain to reach
a high level without being clamped by stimulated transitions. Then the losses are
quickly reduced leaving the laser far above threshold which results in a rapid build-
up of photons and subsequent depletion of the gain. The result is a pulsed output
containing most of the energy stored in the gain medium and with a width limited
by the photon lifetime of the laser cavity. It has probably achieved its greatest
success in solid state systems such as Nd:YAG where a long spontaneous lifetime
(5.5x 107 *sec) enables the accumulation of a large quantity of energy in the gain
medium which is then discharged in a short pulse (~15 ps) resulting in extremely
high peak powers of > 107 W for a typical laboratory laser. In semiconductor lasers,
a much shorter spontaneous lifetime (~1 ns) precludes the build-up of much stored
energy with typical pumping currents, and the output is limited to pulses of about
30 ps with peak power of at most 1 W. Although high powers are not achieved,
Q-switching is still of interest in semiconductor lasers for its ability to produce
short pulses for use in high speed digital communications. While the technique
of modelocking can produce even shorter pulses, it typically requires an external
cavity and the pulse repetition rate is constrained to a fixed value which essentially
precludes the encoding of information. Conversely, Q-switching can produce an
almost arbitrary sequence of pulses limited only by a maximum pulse rate. The

related technique of gain switching also offers this capability but typically requires
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large amplitude (10 - 15 V) electrical pulses of short duration (<100 ps) in order
to push the gain sufficiently far above threshold before the pulse forms. As will
be shown, successful Q-switching is achieved using sinusoidal modulation with an
amplitude of a few volts.

The crucial element to any Q-switched laser is the element which is used to
adjust the cavity losses. This element must satisfy a few basic requirements to be
effective for Q-switching. In order to attain a gain far above threshold, the overall
losses of the cavity must be varied from some minimum value to a value greater than
the desired initial gain maximum. As well as providing a large threshold variation,
the loss modulator must also do so in a time which is short compared to the pulse
forming process. Finally, the modulator must be insertable in the laser cavity. For
laser diodes, this means the loss modulator must be a semiconductor device which
can be integrated in the laser chip. Proposals for integrated loss modulators have
included electrooptically switched [2] and acoustooptically switched [3] distributed
feedback gratings to effectively vary the mirror reflectivity. An electroabsorption
modulator based on the Franz-Keldysh effect has also been proposed and demon-
strated for Q-switched operation [4]-[6]. In this chapter, a quantum well version of

this device is described with regard to Q-switching.

2.2 Device Structure and DC Characterization

The laser structure — shown in Fig. 2.1— consists of an amplifier section
and an electroabsorption modulator section which are based on a multiquantum
well (MQW) active layer grown by molecular beam epitaxy. A ridge waveguide is
used for optical confinement while SiO, blocking layers confine current injection
to the top of the ridge. The separate gain and loss sections are defined solely by
separate electrical contacts which can be independently biased. The top pT-GaAs

contact layer is etched away in the 5 um gap between the contacts, but otherwise
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Fig. 2.1 (a) Diagram of the two segment quantum well laser with a ridge waveguide
for optical confinement. The lengths of the gain section /; and the modulator section
l2 were 250 um and 50 pm, respectively. (b) The band gap diagram of the multiple
quantum well active layer.
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the waveguide is continuous at this point so optical reflections are negligible. The
measured resistance between the two contacts was 5k} which is sufficient to enable
independent biasing. The lengths of the gain section, /;, and loss modulator, {5,

were 250 um and 50 um respectively.

The effectiveness of this structure for loss modulation comes from a combination
of properties in both the gain and loss sections which are due to the quantum well
active layer. The loss modulator is based on the quantum confined Stark effect [7],
[8] which is similar to the Franz-Keldysh effect seen in bulk material. When an
electric field is applied perpendicular to the quantum well layers, the bottom of the
well becomes triangular instead of square. The states of this new well tend to “sink
into the corners” and the energies relative to the center of the well decrease for
both electrons and holes. Thus the absorption edge corresponding to the ground
state transition shifts to lower energy as an electric field is applied. Furthermore,
the confinement of the well prevents excitons from being ionized as they are in bulk
material, and excitonic resonances are observed at room temperature with large
applied fields (> 10° V/cm). The binding energy of the exciton is reduced somewhat
by an external field but the net change in the exciton transitions is still toward
lower energy. At high fields, the exciton peaks are broadened and reduced due to
tunneling through the confinement barrier which reduces the exciton lifetime. The
net result is that the absorption edge of the modulator section can be red-shifted by
~20 meV with the application of an external electric field. Complementing this loss
modulation, the band gap of the gain section is reduced by the carrier induced band
shrinkage effect which is significant at the high carrier densities required for lasing.
This effect is further enhanced in quantum well lasers compared to conventional
bulk lasers, and the lasing photon energy is typically reduced by about 20 meV [9].

Thus with the same active layer being used for both the gain and loss sections, the
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cavity losses at the lasing wavelength can be varied over a wide range.

The effectiveness of the loss modulator is demonstrated in Fig. 2.2 which shows
the DC threshold current (I;, for the gain section as a function of the bias voltage
Vb, applied to the loss modulator. The threshold current is normalized by the value
of I;,(V, = 0) which is 115 mA. As can be seen the threshold is increased by about
2.7 times as the modulator voltage is varied from 1 V to -3 V. Due to the built in
field of the pn junction, the flat field condition occurs at a positive applied voltage

(~1.4 V) and loss modulation is still effective at V;, = 0.

2.3 Q-Switched Operation

Q-switched operation was obtained as shown in Fig. 2.3, by applying both a dc
bias voltage and a microwave signal to the loss section while the gain section was
quasi-dc biased with a current pulse (2 us at 50 kHz rep rate). True dc operation
was not possible due to the rather high currents required to get far above thresh-
old. However, for the frequencies applied to the loss modulator, the 2 us pulsewidth
should be long enough for steady state to be established. The microwave modula-
tion was sinusoidal with a typical level of 17 dBm (42.24 V) and was varied from
100 MHz to 5 GHz. The laser output was detected by a high speed pin photodiode
which was connected to a microwave spectrum analyzer for observation of the fun-
damental modulation frequency as well as higher harmonics indicating short pulses.
Signal strength was not high enough, nor is the photodiode fast enough for resolved
observation of the output in the time domain. Instead, conventional autocorrelation
measurements of the pulses were made using second harmonic generation in a LiIO3
crystal.

Fig. 2.4 shows the autocorrelation trace obtained with a modulation frequency
of 1.5 GHz, a dc modulator bias of V}, = 0, and a gain section current of 170 mA

(= 1.51;4(Vs = 0)). The autocorrelation full width at half maximum (FWHM) is
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Fig. 2.4 Intensity autocorrelation trace of the Q-switched output at a modulation
frequency of 1.5 GHz and I;,, =170 mA. The autocorrelation FWHM is 26 ps which
corresponds to a pulse FWHM of 19 ps if a Gaussian pulse shape is assumed.
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26 ps which corresponds to an actual pulse width of 19 ps if a Gaussian pulse shape
is assumed. The pulse width is virtually independent of the modulation frequency,
changing only from 19 ps to 22 ps as the frequency was varied from 500 MHz to
3.2 GHz. This is consistent with the Q-switching mode of operation whereby pulse
formation is governed by the dynamics of rapid photon build-up and subsequent
gain depletion, and is relatively independent of the modulation waveform. The
pulse width ¢s strongly dependent on the current to the gain section as shown in
Fig. 2.5. Again this is easily understood in terms of the pulse forming dynamics: a
higher initial inversion leads to a more rapid build-up of photons as well as a higher
peak photon density, which in turn gives a high stimulated recombination rate to

deplete the gain quickly and terminate the pulse.

The autocorrelation shows regularly spaced “coherence spikes” which are well
known in such measurements [10]. These are not real features in the intensity, but
are related to the coherence of the underlying optical wave which is self-coherent
at integer multiples of the laser cavity round-trip time. The narrowness of these
spikes indicates low coherence which is corroborated by the optical spectrum which

was very multimode and covered an overall width of about 50 A.

The ability to produce 20 ps pulses suggests that such a laser could be used
to transmit at bit rates approaching 25 Gbit/sec. However, the long lifetime of
the gain (~2 ns) leads to pattern effects for frequencies above a few hundred MHz,
since the amplitude of a given pulse depends on those which preceded it within the
gain lifetime. For a fixed frequency modulation, this should lead to a reduced pulse
amplitude at higher repetition rates as the gain has less time to recover between
pulses. Such modulation frequency dependent effects were investigated by observing
the microwave spectrum of the intensity with a photodiode as the loss modulation

frequency was varied. Regular pulse generation was observed at the modulation
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frequency up to a maximum frequency of 3.2 GHz as indicated by a spectrum
consisting of the fundamental and several higher order harmonics. This is shown
in the microwave spectrum traces of Fig. 2.6 for a laser modulated at 800 MHz.
The fundamental frequency is accompanied by all integer harmonics out to 12 GHz
with a fairly flat amplitude to about 6 GHz, which is the response rating of the
photodiode used. Much of the amplitude variation is due to electrical reflections
between the sweep oscillator and the high resistance loss modulator which is poorly
matched to a 50() system. As expected, some reduction in the amplitude of the
fundamental was observed at higher modulation frequency due to lower energy per

pulse.

As the modulation frequency was increased beyond 3.2 GHz, subharmonics
appeared — first at half-integer and then quarter-integer multiples — indicating
that the pulse train was no longer regular. The onset of this behavior is shown
in the sequence of four microwave spectrum traces of Fig. 2.7. The gain section
is biased at 1.5I;; while the absorber is dc biased at —1 V and modulated with
17 dBm of rf power. At a modulation frequency of 2.24 GHz the spectrum shows
only the fundamental frequency and integer harmonics (not visible in the range of
1.7 - 4.1 GHz). As the modulation frequency is increased to 2.35 GHz a signal
appears at 3.52 GHz, i.e., 1.5 times the fundamental, as well as at other half-integer
multiples of the fundamental. At this point, the half-integer harmonics are well
below the fundamental énd rather broad indicating that the period doubling be-
havior is not yet consistent over long times. At a modulation of 2.56 GHz, the half
integer harmonic (3.84 GHz) is only 2 dB below the fundamental and quite narrow.
Finally, at higher modulation frequencies, further sub-harmonics appear spaced at
one-fourth the fundamental. The last trace of Fig. 2.7 shows fundamental modu-

lation of 3.5 GHz, the first half-harmonic at 1.75 GHz, and a signal at 2.63 GHz
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Fig. 2.6 Microwave spectrum analyzer traces of the optical intensity output of Q-
switched laser modulated at 800 MHz, showing extensive harmonic content. Top
trace covers the frequency range of .01 - 1.8 GHz, and bottom trace covers 1.7 -
4.1 GHz.
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Fig. 2.6 (cont.) Further microwave spectra of Q-switched laser covering frequency
ranges of (top) 3.8 - 8.5 GHz and (bottom) 5.8 - 12.9 GHz.
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which is 3/4 the fundamental. Though not visible in the limited frequency range,
similar signals appear at all quarter-integer harmonics. This quarter-harmonic sig-
nal is broad and relatively weak as in the onset of the half harmonic. However, its
strength does not increase at higher modulation frequencies. The multiple peaks
of this signal are due to cable length related resonances caused by poor impedance

matching of the absorber. This chaotic behavior is analyzed in the next section.

2.4 Analysis of Q-Switching Including Chaotic Behavior

When half integer harmonics appear in the intensity spectrum, it is because
the pulse train consists of alternating large and small pulses. Qualitatively, this is
plausible since a large pulse will better deplete the gain resulting in a low inver-
sion for the next pulse which will then be small resulting in a high inversion for
the next pulse which is then large again. Explaining why this mode should occur
and only at certain frequencies requires a more quantitative analysis. A complete
numerical analysis by Tsang et al. [5], including amplified spontaneous emission
and spatial variation of the gain and optical field, showed this chaotic, alternating
pulse amplitude behavior at higher frequencies. Other analyses of Q-switching of
semiconductor lasers are generally numerical models based on the rate equations
and successfully predict dependencies of pulse width, delay time, energy utilization
factor, etc., on the initial inversion as well as various recombination behaviors and
spontaneous emission levels [2]. In spite of their successes, such numerical models
generally do not reveal the essential elements of anomalous behavior — informa-
tion which would be instrumental in deciding if and by what means it might be
remedied.

We now develop a more physical — albeit less exact — picture of the Q-
switching operation, with particular attention to the chaotic pulse train behavior.

The analysis is based on the following rate equations for the average photon density,
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.

Fig. 2.7 Microwave spectra of Q-switched laser showing onset of sub-harmonics.
Frequency range is 1.7 - 4.1 GHz and vertical scale is 10 dB/div. At a modulation
frequency of 2.24 GHz (top), only the fundamental appears, while at 2.35 GHz a
signal has appeared at 3.52 GHz which is 1.5x the fundamental.
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Fig. 2.7 (cont.) At a frequency of 2.56 GHz (top), the half-integer harmonic at
3.84 GHz is very narrow and only 2 dB below the fundamental. Further increase to
3.5 GHz results in the appearance of a signal at 3/4 the fundamental (2.63 GHz)
as well as the half-integer harmonic at 1.75 GHz.
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p, and gain section carrier density, n, of the laser:

dn J n

—_—= — - — 24.1
dt q Vol pg(n) Ts ( )
dp p n

— =T - — 4+ Tpf—, 2.4.2
y7 pg(n) - + ﬂrs ( )

where J is the injected pump current, g is the electronic charge, Vol is the active
layer volume, 7, is the spontaneous lifetime (linear recombination assumed), I is the
optical confinement factor, and @ is the spontaneous emission factor. The photon
lifetime is defined by 7,n = m, where vy, is the photon group velocity,
« is the distributed loss constant, L is the laser cavity length, and R is the mirror
reflectivity. The dependence of gain on carrier density will be assumed to be of the
linear form g(n) = v, A(n — ng) where ng is the transparency level.

