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ABSTRACT

Part I

We derive a model equation for the linearized equation of an invariant curve for a
Poincaré map. We discretize the model equation with a second-order and third-
order finite difference schemes, and with a cubic spline interpolation scheme. We
also approximate the solution of the model equation with a truncated Fourier expan-
sion. We derive error estimates for the second-order and third-order finite difference
schemes and for the cubic spline interpolation scheme. We numerically 1mplement
the four schemes we consider and plot some error curves.

Parf II

We show for a one-dimensional Stefan problem, that the numerical solution con-
verges to the solution of the continuous equations in the limit of zero meshsize
and timestep. We discretize the continuous equations with a second-order finite
difference scheme in space and Crank-Nicholson scheme in time. We derive error
equations and we use L, estimates to bound the error in terms of the truncation
errors of the finite difference scheme. We confirm the analysis with numerical com-
putations. We numerically prove that we have fourth-order convergence in space if
we discretize the partial differential equations with a fourth-order scheme in space.
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Part I: NUMERICAL EXPERIMENTS FOR THE COMPUTATION
OF INVARIANT CURVES IN DYNAMICAL SYSTEMS






CHAPTER 1
INTRODUCTION

In this work we use both analytical and numerical methods to investigate the
functional equation

(1.1) R(z)=H (z) (Roa) (z)+Q(z) zeS.

Here a is a given, smooth, 1-1 and onto function from the unit circle S onto itself,
H and Q are given smooth functions from S! to (—o0,00), and the function R is
defined from S! to (—00, o) and is tinknown. The unit circle S! is the quotient
space of the set of reals by the set of integers.

Before analyzing (I.1), we would like to point out how this functional equation
arises from the system of ordinary differential equations

(LZa) -% 0=a (6, t),
(1.2b) ad; r=-=b(0,t) r+c (6,1),

where a, b, and ¢ are smooth and given functions from S! x S! to (—oo0, 00).
Consider the manifold M = {(6,t,u (6,t)),(0,t) € T?}, where u is defined from
T2 to (—o0,00) with T2 = §! x S!. We would like to know the conditions under
which M is an invariant manifold under (I.2). One can show that M is invariant
under the flow of the differential system (I.2) if and only if the function u satisfies

ot

However, instead of computing the invariant manifold M under the flow of (I1.2),
we will compute an invariant curve of the Poincaré map with respect to the time
variable . Once such a curve is known, an invariant manifold M is easily obtained.

To compute such a curve, we need to integrate system (I1.2) with respect to
time. Consider the initial condition 8 (0) = 6y and r (0) = ro. The solution at time
t of (1.2) with the initial condition (6o,7¢) is given by (6 (6o,t),r (60,70,t)). Once
we have an expression for 6 (6y,1), we can use the r equation to obtain an explicit
expression for r (6, 79,1),

(1.4) r (80,70,t) = H (60,1) 7o + Q (60, 1),

(1.3) 2 u+a (6,t) —a% u+b(6,t) u=c(6,1).



with 6 € S, and with

H (6o,t) = exp (— /otb (6 (60,7),7) dr),

Q (60,1) =/; exp (—/:b (6 (60,7),7) dT) c (6 (6o,5),s) ds.

Because the time variable ¢ is in S?, we can define the Poincaré map P by

. J 8! x (—00,00) = S x (—00, 00)
P { (00,1’0) - (0 (00’1)’7' (6077'0’ 1))

We would like to find an expression for an invariant curve under the Poincaré
map P, that has the form I' = {(z,R (z)),z € S'}, where the function R is
an unknown function from S! to (—oco,00). The curve T' is invariant under the
Poincaré map P if the point P (z,R (z)) is on the curve T for all z € S'. Thus,
for the point (8 (z,1),r (z,R (z),1) to belong to I', we require P (z,R (z)) =
(6 (2,1),H () R (2) + Q (=) to satisfy

(15) R (6 (z,1) =8 (z) R (z) + Q (),

N7 \

with # (z) = H (z,1) and § (z) = Q (z,1).

Because the function a from (I.2a) is smooth, we know that the function

St st
z— 0 (z,1)

is 1-1 and onto, and therefore, this function has a unique inverse . Applying the
inverse a to the arguments of the equation (I.5), we then deduce (I.1) with the
functions H and Q given by

H(6)=H (« (61),
Q (6:1) = Q (e (80)).

To investigate the functional equation (I.1), we begin in chapter 2 by showing
the existence and uniqueness of the solution of the functional equation using a con-
traction mapping argument on a complete normed space. We then show that the
solution is k-times continuously differentiable if the functions H and a defined above
satisfy the condition | H | | @' |¥, < 1. Once again a contraction mapping argument
is used to prove this result. In particular, we note that the solution will not neces-
sarily be smooth even if all the functions defining the functional equation (I.1) are
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smooth. Because we have shown that, under certain conditions, the solution of the
functional equation exists, is unique, and possesses k continuous derivatives, we can
study the behavior of the error when the continuous equation is approximated by
different discretization schemes. In particular, we study the error that occurs with
second-order and third-order finite difference schemes, a cubic spline interpolation
scheme, and with a truncated Fourier expansion. We first derive error estimates
when the functional equation is discretized with a second-order finite difference
scheme. We consider the cases of the solution of the continuous problem being at
least twice continuously differentiable, being continuously differentiable, and be-
ing only continuous. We next derive error estimates when the functional equation
is discretized with a third-order finite difference scheme. As before, we consider
the cases of the solution of the continuous problem being at least three-times con-
tinuously differentiable, being twice continuously differentiable, being continuously
differentiable, and being only continuous. We also study the behavior of the error
when the functional equation is discretized with a cubic spline interpolation scheme.
The cubic spline interpolation scheme is of interest, not because we want to have a
higher-order scheme, but because we know that the numerical solution has a con-
tinuous second derivative on the whole domain of definition. This is of importance
for nonlinear problems. For this scheme, we consider the cases of the solution of
the continuous problem being at least four-times continuously differentiable, be-
ing three-times continuously differentiable, being twice continuously differentiable,
being continuously differentiable, and being only continuous. We finally, because-
because the solution of the continuous problem is defined on the unit circle S! ,
approximate the solution by a truncated Fourier expansion. For the Fourier expan-
sion case, we derive an estimate (in Lz norm) for the continuous operator L defined
by
L { Co>C. . .
R—Roa

Here C is the space of continuous functions defined on the unit circle S1.

In chapter 3, we plot the solution of a specific functional equation discretized
with both a second-order finite difference scheme and a cubic spline interpolation
scheme. There we also plot the error curves obtained by discretizing the functional
equation with a second-order finite difference, with a third-order finite difference
scheme, with a cubic spline interpolation scheme, and with a truncated Fourier
series. . We also study the influence of certain parameters in the equation on the
smoothness of the solution. We do this by graphing the error curves as a function of
the parameter in the function «a for the second-order and third-order finite difference
schemes, for the cubic spline interpolation scheme, and for the truncated Fourier
series. We also fix all the parameters in the functional equation and compare these



-6 -

error curves when the equation is discretized with three different schemes: a second-
order finite difference scheme, a third-order finite difference scheme, and a cubic
spline interpolation scheme.



CHAPTER II

THE LINEAR PROBLEM
ANALYTICAL RESULTS

We consider the functional equation given by either
(11.0.1) R(z)=H (z) (Roa) (z) +Q (),
or the equivalent form

(11.0.2) (Roa) (z) =H (z) R (z) + Q (2),
where H and ﬁ, Q and Q are related to each other by

5. _ Q)
_H(a:)’ Q(x)— H(:l:),

assuming H (z) # 0 V z € S'. Because (11.0.1) and (I1.0.2) are equivalent, we will
study the properties of the solution of (I.0.1) and the solution of various discrete
equivalents of (II.0.1).

In this chapter we will assume that H, Q, and a are smooth functions defined
on the unit circle S!. The functions H and Q map the unit circle S! to the real line.
The function @ maps the unit circle onto itself. In most of the sections of the error
analysis part, we will not assume any monotonicity assumption on the function a.
Only in section 4 of the error analysis part, we will assume that the function « is a
bijection from the unit circle S! onto itself.

We first will study the existence and uniqueness of the solution of (I1.0.1), and
then study the conditions under which the solution R (z) is smooth and possesses k
continuous derivatives. Assuming some regularity on the solution of the continuous
equation (IL0.1), we will derive error bounds for the solution R of the discrete
version of (1I.0.1). The equation (I1.0.1) will be discretized using a second-order
finite difference scheme, using a third-order finite difference scheme, using a cubic
spline interpolation scheme, and using a Fourier expansion. A spectral method is a
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natural approach because the solution R is a function defined on the unit circle S!.

I1.1 Existence and Uniqueness of the Solution

Before computing any solution of (1I.0.1), we would like to know under which con-
ditions (II.0.1) has a unique solution. As before, H, Q, and a are smooth. We
call a function R from S? to (—o0,00) a solution of (11.0.1) if (11.0.1) holds at each
z € S! and R is bounded. Thus we excluded explicitly all unbounded functions as
solutions. The following theorem summarizes the results:

Theorem II.1.1.

Consider the equation

(I1.1.1) R(z)=H (z) (Roa) (z)+Q (z), =zeS.

Assume that the functions H, Q, and « are continuous and defined on the unit
circle S'. If | H |oo < 1, then a solution of (II.1.1) exists, is unique, and is continuous.

Proof of Theorem II.1.1:

We first will show the uniqueness of the solution. Consider two solutions R; and
R; of (I1.0.1). The function R; — R, satisfies

(11.1.2) (R1 —R2) (z) =H (z) [[R1 —Rz)0q] (), zeS.

By assumption, the function R; — R; is bounded. Because a maps the unit circle
S! into itself, we know that

(I1.1.3) | (R —R2)oa |oo < | R1 — Rz |oo.

By taking absolute values of (I1.1.2) and using (I1.1.3), we deduce

(IL1.4) | R1 =Rz |oo < | H o | R1 — Rz |

From (II.1.4), we see that R; = Ry because we have assumed | H | < 1. So the
solutions of both (I1.0.1) and (I1.0.2) are unique.

- We now want to show that there exists a continuous solution to (II.1.1). Define
the operator L as

. JC-=C
L: {R—)HRoa’
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where C is the set of continuous functions defined on the unit circle S!.
Showing that a solution to (II.1.1) exists is equivalent to showing that a solution
to the equation

(ILL.5) (1-1)r=q,

exists. Because the function o maps the unit circle S! onto itself and because
| L | < 1, the operator I—L possesses an inverse. There exists a unique solution to
(I1.1.5). The solution to the equation (II.1.5) can be given explicitly by a uniformly
convergent series, because the functions H and Q are known

(IL1.6) R (z) = i([lﬁ(H 0a) (a:)] Qoak (z)), zeS.

k=0 =0

This series is uniformly convergent because the function @ maps the unit circle S!
onto itself and because | H |, < 1. The solution exists and is uniformly bounded

by the constant

| Q |oo
l_lHlooe

So a solution to (II.1.1) exists and is unique if | H | < 1. In a similar fashion, we
can show that if | H | > 1, a solution to (I1.0.2) exists and is unique.

I1.2 Regularity of the Solution

In the previous section we have seen that there exists a unique solution to (11.0.1)
if | H |0 < 1. We would like to know the regularity of the continuous solution as
well, under the assumptions already given. The result, already presented in [2], can
be summarized as

Theorem I1.2.1.
Consider the equation
(I1.2.1) R(z)=H(z) Roa)(z)+Q(z), =ze€S.

Assume that the functions H, Q, and « are k-times continuously differentiable
on the unit circle S!. If | H |oo < 1 and if | H |0 | @' |%, < 1, then the solution R
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of (IL.2.1), is defined on the unit circle S* and possesses k continuous derivatives.
Here ! denotes the first derivative of the function.

Proof of Theorem I1.2.1:

We will prove this result using a fixed point theorem. We need to show that on
a complete normed space, we can define an operator that will define a contraction
mapping for the norm. We choose the same norm as in [2],

lR|k=€|R(k) Ioo+|Rloo,

with € > 0 to be determined below. Here the function R is the k-th derivative of
R. ’
We define the operator L by

LR(z)=H(z) Roa) (2)+Q (z). ze€S!

The operator L will be defined on the space C¥. of k-times continuously differentiable

functions defined on the unit circle S!. The space C* with the norm | |x is complete.

We then have to prove that the operator L is a contraction mapping on the given

space with respect to the norm | |x. Once we have done this, the Banach fixed point

theorem implies that the solution R of (II.2.1) possesses k continuous derivatives.
From the Leibnitz formula, we know that

(L R (m))(k) = zk: (';) HED (z) (Roa)V (z)

1=0
(I11.2.2) +Q® (z), =zeSh.

We would like to bound the difference L R; — L Ry in the norm | |x in terms of
| ng) - ng) loo and | Ry — Rg | first. From (I1.2.2), we see that we need to
consider Sobolev’s inequality

IRG) Ioo <€ |R(k) lo +C (50) I R |oo,

forj=1,..,k—1.
In (I1.2.2) we can isolate the term H (z) (')* (z) (R™ o a) (z) from the rest,
and bound the other terms using Sobolev’s inequality. We are lead to

LR ~LRo b < (| Hleo | o [+ Meo) €| R —RY |
(11.2.3) +(eM C (o) + | H |o) | R1 — Rz |oo,
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where M is a constant that bounds the sum of the terms of the type | HED |
| @) |7 Such a constant exists because the functions H*~) and o™ are con-
tinuous on the unit circle S'.

We first choose €p such that | H | | @' |5, + M € < 1. Then we choose
€ such that e M C (&) + | H |0 < 1. We choose Qg to be the maximum of
| H oo [ |5, +M € and € M C (&) + | H joo. This maximum is strictly smaller
than 1. We then obtain

(11.2.4) |ILR1—L Ry k<Qo|R:i—Ra L

This proves that the operator L is a contraction mapping with respect to the norm
| |k, on a complete normed space. Thus, we can apply the Banach fixed point
theorem that ensures us that there exists a unique solution R € C to the equation
R (z) =L R (z). So we deduce that the solution to (II.2.1) possesses k continuous
derivatives.

I1.3 Error Analysis

Because we can compute an analytical solution of (II.0.1), we can compare the
numerical solution with the solution given by the infinite series (I1.1.6). We would
like to see how the discretization error behaves and what happens when the exact
solution has lost the smoothness required by the numerical scheme. We will study
four different kinds of schemes: a second-order finite difference scheme, a third-
order finite difference scheme, a cubic spline interpolation scheme, and a Fourier
expansion. We will also show that a solution to those discrete equations exits.

We will denote the infinity norm for the vector e by | e |. The vector e has as
components the values of the grid function € on the grid.

I1.3.1 Second-Order Finite Difference Scheme

As mentioned earlier, we assume that H, Q, and a are smooth on the unit circle
S!. The scheme enforces the periodicity of the discrete solution by identifying the
meshpoints zm, 1+ Zm, Tm — 1, 2+ Ty, Tm — 2, and so on. Define R as a solution
of (I1.0.1) discretized with a second-order finite difference scheme

(I1.3.1.1) ﬁ,‘ = ﬁ,‘ (9,’ ﬁ,j_*.l +(1-6;) ﬁJ) + Q,‘ t=1,..,n
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Here R; is an approximation of R (z;), (5,- = Q (zi), H, = H (zi), and 6; h =
a (z;) — z; with 0 < 6; < 1. The term 6; ﬁj.,.l +(1-6;) ﬁ.j is a second-order
finite difference approximation of (R o ) (z;). The position of the meshpoint z;
depends on the function a. It is the nearest meshpoint from « (z;) such that
0 < a (z;) — zj < h modulo 1. We Taylor expand (R o a) (z;) about z; up to
its second-order term and we replace the first derivative of R at z; by its first-
order finite difference approximation to get the above expression. The result can
be summarized as

Theorem I1.3.1.1.
Discretize (I1.0.1) with the second-order finite difference scheme (11.3.1.1).

Assume that H, Q, and a are smooth functions defined on the unit circle S!.
Also let | H |oo < 1. The discrete system set up with the equations (I1I.3.1.1) has a
unique solution for | H | < 1.

If the solution R of (II.0.1) is at least twice continuously differentiable, the error

€ = R (z;) — R; satisfies

| H Joo
o T 1
_ Ifthesolution R of (I1.0.1) is continuously differentiable, the error & = R (z;)—
R; satisfies

(1IL.3.1.2) | € |oo < R | R" |oo-

(IL3.1.3) ez e

-1 !
<2y MR e

If the solution R of (I1.0.1) is continuous, the error & = R (z;) — R; satisfies

| H oo

11.3.1.4 € £2 ————
(113.14) |€lee <2 Ty

IRloo.

Proof of Theorem 11.3.1.1:

From the Taylor expansion of (R o &) (z;) at the meshpoint z;, with z; the mesh-
point such that 0 < o (2;) — £; < h modulo 1, up to the second-order term
R (z;)+6; h R' (z;)+ 67 h? R" (7;)/2 and by replacing R' (z;) by its first-order
approximation (R (z;+1) =R (2;))/h—h R" (xi)/2, 7i € [zj, a (zi)], xi € [25,2541],
we obtain

(Roa) (a:) = (1 8) R () +6 R (zj1)
(I1.3.1.5) L +1‘2i (o? R" (r;) — 6; R" (x.-)) i=1,..,n.
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Thus the error & = R (z;) — R; satisfies

& = ﬁ; (9,- €iv1+(1—6)) éj)

(IL.3.1.6) | +% R (8 R (1)~ 0: R () i=1m.
If we define the discrete operator i2 operating on the grid function (v;)i=1,...» as
(f:z v)i =6 vjir1+(1—-6;)v; i=1,..,n,

with j such that 0 < « (z;)—z; < h modulo 1, we see thatfg is of maximum norm
1, because 0 < 6; < 1. If we consider all the equations (I1.3.1.6), ¢ = 1,...,n and set
up a system with them, we see that the vector &;, &; = [&]7, satisfies the system

: ~ ~ 1
(11.3.1.7) (I -H Lz) &2=3 h* g,

where &2 = [:]", with §; = H; (62 R" () = 6:; R" (xs)). _ _
Because | H | <1 and | Lz | < 1, the operator I — H L; is invertible and

1 1
1.3.1. & | <z —— K| g |
(11.3.1.8) |e2|_21_|H|mh|g2|

Because | H; (62 R" (r;) — 6; R" (xi)) | is bounded by 2 | H | | R" |00, We get
(11.3.1.2).

Because the operator I — H I, is invertible for | H |oo < 1, we easily show that
there exists a unique solution to system set-up with the equations (I1.3.1.1).

If the function R is only continuously differentiable, then (I1.3.1.5) is no longer
true. From the Taylor expansion of (R o a) (z;) at z; we know

(Roa) (zi) = 6; R (zj41) + (1 - 6:) R (z;) |
(1L.3.1.9) +6; h (R' (1) — R’ ('r,-)) i=1,..n,

because (Roa) (2:) = R (z;)+6; hR' (1), pi € [z, (2:)], and R (zj41) R (z;) =
h R! (75), 7; € [zj,j41]. So the error & = R (z;) — R; satisfies

€; = ﬁ,’ (9,‘ €ji+1+(1-6)) éj)
(11.3.1.10) +6; b T (R' (i) = R (r,-)) i=1,..,n.
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If we proceed as in the derivation of (I1.3.1.2), we have to solve a system equivalent
to (I1.3.1.7) with a different right-hand side,

(11.3.1.11) (I— H iz) & =h &,

where &; = [&]T and §&; = [§;]T, with §; = H; 6 (R’ (#i) —R' (735)). So

1
I1.3.1. 1 |<———"h|& |
(I1.3.1.12) Iell_l_IHlm | &1 |

Because we can bound the term | R' (#;) — R’ (75) | by 2 | R' |00, we get (I1.3.1.3).
If the analytical solution R is just continuous, neither (I1.3.1.5) nor (I1.3.1.9)
are true. Instead we get the identity

(Roa) (z:) =6; R (zj+1)+(1—6) R (z;) + (Roa) (z:)
(11.3.1.13) —0i R(zj41)—(1-6;)R(z;) i=1,..,n.

