
Planning for an Uncertain Future: Tree-based Methods
for Real-Time Fault Estimation, Collision Avoidance, and

Multi-Agent Reconfiguration

Thesis by
James Francis Ragan III

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy in Space Engineering

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2025
Defended February 3, 2025

ii

© 2025

James Francis Ragan III
ORCID: 0009-0005-5680-9794

All rights reserved

iii

ACKNOWLEDGEMENTS

I am extremely grateful to the many people who have helped me reach this point of
my academic career.

To my advisor, Soon-Jo Chung, for his continual support of me and my research
interests throughout my Ph.D. His continued encouragement to better my research
and seek out my full potential have lead me to greater success than I thought
possible. I am also deeply grateful for the academic freedom he has provided me
and the encouragement and support he has given along the way.

To my committee, Michael Watkins, Fred Y. Hadaegh, and Richard Murray for their
guidance and feedback which have helped refine my work and my academic story.

To my mentors at the University of Washington, Carl Knolwen and Sarah Tuttle,
who encouraged me to pursue an advanced degree and supported my applications.

To my many other mentors including Amir Rahmani, Joseph Mattingly, Richard
Grugel, Tracie Prater, and Oliver Fraser, who helped me develop as an engineer,
scientist, and teacher.

To John Fraser, who first made me believe that I belong at Caltech and that I could
earn a Ph.D.

To my sponsors, the Aerospace Corporation, JPL, DARPA, and the Technology
Innovation Institute, for funding and supporting my research, as well as the members
of these organizations who provided valuable feedback and suggestions.

To the many people who work tirelessly to keep GALCIT running and who always
made time to answer my questions and help fix any problems, including Christine
Ramirez, Jamie Meighen-Sei, Liza Bradulina, and Norma Baltazar.

To the members of JPL’s 347N group, who welcomed me as a co-op during the
summer of 2023, including Sina Aghli who shared an algorithm which inspired a
portion of my array-based MCTS implementation.

To my GALCIT cohort, without whom I would not have made it through the first
year, let alone the remaining four and a half. Thursday lunches at Ernie’s was a
highlight of my week. I would happily work on problem sets at way too late an hour
with each of you again.

iv

To the members of the ARCL lab. My primary research collaborators, Benjamin
Rivière and Joshua Ibrahim, who I am grateful for the opportunity to have worked
with and learned from. Matt Anderson, Sorina Lupu, and Yashwanth Nakka, who
were invaluable in teaching me about the lab’s facilities and procedures and have
been excellent technical advisors throughout my time here. Nikhil Ranganathan,
Haeyoon Han, Michael O’Connell, Kai Matsuka, and Daniel Mitchell who have
been excellent office mates and have always been willing to talk about my spur of
the moment ideas. Tom Hagander, Arnauld Martinez, and Andres Torres who all
exceeded my expectations as summer students and taught me how to be a better
mentor. Narin Seraydarian and Paula Mark, who kept our group running. And
perhaps most importantly, all of the members who have made this group the best
place I can imagine to develop as an autonomy, robotics, and controls specialist.

To the members of the GALCIT Grad Student Council, who selflessly worked to
make GALCIT as great of a department as it could be, and who always supported
and joined my departmental games nights.

To the Caltech Y, which has always been a very welcoming place on campus for me.
The members of the outdoors committee, with whom I planned many adventures.
The RISE tutoring program, which let me give back to the community and grow
as a teacher. And the ever welcoming staff and volunteer board, which make this
unique Caltech institution possible.

To the members of KISS, including Michele Judd, Antonio Soriano, and Harriet
Brettle, who created an extremely welcoming environment to grow as a member of
the space community, and amazing opportunities to learn, network, and socialize.

To the many good friends I’ve made since moving to Pasadena, with whom I’ve
enjoyed many board game sessions including Michael Stramenga, Alex Acosta,
Branson Davis, Ying Luo, Noel Esparza-Duran, Meredith Hooper, Wesley Yu, and
Quentin Chevalier, as well as the wider GALCIT community.

To my friends from Washington, who have graciously accepted the extended periods I
have buried myself in my thesis and academics, and have always been supportive and
ready to reconnect when I am available, including Avery Brock, Aaron Goldfogel,
Alex Sells, Kenrick Chan, Austin Cassayre, Monica Cassayre, and Meera Unadkat.

Finally, to my ever supportive family, who have been with me throughout my entire
journey, and to my partner Azi, who has brought out the best in me and shared in
countless misadventures along the way.

v

ABSTRACT

Autonomous spacecraft making independent high-level decisions present the
promise of dramatically increased productivity in space for both exploration and
economic activity. While autonomy has seen limited use in space to date owing to
a lack of flight heritage, limited computational resources, and a traditionally risk
adverse industry, the growing numbers of spacecraft and increasingly ambitious
missions will soon render the current ground-intensive mode of space operation
untenable.

In this thesis, we develop two critical capabilities for an autonomous future in space.
The first is proactive fault estimation, which seeks to rapidly and safely identify
the root causes of onboard anomalies by planning sequences of test actions to
gather information while probabilistically ensuring safety. The second is real-time
reconfiguration to enable formations of spacecraft to respond quickly and effectively
to changing environments or mission objectives.

We achieve both goals using various forms of Monte-Carlo Tree Search planning.
By formalizing each capability as sequential decision-making problems, and devel-
oping algorithms well suited to information gathering, we show that our algorithms
provably converge to optimal solutions while maintaining the ability to run in real-
time on robotic spacecraft simulators. We present several algorithmic innovations,
including marginalized filtering, sampling-based chance constraint evaluation, and
an array-based implementation of Monte-Carlo Tree Search. Through and numeri-
cal simulations and hardware experiments, we demonstrate that these modifications
enable our algorithms to outperform existing tree search methods and achieve better
scaling across system complexity, noise, and simulation depth.

vi

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] J. Ragan, J. Ibrahim, S.-J. Chung, and F. Hadaegh, “Mitigating stealth at-
tacks via game-theoretic switching in multi spacecraft systems,” Interna-
tional Astronautical Congress (Review at Acta Astronautica), 2024. [On-
line]. Available: https://iafastro.directory/iac/paper/id/
89213/summary/,
J.R. led the conception of the project, theoretical analysis, algorithm devel-
opment, simulation, and paper writing.

[2] J. Ragan, B. Rivière, F. Y. Hadaegh, and S.-J. Chung, “Online tree-based
planning for active spacecraft fault estimation and collision avoidance,” Sci-
ence Robotics, vol. 9, no. 93, eadn4722, 2024. doi:10.1126/scirobotics.
adn4722. [Online]. Available: https://www.science.org/doi/abs/
10.1126/scirobotics.adn4722,
J.R. co-led the conception of the project, led theoretical analysis, algorithm
development, simulation, experiment validation, and paper writing.

[3] H. Tsukamoto, J. D. Ibrahim, J. Hajar, J. Ragan, S.-J. Chung, and F. Y.
Hadaegh, “Robust optimal network topology switching for zero dynamics
attacks,” in 2024 63nd IEEE Conference on Decision and Control (CDC)
(© 2024 IEEE), 2024. [Online]. Available: https://arxiv.org/abs/
2407.18440,
J.R. contributed to conception of the project, problem formulation, and
writing of the manuscript.

[4] J. Ragan*, B. Rivière*, and S.-J. Chung, “Bayesian active sensing for fault
estimation with belief space tree search,” AIAA Scitech 2023 Forum, 2023.
doi: 10.2514/6.2023-0874,
J.R. co-led the conception of the project and theoretical analysis, led algo-
rithm development, simulation, experiment validation, and paper writing.
Best Student Paper Award in Guidance, Navigation, and Control.

[5] J. Lathrop, W. Cook, J. Ragan, and S.-J. Chung, “Applying monte carlo
tree search for orbit selection in multi-agent inspection,” Proceedings of
the 2022 AAS/AIAA Astrodynamics Specialist Conference, 2022. [Online].
Available: https://www.space-flight.org/docs/2022_summer/
ASC22_FullProgram_Compiled.pdf,
J.R. led the conception of the project, and mentored W.C. through the initial
algorithm development and simulations.

[6] J. Ragan, R. Ahmed, K. Matsuka, I. Seker, S.-J. Chung, and M. Lavalle,
“Optimizing formation flying orbit designs,” Advances in the Astronautical
Sciences AAS/AIAA Spaceflight Mechanics, vol. 176, 2021. [Online]. Avail-
able: http://www.univelt.com/book=8507,

https://iafastro.directory/iac/paper/id/89213/summary/
https://iafastro.directory/iac/paper/id/89213/summary/
https://doi.org/10.1126/scirobotics.adn4722
https://doi.org/10.1126/scirobotics.adn4722
https://www.science.org/doi/abs/10.1126/scirobotics.adn4722
https://www.science.org/doi/abs/10.1126/scirobotics.adn4722
https://arxiv.org/abs/2407.18440
https://arxiv.org/abs/2407.18440
https://doi.org/10.2514/6.2023-0874
https://www.space-flight.org/docs/2022_summer/ASC22_FullProgram_Compiled.pdf
https://www.space-flight.org/docs/2022_summer/ASC22_FullProgram_Compiled.pdf
http://www.univelt.com/book=8507

vii

J.R. led the conception of the project, algorithm development, simulation,
and paper writing.

The * denotes equal contribution.

viii

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . v
Published Content and Contributions . vi
Table of Contents . viii
List of Illustrations . x
Chapter I: Introduction . 1

1.1 Safe Active Fault Estimation . 2
1.2 Efficient Array-Based Tree Search 4
1.3 Real-time Multi-Agent Reconfiguration 4

Chapter II: Fault Estimation via Active Sensing Tree Search (FEAST) 5
2.1 Motivation . 5
2.2 Preliminaries . 7
2.3 Problem Statement . 12
2.4 Methods . 15
2.5 Numerical Simulations . 21
2.6 Robotic Spacecraft Simulator Hardware Experiments 26
2.7 Chapter Summary . 28

Chapter III: Safe Fault Estimation via Active Sensing Tree Search (s-FEAST) 30
3.1 Motivation . 30
3.2 Problem Statement . 32
3.3 Methods . 34
3.4 Robotic Spacecraft Simulator Hardware Experiments 43
3.5 Numerical Simulations . 44
3.6 Chapter Summary . 50

Chapter IV: s-FEAST realted work and discussion 53
4.1 Context with Related Work . 53
4.2 Significance of s-FEAST . 59
4.3 Chapter Summary . 64

Chapter V: An Array-Based Implementation of Monte Carlo Tree Search . . . 66
5.1 Motivation . 66
5.2 Algorithm Overview . 68
5.3 Array-Based MCTS Algorithm . 70
5.4 Preliminary Results . 80
5.5 Context with Related Work . 82
5.6 Chapter Summary and Opportunities for Future Work 84

Chapter VI: Extensions to adversarial multi-agent settings 86
6.1 Motivation . 86
6.2 Problem Formulation . 88
6.3 Problem Reformulation . 93

ix

6.4 Main Method (S3AM Algorithm) 98
6.5 Results . 102
6.6 Context with Related Work . 107
6.7 Chapter Summary . 107

Chapter VII: Extensions to Optimal Relative Orbits 114
7.1 Motivation . 114
7.2 Background . 115
7.3 Offline Orbit Design for SAR . 120
7.4 Real-time Orbit Selection for Inspection 126
7.5 Context with Related Work . 132
7.6 Chapter Summary . 133

Chapter VIII: Conclusion . 134
8.1 Future Work . 134

Bibliography . 136
Appendix A: FEAST Implementation Details 155
Appendix B: s-FEAST Implementation Details 158
Appendix C: s-FEAST Additional Results 163

C.1 Additional Robotic Spacecraft Simulator Hardware Experimental
Validation of s-FEAST . 163

C.2 Real-Time Performance Analysis 165
C.3 Additional Numerical Simulations Scenario: Collision Course Under

Random Failures . 167
Appendix D: S3AM Implementation Details 169
Appendix E: Orbit Optimization Details . 171

E.1 Additional LVLH Frame Details . 171
E.2 Offline Orbit Design for SAR Implementation Details 172
E.3 Real-time Orbit Selection for Inspection Implementation Details . . . 174

x

LIST OF ILLUSTRATIONS

Number Page
1.1 Contributions Overview. 3
2.1 Overview of the active fault estimation problem and method. 6
2.2 Marginalized Filter Visualization. 17
2.3 Diagram of a tree search applied to a BMDP. 19
2.4 Validation of FEAST. 24
2.5 Performance on a 3DOF Planar Satellite system. 25
2.6 The Caltech Autonomous Robotics and Control Lab’s Spacecraft

Simulator Facility and M-STAR robot. 27
2.7 FEAST: Real-time implementation. 27
2.8 Robotic spacecraft simulator validation of FEAST. 28
3.1 Safe fault estimation on robotic spacecraft. 31
3.2 s-FEAST: Method overview. 41
3.3 Validation of s-FEAST. 47
3.4 Qualitative analysis of s-FEAST’s collision avoidance under an ad-

versarial fault. 51
4.1 Related work context. 54
4.2 Marginalized filtering vs. particle filtering in information gathering

tree searches. 61
5.1 Processor Pipelining. 67
5.2 Child node diagram. 70
5.3 MDP tree search diagram. 71
5.4 MDP node array diagram. 72
5.5 Array-Based MCTS Diagram. 77
5.6 Array-based MCTS solving a non-convex problem. 81
5.7 Array-based MCTS performance on the non-convex problem. 82
5.8 Array-based MCTS performance on the active fault estimation problem. 83
6.1 Diagram of the S3AM algorithm. 101
6.2 Unattacked system results. 104
6.3 Planned attack vs. random defense. 109
6.4 Planned attack vs. planned defense. 110
6.5 Simulation of a random attacker versus a random defender. 111

xi

6.6 Simulation between a planned (𝑁 = 2000) attacker and a planned
(𝑁 = 20, 000) defender. 112

6.7 Simulation between a planned (𝑁 = 2000) attacker and a planned
(𝑁 = 20, 000) defender. 113

7.1 Synthetic Aperture Radar formation diagram. 117
7.2 Simulation results adapted from Seker and Lavalle [194] 118
7.3 6 spacecraft (5 deputy) formation. 122
7.4 6 spacecraft (5 deputy) formation resolution. 123
7.5 6 spacecraft (5 deputy) formation ambiguity. 123
7.6 4 spacecraft (3 deputy) formation. 124
7.7 4 spacecraft (3 deputy) formation resolution. 125
7.8 4 spacecraft (3 deputy) formation ambiguity. 125
7.9 Qualitative visualization of a partially expanded tree search. 127

7.10 The three Point of Interest configurations studied (LVLH coordinates) 128
7.11 The information cost of greedy and MCTS orbit assignment policies. 130
7.12 Resulting PRO formations . 130
7.13 Resulting Information cost and representative orbit solutions for 𝑛 =

80, 100, 120, 140, 160. 131
7.14 The current-best set performance over MCTS iteration. 132
C.1 D-CBF spacecraft simulator hardware experiment. 164
C.2 FEAST spacecraft simulator hardware experiment 165
C.3 s-FEAST spacecraft simulator hardware experiment. 166
C.4 s-FEAST: Wall Clock Time. 167
C.5 Additional validation of s-FEAST. 168
E.1 LVLH coordinate frame visualization. 172
E.2 The orbits in the size 𝑛 = 16 PRO library. 174
E.3 Point of Interest visibility cone visualized. 176

1

C h a p t e r 1

INTRODUCTION

The history of robotic space exploration has seen continual increases in the level
of onboard autonomy. From the first robotic scoop deployed on Surveyor 3 to
Ingenuity’s fully independent flights [1], [2], autonomy has led to dramatic increases
in the capabilities of space missions to explore new domains and produce new
scientific discoveries. Recently, with the rapid development of the commercial
space industry, autonomy has also played a key role, in domains ranging from
routine collision avoidance maneuvers [3] to emerging space traffic management
proposals [4].

However, true high-level decision making is still in its infancy in the space domain.
Autonomous processes are still mostly regulated to executing pre-sequenced, low
level, and routine operations, such as regularly scheduled downlinks and charging
operations [5], [6], flybys [7], and carefully planned demos [2]. When anomalies
arise, spacecraft have historically been placed in safe mode, with the root cause
carefully diagnosed from the ground [8]. Recent developments of higher level
autonomy, such as the terrain the relative navigation used during the Mars 2020
landing of the perseverance rover [9], [10], have been the products of years of design
and validation, specialized to specific missions with limited deployment. There are a
number of reasons for the slow adoption of autonomy in space, including traditionally
risk adverse postures when designing new missions, a lack of flight heritage, and
limited onboard computing resources.

However, as the number of spacecraft continues to increase to an estimated 60,000
or more by 2030 [11], [12], this method of limited autonomy and substantial manual
oversight will become intractable. Not only will the number of spacecraft demand
ever increasing resources, but as low earth orbit becomes increasingly crowded, the
number of interactions between spacecraft requiring time sensitive decisions will
only grow. Further, as exploration missions venture further from Earth and explore
new domains, less and less prior knowledge will be available [7]. Spacecraft
capable of making high level decisions with potentially incomplete information
will be needed, and emerging increases in onboard computational power will make
higher levels of autonomy possible [13], [14].

2

In particular, we anticipate a demand for two fundamental autonomous capabilities.
The first is a pressing need for proactive autonomous fault responses, particularly
in safety-critical scenarios. Historically, fault management has been one of the first
automated systems on board spacecraft, with early examples seen in the Viking
and Voyager missions [15], [16]. Indeed, the ability to safely and autonomously
respond when faults occur is a necessary prerequisite for any robust autonomy
architecture. However, these systems are still limited to passive monitoring, with
simple autonomous recovery methods [17]–[19], and they have limited ability to
gather information or otherwise proactively manage the health of a spacecraft.

The second important capability we confider is real-time reconfiguration of forma-
tion flying multi-agent systems. These are groups of spacecraft working in close
proximity, which can provide flexible, low cost, and robust architectures compared
to traditional monolithic systems [20], [21]. However, to fully realize their adapt-
ability, these formation need the ability to reconfigure on the fly to adjust to changing
environments or operational objectives.

Both of these settings represent opportunities for novel applications of planning
techniques in the space domain. We will focus on a particular class of tree-based
methods known as Monte Carlo Tree Search (MCTS), developing new algorithms
that are well suited to solving both of these challenges. Throughout the rest of this
chapter, we briefly introduce our main problem settings, and outline the contributions
of this thesis. A summary of each section is presented in Fig. 1.1.

1.1 Safe Active Fault Estimation
In time-critical settings, such as proximity operations during docking or landing, an
autonomous spacecraft will need to rapidly self diagnose failures on the time scale of
minutes, not hours or days. This setting precludes ground-in-the-loop interventions,
and demands an onboard solution. In particular, we envision a proactive approach to
fault estimation, by considering how to probe the system dynamics most effectively
through test actions to gather information about the health and status of a spacecraft.

In Chapter 2, we formalize this problem setting by defining an active fault estimation
problem. Using an information gathering reward, we reformulate this problem in a
manner suitable for MCTS based methods, but find that existing partially observable
methods fail to efficiently search over belief based rewards. To resolve this limitation,
we introduce a marginal filter, which can efficiently decompose the belief over the
joint state and fault space into a collection of conditional estimates which can be

3

Figure 1.1: Contributions Overview. We consider three core problems through-
out this thesis. The first is the problem of active and safe fault estimation. We
then present an array-based implementation of MCTS to optimize our processor
performance. Finally, we consider extensions to multi-agent reconfiguration, in the
context of stealth attacks and orbit design.

efficiently updated. This lets us introduce our algorithm, Fault Estimation via Active
Sensing Tree search (FEAST), which we then demonstrate in both simulation and
hardware experiments.