Based on the experimentally observed short pulse operation, the approximation
is made to break up the analysis into the two distinct processes of pulse formation
and pumping. Each period of the modulation is assumed to consist of a time of
zero light while the inversion is pumped to some high level, followed by a short
time when the pulse is formed. By establishing relationships between the final and
initial inversion for each stage, a steady state solution is found by requiring that
the inversion repeat itself every cycle or possibly every few cycles.

Between pulses, the stimulated terms are neglected and the pumping of the

inversion is governed by

dn/ng _  J  n/ng
dt ~ gqng, Vol To
1
= ‘T—[J/Jth ~ n/nl, (2.4.3)

where nyj, is a threshold carrier density defined below and Jj, is the corresponding

threshold current. Denoting the carrier density immediately after a pulse as n4
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then the value immediately before the next pulse, np, is given from the solution of
(2.4.3) by

o J
Do _ Da -1/fre = (1 e~ 1/, (2.4.4)

Ntk Nth Jin
where the pumping time is taken as the inverse of the modulation frequency f.
The pulse formation relations are now found from the rate equations [11], while
neglecting the pumping and spontaneous terms which is valid for short pulses. The
modulator losses are assumed to be constant at their minimum value during the
entire pulse. Normalizing time by the photon lifetime with ¢’ = t/7,y, the rate

equations are then

dp n— ng

= — p(T —1) = . — | 2.4.5
2 — p(Calm)rn — 1) =p (20— 1) (2:45)
dn 1 n-—ng

g0 = P9 = — 5P s (2.4.6)

where n;;, is the threshold carrier density implicitly defined by (2.4.5). Dividing

these two equations results in

@ _p (M - 1) . (2.4.7)

dn n —ng
Denoting initial and final quantities by ¢, f respectively, the solution to this is

ny —No

=

n; —nNg

> — (ny —ng). (2.4.8)

(ps = p:) = (nen — o) In <

Assuming the optical pulse to build-up from and decay to a small value, then

p; =~ 0 =~ ps, and the gain values before and after the pulse are related by

(na —no)/nen _ (na — n0)/nen, — (np — no) /nen,
(ns — no) /nen P [ 1—ng/nep ] : (2.4.9)

The solution to this transcendental equation as well as the pumping curves —

Eqn. (2.4.4) — for various values of the frequency parameter f7, are plotted in

Fig. 2.8.
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Fig. 2.8 Plots used for graphical analysis of repetitive Q-switching. The axes repre-
sent carrier densities before (np) and after (n,) a Q-switched pulse. Pump curves,
labeled by fr7,, give prepulse carrier density as a function of the density following
the previous pulse. Pulse curves give n,(np) due to the depleting action of the
Q-switched pulse. The dotted-line pulse curve assumes that the full Q-switched
pulse occurs without interference by the return of modulator losses. Approximate
modified pulse curves including this effect are labeled by frequency.
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Also shown in this plot are pulse curves which have been modified to include
the effect of clipping of the pulse by the return of high losses in the modulator before
depletion of the gain has terminated the pulse. In the limit of high modulation rates,
very little depletion or modulation of the carrier density occurs and the output
power is just modulated as if by an external modulator. Thus the clipping of the Q-
switched pulses by recovering losses can also be regarded as a transition between full
Q-switched operation at low modulation frequencies and small signal modulation
at high frequencies. This effect has been roughly calculated here by estimating a
pulse width and a time window of positive gain, and using this to estimate what
fraction of the total expected pulse photons are emitted and hence what fraction
of the expected gain depletion occurs. The pulse width, 7, is estimated from the

ratio of the total photons emitted to the peak rate at which they are lost

T(n; — -
S na) _ L Toh- (2.4.10)
Pk (g — no) [ 552 — ezt

The peak photon density occurs at n = ny, and is evaluated by inserting this in
Eqn. (2.4.8). Assuming a sinusoidal modulation of the losses such that the threshold
carrier density varies by An,j, then the window for positive gain is approximately
given by

Tqw = icos‘1 (1 — M)

™ rf Ang/2 )
For low initial gain, the Q-switched pulses are fairly symmetric so we take a nor-
malized pulse shape of [1 — cos(;’%)] /2. Finally we make the approximation that
only that fraction of the Q-switched pulse which falls within the gain window is
actually emitted, and consequently the actual gain depletion is the same fraction of

the total depletion expected from Q-switching:

Tgw

1 .
— — sin(7 Ty [Tpw) | » Tgw < 2Tpuw .

(n6 — na)actual = (Mo = Na)un 2w -
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The resulting modification to the pulse curves is now frequency dependent due to
the frequency dependence of the gain window 7,,. While this approach is very
approximate and neglects some important effects such as the time delay from pulse
turn-on to peak, it shows the basic behavior that a more exact calculation shows
and sets a best case limit to this behavior. The essence of this modification is that
at low ng and high frequency, the pulse gets clipped before it gets large so little
depletion occurs and n, ~ ng. At higher np, Q-switched pulses are shorter — see
Fig. 2.4 — due to faster photon build-up and higher peak stimulated rates. Thus
the pulse will be unaffected by the modulator and the curve returns to the original

full Q-switching curve.

The significance of this modification is apparent when considering the stability
of steady state operating points corresponding to the intersection of the pump
and pulse curves. This is illustrated graphically in Fig. 2.9. In the top figure,
hypothetically consider a value of n, (=~ 0.75) different from the intersection point.
After pumping, the value of np is given by the point “a” which leads to an n, given
by point “b” after the pulse. This process continues along the path indicated, and
converges to the intersection of the pump and pulse curves showing that this is
a stable, steady state solution. Conversely, for the situation in the lower figure,
the sequence of points “abcde” diverges away from the intersection and reaches
another steady state indicated by the rectangle “ABCD.” A check of an initial
point outside this rectangle shows that this path is stable. This path is that of
a period doubled output since the pre-pulse carrier density— and hence the pulse
amplitude — alternates between the values of n; at the points “A” and “C,” with

pulses produced at the modulation frequency.

What then distinguishes the stable and unstable operating points associated

with the intersection points? A little playing around with such diagrams shows that



25

1.50
Stable solution
& Pump Curve
; 125 T d lmpulse| > ]mpumpl
c C
:e ; 1
a — b
Pulse Curve
1.00 f
0.75 1.00 1.25
ng/ny
1.50
D C Pump
51 - d c Unstable solution
= a gj |mpu|se| ( [mpumpl
e —
A B
Pulse
1.00 .
0.75 1.00 1.25
Ng /Nt

Fig. 2.9 Illustration of the stability of repetitive Q-switching and period doubling.
The steady state solution associated with the intersection point is stable in the top
figure, but unstable in the lower figure. In the latter case, pulses are still produced
at the modulation frequency, but their energies alternate between two values. The
stability condition is that |mpyise| > |mpumpl-
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the condition for stability is that

ImPulse| > |mPump|7 (2411)

where the m’s are the slopes — dn;/dn, — of the pulse and pump curves at their
intersection point.

Now referring back to Fig. 2.5, the pump curves all have slopes mpymp < 1,
while the unmodified pulse curve has its minimum |mpy1se| at np = n, = 1, where
it can be shown that mpy,e = —1. Thus, the Q-switching process itself (i.e., not
including the clipping effect of the loss modulator) is stable at all frequencies and
would not lead to chaotic pulse trains. The inclusion of the spontaneous emission
term and bimolecular recombination processes does not alter this conclusion, but
actually alters the curves toward greater stability.

Thus the inclusion of clipping of the pulse by the modulator is required to ex-
plain the chaotic pulse train behavior; and this will only occur when the intersection
point lies on a limited portion of the upward facing section of the altered curve. At
low frequencies, the modification to the pulse curve is small and the pump curve
is nearly flat so the intersection lies in a very stable region. As the frequency is
increased, the intersection moves down the pulse curve while the clipping “bump”
becomes more prominent until the intersection point lies in an unstable region and
the period doubled pulse train is expected. As the frequency is further increased,
the intersection will move toward the peak of the bump and operation will again
be stable. At this point, there is very little depletion of the gain per pulse since n,
is only slightly less than n;, and the operation is essentially that of a sinusoidally
modulated output rather than Q-switching.

As the frequency is increased beyond the onset of period doubling, the point

“B” in Fig. 2.10 moves down the pulse curve toward the point of maximum n,.
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Fig. 2.10 Illustration of steady state solution corresponding to period quadrupling.
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When it reaches this point, another type of solution occurs which is depicted in
Fig. 2.10, and represents period quadrupling. As the frequency is further increased,
the corners of the two rectangles approach each other and period doubling occurs
again just before subharmonics disappear altogether. Thus, in addition to explain-
ing the appearance of subharmonics in the intensity spectrum, this simple model
predicts that these will be limited to half-integer and quarter-integer values. As
this is a consequence of the pulse curve shape and not the actual values, it should
continue to hold when a more accurate calculation of this curve is made including

pulse delay, spontaneous emission, etc.

The actual frequency at which subharmonics appear will depend on the values
of a number of parameters. For comparison with the experimental results of the last
section, a pumping level of twice the low loss threshold is a good approximation
assuming the low loss threshold is about that at V;, = +1 V. The spontaneous
lifetime is generally taken to be 1 - 3 ns for bulk material, but a somewhat lower
value is usually more appropriate for lasers due to diffusion from the active layer.
This is especially true for structures without lateral carrier confinement, as with
the ridge waveguides used here. We therefore assume a value of 1 ns which is
convenient since the pump curve labels then correspond to frequency in GHz. With
these assumptions, Fig. 2.5 indicates that subharmonics should appear somewhere
between 2 - 4 GHz, probably close to 3 GHz. This corresponds very well to the
observed value of 3.2 GHz especially considering the approximations made along

the way.

Finally, we briefly consider how this problem might be eliminated or at least
pushed to a higher frequency limit before it appears. It doesn’t seem likely that the
problem could be eliminated altogether since eventually the loss modulation will

interfere with the finite width Q-switched pulses. Reduction of the spontaneous
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lifetime would be effective but is undesirable in that it would raise the threshold
current to levels where ohmic heating becomes a problem. Probably the best solu-
tion is to pump the gain section harder which moves the point at which the pump
curves converge further up the line ny = n,. This is confirmed by the experimental
data in Fig. 2.11 which shows an increase in the maximum modulation frequency for
regular pulse generation as the pump current to the gain section is increased. Ac-
cording to Fig. 2.5, a 50% increase in the pumping level (from 2n:, to 3n.,) would
be sufficient to push the onset of subharmonics to a modulation frequency of greater
than 10 GHz. Unfortunately, the lasers used would not survive this pumping level,
but the trend of Fig. 2.11 indicates that this prediction would not be achieved and
instead the frequency limit would be around 4.5 GHz. This discrepancy may be due
to the simplified use of a linear gain versus carrier density in the calculations. Inclu-
sion of a sublinear gain — which is characteristic of quantum well active layers —
would mean that at high pump levels, the peak gain does not continue to increase as
much and thus pulse widths are not as short as predicted with a linear gain model.
Consequently, the frequency at which the loss modulation starts to interfere with
the ‘completion of the Q-switching process would also be reduced. A possible cure
for this may be to use more quantum wells to enable higher gains to be achieved
before it is saturated. A potential drawback to increased pumping of the gain is
that the loss modulation might not be adequate to suppress continuous lasing at
lower modulation rates due to the high levels of gain which would be reached. This
is not a serious problem though, particularly if operation were to be restricted to a

single frequency at a time.
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Fig. 2.11 Experimental data showing the frequency at which sub-harmonics of the
mOdl.llatIOIl frequency appear as a function of the current to the gain section. Cur-
rent is normalized to the threshold current at which any output first occurs while
modulating the loss.
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Chapter 3

GaAs on Si: High Speea Laser Diodes
and p-i-n Photodiodes

3.1 Introduction

The development of molecular beam epitaxy (MBE) has ushered in a new
generation of exotic semiconductor devices which rely on its capability to control
growth composition with atomic layer precision. Examples include the high electron
mobility transistor (HEMT), quantum tunneling devices, low threshold quantum
well lasers, and quantum confined Stark effect optical modulators. MBE has also
opened up another technology of extreme practical importance with the successful
growth of epitaxial layers of GaAs on Si substrates. The most significant aspect
of this is the potential for monolithic integration of GaAs and Si devices, thus
providing a marriage between the optoelectronic devices of GaAs and the highly
developed VLSI processing technology of Si. Practical considerations also motivate
the growth of solitary GaAs devices on Si simply due to the superiority of Si as
a substrate material-it’s lighter, stronger, cheaper, and is available in larger wafer
sizes.