So the error €; =R (z;) — R; satisfies
& =H; (9,‘ €i+1+(1—6;) §j)
(113.1.14) +H (Roe) (1)~ 6 R (zj41) (1 - 6) R (a:j)) i=1,..n.

If we proceed as in the derivation of (II.3.1.2), we again have to solve a system
equivalent to (II.3.1.7) with a different right-hand side,

(11.3.1.15) (I ~-H fz) & =&,

where & = [&]T and & = [3:], with § = H; (Roa) (z;) = 6; R (z41) = (1 —
6:) R (z;)). So

1
11.3.1.16 € | < ——— | g0 |
(11.3.1.16) &< oo | @ |

Because we can bound the term | (R o a) (z;) — 6; R (zj4+1) — (1 — 6;) R (z;) | by
2 | R |co, We obtain (I1.3.1.4).

I1.3.2 Third-Order Finite Difference Scheme
Define R as a solution of (I1.0.1) discretized with a third-order finite difference
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R; =H; (-é- (6; +6;)) Rjx1+(1—-6;) R;
(H.3.2.1) + —;— (0,2 - 6;) ﬁj_l) + @,’ 1=1,..,n.

Here R; is an approximation of R (z;), where 6; h = a(z;) —z; with 0 < 6; < 1,
and where z,, = (m — 1) h are the discrete pomts m=1,..,n with h = 1/n
Also let H; = H (z;) and Q; = Q (z;). The term (67 + 6;) Rj11/2+ (1 — 62) R, +
(62 —6;) Rj1/2 is a third-order finite difference approximation of (Ro ) (z;). We
Taylor expand (R o a) (z;) up to its third-order term, replace the first derivative of
R at z; by its second-order finite difference approximation, and replace the second
derivative of R at z; by its first-order finite difference approximation to get the
above expression. The position of the meshpoint z; depends on the function a. It
is the nearest meshpoint from a (z;) such that 0 < a (z;) — z; < h modulo 1. The
result can be summarized as

Theorem II1.3.2.1.
Discretize (I1.0.1) with the third-order finite difference scheme (I1.3.2.1).

Assume that H, Q, a are smooth functions defined on the unit circle St. If
| H |oo < 8/17, the discrete system set up with the equations (11.3.2.1) has a unique
solution.

If the solution R of (II.0.1) is at least three-times continuously differentiable
and if | H | < 8/17, then the error &; = R (z;) — R; satisfies
e 17 | H |
© S48 12 Y 1H |
If the solution R of (II.0.1) is twice continuously differentiable and if | H | <
8/17, then the error é; = R (z;) — R; satisfies
| 17 | H |oo
=16 T Y 1H |

If the solution R of (II.O.l) is continuously differentiable and if | H |0 < 8/17,
then the error €; = R (z;) — R, satisfies

| H |oo
1- '137' l H 'oo

If the solution R of (I1.0.1) is continuous and if | H | < 8/17, then the error
é; = R (zi) — R; satisfies

(11.3.2.2) R | R® |.

(11.3.2.3) | & B? | R" |oo-

(IL3.2.4)  éle<3 h R |eo.

(11.3.2.5) 6o < 2 | H oo

— ————— | R |-
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Proof of Theorem I1.3.2.1:

We proceed as in the proof of theorem I1.3.1.1 for the second-order finite difference
scheme.

We Taylor expand of (R o a) (z;) at the meshpoint z;, with z; the meshpoint
such that 0 < a (z;) — z; < k, modulo 1 up to the third-order term R (z;) +
6; h R' (z;) + 62 B2 R" (z;)/2 + 6% h® R® (7;)/6 and by replacing R’ (z;) by
its second-order approximation (R (zj}1) — R (z;21))/(2 k) — B? (R®) (£j31) —
R®) (¢;-1))/12, and R" (z;) by its first-order approximation (R (zj41)—2 R (z;)+
R (zj-1))/B? — b (R® (&541) + R®) (£;-1))/6. Here §J+1 € [zj,%41], &i-1 €

[zj-1,7;], and 7; € [z}, (2;)], we obtain

(Roa) (s:) = 5 (6 +6) R (2131) + (1~ ) R ()
1 2 1 3 3 3
+5 (6 =6) R (ejm1) + 55 b (2 62 R® (r,)

(IL.3.2.6) -~ — (67 4+6;) R® (&41) — (62 —6,) R® (gj_l))' i=1,..,n.
So the error é; =R (z;) — ﬁ,- satisfies

& =1, ( (62 +6:) j41 + (1 - 67) & + 5 (9 —6:) 1)
= K (260 RO (r) - (67 +6) R<3> (6541)
(11.3.2.7) — (62 =6 RD (¢j-1))  i=1,m

Define the discrete operator Ls operating on the grid function (v;)i=1,...,n as

~ 1 .
(Lav)i=§(92+0)v1+1+(1 e)v,+ (62— 8)viey i=1,.m,

with j such that 0 < a (z;) — z; < h, modulo 1. We see that the operator Ls is of
maximum norm 17/8, because the maximum of z% + z is 2 on the interval [0, 1], the
maximum of 1 — z2 is 1, and the maximum of z — z? is 1/4. If we consider all the
equations (I1.3.2.7), 1 = 1,...,n, and if we set up a system with them, we see that
the vector &; satisfies the system

T YOI R
(11.3.2.8) (I —-H Lé) € =1 K gs,
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where é3 = [é,‘]T and gg = [g,']T, with g.' = ﬁ,‘ (2 0? R(s) (T,'): L@? +0,’) R(3) (EH.])—
(62 —6;) R® (£;_1)). Soif | H |oo < 8/17, the operator I — H L3 has an inverse and

1 1
& | < =
&< 1-12 1 H |

(11.3.2.9) K| s |-

Because | 83 | <17 | H |oo | R®) |0 /4, we obtain (11.3.2.2).

‘Because the operator I — H I has an inverse for | H |0 < 8/17, we easily show
that the system set up with the equations (II.3.2.1) has a unique solution.

If R is only twice continuously differentiable, then (I1.3.2.6) is no longer true.
From Taylor expansion of (R o a) (z;) at z; we know

(Roa) (z:) =5 (2 +6) R (z51) + (1 ~6}) R (3;)
FE-0)R (z;0) + 7 B (262 R ()
(11.3.2.10) — (67 +6;) R" (&j41) — (62 —6;) R" (5,-_1)) i=1,..,n,

because (Ro a) (z;) =R (z;)+ 6; R R' (z;) +6? h? R" (1;)/2 , because R' (z;) =
(R (2541)—R (55-1))/(2 B)—h (R (€541)— R (&-1))/4, and because (R (z541)—
2 R (z;) + R (z;-1))/h* = (R" (§i+1) + R" (§j-1))/2. Here 7 € [zj, (2:)],
£i+1 € [zj,Tj41]), and €1 € [zj—1,7;]. So the error é; = R (z;) — R; satisfies
& =H; (% (67 +6:) &jqa + (1 67) & + % (6 - 6:) &5-1)
1., ~
+5 W Hi (262 R () = (€ + ) R (&54)
(I1.3.2.11) — (62— 8;) R" (g,-_l)) i=1,..,n.

If we proceed as in the derivation of (11.3.2.2), we have to solve é, system equiv-
alent to (II.3.2.8) with a different right-hand side

(11.3.2.12) (1 - ig) &y = %.m g2,
where &; = [&;]T and §; = [§]T, with §; = H; (2 62 R" (r;) — (62 +6:) R" (éj41) —
(6 — 6 R" (€1)). So

1 1

13.2.13 8 | < 7 —
(11.3.2.13) &< T

K g2 |.

Because | §; | is bounded by 17 | H | | R" |c0/4, we deduce (I1.3.2.3).
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If R is only continuously differentiable, then (II.3.2.6) and (I1.3.2.10) are no
longer true. In this case we know from the Taylor expansion of (R o a) (z;) at z;
that

- (Roa) (s:) = 5 (6 +6) R (z51) + (1~ ) R (=)
4 =0 R (50 +h (6: R ()

(3214)  —7 6 (R (tjs1) - R (150)) = 6 R (Xj)) i=1,.,n,

because Roa (z;) = R (z;)+6; h R’ (7:), R (zj4+1)—R (z;) = h R' (xj+1), because
R (z;) =R (zj-1) = h R’ (xj-1), and because R (zj4+1) — R (zj—1) =2 A R’ (x;).
Here 7; € [zj,a (i), Xj+1 € [2j,%j+1], X5 € [zj-1,7j41], and xj1 € [zj-1,25].
So the error é; = R (z;) — R; satisfies

~ /1 . ,. .
€& = H; (§ (67 +6:) &541 + (1 — 67) & + (67 — 6)) 61'—1)
~ 1
+H; h (9.‘ R' (1) - 3 A (R' (Xi+1)

(11.3.2.15) - R’ (le )) - 9,‘ R' (Xj)) 1= 1,...,n.

If we proceed as in the derivation of (I1.3.2.2), we have to solve a system equiv-
alent to (II.3.2.8) with a different right-hand side

(I1.3.2.16) (1-HL) & =hg,
where &; = [¢;]T and g1 = [§:]T, with §; = H; (6; (R' (:)=R' (x;))—6? (R’ (xj+1)—
R’ (xj-1))/2) So

(I1.3.2.17) & | < !

hlgll

Because | §; | is bounded by 3 | H |o | R’ |00, we deduce (11.3.2.4).
If R is only continuous, then (II.3.2.6), (I11.3.2.10), and (IL.3.2. 14) are no longer
valid. For this case we have the identity

(Roa) (z:) =3 S (@ +6)R (zj+1) + (1 - 6}) R (g;)

+ 2 (- 8) R (5j-) + (Roa) (2)
- % (67 +6:;) R (zj4+1) — (1 — 67) R (z;)

(IL3.2.18) - % (@2 —6) R (zjo1) i=1,...n.
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So the error & = R (z;) — R, satisfies

~ (1 R . 1 R
& =H (5 (07 +0) Gua +(1-61) &+ 5 (62— 6) &1
~ 1
+Hi (Roa) (2) = 5 (62 +6:) R (zj41) — (1- ) R (g;)

(IL3.2.19) _%(@_m)Ruﬁg) i=1,..,n.

If we proceed as in the derivation of (I1.3.2.2), we have to solve a system equiv-
alent to (II.3.2.8) with a different right-hand side

(11.3.2.20) | (I ~H is) & = go,

where & = [&]T and g = [§:]T with §; = H; (Roa) (z;) — (6? +6;,) R (zj4+1)/2 -
(1-67) R (z;) — (67 — 6:) R (z;-1)/2). So

1
11.3.2.21 |& | < ——— |80 |
( ) 1- % IH Ioo

Because | §; | is bounded by 25 | H | | R |oo/8, we deduce (11.3.2.5).

I1.3.3 Spline Interpolation Scheme

We would like to know the behavior of the error when the equation (1I1.0.1) is
discretized with cubic splines. The advantage of this method compared to the two
finite difference methods studied previously is that the spline solution R* will have a
second derivative continuous everywhere on the unit circle S!. The disadvantage is
that it will require more storage for the computation. Some of the results presented
in this section have already been proven in [11], for the case of a cubic spline with
the first derivative of the spline prescribed at the end points of the interval of
study. Define S to be the cubic spline approximating the function R and satisfying
S (zi) = R (z:), and S* to be the cubic spline satisfying S* (z;) = R}, where R} is a
numerical approximation of R (z;). In order to simplify the algebra in this section,
it will be assumed that the mesh is uniform. The results can be extended without
difficulty to the case of a non-uniform mesh with the ratio of Ampaz/hmin bounded
by a finite constant as presented in [11]. Discretize (II.0.1) with the scheme

(11.3.3.1) Ri=H!(S*oa) (z:)+Qf i=1,..,n,
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where R} is an approximation of R (z;), H! = H (z;), QF = Q (z;), and where S* is
a cubic spline passing through the points R}. Here z,, = (m — 1) h are the discrete
points, m = 1,...,n, with A = 1/n. The following theorem summarizes the results:

Theorem II.3.3.1.
Discretize (I1.0.1) with the scheme (I1.3.3.1).

Assume that H, Q, and « are smooth functions defined on the unit circle S. If
| H |00 < 18/(18 4+ 1/3), the solution of the discrete system exists and is unique.

If the solution R of (II.0.1) is at least four-times continuously differentiable and
if | H |oo < 18/(18 4 +/3), then the error e} = R (z;) — R} satisfies

| H |oo

(11.3.3.2) | € |oo <2
1-— 18j;18¥3 I H |oo

K | R |

If the solution R of (I1.0.1) is three-times continuously differentiable and if | H | <
18/(18 + v/3), then the error e¥ = R (z;) — R} satisfies

| H oo
1—18_-1?@|H|oo

11.3.3.3) €* |oo < 5 R | R® |
) | R® |

If the solution R of (I.0.1) is twice continuously differentiable and if | H | <
18/(18 + \/5), then the error e} = R (z;) — R} satisfies

e e Hle o
(11.3.3.4) Ieloo—10 — BB H |, PR e

If the solution R of (II 0.1) is continuously differentiable and if I H |oo < 18/ (18 +
v/3), then the error e} = R. (z;) — R} satisfies

|*|°° 11 IHIOO
_21

(11.3.3.5)

If the solution R of (I0.1) is contmuous a.nd i H |oo < 18/(18 +1/3), then the
error ef = R (z;) — R} satisfies
21 |H|»

11.3.3.6) ) <22 .
( 3.6) _ Ielw—21_1§ 3|HI°°|R|00

Before proving these error bounds, we have to compute the maximum norm of
the cubic spline operator. To do that, we first will show that the inverse of the
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matrix relating the moments to the values of the function through which we want
to fit the spline at the discretization points is, at most, of maximum norm 1.

Lemma I1.3.3.2.

Consider the matrix:

2 3 0 ... 0 17
202 0 L0
1 1
o 1 2 1 0
(1L.3.3.7) M=|: - - - -
0 7 2 1 0
0 ... 0 3 2 1
E R T R Y

This matrix M has the following property, o
CMz=w=]z|<|w]|,
where | z | means the maximum norm of the vector z.

Proofg}f‘-L.emma r.3.3.2: . . C
Suppose that the component of maximum absolute value is the r-th one for the

vector z. Then, we have | z | = | z, |. From the structure of the matrix M we
deduce that

l:z +2 +l =
2 r—1 Zr D) Zr41 = Wy

So we know from the triangle inequality that

1 1
(11.3.3.82) |wl2lwe [22] 20 | =5 |21 | =5 |2 )
(11.3.3.8b) > zr |-

Because we have shown that the matrix M™! is at most of maximum norm 1, we
can estimate the maximum norm of the cubic spline operator. The following lemma.
summarizes the result:

Lemma I1.3.3.3.

The maximum norm of the cubic spline operator is smaller than .or equal to (18 +

V3)/18.
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Proof of Lemma 11.3.3.3:
From [11], we know that

—_— )3
(11.3.3.9) S (z) = QEL%TL—)— + Mj+ ££€%)— +A;j (z —z;) + Bj,

for z € [zj,;41], where A; and B; are given by

(11.3.3.10) i= y—’-ﬁh—y’ - = (Mj41 — M),
B2
(11.3.3.11) Bj =y; — M; 5’
and the moments M; are the solution of the system M M = F, with
3 (Y1 Y Yi—Yi-
(11.3.3.12) Fj = ( - - )

The vector y = [y;]T is the vector of data through which we would fit the cubic
spline.

Because the problem is defined on the unit circle S?, we identify j —1 and n—1
for j =0, and we identify j + 1 and 0 for j =n —1.

From Lemma II.3.3.2 and (11.3.3.12), we deduce that

12
(11.3.3.13) ~ IMj 1< 751 loo-

Because we have bounded the moments M; in terms of the data y;, we can estimate

the maximum norm of the cubic spline operator from the expressions (I1.3.3.9),
(11.3.3.10), and (I1.3.3.11). We have

Z; — X))\ — T,
S (:1:) — _( Jj+1 6)h( J) (M (2 Tiy1 — —(L'j)
(I13.3.14)  +Mjp (zj41 +2—225)) + == y’“ (z —z;) + % % . (241 — ),

for z € [z}, ;1]

From there, we will bound the cubic terms in terms of the moments and the
linear terms in terms of the data. The polynomial (zj4+1—2) (z—z;) (zj+1+2;—2 7)
keeps a constant sign on the subintervals [z, (z;+2;41)/2] and [(z;+2;+1)/2, zj41]-
An upper bound for the polynomial on each subinterval is v/3 h3/36. We are lead
to
V3 h?

16 | MI+1Y lw,
L 18+V8
N TR AT

(11.3.3.15a) IS (2) | <

(11.3.3.15b)
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From (I1.3.3.15b), we deduce that

&

18 +

<
5 oo <

Because we have shown that the cubic spline operator is at most of maximum
norm (18 + +/3)/18, we easily show that for | H |o < 18/(18 + v/3), the discrete
system set up with the equations (I1.3.3.1) has a unique solution.

Proof of Theorem 11.3.3.1:

We would like to derive the equation that the error function ef = R (z;) — R}
satisfies. Define S to be the cubic spline passing through the points R (z;). We
then have using (11.0.1)

(11.3.3.16) - S(zi)=R(z:) = H? Roa) (z:)+Q(zi) i=1,..,n.
If we subtract (II.3.3.1) from (11.3.3.16), we get

(11.3.3.17) e =H! (A )i+ H (Roa) (z:)— (Soa) (z:)) i=1,..,n,

where A is the cubic spline operator defined by (A R*); = (S* 0 @) (z;). From
the expression (I1.3.3.12) for F; and from (II1.3.3.9), we see that the cubic spline

operator is a linear operator. So we deduce (1. 3 3. 17) by addmg and subtracting
the term (S o a) (z;) from

(I1.3.3.18) R (:c,) R* = HY ((R oa) (zi)—(S*oa) (z;)) i=1,..,n.
We will consider the operator I — H A deﬁned as
(11.3.3.19) (I ~HA)e*=Hz".

We obtain (I1.3.3.19) by considering all the equations (11.3.3.17), ¢ = 1,...,n and
settmg up a system with them. The vectors e* and z* are glven by e* [e}’]T and
z* = [(Roa) (z;) — (S oa) (z;)]" respectively. ' = - - A

If we assume that R is at least four-times continuously differentiable, and pro-
ceed as in [11] with minor changes because we consider periodic splines, we get

(11.3.3.20) |R—S oo <2 h* |RW |,

because the constant C in [11] is less than or equal to 2 in our case.
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From Lemma I1.3.3.3, it is known that if | H | < 18/(18+\/_), then the operator
I—H A is invertible. From the expression that the error e} satisfies and (I1.3.3.20),
we easily deduce (11.3.3.2). o

.In order to prove error bounds in the case that the function R is either three-
times continuously differentiable or twice continuously differentiable, we have to
bound the vector

r=E-Mf=M M- f),
where - R® (z0) 1
R® (21)

RO (z5)

I~
I

L R(2) (mn_l ) B

The result can be summarized as follows

Lemma II.3.3.4.
If the solution R of (II.0.1) is three-times continuously differentiable, then

(11.3.3.21) IM—f|<|r|<2h|R® |
If the solution R of (II.0.1) is twice continuously differentiable, then
(I1.3.3.22) S IM-F1<|zr|<6|R® |y

Proof of Lemma 11.3.3.4:

The first inequalities in (I1.3.3.21) and in (I1.3.3.22) are immediately deduced from
Lemma II1.3.3.2.

If the function R is three-times continuously differentiable, we know that

R S 1
rj=3 Yi+1 Yj + Yj—1 _ 5 R® (xj—l)

B2
(11.3.3.23) | —2R® (z;) - % R® (zj41)-
From the Taylor expansions of R (z;-1) and R (zj41) around z; up to the third-

order term, of R® (z;_;) and R® (z;41) around z; up to the ﬁrst~order term, we
deduce that

h
Ti=3g (R® (gj+1) —R® (4j-1)
(11.3.3.24) - +R® (75-1) = R® (1541)),
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where pj_y € [zj-1,%;], pj+1 € [Tj,zj41], Tj-1 € [Tj-1,7;], and Tjy1 € [zj,2j41].
We get the second inequality of (11.3.3.21) by replacing R® (z) by | R® | in
(11.3.3.24).