One potential limitation of our active sensing approach in proximity operations is
the risk of inadvertently causing a collision when taking probing actions. This
would be counter-productive and limits the applicability of FEAST to real world
settings. To address this, in Chapter 3, we introduce the safe active fault estimation
problem, which can consider chance constraints in addition to the information
gathering objective from Chapter 2. We show that by further transformation of the
problem, and through the use of conservative sampling based approximations, we
can again reformulate into a form suitable to MCTS algorithms, creating the Safe
Fault Estimation via Active Sensing Tree search (s-FEAST) algorithm. We again
demonstrate its suitability for these problems in hardware and numerical experiments
and compare against traditional safety methods in optimal control, demonstrating a
capability gap exists when the dynamics are uncertain.

In Chapter 4, we discuss in detail why our modifications to existing partially observ-
able tree search algorithms are necessary for the information gathering problems
we consider, and provide broader context with the related fields of fault detection,
isolation and recovery, active fault diagnosis, optimal control based safety, and par-
tially observable planning. We also examine what types of problems and systems

4

s-FEAST could be extended to beyond the motivating spacecraft example we use
throughout our development. Finally, we also discuss the suitability of our algorithm
to real-time problems, and our expectation that emerging computational capabilities
and technologies will make our approach even more applicable.

1.2 Efficient Array-Based Tree Search
The tree search methods we consider throughout this thesis benefit significantly
from increases in computational resources or efficiency, due to their asymptotic
improvement with additional simulations. In the development of s-FEAST we dis-
covered that the branching nature of MCTS algorithms limited our ability to use
common accelerators such as compiled code or GPUs, especially in dynamical
system where propagating the system state or updating estimators were compara-
bly expensive. This motivated the development of a new array-based method for
performing MCTS, which resolves this issue by making branching operations pre-
dictable. We introduce this algorithm in Chapter 5, and show that it outperforms
traditional tree-based MCTS methods in some domains, presenting a promising
direction for future development.

1.3 Real-time Multi-Agent Reconfiguration
Extending to multi-agent systems, we consider optimal planning in two settings.
First, in Chapter 6 we consider the adversarial case where a system is under attack
by an adversary which seeks to cause maximal disruption to the system while
avoiding detection. We formulate this as a zero-sum game, and show that our
tree search methods can be adapted to this two player setting to search for optimal
reconfigurations and attacks. Through simulation, we demonstrate that a suitable
choice of defense algorithm bounds the influence of any stealthy attacker.

Finally, in Chapter 7, we consider the problem of optimal orbit design for formation
flying missions in two cases. First we design offline an optimal formation to achieve a
radar science objective. We show that we can formalize the trade off between science
value and mission cost, while simultaneously respecting operational constraints
imposed by the radar system. We then extend to the problem of real-time orbit
assignment in the context of multi-agent inspection. Using MCTS, we demonstrate
the ability to rapidly reconfigure the formation of spacecraft to cooperatively inspect
points of interest on a common target. Our method achieves nearly the same
performance as exhaustive time-intensive brute force searches, at the cost of only a
slight runtime increase compared to a previous greedy optimization approach.

5

C h a p t e r 2

FAULT ESTIMATION VIA ACTIVE SENSING TREE SEARCH
(FEAST)

[1] J. Ragan*, B. Rivière*, and S.-J. Chung, “Bayesian active sensing for fault
estimation with belief space tree search,” AIAA Scitech 2023 Forum, 2023.
doi: 10.2514/6.2023-0874,

[2] J. Ragan, B. Rivière, F. Y. Hadaegh, and S.-J. Chung, “Online tree-based
planning for active spacecraft fault estimation and collision avoidance,” Sci-
ence Robotics, vol. 9, no. 93, eadn4722, 2024. doi:10.1126/scirobotics.
adn4722. [Online]. Available: https://www.science.org/doi/abs/
10.1126/scirobotics.adn4722,

2.1 Motivation
Autonomous robots offer the potential for dramatically faster operations and better
performance in domains ranging from search and rescue [22] to planetary explo-
ration [23]. However, to achieve full autonomy, these robots must be capable of
independently diagnosing and recovering from various component faults at a system
level. This is especially true when the robot’s safety is a function of time-critical
constraints, such as maintaining lane keeping during autonomous driving [24] or
managing the accumulation of environmental degradation [25].

Spacecraft are a motivating class of autonomous systems because real-time ground-
in-the-loop interventions are difficult, if not impossible, due to limited communi-
cation or large time delays. As the use of autonomous space systems increases, so
does the number of failures, with 42.6% of small satellite missions between 2009
and 2016 ending in partial or complete failure [26]. On Earth, uninhabited aerial
vehicles fail on the order of once every 1000 hours of operation [27], with partial
failures occurring as often as every 10-50 hours in some domains [28].

In this chapter, we formalize this objective of rapid and autonomous fault identifica-
tion, as a partially-observable optimal control problem and as an equivalent Partially
Observable Markov Decision Process. We then present FEAST (Fault Estimation
via Active Sensing Tree search), a belief-state planning algorithm that exploits a
marginalization method for exact and efficient Bayesian updates. The result is an ac-
tive fault-estimation method for sensor and actuator failures that maintains effective

https://doi.org/10.2514/6.2023-0874
https://doi.org/10.1126/scirobotics.adn4722
https://doi.org/10.1126/scirobotics.adn4722
https://www.science.org/doi/abs/10.1126/scirobotics.adn4722
https://www.science.org/doi/abs/10.1126/scirobotics.adn4722

6

Figure 2.1: Overview of the active fault estimation problem and method. In
(A), a model satellite is shown with nominal and faulty components. This ground
truth is not available to the satellite. In (B), the experiment begins and the satellite
is provided an initial belief containing little information on the status of the com-
ponents, (shown by the light initial component colors) and a normal distribution
on its position. The satellite must select control inputs to reveal information about
the components. To choose an optimal information gathering policy, a belief-state
tree is grown (mean-values shown in white) that simulates possible future scenarios,
shown in (D), (E), (F). At the end of the experiment, (C), the satellite’s belief has
converged to the true value. We note that the size of the position belief and the
satellite are scaled to improve visualization and the center of the spacecraft is the
true position.

tree growth even in the presence of heavy noise. We provide theoretical guarantees
of our algorithm’s convergence, and validate it through numerical and hardware
experiments on a spacecraft model. We demonstrate the need for an active plan-
ning solution and show that our method outperforms the state-of-the-art baseline
algorithm. An overview of our problem setting and method is shown in Fig. 2.1.

7

2.2 Preliminaries
In this section, we define the optimal control and decision-making problems which
we will use to define and transform our active fault estimation problem. We then
introduce Monte Carlo Tree Search methods as a means to asymptotically solve
decision-making problems.

Optimal Control
Each system we consider throughout this thesis can be modeled using general
control-affine system dynamics:

𝑥𝑘 = 𝑓 (𝑥𝑘−1) + 𝐵(𝑥𝑘−1)𝑢𝑘 (2.1)

where 𝑘 subscript denotes a time index, 𝑥 ∈ 𝑋 ⊂ R𝑛 is the physical state, 𝑢 ∈ 𝑈 ⊂
R
𝑚 is the control input, 𝑓 (𝑥𝑘) is the unforced dynamics, and 𝐵(𝑥𝑘) is the input

influence matrix.

We define the following optimal control problem, adapted from Chapter 3 of [29]:

Definition 1. The optimal control problem is to find the sequence of controls which
maximize the accumulated reward given the system in Eq. (2.1), admissible control
set𝑈, and initial condition 𝑥0:

𝑢∗𝐾 = arg max
𝑢𝐾∈𝑈

𝐾∑︁
𝑘=1

𝑅(𝑥𝑘−1, 𝑢𝑘) s.t. Eq. (2.1) (2.2)

where 𝑅(𝑥𝑘−1, 𝑢𝑘) is the reward at each time step and 𝐾 is the problem time horizon
and the overbar notation defines a history, such as 𝑢𝐾 = {𝑢1, . . . , 𝑢𝐾}.

Note that optimal control literature typically poses the optimal control problem as
minimizing a cost as opposed to maximizing a reward [29]. However, the decision
making problem literature typically does the opposite [30]. As we will transform the
active fault estimation problem into a decision making problem, we will consider
maximizing a reward for consistency throughout this thesis.

The optimal control problem given by Definition 1, describes a broad class of
problems where a system can be well modeled as fully observable. Sensor noise or
model uncertainty however, result in state ambiguity. To generalize to this partially
observable setting, we add process noise to the system dynamics and define the
noisy measurements as:

𝑥𝑘 = 𝑓 (𝑥𝑘−1) + 𝐵(𝑥𝑘−1)𝑢𝑘 + 𝑤𝑘 (2.3)

𝑦𝑘 = ℎ(𝑥𝑘) + 𝑣𝑘 (2.4)

8

where 𝑦 ∈ 𝑌 ⊂ R𝑝 denotes the measurement, ℎ(𝑥𝑘) is the measurement equation,
and the random process and measurement noise sequences 𝑤𝑘 , 𝑣𝑘 are assumed to
be mutually independent and independent and identically distributed (i.i.d.).

In the presence of state uncertainty, it is common to write the probability distribution
over the possible states as a belief, which can be updated with an observation and
control input using Bayesian filtering [31]:

𝑏0(𝑥) = P(𝑥0) (2.5)

𝑏𝑘 (𝑥) = P(𝑥𝑘 | 𝑦𝑘 , 𝑢𝑘) =
P(𝑦𝑘 | 𝑥𝑘)

∫
P(𝑥𝑘 | 𝑥𝑘−1, 𝑢𝑘)𝑏𝑘−1(𝑥)d𝑥𝑘−1

P(𝑦𝑘 | 𝑦𝑘−1, 𝑢𝑘)
(2.6)

where 𝑏0(𝑥) = P(𝑥0) is the prior belief at the initial time step. The space of all
possible beliefs is denoted B.

Because the system is now stochastic, we can no longer deterministically optimize
a sequence of controls. Instead, we must consider a closed loop solution, which
responds to the updated belief at each time step. This concept is captured by policy
functions, which are stochastic maps from belief to action, 𝜋 : B → 𝑈. We denote
the set of all policies as Π.

Using policies, we can define the following partially-observable optimal control
problem [32]:

Definition 2. The partially observable optimal control problem is to find the policy
which maximizes the expected accumulated reward given the system in Eq. (2.3),
measurement in Eq. (2.4), belief update in Eq. (2.6), admissible control set𝑈, initial
belief 𝑏0 and reward function 𝑅:

𝜋∗(𝑏0) = arg max
𝜋∈Π

E

[
𝐾∑︁
𝑘=1

𝑅(𝑥𝑘−1, 𝑢𝑘) | 𝜋, 𝑏0

]
s.t. Eqs. (2.3), (2.4), (2.6),

𝑢𝑘 ∼ 𝜋(𝑏𝑘−1) ∀𝑘
(2.7)

where the expectation is over the stochastic policy, process and measurement noise
processes.

It is often convenient to represent the expected accumulated reward given an initial
belief and policy by the value function:

𝑉𝜋 (𝑏0) = E
[
𝐾∑︁
𝑘=1

𝑅(𝑥𝑘−1, 𝑢𝑘) | 𝜋, 𝑏0

]
s.t. Eqs. (2.3), (2.4), (2.6),

𝑢𝑘 ∼ 𝜋(𝑏𝑘−1) ∀𝑘
(2.8)

9

We will use this notation going forward, and will also denote the optimal value
function corresponding to the optimal policy 𝜋∗(𝑏0) as 𝑉∗(𝑏0). Observe from
Eq. (2.8) that control policies are closed-loop solutions, as desired. They select a
new action at each time step in response to the belief updated via the new observation.

Despite providing a theoretical framework, the general partially observable optimal
control problem is infinite-dimensional and non-convex and therefore generally
intractable to solve with numerical methods. To resolve this, we reformulate the
optimal control problem into a decision-making problem.

Decision Making Problems
Decision-making problems are analogous to the optimal control problem, and pro-
vide the necessary interface with the tree search methods that we will use to ap-
proximately and efficiently solve the active fault estimation problem. We adapt
the convention of [30] to define the following discretized (finite horizon) Markov
Decision Process (MDP):

Definition 3. A finite horizon Markov Decision Process (MDP) is a decision-making
framework defined as the collection of a set of states 𝑆, a set of actions 𝐴, state
transition function 𝑇 , reward function 𝑅 and horizon 𝐻. At each time step 𝑡, the
probability of reaching state 𝑠𝑘 given a previous state 𝑠𝑘−1 and action 𝑎𝑘 is given
by P(𝑠𝑘 | 𝑎𝑘 , 𝑠𝑘−1) = 𝑇 (𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘−1), and the reward for doing so is 𝑅(𝑠𝑘−1, 𝑎𝑘).
𝐻 defines the time horizon.

A given MDP can be succinctly represented by the 5-tuple ⟨𝑆, 𝐴, 𝑇, 𝑅, 𝐻⟩. Some
literature makes distinction between stationary MDPs, such as this one, and non-
stationary MDPs, where the transition and reward functions may vary with time.
Similarly, generalizations can include non-deterministic rewards [30]. In this thesis
however, we will consider all MDPs to be stationary with deterministic reward
functions.

As a decision making problem posed over a horizon, the solution to an MDP is
naturally understood in terms of a value function like that given by Eq. (2.8), with
𝑢𝑘 being generalized to represent any actions (including control actions in dynamical
systems). As was the case in the partially observable optimal control setting, for a
given state in a MDP, the optimal policy, 𝜋∗(𝑠) returns the optimal value for that state
𝑉∗(𝑠) = max𝜋∈Π 𝑉𝜋 (𝑠). In fact, letting �̂� be a discretization of the continuous state
space and 𝛿 the Kronecker delta function, the optimal control problem (Definition 1)

10

and the (deterministic) MDP given by ⟨�̂�,𝑈, 𝛿(𝑥𝑡 = 𝑓 (𝑥𝑘−1) + 𝐵(𝑥𝑘−1)𝑢𝑘), 𝑅, 𝐾⟩
are equivalent in the discretization limit �̂� → 𝑋 .

To consider the partial observability introduced by measurement and process noise,
we further define a (finite horizon) Partially Observable Markov Decision Process
(POMDP) as:

Definition 4. A finite horizon Partially Observable Markov Decision Process
(POMDP) is a decision-making framework defined as the collection of a set of
states 𝑆, a set of actions 𝐴, state transition function 𝑇 , reward function 𝑅, a set of
observations 𝑂, observation probability function 𝑍 , and horizon 𝐻. 𝑆, 𝐴, 𝑇 , 𝑅 and
𝐻 are defined identically to the MDP formulation (Definition 3). In addition, the
true state 𝑠𝑘 , is hidden from the solver. Instead, an observation 𝑜𝑘 is generated,
with probability given by P(𝑜𝑘 |𝑠𝑘 , 𝑎𝑎) = 𝑍 (𝑠𝑘 , 𝑎𝑘 , 𝑜𝑘).

A given POMDP can be succinctly represented by the 7-tuple ⟨𝑆, 𝐴, 𝑇, 𝑅, 𝑂, 𝑍, 𝐻⟩.
As in the partially observable optimal control setting, because the true state cannot
be directly measured, a belief, 𝑏(𝑠), over the possible states is used. This belief is
updated with each observation using the Bayesian update of Eq. (2.6), replacing 𝑥
and 𝑦 with 𝑠 and 𝑜, respectively. The solution of the POMDP is typically understood
by considering its equivalent Belief Space MDP [33]:

Definition 5. A Belief Markov Decision Process (BMDP) is an equivalent reformu-
lation of a POMDP (Definition 4) defined as the collection of a belief space B, a
set of actions 𝐴, belief transition function T , belief reward function R, and horizon
𝐻. 𝐴 and 𝐻 are defined identically to the MDP formulation (Definition 3). Given
a finite POMDP (Definition 4) with state transition function 𝑇 , reward function 𝑅,
and observation probability function 𝑍 , the equivalent belief transition and belief
reward functions are defined as:

T (𝑏𝑡 ,𝑎𝑘 , 𝑏𝑘−1) = (2.9)∑︁
𝑜∈𝑂

(
P(𝑏𝑘 |𝑏𝑘−1, 𝑎𝑘 , 𝑜)

∑︁
𝑠𝑘∈𝑆

(
𝑍 (𝑠𝑘 , 𝑎𝑘 , 𝑜𝑘)

∑︁
𝑠𝑘−1∈𝑆

𝑇 (𝑠𝑘 , 𝑎𝑘 , 𝑠𝑘−1)𝑏(𝑠𝑘−1)
))

R(𝑏𝑘−1,𝑎𝑘) =
∑︁
𝑠𝑘−1∈𝑆

𝑏(𝑠𝑘−1)𝑅(𝑠𝑘−1, 𝑎𝑘) (2.10)

A given BMDP can be succinctly represented by the 5-tuple ⟨B, 𝐴,T ,R, 𝐻, ⟩. Like
a regular MDP, the solution to a BMDP is understood in terms a value function as:

11

𝑉𝜋 (𝑏0) = E𝜋 [
𝐻∑︁
𝑡=0
R(𝑏𝑘 , 𝑎𝑘) |𝜋, 𝑏0], s.t. T (𝑏𝑡 , 𝑎𝑘 , 𝑏𝑘−1), 𝑎𝑘 ∼ 𝜋(𝑏𝑘−1) (2.11)

Not coincidentally, the value function of Eq. (2.11) resembles that of Eq. (2.8). In
fact, observe that when 𝑎𝑘 = 𝑢𝑘 , R(𝑏𝑘−1, 𝑎𝑘) = E[𝑅(𝑥𝑘−1, 𝑢𝑘)], and the transition
dynamics are the same, the two value functions are equivalent. This reinforces the
notion that a POMDP or BMDP formulation is equivalent to the partially observable
optimal control formulation. We will prove this formally for our problem of interest
in the next section.

We also note here that it is possible to define a BMDP that is not equivalent to
an underlying POMDP by defining an alternative reward that is unstructured and
directly dependent on the belief.

R(𝑏𝑘−1, 𝑎𝑘) ≠
∑︁
𝑠𝑘−1∈𝑆

𝑏(𝑠𝑘−1)𝑅(𝑠𝑘−1, 𝑎𝑘) (2.12)

We call these BMDP problems information-gathering problems, to distinguish from
problems with state and action derived rewards. Instead, the objective depends on
the information available to the solver itself, represented in the form of a belief. One
example of such a problem is the active fault estimation problem we introduce in
the next section.

Similar to the optimal control problem, exactly solving MDPs, POMDPs, or BMDPs
for the optimal policy is generally intractable for high complexity problems. BMDPs
introduce additional complexity because B is continuous for discrete state problems
and infinite-dimensional for continuous state problems. However, these formulations
offer one important advantage. They can be approximately solved by algorithms
which asymptotically converge to the optimal value.

Asymptotic Decision Making Solvers
Instead of solving decision making problems exactly, it is possible to use numerical
techniques that approximate the true optimal value function or policy. Monte
Carlo Tree search (MCTS), is one such class of algorithms, providing anytime
approximation of the optimal policy, by simulating future state trajectories while
biasing the tree towards areas of high reward [34]. Typical theoretical analysis of
MCTS provides an error bound between the root node’s value estimate and the
true optimal value that decreases with the number of tree simulations. The classical

12

Upper Confidence bounds applied to Trees (UCT) result provides value convergence
at O(log(𝑁)/𝑁) [35], while more recent results for Fixed-Depth MCTS provides
value convergence at a polynomial rate O(𝑁−1/2) [36].

MCTS has been extended to solve POMDPs via the POMCP [37] algorithm.
POMCP runs UCT with a particle filter at each node, using simulated state trajecto-
ries to simultaneously estimate the optimal policy and the belief using a collection
of particles. The nodes are constructed from histories of observation-action pairs
where state particles are added to nodes with the same history. The resulting belief
is computed as:

𝑏(𝑥) = 1
𝑀

𝑀∑︁
𝑖=1

𝛿(𝑥 = 𝑥𝑖) (2.13)

where 𝑥𝑖 denotes the 𝑖th particle at the node for 𝑖 = 1, . . . , 𝑀 , with 𝑀 the total
number of particles at the given node. POMCP argues that, at large number of
samples, the belief is well approximated such that the UCT is solving the equivalent
BMDP and it therefore inherits the same value convergence of UCT.