The major obstacles to success are a large lattice mismatch and a difference
in thermal expansion between the two materials. The lattice constants of Si and
GaAs are 5.43 Aand 5.65 Arespectively which can lead to defect densities as high
as 10'® ¢cm~2 at their interface. The mismatch in thermal expansion results in
significant stress in the epitaxial layers when the wafer is cooled down from the
elevated temperatures used for MBE growth. This often results in visible cracking
of the GaAs layers particularly if they are too thick. Techniques involving the use

of tilted Si substrates and superlattice buffer layers have significantly improved the
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quality of GaAs layers obtainable, though not to the level of that obtained with
growth on GaAs substrates. Nevertheless, successful devices have been numerously
reported, particularly those which are solely electronic in nature [1]. Optoelectronic
devices have been more difficult, presumably because they demand a higher material
quality, but cw operation of lasers with moderate thresholds has been accomplished
[2)-[4].

For application in high speed communication, an important characteristic of
any laser diode is its modulation response. The first section of this chapter describes
microwave current modulation measurements of GaAs-on-Si lasers to characterize
their applicability to high speed systems.

Among optoelectronic devices, lasers have received the most attention since a
Si laser is virtually impossible due to its indirect band structure. Photodetectors
on the other hand, can be successfully made with Si and have consequently received
less attention. However, high speed considerations favor the use of GaAs primarily
due to a much higher (10X) absorption coefficient at GaAs laser wavelengths. This
is discussed in section 3 along with a presentation of results on the performance of

high speed GaAs-on-Si pin photodiodes grown by molecular beam epitaxy.

3.2 High Speed Modulation of GaAs/Si Lasers

The basic MBE growth structure used for these lasers is the same as was used
to achieve the first room temperature cw operation of a GaAs/Si laser [5], [6]. In
those cw experiments, broad area lasers were used to reduce the effects of current
leakage in determining the current density necessary for lasing—a standard measure
of quality for laser diodes. For high speed performance, lateral confinement of the
lasing mode is desired to enable a high photon density, and thereby a high stimulated

recombination rate. This is reflected in the expression for the modulation corner



34

frequency, f,, of a laser [7]:

1 [Apo
Y Tp

fr (3.2.1)

where A is the differential gain times the group velocity of light, po is the average
photon density, and 7, is the photon lifetime of the cavity. The optimum approach
to achieving optical confinement is with an index guided structure which requires
a crystal regrowth step. Such regrowth processes have so far not been successful
due to the tendency of the Si substrate to completely dissolve in the GaAs melt of
a liquid phase epitaxy (LPE) process. Consequently, a ridge waveguide was used
for the guiding structure as illustrated in Fig. 3.1. The 10um ridge is formed by
wet chemical etching and a top contact of Cr/Au is evaporated and patterned by a
liftoff. Layers of SiO, restrict the injection of current to the top of the ridge. The
second contact is made to the bottom of the nt Si substrate so current must flow
through the Si-GaAs interface. This then directly demonstrates the potential for the
desired integration. The active layer in these lasers is a single quantum well graded
refractive index separate confinement heterostructure (SQW GRINSCH) similar to
that used in the first cw GaAs-on-Si lasers.

The lasers were mounted on a commercial H-mount which fits into a special
microwave package for high-frequency modulation [8]. Wire bonding to the top
contact caused some additional practical problems due to the nature of the GaAs-
on-Si layers. First, the devices were more susceptible to damage by the bonding
tool action than ordinary GaAs lasers, presumably due to the stress and defects
in the GaAs-on-Si material. This was cured by making the bond as far from the
laser ridge as possible and reducing the bonding tool pressure somewhat. Both of
these were limited in extent since parasitic capacitance considerations prohibit a
very large metal bonding pad and the bond pressure must be sufficient to make the

bond work at all. In fact the second difficulty was that the bonds did not stick to
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Fig. 3.1 MBE growth structure for GaAs-on-Si lasers. The ridge waveguide provides

lateral optical confinement and the active layer uses a single quantum well for low
threshold.
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the bond pad as well as they usually do with GaAs, even before the bond pressure
was reduced. The reason for this is not known for sure but may be related to the
rough surface of the GaAs-on-Si and consequently the thin layer gold bond pad
also. In the end, yield was not high and success was as much due to persistence as
to technique.

After mounting, the high frequency modulation response is measured as dia-
grammed in Fig. 3.2. A quasi-dc bias and the microwave modulation are applied to
the laser through a bias T. Unfortunately, these lasers would not survive a true dc
bias and so had to be operated at a much reduced duty cycle. However the pulse
bias width of 5 us is several times the period of the minimum modulation frequency
and so can be considered as dc for practical purposes. The laser light output is
then detected with a high speed p-i-n photodiode and the modulation amplitude is
measured with a microwave spectrum analyzer.

While the photodiode used had a rated 6 GHz corner frequency, it was still cal-
ibrated for this measurement and all results were normalized with this calibration.
The calibration measurement was done by measuring the photodiode’s frequency

response with a picosecond light source as described in the next section.

Ordinarily, modulation measurements are performed with a network analyzer
which automatically normalizes to the input rf signal strength and enables continu-
ous variation of the frequency with full data collection in less than a minute. Due to
the necessity of operating at a reduced duty cycle, the signal strength was not high
enough for this technique and a spectrum analyzer was used instead. This enabled
the use of an extended accumulation of the signal at a fixed modulation frequency.
As a result, the measurements were limited to a discrete set of frequencies rather

than a continuous sweep.

The measurement results are shown in Fig. 3.3 with a Bode plot of the response
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Fig. 3.2 Set-up used for measuring the microwave modulation response of GaAs-on-
Si lasers.
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data normalized to 0 dB at low frequencies. The response was measured out to a
frequency of 4.5 GHz and a corner frequency of about 2.5 GHz was determined
with a high frequency roll-off of 48 dB per decade. Modeling of the laser dynamics
predicts a high frequency roll-off of 40 dB/dec. However, higher values of about
48 dB/dec are usually measured and are attributed to parasitic effects {7].

As already mentioned, the ridge waveguide used for these lasers is not ideal for
high speed performance. In addition the growth on a conductive substrate leads
to excess parasitic capacitance and the fastest lasers are typically grown on semi-
insulating substrates. Thus while GaAs lasers with corner frequencies >12 GHz
have been reported, those with structures similar to that used here are typically
limited to 2-3 GHz [7]. It seems then that the GaAs-on-Si lasers are limited more

by restrictions on the structure than by deficiencies in the material quality.

3.3 High Speed GaAs-on-Si p-i-n Photodiodes

At GaAs laser wavelengths (~ 0.85um), Si is absorptive (Agqp =~ 1.1um) and
can be used directly as a detector medium without the need for GaAs-on-Si growth.
However, GaAs does offer advantages (e.g., high mobilities and absorption coeffi-
cient, and a large band gap energy) which make it a superior material for high speed
optical detectors. In particular, the large difference in absorption depths for light
at GaAs laser wavelengths (=~ 10um for Si versus ~ lum for GaAs) [9] has direct
consequences in the potential gain-bandwidth products for photodiodes. Since gi-
gahertz response usually requires carrier transit regions of only a few um, a fast Si
photodiode will be less sensitive than a similar GaAs photodiode, as well as being
much more prone to diffusion tail effects which can seriously degrade the frequency
response. In this last regard, the high mobility of GaAs (hence high diffusion con-
stants) and the possibility of band gap tailoring with AlGaAs also favor GaAs with

techniques for reducing these diffusion tail effects. Furthermore, at wavelengths
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greater than 1.1um (Si is transparent), low band gap ternary and quaternary III-V

compounds grown on Si become very important for integrated photodetectors.

So far, reports of GaAs-on-Si photodetectors have been rather limited. High
speed GaAs-on-Si photoconductors have been demonstrated with an impulse re-
sponse of 60 ps using a short (4um ) contact spacing [10]. Avalanche photodiodes,
with a p-i-n structure similar to that used here, have been investigated regarding
dc operation with only a moderate gain (7x) being achieved due to large leakage
currents at high reverse bias [11]. For the fiber optic communications wavelengths
at 1.3 um and 1.55 um, GalnAs photodiodes grown by metalorganic chemical vapor
deposition on Si substrates have also been reported [12]. However, the anticipated
high speed performance of p-t-n photodiodes remains to be verified for any III-V

compound grown on Si substrates.

The detector structure used was a conventional p-i-n layer sequence with a
mesa-defined active area as shown in Fig. 3.4. The growth of the GaAs/Si interface
(the most critical point) is the same as was used previously for lasers and is described
in detail elsewhere [2],[3]. After a specialized growth start procedure to establish
good quality GaAs at the GaAs/Si interface, the growth sequence proceeds with
2 um nt GaAs, an undoped GaAs layer of thickness d, and a 0.1 um pT GaAs
contact layer. The top contact layer is kept very thin to reduce potential diffusion
tails by reducing both the diffusive decay time as well as the number of carriers

avallable for such a tail.

Mesas (70 x 100um?) were defined by photolithography and etched with a
solution of HyO5:H3PO4:H,0(1:3:40) to about 1 um below the intrinsic layer. Bond
pads (50um Dia.) of Cr/Au were then applied to the mesas by liftoff and a back
contact of AuGe/Au was made to the substrate. In order to demonstrate the

capability for direct integration to Si circuits, all devices were fabricated with one
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Fig. 3.4 Diagram of the GaAs/Si p-i-n photodiode structure. Mesa area is 70x100 pum?
and three different undoped layer thicknesses were used (d =1, 2, and 3 mum).
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contact on the back of the Si substrate as opposed to a second topside contact to the
GaAs itself which would allow the potentially troublesome GaAs-Si interface to be
bypassed. In order to gauge the performance of the material and not the structure
itself, similar devices were fabricated with GaAs grown on a GaAs substrate for
comparison. For convenience, we will refer to GaAs-on-Si-substrate and GaAs-on-
GaAs-substrate as just GaAs/Si and GaAs/GaAs respectively, throughout the rest
of this chapter. In all, three GaAs/Si structures (d=1um,2um, and 3um) and two

GaAs/GaAs structures (d=1um and 3um) were used in this investigation.

Current-voltage characteristics for both a GaAs/Si and GaAs/GaAs diode
(d=1um) are shown in Fig. 3.5. As can be seen, the GaAs/Si diode has a consid-
erably lower voltage and “softer” reverse breakdown than the GaAs/GaAs device.
These large reverse leakage currents are a typical problem in GaAs/Si diodes|11]
and have been attributed to defect assisted tunneling or conduction through metallic
precipitates situated around dislocations [13]. However, the GaAs/Si diode can still
be safely biased at the levels typical for high speed operation, namely a few volts.
The forward characteristic indicates that series resistance is limited to less than 100
which is not appreciable considering the detector typically drives a 501 transmis-
sion line. The GaAs/GaAs detectors required an alloying of the contacts (30 sec
at 300 °C) in order to achieve a satisfactory forward current-voltage characteristic
with low resistance. Conversely, the GaAs/Si detectors showed good forward char-
acteristics without any alloying; furthermore, any attempt to alloy them resulted
in a severe degradation of the reverse bias leakage and consequently, none of the

GaAs/Si detector contacts were alloyed.
For high speed measurements, the detectors were mounted in a microwave 50f2
photodiode package [14]. The mounting process involved ultrasonic bonding directly

on the mesa which apparently degraded the reverse breakdown characteristic of the
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Fig. 3.5 Current-voltage characteristics for (top) GaAs/Si photodiode (d = 1 pm)
and (bottom) GaAs/GaAs photodiode (d = 1 um). In each figure, the left curve
is the forward bias with scales of 1 V/div (horiz.) and 10 mA/div (vert.), and the
right curve is reverse bias with scales of 5 V/div and 20 pA/div.
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GaAs/Si diodes, but leakage currents at the operating voltages were still low. For
the GaAs/Si detector described below, reverse leakage current was measured to be

70nA at an applied bias of -3V.

The capacitance of the mounted detector was also measured to evaluate the RC
limit (as opposed to transit time effects) to the high speed performance. Assuming
a depleted I-region of 2 um and a mesa area of 70 X 100um?2, the capacitance
should be 0.4 pf. At zero bias, capacitance was measured to be 0.56 pf which
is significantly more than the estimated value. However, this quickly dropped to
0.37 pf with an applied reverse bias of 2 V indicating a low level of residual doping
in the “intrinsic” region which must be depleted by such a reverse bias for high
speed operation. Based on this value and a load resistance of 50f1, the RC time
constant of this detector should be ~20 ps. Assuming a saturated carrier velocity
of 1 x 107cm/s, the transit time is also estimated to be 20 ps.

For high speed measurements, the mounted detector was biased through a mi-
crowave bias tee and illuminated with 5 ps optical pulses from a synchronously
pumped modelocked dye laser (A = 600nm) at a 100 MHz repetition rate. The
output of the detector was then measured both with a sampling oscilloscope and
a microwave spectrum analyzer. Fig. 3.6 shows the measured impulse response of
both a GaAs/Si(d=2um) and a GaAs/GaAs(d=3um) detector at their optimum
bias voltages. Both exhibit a full width at half maximum (FWHM) of approxi-
mately 45 ps, and are almost indistinguishable except for a somewhat longer tail in
the GaAs/Si response. This is suggestive of a diffusion tail which would be more
prominent with a thinner sregion diode. However, at the wavelength used here,
the short absorption depth (0.3 um) should preclude such tails altogether in ei-
ther a 2 um or 3 um depletion layer photodiode. While the source of this tail is

not known, its small relative size indicates it is not a significant concern for high
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Fig. 3.6 Impulse response measurements of (top) GaAs/Si photodiode (d = 2pm)
and (bottom) GaAs/GaAs photodiode (d = 3um). The time scale is 50 ps/div.
Both have a pulse width (FWHM) of ~45 ps and are quite similar other than a
slightly more evident tail on the GaAs/Si response.
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speed applications. At this short a pulse width, the rise time of the sampling head
(~25 ps) is affecting the measurement and the actual pulse width is somewhat less.
Using a sum of the squares rule for deconvolving, the actual pulse width would be
estimated at 37 ps (i.e. V452 — 252) although a more accurate determination of the
oscilloscope sampling function is necessary for a reliable deconvolution.