If the function R is twice continuously differentiable, we know that

3 1
ri =5 R® (E12) + R (¢52)) - 5 RD (2;-1)

(11.3.3.25) —2RD (g;) - % R® (z;41),

where €1 € [zj_1,z;] and €41 € [zj,2j41]. We get (11.3.3.25) by expanding
R (zj-1) and R (zj41) about z; up to the second-order term. We obtain the
second inequality of (11.3.3.22) by replacing R(® (z) by | R® |, in (I1.3.3.25).

Because we have bounded | M — f |, we can derive (I1.3.3.3). To do that, we
first have to bound | S® — R(®) |,,. From (I1.3.3.9), we know that

@ (z) —R® (z) = _IY_I_J_“_’}’I_J_—_I_ _R® (),
_ (z;—2) R® (&) - (;j-1 —z) R®) (&) RO (z)
+ M —R® (2)  Mj —RD (z-)
h h ’

where ¢; € [z, 2], {j-1 € [zj-1,2), and z € [zj_1,7;]. We have to use the Taylor
expansions of R® (zj_;) and of R® (z;) about z. Because | z; — z | < A,
|zj—1 —z | < h, because z; —z > 0 and z — zj—; > 0, from the expression
(11.3.3.21) of Lemma I1.3.3.4, we obtain

(11.3.3.26) |S® _R® |, < 6| R® |o..

Because we have estimated | S®) —R®) |, we can bound | S —R(® | . Assuming
that = belongs to the interval [z;, z;+1], we have

5@ (2) —=R® (2) = 8P (3i (2)) —R® (2 (z))
(11.3.3.27) | + [ (S® (¢) = R® (1)) dt.

z; (z

From (II.3.3.21) of Lemma I1.3.3.4, from (I1.3.3.26), and from the fact that | z; (z)—
z | < h/2, we obtain

(11.3.3.28) |S® —R® |, <5h| RO |,
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because from the cubic splines properties, we have S() (z; (z)) = M;.

We now want to bound | §' — R’ |. Because S (z;) = R (z;) by hypothesis,
because the function R is three-times continuously differentiable and because the
spline function S is twice continuously differentiable, from Rolle’s theorem we know
that on each interval [z;,z}1], there exists a point v; such that R' (v;) = S’ (1;).
So we get

(11.3.3.29) S' (z) -R' (z) = / (z)(s“’) () — R® (1)) dt.

So from (II.3.3.28), (11.3.3.29), and the fact that | v; (z) — z | < h, we deduce
(11.3.3.30) 18 =R’ |oo <5 k2 | R® |o,.

Because we have estimated | S'—R' |, we immediately obtain a bound for | S—R oo,
because

(11.3.3.31) S (z)-R (z) = / (,,.)(S' (t) = R () dt.

So from (I1.3.3.30) and (I1.3.3.31), we obtain
(11.3.3.32) |S—R oo <5 k% | R® |.

From Lemma I1.3.3.3, it is known that if | H |, < 18/(18 + v/3), then the operator
I—H A is invertible. From the expression that the error e} satisfies and (11.3.3.32),
we easily deduce (11.3.3.3).

We want to bound the error when the function R is twice continuously differ-
entiable. To do that, we first estimate | S — R®) |,,. From (I1.3.3.9) we know

that
1—Z

(11.3.3.33) S® (z) = R® (z) = M; -'vj+h

zT—z;

+ M —R® (a),

with z € [z}, zj41].
After a few algebraic manipulations, from (I1.3.3.33) we obtain

52 (m) _R® ($) _ (R(z) (:BJ) —R® (a:)) ﬂ’i‘_;{:i
+R® (zj41) = R® (2)) =2

+ (M,- _R® (;,,j)) "’J;lh__"’_

:z:—:vj

P

(11.3.3.34) +(Mjs1 — R® (z41))
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So using (II.3.3.22) from Lemma II.3.3.4 and (I1.3.3.34), we deduce
(11.3.3.35) | S® —R® |, <10 | R® |

We now want to bound | ' — R’ |o. Because the functions R and S are twice
continuously differentiable, (11.3.3.29) still holds. From (11.3.3.34) and (I1.3.3.29),
we obtain

(11.3.3.37) |S'=R' |0 <10 A | R® |,

Because (I1.3.3.36) gives a bound for | ' — R’ |o We can now estimate | S — R |co.
If we use (I1.3.3.31) and (I1.3.3.36), we get

(11.3.3.37) | S =R | <10 5% | R® |5,

From Lemma I1.3.3.3, it is known that if | H |o < 18/(18 +/3), then the operator
I—H A is invertible. From the expression satisfied by the error e and (I1.3.3.37),
we easily deduce (I1.3.3.4).

Finally, we want to bound the error when the function R is continuously dif-
ferentiable. We can not proceed exactly as before, because the vector r introduced
in Lemma I1.3.3.4 cannot be defined. Instead, we will try to bound the vector F
in terms of A and R'. In Lemma II.3.3.2 we have shown that the matrix M1 is at
most of maximum norm 1. We will be able to bound the moments with the bound
on|F|

If the function R is continuously differentiable, we know that

= ® (r2) + R (r3-0),

with 7;_1 € [zj-1,2z;] and 7j41 € [zj,7j41).-So | E | < 6 | R! |oo/h. Because the
matrix M™! is at most of maximum norm 1, we have

(11.3.3.38) IM|<+~ | R oo

Because we have a bound for the moments, we can estimate | S’ —R' | using brute
force estimates. If we differentiate (I1.3.3.9) once, we obtain

Tjt1 — )2 T —z;)?
g ($)=—Mj ( J'*; - ) +Mj+1 ( J)

h
(11.3.3.39) + l’i’h—y’ — 5 Mjir1 — M)
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If we use (I1.3.3.38), the fact that z € [z}, 2j41], and the continuous differentiability
of R, we get

(IL.3.3.40) |S'—R | < 2 | R’ |co-
To bound | S — R |, we use (I1.3.3.31) and (11.3.3.40). This yields

(1.3.3.41) 1S-Rlo< 5 h|R |

Lemma I1.3.3.3 shows that if | H |o, < 18/(18 4 v/3), then the operator I — H A is
invertible. From the expression satisfied by the error and from (I1.3.3.41), we can
now easily deduce (I1.3.3.5).

To bound | S — R |o when the function R is only continuous, we first bound
the moments M; in terms of h and | R |. Once we have bounded the moments,
then we can use (I1.3.3.9) to obtain a brute force estimate.

If the function R is only continuous, the components of the vector F satisfy

12
[EI< 2 |R I
So the moments M; satisfy
(11.3.3.42) IM|< 2 | R Joos

because the matrix M™! is at most of maximum norm 1.
After a few algebraic manipulations on S (z) — R (z) and using (11.3.3.42), we
obtain

(IL3.3.43) |S—R|w < 3 : ‘f

IRIoo

Lemma I1.3.3.3 shows that if | H |oo < 18/(18 4 v/3), then the operator I — H A is
invertible. From the equation satisfied by the error e} and from (I1.3.3.43), we now
easily deduce (I1.3.3.6).

If we do not work with a uniform mesh, we will have to change the results
from lemmas I1.3.3.2, I1.3.3.3, and 11.3.3.4. The results from Lemma I1.3.3.2 can be
easily extended to the case of non-uniform mesh because we have assumed in the
non-uniform mesh case that A; > 0, g; > 0, \; + ; = 1, ¢ = 1,...,n. From there,
all the other results and estimates can be deduced easily. In theorem I1.3.3.1, we
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will have to replace the meshsize h by the maximum length of the partition of the
interval hpq, and change certain constants.

I1.3.4 Fourier Method

As already mentioned, the solution of (II.0.1) is defined on the unit circle S!. So a
spectral method is an obvious method for discretizing equation (I1.0.1). This time,
we assume that the function « is a bijection from the unit circle S! onto itself. We
will derive estimates for the continuous operator L defined as

. fC-=C
L: {R—)Roa’

where C is the set of continuously differentiable functions defined on the unit circle
S!. The result is summarized by the following theorem

Theorem I1.3.4.1.

The Ly norm of the continuous operator L defined above is at most

1y | (@ H)® Jlay3
(I13.4.1) (@Y I+ 22—,

if @ is a bijection from the unit circle into itself and if « is at least three-times
continuously differentiable. Here the norm || ||; is the L; norm given by

||u||1=/0|u<x)|dz

Proof of Theorem I11.3.4.1:

~.-Because the solution of (I1.0.1) is defined on the unit circle S and is by assump-
tion at least continuously differentiable, there exists a convergent Fourier expansion
for the function R. The convergence, because the solution is continuously differen-
tiable, holds pointwise. It is given by

o0
(I1.3.4.2) R(z)= > Rjef?7ic

j=—oo
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To obtain a bound for the operator L in L; norm, we must bound the expression
[| Roa || in terms of || R ||. We can do this, by using Parseval’s relation,

(11.3.4.3) IRIP= > IR; P
Jj=—oc0
From the L, scalar product, we have
(IL344)  ||Roa r=> Z Ry Ry (7 ie @, mte @),

j=—o0l=—00

where @ denotes the compex conjugate of u.
We want to estimate the scalar product (e 2 7 7 @ (2) ¢f 2 71 @ (2)) ip terms of

bounds on the function a and its derivatives. By definition, the scalar product is
1
(I1.3.4.5) (i2mie@eznta@) / 2T G=D e (@) gy
0

Because the function « is a bijection from the unit circle onto itself, after a change
of variables the relation (I1I.3.4.5) becomes

o . a @) . :
(II.3.4.6a) (et 27Tja (z),e: 27l (:c)) =/ el 2x(j=y (a—l)l (y) dy,

a (0)
1

(11.3.4.6b) = / e 270D (a71Y (y) dy,
0 .

(11.3.4.6¢) = (™)

where prime means the first derivative and where (a‘l )'j—i is the j — I Fourier
coefficient of the function (a™!)". We have used the fact that the function « is a
bijection from the unit circle S! onto itself. Using (I1.3.4.6¢), the equality (I1.3.4.4)
becomes

(o o] oo

(I134.72) [|Rea|P= S Y R Ri(al),,

j=—ool==0c0

< ( i i |R; 7| (a7Ty;2, l)%

j=—oc0l=—00

(11.3.4.7b) (Z Yo IR P (e Ty, I)E,

j=—00 l=—00

@wsary = (3 1@, 1) v

j=—oco
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In the above, (I1.3.4.7b) was obtained by applying the discrete Cauchy-Schwartz’s
inequality

(11.3.4.8) Z| a; bj | < (f: a?)% (Z )7,

Jj=0 Jj=0

1
2

to (I1.3.4.7a).
Because we have assumed that « is at least three-times differentiable, we will
bound

(11.3.4.9) Z | (a~1y, |,
j=—o0

in terms of the L; norm of the third derivative of a. By definition, if k¥ # 0 we have

(113.4102) (a1, = /0 2R (7Y (y) dy,

. N 1 3
(11.3.4.10b) =—3 7rlz' : /0 ef2mky (o7 )(2) (y) dy,
| 1 PP _
(I1.3.4.10¢) =0 /0 ¢ 27 F Y (a7)® (y) dy.

Because the last integral is bounded by || (a~*)® ||;, we deduce that

-5 | (=)@ |}y
(11.3.4.11) | (@™1), | £ A

if k#0. If k=0, then | (oz/-\l)’0 | <] (@71) ||1 from the definition of the scalar
product. So using (II.3.4.10), we get the following bound for (I1.3.4.9) in terms of
the L; norm of (a~1)®:

a—1® ||,
(3412 3 1@y, Tl @ o+ LT z L

j=—oc0
13 |

(11.3.4.12b) =1 (@) |l + || (e~ )

(11.3.4.1) follows immediately from the bound (I1I.3.4.12b).

We would like to derive an estimate for the discrete equivalent of L. By discrete
equivalent of L, we mean the operator obtained by replacing all the integrals needed
to define the Fourier expansion of R and R o a by discrete sums. We have been
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unable to do that because there is no obvious equivalent to the change of variable
used in the continuous case for the discrete sums.

In the next chapter, we will describe the scheme we use to numerically solve
the functional equation when the solution is approximated with a truncated Fourier
expansion.

Because we have been unable to derive bounds for the discrete equivalent of the
operator L defined in this section, we are unable to derive error estimates as done
in the three previous sections, for the finite difference schemes and for the cubic
spline interpolation scheme.
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CHAPTER III

THE LINEAR PROBLEM
NUMERICAL RESULTS

We would like to numerically investigate different properties of the solution of
(I1.0.1) and confirm the analytical results and error estimates that were obtained
in the previous chapter, when the numerous assumptions on the function a are
satisfied. We would also like to know what happens when these assumptions are
violated, and whether the numerical solution still exists or not. In all the problems
we have solved numerically, from theorem II.1.1, we know that there exists a solu-
tion to the continuous problem. We always will choose | H |0, < 1 for the equation
(11.0.1) or | H |eo > 1 for (I1.0.2) so that the solution to the continuous problem
exists.

To simplify the computations in this section, we will take the function H to be
constant and the function a to be z+.11+4c¢ sin (2 7 z). The parameter ¢ will range
from 0 to 2 in most of the cases, except for the second-order and third-order finite
difference schemes where it ranges from 0 to 4 if H = .1 and from 0 to 1 if H = .7.
If ¢ < 1/(2 7), the function « is a bijection from the unit circle S onto itself. For
¢ > 1/(2 w), however, some of the theorems proven in the previous chapter, like
theorem II.3.4.1, which assumes the existence of an inverse, no longer apply.

As in the previous chapter, we will study the numerical solution when (I1.0.1)
is discretized with a second-order finite difference scheme, with a third-order finite
difference scheme, with a cubic spline interpolation scheme, and with a discrete
Fourier expansion. We will compare the behavior of those different schemes and
try to find which one is the best to use, depending on the value of | H | and
the parameter c. One other important factors in our choice is whether we need a
continuous first derivative for the interpolated discrete solution or not.

We can predict the regularity of the solution from theorem I11.2.1. From this
theorem we know that the solution is C* if | H | | @' |F, < 1. From this relation,
we deduce that approximatively,

Log (| H o)
k= ———— L
log (| o o)

We use this relation to obtain the estimated value of & for two different constant

(111.0.1)
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H, H = .1 and H = .7, with the function a given above. Table II1.0.1 shows the
estimated k for H = .1 with ¢ ranging between 0 and 2. Table II1.0.2 shows the
estimated k for H = .7.

c k
0 00
001 367
005 74
.01 37
05 8
1 4
.15 3
2 2
3 2
.35 1
14 1
1.45 0

0

2

Table II1.0.1 Table of the estimated regularity of the analytical solution of (I1.0.1)
for different values of ¢ and for H = .1.

c k
0 00
001 56
005 11
.01 5
05 1
d 0
2 0

Table IIL.0.2 Table of the estimated regularity of the analytical solution of (I1.0.1)
for different values of ¢ and for H = .7.

ITI.1 The Second-Order Finite Difference Scheme

In the previous chapter we have shown that the solution to
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(II1.1.1) R(z)=H(z) Roa) (2)+Q (z), =ze€S!

exists and is unique if the functions H, Q, and « are continuous and defined on the
unit circle S1.
We have discretized (IIL1.1.1) with the second-order finite difference scheme

(II1.1.2) f{; = ﬁ,’ (0,' Rj.,.] +(1-6) RJ) + Qi 1=1,..,n.

Here R; is an approximation of R (), i = Q (z:), H; = H (i), and 6; h =
a (z;) —z; with 0 < 6; < 1. Here z,, = (m — 1) h are the discrete points,
m =1,...,n, and h = 1/n. We enforce the periodicity by equating the points z,,,
Tmin y Tm—n, Tm+2 n, --.Lhe term 6; R,.,.l +(1-6) R is a second-order finite
difference approximation of (R o a) (z;). The position of the meshpoint z; depends
on the function a. It is the nearest point to a (z;) such that 0 < a (z;) —z; < h
modulo 1. We Taylor expand (R o a) (z;) about z; up to its second-order term and
replace the first derivative of R at z; by its first-order finite difference approximation
to get the above expression.

We have run numerical experiments for different values of the parameter c.
Some values were chosen so that the function « is a bijection from the unit circle
S? onto itself; other values were chosen so that the function « has no monotonicity
properties. The estimates in tables II1.0.1 and II1.0.2 also show that the solution
looses its smoothness in certain cases.

We have noticed that in order to have a good approximation to the solution,
we need to have a good discrete approximation to the function Q. For example, we
have run the code with

Q(m)=1+% sin(27ra:)+% sin (4 7 z)

(I11.1.3) + % sin (6 7 z) + -1}6 sin (10 7 z),

with both 40 and 640 meshpoints. Even if the contribution of the term
sin (10 7 z) is smaller than that of the other terms in Q, a small number of mesh-
points cannot represent the solution accurately. We can easily see this by comparing
plots with 40 and 640 meshpoints, which have the same value of c.

In figure I11.1.1, we plot the numerical solution of (III.1.1) discretized with the
scheme (II1.1.2) and n = 40. The function Q is given by the expression (II1.1.3),
a=gz+.11, and H = .1. In figure II1.1.2, we plot the numerical solution of (II1.1.1)
with 640 meshpoints and the same functions Q, @, and H as in figure II1.1.1.

In figure II1.1.3, we plot the numerical solution of (III.1.1) discretized with the
scheme (IIL.1.2) and n = 40 as before. The function Q is given by the expression



Figure III.1.1 Numerical solution of R (z) = H (z) (Roa) (z)+Q (z), discretized
with 40 meshpoints and a second-order finite difference scheme. H = .1, a = z+.11,
and Q=14+.5sin(27z)+.5sin(47z)+.5 sin (6 7 ) +.1 sin (10 7 z).

with 640 meshpoints and a second-order finite difference scheme. H = .1, a =
z+.11,and Q=1+.5 sin (27 z)+.5 sin (4 7 £)+.5 sin (6 7 2)+.1 sin (10 7 ).

(IIL1.3), @ = = + .11 + .15 sin (2 7 ), and H = .1. In figure II1.1.4, we plot the
numerical solution of (III.1.1) with 640 meshpoints and the same functions Q, a,
and H as in figure III.1.3.

In figures I11.1.1, II1.1.2, II1.1.3, and III.1.4, the parameter ¢ is smaller than
1/(2 7), so the function « is a bijection from the unit circle S! onto itself. From
table II1.0.1, we know that the solution of the continuous problem is at least twice
continuously differentiable. The plots seem to confirm these estimates.

In figure II1.1.5, we plot the numerical solution of (III.1.1) discretized with the
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Figure III.1.3 Numerical solution of R (z) = H (z) (Roa) (z)+Q (z), discretized
with 40 meshpoints and a second-order finite difference scheme. H = .1, a =
z+.11+.15 sin (27 z),and Q=1+.5 sin (27 z)+.5 sin (4 7 2)+.5 sin (6 7 z)+
.1 sin (10 7 z).

Figure III.1.4 Numerical solution of R (z) = H (z) (Roc) (z)+Q (z), discretized
with 640 meshpoints and a second-order finite difference scheme. H = .1, a =
z+.11+.15 sin (27 z),and Q =1+.5 sin (27 z)+.5 sin (4 7 2)+.5 sin (6 7 =)+
.1 sin (10 7 z).

scheme (II1.1.2) and n = 40. The function Q is given by the expression (III.1.3),
a=z+.114+.5 sin (2 7 z), and H = .1. In figure III.1.6, we plot the numerical
solution of (III.1.1) with 640 meshpoints and the same functions Q, o, and H as in
figure II1.1.5. _

In figure I11.1.7, we plot the numerical solution of (III.1.1) discretized with the
scheme (II1.1.2) and n = 40. The function Q is given by the expression (III.1.3),



Figure III.1.5 Numerical solution of R (z) = H (z) (Roa) (z)+Q (z), discretized
with 40 meshpoints and a second-order finite difference scheme. H = .1, a =
z+.114+.5 sin (27 z),and Q = 1+.5 sin (2 7 2)+.5 sin (4 7 2)+.5 sin (6 7 =)+
.1 sin (10 7 z).