In the next section, we use the optimal control and decision-making framework to
define the active fault estimation problem. In Section 2.4 we include pseudocode for
POMCP and the adaptations we make with FEAST in Algorithm 2. In Chapter 4, we
discuss in detail the application of POMCP to our problem setting and its limitations.

2.3 Problem Statement
In this section, we present our active fault estimation problem: to plan actions such
that the resulting observations converge the belief of the underlying failure to the true
fault as quickly as possible. First we define the following modification of general
control-affine system dynamics given by Eqs. 2.3 and 2.4 with linear sensing:

𝑥𝑘 = 𝑓 (𝑥𝑘−1) + 𝐵(𝑥𝑘−1) (I −Φ𝐵)𝑢𝑘 + 𝑤𝑘 (2.14)

𝑦𝑘 = (I −Φ𝐶)𝐶𝑥𝑘 + 𝑣𝑘 (2.15)

𝑢𝑘 ∈ 𝑈 ⊆ {0, 1}𝑚 (2.16)

where 𝑢 ∈ 𝑈 ⊆ {0, 1}𝑚 restricts the control input to a discrete set of binary m-
dimensional vectors to represent thruster control, and 𝐶 is the measurement matrix
for linear sensing. For simplicity, we will assume the noise processes 𝑤𝑘 and 𝑣𝑘 are
Gaussian with covariance matrices Σ𝑤, Σ𝑣, respectively, but we will later show our
algorithms are not restricted to only Gaussian noise. We also note the set of control

13

inputs𝑈 can be customized for the system of interest, for example𝑈 ⊆ {−1, 0, 1}𝑚

to include bi-directional actuators like reaction wheels.

The system description differs from a control-affine system only in the fault model,
Φ𝐵, Φ𝐶 = diag(𝜙𝐵/𝐶) representing changes due to failures in the actuators and
sensors:

𝜙𝐵𝑖 =

1 if 𝑖 actuator is completely failed

0 if 𝑖 actuator is nominal
, 𝜙𝐵 = [𝜙𝐵1 , . . . , 𝜙𝐵𝑚] (2.17)

The sensor fault model 𝜙𝐶 is defined analogously. We assume the fault state does
not change with time, so we drop the time subscript 𝑘 from 𝜙 terms and define the
concatenated vector of all faults:

𝜙𝑘 = 𝜙𝑘−1 = 𝜙 = (𝜙𝐵, 𝜙𝐶) ∈ Φ ⊂ {0, 1}(𝑚+𝑝) = B(𝑚+𝑝) , |Φ| = 𝑁Φ < ∞ (2.18)

where Φ is the set of 𝑁Φ considered faults that live in the binary space of 𝑚 + 𝑝
dimensional vectors with elements taking values of either 0 and 1. We abbreviate
this space as B(𝑚+𝑝) . We define the augmented state by composing the physical
state and fault state as 𝑞 = [𝑥; 𝜙] where 𝑞 ∈ 𝑄 = 𝑋 ×Φ.

We carry a belief over this augmented state, which we denote as 𝑏(𝑞). The initial
belief is 𝑏0(𝑞) and the Bayesian update is defined by replacing 𝑥 in Eq. (2.6) with
𝑞. From this joint belief over the augmented state, we define the marginal beliefs
over the failure and physical states:

𝑏𝑘 (𝜙) =
∫
𝑥∈𝑋

𝑏𝑘 (𝑥, 𝜙)d𝑥, 𝑏𝑘 (𝑥) =
∑︁
𝜙∈Φ

𝑏𝑘 (𝑥, 𝜙) (2.19)

To actively estimate faults present within the system, we are interested in maximizing
the information gathered about the fault state. Traditional state and action based
rewards such as in Definition 4 or Eq. (2.8) cannot efficiently capture this objective
as we will discuss in detail in Chapter 4. Instead, we employ a belief based reward
that maps beliefs to rewards between 0 and 1, 𝑅 : B → [0, 1]:

𝑅(𝑏𝑘) =
∑︁
𝜙∈Φ
(𝑏𝑘 (𝜙))2 (2.20)

Note that this is an information gathering reward, as it depends directly on the belief
instead of the underlying state or the action taken (Eq. (2.12)). Throughout the rest

14

of this and the next two chapters, 𝑅 and 𝑉 refer to this information gathering reward
and its corresponding value function:

𝑉𝜋 (𝑏0) = E𝜋 [
𝐻∑︁
𝑡=0
R(𝑏𝑘 , 𝑎𝑘) |𝜋, 𝑏0], s.t. Eqs. (2.14), (2.15), (2.6),

𝑢𝑘 ∼ 𝜋(𝑏𝑘−1) ∀𝑘
(2.21)

This reward is a proxy for how confident the current belief is in the underlying fault
state and has previously been proposed as an uncertainty measure [38]. Note this
reward is minimized when the belief on the fault state is uniform and maximized
when the belief on the fault state is a delta function. With this reward, we can now
define the active fault estimation problem:

Definition 6. The active fault estimation problem is a partially-observable optimal
control problem to find the policy which maximizes the expected information gain
about the fault affecting a system:

𝜋∗(𝑏0) = arg max
𝜋∈Π

𝑉𝜋 (𝑏0) (2.22)

where the expectation is across the stochastic policy, measurement and process
noise sequences. The corresponding optimal value is 𝑉∗(𝑏0).

Definition 6 formalizes the active fault estimation problem we wish to solve. How-
ever, like Definition 2, this formulation is generally intractable to solve with numer-
ical methods, leading us to seek a reformulation.

Decision Making Problem Reformulation
We reformulate the active fault estimation problem as an equivalent POMDP fol-
lowing Definition 4:

Lemma 1 (Equivalent POMDP Reformulation). The following POMDP is equiva-
lent to the active fault estimation problem (Definition 6) in the discretization limit
𝑌 → 𝑌 :

⟨𝑄,𝑈,𝑌, 𝑅, 𝑇, 𝑍⟩,
𝑇 (𝑞𝑘 , 𝑢𝑘 , 𝑞𝑘−1) = N (𝑓 (𝑥𝑘−1) + 𝐵(𝑥𝑘−1) (I −Φ𝐵)𝑢𝑘 , Σ𝑤) (𝑥𝑘)
𝑍 (𝑞𝑘 , 𝑢𝑘 , 𝑦𝑘) ∝ N ((I −Φ𝐶)𝐶𝑥𝑘 , Σ𝑣) (𝑦𝑘) (2.23)

where 𝑌 , 𝑄 and 𝑈 are the same observation space, augmented state space and
action set as the original active fault estimation problem, 𝑅 is given by Eq. (2.20),

15

N(𝜇, Σ) represents a normal distribution with mean 𝜇 and covariance Σ, and the
belief is updated between time steps following (2.6). 𝑌 is a discretization of the
observation space, 𝑌 , and 𝑍 is normalized appropriately.

Proof. The equivalence of the two problems is shown if optimal policies of the
POMDP formulation (Eq. (2.23)) are also solutions of the active fault estimation
problem (Eq. (2.22)). We achieve this by showing that by construction, the two
formulations are optimizing the same value function in the discretization limit.

To do so, note that the state transition function is equivalent to a deterministic
transition with additive Guassian noise as given by Eq. (2.14). Similarly, in the
discretization limit when𝑌 = 𝑌 , the observation probability function gives the same
measurement distribution as Eq. (2.15). Since the dynamics, measurements, belief
updates and rewards are the same, from Eq. (2.8) the problems must share a value
function, so must be equivalent.

□

In the above reformulation, assuming 𝑤𝑘 and 𝑣𝑘 are Gaussian gives a concise
representation of 𝑇 and 𝑍 . However, note that this is not necessary, so long as the
distributions of 𝑤𝑘 and 𝑣𝑘 are known and are i.i.d., the reformulation will hold.

2.4 Methods
In the previous section, we reformulated the active fault estimation into a form that is
tractable for MCTS based methods. Here, we will present the modifications we make
to existing MCTS algorithms to perform better in information gathering problems.
In particular, we will adapt the Partially Observable Monte Carlo Planning (POMCP)
algorithm to efficiently search over belief based rewards such as Eq. (2.20) [37]. Our
main innovation is to use a marginalized filter to efficiently decompose beliefs into
a conditional estimate of the robot’s physical state and a total estimate of the failure
affecting the robot. This allows for accurate information gathering rewards within
the tree search. We explain why this is necessary in Chapter 4 when discussing the
limitations of existing methods.

Marginalized Filter
FEAST’s marginalized filter is based on the key observation that the dynamics
(Eq. (2.14)) and measurement (Eq. (2.15)) of the active sensing problem have a
structure we can exploit to efficiently compute the belief update. Whereas jointly

16

computing the belief update for the physical and fault state quickly becomes in-
tractable, it is possible to condition on a fault then compute the conditional belief
update of the physical state with a standard extended Kalman Filter (EKF) [39]. Any
other nonlinear filtering approach can be used in lieu of EKF. This marginalization
approach is similar to the Rao-Blackwellized filter used in FastSLAM [40], where
the posterior is factored into estimations of each landmark that are conditioned on
the robot path, including approaches which actively select trajectories that minimize
the uncertainty of a robot’s state [41]. However, instead of estimating the environ-
ment in relation to a robot, our method infers the robot’s dynamics and measurement
model-based on its interaction with the environment.

Our approach can be formalized in the following decomposition of the belief:

𝑏𝑘 (𝑞) = P([𝑥𝑘 , 𝜙] | 𝑦𝑘 , 𝑢𝑘) = P(𝑥𝑘 | 𝜙, 𝑦𝑘 , 𝑢𝑘)P(𝜙 | 𝑦𝑘 , 𝑢𝑘) (2.24)

where we use the definition of conditional probability P(𝐴, 𝐵) = P(𝐴 | 𝐵) P(𝐵).
Consider the two terms in Eq. (2.24).

First, P(𝑥𝑘 | 𝜙, 𝑦𝑘 , 𝑢𝑘) is the belief of a system described by Eqs. (2.14) and (2.15)
with a fixed fault 𝜙. Since the dynamics are known, we can directly estimate this
system with an EKF or other nonlinear filter.

Second, P(𝜙 | 𝑦𝑘 , 𝑢𝑘) is the belief on the failure state. Since the failure state is
discrete, unchanging, and there are a finite number of failures, we can compute the
Bayesian update exactly via Eq. (2.6) as:

P(𝜙 | 𝑦𝑘 , 𝑢𝑘) = 𝑏𝑘 (𝜙) =
Z𝜙 (𝑦𝑘 , 𝑢𝑘 , 𝑏𝑘−1(𝑞))𝑏𝑘−1(𝜙)
Z(𝑦𝑘 , 𝑢𝑘 , 𝑏𝑘−1(𝑞))

(2.25)

where Z𝜙 and Z are conditional and unconditional measurement likelihood func-
tions defined as:

Z𝜙 (𝑦𝑘 , 𝑢𝑘 , 𝑏𝑘−1(𝑞)) = (2.26)∫
𝑋

𝑍 ([𝑥𝑘 , 𝜙], 𝑢𝑘 , 𝑦𝑘)
∫
𝑋

𝑇 ([𝑥𝑘 , 𝜙], 𝑢𝑘 , [𝑥𝑘−1, 𝜙]) 𝑏𝑘−1(𝑞)d𝑥𝑘−1d𝑥𝑘

Z(𝑦𝑘 , 𝑢𝑘 , 𝑏𝑘−1(𝑞)) =
∑︁
𝜙∈Φ
Z𝜙 (𝑦𝑘 , 𝑢𝑘 , 𝑏𝑘−1(𝑞)) (2.27)

17

where the 𝑍 and 𝑇 are defined in Eq. (2.23) and we split the augmented state into
physical and fault state, i.e., 𝑞 = [𝑥, 𝜙].

Combining these two distributions, we arrive at the Marginalized Filter for the active
fault estimation problem: a collection Kalman filters, each corresponding to a single
failure scenario, and weighted by the belief on that scenario:

𝑏𝑘 (𝑞) = P([𝑥𝑘 , 𝜙] | 𝑦𝑘 , 𝑢𝑘)

= EKF𝜙 [𝑦𝑘 , 𝑢𝑘 , 𝑏𝑘−1(𝑥)] (𝑥𝑘)
Z𝜙 (𝑦𝑘 , 𝑢𝑘 , 𝑏𝑘−1(𝑞))𝑏𝑘−1(𝜙)
Z(𝑦𝑘 , 𝑢𝑘 , 𝑏𝑘−1(𝑞))

(2.28)

where EKF𝜙 [𝑦𝑘 , 𝑢𝑘 , 𝑏𝑘−1(𝑥)] (𝑥𝑘) is the posterior distribution on 𝑥𝑘 given by the
Extended Kalman filter conditioned on a particular failure state 𝜙. Note Z𝜙 is also
the measurement relative likelihood given by the prediction step of each conditional
EKF (before measurement innovation), and thatZ is a normalization factor, so does
not need to be computed explicitly. The resulting filter is visualized in Fig. 2.2A
and resembles using multiple Gaussian distributions to represent a complicated
distribution as in Fig. 2.2B.

Figure 2.2: Marginalized Filter Visualization. (A) Our marginalized filter com-
bines multiple physical state estimates conditioned on different underlying faults.
Here four possible spacecraft faults are shown, with the relative size indicating rel-
ative likelihood. Combining the weighted faults gives the current estimate of the
failure state, and the combined physical posteriors produce a rich state estimate,
much like how (B) combining multiple Gaussians can produce a complicated mul-
timodal distribution.

Pseudo code for our marginalized filter is provided below. For each belief update,
the filter takes in the prior composite belief over the physical and failure states,

18

the action taken, and the measured observation. At each time step, the composite
belief consists of 𝑁Φ state estimators conditioned on each possible failure, and the
probabilities of each of those failures. This allows for the belief to be decomposed
and each state estimator updated individually by predicting a prior, 𝑏−

𝑘
(𝑥 | 𝜙 𝑗), from

the previous belief and action, then updated using the measured observation. This
can be done with any state estimation algorithm that is suited to the system. The
relative likelihood of each failure is computed from the likelihood of seeing the
current observation given the predicted prior. After all estimators are updated, the
relative likelihoods for each fault are normalized.

Algorithm 1: Marginalized Filter

1 def MF(𝑏𝑘−1(𝑞), 𝑢𝑘 , 𝑦𝑘):
2 𝑏𝑘−1(𝑥 | 𝜙), 𝑏𝑘−1(𝜙) ← expandBelief(𝑏𝑘−1(𝑞)) ;
3 for 𝑗 = 0, . . . , 𝑁Φ do

/* prior given fault and action (e.g. EKF) */

4 𝑏−
𝑘
(𝑥 | 𝜙 𝑗) ← P(𝑥𝑘 | 𝜙 𝑗 , 𝑢𝑘 , 𝑏𝑘−1(𝑥 | 𝜙 𝑗)) ;

/* relative likelihood of fault given observation */

5 𝑏𝑘 (𝜙 𝑗) ← P(𝑦𝑘 | 𝜙 𝑗 , 𝑏−𝑘 (𝑥 | 𝜙 𝑗)) ∗ 𝑏𝑘−1(𝜙 𝑗) ;
/* posterior given prior and observation */

6 𝑏𝑘 (𝑥 | 𝜙 𝑗) ← P(𝑥𝑘 | 𝜙 𝑗 , 𝑦𝑘 , 𝑏−𝑘 (𝑥 | 𝜙 𝑗)) ;

/* normalize */

7 𝑏𝑘 (𝜙) ← 𝑏𝑘 (𝜙)/
∑𝑁Φ

𝑗=1 𝑏𝑘 (𝜙 𝑗) ;

8 𝑏𝑘 (𝑥, 𝜙) ← 𝑏𝑘 (𝑥 | 𝜙) · 𝑏𝑘 (𝜙) ;
9 return 𝑏𝑘 (𝑥, 𝜙) ;

We note the conditional physical state estimator can be replaced by any estimator
parameterized by the failure state, including estimators for non-Gaussian processes.
In particular, as the estimation propagation is the primary computational burden
in the tree search, our method will benefit substantially from reusing any efficient
estimators that may already exist for a system, as opposed to approaches attempting
to estimate the joint physical and fault state directly. For example, one strategy to
amortize real-time computation cost is to train a neural network based filter from
offline data [42]. Another strategy is to perform an additional marginalization step
on any states of the system that do not depend on the considered faults. This will
particularly be useful to scale FEAST to high-dimensional systems with isolated
faults, as only a subset of the estimation needs to be repeated for each considered
fault.

19

FEAST Algorithm
Here we present the FEAST algorithm and discuss the changes with respect to
POMCP. While POMCP uses particle filters to simultaneously estimate the belief
and the optimal policy [37], FEAST uses our marginalized filter to immediately
estimate the correct belief by computing the exact Bayesian update. Furthermore,
we use the updated belief to compute exact rewards and generate a value estimate.We
visualize the growth of our algorithm in Fig. 2.3, and include the pseudocode in
Algorithm 2, with differences between FEAST and POMCP highlighted.

Figure 2.3: Diagram of a tree search applied to a BMDP. Starting from the root
node and initial belief, 𝑏0(𝑞), an action is selected, and the system propagated in
simulation to create a prior belief for the next time step, �̂�1(𝑞). The measurement
is also simulated, and the prior belief updated accordingly. This process is repeated
down the tree to the desired depth, and the resulting rewards are propagated upwards
through the tree at a discounted rate. The tree growth is biased towards nodes leading
to better rewards (represented here as darker shading) and the best action is returned,
here 𝑎1,1.

Both algorithms, approximate the optimal policy as a tree of nodes. A node is
defined as an ordered history 𝐻 of actions and observations, with corresponding
number of visits 𝑁 (𝐻), value estimate �̂� (𝐻) and belief 𝑏(𝐻). Each simulation is
performed from the root node until the depth, 𝑑 exceeds the maximum depth 𝐾 .
New states and observations are simulated by the model-based generator 𝐺. When
a previously unexplored history is encountered, the simulation rolls out to the
max depth by uniformly sampling random actions from the action space 𝑈. While

20

Algorithm 2: The POMCP and FEAST algorithms for belief-space planning.
For this pseudocode, we adapt the original POMCP algorithm to our notation,
with modifications made to create FEAST highlighted in blue [37]. MF refers
to our marginalized filter (Algorithm 1).
globals: �̂� (·) ← 0, 𝑁 (·) ← 0

1 def search(𝑏0):
2 for 𝑖 ← 1 to 𝑁 do
3 simulate(𝑞 ∼ 𝑏0, ∅, 0, 𝑏0) ;
4 return arg max𝑢 �̂� (𝑢) ;
5 def simulate(𝑞𝑑 , 𝐻𝑑 , 𝑑, 𝑏(𝐻𝑑)):
6 if 𝑑 > 𝐾 then
7 return 0 ;
8 𝑢𝑑+1 ← arg max𝑢 �̂� (𝐻𝑑 ∪ 𝑢) + 𝑐

√︃
log 𝑁 (𝐻𝑑)
𝑁 (𝐻𝑑∪𝑢) ;

9 (𝑞𝑑+1, 𝑦𝑑+1) ∼ 𝐺 (𝑞𝑑 , 𝑢𝑑+1) ;
10 𝐻𝑑+1 ← 𝐻𝑑 ∪ {𝑢𝑑+1, 𝑦𝑑+1} ;
11 if FEAST then
12 𝑏(𝐻𝑑+1) ← MF(𝑏(𝐻𝑑), 𝑢𝑑+1, 𝑦𝑑+1) ;
13 else
14 𝑏(𝐻𝑑+1) ← 𝑏(𝐻𝑑+1) ∪ 𝑞𝑑+1 ;
15 𝑟 ← 𝑅(𝑏(𝐻𝑑+1));
16 𝑟 ← 𝑟 + 𝛾 simulate(𝑞𝑑+1, 𝐻𝑑+1, 𝑑 + 1, 𝑏(𝐻𝑑+1));
17 if 𝑁 (𝐻𝑑 ∪ 𝑢𝑑+1) = 0 and 𝑁 (𝐻𝑑−1 ∪ 𝑢𝑑) = 0 and not FEAST then
18 return 𝑟
19 𝑁 (𝐻𝑑) ← 𝑁 (𝐻𝑑) + 1 ;
20 𝑁 (𝐻𝑑 ∪ 𝑢𝑑+1) ← 𝑁 (𝐻𝑑 ∪ 𝑢𝑑+1) + 1 ;
21 �̂� (𝐻𝑑 ∪ 𝑢𝑑+1) ← �̂� (𝐻𝑑 ∪ 𝑢) + 𝑟−�̂� (𝐻𝑑∪𝑢𝑑+1)

𝑁 (𝐻𝑑∪𝑢𝑑+1) ;
22 return 𝑟 ;

POMCP discards nodes encountered beneath the first unexplored action (represented
by 𝑁 (𝐻𝑑∪𝑢𝑑+1) = 0 and 𝑁 (𝐻𝑑−1∪𝑢𝑑) = 0)), because computing the marginalized
filter is relatively expensive, FEAST saves the nodes from the rollout instead of
discarding them. In practice, this tree growth is similar to the fixed depth Monte
Carlo tree search proposed by Shah [36]. After completing all 𝑁 simulations (or
timing out), the action with the highest value estimate is returned and applied to the
system. The resulting observation is used to update the system’s belief, and a new
tree is planned from this new root node to select the next action.