This impulse response signal was also measured with a microwave spectrum
analyzer (HP8565A) to display the frequency response of the detector which is
shown in Fig. 3.7. Except for a slight dip at 3 GHz, the response is flat (within
3dB) out to >4 GHz. The same 3 GHz dip was observed with several other detectors
having much different impulse responses (including a commercial photodiode with
a rated corner frequency of 7 GHz) and is thus believed to be an artifact of the
measurement set-up.

In summary, we have reported on the fabrication and measurement of GaAs
p-t-n photodiodes grown on Si substrates by MBE. This includes the first high
speed measurements of such devices. The detectors display a pulse width of 45ps
(FWHM) and a -3dB corner frequency of >4 GHz. Within the resolution of these
measurements, the high speed performance was virtually indistinguishable from
that of a similar GaAs photodiode grown on a GaAs substrate. It is expected that
the high frequency response can be improved upon simply by reduction of the diode
dimensions.

On the negative side, although good devices were achieved, yield was not par-
ticularly high. Furthermore, several growths showed considerably slower response
with pulse widths of 120 ps (FWHM). Also, reverse bias breakdown voltages were
often less than 10 V and even as low as 2-3 V. Finally, there may be lifetime prob-

lems due to the stress and defects in the epitaxial GaAs. This was indicated by
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Fig. 3.7 Measured frequency response of a GaAs/Si photodiode (d = 2 um). Actual

data points are at multiples of 100 MHz corresponding to the repetition rate of the
modelocked laser source.
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difficulty in obtaining fast detectors from the same “good” wafer six months after

the initial results.
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Chapter 4
Differential Sampling: Analysis

4.1 Introduction

For years, the high speed measurement needs of the electronics community have
been served by commercial sampling oscilloscopes which offer resolutions of about
35 ps. Over the last decade, the development of high-speed electronics and optoelec-
tronics has outgrown this capability as device response times have dropped to tens
or even a few picoseconds. These advances have consequently necessitated the com-
plementary development of a measurement technology to characterize them. Two
very successful techniques which have been developed are electro-optic sampling
and photoconductive sampling. Both of these take advantage of recent modelocked
laser technology which offers optical pulses of typically a few ps down to < 10 fs. In
addition, the use of optical triggering enables an unprecedented reduction in jitter
which is crucial to sampling techniques due to the repetitive nature of such measure-
ments. While the best temporal resolution has been achieved with the electro-optic
technique, photoconductive sampling offers better sensitivity as well as being more
adaptable to a variety of material systems.

In this chapter a new approach to photoconductive sampling is presented called
differential sampling. The basic idea is illustrated by a comparison with the con-
ventional approach, as shown schematically in Fig. 4.1. The conventional technique
most often uses an optically activated switch to sample the voltage on a trans-
mission line during the time the switch is closed. Consequently, the resolution is
limited by how fast the switch can be closed and opened. While some of the first
work used optical pulses to turn the switch both on and off [1], more recent work

has typically relied on modifying material properties to enhance recombination of
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Electrical Signal f(t)
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Sampling function g(t- 1)
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charge from ’Cl'[O Ty

Differential Sampling

Fig. 4.1 Schematic comparison of conventional sampling approach (top) and differ-
ential sampling (bottom).
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photogenerated carriers and thus turn off the conductivity of the switch faster.
These include surface recombination [2], doping with deep level impurities 3], [4],
[5], ion bombardment [6]-[11], and the use of amorphous material [12], [13]. The
ion bombardment approach has been the most successful with typical lifetimes of
2-10 ps and even subpicosecond for the special case of heavily bombarded silicon-
on-sapphire [14].

The differential scheme uses the difference between two conventional sampling
measurements as its result, which gives the charge collected between the times
(71,72) when the two switches are turned on. Some matching of the turn-off of the
switches is required; but for good resolution, only a fast turn-on of the switch is now
needed. The ultimate limits in resolution and sensitivity will be shown to be com-
parable to results obtained by ion bombardment. Furthermore, since the resolution
of this new approach is independent of carrier lifetime, many of the drawbacks of
bombardment can be avoided. Finally, a trade-off between resolution and sensitiv-
ity, which is not possible with a fixed sampling window, is easily implemented with

this scheme.

4.2 Scheme and resolution

The uncertainties in the heuristic picture of the differential approach (i.e., ac-
tual resolution, effect of unmatched turn-off decays, etc. ) are resolved by describing
the scheme in terms of a new effective sampling function. We start with a quanti-
tative description of the conventional sampling with a fast photoconductor [15]. A
typical configuration using microstrip transmission line is shown in Fig. 4.2 along
with the equivalent circuit. The usual model for a photoconductor is simply a time
varying conductance in parallel with a parasitic capacitance {15]. The variation of
the conductivity follows that of the carrier number in the photoconductor gap and

will be denoted as G(t). The light source is assumed to be a train of ultrashort
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Fig. 4.2 (Top) Typical microstrip transmission line circuit for photoconductive sam-
pling. The signal is represented by the voltage source V,. The substrate material
is a high resistivity semiconductor. Carriers created by the focussed light spot al-
low current, I,, to flow to the sampling electrode until recombination turns off this
switch.

(Bottom) Circuit equivalent of the photoconductive switch including the gap capac-
itance C,. G(t) represents the time varying conductance of the photoconductive
gap due to illumination.
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pulses which instantaneously create free carriers when absorbed at the photocon-
ductor gap, and G(t) reflects the decay of these carriers. The measured signal is
the total charge per pulse, Qmeas, — or dc current, Ijmeas = Qmeas/Trep, for a

repetitive source — flowing onto the sampling electrode. This is simply given by

Qmeas (1) =V, 0G = /—m dtV,(t)G(t — 1)
_ / T @V, (t+ )G, (4.2.1)

where 7 is a variable delay between the signal and the photoconductor turn-on, and
V,(t) is the voltage across the photoconductor gap which is given in terms of the
original signal, V,(t), as
o0
V,(t) =V, * frc = / dt' V, (Y fre(t — t'). (4.2.2)
-0
The operations of correlation and convolution are denoted by o and * respectively.
The function fro is just the transient associated with charging the gap capaci-
tance through the transmission line impedance. Combining these two equations
and changing the order of integration gives
co oo
QRmeas(7) = / _ dt' V,(t') / _ dtG(t +t' — 1) fre(t), (4.2.3)
which is interpreted as the sampling of V, by the function
oo
Framp(t) = / (e + ) ro(t) = Go frc. (4.2.4)
The conventional approach to sampling relies on f,qmp being sufficiently short tem-
porally to be considered a delta function, in which case Q,,cqs is a direct repre-
sentation of the signal V,. The sampling function, G o frc, typically has a fast,
circuit limited rise time (~few ps) and a much slower decay time (~100 ps - 3 ns)

reflecting the carrier recombination for intrinsic semiconductors. Consequently, the
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carrier lifetime limits the resoluton and much effort has been spent in finding ways
to reduce it.

As an alternative we reconsider the use of a photoconductor with a very long
carrier recombination time. Since f, 4y, still has a fast rise time, we expect the
sampling result fi,eas(r) can be approximated by the integral of V,(t) from 7 to
infinity and a derivative operation should recover V,. Differentiating Eqn. (4.2.3)
and using (4.2.4) yields:

de;:e () _ /_O:o dt Vv, (t) [%ﬂzf__rl} (4.2.5)

which is just equivalent to sampling with the function —dfsamy(t)/dt. In practice,

a finite difference is often used which leads to:

(o]

Qrmeas (T) — aQmeas (T + AT) = [_ dtV, (t)[faamp(t - T) - af.samp (t - (T + AT))]
(4.2.6)

where a is a constant to be discussed below. The result is then equivalent to

sampling with a new effective sampling function defined as:

fest(t) = foamp(t) — Ofsamp(t — AT). (4.2.7)

Assuming f,amp has a fast rise time and a slow decay, then for short A7, f.g will
consist of a sharp “spike” followed by a long negative tail of equal-area (if a = 1).
The initial “spike” is the desired sampling feature and in the limit of very short
A7, the ultimate temporal resolution will be limited by the details of the leading
edge of fyamp. The negative tail on the other hand will lend a long-time limit to the
resolution since signals much longer than the tail will generate no net sampled signal.
It is helpful to consider that for an exponential decay of fsamp, this tail is equivalent
to high-pass filtering or ac coupling the signal with a single pole filter prior to a

true measurement. While this effect may be undesirable, it is not too serious since
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for decay times of ~100 ps, commercial instruments could be used to measure the
long time features. It is also somewhat surprising that the reduction of this effect
now favors a longer recombination time although this will adversely affect the noise
performance. Finally, for the special case where the decay of fyamp is a single
exponential with time constant 7,., the negative tail can be eliminated altogether
by setting the parameter o in Eqn. (4.2.6) to a = exp(—A7/7;..). The function
fest for this case is plotted in Fig. (4.3) for various values of the delay difference
Ar. The original function, f,amp, used is the correlation of two exponentials—a gap
charging time of 2 ps and carrier lifetime of 150 ps were chosen as representative of
actual InP:Fe photoconductors presented in the next chapter. It should be noted
that if the optical pulse width can not be neglected, then G(¢) and consequently
the sampling functions feqmp and fers should be convolved with the optical pulse

shape.

As can be seen, the sampling function is virtually independent of the recombi-
nation time and can be chosen with an arbitrary width down to the circuit rise time
limit of 2 ps. The validity of this value may be questionable due to deficiencies in
the simple electrical model of the photoconductive gap as a lumped element capac-
itance. Ground-plane reflections when using microstrip are well documented [3],[4]
in high speed correlation measurements of fast photoconductors and have typical
round trip times of 6-8 ps. Furthermore, calculations of gap capacitance are based
on dc field distributions. This is only valid for use in a transmission line circuit
if the gap is normal to the direction of wave propagation. In the case of a “side
tapped” configuration, exact calculation becomes a complicated problem requiring
knowledge of higher order and radiation modes of the transmission line for proper
matching of fields. Qualitatively, however, one would expect artifacts corresponding

to the transit time of signals across the width of the sampling transmission line.
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Fig. 4.3 Effective sampling functions for various values of the turn-on delay Ar.
The gap charging and carrier decay times for a single photoconductor are 2 ps and
150 ps respectively.
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Again, for typical 50 2 microstrip lines on 300 pum substrates, this round trip time
is about 6 ps. Although reduction of the transmission line dimensions would give
some improvement, it is practically limited by difficulties in handling semiconduc-
tor substrates which are lapped extremely thin. A much better approach would be
the use of coplanar waveguides. In addition to small circuit dimensions — limited
by lithography — this geometry also offers the capacitance-free “sliding contact”
scheme [16]. In essence, the capacitance charging limitation changes to a transit
time of the electrical signal across the width of the optical spot size which is shorting
the transmission line. This time can quite easily be 100 fs and so subpicosecond
sampling seems feasible with this geometry.

The derivation leading to the effective sampling function suggests that the
differential sampling scheme is similar to a deconvolution. This is easily checked in

the frequency domain by Fourier transforming the left side of Eqn. (4.2.6):

/_0:0 dr tf:"j“”[Q,,w,L.i (7) — ¢Qmeas (7 + AT)]
= Qmeas (W)[1 — ezp((Jw — 1/7rec) AT)]
~ Qmeas (W1 —(1+ (Jw—1/7rec) AT +...)]

~ Qmeas (W) [(—JW + 1/Tpee) AT +...]  (4.2.8)

where the value o = exp(—Ar7/7.¢.) was used. Thus at low frequencies (< 1/Ar7)
the differential operation is equivalent to removing a pole at w = —j/7r¢.. This is
the conjugate of the pole expected for a deconvolution and the difference operation
is instead a decorrelation which is what it should be. At higher frequencies, higher
order Taylor terms are significant and the decorrelation is not perfect. This is
not surprising though since the effective sampling functions of Fig. 4.3 are not
completely devoid of the longtime decay behavior. Finally, this picture suggests

that noise may be a problem since spectral features which lie below the noise level
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can not be retrieved by multiplication with the factor (—jw + 1/7y¢.). This issue is

considered in more detail in the next section.