Figure II1.1.6 Numerical solution of R (2) = H (z) (Ro) (z)+Q (z), discretized
with 640 meshpoints and a second-order finite difference scheme. H = .1, a =
z+.11+.5 sin (27 z),and Q =1+.5 sin (2 7 z)+.5 sin (4 7 z)+.5 sin (6 7 z)+
.1 sin (10 7 z).

a=z+.114.75 sin (2 7 ), and H = .1. In figure II1.1.8, we plot the numerical
solution of (II1.1.1) with 640 meshpoints and the same functions Q, e, and H as in
figure II1.1.7.

For figures II1.1.5, II1.1.6, II1.1.7, and III.1.8, the estimates of table II1.0.1 only
show that the continuous solution is continuously differentiable. We see that the
solution becomes less and less smooth, and from the plot of ¢ = .75, we notice that
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Figure IT1.1.7 Numerical solution of R (z) = H (z) (Roa) (z)+Q (z), discretized
with 40 meshpoints and a second-order finite difference scheme. H = .1, a =
z+.114.75 sin (27 z),and Q = 1+4.5 sin (2 7 z)+.5 sin (4 7 z)+.5 sin (6 7 z)+
.1 sin (10 7 ). '

Figure III.1.8 Numerical solution of R (z) = H (z) (Roa) (z)+Q (z), discretized
with 640 meshpoints and a second-order finite difference scheme. H = .1, a =
z+.114+.75 sin (2 7 z), and Q = 1+4.5 sin (2 7 £)+.5 sin (4 7 z)+.5 sin (6 7 )+
.1 sin (10 7 z).

the function is only continuously differentiable.

In figure III.1.9, we plot the numerical solution of (II.1.1) discretized with
the scheme (IIL.1.2) and n = 40. For this figure, the function Q is given by the
expression (II1.1.3), @ = 4+ .11+ 1.5 sin (2 7 z), and H = .1. In figure I11.1.10, we
plot the numerical solution of (III.1.1) with 640 meshpoints and the same functions
Q, a, and H as in figure II1.1.9.



Figure II1.1.9 Numerical solution of R (z) = H (z) (Ro <) (z)+Q (z), discretized
with 40 meshpoints and a second-order finite difference scheme. H = .1, a =
z+.114+1.5 sin (27 z),and Q = 1+4.5 sin (27 z)+.5 sin (4 7 2)+.5 sin (6 7 z)+
.1 sin (10 7 z).

Figure III.1.10 Numerical solution of R (z) = H (z) (Roa) (z)+Q (z), discretized
with 640 meshpoints and a second-order finite difference scheme. H = .1, a =
z+.11+1.5 sin (27 z),and Q =1+.5 sin (2 7 £)+.5 sin (4 7 z)+.5 sin (6 7 z)+
.1 sin (10 7 z).

In figure I11.1.11, we plot the numerical solution of (III.1.1) discretized with the
scheme (IIL.1.2) and n = 40. The function Q is given by the expression (II1.1.3),
a=z+.11+2 sin (2 7 z), and H = .1. In figure III.1.12, we plot the numerical
solution of (III.1.1) with 640 meshpoints and the same functions Q, o, and H as in
figure III.1.11. -

For figures I11.1.9, II1.1.10, III.1.11, and III.1.12, the solution of the continuous
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Figure IT1.1.11 Numerical solution of R (z) = H (z) (Roa) (z)+Q (z), discretized
with 40 meshpoints and a second-order finite difference scheme. H = .1, a =
z+.114+2 sin (27 z),and Q=1+.5sin (27 z)+.5 sin (4 7 2)+.5 sin (6 7 =)+
.1 sin (10 7 z).

Figure III.1.12 Numerical solution of R (z) = H (z) (Roa) (z)+Q (z), discretized
with 640 meshpoints and a second-order finite difference scheme. H = .1, a =
z+.114+2 sin (27 z),and Q =1+4.5 sin (2 7 ) 4.5 sin (4 7 2)+.5 sin (6 7 )+
.1 sin (10 7 ).

problem is only supposed to be continuous. The estimates from table II1.0.1 and
the plots agree.

We want to see the influence of H on the solution of (III.1.1). To do that, we
compute the numerical solution f (II1.1.1) discretized with the scheme (II1.1.2) and
640 meshpoints, with Q given by (II1.1.3) and H = .7. As before, we compute it for
different values of c. '
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In figure II1.1.13, we plot the numerical solution of (II1.1.1) discretized with the

scheme (II1.1.2) and n = 640. The function Q is given by the expression (111.1.3),
a=z++.11,and H=.7.

Figure ITI.1.13 Numerical solution of R (z) = H (z) (Roa) (2)+Q (z), discretized
with 640 meshpoints and a second-order finite difference scheme. H = .7, a =
z+.11,and Q =1+.5 sin (27 2)+.5 sin (4 7 z)+.5 sin (6 7 z)+.1 sin (10 7 z).

In figure II1.1.14, we plot the numerical solution of (III.1.1) discretized with the
scheme (III.1.2) and n = 640. The function Q is given by the expression (IIL.1.3),
a=z+.11+.15 sin(2 7 ), and H = .7.

-1

Figure II1.1.14 Numerical solution of R (z) = H (z) (Roa) (z)+Q (z), discretized
with 640 meshpoints and a second-order finite difference scheme. H = .7, a =
z+.11+.15 sin (27 z), and Q = 1+.5 sin (27 2)+.5 sin (4 7 z)+.5 sin (6 7 z)+
.1 sin (10 7 z).
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Figure I11.1.15 Numerical solution of R (z) = H (z) (Roa) (z)+Q (), discretized
with 640 meshpoints and a second-order finite difference scheme. H = .7, a =

z+.11+5sin(27z),and Q=14+.5 sin (27 z)+.5 sin (4 7 z)+.5 sin (6 7 =)+
.1 sin (10 7 z).

In figure I11.1.15, we plot the numerical solution of (III.1.1) discretized with the
scheme (III.1.2) and n = 640. The function Q is given by the expression (I11.1.3),
a=z+.114+.5 sin(2 7 z),and H=.7.

In figure II1.1.16, we plot the numerical solution of (III.1.1) discretized with the
scheme (I11.1.2) and n = 640. The function Q is given by the expression (IIL.1.3),
a=z+4+.114.75 sin(2 7 z), and H=.7.

Figure IT1.1.16 Numerical solution of R (z) = H (z) (Roc) (z)+Q (), discretized
with 640 meshpoints and a second-order finite difference scheme. H = .7, a =
z+.114.75 sin (2 7 z), and Q = 1+4.5 sin (2 7 £)+.5 sin (4 7 z)+.5 sin (6 7 z)+
.1 sin (10 7 z). -



Figure III.1.17 Numerical solution of R (z) = H (z) (Roa) (z)+Q (), discretized
with 640 meshpoints and a second-order finite difference scheme. H = .7, a =
z+.11+1.5 sin (27 z),and Q = 1+4.5 sin (27 z)+.5 sin (4 7 2)+.5 sin (6 7 z)+
.1 sin (10 7 z).

In figure I11.1.17, we plot the numerical solution of (III.1.1) discretized with the
scheme (IIL.1.2) and n = 640. The function Q is given by the expression (II1.1.3),
a=z+4.114+1.5 sin(2 7 z), and H=.7.

In figure II1.1.18, we plot the numerical solution of (II1.1.1) discretized with the
scheme (III.1.2) and n = 640. The function Q is given by the expression (IIL.1.3),
a=z+4+.1142 sin(2 7 z), and H=.7.

Figure ITI.1.18 Numerical solution of R (z) = H () (Roa) (z)+Q (), discretized
with 640 meshpoints and a second-order finite difference scheme. H = .7, a =
z+.11+2 sin (27 z),and Q=1+4.5 sin (27 z)+.5 sin (4 7 2)+.5 sin (6 7 ) +
.1 sin (10 7 z).
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From the different plots, we see that as | H | gets larger, the solution becomes
less smooth for the same value of the parameter c. This confirms the estimates from
tables II1.0.1 and II1.0.2. We see that for values of c larger than 1, the solution for
H = .7 is wilder than for H = .1.

Now we want to check the effect of the regularity of the continuous solution
on the convergence of the finite difference scheme. We want to see whether the
theoretical results of theorem I1.3.1.1 are confirmed numerically. To do that, we
have discretized (III.1.1) with the scheme (II.1.2), for H = .1, and for Q given by
(II1.1.3). We study numerically the error because we can get an explicit analytical
expression for the solution of (I1.0.1) or (II.0.2). The expression is given by the
infinite series (II.1.6). One only has to sum finitely many terms and can rigorously
estimate the rest.)

In figure II1.1.19, we plot the logarithm of the maximum norm of the error for
different values of n, for @ = z + .11 + ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1, .14,
1/(2 7), .5, .75, 1, 1.5, 2, 3, 4, and for H = .1.
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Figure III.1.19 The logarithm of the maximum norm of the error for different
values of n, n = 5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480,
520, 560, 600, 640, 680, for a = z + .11+ ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1,
14, 1/(2 7), .5, .75, 1, 1.5, 2, 3, 4, for H = .1, and for Q = 1+.5 sin (2 7 z) +
.5 sin (4 7 )+ .5 sin (6 7 =) + .1 sin (10 7 z).

From figure III.1.19, we see that for ¢ = .001, .01, .05, .1, .14, 1/(2 =), the
envelope of the error curves is like 1/n2. So the error behaves like h2. For ¢ = .5,
.75, 1, we see that the envelope of the error curves is a hyperbola 1/n. So the error
behaves like h. For the other values of ¢ the error is constant, independent of the
number of meshpoints used. Moreover, table III.0.1 predicts that for ¢ = .001, .01,
.05, .1, .14, 1/(2 7), the solution of the continuous system is twice continuously
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differentiable. For ¢ = .5, .75, 1, it predicts that the solution of the continuous
problem is only continuously differentiable. For the other values of the parameter
¢, it predicts that the solution is only continuous. Thus the theoretical results from
theorem I1.3.1.1 are confirmed by the numerical solutions.

In figure II1.1.20, we have a Log-Log plot of the maximum norm of the error
versus the number of meshpoints n, for & = z + .11 + ¢ sin (2 7 z), for ¢ = .001,
.01, .05, .1, .14, 1/(2 =), .5, .75, 1, 1.5, 2, 3, 4, and for H = .1.
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Figure ITI.1.20 Log-Log plot of the maximum norm of the error vs. the number
of meshpoints n, n = §, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440,
480, 520, 560, 600, 640, 680, for a = x 4 .11 4+ ¢ sin (2 7 z), for ¢ = .001, .01, .05,
1,.14,1/(2 7), .5,.75,1,1.5,2,3,4,for H=.1,and for Q=1+.5 sin (2 7 z) +
.5 sin (4 7 z)+.5 sin (6 7 ) +.1 sin (10 7 z).

From figure II1.1.20, we see that for ¢ = .001, .01, .05, .1, .14, 1/(2 ), the slope
of the error curves is 2. So the scheme is second-order accurate. For ¢ = .5, .75, 1,
we see that the slope of the error curves is smaller than 2 and bigger than 1. For
the other values of the parameter ¢, the slope is smaller than 1. Once again, the
theoretical results of theorem II.3.1.1 are confirmed numerically.

In figure ITL.1.21, we plot the logarithm of the Ly norm of the error for different
values of n, for @ = z 4 .11 + ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1, .14, 1/(2 =),
.5, .75, 1, 1.5, 2, 3, 4, and for H = .1.

Studying the Lz norm of the error, we notice from figure I11.1.21, that for
¢ =.001, .01, .05, .1, .14, 1/(2 =), the error behaves like k2. For ¢ = .5, .75, 1, the
error behaves like h. For the other values of c, the error is constant and independent
of the number of the meshpoints. Comparing figure I11.1.19 and figure II1.1.21, we
see that when the solution is no longer twice continuously differentiable, there are
less oscillations in the L, norm of the error than in the maximum norm.
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Figure I11.1.21 The logarithm of the L, norm of the error for different values of
n, n =5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560,
600, 640, 680, for @ = £+ .11+ ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1, .14, 1/(2 =),
5,.75,1,15,2,3,4,forH=.1,and Q=14+ .5 sin (27 2)+ .5 sin (4 7 z) +
.5 sin (6  z) + .1 sin (10 7 z).

In figure II1.1.22, we have a Log-Log plot of the L, norm of the error versus the
number of meshpoints for different values of n, for a = 2 + .11+ ¢ sin (2 7 z), for
c=.001, .01, .05, .1, .14, 1/(2 7), .5, .75, 1, 1.5, 2, 3, 4, and for H = .1.
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Figure II1.1.22 Log-Log plot of the L, norm of the error vs. the number of
meshpoints n, n = §, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440,
480, 520, 560, 600, 640, 680, for & = = + .11 + ¢ sin (2 7 z), for ¢ = .001, .1, .05,
1,.14,1/(2 7), .5,.75,1,1.5,2,3,4,for H=.1,and for Q =1+ .5 sin (2 7 z) +
.5 sin(4mz)+.5sin(67z)+.1 sin (10 7 z).

Studying the Lz norm of the error, from figure II1.1.22 we observe that for
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c = .001, .01, .05, .1, .14, 1/(2 =), the slope of the curves is 2. For ¢ = .5, .75,
1, the slope is smaller than 2 and bigger than 1. In the other cases, the slope is
bigger than 1. As said before, when the solution is no longer twice continuously
differentiable, the L, norm of the error oscillates less than the maximum norm.

In figure II1.1.23, we plot the logarithm of the maximum norm of the error for
different values of n, for & = z+.11+¢ sin(2 7 z), for ¢ = .001, .01, .05, .1, 1/(2 ),
.25, .5, .75, 1, and for H = .7.
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Figure II1.1.23 The logarithm of the maximum norm of the error for different
values of n, n = §, 10, 20 ,40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480,
520, 560, 600, 640, 680, for @ = z + .11 + ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1,
1/(2 =), .25, .5, .75, 1, for H=.7, and for Q =1+.5 sin (2 7 z) +.5 sin (4 7 z) +
5 sin (6 m ) + .1 sin (10 7 z).

We see that for ¢ = .001, .01, and .05, the error behaves like h2. For ¢ = .1,
1/(2 =), it seems to behave like h. For the other values of ¢, the error looks
independent of h and there is loss of convergence.

Figure III.1.24, exhibits a Log-Log plot of the maximum norm of the error
versus the number of meshpoints n, for & = z + .11+ ¢ sin (2 7 z), for ¢ = .001,
.01, .05, .1,1/(2 =), .25, .5, .75, 1, and for H = .7.

This figure confirms the analytical results of table III1.0.2. We note that for
¢ = .001, .01, .05, the slope of the curve is 2. For ¢ = .1, the slope is 1. For the
other values of c, the envelope of the error curves is a line of slope 0.

In figure II1.1.25, we plot the logarithm of the L2 norm of the error for different
values of n, for @ = z + .11 + ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1, 1/(2 =), .25,
.9, .75, 1, and for H = .7. v

From figure II1.1.25, as in figure I11.1.23, we observe that for ¢ = .001, .01, .05,
the Ly norm of the error behaves like h%. For ¢ = .1, 1/(2 ), the L, norm of the
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Figure II1.1.24 Log-Log plot of the maximum norm of the error vs. the number
of meshpoints n, n = 5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440,
480, 520, 560, 600, 640, 680, for & = z + .11+ ¢ sin (2 7 z), ¢ = .001, .01, .05, .1,
1/(2 7), .25, .5,.75, 1, for H=.7, and for Q = 14.5 sin (2 7 ) +.5 sin (47mz)+
25 sin (6 7 ) +.1 sin (10 7 2).
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Figure IT1.1.25 The logarithm of the Ly norm of the error for different values of n,
n =5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600,
640, 680, for o = z +.11 + ¢ sin (2 7 z), for ¢ =.001, .01, .05, .1, 1/(2 =), .25, .5,
75,1, for H=.7,and for Q =1+.5 sin (2 7 2) +.5 sin (4 7 )+.5 sin (6 = z) +
.1 sin (10 7 z).

error behaves like h. For larger values of ¢, it seems independent of the meshsize.

As in the case H = .1, we notice that there are less oscillations in the Lz norm of

the error than in the maximum norm. o : '
Figure II1.1.26 shows a Log-Log plot of the Ly norm of the error versus the
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number of meshpoints n, for & = £ 4+ .11+ ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1,
1/(2 =), .25, .5, .75, 1, and for H = .7.
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Figure II1.1.26 Log-Log plot of the L, norm of the error vs. the number of
meshpoints n, n = 5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480,
520, 560, 600, 640, 680, for a = x + .11 + ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1,
1/(2 ), .25, .5,.75, 1, for H=.7, and for Q =1+ .5 sin (27 z)+.5 sin (4 7 z) +
.5 sin (6 m z) +.1 sin (10 7 z).

The results of figure II1.1.26 confirm those of figure I11.1.25.
If we compare the influence of the function H on the error, we see that as | H |oo
increases, the solution becomes less and less smooth and the magnitude of the error

increases. For ¢ =1 and H = .7, we see that the computed solution is really wild,
which is not the case for c=1and H = .1.

II1.2 Third-Order Finite Difference Scheme
We have —diséretized (IIIll)W1th the fhird—drd{af finite ‘diﬂ'erence scheme

~ ~ /(1 ~ ~
R; =H; (5 (67 + 6;) Rjz1 + (1 — 67) R;
(IIIZ].) -+ % (0,2 - 0,) ﬁj_l) + Q,‘ 1=1,..,n.

Here R; is an approximation of R (z;), Q:=Q (z4), H; = H (d:,-), and 6; h =
@ (z;) — zj with 0 < 6; < 1. As always, £, = (m — 1) h are the discrete points,
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m = 1,..,n and h = 1/n. As for the second-order finite difference scheme, the
periodicity is enforced by identifying j + n with j. The term (6% + 6;) R,.,.l /2 +
(1-6%) R; + (62 - 6;) R;-1/2 is a third-order finite difference approximation of
(Roa) (z;). We Taylor expand (Roa) (z;) up to its third-order term, replace the first
derivative of R at z; by its second-order finite difference approximation, and replace
the second derivative of R at z; by its first-order finite difference approximation to
get the above expression. The position of the meshpoint z; depends on the function
a. It is the nearest point from a (z;) such that 0 < a (z;) — z; < h modulo 1.

We have computed the numerical solution of (II1.2.1) for two different values
of H, one smaller than 8/17 and the other larger. From these graphs, we conclude
that the error bounds that were derived under the assumption | H |o < 8/17, are
still valid if | H |00 > 8/17.

In figure II1.2.1, we plot the logarithm of the maximum norm of the error for
different values of n, for & = £ +.11 4 ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1, .14,
1/(2 =), .5, .75, 1, 1.5, 2, 3, 4, and for H = .1.
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Figure III.2.1 The logarithm of the maximum norm of the error for different values
of n, n-= 5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560,
600, 640, 680, for @ = £+ .11+c¢ sin (2 7 z), for ¢ = .001, .01, .05, .1, .14, 1/(2 =),
.5,.75,1,1.5,2, 3,4, for H=.1,and for Q =1+ 5 sin(27z)+.5sin(47z)+
.5 sin (6 w ) + .1 sin (10 7 z).

From figure III.2.1, we see that for ¢ = .001, .01, .05, .1, .14, 1/(2 =), the
envelope of the error curve goes like 1/n®. So the error behaves like A®. For ¢ = .5,
.75, 1, we see that the envelope of the error is a hyperbola 1/n. So the error
behaves like h. For the other values of ¢, the error is nearly constant, independent
of the number of meshpoints used. From the results of table II1.0.1, it seems that
theoretical results agree with the numerical ones.
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Figure II1.2.2 shows a Log-Log plot of the maximum norm of the error versus
the number of meshpoints n, for a = z +.11 + ¢ sin (2 7 z), for ¢ = .001, .01, .05,
1,.14, 1/(2 pi), .5, .75, 1, 1.5, 2, 3, 4, and for H = .1.
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Figure III.2.2 Log-Log plot of the maximum norm of the error vs. the number
of meshpoints n, n = 5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440,
480, 520, 560, 600, 640, 680, for a = z + .11 + ¢ sin (2 7 z), for ¢ = .001, .01, .05,
-1, .14, 1/(2 p), .5, .75, 1, 1.5, 2, 3,4, for H= .1, and for Q = 1+ .5 sin (2 7 z) +
.5 sin(47x)4.5 sin(67z)+.1sin(10 7 z).