When initialized in each experiment, FEAST was given knowledge of the system
dynamics through Eqs. (2.14) and (2.15), including a nominal noise model and
the possible failures. A uniform initial probability over all possible failures was

21

assumed. If prior knowledge of the relative likelihoods of each failure exists, it can
be incorporated, and FEAST can in fact converge from any initial belief that does
not preemptively eliminate the true failure. Overly conservative noise models can
also be provided when the true noise level or other aspects of the system dynamics
are uncertain. However this means that each observation will be less informative,
and FEAST will take longer to converge.

Finally, we formalize the correctness our algorithm, showing that FEAST converges
to the optimal solution to the active fault estimation problem.

Theorem 1 (Optimality of FEAST). Let 𝜇(𝑏0) denote the policy produced by
FEAST, and 𝜋∗(𝑏0) denote an optimal policy to the active fault estimation problem
(Definition 6). In the discretization limit 𝑌 → 𝑌 :

lim
𝑁→∞

(𝑉 𝜇 (𝑏0) −𝑉∗(𝑏0)) → 0 (2.29)

with convergence rate 𝑂 (log 𝑁/𝑁).

Proof. From Lemma 1, Definition 6 can be equivalently reformulated as a POMDP.
To solve the equivalent POMDP, FEAST employs the marginalized filter given by
Eq. (2.28) to perform an Bayesian update when creating a new node in the tree
search, and incurs an accurate reward. Therefore, we are performing Partially
Observable Upper Confidence bound applied to Trees (PO-UCT) from [37] and
inherit the convergence rate from their Theorem 1.

□

2.5 Numerical Simulations
To validate FEAST empirically, we construct a series of numerical experiments
and compare the performance of our method versus several baselines. We first
consider a 1D single integrator system to demonstrate the ability of our method and
our baselines to correctly identify the faulty components in a simple problem. To
demonstrate the superior scalability of our method, we then consider a 2D double
integrator system with twice as many actuators and sensors. In both systems, we
also scale the noise present in the system, to demonstrate FEAST’s robustness to
high noise, even in complicated problems. Finally, we extend our method to a
nonlinear planar spacecraft, to validate FEAST’s applicability to the robotic system
we consider in the next section.

22

Simulation Overview
In each of our simulations, we consider various spacecraft models initialized at
the origin with zero velocity. We limit the faults considered to have at most 3
simultaneous actuator and sensor failures and further limit the failure space to a
maximum of 42 randomly selected possibilities. This is done ensure the increase in
problem difficulty comes from the dimensionality and the noise, and not the number
of scenarios considered. To initialize 𝑏0, we assume a uniform prior over the failure
space. The physical belief is centered at the origin with a diagonal covariance matrix
of 𝜎0.

To evaluate the performance of each algorithm, we use the following diagnostic
reward. The primary component is the confidence of the fault state belief at each
time step, which is computed by evaluating Eq. (2.20). The faster this reward
increases, the more quickly an algorithm converges to a diagnosis. When the
confidence in a particular fault scenario (i.e., specific combination of actuator and
sensor faults) crosses a specified threshold, the algorithm terminates and returns
its diagnosis. If the failure diagnosis matches the true failure, the experiment is
considered a success, and otherwise, it is considered a failure. We ultimately
use the product of the confidence reward and diagnostic success rate as the single
metric of an algorithm’s fault estimation performance because this metric rewards
algorithms that rapidly converge to a high confidence while penalizing incorrect
diagnoses.

Implementation details as well as specifics of each system we consider are provided
in Appendix A.

Overview of baselines
We compare FEAST’s ability to quickly and accurately diagnose failures against
two baselines. To examine whether a passive solution is sufficient, the first is a
random policy that selects actions uniformly from the admissible control set 𝑈 and
does not make any optimization or planning to improve the belief. Instead, the
true belief is passively discovered by the estimator alone as these random actions
generate observations.

23

To compare with another active and planned method, the other baseline we consider
is the classical POMCP method adapted to belief-state planning [37]. The key
difference between POMCP and FEAST is that the POMCP uses a particle filter
to propagate its simulated belief during the tree search, whereas FEAST is an
extension of POMCP to belief-space planning using a marginalized filter to perform
exact Bayesian updates. The performance difference between our method and the
POMCP baseline demonstrates the importance of high quality belief updates for
efficient tree growth and better predictions of each action’s information gain. In
Chapter 4, we provide theoretical justification for why this modification leads to
better performance in this problem setting. Between each experiment time step, we
use the same marginalized filter to update the belief estimate regardless of the policy
used. This results in us comparing only the quality of the actions selected by each
method.

FEAST in Linear Systems
We first consider a linear, 1 degree of freedom (DOF), single integrator system as a
simple example to build intuition, establish the baseline methods, and demonstrate
the superior performance of active vs passive methods for the active fault estimation
problem. In our validations with this system, we deploy the baseline and FEAST
method for 1000 trials and plot the performance metric vs experiment time. We
vary the number of simulations in the tree from 𝑁 = 15, 50, 100, 200 and we run this
experiment with shared noise parameters of 𝜎 = 0.1 and 𝜎 = 0.4 for both process
and sensing noise.

We then consider the 2 DOF double integrator to demonstrate (i) the performance
gap between planned vs greedy methods and (ii) the performance gap between
POMCP and FEAST. We again vary the number of simulations in the tree from
𝑁 = 15, 50, 100, 200 and we run this experiment with 𝜎 = 0.4 and 𝜎 = 1.0.

The results of both the 1 DOF and 2 DOF system is shown in Fig. 2.4. In each
experiment, 𝜎 is the shared standard deviation of the process and dynamics noise,
in meters, and 𝑁 is the number of simulations each variant of the FEAST and
POMCP algorithms performs before selecting an action, with increasing levels of 𝑁
indicating more planning. In all experiments, the faster our diagnostic performance
metric increases, the more rapidly and more accurately the algorithm is identifying
the underlying fault. In all experiments, FEAST is diagnosing between binary
sensing and actuation faults, where up to three components are completely failed.

24

Figure 2.4: Validation of FEAST. The numerical performance of FEAST and
POMCP across systems of increasing complexity and noise as the number of sim-
ulations per selected action, 𝑁 , varies. Note the top right experiment has a longer
time length. For each experiment, the performance metric vs simulation time for
FEAST and its baselines is shown, with each data point averaged over 1000 ran-
domly selected underlying faults. Note that for readability, the data for each time
step is artificially spread out horizontally, and the error bars for each point are one
quarter a standard deviation.

In the 1 DOF low noise scenario (𝜎 = 0.1) in Fig. 2.4, we find that proposed
active methods all outperform the passive random baseline by about 20% at the
3rd timestep, thus validating the use of an active sensing approach for rapid fault
estimation. In the higher noise 1-DOF scenario (𝜎 = 0.4) in Fig. 2.4, we find
this performance gap grows, indicating that actively exciting useful observations
becomes more crucial in systems with higher noise. In these 1-DOF experiments,
there is a minimal performance gap between FEAST and classical POMCP methods,
validating the baseline in simple systems. The exception is the POMCP variant with
𝑁 = 15, which performs nearly identically to the passive baseline when the noise is
increased. Due to the higher noise present in the system, the simulated particles that
POMCP uses to update its belief have high variance and large belief error, resulting
in large reward error. We show in Chapter 4 that this issue results in a breadth
first search until there are sufficient simulations for the belief estimate to converge,
yielding similar behavior and performance to the random policy as seen here.

25

(A) The 3DOF planar satellite
model’s orientation is the additional
degree of freedom compared to the
2DOF double integrator. This also
makes the system nonlinear.

(B) The performance metric vs experiment time for the pro-
posed method and baseline, with each data point averaged
over 300 initial conditions with high noise, i.e., 𝜎 = 1.0.
Note the data for each time step is artificially spread out hor-
izontally for readability, and the error bars for each point are
0.25 𝜎.

Figure 2.5: Performance on a 3DOF Planar Satellite system.

Extending to the 2 DOF planar spacecraft, in the low noise (𝜎 = 0.4) scenario in
Fig. 2.4, we find that each POMCP method collapses to the same performance as
the passive baseline. This is due to the same scaling issues discussed above, and
empirically validates the need for high quality belief updates within the simulated
tree to explore informative actions. There is also a slight performance gap between
FEAST methods as planning increases, e.g., 𝑁 = 200 converges to a 0.9 perfor-
mance metric 1.28 times faster than the 𝑁 = 100 solution. This gap grows in the
higher noise (𝜎 = 1) scenario, suggesting that the performance gap will continue to
grow in problem complexity, and demonstrating the FEAST is able to significantly
outperform passive methods in high noise scenarios (more than a factor of 2 higher
performance).

FEAST in a Planar Satellite System
Next we consider a 3 DOF planar satellite system to demonstrate that (i) FEAST
is naturally extended to nonlinear systems when a Bayesian estimator is known
and (ii) the performance gap between FEAST and passive sensing persists in com-
plex systems. Finally, because the 3 DOF planar satellite system can be used as
a model for the M-STAR spacecraft simulator hardware shown in Fig. 2.6 [43],
numerical experiments on this system are a useful intermediate step for hardware
demonstrations.

26

We present our results for the 3 DOF planar satellite system in Fig. 2.5. In this
experiment we deploy the FEAST method alone for 300 trials and plot the perfor-
mance metric vs experiment time. As the baseline POMCP algorithm’s performance
was indistinguishable from the random policy in the high noise 2 DOF experiment
(Fig. 2.4), it is left out of this experiment. We vary the number of simulations in
the tree from 𝑁 = 25, 50, 80, 100, 200, and we run this experiment in the most chal-
lenging case considered earlier, with 𝜎 = 1.0. Because of the increased size of the
action space, we now limit the actions considered to a random subset of 20 actions,
shared across all trials. Extending the trend of previous experiments to a realistic
hardware model, Fig. 2.5 demonstrates that our algorithm results in a significant
improvement over passive methods.

2.6 Robotic Spacecraft Simulator Hardware Experiments
We implemented FEAST on a Multi-Spacecraft Testbed for Autonomy Research
(M-STAR) robot [43], [44] using the Caltech Autonomous Robotics and Control
Lab’s spacecraft simulator facility, shown in Fig. 2.6. The M-STAR robot is actuated
using thrusters and uses air bearings to float on a high precision flat floor, creating
a very low friction environment which simulates spacecraft dynamics. A motion
capture system provided position and orientation measurements and faults and noise
were artificially added according to our observation model, shown in Fig. 2.7A.

To deploy FEAST in the real-time setting, we implemented FEAST in a receding
horizon fashion, meaning that the planner recomputed a policy every time step, and
applied only the first action to the physical system. Since the dynamics continued to
propagate during the planning computation time, the state of the system when the
planner began solving, 𝑥𝑘 was different from the state when the selected action was
taken, 𝑥𝑘+𝛿𝑡 , where 𝛿𝑡 was the propagation time. To synchronize these two states,
we ran the same FEAST algorithm, except we planned the next action to take from
the expected result of the current action. The modified tree topology is visualized in
Fig. 2.7B. Instead of specifying a number of simulations to run, we took advantage of
FEAST’s ability to provide an anytime solution by simulating until the computation
budget 0.7 seconds was exhausted and returning the best action. The selected action
was then applied onboard the robot and the current observation was used by FEAST
to compute the next action to take while the system dynamics propagated.

With this modification, FEAST is able to successfully identify the true failure state,
demonstrating that our algorithm works on a physical nonlinear system. Images

27

Figure 2.6: The Caltech Autonomous Robotics and Control Lab’s Spacecraft
Simulator Facility and M-STAR robot. Reproduced with permission from [44].

Figure 2.7: FEAST: Real-time implementation. (A) Diagram of our real-time
deployment on the robotic spacecraft simulator. The FEAST block runs until the
specified computation time budget is exceeded, then the best available action is
returned. (B) Real-time FEAST is run with the first action fixed. This is the
currently active action selected at timeout by the previous iteration.

taken from a successful hardware experiment at three different time steps alongside
the current belief over each considered failure scenario are shown in Fig. 2.8.

28

(A) t=0 seconds

(B) t=3 seconds

(C) t=7 seconds

Figure 2.8: Robotic spacecraft simulator validation of FEAST. Each failure
scenario considered is represented pictorially, with green representing nominal
behavior, and red faulty components. Thrusters are represented as squares, sensors
as circles. The thrusters are illuminated blue when firing, such as in (B).

2.7 Chapter Summary
In this chapter, we have formalized the active fault estimation problem, and devel-
oped an algorithm to solve it. We have proven that FEAST asymptotically converges

29

to the optimal solution, and scales better than existing partially observable planning
methods across a range of system complexity and noise levels. We have also shown
that FEAST can be deployed to robotic systems and successfully identify faults in
real-time.

One question that naturally arises from our proposed active fault estimation scheme:
how do we ensure that the actions we take to diagnose the fault, do not adversely
affect the system? Returning to our motivating example in Fig. 2.1, what would
happen if we were in close proximity to other spacecraft or bodies? In this case,
some test actions which might help diagnose the fault state could be putting us on
a collision course. Can we consider the operating environment of our system while
planning for diagnostic actions? We will address these questions in the next chapter,
where we formalize these desires as the safe active fault estimation problem, and
extend FEAST to satisfy these safety constraints with high probability.

30

C h a p t e r 3

SAFE FAULT ESTIMATION VIA ACTIVE SENSING TREE
SEARCH (S-FEAST)

[1] J. Ragan*, B. Rivière*, and S.-J. Chung, “Bayesian active sensing for fault
estimation with belief space tree search,” AIAA Scitech 2023 Forum, 2023.
doi: 10.2514/6.2023-0874,

[2] J. Ragan, B. Rivière, F. Y. Hadaegh, and S.-J. Chung, “Online tree-based
planning for active spacecraft fault estimation and collision avoidance,” Sci-
ence Robotics, vol. 9, no. 93, eadn4722, 2024. doi:10.1126/scirobotics.
adn4722. [Online]. Available: https://www.science.org/doi/abs/
10.1126/scirobotics.adn4722,

3.1 Motivation
Building on the active fault estimation framework developed in the previous chapter,
we now consider the problem of fault estimation onboard robotic spacecraft that will
soon violate state safety constraints. One such example is shown in Fig. 3.1 (B and
C). Here, a robot approaches a model comet, and component failure could jeopardize
mission success. In this scenario, we envision a system-level emergency response
in which safe and autonomous identification of the underlying fault as quickly as
possible supersedes the primary objectives of the mission. To this end, we develop
s-FEAST (Safe Fault Estimation via Active Sensing Tree search), an extension
of FEAST that selects diagnostic actions to gather informative observations while
satisfying probabilistic state constraints at each planning step. As shown in Fig. 3.1B,
the autonomous spacecraft is subject to a failure of both of its retro-thrusters.
Conventional model-based passive fault detection approaches will likely not detect
this failure until the spacecraft attempts to maneuver and a discrepancy between the
predicted and observed states is noticed. At this point, it may be too late to maintain
the safety constraints on the spacecraft’s state. Similarly, methods of representing the
safety of the spacecraft that are unable to consider uncertainty in the system model
will not properly capture the risk of this adversarial fault. Instead, we consider
actively gathering information about the fault to be a top priority, and necessary to
avoid over-confident predictions of safety. With our approach, the robot proactively
re-orients and diagnoses the failure, avoiding collision [see Fig. 3.1 (E and F)].

https://doi.org/10.2514/6.2023-0874
https://doi.org/10.1126/scirobotics.adn4722
https://doi.org/10.1126/scirobotics.adn4722
https://www.science.org/doi/abs/10.1126/scirobotics.adn4722
https://www.science.org/doi/abs/10.1126/scirobotics.adn4722

31

Figure 3.1: Safe fault estimation on robotic spacecraft. (A) We demonstrate our
method on the Caltech Autonomous Robotics and Control Lab’s Spacecraft Simu-
lator, which creates a near frictionless environment by using graphite air bearings
to create a cushion of air between the robot and the flat floor. (B and C) Both of the
spacecraft robot’s retro thrusters have failed, and it starts on a collision course with
the comet. With no evasive actions, a collision will happen within seconds. (D) An
algorithm that maximizes information gain without considering safety constraints
will crash into the comet. (E) Our s-FEAST algorithm selects trajectories that have
a high likelihood of avoiding the obstacle while also gathering information about
the failure. (F) The robot is able to successfully identify the underlying failure and
return to a trajectory heading away from the obstacle and boundaries. Still frames
for all experiment time steps are provided in Appendix C.

S-FEAST represents a substantial improvement over FEAST, by generalizing the
fault model to a broader class of partial failures and bias attacks, and extending
the theoretical and experimental results. In this chapter, we mathematically for-
malize the time-critical fault estimation problem subject to state constraints and
show that constrained optimization over the coupled fault mode and physical state
uncertainty is challenging for existing methods. We address this gap by combining
the belief-space tree search and marginalized filtering we developed with FEAST
with concentration inequalities to efficiently maximize an information gathering
objective and satisfy probabilistic state constraints. Finally, we present theoretical
analysis, real-time hardware experiments, and numerical experiments to validate
our claims.