4.3 Sensitivity and noise
In addition to the temporal resolution, an important aspect of any sampling
system is its noise performance. Ordinarily, such a differential scheme would be
expected to suffer in this regard since the measurement result is only a small fraction
of the signal which is actually measured. Nevertheless, an analysis of the noise limits
shows this technique remains quite competitive with techniques which rely on high
defect densities to reduce the carrier lifetime since these are usually accompanied
by a significant reduction in mobility.
The following quantities are defined for use in the noise analysis:
Gpn(0) = maximum photoconductivity at ¢ = 0F
_C_}'; = dc average photoconductivity
Gp = dark conductivity
Trec = carrier lifetime (assumed exponential decay)
T, = effective sampling window width
L = length of photoconductor gap
Vaig = voltage of measured signal
P = average optical power absorbed
1/Tyep = sampling repetition rate
Af = bandwidth of dc sampling current measurement
A = wavelength of optical pulse source
p = appropriate mobility of photoconductor (usually electron)
h = Planck’s constant
k = Boltzmann’s constant

The fundamental noise limits in most photoconductor applications are (1) shot
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noise on the average current and (2) Johnson noise from the average conductivity
of each photoconductor. For a single photoconductor, these are given by [17]:

a5 Vsi Trec
Z%N = 46(Gph. + GD)Veig'—gg—'Afa
1IN

(4.3.1)
= 4kT(Gph + GD)Af (4.3.2)
Comparing the two, it is found that the shot noise only dominates if
kT L? —-—
2 . »
Vig > - prt for %, >2,.

(4.3.3)
The right side of this inequality is typically a few hundred mV which is much greater

than expected minimum sensitivity levels (< 10 uV) so the analysis can be restricted
to Johnson noise.

The net sampling current collected is just the charge per pulse times the pulse
repetition rate which is

E-; = Vsingh (0) T, /Trep'

(4.3.4)
The peak photoconductivity is expressed in terms of the more easily measured
average photoconductivity as:

GPh (0) = Gph Trep/Trec-

(4.3.5)
Using this, the average net sampling current is:
;.:;; = ‘/singhTa /Trec, (436)
and thus the signal-to-noise ratio (SNR) is:
—2 —_—2
SNR = 22

_ V2 Gph (Ts/Trec)2 ]
2y 9 (2)4kT(Gpn, + Gp)AS

(4.3.7)
This expression has been written to be applicable to both the differential technique

as well as conventional sampling in which case the sampling window width T, ~ 7,...
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The factor of two in parentheses is valid for differential measurements since two
signals with uncorrelated noise are subtracted leading to twice the noise power of a
single photoconductor. Consistent with analyses of electro-optic sampling [18], the
minimum detectable voltage V},.;, is taken to be that which results in SNR=1 and

is thus

(4.3.8)

(2)4kT(1 + Gp /Con) . 17
vt I

This naturally breaks into two regimes depending on the relative amplitudes of Gpp

Vmin = |:

and Gp. These are given by

L [(2)4ELhe S

Viin = — 1\ ———5—A G Gp, 4.3.9
T\ 3 Pujra > OD (4:59)
and
Vi = L2 VR)KTGpA]  Gop < G (4.3.10)
min — CAPﬂTs D ph D ..
where we have used
e)\Piu“Trec
Gon = 3" (4.3.11)

A plot of V,,;,, versus optical power is shown in Fig. 4.4 for some typical values of
high resistivity photoconductors. Also shown in this plot is a similar plot for electro-
optic sampling illustrating the clear superiority of photoconductive techniques with
regard to detection limits.

It is obvious that at any power level, it is desired to have G_ph > Gp. Assuming
this is attainable, Eqn. (4.3.9) says that for the same geometry and sampling reso-
lution, the minimum detectable voltage is characterized by the material parameter
p/Trec. Techniques which utilize large defect densities to increase recombination
rates also tend to reduce the mobility due to increased scattering off the same de-
fects. Often, the ratio u/7,.., remains almost constant over as much as a 100x

decrease in lifetime [7],[13]. In special cases (i.e., InP:Fe bombarded with He*
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Fig. 4.4 Theoretical minimum detectable voltage versus average optical power for
various typical photoconductors. Curves (b) and (c) are typical of ordinary semi-
insulating InP:Fe and ion bombarded InP respectively, while curve (a) is based on
parameter values which allow easy scaling. Also shown is a curve for electro-optic

sampling in GaAs which is one of the best materials in this regard [18].
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ions), the lifetime can be reduced at a faster rate than the mobility [19] resulting
in superior sensitivity. Eventually however, the mobility suffers a drastic decrease
at a threshold bombardment dose and thus the lifetime reduction is limited.

In addition to decreased mobility, ion bombardment dopes the bombarded ma-
terial and can significantly lower the dark resistance unless the material is carefully
pre-doped with a compensating impurity. This can easily lead to a condition of
Gp > 5;;, and thus a comparison based on u/7rec is no longer valid. A com-
parison in this case is easily seen by considering the change in the asymptotes of
Fig. 4.4 with ion bombardment. As just discussed, the high power asymptote will
stay about the same or slightly move down as u/7,¢, increases somewhat. The low
power asymptote has twice the slope of the high power regime and their intersection

occurs at a power, P.,, of
he L2 GD
Py = ——.
A PTrec

(4.3.12)
For typical values with ion bombardment of 7, <10 ps, g ~ 200 cm? /V-s and Gp
of 0.1 - 1 M2, the transition point P, will increase 3-4 orders of magnitude from
the intrinsic case to be at 1-10 mW which is typical of the available power from
modelocked dye lasers. Thus, the use of ion bombardment is expected to degrade
the minimum detectable voltage due to increased dark conductance noise, especially
at low optical powers.

In all cases, V,,;, scales as 1/T, which is just the trade-off of resolution for sen-
sitivity which is characteristic of any photoconductive sampling scheme. However,
its implementation with the differential approach is rather easy requiring only the
adjustment of a delay between the triggering of two sampling windows. Conversely,
such an adjustability would be very awkward with the conventional approach since a

separately bombarded photoconductor would be needed for each desired resolution,

and the lifetime reduction would have to be well characterized.
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In addition to the fundamental noise limitations discussed here, any actual
measurement will be plagued by additional sources of “excess” noise. Presumably,
these sources can be eliminated or circumvented by various measurement and de-
vice design techniques, so that the fundamental noise is relevant to the ultimate
sensitivity. However, with photoconductive sampling, the dominant noise source
is often due to a photovoltaic response of the photoconductor which detects am-
plitude noise of the modelocked laser [20]. This effect is not well understood but
is probably due to an imbalance of the Schottky responses at the two contacts of
the photoconductor. An accurate analysis of the minimum detectable signal includ-
ing this noise source would require a more detailed description of the photovoltaic
response particularly with regard to doping levels, mobility, etc., which might be
affected by ion bombardment or deep level traps. Roughly speaking, though, it is
expected that the response only varies significantly with doping due to variations
in the Schottky barrier width which directly affects collection efficiency in a planar
structure. Reduced mobility and lifetime are not expected to affect the photovoltaic
noise level except at the very short lifetimes where recombination prevents complete
sweep-out from the Schottky barrier. Assuming then that the photovoltaic noise is
not significantly changed, the best minimum detectable signal would be achieved
by maximizing the signal — Eqn. (4.3.4) — which favors higher mobility and hence
the differential scheme. A more extensive investigation of the photovoltaic response
is needed before any conclusive comparisons can truly be made. In any case, this
problem can be somewhat reduced by stabilization of the modelocked laser source
and by using synchronous detection at higher frequencies since most lasers exhibit

a noise spectrum which decreases at higher frequencies.
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Chapter 5

Differential Sampling: Experiments

5.1 Introduction

In the last chapter, a differential measurement scheme was outlined for per-
forming high speed sampling with a resolution much less than the turn-off time
of the photoconductive switches used. The idea of differentiating or subtracting
two delayed, decay functions with fast leading edges has been previously used to
improve the performance of photoconductors in applications as fast photodetectors
(1], [2] and as pulse generators [3]. In this chapter three possible implementations of
the differential sampling approach are presented along with results demonstrating

the success of the technique.

5.2 Experimental Set-up
Differencing schemes

In order to implement the difference operation of the last chapter, the follow-
ing three approaches were tried: 1) numerically shift and subtract the result of a
conventional sampling result, 2) dither the delay, 7, while synchronously detecting
at the dithering frequency, and 3) simultaneously sample with two photoconduc-
tors having a relative delay in their turn-on times and subtract the results in real
time. The most significant point of comparison of these alternatives is their sensi-
tivity to excess noise sources, in particular the fluctuations in average power of the
modelocked laser source.

Modeling the laser power fluctuations as:

Piaser (t) = P(1 + £(2)), (5.2.1)
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the result of an ordinary sampling measurement will vary as:

Vineas (T, 1) = [ / dt' Vg (t') fm,m;(t’ — r)} (1+ £(¢)?

1R

[ / A Viig () fram (¢! — 7)} (1+26(2)) (5.2.2)

assuming that the laser pulses are used to trigger both the measured signal and
the photoconductive sampler. Assuming the fluctuations £(t) are characterized by
a spectral density function, S¢(f), then the relative noise of the sampling measure-

ment is given by

RMS noise _ 2\/? = 2/5:(f) BF. (5.2.3)

Signal

A plot of the spectral density, S¢(f), is shown in Fig. 5.1 and was taken by measuring
the mean square current variation of a photodiode detecting the output of the
modelocked dye laser. A two phase lock-in amplifier was used to measure this
variation in a narrow bandwidth around a center frequency selected through its
internal oscillator.

These fluctuations are especially serious to the first two schemes mentioned.
In a typical scan of the delay, 7, points separated by Ar are measured ~ several
seconds apart in real time, and hence the numerical shift and subtract scheme will
be sensitive to laser noise around 1 Hz or less. Similarly, the second scheme will
also be sensitive to laser fluctuations, though at the dithering frequency of r. This
frequency is limited to a maximum of ~ 100 Hz since it typically requires mechanical
movement of a mirror position. From Fig. 5.1, it is seen that this will lead to some
improvement over the numerical technique but the improvement is limited. In
addition, the mechanical dithering of the mirror caused some modulation in beam
pointing which resulted in an extraneous signal due to scanning of the beam on the

detector’s active area. This scheme also requires some post-processing of the result
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Fig. 5.1 Measured spectral density of the modelocked laser intensity noise, normal-
ized by the average intensity.
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to cancel the exponential tails as is done by the factor « in the finite difference
schemes.

Finally, the double gap scheme is optimal in reducing the excess noise problems.
Since the two signals are measured at the same time, fluctuations due to laser noise
will be correlated and thus will tend to cancel when the two signals are subtracted.
In essence, the relative noise of the difference will be the same as that of the original
two signals. In contrast, the absolute noise in the numerical subtraction scheme
is increased by /2 while the difference signal is only some fraction of the original
signal; thus the relative noise can increase quite significantly and limits the practical
resolution. A disadvantage of the double gap scheme is that it requires a certain
degree of matching of the two photoconductors such that their carrier decay tails

cancel well.
Set-up and Photoconductor Characterization

The experimental set-up used for sampling is shown in Fig. 5.2, illustrating
the double gap scheme in measuring the impulse response of a photodiode. A
synchronously pumped modelocked dye laser provides a train of optical pulses (3-
5 ps pulsewidth, A =600nm, 100 MHz rep. rate) for triggering of the devices. Part
of the beam illuminates a high speed photodiode to generate the test signal which
is coupled onto the center microstrip transmission line of the sampler. The other
end of this line is either fed to a sampling oscilloscope (5002 input) for monitoring or
terminated in 501} to prevent reflections. The rest of the optical pulse train is then
split again to illuminate the two sampling photoconductors on either side of the
center transmission line. The average currents from these sampling electrodes are
input to matched transimpedance amplifiers and the outputs are then subtracted
with an adjustable factor, o, in a differential amplifier. This output is then detected

with a lock-in amplifier synchronized to a chopper in the beam illuminating the
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photodiode.

The delay between “turn-on” of the two photoconductors — A7 — is adjusted
by micrometer movement of the mirror My, and remains fixed during a sampling
scan. The zero point delay is accurately established by searching for interference
fringes when the two beams are overlapped. Since the coherence length of the pulses
is actually much less than the pulse width — ~ 300 fs versus ~ 3 ps — this enables
extremely accurate determination of the coincidence point and subsequently the
sampling window width. The time variable, 7, is then swept by stepper motor
control of the position of mirror M;. Sweep speeds are kept slow enough that the
lock-in time constant does not significantly degrade the resolution. The same set-up
is used in the numerical shift and dithering schemes except only one photoconductor
is illuminated, and the position of mirror M; is dithered (~ +0.6mm) in addition
to the slow scan of 7.

The actual mounted sampler is shown in Fig. 5.3 along with the equivalent
circuit of a single pair of photoconductive gaps. Multiple sampling gaps were used
to conserve substrate material since succéss of any particular gap was not guaranteed
and each sample required ~ 13mm x 13mm square of substrate. All lines are designed

for 500 impedance using the empirical formula [4]

5.97 t
C =125 -1, (5.2.4)

h exp(Zo\/& + 1.41/87) h

where Z; is the characteristic impedance, w is the width of the line, h is the substrate

thickness, t is the metallization thickness, and ¢, is the relative dielectric constant.
For the 25um gaps used, the capacitance is estimated to be 0.03 pf [5] and the gap
charging time of 2Z,C,, is then about 3 ps. The AuGe/Au metallization is patterned
by a conventional lift-off process and was annealed at 340 °C for 5 minutes. The
processed wafer is cleaved somewhat oversize, glued to the copper mounting block,

and then lapped flush with the edges to ensure continuity of the transmission line
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impedance at the connectors; thus avoiding potential reflections which can occur if
the wafer does not butt against the connector. -

Several substrates were tried including semi-insulting GaAs:Cr, InP:Fe, high
resistivity undoped GaAs as well as some MBE grown layer structures on semi-
insulating GaAs. The InP:Fe is preferred due to a lower surface recombination
velocity which, if too large, can lead to a non-exponential photoconductive decay
[6]. This is especially true when the illumination is far above the band gap energy
such that absorption is strong and carriers are created very near the surface. In
addition to this, the InP typically gave a stronger signal (~ 4x) under the same
conditions and showed less photovoltaic effects. Both of these effects are believed
to be due to somewhat better contacts with the InP, although good contacts were
difficult with all semi-insulating materials.