From figure II1.2.2, we see that the slope of the error curve is 3 when ¢ = .001,
.01, .05, .1, and 1/(2 7). So the scheme is third-order accurate. For ¢ = .5, .75, 1,
we see that the slope of the error curve is smaller than 2 and bigger than 1. For the
from theorem II.3.2.1 are thus confirmed numerically.

In figure II1.2.3, we plot the logarithm of the Ly norm of the error for different
values of n, fora =z +.114¢ sin (2 7 z), for ¢ = .001, .01, .05, .1, .14, 1/(2 =),
.5, .75, 1, 1.5, 2, 3, 4, and for H = .1.

‘ Studying the Lz norm of the error, from figure I11.2.3 we note that for ¢ = .001,
.01, .05, .1, and 1/(2 =), the error behaves like A3. For ¢ = .5, the error behaves like
h?. For ¢ = .75 and 1, the error behaves like h. For the other values of ¢, the error
is constant and independent of the number of meshpoints. As for the second-order
case, there are less oscillations in the L; norm of the error than in its maximum
norm. . o
Figure I11.2.4 exhibits a Log-Log plot of the L, norm of the error versus the
number of meshpoints n, for a = z + .11+ ¢ sin (2 7 z), for ¢ =.001, .01, .05, .1,
.14,1/(2 7), .5, .75, 1, 1.5, 2, 3, 4, and for H = .1.
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Figure IT1.2.3 The logarithm of the Ly norm of the error for different values of n,
n =5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600,
640, 680, for a = z 4 .11 + ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1, .14, 1/(2 7), .5,
75,1,1.5,2,3,4,for H=.1,andfor Q=1+ .5 sin (27 z)+ .5 sin (4 7 z) +
5 sin (6 7.2) +.1 sin (10 72)., ...
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Figure II1.2.4 Log-Log plot of the Lz norm of the error vs. the number of mesh-
points n, n = 5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480,
520, 560, 600, 640, 680, for & = z + .11 + ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1,
14, 1/(2 7), .5, .75, 1, 1.5, 2, 3, 4, for H= .1, and for Q = 1+ .5 sin (2 7 z) +

.5 sin (47 z)+.5 sin (6 7 ) +.1 sin (10 7 z).

Studying the Lz norm of the error, from figure II1.2.4 we observe that the slope
of the error curve is 3 for ¢ = .001, .01, .05, .1, .14, and 1/(2 7). For ¢ = .5, the
slope is smaller than 3 and bigger than 2. For ¢ = .75 and 1, the slope is smaller
than 2 and bigger than 1. In the other cases, the slope is smaller than 1. As
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in the second-order case, when the solution is no longer three-times continuously
differentiable, the L, norm of the error oscillates less than its maximum norm.
In figure II1.2.5, we plot the logarithm of the maximum norm of the error for

different values of n, for a = z + .11 + ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1,
1/(2 ), .25, .5, .75, 1, and for H = .1.
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Figure ITI.2.5 The logarithm of the maximum norm of the error for different values
of n, n = 5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560,
600, 640, 680, for o = z + .11+ ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1, 1/(2 =), .25,
.5,.75,1, for H = .7, and for Q = 14.5 sin (2 7 2)+.5 sin (4 7 2)+.5 sin (6 7 z)+
.1 sin (10 7 z).

In figure II1.2.5, we see that for ¢ = .001, .01, and .05, the maximum norm of
the error behaves like h3. For ¢ = .1 and 1/(2 7) it seems to behave like k. For the
other values of ¢, the error looks independent of h and there is loss of convergence.

Figure II1.2.6 shows a Log-Log plot of the maximum norm of the error versus
the number of meshpoints n, for @« = z 4+ .11+ ¢ sin (2 T :c), for ¢ =.001, .01, .05,

1,1/(2 ), .25, .5, .75, 1, and for H=.7."

Figure I11.2.6 confirms the analytical results of table II1.0.2. For ¢ = .001, .01,
and .05, the slope of the error curve is 2. For ¢ = .1 the slope is 1. For the other
values of ¢, the envelope of the error curve is a line of slope 0.

In figure I11.2.7, we plot the logarithm of the L, norm of the error for different
values of n, for a = z + .11 + ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1, 1/(2 =), .25,
.5, .75, 1, and for H = .7.

From figure I11.2.7, we notice that for ¢ = .001, .01, and .05, the L norm of the
error behaves like h%. For ¢ = .1 and 1/(2 ), it behaves like h. For larger values of
the parameter c, it seems independent of the meshsize.
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Figure ITI.2.6 Log-Log plot of the maximum norm of the error vs. the number of
meshpoints n, n = 5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480,
520, 560, 600, 640, 680, for @ = = 4+ .11+ ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1,
1/(2 =), .25,.5,.75,1,for H=.7,and for Q =1+ .5 sin (27 z) +.5 sin (4 7 ) +
.5 sin (6 w ) + .1 sin (10 7 z).
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Figure III.2.7 The logarithm of the Ly norm of the error for different values of n,
n =5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600,
640, 680, for @ = z + .11+ ¢ sin (2 7 z), for ¢ =.001, .01, .05, .1, 1/(2 =), .25, .5,
75,1, for H=.7,and for Q=1+.5 sin (27 z)+ .5 sin (4 7 z)+.5 sin (6 7 z) +
-1 sin (10 7 7). .

Figure I11.2.8 shows a Log-Log plot of the L, norm of the error versus the
number of meshpoints n, for « = z 4+ .11+ ¢ sin (2 ™ a:), for ¢ = .001, .01, .05, .1,
1/(2 =), .25, .5,.75,1,and for H=.7. - - - .. -

The results from figure I11.2.8 confirm those of ﬁgure III 2. 7
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Figure III.2.8 Log-Log plot of the L, norm of the error vs. the number of mesh-
points n, n = 5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480,
520, 560, 600, 640, 680, for @« = = + .11+ ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1,
1/(2 7), .25,.5,.75,1,for H=.7,and for Q =1+.5 sin (27 z)+.5 sin (4 7 =) +
.5 sin (6 m z) +.1 sin (10 7 ).

We remark that as in the second-order case, as | H | increases, the solution
becomes less and less smooth and the magnitude of the error increases.

II1.3 Spline Interpolation Scheme

We numerically want to solve the equivalent of the system constituted of the equa-
tions

(1I1.3.1) (S*oa)(z:)=H;R;+Q; :i=1,..,n.
We are lead to the system of equations
(111.3.2) ~ (AR*)y=H;R;+Qf i=1,.,n,

where RY is an approximation of R (z;), Hf = H (z;), and QF = Q (z;). The spline
operator A is such that (A R*); = (5* o @) (z;), with S* a 1-periodic cubic spline
passing through the points R}, j = 1,...,n. Here 2, = (m — 1) h are the discrete
points, m = 1,..,,n, with h = 1/n. '

We in fact want a numerical representation of the operator A defined in chapter
II. We first set up the matrix F. This matrix F gives the right-hand-side F in terms
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of the data points R}, such that F R = F. Then we set up the matrix M1,
giving the vector of the moments M in terms of the components of the vector F
and indirectly in terms of the data points R¥. Once we have these two matrices, we
can have a representation of the spline operator A using the formulae (I1.3.3.9) of
chapter II for ¢ = 1,...,n. Once we have a known expression for the moments M;,
we can compute the coefficients A; and B; for j =1,...,n.

We have computed the numerical solution of (II1.3.2) for two different values of
H. Here we deal with a discrete equivalent of (I1.0.2) instead of a discrete equivalent
of (IL.0.1).

In figure II1.3.1, we plot the numerical solution of (I1.0.2) discretized with the
scheme (II1.3.2) and 640 meshpoints. The function Q is given by the expression
(II1.1.3), a = z + .11, and H = 10.
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Figure III.3.1 Numerical solution of (Roa) (z) = H (z) R (z)+ Q (z), discretized
with 640 meshpoints and a cubic spline interpolation scheme. H = 10, a = z + .11,
and Q=1+.5sin (27 z)+.5 sin (4 7 2) +.5 sin (6 7 ) +.1 sin (10 7 z).

In figure II1.3.2, we plot the numerical solution of (I1.0.2) discretized with the
scheme (II.3.2) and 640 meshpoints. The function Q is given by the expression
(I11.1.3), a =z + .11+ .15 sin (2 7 z), and H = 10.

* From figures II1.3.1 and II1.3.2, we notice that the plotted solution is smooth.
The estimates from table II1.0.1 are confirmed, even though these estimates were
derived for the solution of (I1.0.1). The equation (I1.0.2) with H = 10 is equivalent
to (11.0.1) with H = .1 if we choose the appropriate functions Q and Q for the
equations (I1.0.1) and (11.0.2) respectively.

In figure II1.3.3, we plot the numerical solution of (I1.0.2) discretized with the
scheme (II1.3.2) and 640 meshpoints. The function Q is given by the expression
(IIL.1.3), a =z + .11 4.5 sin (2 7 =), and H = 10.
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Figure III.3.2 Numerical solution of (Roa) (z) = H (z) R (z)+Q (z), discretized
with 640 meshpoints and a cubic spline interpolation scheme. H = 10, a = = +
JA1+.15sin (27 z),and Q=1+.5 sin (27 z)+.5 sin (4 7 2)+.5 sin (6 7 ) +
.1 sin (10 7 z). |

Figure ITI.3.3 Numerical solution of (Roa) (z) = H (z) R (z)+Q (z), discretized
with 640 meshpoints and a cubic spline interpolation scheme. H = 10, a = z +
A1+.5sin (27 z),and Q=1+.5sin (27 z)+.5 sin (4 7 z)+.5 sin (6 7 ) +
1 sin (10 7 z).

- In figure I11.3.4, we plot the numerical solution of (II.0.2) discretized with the
scheme (II1.3.2) and 640 meshpoints. The function Q is given by the expression
(II1.1.3), a =z 4+ .114.75 sin (2 7 =), and H = 10.

From figures II1.3.3 and II1.3.4, we observe that the plotted solution is not as
smooth as before. It is not obvious from figure II1.3.3 that the solution is only
continuously differentiable. From figure II1.3.4, the estimates from table II1.0.1 are
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Figure II1.3.4 Numerical solution of (Roa) (z) = H (z) R (z)+Q (z), discretized
with 640 meshpoints and a cubic spline interpolation scheme. H = 10, a = = 4+
JA14.75 sin (2 7 z), a.ndQ--1+ Ssin(2nrz)+.5sin(dnz)+.5sin(6wz)+

.1 sin (10 7 z).

confirmed.
In figure I11.3.5, we plot the numerical solution of (11.0.2) discretized with the

scheme (II1.3.2) and 640 meshpoints. The function Q is given by the expression
(I11.1.3), a =z + .11+ 1.5 sin (2 7 z), and H = 10.

0% —T

Figure II1.3.5 Numerical solution of (Roa) (z) = H (z) R (z)+ Q (z), discretized
with 640 meshpoints and a cubic spline interpolation scheme. H = 10, a = z +
A14+15sin(27z),andQ=1+.5 s1n(27r:z:)+ bSsin(4mz)+.5sin(67z)+
.1 sin (10 7 z).

In figure II1.3.6, we plot the numerical solution of (II.0.2) discretized with the
scheme (II1.3.2) and 640 meshpoints. The function Q is given by the expression
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Figure III.3.6 Numerical solution of (Ro ) (z) = H (z) R (z)+Q (z), discretized
with 640 meshpoints and a cubic spline interpolation scheme. H = 10, a = z +
A142sin (27 z),and Q=14+ .5sin (27 z)+.5 sin (4 7 z)+.5 sin (6 7 z) +
.1 sin (10 7 z).

(II.1.3), a =z + .11+ 2 sin (2 7 z), and H = 10.

For figures II1.3.5 and I11.3.6, the solution of the continuous problem is only
supposed to be continuous. The estimates from table II1.0.1 and the plots agree.

In figure II1.3.7, we plot the logarithm of the maximum norm of the error for
different calues of n, for & = z + .11 + ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1, .15,
.25, .5, .75, 1, 1.25, 1.5, 1.75, 2, and for H = 10.

From figure II1.3.7, we see that for ¢ = .001, .01, .05, .1, and .15, the error
behaves like h%. We see that for ¢ = .001, .01, .05, and .1, this result was expected.
For ¢ = .15, the table II1.0.1 tells us that the solution of the continuous problem is
only three-times continuously differentiable. For ¢ = .25, the error behaves nearly
like h*, even though the estimates tell us that the solution of the continuous problem
is only twice continuously differentiable. For ¢ = .5, .75, 1, and 1.25, the envelope of
the error curves seems to behave like h. We see that as the value of the parameter
c increases, the error gets larger. We notice that for ¢ = .5, there are a lot of
oscillations compared to the error curves for a smaller value of the parameter c. For
¢ =.75,1, and 1.25, these oscillations have nearly dissappeared but the envelope
of the error curves is in 1/n. For ¢ = 1.5, 1.75, and 2, the error seems constant and
independent of the number of meshpoints.

In figure II1.3.8, we have a Log-Log plot of the maximum norm of the error
versus the number of meshpoints n, for @ = £ 4+ .11+ ¢ sin (2 7 z), for ¢ = .001,
.01, .05, .1, .15, .25, .5, .75, 1, 1.25, 1.5, 1.75, 2, and for H = 10.

From figure III1.3.8, we see that for ¢ = .001, .01, .05, .1, and .15, the slope of the
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Figure IT1.3.7 The logarithm of the maximum norm of the error for different values
of n, n =5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560,
600, 640, 680, for @ = = + .11 + ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1, .15, .25, .5,
.75, 1,1.25, 1.5, 1.75, 2, for H =10, and for Q =1+4.5 sin (2 7 z)+.5 sin (4 7 )+
.5 sin (6 7 z) 4+ .1 sin (10 7 z).
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Figure II1.3.8 Log-Log plot of the maximum norm of the error vs. the number
of meshpoints n, n = 5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440,
480, 520, 560, 600, 640, 680, for a = z 4+ .11 + ¢ sin (2 7 z), for ¢ = .001, .01, .05,
.1, .15, .25, .5, .75, 1, 1.25, 1.5, 1.75, 2, for H = 10, and for Q = 1+.5 sin (2 7 z) +

error curve is 4. For ¢ = .25, the slope of the error curve seems to be smaller than 4
but larger than 3 for small values of n then are the same as the error curves of slope
4. For ¢ = .5, it is very difficult to determine a slope for the error curve because
the error oscillates. The envelope seems to be a straight line of slope greater than
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3 and lower than 2. For ¢ = .75, 1, and 1.25, the slope of the error curve is greater
than 2 and smaller than 1. For the other larger values of the parameter c, the slope
is smaller than 1.

In figure II1.3.9, we plot the logarithm of the L, norm of the error for different
values of n, for @ = z + .11 4+ ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1, .15, .25, .5,
.75, 1, 1.25, 1.5, 1.75, 2, and for H = 10.
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Figure II1.3.9 The logarithm of the L, norm of the error for different values of n,
n =5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600,
640, 680, for « = z + .11+ ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1, .15, .25, .5, .75,
1,1.25, 1.5, 1.75, 2, for H =10, and for Q=1+ .5 sin (27 z)+ .5 sin (4 7 z) +
.5 sin (6 m z) +.1 sin (10 7 z).

From figure II1.3.9, we see that for ¢ = .001, .01, .05, .1, and .15, the error
behaves like h%. It is surprising to notice that the error behaves like A* for ¢ = .15
because the solution of the continuous problem is only three-times continuously
differentiable. For ¢ = .25, the error is behaving nearly like A%. For ¢ = .5, the
error is still rather small but it oscillates a lot. From table II1.0.1, for ¢ =-.5, the
solution of the continuous problem is only continuously differentiable but the error
curve shows it looks like A2 at least. For ¢ = .75, 1 , and 1.25, the error behaves
like h2. For the other larger values of the parameter considered, the error behaves
nearly like h even though from the estimates of table II1.0.1, we see that it should
be independent of the number of meshpoints because the solution of the continuous
problem is only continuous.

In figure 111.3.10, we have a Log-Log plot of the L, norm of the error versus the
number of meshpoints n, for a = z + .11+ ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1,
.15, .25, .5, .75, 1, 1.25, 1.5, 1.75, 2, and for H = 10.
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Figure IIL.3.10 Log-Log plot of the Ly norm of the error vs. the number of
meshpoints n, n = 5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480,
520, 560, 600, 640, 680, for a = z + .11 4 ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1,
15, .25, .5, .75, 1, 1.25, 1.5, 1.75, 2, for H =10, and for Q =1+ .5 sin (2 7 z) +
5 sin(47z)+.5 sin(67zx)+.1 sin (10 7 z).

From figure II1.3.10, we see that for ¢ = .001, .01, .05, .1, and .15, the slope of
the error curve is 4. For ¢ = .25, the slope of the error curve is smaller than 4 for
small values of n and is 4 for large values of n. The numerical error is smaller than
expected for ¢ = .15 and .25. From the theoretical results, we expected the error
curves for ¢ = .15 and .25 to have slope 3. For ¢ = .5, the slope of the error curve
is smaller than 4 but greater than 3. We notice that for ¢ = .5 the error oscillates.
For ¢ = .75, the slope of the error curve is smaller than 3 but greater than 2. For
¢ =1 and 1.25, the slope of the error curves is smaller than 2 and greater than 1.
For the other larger values of the parameter ¢ considered, the slope is smaller than
1 and greater than 0. For the other larger values of the parameter ¢ considered, the
behavior of the error is unexpected because from the theoretical results, we were
supposed to get an error independent of the meshsize.

In figure II1.3.11, we plot the numerical solution of (I1.0.2) discretized with the
scheme (II1.3.2) and 640 meshpoints. The function Q is given by the expression
(II1.1.3), a = z + .11, and H = 10/7.

2o -From figure II1.3.11, we notice that the plotted solution is smooth. The esti-
mates from table II1.0.2 are confirmed even though those estimates were derived
for the solution of (IL.0.1). The equation (II.0.2) with H = 10/7 is equivalent to
(11.0.1) with H = .7 if we choose the appropriate functions Q and Q.

«..:In figure I11.3.12, we plot the numerical solution of (I1.0.2) discretized with the
scheme (II1.3.2) and 640 meshpoints. The function Q is given by the expression
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Figure ITI.3.11 Numerical solution of (Roa) (z) = H (z) R (z)+Q (), discretized
with 640 meshpoints and a cubic spline interpolation scheme. H = 10/7, a = z+.11,
andQ=1+4+.5sin(27z)+.5sin(47z)+.5sin (6 7w z)+.1 sin (10 7 z).

.3 o | E—

Figure II1.3.12 Numerical solution of (Roa) (z) = H (z) R (z)+Q (z), discretized
with 640 meshpoints and a cubic spline interpolation scheme. H = 10/7, a =
r+.11+.15 sin (27 z),and Q=14.5 sin (27 2)+.5 sin (4 7 z)+.5 sin (6 w =)+
.1 sin (10 7 z).

(II1.1.3), @ =z + .11 4+ .15 sin (2 7 z), and H = 10/7.

From figure I11.3.12, we notice that the plotted solution has an infinite first
derivative on the unit interval [0,1]. From the estimates of table II1.0.2, we know
that the solution of the continuous problem (I1.0.2) is only continuous. Away from
the point where the first derivative is infinite, the plot shows that the solution is
rather smooth. To get a better understanding of the behavior of the solution near
the point where the first derivative becomes infinite, we could use local refinement.
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We would like to know whether the loss of smoothness of the solution for z € [zo, 1],
zo the point where the first derivative seems to become infinite, is a numerical effect
or not.