32

3.2 Problem Statement
In this section, we extend the active fault estimation problem to maintain safety
while planning actions to diagnose the underlying as quickly as possible. First we
generalize general the control-affine system dynamics given by Eqs. 2.14 and 2.15
to include degradation and biases in addition to the binary failures considered in the
pervious chapter:

𝑥𝑘 = 𝑓 (𝑥𝑘−1) + 𝐵(𝑥𝑘−1)
(
(I −Φ𝐵)𝑢𝑘 +Φ𝐵,1

)
+ 𝑤𝑘 (3.1)

𝑦𝑘 = (I −Φ𝐶)𝐶𝑥𝑘 +Φ𝐶,1 + 𝑣𝑘 (3.2)

𝑢𝑘 ∈ 𝑈 ⊆ {0, 1}𝑚 (3.3)

The generalized fault model is Φ𝐵, Φ𝐶 , Φ𝐵,1, Φ𝐶,1 = diag(𝜙𝐵/𝐶/𝐵,1/𝐶,1) represent-
ing changes due to degradation or biases in the actuators and sensors:

𝜙𝐵𝑖 =

1 if 𝑖 actuator is completely failed

0 if 𝑖 actuator is nominal

𝑎𝑖 if 𝑖 actuator is partially degraded

, 𝜙𝐵 = [𝜙𝐵1 , . . . , 𝜙𝐵𝑚]

(3.4)

𝜙𝐵,1𝑖 =

1 if 𝑖 actuator is stuck full on

0 if 𝑖 actuator is nominal

𝑎𝑖 if 𝑖 actuator is partially biased

, 𝜙𝐵,1 = [𝜙𝐵,11 , . . . , 𝜙𝐵,1𝑚]

(3.5)

where 𝑎𝑖 ∈ (0, 1). The sensor fault models 𝜙𝐶 , 𝜙𝐶,1 are defined analogously.
Both complete failure and partial failure (degradation) cases are considered in this
chapter. We again assume the fault state does not change with time, and define the
concatenated vector of all faults:

𝜙𝑘 = 𝜙𝑘−1 = 𝜙 = (𝜙𝐵, 𝜙𝐵,1, 𝜙𝐶 , 𝜙𝐶,1) ∈ Φ ⊂ [0, 1]2(𝑚+𝑝) , |Φ| = 𝑁Φ < ∞ (3.6)

where Φ is the set of 𝑁Φ considered faults that live in the continuous space of
2(𝑚 + 𝑝) dimensional vectors with elements restricted between 0 and 1. Note that
this definition of Φ is a super set of the definition in the pervious chapter. For this
reason, we will not introduce a new symbol, but will use the general fault model for
the rest of this chapter when referring to 𝜙, Φ, or the augmented state 𝑞.

33

We use a standard superlevel set notion of probabilistic safety:

Definition 7 (𝛼-Safety). Consider a set of safety constraints on the physical state,
{𝑔𝑖} that must all be simultaneously satisfied for a system to be safe (𝑔𝑖 (𝑥) ≥ 0,∀𝑖).
Define the safety function ℎ as ℎ(𝑥) = min

𝑖
𝑔𝑖 (𝑥) and the corresponding set of safe

physical states 𝑋ℎ as 𝑋ℎ = {𝑥 | ℎ(𝑥) ≥ 0}. Define the set of 𝛼-safe beliefsBℎ,𝛼 ⊆ B,
as the beliefs in which the physical state has a probability of at least 𝛼 of being safe
with respect to ℎ:

Bℎ,𝛼 = {𝑏 ∈ B |
∫
𝑋

𝑏(𝑥)1𝑋ℎ (𝑥)d𝑥 ≥ 𝛼} (3.7)

where the indicator over the set of safe states 1𝑋ℎ (𝑥) = 1 if 𝑥 ∈ 𝑋ℎ and 0 otherwise.
Similarly, the indicator over 𝛼-safe beliefs 1Bℎ,𝛼 (𝑏𝑘) = 1 if 𝑏𝑘 ∈ Bℎ,𝛼 and 0
otherwise.

We can now define the safe active fault estimation problem using the same value
function as in the active fault estimation, but now subject to an additional proba-
bilistic constraint:

Definition 8 (Safe active fault estimation). The safe active fault estimation problem
for a given safety function, ℎ and safety threshold𝛼, is a partially-observable optimal
control problem subject to the constraint that each belief is 𝛼-safe.

𝜋∗(𝑏0) = arg max
𝜋∈Π

𝑉𝜋 (𝑏0) s.t. E[1Bℎ,𝛼 (𝑏𝑘) | 𝜋, 𝑏0] = 1 ∀𝑘 (3.8)

where the expectation is across the stochastic policy, measurement and process
noise sequences. The corresponding optimal value is 𝑉∗(𝑏0).

Throughout the rest of this and the next chapter, 𝑉 and 𝑉∗ refer to this constrained
optimization problem. As we did for the active fault estimation problem in Chapter 2,
we would like to reformulate Definition 8 into a POMDP which is compatible with
our MCTS based algorithm. However, the constraint imposed by the condition that
E[1Bℎ,𝛼 (𝑏𝑘) | 𝜋, 𝑏0] = 1 ∀𝑘 , represents a challenge. The POMDP and BMDP
forms we consider in Definitions 4 and 5 are unconstrained, as are the POMDPs
considered by FEAST and the tree search algorithm it adapts to information gathering
problems [37]. Addressing this challenge is one of our core theoretical contributions,
which we present in the next section.

34

3.3 Methods
In this section we develop s-FEAST as solution to the safe active fault estimation
problem (Definition 8). First we provide a high-level overview of our approach,
before developing the theoretical guarantees of our safety method and the detailed
augmentations we make to FEAST to produce the s-FEAST algorithm.

Safety Condition
Theoretical analysis

First, we reformulate the constrained problem into an equivalent unconstrained
problem. This step is necessary because standard Monte Carlo tree search techniques
do not explicitly handle constraints [35]. This argument is similar to that presented
in convex optimization [45] with log-barrier objective reformulations, except we
use an affine objective reformulation that produced empirically higher-performing
results for tree search.

The transformed reward function and corresponding value function is defined as
follows:

𝑅ℎ,𝛼 (𝑏𝑘) = 1Bℎ,𝛼 (𝑏𝑘) (𝑟0 + (1 − 𝑟0)𝑅(𝑏𝑘)) (3.9)

𝑉𝜋ℎ,𝛼 (𝑏𝑘) = E
[
𝐾∑︁
𝑘=1

𝑅ℎ,𝛼 (𝑏𝑘) | 𝜋, 𝑏0

]
s.t. Eqs. (3.1), (3.2), (2.6) ,

𝑢𝑘 ∼ 𝜋(𝑏𝑘−1) ∀𝑘
(3.10)

where 𝑟0 = 𝐾
𝐾+1 and the expectation is over the noise processes and stochastic policy.

Our first result is that the solution of the transformed problem is equivalent to the
solution of the original problem (Definition 8), when one exists. This is formalized
with the following theorem:

Theorem 2 (Equivalent unbounded reformulation). If a global optimal solution,
𝜋∗(𝑏0), exists to the constrained safe active fault estimation problem, Definition 8,
then the solution of the following unconstrained problem with the transformed value
function given by Eq. (3.10), is also a global optimal solution of Definition 8:

𝜋∗ℎ,𝛼 (𝑏0) = arg max
𝜋∈Π

𝑉𝜋ℎ,𝛼 (𝑏0) (3.11)

Proof. The equivalence of the problems is shown if the optimal policy of the refor-
mulated problem given by Eq. (3.11) has the same value on the original problem

35

(Definition 8) as the optimal policy given by Eq. (3.8). The reformulated problem
is constructed such that any policy resulting in an expected 𝛼-safe trajectory (Defi-
nition 7) has a minimum expected cumulative reward of 𝐾𝑟0, which is higher than
the maximum expected cumulative reward of an trajectory expected to be unsafe,
𝐾 − 1; as 𝐾𝑟0 = 𝐾2

𝐾+1 >
𝐾2−1
𝐾+1 = 𝐾 − 1.

E[1Bℎ,𝛼 (𝑏𝑘) | 𝜋, 𝑏0] = 1 ∀𝑘 ⇐⇒ 𝑉𝜋ℎ,𝛼 (𝑏0) ≥ 𝐾𝑟0 (3.12)

∃𝑘 : E[1Bℎ,𝛼 (𝑏𝑘) | 𝜋, 𝑏0] ≠ 1 ⇐⇒ 𝑉𝜋ℎ,𝛼 (𝑏0) < 𝐾𝑟0 (3.13)

By assumption, the policy 𝜋∗(𝑏0), a global optimal solution to Definition 8, exists
and is feasible. From the constraints of Eq. (3.8), this solution must satisfy:

E[1Bℎ,𝛼 (𝑏𝑘) | 𝜋∗, 𝑏0] = 1 ∀𝑘 =⇒ 𝑉𝜋
∗

ℎ,𝛼 (𝑏0) ≥ 𝐾𝑟0 (3.14)

Since 𝜋∗
ℎ,𝛼
(𝑏0) is the optimal solution to the reformulation given by Eq. (3.11):

𝑉
𝜋∗
ℎ,𝛼

ℎ,𝛼
(𝑏0) ≥ 𝑉𝜋ℎ,𝛼 (𝑏0),∀𝜋; 𝑉

𝜋∗
ℎ,𝛼

ℎ,𝛼
(𝑏0) ≥ 𝐾𝑟0 =⇒ E[1Bℎ,𝛼 (𝑏𝑘) | 𝜋∗ℎ,𝛼, 𝑏0] = 1∀𝑘

(3.15)

So 𝜋∗
ℎ,𝛼
(𝑏0) satisfies the original problem constraints (Definition 8). Because

𝜋∗
ℎ,𝛼
(𝑏0) is admissible for the original problem, by optimality of 𝜋∗, 𝑉∗(𝑏0) ≥

𝑉
𝜋∗
ℎ,𝛼 (𝑏0). Note that for trajectories satisfying the original problem constraints

(Definition 8), the transformed objective is an affine transformation and is mono-
tonic, so with Eq. (3.15):

𝑉∗(𝑏0) ≥ 𝑉𝜋
∗
ℎ,𝛼 (𝑏0) =⇒ 𝑉𝜋

∗

ℎ,𝛼 (𝑏0) ≥ 𝑉
𝜋∗
ℎ,𝛼

ℎ,𝛼
(𝑏0) =⇒ 𝑉𝜋

∗

ℎ,𝛼 (𝑏0) = 𝑉
𝜋∗
ℎ,𝛼

ℎ,𝛼
(𝑏0)

(3.16)

Further, the argument of the extrema is preserved, therefore, 𝜋∗
ℎ,𝛼

= 𝜋∗ when there
is a unique optimal solution.

□

This reformulation makes the safe active fault estimation probelm compatible with
MCTS methods. However, to ensure safety, we need to evaluate the indicator
function 1Bℎ,𝛼 (𝑏𝑘) throughout the tree search. For a general probability distribution,
this function is difficult to compute exactly. Instead, for computational efficiency,
we will develop our conservative sampling based approximation. Our approach is
based on the following finite sample approximation Chebyshev’s Inequality, first
developed by Saw et al. [46] and simplified by Kabán [47]:

P (|𝑍 − �̂�𝑍 | > 𝜆�̂�𝑍) ≤
1

𝑀 + 1

⌊
𝑀 + 1
𝑀

(
(𝑀 − 1)
𝜆2 + 1

)⌋
(3.17)

36

where 𝑍 is a random variable, and 𝜆 is a user-specified scalar. The bound is
computed by taking 𝑀 samples that are weakly exchangeable (i.i.d. is sufficient
but not necessary) with the random variable to compute the empirical average and
standard deviation �̂�𝑍 , �̂�𝑍 . This bound holds for unknown distributions when𝑀 ≥ 2
and 𝜆 ≥ 1. For general random variables, the Chebyshev inequality can be shown
to be a tight bound [47], making it well suited to general distributions.

In our setting, the random variable of interest is the safety function applied to a
sample from the physical state belief: ℎ(𝑥) where 𝑥 ∼ 𝑏(𝑥). To compute the
empirical average (�̂�ℎ) and standard deviation (�̂�ℎ) of this safety value, let 𝑥1, . . . , 𝑥𝑀

be i.i.d. samples of 𝑏(𝑥). We then have:

�̂�ℎ =
1
𝑀

∑︁
𝑖

ℎ(𝑥𝑖), �̂�2
ℎ =

𝑀 + 1
𝑀 (𝑀 − 1)

∑︁
𝑖

(ℎ(𝑥𝑖) − �̂�ℎ)2 (3.18)

Our safety condition then follows directly from applying the finite sample Chebyshev
inequality given by Eq. (3.17) to bound the tail of ℎ that is less than zero (the unsafe
tail).

Theorem 3 (Conservative sampling bound). For 𝑀 > 2, a belief 𝑏(𝑥), safety
function ℎ, �̂�ℎ and �̂�ℎ defined according to Eq. (3.18), and �̂�ℎ ≥ �̂�ℎ; satisfying the
approximate safety condition of Eq. (3.19) indicates that the belief is conservatively
𝛼-safe.

1
𝑀 + 1

⌊
𝑀 + 1
𝑀

(
�̂�2
ℎ
(𝑀 − 1)
�̂�2
ℎ

+ 1

)⌋
≤ 1 − 𝛼 =⇒ 𝑏 ∈ Bℎ,𝛼 (3.19)

Proof. Defining the physical state associated with the belief as: 𝑍 ∼ 𝑏(𝑥), a random
variable, the condition for 𝛼-safety isP (ℎ(𝑥) ≥ 0) ≥ 𝛼 =⇒ P (ℎ(𝑥) < 0) ≤ 1−𝛼.
Adding and subtracting the empirical mean and upper bounding the one sided tail
probability with a two-sided condition we have:

P (ℎ(𝑥) < 0) = P (ℎ(𝑥) − �̂�ℎ < −�̂�ℎ) ≤ P (|ℎ(𝑥) − �̂�ℎ | > �̂�ℎ) (3.20)

Using Eq. (3.17), and choosing 𝜆 = �̂�ℎ/�̂�ℎ we have:

P (|ℎ(𝑥) − �̂�ℎ | > �̂�ℎ) ≤
1

𝑀 + 1

⌊
𝑀 + 1
𝑀
(
�̂�2
ℎ
(𝑀 − 1)
�̂�2
ℎ

+ 1)
⌋

(3.21)

Combining Eqs. (3.20) and (3.21), we arrive at the desired result. □

37

In general, the condition presented in Theorem 3 is conservative; it is possible for
a solution to be 𝛼-safe and violate the approximate safety condition (Eq. (3.19)).
The slackness comes from two sources, (i) the finite-sample approximation of the
Chebyshev inequality and (ii) the potential slackness of the Chebyshev bound itself
in the infinite-sample limit. In our experiments, we found that we can effectively
eliminate the first source of slackness with 𝑀 = 100 samples. For this reason, we
focus on the second source and the effect of this slackness on the optimal solution.

In the infinite-sample limit, �̂�ℎ, �̂�ℎ converge to the true statistics 𝜇ℎ, 𝜎ℎ and Eq. (3.17)
becomes the Chebyshev inequality. We formalize the slackness in the Chebyshev
bound with the following lemma, which states that the set of beliefs that satisfy the
Chebyshev bound are a well-defined subset of the 𝛼-safe beliefs:

Lemma 2 (Conservative 𝛼-safe set). For any belief 𝑏, and safety function ℎ with
corresponding statistics 𝜇ℎ, 𝜎ℎ; there exists a conservatively 𝛼-safe set B̃ℎ,𝛼 ⊆ Bℎ,𝛼,
such that the following safety condition is necessary and sufficient for membership:

𝜎2
ℎ

𝜇2
ℎ

≤ 1 − 𝛼 ⇐⇒ 𝑏 ∈ B̃ℎ,𝛼 (3.22)

Proof. We note for a given belief, the mean and standard deviation are deterministic,
so B̃ℎ,𝛼 = {𝑏 ∈ B : 𝜎2

ℎ
(𝑏)

𝜇2
ℎ
(𝑏) ≤ 1 − 𝛼} is well defined. In the limit as 𝑀 → ∞,

Eq. (3.19) becomes 𝜎2
ℎ

𝜇2
ℎ

≤ 1−𝛼 so by Theorem 3 or Chebyshev’s inequality we have

∀𝑏 ∈ B̃ℎ,𝛼, 𝑏 ∈ Bℎ,𝛼, so B̃ℎ,𝛼 ⊆ Bℎ,𝛼. □

To account for the slackness in our safety condition, we modify our reward and value
functions as:

�̃�ℎ,𝛼 (𝑏𝑘) = 1B̃ℎ,𝛼 (𝑏𝑘) (𝑟0 + (1 − 𝑟0)𝑅(𝑏𝑘)) (3.23)

�̃�𝜋ℎ,𝛼 (𝑏𝑘) = E
[
𝐾∑︁
𝑘=1

�̃�ℎ,𝛼 (𝑏𝑘) | 𝜋, 𝑏0

]
s.t. Eqs. (3.1), (3.2), (2.6) (3.24)

Formalizing the slackness of our conservative sampling bound allows us to present
a further problem reformulation:

38

Definition 9 (Conservative Safe Active Fault Estimation). The conservative safe
active fault estimation problem is defined as follows:

�̃�∗ℎ,𝛼 (𝑏0) = arg max
𝜋∈Π

�̃�𝜋ℎ,𝛼 (𝑏0) (3.25)

with corresponding optimal value �̃�∗
ℎ,𝛼
(𝑏0).

The desired behavior of this reformulation is that if the solution of the original prob-
lem lies in the feasible space of the conservative problem reformulation, solving the
conservative problem will produce the original solution. This property is formalized
in the following theorem:

Theorem 4 (Problem reformulation equivalence). If an admissible policy, 𝜋(𝑏0),
to the safe active fault estimation problem (Definition 8) exists and satisfies:

E[1B̃ℎ,𝛼 (𝑏𝑘) | 𝜋, 𝑏0] = 1 ∀𝑘 (3.26)

where B̃ℎ,𝛼 is given by Lemma 2, then an optimal policy, �̃�∗
ℎ,𝛼
(𝑏0), to the conservative

safe active fault estimation problem (Definition 9) is a sub-optimal solution of
Definition 8 constrained to B̃ℎ,𝛼. Further, if an optimal policy, 𝜋∗(𝑏0), to Definition 8
exists and satisfies Eq. (3.26), �̃�∗

ℎ,𝛼
(𝑏0) is an optimal solution to Definition 8.

Proof. We start with the second claim. By assumption, 𝜋∗(𝑏0) exists, is optimal
over Bℎ,𝛼, and satisfies E[1B̃ℎ,𝛼 (𝑏𝑘) | 𝜋

∗, 𝑏0] = 1 ∀𝑘 . From Theorem 2, this
means that 𝜋∗(𝑏0) is optimal on the the conservative safe active fault estimation
problem (Definition 9). From the optimality of �̃�∗

ℎ,𝛼
(𝑏0) on this problem, �̃�𝜋∗

ℎ,𝛼
(𝑏0)

= �̃�∗
ℎ,𝛼
(𝑏0) and E[1B̃ℎ,𝛼 (𝑏𝑘) | �̃�

∗
ℎ,𝛼
, 𝑏0] = 1 ∀𝑘 . From Lemma 2, B̃ℎ,𝛼 ⊆ Bℎ,𝛼, so

E[1Bℎ,𝛼 (𝑏𝑘) | �̃�∗ℎ,𝛼, 𝑏0] = 1 ∀𝑘 , so �̃�∗
ℎ,𝛼

is an admissible solution to the safe active
fault estimation problem (Definition 8) and is optimal, as it has the same value as
an optimal solution.

For the first claim, when a feasible policy of Definition 8 generates expected beliefs
in B̃ℎ,𝛼 (∃𝜋 satisfying Eq. (3.26)), restricting the safe active fault estimation problem
to B̃ℎ,𝛼 provides a new safe active fault estimation problem with at least one feasible
solution. Optimality of �̃�∗

ℎ,𝛼
(𝑏0) for this problem then follows from Theorem 2. □

We can finally reformulate our safe and conservative safe active fault estimation
problems in to POMDP forms compatible with our MCTS methods, adopting the
approach of Lemma 1 in the previous chapter.