The dc, open circuit photovoltaic response was as high as 100 mV with only
0.2 mW of optical power. By moving the beam focus position across the gap, the
polarity could be reversed indicating that opposing Schottky barriers at the contact
edges are the source of this signal. With careful positioning of the focus spot, the
photovoltaic signal could be nulled to just a few per cent of the peak value, which

helped reduce the noise in sampling measurements.

5.3 Measurement Results

The result of a single gap sampling measurement of the photodiode pulse re-
sponse is shown in Fig. 5.4. Increasing 7 corresponds to later turn-on of the sampling
gap with respect to the photodiode signal. The left side of the peak reflects the
condﬁctivity decay of the photoconductor (~150ps) while the right side is predom-
inantly due to the photodiode response. A significant amount of structure in the
photodiode response is indicated, though it has been smoothed out by the effective

integration of this measurement. The results of the numerical shift and subtract
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scheme are also shown in Fig. 5.4 for various values of the shift A7. The factor a is
chosen so as to minimize the signal in the region to the left of the peak of the orig-
inal since this is where the impulse response should be zero. Also, each difference
signal has been appropriately rescaled for easier comparison. The signal recovery is
surprisingly good, though the noise level is rather high as just discussed, especially
with shorter sampling windows. The situation here is somewhat improved since
the signal is shorter than the photoconductive decay. For a longer signal, the noise
could be 2 to 3 times larger. Conversely, shorter signals would have lower noise and

this may be a legitimate technique for measuring shorter pulses.

In contrast, the result of the double gap measurement is shown in Fig. 5.5. The
factor a is adjusted to null the signal to the left of the peak and must compensate
differences in the overall response of the two gaps as well as the matching factor
exp(—A7/7rec). Good cancellation also required testing of several gap pairs as
well varying of the light spot position on each gap in order to get good matching
of the decay times of the two gaps. The time window, A7, was 10 ps for this
measurement; however such resolution is unfortunately not verified here due to
the lack of suitably fast features on the test signal. With such a slow test signal,
the measured signal shape can be verified with a commercial sampling oscilloscope
measurement of the same signal. As shown in Fig. 5.5, the agreement between the
two is good, thus establishing the fidelity of the technique. The improvement in noise
over the numerical approach is quite apparent and the trailing edge features are now
well defined. These oscillations are due to ringing of the resonant circuit formed
by the diode capacitance and bond wire inductance of the mounted photodiode.
Repeatability of the double gap measurements was superior to that of the sampling
oscilloscope, particularly with regard to these trailing edge features. Sampling

oscilloscopes typically introduce “ringing” behavior of their own into measurement
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results (i.e., their sampling function has some oscillating tail feature) as well as

suffering from jitter problems at such short time scales.

The sampling oscilloscope also calibrates the vertical sensitivity with a peak
value of 60 mV. The corresponding peak sampling current measured by the lock-in
is 11 pA, giving an overall sensitivity — z'_,,;-;/Vsig — of 180pA/V. Accounting for
a factor of 1/2 due to the chopping of the photodiode beam, this is equivalent to
a peak photoconductivity of (2.8MQ) ™!, while the expected value is (100k{2)~?! for
the average optical power of 54W. On the other hand, the dc resistance does not
show this discrepancy with measured values of 5-10M{2 and an expected value of
6.5M(1. This is attributed to poor contacts which block the dc current when a
pulsed bias is applied.

When the photodiode signal is zero, a noise level of 0.065 pA/\/}E is mea-
sured from the sampling output. Together with the above sensitivity, the minimum
detectable signal is then 360 uV/\/E . Of the total noise, 0.055 pA/\/ﬁi can be
attributed to the 10 M(2 feedback resistors of the transimpedance amplifiers, which
indicates that significant improvement could be had by using a larger feedback resis-
tance. However, if contacts were improved, then the expected gap resistance would
dominate the Johnson noise and a higher feedback resistance would be unnecessary.
In this case, the improved sensitivity afforded by the higher effective peak conduc-
tivity would reduce the minimum detectable signal level toward its theoretical limit
of 16 uV/v/Hz .

The optical power of 5 uW used in these measurements is quite low and better
sensitivity should be obtained with higher powers. However, this was not found
to be the case with these photoconductors and the best results were obtained with
lower optical powers. At higher powers (from 5 pW to 500 uW), noise increased

significantly while the signal level rose only as approximately the square root of
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the optical power instead of linearly as would be expected. Such a square root
dependence of photocurrent on optical power and can be explained by bimolecular
recombination of the excess carriers [7]. However, even at the highest powers used
and assuming a 0.1 um absorption depth, the carrier densities are < 2 x 10'7cm™3.
This is well below the level at which bimolecular processes would dominate, es-
pecially in semi-insulating material with its high density of deep impurity levels.
Furthermore, the single gap measurements provide a fairly good measurement of
the photoconductor carrier recombination which is represented by the portion of
the curve to the left of the peak in Fig. (5.4). If nonlinear recombination processes
were significant, then with a 100x variation in optical power, some change would
certainly be visible in the shape of this leading edge. Such measurements showed
no such change and it is concluded that the carrier recombination is quite linear
over this range of optical power. The sublinear current-light characteristic can be
qualitatively explained by poor contacts which lead to space charge effects and
blocking of the dc part of transient current pulses. While this unexplained behavior
is disturbing, it is not critical to the accuracy of sampling measurements. Much
more important is the linearity of the sampling with respect to the voltage signals
being measured. By varying the optical power to the photodiode, the peak signal
voltage was varied from 2 mV to 150 mV. The measured sensitivity over this range

was found to be constant to better than 2% which was the measurement accuracy.

While good performance has been demonstrated, it is expected that improved
performance could be obtained, especially with respect to sensitivity and general
facility in obtaining success. The most likely avenue of success is improved contacts
which seem to be related to most of the problems encountered. Improved contacts
to semi-insulating semiconductors can definitely be obtained with improved metal-

lization and annealing procedures; though the extent of improvement is uncertain
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and it will certainly be difficult to match the performance of contacts made to highly
doped layers. In light of this, it seems warranted to sacrifice some dark resistivity
and use doped epitaxial layers to obtain good contacts. Such layers will also have
longer decay times (~1 ns) which will also deteriorate the noise limit somewhat,

but will reduce the matching requirements.
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Chapter 6
Retrieval of a Transient Impulse Response

from its Autocorrelation

6.1 Introduction

The development of picosecond and femtosecond modelocked lasers over the
last 10 years has been accompanied by a variety of measurement techniques which
utilize these sources [1]. These include pump-and-probe techniques {2], photocon-
ductive sampling [3], electro-optic sampling [4], [5] and second harmonic generation
(or nonlinear frequency summing) to measure the ultra-fast optical pulses them-
selves [6]. Most of these can be classified as sampling schemes in that typically a
short sampling function (or “window”) is mixed with the signal to be measured and
the total integrated result is measured with a slow detector. When the relative delay
between the two mixed signals is varied, the cross-correlation of the two is readily
obtained. In the limit that the sampling function can be considered a delta func-
tion, the measured signal is retrieved exactly. Frequently, however, circumstances
dictate that a signal be sampled by itself, and consequently the obtained result is
the auto-correlation of the measured signal. This can be due to the difficulties of
synchronizing the measured signal with a sampling window from a separate source;
or most commonly, because a suitably fast sampling signal is not available. This is
the case when measuring the sampling function itself: since the temporal resolution
of such a scheme is limited by the sampling window, it is chosen to be the shortest
possible.

In general, it is not possible to retrieve the original function from its auto-
correlation: there simply is not a unique solution. This is readily apparent in the
frequency domain since the Fourier transform of the autocorrelation is just the

squared magnitude of the transform of the original function. Thus, the phase of
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the original transform can be arbitrarily chosen and there is an infinite set of orig-
inal functions for any single autocorrelation. Consequently, the analysis of such
measurements is usually limited to qualitative deduction of the pulse shape and
an approximation of the pulse width. This approximation is usually based on the
calculated ratio of the respective widths — full width at half maximum (FWHM)
— of a chosen function and its autocorrelation. The choice of a functional form
may be motivated by a calculated solution of the measured phenomena, but for the

most part it is arbitrary.

In this chapter, we pursue the possibility of extracting more than just a pulse
width estimate from the autocorrelation. By imposing additional known constraints
on the original unknown function, the infinite set of phase functions is hopefully
reduced to a tractable set or even a unique solution. This is a topic which has
received considerable attention in the literature and is commonly referred to as
the phase retrieval problem. In particular, applications to image formation and
recovery have been a very active topic for nearly thirty years [7]. Other fields of
application include x-ray diffraction [8] and optical coherence theory [9] to name a
few. The analytic approach used here — the logarithmic Hilbert transform — has
been extensively investigated for such applications but with only limited success.
Due to the symmetric nature of problems in spatial coordinates, a unique solution
is usually not determined by this method as will be explained later. As such, more
recent work in these fields tends to be concerned with numerical algorithms which
alternately enforce various constraints and approach a solution iteratively [10], [11].
On the other hand, the application of phase retrieval techniques to autocorrelation
measurements of temporal transients appears to have been overlooked in the liter-
ature. Investigation shows that these problems are actually very well suited to the

use of the logarithmic Hilbert transform due to some additional constraints which
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are unique to many problems in the time domain.

In this chapter we present results on the retrieval of an impulse response from
its autocorrelation. An analysis of the problem is given first, reviewing the logarith-
mic Hilbert transform and discussing the aspects of this problem which enable its
successful application. Second, a numerical algorithm implementing this technique

is presented along with results on some test functions.

6.2 Analysis
Logarithmic Hilbert transform

The logarithmic Hilbert transform has been extensively studied in the literature
and so just a brief review is presented to clarify the results to be discussed here. In
particular, we draw on many of the results from Burge et al. [12] and the reader is
referred to that work for a more detailed discussion of much of the background.

The Fourier transform relations which are used are given as:
Flw) = / F(t)e5 dt (6.2.1)
1 ® . -
= — Jwi 6.2.2
1) =37 [ F)eras (622)
and f(w) will be written as
f() = |f(w)ler*), (6.2.3)

where ¢ is a real valued function of w. Also, the cross-correlation h(r) between two

functions f(t) and g¢(t) is written as

hir)=fog= / F{t+1)g" (1) dt. (6.2.4)
It is easily shown in most introductory texts that the Fourier transform h(w) of the

cross-correlation function is f(w)g}*(w); however, if w is allowed to be complex, the

correct expression is

[ og)(w) = f(w)d* (w*). (6.2.5)
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In any case, for real w, the Fourier transform of the autocorrelation of a function
F(t) is
—~ .2
[f o fl(w) = |f()] (6.2.6)

from which it is apparent that the phase information — #(w) — has been lost.
In order to recover ¢(w), some additional constraints must be supplied at this

point. We start with two:

(1) the function f(t) is to be restricted to a finite interval a <t < b,

ie., f(t) =0 fort < aandt>bwhere a and b are not yet specified;

(2) the function f(t) is real valued.

The constraint that f(t) be zero before t = a is just the causality condition, as-
suming the signal to be a response initiated at some time ¢ < a. The additional
condition that f(¢) also vanish for ¢ > b is first motivated in that it allows the appli-
cation of many results from the theory of “entire” or “integral functions.” However,
it would seem to exclude many common functional forms which typically character-
ize transient phenomena and theoretically persist forever (e.g., exponential decay).
Nevertheless, in considering an actual measurement situation, this assumption is
found to be quite justified. While one might expect an infinite duration signal, any
measurement is practically limited to some finite time interval. Furthermore, if the
signal is decaying, then it will be indistinguishable from zero after some finite time
due to limitations of instrument resolution or noise. Of course these arguments
apply only to the measured autocorrelation and do not necessarily mean that the
function retrieved from it must be of finite duration also. For now we will just
“assume that such finite-time solutions exist and that they are the solutions we are
interested in. Thus we resign ourselves to finding finite duration approximations to
the possibly infinite autocorrelation and signal being retrieved.

The general approach at this point is to apply an argument similar to that used
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to derive the Kramers-Kroenig relations which relate the real and imaginary parts
of a causal frequency response function by a pair of Hilbert transforms. Seeking
a relation between amplitude and phase, the complex logarithm of the frequency
response is used here instead, and the result is referred to as the logarithmic Hilbert

transform.