In figure I11.3.13, we plot the numerical solution of (11.0.2) discretized with the
scheme (II1.3.2) and 640 meshpoints. The function Q is given by the expression
(II1.13),a=z+.11+ .5 sin (2 7 z), and H = 10/7.

Figure ITI.3.13 Numerical solution of (Roa) (z) = H (z) R (z)+Q (z), discretized
with 640 meshpoints and a cubic spline interpolation scheme. H = 10/7, a =
z4+.11+.5sin(27z),andQ=1+.5 sin (27 z)+.5 sin (4 7 2)+.5 sin{6 7 z)+
.1 sin (10 7 z).

In figure II1.3.14, we plot the numerical solution of (I1.0.2) discretized with the
scheme (II1.3.2) and 640 meshpoints. The function Q is given by the expression
(II1.1.3), a =z 4+ .11 4+ .75 sin (2 = z), and H = 10/7.

- In figure II1.3.15, we plot the numerical solution of (I1.0.2) discretized with the
scheme (II1.3.2) and 640 meshpoints. The function Q is given by the expression
(I11.1.3), a =z + .11 4+ 1.5 sin (2 7 z), and H = 10/7.

In figure II1.3.16, we plot the numerical solution of (I1.0.2) discretized with the
scheme (III.3.2) and 640 meshpoints. The function Q is given by the expression
(II1.1.3), a =z + .11 4+ 2 sin (2 7 z), and H = 10/7.

From figures 111.3.13, 111.3.14, I11.3.15, and II1.3.16, we see that the solution is
only continuous and it becomes wilder and wilder as the value of the parameter ¢
increases. From theses plots, we see that there is no point in trying local refinement
because the local refinement criterion on such wild solutions will get us to refine
everywhere on the unit interval [0,1]. These plots confirm the estimates from table
IT1.0.2. - - ' -
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Figure I11.3.14 Numerical solution of (Roa) (z) = H (z) R (z)+Q (z), discretized
with 640 meshpoints and a cubic spline interpolation scheme. H = 10/7, a =

z+.114.75 sin (27 z),and Q =1+.5 sin (27 z)+.5 sin (4 7 z)+.5 sin (6 7 =)+
.1 sin (10 7 z).
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Figlii'é II1.3.15 Nvume_ricg:l‘ sqlﬁtién of (Rb a) (z) = H (z) R (2)+Q (=), discretized
with 640 meshpoints and a cubic spline interpolation scheme. H = 10/7, a =

z+.1141.5 sin(27 z),and Q=1+.5 sin (27 z)+.5 sin (4 7 z)+.5 sin (6 7 z)+
Jd sin (10 7 ). .

In figure II1.3.17, we plot the logarithm of the maximum norm of the error for
different values of n, for a = z + .11 + ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1, .15,
25, .5, .75, 1, 1.25, 1.5, 1.75, 2, and for H = 10/7.

From figure II1.3.17, we see that for.c =001, and .01 the error seems to behave
like 1/n*. This result was expected. For ¢ = .05, the error curve is not exactly like
1/n* but is underneath the curve 1/n3. This result was far from being expected
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Figure II1.3.16 Numerical solution of (Roa) (z) = H (z) R (z)+Q (z), discretized
with 640 meshpoints and a cubic spline interpolation scheme. H = 10, a = z +

114+2sin (27 2),andQ=14+.5sin(27z)+.5 sin(4 v z)+.5 sin (6 7 z) +
.1 sin (10 7 z).
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Figure III.3.17 The logarithm of the maximum norm of the error for different
values of n, n = 5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480,
520,.560, 600, 640, 680, for & = z + .11 + ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1,
.15, .25, .5, .75, 1, 1.25, 1.5, 1.75, 2, for H =10/7, and for Q =1+ .5 sin (2 7 z) +
5 sin(47z)+.5 sin (6 7 z) + .1 sin (10 7 z).

because the estimate from table II1.0.2 tells us that the solution of the continuous
problem for ¢ = .05 is only continuously differentiable. For ¢ = .15, the error curve
behaves like 1/n%. Once more, this result is unexpected because the estimate from
table II1.0.2 tells us that for ¢ = .15 the solution of the continuous problem is only
continuous. For ¢ = .25, .5, and .75, the envelope of the error curves seems to be
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a hyperbola 1/n. We notice in these cases that the error oscillates. For the other
larger values of the parameter c considered, the error is constant and is independent
of the meshsize.

In figure II1.3.18, we have a Log-Log plot of the maximum norm of the error
versus the number of meshpoints n, for @ = z + .11 + ¢ sin (2 7 z), for ¢ = .001,
.01, .05, .1, .15, .25, .5, .75, 1, 1.25, 1.5, 1.75, 2, and for H = 10/7.
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Figure II1.3.18 Log-Log plot of the maximum norm of the error vs. the number
of meshpoints n, n = 5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400,
440, 480, 520, 560, 600, 640, 680, for a = = + .11 + ¢ sin (2 7 z), for ¢ = .001,
.01, .05, .1, .15, .25, .5, .75, 1, 1.25, 1.5, 1.75, 2, for H = 10/7, and for Q =
1+.5sin(27z)+.5sin (47 z)+.5 sin (6 7 z)+.1 sin (10 = z).

From figure II1.3.18, we see that for ¢ = .001 and .01, the slope of the error
curves is 4. For ¢ = .05, the slope of the error curve seems to be smaller than 4 but
larger than 3 for small values of n then are the same as the error curves of slope
4. For ¢ = .15, the envelope of the error curve is a straight line of slope 2 even
though for large values of n it seems to behave more like a straight line of slope 3.
For ¢ = .25, .5, and .75, the error curves seem to have as an envelope a straight
line of slope smaller than 1 but larger than .5. For larger values of the parameter
¢ considered, the error seems to be constant and independent of the number of
meshpoints. 4T T s

In figure I11.3.19, we plot the logarithm of the Ly norm of the error for different
values of n, for « = £ + .11 4 ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1, .15, .25, .5,
.75, 1, 1.25, 1.5, 1.75, 2, and for H = 10/7.

From figure III.3.19, we see that for ¢ = .001, and .01 the error seems to behave
like 1/n%. This result was expected. For ¢ = .05, the error curve is not exactly
like 1/n* but is well underneath the curve 1/n. This result was far from being
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Figure IT1.3.19 The logarithm of the Ly norm of the error for different values of n,
n = 5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600,
640, 680, for « = z + .11+ ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1, .15, .25, .5, .75,
1, 1.25, 1.5, 1.75, 2, for H = 10/7, andforQ—1+ 5 sm(27ra:)+ b5 sin(47az)+
.5 sin (6 7 z) + .1 sin (10 7 z). '

expected because the estimate from table II1.0.2 tells us that the solution of the
continuous problem for ¢ = .05 is only continuously differentiable. For ¢ = .15, the
error curve behaves like 1/n2. Once more, this result is unexpected because the
estimate from table II1.0.2 tells us that for ¢ = .15 the solution of the continuous
problem is only continuous. For ¢ = .25, .5, and .75, the envelope of the error curves
seems to be a hyperbola 1/n. We notice in these cases that the error oscillates. For
the other larger values of the parameter ¢ considered, the error is constant and is
independent of the meshsize. As in previous cases, we notice that the Ly norm of
the error oscillates less than its maximum norm. B

In figure II1.3.20, we have a Log-Log plot of the L, norm of the error versus the
number of meshpoints n, for a = z 4+ .11 + ¢ sin (2 7 ), for ¢ = .001, .01, .05, .1,
15, .25, .5, .75, 1, 1.25, 1.5, 1.75, 2, and for H = 10/7.

From figure III1.3.20, we see that for ¢ = .001 and .01, the slope of the error
curves is 4. For ¢ = .05, the slope of the error curve seems to be smaller than 4 but
larger than 3 for small values of n then are the same as the error curves of slope
4. For ¢ = .15, the envelope of the error curve is a straight line of slope 2 even
though for large values of n it seems to behave more like a straight line of slope 3.
For ¢ = .25, .5, and .75, the error curves seem to have as an envelope a straight
line of slope smaller than 1 but larger than .5. For larger values of the parameter
¢ considered, the error seems to be constant and independent of the number of
meshpoints.
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Figure II1.3.20 Log-Log plot of the Ly norm of the error vs. the number of
meshpoints , n = 5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480,
520, 560, 600, 640, 680, for « = = + .11 + ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1,
.15, .25, .5, .75, 1, 1.25, 1.5, 1.75, 2, for H =10/7, and for Q =1+.5 sin (2 7 z) +
b5 sin(4mz)+.5sin (67 z)+.1 sin (10 7 z).

As aiready noticed for the second-order and third-order finite difference sche-
mes, as H in (I1.0.2) gets smaller but always larger than 1 or as H in (I1.0.1) gets
larger but always smaller than 1, the solution gets wilder and wilder.

II1.4 Fourier Method

From theorem II.1.1, we know-that the solution to (1I.0.1) is defined on the unit
circle S'. So we can approximate the solution to (I1.0.1) by a truncated Fourier
series,

(IIL.4.1) o R (z) = zn: Ry exp (271 2).

I=-m

We use a fast Fourier transform method to compute the matrix and the right-hand-
side of the system we want to solve to obtain the Fourier modes ﬁz. We could
have chosen the trapezoidal rule instead of a fast Fourier transform but the fast
Fourier method is less costly. It is of the order O (N log (N)) instead of O (N?) for
the trapezoidal rule. The main work comes from the computation of the Fourier
modes for the functions H (z) exp (2 7 | a (z)), | = —m,...,n. In the case we
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have considered, we compute the Fourier modes for the functions exp (2 7 I & (z))
because we have chosen the function H to be constant. So we solve the system

(I11.4.2) (1-mA)R=0,

where R is the vector of components ﬁi, l=-m,...,nand g, the vector of compo-
nents (:)1, l=-m,...,n, Ql being the [-Fourier mode of the function Q. The matrix A
is the matrix whose columns are the Fourier modes of the function exp (2 7 j « ()).

We have computed a numerical solution of (I1.0.1) for one value of H, H = .1.
We have not done it for H larger because from the error curve we obtain and from
the time spent computing the solution, we have realized that unless the analytical
solution is extremely smooth, the Fourier method is not good.

In figure II1.4.1, we plot the logarithm of the maximum norm of the error for
different values of n, for @ = z + .11+ ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1, .14,
1/(2 n), .5, 1, 2, and for H = .1.

o

-1.2

~2.4 RV

2\
=3.6 %

-4.8 | Nlpe
. Al

-6.0

LOG ( E )

=7.2 +

-8.4 |

-10.8

-12.0 1 1 L i I
]

Figure ITI.4.1 The logarithm of the maximum norm of the error for different values
of n, for @ = +.114¢ sin (2 7 z), for ¢ = .001, .01, .05, .1, .14, 1/(2 7), .5, 1, 2, for
H=.1,andfor Q =1+.5 sin (2 7 )+.5 sin (4 7 z)+.5 sin (6 7 2)+.1 sin (10 7 ).

We see from figure II1.4.1, that the larger parameter ¢ gets, the more Fourier
modes we need to reach machine precision for computations done in double precision
on asun workstation. As.in the previous cases, we notice that we loose smoothness
of the solution as the parameter ¢ increases because for ¢ = .001 and ¢ = .01,
we nearly have exponential convergence. For larger.values of the parameter ¢, the
convergence is no longer exponential. For ¢ = .05, the error curve seems to behave
like 1/n¥, with k = 6.77. If we look at the curve for ¢ = .1, the curve looks like
1/n* with k = 5.33. For ¢ = .14 and ¢ = 1/(2 ), it looks like 1/n* with k = 3.5.
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For ¢ = .5, the error curve behaves like 1/n* with ¥ = 1.75. Forc =1 and ¢ = 2,
the error curves looks like 1/n* with k respectively .92 and .69. For ¢ =1 or c = 2,
we have lost convergence because the exponent k is smaller than 1.

In figure II1.4.2, we have a Log-Log plot of the maximum norm of the error
versus the number of modes n, for & = z + .11 + ¢ sin (2 7 z), for ¢ = .001, .01,
.05, .1, .14,1/(2 ), .5, 1, 2, and for H = .1.
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Figure ITI.4.2 Log-Log plot of the maximum norm of the error vs. the number of
modes n, for o =z 4+ .11 + ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1, .14, 1/(2 =), .5,
1,2,for H=.1,andfor Q=1+.5 sin (27 z)+.5 sin (4 7 z) + .5 sin (6 7 =) +
.1 sin (10 7 z).

As from figure II1.4.2, we notice that as the parameter c gets larger we need
more and more Fourier modes to reach machine precision. We also notice the
loss of smoothness of the analytical solution because the convergence is no longer
exponential for ¢ > .01. For ¢ = .05, the slope of the error curve is 9.5. For ¢ = .1
it is 6.7. For c=.14and ¢ =1/(2 7), it is 3. For ¢ = .5, it is 2.1. For ¢ =1, it is 1.
For ¢ = 2, it is smaller than 1, .8. For ¢ = 1 and ¢ = 2, we notice that the error is
nearly independent of the number of modes used for the computation.

In figure II1.4.3, we plot the logarithm of the L, norm of the error for different
values of n, for a = z + .11 + ¢ sin (2 ™ :c), for ¢ = .001, .01, .05, .1, .14, 1/(2 7r),
5 1 25fOI‘H—\1":v BTN LS FIRVND SRR R IR T

Figure II1.4.3 as in ﬁgure III 4 1 shows tha.t as parameter c gets la.rger, we
need more and more Fourier modes to reach machine precision. We notice that
there are less oscillations in the Ly norm of the error than in maximum norm. As
for the maximum norm of the error, we see that for ¢ < .01, the error decreases
exponentially. For ¢ > .01, the error doesn’t behave exponentially. For ¢ = .05 the
error curve seems to behave like 1/n* with k& = 7.5. For ¢ = .1, it looks like 1/n*
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Figure II1.4.3 The logarithm of the Ly norm of the error for different values of n,
for @ =z +.11+¢ sin (2 7 z), for ¢ = .001, .01, .05, .1, .14, 1/(2 7), .5, 1, 2, for
H=.1,andfor Q =1+.5 sin (2 7 z)+.5 sin (4 7 )+.5 sin (6 7 )+.1 sin (10 7 z).

with k = 5.6. For ¢ = .14, it looks like 1/n* with k = 4. For ¢ = 1/(2 ), it is like
1/n* with k = 3.7. For ¢ = .5 it seems to behave like 1/n* with k = 2.2. For ¢ = 1,
it looks like 1/n* with k = 1.4 and for ¢ = 2, it is like 1/n* with k = 1.15.

In figure II1.4.4, we have a Log-Log plot of the Ly norm of the error versus the
number of modes n, for « = z + .11 + ¢ sin (2 7 z), for ¢ = .001, .01, .05, .1, .14,
1/(2 7), .5, 1, 2, for H = .1.
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Figure III.4.4 Log-Log plot of the Ly norm of the error vs. the number of modes
n, for & =z 4+ .11+ ¢ sin’(2 7 ), for ¢ =.001, .01, .05, .1, .14, 1/(2 =), .5, 1, 2, for
H=.1,andfor Q =1+.5 sin (27 z)+.5 sin (4 7 z)+.5 sin (6 7 z)+.1 sin (10 7 z).

In figure I11.4.4, we notice that there are less oscillations in the Ls norm of
the error than in maximum norm. The previous remarks made on figures I11.4.1,
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IT1.4.2, and III1.4.3 are still valid. For ¢ < .01, the error curves seem to have an
infinite slope, so the convergence is exponential. It is no longer true for ¢ > .01.
For ¢ = .05, the slope of the error curve is 10. For ¢ = .1, it is 7. For ¢ = .14, it is
4.8. For ¢ =1/(2 ), it is 4.6. For ¢ = .5, it is 2.8. For c=1 and ¢ = 2 it is a little
bigger than 1, respectively 1.7 and 1.2.

From II1.4.1, I11.4.2, I11.4.3, and III.4.4, we conclude that unless the solution
of the model equation (I1.0.1) is extremely smooth, the Fourier method is of little
interest. That is due to two facts, the cost to implement it and the size of the
error in general. We have noticed that the shift function a has two effects on the
numerical solution. As the value of parameter ¢ increases, the solution becomes
less and less smooth, and more and more Fourier modes are needed to compute an
accurate solution.

ITI.5 Comparison of the second-order finite difference, of the third-order
finite difference, and of cubic spline interpolation schemes

We have seen from the previous sections that the Fourier method is of little interest
because of its cost and of the loss of smoothness of the solution in most cases. From
this, we deduce that the most interesting schemes to be studied are the second-order
finite difference, the third-order finite difference, and the cubic spline interpolation
schemes. Here we would like to compare the numerical errors for these three sche-
mes, for the same value of the parameter ¢ of the function a. We need to point out
that for the second-order and third-order finite difference schemes, we numerically
solve the equation (II1.0.1) and that for the cubic spline interpolation scheme we
solve the equation (I1.0.2).

In figure I11.5.1, we plot the logarithm of the maximum norm of the error for different
values of n for the second-order finite difference, for the third-order finite difference,
and for the cubic spline interpolation schemes, for @ = z + .11+ .001 sin (2 7 z).
From figure II1.5.1, we see that for the second-order finite difference scheme the
error behaves like 1/n?, for the third-order finite difference it behaves like 1/n3,
and for the cubic spline interpolation scheme it behaves like 1/n*. From this plot,
we notice that the initial error for the cubic spline interpolation scheme is much
smaller than for the second-order and third-order finite difference schemes. It is
difficult to figure out whether it comes from the scheme itself or from the equation
we solve because as said before we numerically solve the equation (I1.0.2) with the
cubic spline interpolation scheme and the equation (II.0.1) with the other ones.
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Figure IIL.5.1 The logarithm of the maximum norm of the error for different values
of n, n =5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560,
600, 640, 680, for a second-order finite difference, for a third-order finite difference,
and for a cubic spline interpolation scheme. a = z+.11+.001 sin 2nrz),H=.lor
H =10, and Q = 1+.5 sin (2 7 £)+.5 sin (4 7 £)+.5 sin (6 7 £)+.1 sin (10 7 z).

In ﬁgure II1.5.2, we plot the logarithm of the Ly norm of the error for different
values of n for the second-order finite difference, for the third-order finite difference,
and for the cubic spline interpolation schemes, for @ = z 4 .11+ .001 sin (2 7 z).
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Figure IIL.5.2 The logarithm of the L, norm for different values of n, n = 5, 10,
20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680,
for a second-order finite difference, for a third-order finite difference, and for a cubic
spline interpolation scheme. o = z 4 .11 +.001 sin (2 7 z), H=.1 or H = 10, and
Q—l—l— 5 sm(27r:c)+ .5 s1n(47r:v)+ 5 s1n(61ra:)+ 1 sm(107ra:)

From ﬁgure III 5 2, we see that for the second-order ﬁmte d1fference scheme the
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error behaves like 1/n2, for the third-order finite difference scheme it behaves like
1/n3, and for the cubic spline interpolation scheme it behaves like 1 /n*. From this
plot, we notice that the initial error for the cubic spline interpolation scheme is much
smaller than for the second-order and the third-order finite difference schemes.

If we have a Log-Log plot of the maximum norm of the error or of the L, norm
of the error versus the number of meshpoints n, we have for the second-order finite
difference scheme a curve of slope 2, for the third-order finite difference scheme a
curve of slope 3, and for the cubic spline interpolation scheme a curve of slope 4.

In figure II1.5.3, we plot the logarithm of the maximum norm of the error
for different values of n for the second-order finite difference, for the third-order

finite difference, and for the cubic spline interpolation schemes, for @ = = + .11 +
.5 sin (2 7 z).

To-le
-8
-2.7
-3.6 F\

~4.5 P

LoG ( E )

~5.4 -

-6.3
-7.2 |-

-8.1

1 1 L s 1 N
80 180 240 320 400 480 560 640 720
N

-9.0

Figure ITI.5.3 The logarithm of the maximum norm of the error for different values
of n, n = 5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560,
600, 640, 680, for a second-order finite difference, for a third-order finite difference,
and for a cubic spline interpolation scheme. a =z +.11+ .5 sin (2 7 z), H= .1 or
H=10,and Q=1+.5 sin (27 2)+.5 sin (4 7 £)+.5 sin (6 7 )+ 1. sin (10 7 z).