39

Lemma 3 (Equivalent POMDP Reformulation). If a global optimal solution exists
to the safe active fault estimation problem, Definition 8, then the solution of the fol-
lowing POMDP is also a global optimal solution of Definition 8 in the discretization
limit 𝑌 → 𝑌 :

⟨𝑄,𝑈,𝑌, 𝑅ℎ,𝛼, 𝑇, 𝑍⟩,
𝑇 (𝑞𝑘 , 𝑢𝑘 , 𝑞𝑘−1) = N

(
𝑓 (𝑥𝑘−1) + 𝐵(𝑥𝑘−1)

(
(I −Φ𝐵)𝑢𝑘 +Φ𝐵,1

)
, Σ𝑤

)
(𝑥𝑘)

𝑍 (𝑞𝑘 , 𝑢𝑘 , 𝑦𝑘) ∝ N
(
(I −Φ𝐶)𝐶𝑥𝑘 +Φ𝐶,1, Σ𝑣

)
(𝑦𝑘) (3.27)

where 𝑄, 𝑈, 𝑌 , 𝑍 , and the belief updates are the same as in Lemma 1, and 𝑅ℎ,𝛼 is
given by Eq. (3.9). Further, when 𝑅ℎ,𝛼 is replaced by �̃�ℎ,𝛼 (𝑏𝑘) given by Eq. (3.25),
then the global optimal solution of this POMDP is a global optimal solution of the
conservative safe active fault estimation problem (Definition 9).

Proof. By assumption the policy 𝜋∗(𝑏0), a global optimal solution to the original
problem (Definition 8), exists and is feasible. The equivalence of the two problems
is shown if 𝜋∗(𝑏0) is also an optimal solution of this POMDP. By Theorem 2,
the existence of 𝜋∗(𝑏0) indicates the existence of 𝜋∗

ℎ,𝛼
(𝑏0), an optimal solution to

Definition 8 satisfying:

𝜋∗ℎ,𝛼 (𝑏0) = arg max
𝜋∈Π

𝑉𝜋ℎ,𝛼 (𝑏0) (3.11)

So we have the following

𝑉
𝜋∗
ℎ,𝛼

ℎ,𝛼
(𝑏0) ≥ 𝑉𝜋ℎ,𝛼 (𝑏0) ∀𝜋 ∈ Π (3.28)

Because the POMDP given by Eq. (3.27) also uses 𝑅ℎ,𝛼 given by Eq. (3.9) as a
reward, it shares the value function given by Eq. (3.10) with the reformulation given
by Theorem 2 when 𝑌 → 𝑌 . Therefore, 𝜋∗

ℎ,𝛼
(𝑏0) and 𝜋∗(𝑏0) maximize the value

function of Eq. (3.27), so by definition, the solution of Definition 8 is an optimal
policy of Eq. (3.27) and the problems are equivalent. The same logic applies when
𝑅ℎ,𝛼 is replaced by �̃�ℎ,𝛼 (𝑏𝑘), showing equivalence with the conservative safe active
fault estimation problem as well. □

Using these reformulations, we develop s-FEAST in the next sections.

40

Algorithm Overview
An overview of the complete s-FEAST algorithm is shown in Fig. 3.2. As we
developed in the previous chapter, our method is an anytime planner based on
partially observable Monte Carlo tree search [34], [35], [37] and is diagrammed in
Fig. 3.2A. Starting from an initial belief on both the robotic spacecraft’s physical and
fault states, 𝑏0(𝑞), actions are selected and simulated forward to a planning horizon.
The tree explores for actions that both resolve ambiguity in the underlying faults
and are predicted to not lead to violations of safety as defined by state constraints.
As an anytime algorithm, it refines the simulated futures until interrupted, returning
the best action found so far.

In addition to the marginalized filter employed by FEAST [visualized in Fig. 3.2
(B and C)], s-FEAST enforces probabilistic safety constraints with a concentration
inequality to provide conservative guarantees of safety for arbitrary belief distribu-
tions, noise processes, and safety constraints. Beliefs that satisfy this inequality are
assumed to lie within the set of safe beliefs and receive a bonus reward; otherwise
they are assigned a reward of zero. As a result, for any safe trajectory the summed
reward over the planning horizon is above that of any unsafe trajectory (Fig. 3.2D).
With this construction, the convergence of the tree search to the optimal value also
ensures safety.

Algorithm Details
We present the pseudocode for s-FEAST in Algorithm 3 below, and discuss the
changes with respect to existing belief-space tree-search and FEAST. The differences
between s-FEAST and POMCP are again highlighted in blue: (i) when a new
node is encountered, the exact Bayesian update is computed with our Marginalized
filter, Eq. (2.28); (ii) we use the updated belief to compute exact rewards and generate
a value estimate; (iii) we use the exact belief to accurately approximate the safety at
each node via our safety condition, Theorem 3.

With the exception of the safety condition and the transformed reward function,
s-FEAST is run the same as FEAST. See Chapter 2 for details. Implementation
details for each of the experiments is provided in Appendix B.

We can now state the main theorem, which is a direct consequence of reformulating
the problem into a search-compatible framework and then applying existing search
convergence results: s-FEAST converges to the optimal solutions of the problems
given by Definitions 8 and 9.

41

Figure 3.2: s-FEAST: Method overview. (A) Diagram of the tree search employed
by s-FEAST. The tree growth is biased towards nodes leading to better rewards
(represented here as darker shading). 𝑎 represent actions taken, �̂� prior beliefs,
𝑜 observations, and 𝑏 updated beliefs. (B) Illustration of our marginalized filter
representing the position of the robotic spacecraft as the sum of estimates conditioned
on each possible failure. (C) When the physical estimators are Kalman Filters, the
marginalized filter of a complicated multi-modal distribution is a combination of
Gaussians. (D) The belief at each time step can be classified as in or outside of
the set of safe beliefs (Bℎ,𝛼) based on bounding the likelihood of collision with
the obstacle (shown as a red semi-circle). The reward function used by s-FEAST,
�̃�ℎ,𝛼 (𝑏𝑘), results in any trajectory of safe beliefs having a higher cumulative reward
than any trajectory with at least one unsafe belief.

42

Algorithm 3: The POMCP and s-FEAST algorithms for belief-space planning.
For this pseudocode, we adapt the original POMCP algorithm to our notation,
with modifications made to create s-FEAST highlighted in blue [37]. MF refers
to our marginalized filter, apxSafety refers to the approximate safety condition
given by Eq. (3.19) and Theorem 3.
globals: �̂� (·) ← 0, 𝑁 (·) ← 0

1 def search(𝑏0):
2 for 𝑖 ← 1 to 𝑁 do
3 simulate(𝑞 ∼ 𝑏0, ∅, 0, 𝑏0);
4 return arg max𝑢 �̂� (𝐻 ∪ {𝑢});
5 def safe(𝑏):
6 for 𝑖 ← 1 to 𝑀 do
7 𝑥𝑖 ∼ 𝑏;
8 ℎ𝑖 ← ℎ(𝑥𝑖);
9 �̂�ℎ, �̂�ℎ ←

sampleStatistics({ℎ1, ..., ℎ𝑀});
10 return apxSafety(�̂�ℎ, �̂�ℎ, 𝑀, 𝛼) ;

11 def simulate(𝑞𝑑 , 𝐻𝑑 , 𝑑, 𝑏(𝐻𝑑)):
12 if 𝑑 > 𝐾 then
13 return 0;
14 𝑢𝑑+1 ← arg max𝑢
15 �̂� (𝐻𝑑 ∪ 𝑢) + 𝑐

√︃
log 𝑁 (𝐻𝑑)
𝑁 (𝐻𝑑∪𝑢) ;

16 (𝑞𝑑+1, 𝑦𝑑+1) ∼ 𝐺 (𝑞𝑑 , 𝑢𝑑+1);
17 𝐻𝑑+1 ← 𝐻𝑑 ∪ {𝑢𝑑+1, 𝑦𝑑+1};
18 if s-FEAST then
19 𝑏(𝐻𝑑+1) ←

MF(𝑏(𝐻𝑑), 𝑢𝑑+1, 𝑦𝑑+1) ;
20 else
21 𝑏(𝐻𝑑+1) ← 𝑏(𝐻𝑑+1) ∪ 𝑞𝑑+1;
22 𝑟 ← 𝑅(𝑏(𝐻𝑑+1));
23 if s-FEAST then
24 𝑟 ← safe(𝑏(𝐻𝑑+1), ℎ, 𝛼) ∗

(𝑟0 + (1 − 𝑟0)𝑟) ;
25 𝑟 ← 𝑟 + 𝛾 simulate(𝑞𝑑+1, 𝐻𝑑+1,
26 𝑑 + 1, 𝑏(𝐻𝑑+1));
27 if 𝑁 (𝐻 ∪ 𝑢𝑑+1) = 0 and 𝑁 (𝐻𝑑−1 ∪

𝑢𝑑) = 0 and not s-FEAST then
28 return 𝑟
29 𝑁 (𝐻𝑑) ← 𝑁 (𝐻𝑑) + 1 ;
30 𝑁 (𝐻𝑑 ∪ 𝑢𝑑+1) ← 𝑁 (𝐻𝑑 ∪ 𝑢𝑑+1) + 1 ;
31 �̂� (𝐻𝑑 ∪ 𝑢𝑑+1) ←

�̂� (𝐻𝑑 ∪ 𝑢) + 𝑟−�̂� (𝐻𝑑∪𝑢𝑑+1)
𝑁 (𝐻𝑑∪𝑢𝑑+1) ;

32 return 𝑟;

43

Theorem 5 (Optimality of s-FEAST). Let 𝜇(𝑏0) denote the policy produced by
s-FEAST, and �̃�∗

ℎ,𝛼
(𝑏0) denote an optimal policy to the conservative safe active fault

estimation problem (Definition 9). In the limit of 𝑀 →∞, the value of these policies
converge:

lim
𝑁→∞

(
�̃�
𝜇

ℎ,𝛼
(𝑏0) − �̃�∗ℎ,𝛼 (𝑏0)

)
→ 0 (3.29)

with convergence rate 𝑂 (log 𝑁/𝑁). Further, if an optimal policy, 𝜋∗(𝑏0), to Defi-
nition 8 exists and satisfies Eq. (3.26), 𝑉 𝜇 (𝑏0) converges to 𝑉∗(𝑏0).

Proof. From Lemma 2 we have that in the limit of 𝑀 → ∞, B̃ℎ,𝛼 is the set
for which Eq. (3.22) is a necessary and sufficient condition for membership, and
B̃ℎ,𝛼 ⊆ Bℎ,𝛼. From Theorem 4 we have that if s-FEAST solves the conservative safe
active sensing problem (Definition 9) with the stated convergence rate, we achieved
both the claimed results.

To show s-FEAST solves Definition 9, we note that Definition 9 can be equivalently
reformulated as a POMDP by Lemma 3. To solve the equivalent POMDP, s-
FEAST employs the marginalized filter given by Eq. (2.28) to perform an Bayesian
update when creating a new node in the tree search, and incurs an accurate reward.
Therefore, we are performing PO-UCT from (69) and inherit the convergence rate
from their Theorem 1. □

3.4 Robotic Spacecraft Simulator Hardware Experiments
We implemented s-FEAST on the M-STAR robot [43], [44] in the same manner as
our FEAST experiments described in Section 2.6.

The robot was tasked to diagnose sensing and actuation faults while on a collision
course with our model comet (Fig. 3.1C). The true failure was the loss of both
retro thrusters (Fig. 3.1B), which required the M-STAR robot to reorient before
it was able slow down and stabilize itself. The safety constraints were to avoid
the comet obstacle as well as the walls of the simulator room, shown as the red
regions in Fig. 3.1 (D to F), with a 90% or higher probability. With these settings,
s-FEAST was able to successfully identify the true failure state while maintaining
safety, validating our approach on hardware. These experiments demonstrated that
considering safety or fault estimation alone cannot solve this problem (Fig. 3.1D),
while s-FEAST can reliably plan evasive actions under uncertain component failure
[Fig. 3.1 (E and F)]. A complete time series of s-FEAST and the baseline methods
is presented in Appendix C.

44

For these experiments, a computational budget of 0.78 seconds on a 1.10 GHz, 4 core
CPU (i5-1035G4) was used, which typically resulted in 85 simulations per time step.
We show in numerical experiments this is sufficient computation to substantially
improve over existing approaches. More details of our real-time implementation
and performance are provided in Appendix C.

3.5 Numerical Simulations
To validate our algorithm quantitatively, we considered s-FEAST in four safety-
critical scenarios against baselines of Sequential Convex Programming (SCP), Dis-
crete Control Barrier Functions (D-CBF), greedy, and random policies. Each sim-
ulation was performed on a three degree of freedom model of the M-STAR robot.
We evaluated each algorithm over 1000 trials according to the fraction of trials
safe throughout the experiment as well as the product of a diagnostic reward and
success rate we used in our FEAST evaluations. In these experiments however, the
simulation does not terminate early when a diagnosis is returned or when the safety
conditions are violated, to demonstrate the ability to maintain safety over the full
experiment. A timestep during an experiment trajectory is only considered safe if
every previous timestep was as well. Because of this, the average safety of a policy
is monotonically decreasing

In these simulations, numerical instability of the Extended Kalman Filters (EKF)
used to update the belief between states occasionally leads to invalid belief-states
(NaN). If the the previous fault estimate is at least 95% confident, this diagnosis
is accepted for the remainder of the experiment. Otherwise the experiment is
considered to have failed to diagnose the fault and receives no further reward. When
computing the standard deviation of the rewards, these experiments are removed to
avoid biasing, but the trial is considered unsuccessful for the diagnostic success rate
computation.

Details on the systems considered, as well as additional numerical results are pro-
vided in Appendices B and C, respectively.

Overview of Baselines

We provide a brief overview of the baselines (random, greedy, D-CBF, SCP) we
compared against in the following simulation results. The selection of baselines was
designed such that s-FEAST and these baselines covered a permutation of deter-
ministic vs. probabilistic state representations and greedy vs. planning algorithmic

45

implementations, with s-FEAST as the probabilistic planning solution. All methods
used the same estimator between time steps and each baseline solved for the next
action to take. Implementation details are provided in Appendix B.

The random and greedy baselines are the same as seen in our validation of s-
FEAST, with the modification that the greedy, active approach considers the best
safe action to take. As before, it only considered a lookahead horizon of one and
did not resample any actions, which made it vulnerable to near term danger and
outlier simulations. The random baseline did not consider safety at all. Together,
the random and greedy baselines served to illustrate the shortcomings of random
and one-step planning approaches in identifying the underlying faults when safety
constraints must also be satisfied.

The next two baselines were deterministic safe control methods. The discrete
control barrier function (D-CBF) [48] method acts greedily, considering only the
safety of the next time step, whereas the sequential convex programming (SCP) [49],
[50] method plans safe trajectories over a horizon. These algorithms do not have
a probabilistic representation of the state or system model and require a fully-
observable state. Work has been done to extend both methods to consider stochastic
noise via chance constraints for SCP [51] and probabilistic safety bounds for D-
CBF [52], though neither method is compatible with the coupled fault mode and
physical state uncertainty considered here. To adapt them to our partially observable
setting, we used the most likely failure state and corresponding mean position
estimate as the assumed system dynamics and initial position and added a buffer to
each obstacle. It should be noted that when the system model is accurately known,
a controller satisfying the D-CBF condition renders all states in the safe set forward
invariant and therefore safe. However, this is not guaranteed if the most likely
model is inaccurate, and we saw this method fail in our simulations for this reason.
These control baselines served to illustrate the limitations of the control-estimation
separation principle in safety-critical fault estimation problems.

Overview of Scenarios

In each of the following scenarios, we considered a robotic spacecraft initially
10 m from a circular obstacle which represented some target of interest the robot
was investigating before the failure occurred. For s-FEAST and our safety-aware
baselines, we imposed a chance constraint that with 90% or higher probability, the
spacecraft must avoid collision and deviate no more than 25 m in any direction

46

from its initial position at each time step. In practice, we saw this chance constraint
enabled s-FEAST to achieve 90% or higher safety throughout the experiment, as the
robot was near the obstacles or bounds for only a few time steps.

To highlight various sources of difficulty our method addresses, we considered two
fault cases in two increasingly difficult initial conditions. Binary faults, where com-
ponents either worked or were completely failed, illustrated the challenges posed
when components fail silently, resulting in ambiguity between fault models. Alter-
natively, continuous component degradation and biases presented a larger challenge
for safety, as actuator biases could destabilize a system if unaddressed.

Scenario: Binary Fault Diagnosis in Proximity to an Obstacle

In the first scenario, the spacecraft started with no initial velocity, and up to three
components completely failed, where the underlying binary failure was randomly
selected for each trial. This case was selected to examine how well each policy
achieves our desired 90% chance of safety when the spacecraft was not in any
immediate danger, and demonstrate how naive information gathering could put the
system at risk. The results are summarized in Fig. 3.3A.

Examining the safety of each method, we see that the greedy and random baselines
dramatically underperformed the other methods. This was observed to be in part
due to their inability to consider safety beyond the next time step or, in the case of
the random baseline, at all. This led to destabilizing actions being selected more
often, making future time steps more likely to have no safe action available.

Considering the reward and diagnostic success of each method, the s-FEAST algo-
rithms all outperformed the CBF and SCP baselines, as did the random and greedy
baselines. This was due to the CBF and SCP baselines not taking any information
gathering actions, or any actions at all until the system was close to becoming unsafe.
So both baselines typically failed to diagnose the underlying failure by the end of
the experiment, which lead to low diagnosis success rates of 20.8% and 19.5%, re-
spectively. The random and greedy algorithms performed similarly to the s-FEAST
algorithms in diagnosing the underlying fault, but at the price of considerably worse
safety, with final safety values of 17.4% and 16.9% respectively.

47

Figure 3.3: Validation of s-FEAST. The numerical performance of our algorithm
compared with baselines across several scenarios. (A) The robotic spacecraft started
10 m from the obstacle with no initial velocity, subject to random binary failures
of up to three components. (B) Each component was now randomly subjected to
continuous degradation or bias, with nominal components more likely. (C) The
robotic spacecraft now started with an initial 1 m/s velocity towards the obstacle,
subject to an adversarial binary failure of its two retro thrusters. (D) The adversarial
failure was now both retro thrusters degraded by 80%, and both forward thrusters
stuck on with a 10% bias. In all experiments, s-FEAST considered 40 possible
binary or general faults and started with a uniform prior over all possibilities. In the
visualization of the spacecraft component health in the left column, squares represent
the thrusters and circles abstractly represent the position and orientation sensors.
Green components are healthy, red are failed, and red actuations represent bias thrust
of varying degrees (sensor bias is not visualized). Note that for readability, the data
for each time step is artificially spread out horizontally.

48

Scenario: Continuous Degradation and Bias Fault Diagnosis in Proximity to
an Obstacle

In this experiment, we considered the same scenario as before, but now components
could be partially degraded, giving only a fraction of their nominal output. This
could correspond to actuator damage resulting in decreased efficiency or a miss-
calibrated sensor. Components could also be subject to constant biases, correlating
to unexpected behavior such as an actuator stuck on, sensor offset, or even malicious
signal injection. As before, we assumed the fault was constant for the duration of
our diagnosis period. Faults were generated by sampling eight unique biases with
five component degradations each, for a total of 40 possible faults as before. The
true fault was set to one of these. Additional implementation details are provided in
Appendix B.

The results of this simulation are shown in Fig. 3.3B. Compared to the previous
scenario, we see similar relative behavior, and all methods had a higher diagnostic
reward and a lower safety. The diagnostic reward increased because the faults
were no longer silent. Any bias injected a signal into the system enabling passive
identification of these faults. However, the active signal made enforcing safety more
challenging, as bias acceleration could lead to constraint violations. This trade off
was seen through a drop in safety for all policies. For example, from time step 3 to
4, the deterministic methods (SCP and CBF) started to decline in safety, whereas
the diagnostic reward increased more rapidly than the s-FEAST methods for the
first time. This trend continued through the experiment, with reward increasing but
safety dropping.

The ambiguity in component degradation for a given bias provides a likely explana-
tion for this trend. Since neither SCP or CBF methods consider a belief, information
gathering to resolve this ambiguity could not be explicitly performed. This could
result in an incorrect assessment of both the safety of the current state as well as the
control authority if actuator faults were not yet detected or resolved. When actions
were taken to avoid collision, they may have occurred too late or with unexpectedly
small effect, leading to safety violation, but also yielding more information on the
component degradation, giving an increase in diagnosis reward. Finally, we note
the decrease in diagnostic reward for the CBF method near the end of the experi-
ment stems from filter divergence. This was due to large control inputs leading to
numerical instability in the Extended Kalman Filter without converging to a fault
estimate.