We start by considering the integral

w—w

f M dw' (6.2.7)

over the closed contour shown in Fig. 6.1, comprised of the real axis and the semi-
circle, Co, in the lower half of the complex w’-plane. The function log f(w’) is
singular at the poles and zeroes of f(w’). Causality ensures that all poles are in the
upper half plane but dictates nothing about the zeroes. For now, it is assumed that
all zeroes are also in the upper half plane and return to this point later. Application
of the Cauchy integral formula will yield the desired result provided the contribution
from C,, vanishes as the radius goes to infinity. Unfortunately, this is not so
straightforward. Usually in problems like this, one shows that the magnitude of
the kernel of the integral decays faster than 1/R everywhere along the semicircular
contour of radius R. Then as R — oo, the path integral vanishes. This is clearly not
the case for the integral considered here. For a finite energy signal f(¢), the spectral
energy density, |f(w)[2, must be integrable over all frequencies; hence, as |w| — oo,
| (w)| vanishes and log f(w) diverges. This problem is addressed by Burge et al. [12]
who also note that several authors seemingly neglect it altogether. They consider
several solutions to this problem, most notably the so called modified logarithmic
transform. If the lower limit in the Fourier transform definition is effectively a = 0,

then the convergence problems are alleviated by using an additional factor of 1/w’
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Fig. 6.1 Contour for gvaluation of the path integral Eqn. (6.2.7) in the complex w’
plane. All poles of f(w’) are in the upper half plane and all zeroes are assumed
to be there also. Hence all branch cuts of log f can be restricted to the upper half
plane.
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to give the modified integral

TNy o2

w(w' — w)

evaluated over the same contour as before. Applying the Cauchy integral formula

and taking the real and imaginary parts of the result gives the following relations:

bw) =2 /_ ” %dw'w(o), (6.2.9)
log |f(w)| = —% /_m %dw'—{—log]f(o)l. (6.2.10)

The first equation is the desired relation giving the phase function ¢(w) in terms of
the known amplitude |f(w)].

This relation has been used successfully to do phase retrieval [13] and would
be adequate for the problem here. However, the assumption of a real f(¢) allows
Eqgn. (6.2.9) to be simplified to one which requires less computation when imple-
mented numerically. Expanding the denominator of Eqn. (6.2.9) we can rewrite it

as

o) = 1 [ sl L [ loglT g0 g

T W—w T J_oo !

Now if f(t) is real, then ¢(0) = 0 and | f(~w)| = |f(w)|. Taking the Cauchy principle
value of the integral, the last two terms are then zero since 1/w’ is an odd function
of w’. Our final result is then

P (w) = %/00 de', for real f(t). (6.2.11)

!
oo W —w

This is just the original result we would have expected above but had to reject due
to the divergence of log|f(w)| at infinity (the subscript m is explained below).
It is worth noting that an attempt to reduce Eqn. (6.2.10) to a complementary

relation similar to Eqn. (6.2.11) leaves an arbitrary constant given by log |f(0)| plus



89

an integral. The integral does not vanish since ¢(w’) is an odd function, but it is
independent of w. Such an arbitrary constant is actually to be expected since all
of the restrictions which led to the transforms would allow multiplication of f(t) or
f(w) by a real constant. Thus log|f(w)| is indeterminate to at least an arbitrary
added constant. There are also some similar arbitrary terms to ¢(w) which have
been subtly eliminated by various assumptions of the preceding argument and now
bear explicit mention. First, an arbitrary added constant is uniquely determined
by the reality condition which requires that ¢(0) = 0. Next, an arbitrary linear
term is expected in the phase since the addition of a term —wT just shifts f(¢) by
a time T which does not alter the autocorrelation nor does it violate the causality
condition for T > 0. However, the validity of using the integrand of Eqn. (6.2.7) to
alleviate the convergence problems along C., depends on the effective lower limit
of f(t) being t = 0. Thus, in using Eqn. (6.2.9), the position of f(t) has been
implicitly established (and the arbitrary linear phase term fixed) such that the first
nonzero behavior occurs at ¢t = 0. This is verified in practice with the numerical

signal recovery algorithm discussed later in the chapter.
Zeroes in the Lower Half Plane

We now return to the assumption that all zeroes of f(w) are in the upper half
of the complex w-plane. The importance of zeroes is due to branch cuts of the
logarithm function which originate at zeroes as well as poles of the argument. If we
allow for zeroes in the lower half plane, then the integral path must be modified as

indicated in Fig. 6.2. Evaluation then yields the modified phase result:

$(w) = dm(w) + ZZarg(w — Wp),

where the w,, are the zeroes in the lower half plane. It is seen that all the terms in

the sum will be positive, hence the term ¢,,(w) is often called the minimal phase.
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Fig. 6.2 Modified contour to accommodate branch cuts of log f(w') originating at
zeroes of f(w’) in the lower half plane.
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Others also refer to it as the Hilbert or canonical phase. All quantities associated
with the minimal phase solution will be denoted by a subscript of m. With this

result, the general retrieved transform can be written

~ w

fw) = [fw) e ]

— (6.2.12)

—w,

Wk’
The product term is commonly referred to as a Blaschke product and may be
interpreted as the general meromorphic function having unity magnitude along the
real axis. Of course this still represents an infinite set of solutions since the zeroes
can be arbitrarily chosen and thus the problem of finding a unique solution reduces
to specifying those zeroes of f(w) which lie in the lower half plane.

The allowed combinations of lower half plane zeroes can be restricted by some
general considerations. If we still maintain the restrictions of finite domain and
integrability of f(t), then f(w) can have no poles in the finite w-plane. Thus
terms in the Blaschke product are limited to those for which w}, is a zero of
fm(w) = |f(w)|e7®=(@). This can be viewed as limiting the possible solutions to
those obtained by “flipping” various combinations of upper half-plane zeroes of fm

across the real axis into the lower half plane. Next, the reality of f(t) implies the

following symmetry condition:

f(=w*) = [ (w). (6.2.13)

Therefore, if a zero at w,, is flipped, its mirror image (across the imaginary axis)
must also be flipped to maintain this symmetry. Finally, it has been shown that the
location of zeroes far from the origin depends primarily on the leading/trailing edge
behavior of f(t) while the general shape of f(t) is governed by zeroes near the origin
[8], [14]. Consequently, only a finite number of zeroes are relevant since the zeroes

of fm have a finite density [15]. This point is further illustrated by considering the
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effect of a Blaschke factor in the time domain, which is just the convolution of f,, ()
with the transform of the Blaschke factor. For a zero w,, = p, + iv, = |w,|e**"
in the lower half plane, and maintaining the symmetry condition of (6.2.13), this
transform is

fe(t) =6(t)+ 4[t,un|—'£l?ie""15 cos(tnt — ay), (6.2.14a)

or if u, =0, then

fo(t) = 6(t) — 2|wnle". (6.2.14b)

If w,, is far from the origin, then the decay and/or oscillations of these functions are
very fast. Consequently, they are either similar to a delta function or give no net
contribution when integrated against a “slowly varying” function. The exception
to this will be near the termination points of the function f,,(t). Consequently any
unusual behavior at the edges of retrieved functions should be considered suspect
— i.e., as possibly due to improper zero location far from the origin.

While these considerations reduce the allowed set of solutions, there is still
generally a finite number of relevant zeroes of fm which could be flipped in various
combinations giving a set of equally valid solutions. To further reduce this set, addi-
tional information must be supplied either from theoretically motivated constraints
or additional measurements. In the latter category, schemes have been proposed for
image reconstruction using an additional measurement with defocusing [16] or the
introduction of a reference wave, similar to holography[9]. On the theoretical side,
various constraints relevant to image fields have been imposed in attempts to find
unique solutions. These have usually not been conducive to an analytic approach
and are usually implemented in an iterative scheme where the various constraints
are alternately satisfied in a repeated cycle [17]-[20].

Of course the simplest case would be if there were grounds to assert that there

are no zeroes in the lower half plane and then the unique solution would be just the
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minimal phase ¢,,. While general conditions which would enable this assertion have
been discussed in the literature, they were usually not applicable to the problems
being considered. In fact, it has even been stated that the minimal phase is not
very significant and that the behavior of the final solution would be dominated by
the distribution of zeroes [14]. However, it will be shown that for a large class
of temporal impulse response phenomena, there are in fact no zeroes in the lower
half plane and thus the minimal phase is the desired solution. Following this, the
relevant differences between these problems and imaging problems will be briefly
discussed to illustrate why this approach works here.

Rather than try to define the entire set of such impulse functions, we will start
with a few specific but useful theorems and show what a broad range of systems
they can be successfully applied to. It is in no way implied that the set of functions
so defined includes all possible cases with no lower half plane zeroes. Thus, there
may be further examples for which the minimal phase is valid but which do not
satisfy the criteria presented here.

We start with a theorem on integral functions given by Pélya [21] :

If f(t) is continuous, positive and differentiable, except at a finite number of points,
and if

a<l—-——=<p (e <t<b),

(t)

then all the zeroes of f(w) lie in the strip a < Imw < 3.

f'(t)
f

The parameters a,b are the effective limits of integration in Eqn. (1) —i.e., f(t) =0
for t <a and t > b. As a special case of this theorem, another theorem — also due
to Pélya — is that

If f(t) is positive and non-increasing, then all the zeroes of f(w) lie in the half-plane
Imw > 0.

While these theorems seem quite powerful in that they include all monotonic decay
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behavior, direct application would require the pulse response to have an infinitely

fast rise time which is unphysical.

We continue with some results from the theory of passive, linear networks.
Although specifically stated in terms of electrical circuits, the results can of course
be generalized to any analogous linear system. Simply stated, the transfer function
of a simple ladder network has no zeroes in the lower half plane [22]. A simple ladder
network is any circuit which can be drawn as in Fig. 6.3 and precludes the presence of
node-bridging as well as certain transformer configurations. In other words, zeroes
in the lower half plane can only occur if there is more than one path in the circuit
from input to output such that the contributions from those paths might cancel at
some complex frequency w. In addition, the impedance (or admittance) between
two points in any circuit has no zeroes in the lower half plane. While the response
of many circuits is included in the theorems of Pélya, an important extension to

include a variety of oscillatory behavior is added by these circuit theorems.

Finally, it is obvious that if f (w) is the product of some functions fa (w) then the
zeroes of f(w) are just the collected zeroes of the functions f, (w). Actually, some
zeroes could be cancelled by a pole of another function in the product, but no new
zeroes can be created. Thus if all the functions f, (w) in the product can be shown to
have no zeroes in the lower half plane, then it follows that the function f (w) also has
no zeroes in the lower half plane. In the time domain, this product decomposition
means that f(t) is the multiple convolution of functions f,, (t), each of which satisfies
some condition guaranteeing no zeroes in the lower half plane of w. We also note
that it is very important to distinguish convolution from correlation here (the two
are loosely interchanged surprisingly often), for according to Eqn. (6.2.5) correlation

flips the zeroes of the second function’s transform into the lower half plane.

As a specific example of how these relations are applied in a general sense, we



95

Fig. 6.3 Generalized “ladder circuit” configuration, where Z’s are arbitrary linear,
passive impedances.
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briefly consider the case of the pulse response of photodiodes or photoconductors.
Such photodetectors can generally be modeled as a time varying current source
driving an external circuit including the load impedance. The current source turns
on almost instantaneously when carriers are created and then decays with the re-
moval of excess carriers either through recombination, diffusion, sweep-out, etc..
While a variety of functional forms are possible, most are monotonically decreasing
and so satisfy the Pélya criteria. The external circuit is most simply a parallel
combination of capacitance and the transmission line impedance, but may include
bond wire inductance, parasitic contact resistance and capacitance, etc.. The lad-
der circuit configuration would still be satisfied in all but the most unusual cases
or if intentional non-ladder circuits are included such as a phase shifter. Thus we
can assert that the pulse response of the photodetector, which is the convolution of
the current source and circuit response, has a transform with no lower-half-plane

zeroes and the logarithmic Hilbert transform can be used for retrieval.

While it may seem irrelevant to consider photodiodes since they can not be
cross correlated as photoconductors can, we have really been investigating phase
retrieval in general and the “deautocorrelation” objective is only a specific applica-
tion. Frequently the spectral response of devices is measured in amplitude only (so
called “scalar” measurements) and hence the unknown phase and impulse response
could be derived from such measurements using phase retrieval. The only restric-
tion on the devices to be measured is that it somehow be assertable that there are
no lower half plane zeroes. This should be very straightforward with most simple,
passive devices. Unfortunately, active devices will probably not meet this criteria
since they will typically display exponentially rising features if they can exhibit
gain.

Finally, we’ll briefly contrast the temporal problem considered here with the



97

more often studied spatial problems for which the logarithmic Hilbert transform
is not so successful. First, the spatial problems usually deal with a truly complex
field and so the condition that the final result be real is not valid. This leaves an
additional undetermined constant in Eqn. 6.2.9 and also precludes the use of the
simpler integral Eqn. 6.2.11. More significant though are the constraints on the
location of zeroes. The theorems of Pélya and the circuit theorems suggest that
upper half plane zeroes are associated with decay in the time domain which in
turn implies that there be a distinction between forward and backward directions.
In temporal problems such a distinction is determined by causality and entropy.
However, in spatial problems there is usually a symmetry between forward and
backward and thus it is not possible to assert that a quantity will be decaying in
one direction or another. Hence the zeroes are equally likely to be in either half
plane and are typically distributed in both. Hence the logarithmic Hilbert transform
is not usually sufficient for phase retrieval in such problems and further constraints

and techniques are required.