From figure II1.5.3, we see that for the second-order finite difference scheme
the error behaves like 1/n2, for the third-order finite difference scheme it is a little
better than second-order but not by much, and for the cubic spline interpolation
scheme the envelope of the curve seems to be 1/n?. We notice that the error
oscillates. These numerical results are better than the estimates obtained from the
theoretical results, because the solution of the continuous problem is supposed to
be only continuously differentiable. _

In figure II1.5.4, we plot the logarithm of the L, norm of the error for different
values of n for the second-order finite difference, for the third-order finite difference,
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Figure II1.5.4 The logarithm of the L; norm for different values of n, n = 5, 10,
20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680,
for a second-order finite difference, for a third-order finite difference, and for a cubic
spline interpolation scheme. a =z +.11+.5 sin (2 7 ), H=.1 or H = 10, and
Q=1+.5sin(27z)+.5 sin(4 7 z)+.5 sin (6 7 z) +.1 sin (10 7 z).

and for the cubic spline interpolation schemes, for @ = z + .11 4.5 sin (2 7 z).

From figure I11.5.4, we see that for the second-order finite difference scheme the
error behaves like 1/n?, for the third-order finite difference scheme it is a little bit
better than second-order but not by much, and for the cubic spline interpolation
scheme the envelope of the error curve seems to be 1/n?. We see that the Ly norm
of the error for the second-order finite difference scheme does not oscillate. For the
other schemes, it oscillates a little.

If we have a Log-Log plot of the maximum norm of the error versus the number
of meshpoints n, we have for the second-order finite difference scheme a curve of
slope 2, for the third-order finite difference scheme a curve of slope slightly larger
than 2, and for the cubic spline interpolation scheme a curve of slope slightly larger
than 2 also. These remarks still apply for the Log-Log plot of the L, norm of
the error versus the number meshpoints n. We notice that the oscillations are less
pronunced for the Ly norm of the error than for the maximum norm and that the
slopes for the third-order finite difference and for the cubic spline interpolation
schemes are larger than for the maximum norm. .

In figure II1.5.5, we plot the logarithm of the maximum norm of the error for
different values of n for the second-order finite difference, for the third-order finite
difference, and for the cubic spline interpolation schemes, for @ = z+.11+sin (2 7 z).

From figure III.5.5, we see that for all three schemes, second-order finite dif-
ference scheme, third-order finite difference scheme, and cubic spline interpolation
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Figure ITI.5.5 The logarithm of the maximum norm of the error for different values
of n, n =5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560,
600, 640, 680, for a second-order finite difference, for a third-order finite difference,
and for a cubic spline interpolation scheme. & = z +.11+sin (2 7 z), H=.1 or
H=10,and Q=1+.5 sin (27 z)+.5 sin (4 7 z)+.5 sin (6 7 z)+1. sin (10 7 z).

scheme, the error behaves like 1/n. We don’t gain anything by using high-order
schemes assuming some smoothness of the solution of the continuous problem to
numerically solve an equation whose solution is not smooth enough for the scheme.

In figure II1.5.6, we plot the logarithm of the Ly norm of the error for different
values of n for the second-order finite difference, for the third-order finite difference,
and for the cubic spline interpolation schemes, for & = z +.11 + sin (2 7 z).

From figure II1.5.6, we see that for all three schemes, second-order finite differ-
ence, third-order finite difference, and cubic spline interpolation schemes the error
behaves like 1/n. We don’t gain anything by using high-order schemes assuming
some smoothness of the solution of the continuous problem to numerically solve an
equation whose solution is not smooth enough for the scheme. .

If we have a Log-Log plot of the maximum norm of the error or of the Ly norm
of the error versus the number of meshpoints n, we have for all three schemes a
curve of slope 1. .

In figure II.5.7, we plot the logarithm of the maximum norm of the error
for different values of n for the second-order finite difference, for the third-order
finite difference, and for the cubic spline interpolation schemes, for a = z + .11 +
2 sin (2 7 z). S , o o

From figure II1.5.7, we see that for all three schemes, second-order finite dif-
ference scheme, third-order finite difference scheme, and cubic spline interpolation
scheme, the error is independent of the number of meshpoints.
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Figure IT1.5.6 The logarithm of the Ly norm for different values of n, n = 5, 10,
20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640,
680, for a second-order finite difference, for a third-order finite difference, and for a
cubic spline interpolation scheme. o = z +.11+sin (2 7 z), H = .1 or H = 10, and
Q=1+.5sin(272z)+.5sin (47 x)+.5 sin (6 7 z)+.1 sin (10 7 z).
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Figure II1.5.7 The logarithm of the maximum norm of the error for different values
of n, n =5, 10, 20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560,
600, 640, 680, for a second-order finite difference, for a third-order finite difference,
and for a cubic spline interpolation scheme. a =z + .11+ 2 sin 2nrz),H= Jdor
H=10,and Q=1+.5 sm(27r.z')+ 5 sin (4 v z)+.5 sm(67r:c)+1 s1n(107r:v)

In figure II1.5.8, we plot the loganthm of the Ly norm of the error for different
values of n for the second-order finite difference, for the third-order finite difference,
and for the cubic spline interpolation schemes, for @ =z + .11 + 2 sin (2 7 z).

From figure III.5.8, we see that for all three schemes, second-order finite dif-
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Figure IIL.5.8 The logarithm of the L, norm for different values of n, n = 5, 10,
20, 40, 80, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680,
for a second-order finite difference, for a third-order finite difference, and for a cubic
spline interpolation scheme. a =z +.11+4+2 sin (2 7 z), H = .1 or H = 10, and
Q=1+.5sin(27z)+.5sin (47 z)+.5 sin (6 7 ) +.1 sin (10 7 z).

ference scheme, third-order finite difference scheme, and cubic spline interpolation
scheme, the error is independent of the number of meshpoints.

We have in section 3 of this chapter plotted the solution of (I1I.0.2) discretized
with a cubic spline interpolation scheme for H = 10/7. We also have numerically
solved (I1.0.1), which has been discretized with a second-order and third-order finite
difference scheme for H = .7. We can as for H = .1 or H = 10 compare the error
curves for these three different schemes. We will obtain for H = .7 or H = 10/7
results of a similar type to the ones obtained for H = .1 or H = 10.
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CHAPTER IV
CONCLUSIONS AND DISCUSSION

We have shown that the solution of a functional equation under certain restrictions
on the coefficient functions H, Q, and a of the equation exists and is unique. We
also have proven that under even more restrictions on the functions H and a that
the solution of the continuous problem is k-times continuously differentiable. We
have analytically studied the behavior of the discretization error when we discretize
the continuous equation with second-order and third-order finite difference schemes,
with a cubic spline interpolation scheme, and when the solution of the continuous
problem is approximated with a truncated Fourier series. We first have derived
estimates when the functional equation is discretized with a second-order finite dif-
ference scheme. We have considered the cases of the solution of the continuous
problem being at least twice continuously differentiable, being continuously differ-
entiable, and being only continuous. We have then derived error estimates when the
functional equation is discretized with a third-order finite difference scheme. We
have considered the cases of the solution of the continuous problem being at least
three-times continuously differentiable, being twice continuously differentiable, be-
ing continuously differentiable, and being only continuous. We have also studied the
behavior of the error when the functional equation is discretized with a cubic spline
interpolation scheme. We have considered the cases of the solution of the continu-
ous problem being at least four-times continuously differentiable, being three-times
continuously differentiable, being twice continuously differentiable, being continu-
ously differentiable, and being only continuous. We have derived an estimate in L,
norm for the continuous operator

. fC-C
L: {R—rRoa’

where C is the set of continuous functions defined on the unit circle S!.

We have plotted the numerical solution of the functional equation for the pa-
rameters H = .1 and & = 2+ .11 4+ ¢ sin (2 7 ) with 0 < ¢ < 2 and for the
parameters H = .7 and o = z + .11 + ¢ sin (2 7 z) with 0 < ¢ < 2. The model
equation has been discretized with a second-order finite difference scheme and a
cubic spline interpolation scheme. We have an analytical expression for the solu-
tion of the model equation so we can derive expressions for the error. We have
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plotted the error curves derived from the discretization of the model equation with
a second-order finite difference scheme, with a third-order finite difference scheme,
with a cubic spline interpolation scheme, and with a truncated Fourier series when
the parameter c in the function « is varied and the other functions are fixed. We
have compared these different error curves for the. same value of the parameters
for the model equation that has been discretized with three different schemes: a
second-order finite difference scheme, a third-order finite difference scheme, and a
cubic spline interpolation scheme.

From the execution time spent solving the linear systems resulting from the
discretization of either (I1.0.1) or (1I.0.2) with a second-order or third-order finite
difference scheme, with a cubic spline interpolation scheme, and when the solution
is approximated by a Fourier series, we realize that there is no point in using a
truncated Fourier series. It is due to the fact that the Fourier expansion assumes
a lot of smoothness of the solution of the continuous problem. It is also very
expensive to set up and solve the system in this case. On the other hand, the finite
difference schemes are much less expensive and their execution time is much shorter.
Nevertheless, they are only interesting for linear problems. Because the discrete
solution does not possess a continuous ‘ﬁrst derivative on its domain of definition,
the only method that can be used to solve nonlinear equations is a linear iterative
method. If the discrete solution possesses a continuous first derivative everywhere
on the domain of definition, it is of interest for solving nonlinear problems. A good
compromise between a rather low execution time and a rather low discretization cost
is a cubic spline interpolation scheme. The cubic spline interpolation scheme has
also the advantage of having continuous first and second derivatives on the domain
of definition. From the analytical and numerical study, we deduce that there is
no point in using a high-order, sophisticated scheme unless estimates have shown
that the solution of the continuous problem is extremely smooth. We will try, in
general, to choose a low-order scheme. The scheme should be such that the solution
interpolated from the discrete solution has at least a continuous first derivative on
the domain of definition so that we can use Newton’s method to solve nonlinear
problems.

'As said before, the cubic spline interpolation scheme is of interest for nonlinear
problems. We will try to justify t}us assertlon Cons1der the nonlinear system of
ordinary differential equations

(IV.la) 'g‘t' 0=a (eatﬂ')’
w.ib) (% r=b(6,t,),
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where a and b are smooth functions from S! x S! to (—oo, 00).

We integrate system (IV.1) with respect to time. Consider the initial conditions
(6o,70). So the solution of (IV.1) at time ¢, with initial conditions (8o, o) is given
by (6 (6o,t,70),7 (60,%,7m0)). We consider the same Poincaré map as in chapter 1.
As in chapter 1, we would like to find an expression for an invariant curve under the
Poincaré map P which has the form ' = {(z,R (z)),z € S'} where the function R
is an unknown function from S! to (—00,00). The curve I is invariant under the
Poincaré map P if the point P (z,R (z)) is on the curve I for all z € S!. To
simplify the notations, we have 6 (6p,1,70) = £ (60,70) and r (6o, 1,79) = p (6o, 7o)
We then require, for P (z,R (z)) = (¢ (z,R (2)),p (z,R (2))) to satisfy

(Iv.2) R (¢ (z,R (2)) = p (<, R (2)).

We cannot solve (IV.2) with a direct method because it is nonlinear in R. We will
have to linearize it about a given solution and then iterate. If we linearize (IV.2)
about a given solution Rg (z), R (z) = Rg (z) + S (z), we are lead to

Ro (8 (2)) + R (B (2)) & (B (2)) S (&) +S (B (2)) =
(IV.3) p (z,Ro (2)) + pr (z,Ro (2)) S (z),

where f (z) = £ (z,Ro (z)). Because of the term R} (3 (z)) arising in (IV.3), we
see that we need a continuous approximation of R}, (z). That is why we Wﬂl prefer
a cubic spline interpolation scheme instead of a finite difference one.

The methods we have chosen to discretize the model equation are quite similar
to those used in [13] and [14]. As in there, we compute the image of the function
R (2;) by the operator L, (R o a) (z;), then we approximate (Roa) (z;), if it is
not equal to R (z;) by some interpolation scheme, by some weighted average of
the solution at the discretization points zm—1, Zm, and Tmt1 R (m-1), R (zm),
and R (zm+1). The point z;, depends on the function a. The weights of the
interpolation scheme depend on the kind of scheme chosen. For example, if we
choose a second-order finite difference scheme, and if 0 < a (z;) — z; < h modulo
1, then (Roa) (z;) = 6; R (zj4+1) + (1 — 6;) R (z;) with 6; h = a (z;) — z; and
0 < 6; < 1. To get the weights for the third-order finite difference scheme, we
proceed in a similar fashion. For the cubic spline interpolation scheme, it is more
complex and there is no easy way to figure the value of the weights. Because the
model equation is linear, we do not need to iterate as in [13] and [14]. If we want
to compare our methods to his, we have to solve the same examples as he does and
compare our results to his. We just have run model problems up to now.

In the near future, we want to study a nonlinear functional equation. We want
to know under which assumptions the solution exists and is unique. We also would
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like to know under which further restrictions the solution of the model equation
possesses k continuous derivatives. We will plot the numerical solution of the model
equation for different values of the parameters. We then will apply the algorithms
we have analyzed to some problems like the van der Pol equation or the delayed
logistic map already solved numerically with other numerical schemes.
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CHAPTER I

NUMERICAL CONVERGENGE RESULTS FOR A ONE-
DIMENSIONAL STEFAN PROBLEM

I.1 Introduction

Free boundary problems have been of interest for many years from both a mathe-
matical and a physical viewpoint. They simulate a large class of phenomena: the
propagation of interfaces, which occur in distinct fields of research, for example
hydrodynamics, crystal growth, and combustion. In hydrodynamics, the Saffman-
Taylor finger is an example; the goal is to determine the motion of an interface
between two fluids of different viscosities in a Hele-Shaw cell. In crystal growth, it
is to find the position and the shape of the interface between two different phases of
a substance. In combustion, it is to locate the interface between fresh and burned
gas for a premixed flame propagating in a reactive mixture. In all cases, given some
control parameters, free boundary problems give the morphology of the interface
and its propagation velocity.

In this chapter, we will focus on the model equations for crystal growth prob-
lems. These problems have been studied for many years and many approximate
models have been built. The model considered in [14], [34], and [38] assumes that
the paraboloid shape of the dendrite is conserved and only one of the boundary
conditions is applied at the tip. These models determine a curve U = f (p) which
has a maximum because it has been conjectured for a long time that the dendritic
growth occurs at maximum velocity. Nash and Glicksman in [28] and [29] proposed
a more precise study where they derive an integral equation for the interface shape
and a maximum velocity numerically. Langer and Miller-Krumbhaar in [21], [22],
[27] assume that the growth velocity is dynamically selected. They introduce a
marginal stability criterion enforcing either the selected radius of curvature to be
proportional to the most unstable wavelength or to the ratio

_2Ddy
o= U = o,

where U is the growth velocity of the crystal, D the thermal coefficient, dp a capil-
larity length, and p the density, o, a constant. Some simpler models have also been
studied, geometrical models [4], [5], [16], [17], and boundary layer models [1], [2],
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to understand more generally the problem of velocity selection of a needle crystal.
These models share common features with the realistic models, such as existence of
continuum of needle crystals moving with arbitrary velocity when the higher deriva-
tive terms are neglected (zero surface tension). In [20], [23], these simpler models
enable us to understand analytically how the continuum of solutions without surface
tension can be broken when small surface tension is added.

Because most of the physical models we refer to above are given by a complex set
of equations and because we want to analyze the convergence analytically as well
as numerically, we will consider here a one-dimensional Stefan problem which is
supposed to give a rather good model of a one-dimensional crystal growth problem.
We will show existence and uniqueness of the solution with L, estimates. We will
prove that the numerical solution converges to the analytical solution.

‘As mentioned earlier, this chapter will focus on model equations for the simu-
lation of dendrite growth, that can be described to first approximation by a Stefan
problem under the assumptions, [31]:

e the solid and liquid are pure substances, ,

o the characteristic diffusion time of transfer of molecules between solid and liquid
is very fast compared with the characteristic diffusion time of heat,

e the growth is limited by the diffusion of latent heat in the medium, released at
the interface.

The temperature fields in the solid and liquid and the interface position are
unknown. Four equations describe the physical phenomenon; two are diffusion
equations in the solid and in the liquid, the third one is a kinematic condition at
the interface, and the last one is a dynamical condition derived from thermodynamic
considerations.

The two diffusion equations are . -

Illa) %Tg: V(D, VT,) in Q, (¢); ¢ € [0,T],
(L.1.1b) -% T, = V(D VT) in (£), t € [0,T],

where V is the gradient operator in n-dimensional space

-—_6_-




-90 -

and where T; and T, are the temperature fields of the liquid and of the solid,
D; = A\i/cp, and D, = A,/cp, are the diffusion constants of the liquid and of the
solid, A\; and A, are the thermal conductivities of the liquid and of the solid and c,,
and cp, are the specific heats per unit volume of the liquid and of the solid. D; and
D, are strictly positive functions bounded away from 0 on the domains considered.
- We have not yet prescribed the time interval [0, T]. The Stefan problem is
nonlinear and its solution can break down in a finite time. The breakdown time
imposes an upper bound on the value of T.
The third equation is a kinematic condition at the interface, derived from the
conservation of energy at the interface '

Quv-n=(D,cp,, VT,
(I1.1c) —=Dycp, VTi).n onT (t) = (0 (t) N 9D, (t)), t €[0,T],

where Q = (h; — h,)p, is the latent heat per unit of volume of the solid, h; and h,
are the enthalpies per unit of mass of the liquid and of the solid, v - n is the normal
velocity of the interface, n is the unit vector normal to the interface.

The last equation is a dynamical condition, derived from a thermodynamic
relation, the Gibbs-Thomson relation

. o T & 1
T =TT = et g 9
62
(Illd) +(0'+‘a?%'0') Ez-] onI‘(t):(BQ; (t)n@Qs (t)),tG[O,T],

where T* is a reference temperature, o is the anisotropic liquid-solid surface tension,
R; and R; are the principal radii of curvature of the interface, taken positive when
they are directed toward the solid side, ¢; and ¢, are the angles of the normal to
the interface with some fixed direction inside each main plane.

We also prescribe initial and boundary conditions, namely T, (z,0), T: (z,0),
I'(0) and T, (z,t) is given on 0%, () \T (2), and T (z,1) is given on 9 (¢)\ T (¢)
for ¢ € [0, T).

Instead of studying the general n-dimensional problem described by (1.1.1), we
derive results in this chapter for a one-phase one-dimensional Stefan problem on a
semi-infinite domain and in appendix III, we extend the results to the two-phase
case. We do this as a first step in the analysis because the n-dimensional problem
is very involved and because many of the analysis issues arise already in the one-
dimensional case. In the one-dimensional case, we write (I.1.1) as

(1.1.2a) %T(mt) 6(D T(zt))
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|
Ve | LIQUID

Figure I.1.1 Geometry of the interface for a two-dimensional model. (figure from
reference [23])

(Il2b) 2‘ T, (217, t) = 'a_(Dl —6— Ty (xj.t)))

ot Oz Oz
(L1.2¢) % s (&) =D, o, 5‘} T, (s (£),) = Di <y, 5‘% Ty (s (0),2),
(L12d) T, (s (£),8) = T (s (£),2) = T* (2),
(I.1.2¢) s (0) = so, '

(I.1.2f) T, (z,0) = Ty (2),
(1'1'2.5_).\ JTI (.’B,O) =.T‘° (z),

(1.1.2h) T, (z,t) > A; as z — —o0,
(1.1.21) Ty (z,t) > Ay as z — oo.