49

Scenario: Collision Course Under Adversarial Binary and Continuous
Failures

In the final two scenarios examined, the spacecraft was now subjected to the same
underlying fault in every trial and was initialized on a collision course with an
obstacle. We considered an adversarial failure for both our binary and continuous
degradation and bias scenarios. In the binary scenario, the two retro thrusters on
the spacecraft were completely off, and in the continuous case, the retro thrusters
were subject to an 80% degradation and the forward thrusters were subject to a 10%
bias. In both cases, the spacecraft had to first change orientation, then slow down
to reliably avoid a collision. In addition, the spacecraft still started with a uniform
prior over 40 possible failures, so it had to take actions to reduce the risk of collision
before fully identifying the underlying fault. Since this behavior required planning
over a horizon, we considered these to be adversarial faults for this scenario and
chose this scenario to demonstrate s-FEAST’s robustness to outlier failures that
posed an outsized risk to the system.

The results are shown in Fig. 3.3 (C and D), where we see that all baselines now
achieved less than 40% safety in the binary case (CBF: 39.7% , SCP: 35.4%,
Random: 0.4%, Greedy: 0.5%) and less than 4% in the continuous case (CBF:
3.6% , SCP: 0.1%, Random: 0.5%, Greedy: 1.1%), and were outperformed by
s-FEAST with even the lowest level of planning. These results suggest that running
as little as 𝑁 = 80 simulations can achieve a final safety rate of 62.4% in the
binary case and 69.9% in the continuous case. For 𝑁 = 200, the safety rate was
77.8% and 84.9% for the binary and continuous faults. We used this result to
inform our real-time hardware experiments, where the typical planning amount was
𝑁 = 85 simulations per tree due to a tight computational budget. The reward for the
hardware algorithm shown in Fig. 3.1 was similar to that predicted by this simulation
experiment.

We again see that with binary faults, our CBF and SCP baselines failed to gather
any information until collision was imminent, and only gained diagnostic reward as
a result of attempting to remain safe. Similarly, in the continuous case, the baseline
methods gained some information immediately as a result of the bias signal, but
failed to further diagnose until evasive actions were taken, which occurred sooner
and at higher speed due to acceleration from the bias input. In the next section,
we consider an example to illustrate how s-FEAST succeeded where these baseline
methods failed.

50

Qualitative Interpretation of Tree Data

The tree data structure provides some qualitative interpretability of the inner work-
ings of s-FEAST. In Fig. 3.4, we see the spacecraft initially on a collision course
under the adversarial failure of both retro thrusters. This is the same binary crash
course scenario examined in the previous subsection, with a higher initial velocity of
2 m/s to better demonstrate the qualitative behavior of our algorithm. Before iden-
tifying the underlying failure, s-FEAST selected actions to adjust the spacecraft’s
trajectory to the side of the obstacle. This turned out to be a necessary strategy in
this scenario, as after the failure is identified in the third time step, it took another
seven time steps to reorient and come to a stop. This obstacle avoidance behavior
was also seen in our hardware experiments, such as in Fig. 3.1.

The baseline methods were unable to discover this behavior, as both the greedy and
CBF policies do not consider the possibility of failure beyond the next time step and
the SCP policy does not take any information gathering actions so will be unaware
of the failure until it attempts and fails to slow down. Like our simulation results,
this suggests that proactive information gathering is essential to avoiding model
uncertainty in these safety-critical situations, as any unknown component failure
can jeopardize the systems performance in unexpected ways.

3.6 Chapter Summary
In this chapter, we generalized the active fault estimation problem from Chapter 2 to
additionally consider degradation, actuator and sensor bias, and most importantly,
probabilistic safety constraints. We then reformulated the safe active fault estimation
problem (Definition 8) to an unconstrained form via Theorem 2. Using Theorem 3
and Lemma 2, we defined a conservative sampling bound and the corresponding B̃ℎ,𝛼
and formalized the conservative safe active fault estimation problem (Definition 9).
Finally, Theorem 4 formalized when the solution to the two problems are equivalent,
and Theorem 5 demonstrated convergence of s-FEAST to optimal solutions for each.

We make some remarks on this result: First, despite applying the existing search
result from [35] and [37], solving problems with belief-dependent objectives and
chance-constraints for general belief distributions represents a new capability en-
abled by our reformulations. Second, we note that B̃ℎ,𝛼 is in general unknown,
or computationally intractable. However, we do not need to know B̃ℎ,𝛼, there just
needs to exist an admissible solution in B̃ℎ,𝛼 for s-FEAST to converge. For the safety
constraints of interest we investigated, we observed in our simulations that solutions

51

Figure 3.4: Qualitative analysis of s-FEAST’s collision avoidance under an
adversarial fault. (A) The two retro thrusters the spacecraft needs to slow down
are dysfunctional. (B) The spacecraft starts on a collision course with the obstacle
and a uniform belief over randomly selected binary failures of actuators (shown as
squares) and sensors (abstracted as circles). (C) By the third time step, the spacecraft
has mostly identified the underlying failure, indicated by the red components. At
this point, it has proactively taken action to avoid the obstacle, before the fault
was determined. (D) After dodging the obstacle, most future trajectories take the
spacecraft out of bounds. (E) By the ninth time step, the spacecraft has reoriented
and started to slow down. (F) The spacecraft has reversed course by the eleventh
time step and remains safe for the rest of the experiment.

could come close to violating the constraints relative to the size of the safe state
space (such as in Fig. 3.4D), indicating that B̃ℎ,𝛼 is tight. Similarly, we observed
empirically that 𝑀 = 100 was sufficient for converged safety estimates. Third, it
is possible that the optimal solution to the safe active fault estimation problem lies
outside B̃ℎ,𝛼, and in this case s-FEAST will converge to a sub-optimal approximation
of the optimal solution. We argue that the only cases where this occurs is when the
optimal trajectory takes the spacecraft close to violating a safety constraint, which
while within the bounds of the problem, are the riskiest trajectories.

We believe that s-FEAST balances well the competing interests of safety, perfor-
mance, and computational complexity. In the next chapter, we will discuss the

52

context of our work with existing methods, as well as the implications for future
applications.

53

C h a p t e r 4

S-FEAST REALTED WORK AND DISCUSSION

[1] J. Ragan*, B. Rivière*, and S.-J. Chung, “Bayesian active sensing for fault
estimation with belief space tree search,” AIAA Scitech 2023 Forum, 2023.
doi: 10.2514/6.2023-0874,

[2] J. Ragan, B. Rivière, F. Y. Hadaegh, and S.-J. Chung, “Online tree-based
planning for active spacecraft fault estimation and collision avoidance,” Sci-
ence Robotics, vol. 9, no. 93, eadn4722, 2024. doi:10.1126/scirobotics.
adn4722. [Online]. Available: https://www.science.org/doi/abs/
10.1126/scirobotics.adn4722,

Over the course of the last two chapters, we have developed our FEAST and s-
FEAST algorithms and presented the numerical and hardware experiments we used
to validate them. In this chapter, we present a detailed comparison of our algorithms
with existing methods. We also provide a detailed discussion of the key strength’s
of our method in comparison with the literature, including how we provide better
scaling in information gathering problems. We then discuss our real-time perfor-
mance, our intended use cases, the applicability of our method to a broader class
of problems, and finally the limitations of our method. We will primarily focus our
discussion on s-FEAST, as the completed version of our method. However, any
discussion about active fault estimation in the absence of safety concerns applies to
our FEAST method as well.

4.1 Context with Related Work
Our work sits at the intersection of several fields that can be applied to this problem
of safe active fault estimation. We qualitatively summarize them according to three
capabilities in Fig. 4.1. First, the flexibility of the system model referring to the
linearity of system equations, any assumptions, and the structure of the uncertainty
model. Second, the flexibility of the safety condition representing if the method is
limited to bounding the expected state alone or if it can also constrain the uncertainty
distribution. Third, for methods that select an action to take, we consider their ability
to run in real-time. We elaborate on the relevant related work in the following
subsections.

https://doi.org/10.2514/6.2023-0874
https://doi.org/10.1126/scirobotics.adn4722
https://doi.org/10.1126/scirobotics.adn4722
https://www.science.org/doi/abs/10.1126/scirobotics.adn4722
https://www.science.org/doi/abs/10.1126/scirobotics.adn4722

54

Figure 4.1: Related work context. We qualitatively contextualize our work with
other relevant approaches applied to fault estimation. Each method is separated
by the flexibility of the safety constraints, flexibility of the system model, and the
real-time performance for selecting actions. Passive methods such as traditional
FDIR [17] do not consider diagnostic actions or safety constraints, and so are
restricted to one axis, but represent a broad range of system models. Active fault
diagnosis approaches [53] compute inputs to determine between possible underlying
faults, but are often limited to specific systems, uncertainty models, or constraints
and may lack real-time guarantees. POMDP methods [54], [55] can model a wide
range of systems and constraints, but are often computationally intensive to solve,
especially in belief-space planning domains. Control based approaches [50], [56]
can quickly find actions to satisfy deterministic safety constraints, but traditionally
do not consider model uncertainty or information gathering.

Traditional Passive Fault Estimation
Traditionally, system level approaches to fault estimation methods have been pas-
sive; actions are not taken to determine the underlying failure but are instead based
upon the input-output data during normal operations which is monitored for ab-
normalities [17]–[19]. This has also been the case for space systems, which have
historically used passive FDIR algorithms coupled with safe mode and ground-
in-the-loop diagnosis and recovery when faults are detected [57]. Similarly for
terrestrial robotics, fault estimation methods were historically passive and designed

55

to alert operators and arrest operations [58], and have been limited by the high levels
of ambiguity [59]. In more recent work, passive fault estimation in robotic systems
has developed to include data-driven models and account for varying levels of sys-
tem autonomy [60]–[62] and distributed systems [63]. These passive approaches
typically estimate between a small number of possible system fault models with
limited noise so are represented as less flexible in Fig. 4.1.

Other approaches to passive fault estimation are constraint-based methods which
check the consistency of input and output constraints for each component throughout
a system. These have been deployed in several settings due to their simplicity,
robustness and ease of user understanding [64], [65]. Although a wide range of
systems can be modeled, making them more flexible than other passive methods,
these approaches often need to be custom designed for each failure case. They
also have limited ability to handle uncertainty and noise, and are potentially not
robust to unmodeled scenarios. Since passive FDIR methods do not select actions
or consider the safety of those actions, we do not consider them in the context of
safety constraint flexibility or real-time planning performance.

Active Fault Diagnosis
One drawback of passive fault estimation is the possibility of multiple plausible
fault scenarios. This motivates the problem of selecting control inputs to gather
information about the underlying failures. Although optimality conditions can be
derived [66], tractable general algorithms do not exist, giving rise to a large body of
work in active fault diagnosis [53]. Early work considered discrete-event systems
with enumerated states and transitions, designing controllers to ensure the system
would be diagnosable [67], with extensions to satellite applications [68], [69].

In linear dynamical systems, the true fault can be determined from multiple possi-
bilities by solving for actions that yield the least expected overlap in hypotheses [70].
Similar to our s-FEAST method, this approach seeks actions that lead to the most
useful observations over a horizon. However, it is restricted to systems with Gaussian
noise and can only consider constraints on the expected state, whereas s-FEAST can
enforce more general chance constraints. Further, globally minimizing this measure
of hypothesis overlap or the approximate bounds can become expensive to compute
in real-time. An extension of this work [71] has achieved real-time evaluation in rel-
atively low-dimensional problems, but it can only optimize control actions greedily
over a single timestep.

56

Another approach is to design input sequences guaranteed to separate the various
fault models in linear systems, provided the disturbances are bounded to zono-
topes [72]. One limitation of this approach is the need for the separating inputs
to be robust to the worst case disturbances. A closed-loop implementation of this
algorithm can lead to less conservative solutions, but may be computationally im-
practical to run online and require a compromise hybrid offline/online approach
to balance conservatism and performance [73]. Similarly, when the uncertainty
in model parameters is energy bounded, it is possible to find minimum energy
auxiliary signals to distinguish between fault models in linear systems [74], and
this approach has been extended to include small, bounded non-linearities [75] and
linearizations [76].

These active fault diagnosis approaches demonstrate the usefulness of information
gathering applied to fault estimation. However, they are often limited by the types
of systems they can be applied to, or make assumptions on the types of uncertainty,
restricting model flexibility as represented in Fig. 4.1. Similarly, the constraints
considered are often deterministic or only valid in the bounded disturbance case,
limiting the flexibility of safety constraints. Finally, many of these methods are
computationally intensive and may not provide real-time guarantees. Onboard real-
time systems, anytime algorithms that can be interrupted early and return a valid (if
sub-optimal) solution are desirable.

Although not directly derived from this body of work, robotic self-modeling, where
a robot continuously performs exploratory actions to update its onboard dynamics
model [77] is a closely related method. Recently, self-identification has been used to
distinguish between multiple possible manipulation models of a robotic hand [78],
as well as to learn visual self models [79].

Partially Observable Markov Decision Process Methods
As discussed in Chapter 2, Partially Observable Markov Decision Processes
(POMDPs), provide an alternative framework for considering passive and active
fault estimation as decision making problems. POMDPs provide a flexible model-
ing representation, but they are intractable to solve in general, and solutions are often
limited to small problems, being performed offline, or inexact methods [54]. For
example, a POMDP is used to model the fault estimation problem in [55]. However,
the algorithm used to solve the problem only considers the partial observability for
the first time step, and cannot perform any active information gathering.

57

To consider constraints in POMDPS, prior work has added cost terms that must be
kept within a specified budget [80]. When this budget is set to zero, these prob-
lems can represent hard constraints such as collision avoidance. Offline solutions
to this approach include approximate linear programming [81], dynamic program-
ming [82], and gradient ascent with constraint projection [83]. Online methods have
also been proposed, including hybrid approaches that consider constraint feasibility
up to a sub-horizon and approximate the rest of the planning horizon with an offline
estimate [84], an extension of POMCP to discrete constrained POMDPs [85], and
a method that extends online solutions to continuous systems by limiting branch-
ing [86]. A shared limitation is that these methods constrain only the expected
cost, which may not be suitable for risk averse settings or systems with large state
estimation uncertainty.

Alternatively, general probabilistic bounds, or chance constraints, can be applied
to POMDPS. This approach can be shown to be more general than zero cost con-
straints [87], and allows for bounds on statistics other than expectations. Ap-
proximate offline solutions in this setting include using mixed integer linear pro-
gramming [88], and pruning high risk branches [87]. To solve chance constrained
POMDPs online, a heuristic search that is then iteratively improved in an anytime
fashion has been proposed [89], but lacks formal guarantees. Chance constraints
have also been applied in belief-space planning for linear Gaussian systems [90] and
via log barrier function transformations or soft constraints [91].

Constrained POMDPs are also solvable with model-free approaches trained during
an offline phase, such as Dreamer V2 [92] and latent policy optimization [93].
However, compared to online methods, the reliance on an offline training phase
makes these methods vulnerable to out-of-domain events [94]. Furthermore, these
methods lack theoretical guarantees of optimality convergence and safety assurance,
which are especially important for high-cost space missions.

Although tree-based online POMDP solvers such as POMCP [37] work well when
the reward is a function of the state, the experiments in Chapter 2 suggest they scale
poorly compared to FEAST and s-FEAST in information gathering problems due to
the need for particle filter based belief estimates to converge at each node before an
accurate value estimate can be made, as we will explore in the next section. This
results in the low real-time performance for this setting depicted in Fig. 4.1.

58

Information Gathering Partially Observable Markov Decision Processes

Information gathering POMDPs use a reward that is directly dependent on the
belief, whereas standard POMDPs use a probability-weighted average of state-
dependent rewards. Previous work in information gathering POMDPs typically
does not consider estimating the system dynamics (such as the fault state) or safety
constraints, so we consider them separately from the related work we contextualize
in Fig. 4.1. POMDP solvers can be guided toward information gathering behavior
via sub-goal states, identified by heuristics measuring the entropy of measurement
probabilities [95],[96]. However these heuristics assume low entropy correlates to
informative observations, which is not necessarily true in general.

Alternatively, information gathering can be promoted by action design, such as
by providing high reward when taking a specific action in a state of interest [97],
though this approach requires an action for each such state. Other work provides
online performance for problems where part of the state space can be observed
directly [98]. This approach has also been extended to continuous settings by
augmenting the reward with convex information measures on the belief-space [99]
which includes the information gathering reward we consider in our work.

Control Based Safety
While active fault estimation can more rapidly determine the failure of a robot,
many systems have operational safety constraints which the information gathering
actions must not violate. Traditional approaches to ensuring safe control include
formal methods such as control barrier functions (CBFs) [56], and their extensions
to discrete time systems [48] with stochastic noise [52]. In the face of randomly
changing environmental hazards, metrics to quantify the risk a robot faces can be
used to plan safe trajectories, such as using entropic value at risk to bound tail
probabilities [100]. Other planning-based approaches to real-time optimal control
with safety constraints include Sequential Convex Programming (SCP) [49], [50]
which can consider complex [101] and stochastic constraints [51] while achieving
robustness and stability guarantees through tracking control [102].

However, each of these methods assumes a fully observable state to directly evaluate
safety constraints. In partially observable settings, these methods must be modified,
such as by extending CBFs to operate on the belief of possible states [103] using
particle filters, and the conditional value at risk, an alternative risk adverse bound
on tail probabilities. Partial observability can also occur from uncertain system

59

dynamics, such as the unknown failures we consider. When feasible, applying a
CBF to all possible dynamic modes can ensure safety, but this approach may be
overly conservative [104], leading to short or no horizons with guaranteed safety.
Our method extends this consideration of multiple possible system dynamics by
also considering how the planned actions will help distinguish between the different
possibilities, branching on this information to achieve longer safe horizons.

In comparison with other methods, these control approaches are typically fast to
execute and can handle complicated safety constraints, as we visualize in Fig. 4.1.
However, CBFs and SCP typically only impose deterministic constraints on the
system. They are also limited by the inability to consider multiple system models
and information gain from actions, which we observe limits their performance in
our experiments.

Our work sits at the intersection of these several related fields as we seek to com-
bine these separate approaches of fault estimation and constraint satisfaction. We
qualitatively summarize this relation in Fig.4.1. Like the passive fault estimation
and POMDP approaches, our algorithm is applicable to a wide range of stochas-
tic and uncertain systems. Similar to control-based safety methods and POMDP
models, our method, with mild assumptions, provides formal guarantees of con-
straint satisfaction and general bounds on tail probabilities as opposed to constraints
on expectations alone. However, unlike existing active fault diagnosis methods
or POMDP solvers, our method can be deployed online in information gathering
problems without requiring heuristics.

4.2 Significance of s-FEAST
The experiments presented in the last two chapters have demonstrated safety-aware,
real-time, active fault estimation that extends beyond the capability of existing
methods which cannot succeed at all tasks simultaneously. Indeed, we have shown
that in the presence of ambiguous faults and time-critical constraints, proactively
taking actions to maintain safety while simultaneously gathering information about
the system status is necessary to reliably avoid collision. By combining anytime
tree search with efficient filtering and probabilistic chance constraints, s-FEAST
achieves both objectives in a computationally tractable fashion, with asymptotic
convergence guarantees and interpretable behavior.

60

Comparison with Existing Tree-Search Methods
Previous approaches to solving partially observable planning problems using tree-
search methods include the Partially Observable Monte Carlo Planning (POMCP)
algorithm [37] and its extensions to constrained systems [85], [86]. However, in
Chapter 2 we empirically showed that our marginalized filter approach is necessary
for effective planning in information gathering problems. When the reward is
a function of the belief instead of just the classical state and action reward, the
convergence guarantees of these existing methods breaks down. In this section, we
formalize this observation.