6.3 Numerical Algorithm and Results

Having established the validity of Eqn. (6.2.11) for phase retrieval of many
transient phenomena, we now present results of a numerical algorithm implementing
this relation. In addition to demonstrating successful signal reconstruction, we will
also discuss several practical problems as well as possible pitfalls associated with

numerically implementing the theory of Section II.
Algorithm and Test Functions

The overall signal recovery algorithm is schematically diagrammed in Fig. 6.4.
The input is the autocorrelation which is transformed using a complex fast-Fourier-

transform (FFT) to yield |f(w)|? and subsequently log | f(w)]. According to Eqn. (6.2.11),
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f(t) f(t) Input Autocorrelation of f(t)

r = i f—:—FT—(CO_S tEln-s?or;)_ L

|

' Intermediate
Result

| [
Lo FFT (sin transform) ]

4
o ()

f(t) Retrieved Function

Fig. 6.4 Block diagram of the numerical algorithm for retrieving impulse response
from its autocorrelation.
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this must then be convolved with 1/w to yield the retrieved phase. Transforming
this, the convolution becomes a multiplication with the Fourier transform of 1/w
which is —jmsgn(t) where

1, t>0
sgn(t) =40, t=0

-1 t<O0.

Using this together with the even symmetry of | f (w)| and then inverse transforming,

the desired convolution becomes:

1 /oo de' = 4/00 d¢ sin(27éw) [/00 dv log |f(2nv)| cos(271€)| .
TS W —w 0 0

(6.3.1)
Evaluating the convolution in the Fourier space has been shown to give superior
results compared to numerically evaluating the integral directly[13]. This is due to
the inaccuracy of representing and integrating 1/(w’ — w) near the singular point
w' = w using discrete points. This double transform then yields the phase ¢,,(w)
and inverse transforming ]f(w)]equm(‘”) with a final FFT step gives the retrieved
impulse response f(t).

In order to demonstrate the success of this scheme, we present a comparison
of the retrieval of two similar functions. In addition to the final results, these
examples are used to illustrate some practical problems which can degrade the
results if not properly handled. The two sample functions used — see Fig. 6.5a —
are fa(t) = te=t/74 and fp(t) = e */7» — ¢~t/™ with r, = 5r;. These are impulse
responses corresponding to a double pole frequency response and f4 is the limiting
case of a second order pole (i.e., when 71 — 72). The pulsewidth 7 parameters
have been selected such that the autocorrelations have the same width (FWHM)
as shown in Fig. 6.5b. These curves have been rescaled to a peak value of 1 to

facilitate comparison of shapes. The autocorrelations were derived analytically and
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Fig. 6.5 (a) Original test functions f,, fp used and (b) their autocorrelations, nor-
malized to the same peak value. The two autocorrelations have the same FWHM,
but their detailed shapes differ as do the original functions.



101

then rounded to 1073 of the peak value (i.e., £0.0005) to simulate measurement

precision limits in an actual experiment.

Termination and Accuracy of the Autocorrelation

Before discussing the algorithm itself, we first consider effects due to the con-
dition of the autocorrelation which is presumably the input data of the algorithm.
In particular, the manner in which the autocorrelation is terminated and its accu-
racy have significant effects on the quality of the results obtained. The termination
effects are important since in typical measurements where only a pulse width is
sought, the autocorrelation is often not evaluated to where it is essentially zero. It
will be shown that this is not adequate for the signal recovery algorithm and good
results are only obtained if the autocorrelation is completely evaluated to where it
is indistinguishable from zero (within the accuracy of the measurement). Second,
the use of a rounded-off autocorrelation not only shows the effects of measurement
accuracy limitations, but also indicates the significance of noise.

It is difficult to establish the effect of a poor termination in general due to
the nonlinear nature of the problem. However, with a simple analysis we can at
least predict some features which are to be expected particularly at the leading
and trailing edges of the retrieved signal. If an arbitrary signal is assumed to be
nonzero only over a finite interval given by 0 < ¢t < t1, then its autocorrelation is
zero for |7| > t1 and the approach to zero is governed by the leading and trailing
edge behavior of the original function. Specifically, if the leading and trailing edges
are assumed to behave as:

A t>0,
f(t) ~ { (tr — t)nT, t<tip,

then the autocorrelation h(r) goes to zero as:

h(T) ~ (tT - T)"L"'"T'H as 7 — tp, and ny, + np # —1.
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Now if the autocorrelation is abruptly terminated, then the original function should
have a delta function behavior at one edge and an abrupt termination (n = 0)
at the other. Even if the autocorrelation approaches zero linearly, the edges of
the retrieved function will tend to terminate abruptly. In these cases the larger
termination value, or the delta function will typically occur at the leading edge so
that zeroes of the transform will remain in the upper half plane. This is explicitly
brought out in theorems by Cartwright relating the asymptotic location of such
zeroes to the leading and trailing edge behavior [23], [24].

The effect of an abrupt termination of the autocorrelation is shown in Fig. 6.6.
The autocorrelation used (Fig. 6.6a) is that of f4 and is terminated at just 5% of
its peak value. The resulting retrieve‘d function is shown in Fig. 6.6b and is seen to
be a poor representation of the original f4. The result shows the predicted spike
feature on the leading edge as well as an extra bump in the tail corresponding to
the time at which the autocorrelation was terminated (~ 470). In addition there

seems to be a slow oscillation as well as some sharp discontinuities in the result.

The leading edge spike is also typically generated as a result of noise (simulated
by round-off) in the autocorrelation. Applying the algorithm to the complete au-
tocorrelation of fg, results in the retrieved function shown in Fig. 6.7. Other than

the leading edge spike and noise, the result matches quite well with the original fg5.

A Bode plot of the frequency spectrum in this case — Fig. 6.8— shows an
apparent noise floor which is actually due to the round-off of the autocorrelation
as verified by comparing the “noise” level at different values of round-off precision.
This noise floor leads to two features in the retrieved signal. First, the result is itself
noisy which is not surprising, and second, there is a large spike at the leading edge of
the signal. This spike can be interpreted as the result of the algorithm suppressing

all signals for t < 0, including noise. In the limit of a truly white noise source,
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Truncated Autocorrelation: fA
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Fig. 6.6 (a) Autocorrelation of f4 truncated at 5% of its peak value. (b) Resulting
retrieved function using phase retrieval algorithm. Large leading edge spike and
poor overall shape can be attributed to truncation of autocorrelation.
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Fig. 6.7 Pulse response retrieval using the full autocorrelation of Fig. 6.5. The initial
spike and noisiness are due to round-off of the autocorrelation.
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Fig. 6.8 (Top) Frequency spectrum of fp (solid line) and “localized” spectrum after
normalizing out high frequency behavior. Apparent noise level at -40 dB is due
to round-off of the autocorrelation. (Bottom) Retrieved phase using four different
approaches: (B8) the full spectrum is truncated at the onset of noise and only those
frequencies are used in the double FFT algorithm of Egn. (6.3.1); (B2) the entire
spectrum is used in the double FFT algorithm; (B3) use normalization scheme and

double FFT on localized spectrum truncated at v = 27; (B4) same as B3 except

set log |f~,oca,| = 0 for v > 27 instead of truncating. There is very little difference
between the results of these last two.

~

20 log [f(w)/ £(0)]
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the spectrum would be flat and the minimum phase solution is ¢, (w) = 0, which
results in a delta function at £ = 0. When only a finite portion of the frequency
components are used and the spectrum varies around a flat average, then a finite
spike results with additional noisiness for ¢ > 0. This explanation is validated by
the reduction of the spike and noisiness when the frequency spectrum is truncated

prior to inverse transforming in the final step.

Divergence of Integrand and FFT Problems

In deriving the minimal phase integral relation, Eqn. (6.2.11), the issue of the
divergence of log [f(w)l for large |w| was shown to be irrelevant if f(¢) is real. How-
ever, in numerically evaluating the integral, it does become a problem since we are
typically restricted to a finite frequency domain. The integral relation for ¢,, im-
plies that the phase at a particular frequency is a function of the behavior of [f(w)]
over all frequencies. However, the evaluation of this integral must be restricted to a
finite domain due to computation limits or the temporal resolution of the autocor-
relation which gives an upper frequency limit when the FFT is evaluated. This is
somewhat alleviated by the local nature of the factor 1/(w — w') which gives higher
weighting to the amplitude behavior near the frequency of interest. Nevertheless,
the slow decay of this factor does not make it strongly local and far removed be-
havior can be significant particularly if it is diverging as log ]f(w)| does. This effect
will be especially noticeable at high frequencies approaching the point at which
the spectrum is truncated. The use of FFT’s to evaluate the modified convolution
expression of Eqn. (6.3.13) further compounds this problem. The discrete nature
of the FFT means that Fourier series and not transforms are actually evaluated,
and the result of evaluating Eqn. (6.3.13) using FFT’s is the convolution of 1/w
with the frequency spectrum infinitely repeated with a period equal to twice the

maximum frequency of the spectrum. This repeated function is not only symmetric
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about w = 0, but also about *w,,qz. Thus the convolution with the odd function
1/w will return to zero at tw,,q, which is clearly not correct.

This effect is illustrated in Fig. 6.8 where the retrieved phase is shown for fg,
and should asymptotically approach —n at large frequencies. The middle curve is
the result of applying the algorithm to the complete spectrum and shows the effect
of the “flat” noise spectrum which tends to pull the phase toward zero at frequencies
near where the noise becomes dominant. The upper curve shows the result when
the spectrum is truncated before the phase is retrieved and clearly shows the FFT
effect whereby the phase returns to zero at the maximum frequency of the spectrum.

An approach to reduce these problems is to factor out the asymptotic high/low
frequency behaviors leaving only a localized function to be convolved using the FFT
algorithm of Eqn. (6.3.1). Assuming the high frequency behavior to be asymptotic

to (w/wp) ™™, we factor the spectrum as follows:

|7 (@) = [1+ (w/w0)*] 7™ 7 (0) ]| fiooat (@) (6-3.2)

where floca, (w) is now a localized function which goes to zero at high frequencies.
The desired phase is then the sum of the minimal phases of each of the three
factors in Eqn. (6.3.2) and the constant factor gives zero. The causal transform

corresponding to the asymptotic factor is given analytically as

1
(1+jw/wo)™

fasym(w) = (6.3.3)
and so its phase is simply

Pasym(w) = —mtan™! (w/wo). (6.3.4)

The phase of the remaining term, floca,, is now evaluated by the numerical inte-

gration algorithm and the high frequency problems are now greatly reduced since
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log | flocazl goes to zero at high frequencies. The term log | fzocall for fp is shown in
Fig. 6.8 along with the frequency spectrum illustrating its suitability for use in the
numerical convolution algorithm. Also, the retrieved phase using this approach is

shown and clearly illustrates the improvement over the nonfactored approach.

The parameters wy and m in the asymptotic factor of Eqn. (6.3.3) are found by
best-fitting a line to the high frequency data in the Bode plot — before the onset of
noise — and finding its intercept with the | f (0)| value. Although the high frequency
phase tends to —mx /2 and thus an accurate value for m would seem important,
the retrieved signal was found to be fairly insensitive to the actual value used. For
fB, a variation in m from 1.6 to 2.4 produced only a slight advance (m < 2) or
delay {m > 2) in the position of the pulse with very little change in its shape. In
fact the nonfactored results corresponding to the poor phase curves of Fig. 6.8 were
actually quite good with regard to retrieved pulse shape, and were just advanced
in time. This can be attributed to the small amplitude of the spectrum at regions

where the phase is poorly evaluated.

Finally, we consider using the normalization scheme to extrapolate the spec-
trum to high frequencies where the true spectrum has been lost in the noise. It is
not suggested that the actual spectrum can be retrieved from the noise oblivion. In
principle, the spectrum can take on virtually any shape below the noise level and
such features must be regarded as lost. However, for the purposes of smoothly in-
terpolating between the wider spaced time points that a truncated spectrum forces,
it seems preferable to assume that the lost portion of the spectrum decays contin-
uously along the asymptotic, pre-noise, behavior rather than just disregarding it
altogether. This is supported by results from integral function theory: for temporal
functions of finite amplitude and domain, the frequency spectrum is asymptotically

limited by a finite power of w at high frequencies [12].
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Retrieved functions — without smoothing

1.5

-0.5 f ; t ;
—200 0 200 400 600 - 800

~-0.5 } } } {
—-200 0 200 400 600 800

Fig. 6.9 Comparison of two interpolation approaches when high frequency portion
of spectrum is truncated due to noise: (Top) Set f(w) = 0 for frequencies v > 2°
and (Bottom) Use asymptotic normalization and set f(w) = fq,ym(w) for v > 2.
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A comparison of these two interpolation approaches is shown in Fig. 6.9, which
also demonstrates that the retrieval quality is sufficient to distinguish these two
similar pulse shapes. It is seen that when the spectrum above the cut-off point
is taken as zero, then the result has small undulations; while the result using the
asymptotic decay as a high frequency extrapolation is quite smooth. The excellent
agreement of the latter with the original functions should not be overrated since the
test functions used are particularly well suited to this scheme. The undulations of
the former approach are actually quite small if compared directly against the original
function and a conclusive comparison of the two results is somewhat a matter of
aesthetics. Of course there is a danger that the undulations could be interpreted as
real; but the converse argument can be made that the smoothed result may imply
the smoothness to be true beyond the actual resolution of the measurement. In
short, the chosen conditions for arriving at any of the results should be carefully
stated to avoid potential misinterpretation. It is also noted that the differences in
the two approaches would be more pronounced if the known spectrum is limited to

a lower value as would be the case with a higher noise level.
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