Here T,, Ti, T4 and Ty are defined on (—oo,s (t)], [s (¢),00), for ¢t € [0,T],
(-—00,3()] and [So,OO). A _

Because we have assumed that D, and D; are strictly positive functions, boun-
ded away from 0, the equations (I.1.2a) and (I.1.2b) are uniformly parabolic.
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The convenient transformation, z' = z — s (t), already introduced in [25],
transforms (I.1.2) to a nonlinear problem on a fixed domain. In this coordinate
system, the moving boundary s () has been fixed at the point, ' = 0. We introduce -
this mapping because for the two-dimensional case, we want to solve the equations
via a mapping procedure. Dropping primes, the nonlinear system becomes

i'i‘, (a:,t)=a% (]3 —Q—T (=, t))

ED oz
- . d
(L1.32) +(D,e e To—Dity & T,) (0,) — a T, (z,1),
o . 3 )
5 D@t =5 (D, 5= T (x,t))
A R I d .
(L1.3b) + (D,, &, 5= To—Di gy, 5 T,) (0,8) 5= 1 (a,),

(1.13c) T, (0,¢) =Ti (0,t) =T* (¢),
(1.1.3d) T, (z,0) =T, (z),

(11.3e) Ty (z,0) =T (z),

(1.1.3f) T, (z,t) = A, as z— —o0,

(I.1.3g) Ty (z,8) > A1 as z — oo,

d 0 - 0
(113h)  — s @) =(D,c, 7z To—Dicp o 1) (0,),
(I.1.31) s (0) = s,

where 4(z,t) = u(z + s (t),1). T., Ty, Ts0 and T}y are defined on (—00,0] x [0,T],
[0, 00) x [0, T], (—o0,0] and [0, c0), respectively.

In the followmg sections, we take A, and A; to be 0 because if we Wnte Ty in
the form T; = Si+ A (l—e"’ ), and T, in the form S, + A, (1 — e~ z? ), Si and
S, satisfy homogeneous boundary conditions at co and at —oo. S; and S, satisfy
equations (I.1. 3b) and (I.1.3a) with a forcing term added, depending on derivatives
of A; (1 — e*") and A, (1 — e="). Except for (I.1.3f) and (I.1.3g), the other
equations are unchanged. The same transformation applies to (1.1.2).

Systems of type (I.1.2) and (I.1.3) have already been extensively studied in the
past from a mathematical viewpoint. In [11], local existence of a solution has been
proven. In [26], the uniqueness of the position of the interface and its continuous
dependence upon the data has been shown. Some numerical simulations have been
carried out both for the one-phase and two-phase one-dimensional Stefan problem
in [3], [24], and [30].

The goal of this chapter is to show that the numerical solution of either (I.1.2)
or (1.1.3) discretized in space with a fourth-order scheme and in time with Crank-
Nicholson scheme convergences to the solution of the continuous system in the limit
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of zero meshsize and timestep. To simplify the algebra in this chapter, we prove
corresponding results for a one-sided Stefan problem, discretized with a centered
second-order finite difference scheme in space, Crank-Nicholson scheme in time.
Fourth-order methods in space are considered in Appendix 4. Also for simplicity
the diffusion constant will be a constant function and, without restrictions, will
be taken 1. The term Dcj will also be 1. For simplicity, it will be assumed that
u — 0 for | | = co and that the forcing terms introduced to make the boundary
conditions homogeneous at infinity are F, = 0, F; = 0. The one-sided Stefan
problem reads

(I.1.4a) % u (z,t) = -6%5 u (z,t) + _8% u (0,¢) —6% u (z,1),
(I.1.4b) u (0,t) = T* (1),

(I.1.4¢) u (z,0) = uo (),

(I1.1.44d) u(z,t) >0 as z— oo,

(I.1.4e) -c% s(t)= —b% u (0,1),

(I.1.4f) s (0) = sq.

Here u and uo are defined on [0,00) X [0, T] and on [0, 00), respectively.

An outline of this chapter and of this part follows.

In section 2, we derive the discrete equations approximating (I1.1.4), the semi-
discrete equation, the semi-discrete error equation, the linearized semi-discrete error
equation, its continuous equivalent, the linearized discrete equation, and the non-
linear discrete error equation. For the equations discretized in space, the mesh
points are located at z; = (j — 1/2) h, j = 0,1,2,.... In section 3, we obtain L,
estimates for (1.1.4). First, we show short term existence of the solution; we deduce
uniqueness of the solution as well. : Then we write down sufficient conditions for
global existence. In section 4, we compute L, estimates for the linearized contin-
uous error equation. In section 5, we do the same for the semi-discrete linearized
error equation. In section 6, we analyze the linearized error equation. In section 7,
we show that the solution of the nonlinear equation stays in the “neighborhood” of
the solution of the linearized discrete error equation: provided the meshsize is small
enough. In section 8, we describe a numerical scheme for (1.1.3) and we provide
numerical evidence of the accuracy of the scheme. In the appendices, we recall some
basic results on L, estimates for continuous equations and semi-discrete ones, we
sketch a generalization of the results proven in this chapter to a two-phase Stefan
problem, and we explain the numerical method to be implemented for a centered
fourth-order finite difference scheme in space. In appendix V, we show numerical
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results for (I.1.2) discretized in time with the Crank-Nicholson scheme and with the
Collatz Mehrstellenverfahren in space. '

1.2 Thg Disqete E_quations

As mentioned before, the goal of this work is to show that the numerical solution
converges to the solution of the continuous system. This will to be done in several
steps. The continuous system (I.1.4) is first discretized in space with a centered
second-order scheme. This leads to

0 :
(1218,) 5 ’&j (t) = D+ D_ '&j (t) + D+ ﬁo (t) Do ﬁj (t) J = 1,2,...,

(I.2.1b)  Agz i (t) =T (2),
(1.2.1¢) %j (0) =wuo (z;) 5=0,1,...,

(1.2.1d) @j (t}— 0 .as-j— oo,
(1218) 'gz ] (t) = —D+ '&0 (t),
(1.2.1f) 5 (0) = so,

where @; is the difference approximation of u at (zj,t) = ((j — 1/2) h,t), for
7 =0,1,... on [0,T]. The equations (I.2.1¢) and (I.2.1f) are needed to determine
the linear transformation 2’ = = — s (t) for all time. We will compute i; outside
the domain [0,00). We will compute an initial value of @, at —h [/ 2. We will
extrapolate the function ug outside its domain of definition with an interpolant
that is at least linear. The difference operators Agz, D4+, D—, Dg, Dy D_ are
defined as follows: - ' -

~Apg vo = % (vo + v1) ~v (0),
Dy v = % (v1 — 'Uo) ~ Vg (0)>
D_vi =7 (0~ )~ v (0),
Do v; = % (D++D-)vj= 2—13 (vi41 = vj1) ~ vz (25),
Dy D_v; = glf (vit1 = 2 vj +vj-1) ~ Vzz (z5),

We first derive an equation that the error satisfies. This equation will give a good
measure of the deviation of the semi-discrete solution from the continuous one. We
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substitute in the semi-discrete system (I.2.1) the solution of the continuous problem
(u,s). It satisfies a semi-discrete system, similar to (I.2.1) with forcing terms coming
from the truncation errors of the discrete operators. The solution of the continuous
problem can be written as u(z;j,t) = @; (t) + €; (¢) and s (t) = § (£) + & (t). We
obtain the error equation by subtracting the semi-discrete system (1.2.1) from the
one the solution of the continuous problem satisfies. It reads

0
5 & () =D+ D- & (¢) + D+ & () Do ; (t)

+ Dy o (¢) Do & (£) + Dy & (¢) Do & (2)

(1.2.22) +5@) i=12,..,
(1.2.2b) Aoz & (1) =g (1),

(1.2.2¢) & (0)=h; j=0,1,..,
(1.2.2d) & (1) =0 as j— oo,
(22)  LEO=EO.

(1.2.2f) ¢(0)=0.

where f; (t), g (), hj and & (t) are given by

~ 1 1
. — _p2 {. . .
f] (t) =—h (12 Uzzzz (:L'],t) + 24 Uzzz (O,t) Ug (:cJ,t)

1
+5 e (0,1) uzes (25,1)) +o0 (82),

h2
g (t) = =5 uaz (0,8) + 0 (A?),
po 0 ifj=1,2,..,
= o) ifji=0,

B2
k@)= 51 Ugzz (0,2) + o0 (hz),

where ho depends on the values of ug at £ = h / 2, ... and also on the type of
interpolant chosen to compute the extrapolated value of ug at z = —h / 2.

The semi-discrete error equation (I.2.2a) obtained is nonlinear. First, instead
of studying it, a linearized equation derived by neglecting the quadratic terms and
by linearizing the equation (1.2.2a) about a given solution is analyzed. We will later
justify neglecting the quadratic terms. Because the error is supposed to be small,
the equation (I1.2.2a) will be linearized about the solution &€ = 0. Even though the
function € of (I.2.2a) does not satisfy the linearized error equation, we will still call
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the error function € to simplify the notation. This leads to

0 . ~ .
. 77 € (1) =Dy D_ &; (t) + D4 & (t) Do ; (¢)

t
(1.2.3a) +Dy i () Do &; )+ F; (8) j=1,2,..,
(1.2.3b) Aoz & (t) =g (1), |
(1.2.3¢) & (0)=h; j=0,1,..,
(I.2.3d) €; ()= 0 as j— oo,
(12.3¢) 2 aw=k@,
(1.2.3f) é(0)=0.

We will bound the semi-discrete function €, its divided differences in Ly and
maximum norm. We will show that the upper bound goes to zero like h?, h being
the meshsize. In general, instead of estimating directly the semi-discrete function &,
we first study the continuous error function e. The function e satisfies an equation
deduced from its semi-discrete equivalent by replacing all the discrete operators
and the discretized known functions by their continuous equivalents. The function
e satisfies

0 o? 0 0 \
ae(w,t)=5—e(w t)+—e(0 t)a—u(:z: t)
(I.2.4a) + _6_ u (0,t) — 3 e (a: t) + £ (=, 1),
(1.2.4b) e(0,t)=g (t),
(I.2.4c) e (z,0) =
(1.2.4d) e(z,t) >0 as z— oo,
(I1.2.4e) gt- c()=k(t),-
(I.2.4f) c(0)=0,
where f is given by

“f (z,t) = —h? ( - Uzzzs (Z5t) +57 1, 7 Usez’ 0,t) ug (z,t) -
+ 5 e (0,8) tzas (2,8)) +0 (4,

The functions g and k are the same as before.
Once we have obtained estimates for the continuous error equation, calculations
similar to the ones already done on the continuous system (I.2.4) will be carried
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out on the system (1.2.3). In general, the function e, discretized on the meshsize is
different from the function Dy &;, where §; is a discrete approximation of the function
e at the meshpoint ;. Because in system (1.2.4), we have the term e, (0,) u. (z,1),
we will in section 5 introduce a new function y = e, and derive estimates for the
system the vector [e,y]T satisfies. We will then discretize this continuous system in
space with a centered second-order finite difference scheme. Then we study (1.2.3)
discretized in time with Crank-Nicholson scheme

é;.‘+1 €} — 1 D, D_ ~n+1 +én)
T 2

+ 1 D, (& +é7) Do (a7t +4})

+3 Dy (5 +ud) Do (&4 + )
(1.2.5a) + = (f’-‘+1 +fM j=1,.. n=0,..,
(1.2.5b) Aoz(‘"+1+é{,‘)—g((n+1)7')+g(n7') n=0,..,
(I.2.5¢) v ‘,—h i=0,..
(1.2.5d) e7 >0 as j—oo n=0,..,
(1.2.5¢) et = ¢gn + =7 (k ((n + 1) T)+k(n7)) n=0,.
(1.2.55) =0,

where f;‘ is given by

N 1 1
fj = —h? (ﬁ Uzzrzz (:Bj,n T)+ 5—4' Uzzz (07n T) Uz (zj’n T)

uge (T, T)

1 1
+ = uz (0,n 7) ugzy (zj,n 'r)) + 72 (

6 24
1 1

+ § Uzztt («'Ej,n 7‘)+ g Uztt (0,7z 7') Uz (l'j,n 7')
1

+ 3 uz (0,n 7) Uz (zj,n 1')) +o0 (h2) +o (7'2).

In section 5, we deduce estimates for the error é satisfying (1.2.5).

Finally, we evaluate estimates for the nonlinear error equation. We will ex-
tensively use results from the previous sections, in particular, we will show that
provided the meshsize is small enough, the nonlinear system behaves like the lin-
ear one. To do that, instead of defining the error €} as u (¢j,n 7) — 47 and &"
as s (n 7) — 8", we introduce a factor h2. The grid functions €} and ¢" satisfy
h? &} = u (zj,n 7) — 4} and h? &" = s (n 7) — 5. The power of h in front of &7
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depends mostly on the order of the scheme chosen and on other considerations that

will be discussed in section 7. Those new functions €} and ¢" satisfy

an+1

. en o

—e.

1 A An
J—_T__.‘_’.. = -2- D+ D_ (6j+1+6j)
- +3 = Dy (&4 +87) D (@3 +a})
1 ) . ,
+7 4 D, (457" +a5) Do (671 +¢7)
+7 1 2 Dy (651 +&7) Do (771 + &)
(1.2.6a) +3 h2 ( f"+1 +f j=1,.. n=0,..,
(L2.6b)  Agz (657 +€7) = ﬁ’- (g((n+1)7)+g(n7)) n=0,..,
. 1 .
(1.2.6¢) eg 7z hj 7=0,..,
1.2.6d é"—=0 as jooo n=0,..,
( i
(12.6¢) gt gny 2—1]12 r(k(n+1) 1) +k(n7) n=0,..
(1.2.6¢) & =0.

From the expression for f"'“ and the assumption that the ratio 7/h%? = ),
where ) is a fixed constant, we see that the term f"+1/ h? is well-defined and has
a finite limit as A — 0. A similar result is true for g ((n + 1) 7)/A2 and for A; 5/R2.
The term h? in front of the nonlinear term will help to show that some operator
acting on € is a contraction. Once this has been done, we will easily prove that the
error is bounded in terms of & and 7.

I.3 Estimates for the Continuous Problem - Existence and Uniqueness of
the Solution of the Continuous Problem

In section 2 we have explained why estimates for divided differences of u are needed
in order to get estimates for the error. Because the continuous function % and its
derivatives are a good interpolant for the corresponding discrete approximations,
it is enough to.estimate the continuous functions. The method that Strang chose
in [37] to estimate operators does not apply in a straightforward manner to the
problem considered because of the nonlinearity. We will use L, estimates to bound
u and its derivatives. It has been shown in [6], [7], [8], [9], [10], [11] [12], and [13]
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that solutions of (I.1.2), (I.1.3), and (I.1.4) and their derivatives exist on a short
time interval. In [8], [9], and [10] under certain restrictions on the data and on the
coefficients of the differential operator, long term existence has been proven; when
long term existence could not be shown, the value of the position of the interface or
bounds on the derivative of the position of the interface are given at the breakdown
time. It was shown that either the interface disappears or its derivative becomes
infinite. The tools chosen to prove those results were either integral equations, or
maximum principles or a combination of both. For the one-sided Stefan problem,
Friedman shows short term existence of the solution and its uniqueness with the
parametrix method. If he assumes some a priori estimates on the position of the
interface and on u,, he obtains long term existence for u. Conditions for long term
existence in [8], [9], and [10] are equivalent to the a priori estimates that Friedman
assumes in [13]. Similar to what has already been done, we will show first short time
existence using L estimates. As done in [19] for Burgers’s equation, we will derive
estimates for the solution of (I.1.4) and its derivatives, we will show uniqueness and
then we will show existence via an iteration procedure. We derive those bounds
again because the equation does not have the same mathematical particularities as
Burger’s equation even though it is nonlinear and of parabolic type. Then we will
see under which conditions there is long term existence for this problem.

Because of the homogeneous Dirichlet boundary conditions, it is easy to esti-
mate u in the Ly and maximum norms. These results summarize in

Lemma I1.3.1.

Under the assumptions that T* = 0, that the initial and boundary conditions are
compatible, and that u is L, integrable in z, satisfying (1.1.4), upper bounds for u
in the Ly and maximum norm are given by

(13.1) o G8) 17 < o I
(132) | u»(-,t) lx_s | uo |oo

In the case of inhomogeneous Dirichlet boundary condition at = = 0, we can trans-
form the boundary condition to an homogeneous one by introducing an adequate
forcing term in (I.1.4a).

Proof of Lemma 1.3.1:
If we apply simple Ly manipulations to (1.1.4), we get

d -
g e lP==21ulP
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from which we immediately deduce (1.3.1). (1.3.2) is a direct application of the
maximum principle for parabolic equations [32].

The estimates (1.3.1) and (1.3.2) change if there is a forcing term F (z,t) in
(I.1.4). They become

t
(1.3.1) Hu ) 1P <e || uo | +/£ e F () 1P dr,

(I.é.z') ‘ | u (.,i) loo < ma.x( /0 t»| F(,7) loo dr,| uo 100).

In the rest of this section, it will be assumed that the Dirichlet boundary condi-
tion at £ = 0 is homogeneous, i.e., T* = 0. Getting estimates for spatial derivatives
of u is a harder task, due to the nonlinear term u, (0,t) u, (z,t) in (I.1.4a). First
we estimate the functions a = uz, f = uz,, and 4 = uzz; in Ly norm. In fact in
order to get these estimates, we first estimate the function || & |2 +]| 8 |12 +]| 7 |I?,
because of the nonlinearity and of the inhomogeneous Dirichlet boundary condition
for the function 8. We will also assume that the functions «, 8, and satisfy homo-
geneous boundary conditions at co. Once an upper bound for the function | @ oo
is known, the equation can be treated further like a linear equation.

One useful tool for calculating the required bounds is Scbolev’s inequality. It
gives a bound on the maximum norm of a function v in terms of the L, norm of v
and v,. It will be extenswely used all through the analys1s and reads

(1.3.3) vl <2lvllllvsll<ellvs |*+ -IIvII2

The first inequality of (I.3.3) is not true if v is constant, but this case is not con-
sidered because we have assumed that v is Lo-integrable on [0, 00).
The functions a = u,, g = Uzz and Y = Ugzs satisfy

(1.3.4a) g? a (z,t) = 62 = o (z,t) + a (0,t) — 6 a (z,t),
(1.3.4b) aﬁ a (0,1) = -—a2 (0,1),

(I.3.4c) a(z,0) = — ~ o (:c),

(1.3.44d) -a (z,t) —- 0 as T — 00,

(1.3.5a) ,B (z,8) = ﬁ (z,t) + a (0, t) ,B (z,1),
(1.3.5b) B (0,t) = —a2 (0,1),

(1.3.5¢) B (z,0) = == wo (2),

(1.3.5d) B (z,t) — O as T — 00,
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(13.6a O at)= 2 @) ta 0,8 L @)
..a,) a’Y(m’)—aﬂﬂ’y z, + « 9 3177 Z,1),
(1.3.6b) 6% v (0,t) = =3 a(0,%) v (0,%) + 2 a* (0,1),

&
(1360) Y (z,O) = @ Uo (.’B),
(1.3.6d) v (z,t) =0 as z— oo.

Here the functions @, § and + are defined on the same domain as u, i.e., on [0, 00) X
[0, T]. It is assumed that u and all its partial derivatives go to zero as z — co. As
mentioned before, T will be computed. Before starting to compute an upper bound
for the function z = || & || + || B ||> + || 7 ||?, we note the other useful inequality,
Young’s inequality

(1L.3.7) ab<laryles win Lilog,
p q P g
We apply the algeBra.lc manipulations described in’ '[A19] and in Kﬁpéﬁdix I, as
well as Sobolev’s inequality (I.3.3) to (1.3.4)

d 2 3 E]
5 2<=2(llaz IP+11 82 1P + 17 1) +2% (Le 1E |1 811
e lF BRIy I1+8 e liF 1811y 17 1)
@38)  +4 (B NENT NN E+25 N lP UBIE 7 I 17 1)

Using Young’s inequality with the correct value of pand ||a [P <z ||B|?P <L 2
| ¥ I1* £ 2, (1.3.8) transforms to

(1.3.9) 2<C2+4+C; z%+C2 22 +Cs z%,

d
dt
where C, C;, C2, and C3 depend on the values of p and g, and on the value of e. The
constant € has been chosen such that -2 balances the positive constant in front of

|| 7z ||*. We obtain a bound for z from the generalization of the Gronwall-Bellman
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