POMCP consists of two components. First, Partially Observable Upper Confidence
Bound applied to Trees (PO-UCT), which assumes access to the state belief for a
given history, and second, Monte-Carlo updates to propagate the belief within the
tree in a particle filter like manner. For each simulation, a particle is sampled from the
initial belief, and propagated by running PO-UCT. At each belief node encountered
during the simulation, the propagated state is added to the node’s particle belief. At
each node, the resulting belief is a discrete collection of state particles, one for each
visit to the node.

POMCP argues that at a large number of samples, the belief at each node is well
approximated such that PO-UCT is solving the equivalent Belief Markov Decision
Process (Definition 5) and therefore inherits the value convergence of the fully
observable UCT [35]. However, it only establishes this for the PO-UCT algorithm,
as the theoretical analysis assumes accurate state beliefs for each history and accurate
rewards for each node. Neither is initially true in the information gathering setting,
where estimation is inherently coupled with the reward. This leads to a “burn in”
phase until the belief converges enough that this PO-UCT analysis is valid. In fact,
until a repeated particle is added to a node, the information gathering reward we
introduced in Chapter 2 (Eq. (2.20)) is inversely correlated to the number of visits
to the node. This results in a breadth first search where the UCT strategy of biasing
towards areas of high reward no longer succeeds, and ultimately random action
selection. This is further exasperated by the exponential scaling of standard particle
filters with the number of dimensions [105]. The difference in tree growth between
s-FEAST and POMCP is visualized qualitatively in Fig. 4.2.

61

Figure 4.2: Marginalized filtering vs. particle filtering in information gathering
tree searches. A conceptual comparison of the tree growth of s-FEAST (which uses
our marginalized filter) and POMCP (which uses a particle filter). Darker green is
a higher estimated reward. (A) When s-FEAST expands a node, it performs full
belief updates that give accurate reward estimates. (B) The tree can then be biased
towards areas of higher rewards. (C) This enables s-FEAST to efficiently search
areas of higher value and plan further ahead. (D) In comparison, POMCP performs
a particle filter-based search, adding one particle each time it visits a node. When
POMCP has only encountered a node once, the estimated reward given by Eq. (2.20)
is maximized. However, this estimate is inaccurate. (E) As soon as POMCP re-visits
a node, there are now two particles, leading to increased belief uncertainty and less
reward. (F) The result is a breadth first search.

Real-Time Performance
Our solver is an anytime algorithm, which means its performance improves given
more computation time, but it can be stopped at any point to return the current best
solution. In our real-time hardware experiments, the solver evaluation is not fast
enough to achieve the highest 𝑁 = 2000 level of planning we consider in Fig. 3.3.
Instead, when running s-FEAST on the robotic spacecraft simulator, we typically
evaluate 𝑁 = 85 trajectories, which is sufficient to successfully identify faults and
maintain safety while substantially outperforming baseline methods. This achieves
the goal of validating our conceptual algorithmic innovations, although it is possible
to further optimize the software and hardware implementation for a faster run time
and better performance.

To this end, we note s-FEAST presents several promising opportunities for future
performance improvements. First, the marginalized filter we presented in Chapter 2

62

factors out the physical state estimators, meaning that s-FEAST can leverage any
existing estimators that may already be optimized for a system with minimal changes.
Second, there exists a growing body of literature on methods to accelerate partially
observable planning through parallelization [106] and GPU use [107]. Finally, in
the next chapter we will explore an alternative array-based implementation aimed at
optimizing tree search performance on pipelined processors. We view these types
of optimizations as complementary to s-FEAST’s algorithmic innovations which
achieve better scaling through exploitation of the active sensing problem structure.
They also pair well with the anytime nature of our algorithm, as increasing simulation
speed directly translates into more simulations and improved performance, as seen
in Fig. 3.3 (B and D).

The anytime property is also desirable compared to traditional active fault diagnosis
methods, which often require the computation to complete before a solution can be
returned and may employ approximations to achieve real-time performance [73].
Instead, we can return the best solution found within any computation budget,
and we have shown in Chapter 3 that s-FEAST converges asymptotically to the
optimal solution, a guarantee not provided by existing chance constrained anytime
methods [89].

We expect the ongoing trend of ever-increasing computational power onboard space
robotics missions [13], [14] to be enabling for our methodology, especially as
payloads are developed for increasingly data-intensive science applications.

Envisioned Use Cases
As our algorithm only needs to run when a fault is suspected or a safety-critical
situation is encountered, we envision a concept of operations where our algorithm
is dormant until needed, in which case it takes priority over non-essential payload
operations to monopolize computing resources for a short duration, before handing
back control when normal operations can resume. Our algorithm could also run
at scheduled intervals to proactively check for possible faults, resulting in planned
payload down time much like other maintenance operations including charging
windows and course corrections that mission planners currently consider.

This intermittent approach will also minimize the fuel or other critical resources
used by s-FEAST. If proactive runs are scheduled during mission formulation, s-
FEAST’s resource use could be explicitly budgeted for. Further, this budget, or
fractions of it, could be formulated as another constraint that s-FEAST must satisfy

63

over its planning horizon in addition to safety. This approach could explicitly balance
minimizing short term dangers with the need to preserve long term capabilities for
mission life time, much like approaches balancing potential science payoffs with the
risk of mission failure [108].

Our algorithm will be most effective in systems with high functional redundancy
where faults must be diagnosed in a matter of minutes. These scenarios are likely to
create ambiguity between possible failures, which s-FEAST can resolve. The time
frame also precludes ground intervention and requires autonomous capabilities,
but still allows enough time to take test actions onboard the system and gather
information. In particular, we envision s-FEAST enabling missions to accept higher
levels of risk, stemming from lower budgets, less preflight qualification, or harsher
environments, by providing a reliable method to identify faults when they occur,
enabling effective recovery by the onboard controller.

When fault recovery must occur in a manner of seconds, there is not enough time
for s-FEAST to gather additional information. If ambiguity exists between possible
faults, recovery options such as switching to a fully redundant back up system
may instead be necessary as opposed to determining the loss of capabilities and
adjusting the controller accordingly. Here however, our marginalized filter may
still provide an effective method to distinguish between multiple fault scenarios by
combining prior failure likelihoods with the available observations in an efficient
and optimal manner. Similarly, when fuel budgets are particularly tight, we can
run our marginalized filter passively to monitor the likelihood of dangerous faults,
only taking actions to intervene or gather further information when the safety of the
system drops below a tolerable threshold.

Application of s-FEAST to Other Information Gathering Problems
We note that our approach to belief-space planning and sampling-based safety can
be applied to other information-gathering problems where the underlying state has
a tractable belief-update.

For example, we can consider the classic problem of a robot autonomously mapping
an unknown environment [109] or future robotic planetary exploration missions
where actions are taken to scout out areas of potentially high scientific value [110]. In
both cases, gathering information is a key goal, necessitating belief-space planning.
And in both cases, the robot might be subject to additional requirements where the
effect of high variance makes constraints on expectation alone limiting; ranging

64

from the safety constraints we consider here to battery or time budgets limiting
exploration.

Limitations
While we believe s-FEAST provides a strong mix of real time performance and
generality, it is not without limitations. As a model-based approach to fault iden-
tification, s-FEAST’s performance is dependent on the accuracy of the dynamics,
measurement, and fault models. Modeling error can be accommodated by increas-
ing the noise or adding unknown disturbance terms. However, these approaches
decrease the predictive power of our marginalized filter and tree search. In our
hardware experiments, we adopted a conservative noise term to account for errors
in our onboard model, but found that we needed to calibrate for residual friction
terms to achieve reliable performance.

Another limitation of our method is the need to enumerate in advance the faults that
s-FEAST will consider. While it is often the case that most likely or risky failure
modes can be determined through modeling, ground testing, or operational history,
this limits our ability to autonomously handle previously unseen and unconsidered
faults.

To address this, opportunities for future improvements of s-FEAST include broad-
ening the current enumerated sets of discrete possible faults to bounded subspaces.
This would allow for scenarios where the faults of concern are not known in ad-
vance, but the bounds on possible fault behavior are. Another avenue for future
work would be to unify s-FEAST with data-driven approaches for safe exploration
of unknown, fully observable dynamics to actively estimate unmodeled actuator or
sensor faults [111], [112]. Similar methods of learning residual dynamics online
could also be employed to mitigate the effects of modeling errors [113], [114].

Finally, we note that our method will fail if a safety-critical state of the system
becomes completely unobservable or uncontrollable. However, these situations will
be unrecoverable for our baselines and related work as well.

4.3 Chapter Summary
In comparison with other approaches to planning for safety and information gather-
ing, s-FEAST provides a flexible method for online active fault estimation in safety-
critical settings. Through the use of an efficient marginalized filter, s-FEAST can
perform information gathering in settings intractable to existing tree-based solvers.

65

Its modular nature presents opportunities for future performance enhancements of
s-FEAST by estimator or tree search optimizations. Further, its anytime property
allows s-FEAST to scale its performance with the available computational budget.

66

C h a p t e r 5

AN ARRAY-BASED IMPLEMENTATION OF MONTE CARLO
TREE SEARCH

5.1 Motivation
In the pervious chapters, we saw that both FEAST and s-FEAST’s performance
heavily depended on how many iterations of the tree search could be run within a
fixed computational time. In particular, we were only able to reliably run s-FEAST
at a rate of about 85 simulations per tree in our robotic experiments, which was just
barely enough to achieve the results we presented.

Given that we saw improvements up to simulation levels of at least 𝑁 = 2000
in Fig. 3.3, there is significant unrealized potential that can be gained by either
increased computational capabilities, like we discussed in the previous chapter, or
algorithmic innovations which lead to more efficient searches. Heuristic approaches
are also possible, and we discuss them at the end of the of the chapter. However,
these methods suffer from a loss of the theoretical guarantees we used to prove the
convergence of FEAST and s-FEAST in Chapters 2 and 3.

This motivates us to consider methods of accelerating tree searches without changing
the underlying algorithm. One promising method would be to employ hardware
accelerators, such as GPUs. While these have presented promising results in the
acceleration of rollouts to terminal states and other readily parallelizable aspects of
tree searches [107], [115], [116], deploying a full tree search algorithm on a GPU is
limited to due the high memory latency and limited branching performance [117]. In
our own development of FEAST and s-FEAST, we encountered similar constraints
when using software packages that compiled code into fast, low level instructions,
but needed to return to higher level and lower performance code whenever branching
occurred [118].

Branches are a type of control flow commonly found in programs where the execution
path taken depends (or branches) on the result of a previous instruction. One of the
most common occurrences of branching is an "if" statement, which splits execution
based on a boolean value. The reason branches result in decreased computational
performance is due to the pipelined architecture that is nearly ubiquitous on modern
processors and is visualized in Fig. 5.1. To leverage the full performance of a CPU

67

Figure 5.1: Processor Pipelining. A pipelined processor carries out instructions
(represented as colored blocks) in stages. Here, each column represents a processor
clock cycle. Between clock cycles, instructions are advanced through the pipeline,
allowing each component of the hardware to be utilized simultaneously. When
branching between multiple execution paths occurs, the processor guesses which
instructions to load. If it guesses incorrectly, the instructions must be flushed and
replaced with the correct execution path. 1

(or GPU), instructions (such as adding two numbers) are queued and processed in
order through different sections of the processor simultaneously. When a branch
occurs, the processor must guess which execution path will be followed next, and
load the appropriate instructions. If the guess is incorrect, these instructions must
be flushed, and new instructions loaded at the start of the pipeline, resulting in lost
computation cycles [119]. When some instructions or data must also be fetched
from memory, this effect is further exasperated by memory latency [120]. The
combined effect is that choice of algorithm architecture can have significant effects
when deployed to real systems, leading to the development of techniques to avoid
expensive instructions [121].

Branching is fundamental to tree searches, as we need to decide which child node to
proceed to (or new child to initialize), at each level of the tree, for each simulation.
In the case of FEAST and s-FEAST, we perform expensive dynamics and belief
updates whenever a new node is generated. For a tree with 𝑁 = 2000 simulations,
40 possible failures, and a max depth of 4, we compute at worst case 320,000 filter
updates. These are primarily dominated by matrix operations, and would be well

1Adapted from "A generic 4-stage pipeline" by Cburnett under https://creativecommons.
org/licenses/by-sa/3.0/

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/

68

suited to parallelization on a GPU or other accelerator. Unfortunately, because of
the branching at each level of the tree, we can only consolidate the operations into
8,000 batches, one for each branch we take.

This motivates us to consider implementation improvements to UCT (and PO-
UCT) [35], [37] that make the algorithms more efficient on computing hardware.
In particular, we are interested in developing an implementation with predictable
branching that may be better suited to accelerators such as GPUs.

5.2 Algorithm Overview
Our objective is to construct a version of MCTS with a predictable execution path
by using arrays as the primary data structure. This will allow for better processor
performance, by avoiding branch prediction failures in the processor pipeline and
by leveraging existing optimizations for array operations.

Our method is illustrated by classic techniques to avoid branching instructions
when deciding between two values depending on a boolean variable. Instead of
using an "if" statement, the answer can be computed using arithmetic or binary
operations [122]. This form of micro optimization is valuable on processors which
feature expensive branching, have limited access to compiler optimizations, or lack
conditional move instructions. An example is shown below in in Algorithm 4 for a
system with 8-bit integers.

Algorithm 4: Three equivalent implementations of selecting the integer a or b
based on the value of the condition c. The first implementation introduces a
branch, the last two do not.

1 int8 a ; int8 b ; bool c ; int8 r ;
2 if c then
3 r = a;
4 else
5 r= b;
/* Equivalent Implementation */

6 r = a * c + b * !c ;
/* Equivalent Implementation */

7 int8 m = c ;
8 m= m | m « 1;
9 m = m | m « 2;

10 m = m | m « 4;
11 r = a & m| b & m ;

69

In MCTS, the fundamental instance of branching is deciding whether to add a child
node or not. If the selected action (or state), has already been added to the tree,
then the previous node is retrieved and the algorithm traverses downwards. If it has
not been, then a new node must be initialized before continuing. Unfortunately, this
occurrence of branching is more complicated than the example of Algorithm 4, as
the behaviors are fundamentally different.

However, this example still gives a clue to how the branching can be made pre-
dictable. If we considered the child nodes to be arranged in a list ordered by time of
insertion as diagrammed in Fig. 5.2, then matching an existing node is equivalent to
finding the index of the matching child within this list. Conversely, failing to match
a node could be represented by the index past the end of the list. Following the
example in Algorithm 4, the index of the matching child is our first integer, a, the
index of the new node is the second integer, b, and the boolean condition, c, is now
whether or not a match occurred. We note that while the value of the match index,
a, may be ill defined if no match exists, because its value will be discarded, this is
no issue.

We have now made selecting a child predictable, but we run into one more challenge.
When adding a new node to the tree, we may need to perform some initialization
steps, or otherwise execute different behavior than when selecting an existing node.
It is still possible to avoid guessing which execution path to follow, but it now
comes at a price. Instead of performing one set of behavior conditioned on whether
the node is a new or existing child, we perform both behaviors every time, and
use techniques like that of Algorithm 4 to nullify the operations that should not
be performed. This is the trade off for predictable execution. To always know in
advance which instructions will be executed, we now must perform some repeated
and redundant computation. However, we will show that the resulting optimization
for pipelined processors outweighs this penalty.

This discussion outlines the general approach we take when developing our array-
based MCTS algorithm. In the next section, we will focus in detail on developing
the algorithm for discretized dynamical systems like we considered in Chapters 2
and 3. However, we note that our algorithm will also work in other systems that
can be formulated as an MDP or POMDP, and is in fact simplified in systems with
bounded state transitions.

70

Figure 5.2: Child node diagram. The child nodes can be thought of as an indexed
list. In this case, taking action 𝑎4 would be equivalent to selecting index 1, whereas
taking action 𝑎0 would be represented by index 3, indicating that child has not yet
been added to the list.

5.3 Array-Based MCTS Algorithm
MDP Development
We first develop our array-based tree search algorithm for fully observable MDP
systems, to build intuition and validate our performance. We will then extend to
POMDP systems, including the noisy planar spacecraft system we validated FEAST
and s-FEAST on in the next subsection.

Much like in our development of FEAST, fully observable dynamical systems have
two types of nodes within the tree search, action nodes and state nodes, which
together make up a single layer of the tree, as shown in Fig. 5.3 for a simple system
with three actions and three states. Layer zero is degenerate, with no actions and
only the root state. Each node stores the total number of visits so far, the value or
reward at the node, and the node’s children. To simulate down the tree, an action is
selected according to the UCT augmented value function:

�̂�aug(𝐻 ∪ 𝑎) = �̂� (𝐻 ∪ 𝑎) + 𝑐

√︄
log 𝑁 (𝐻)
𝑁 (𝐻 ∪ 𝑎) (5.1)

where like in FEAST and s-FEAST, 𝐻 represents the history in the tree up until
the current state node, and 𝐻 ∪ 𝑎 represents taking action 𝑎 at this point in the
tree. �̂� (·) and 𝑁 (·) represent the value estimates and visit counts for given histories,
respectively. The next state is generated by simulating the system forward using
the selected action. In continuous systems, the resulting state is discretized and
compared to all the current child state nodes. If no match is found, a new child is
initialized. The search continuous until the simulation depth has been reached, then
backpropagates up the tree, adjusting the value and visit counts as it goes.

71

Figure 5.3: MDP tree search diagram. Diagram of a tree search over a simple
MDP with 3 actions and 3 states. The tree has been split into depth layers, with
depth 0 containing only the root node. Node size represents relative visit frequency.
Darker colored states represent higher rewards, and darker action nodes represent
higher values resulting from the weighted average of the rewards encountered under
them. Note that each action may not result in all possible states.

Typically, this algorithm is implemented using tree data structures. These hold a
reference to the parent node, the current value or reward, visit count, and a list of
each child action or state node. While the number of possible actions is fixed, the
number of states may not be, or may be very large. This is particularly true in
dynamical systems with Gaussian noise models like the planar spacecraft model we
consider. A strength of tree data structure implementations is that this branching is
handled naturally by storing an extendable list of children nodes. However, by nature
of searching over an unknown problem, the branching encountered throughout the
tree is hard to predict.

Instead, in our algorithm, we store each action and state node within a layer in two
shared arrays. Now, adding a child to a node means adding a new node to the end
of the appropriate array. Rather than directly containing their children, a node now
saves the index of each child. This modified structure is visualized in Fig 5.4 for the
first six simulations of the simple three action and three state system we considered
earlier. The nodes in each layer are now ordered by time of creation, with the
children of different parents being intermixed.

72

Figure 5.4: MDP node array diagram. Diagram of the first six simulations of the
same tree search as shown in Fig. 5.3. Each node is now sorted by type within a
layer and assigned an index when added. Darker colors represent the visit frequency
of each node. The values and rewards are not visualized here.

One observation that can be made immediately is that the length of each node array
increases by layer. At depth 1, the action nodes are fully expanded, as all three
actions which can be taken from the root node have been tried. Conversely, four
more state nodes can be added to the first layer to reach a total of nine, three for each
of the three actions. These nine state nodes can themselves have three children, and
so on. This observation that the branching is bounded, if growing geometrically
by layer, motivates our decision to consider a hierarchical structure where the data
from each layer is stored in separate arrays, as opposed to storing all state and all
action nodes within the same array. By separating out the smaller layers near the
root node, we can efficiently store them and increase the likelihood they are kept
within the processor cache, leading to lower latency and faster execution. We will
show in our numerical results that this method leads to a substantial speed up at the
trade off of somewhat a more complicated data structure.

We have established the architecture for organizing the nodes into layers, and this can

73

be done to store the parents and visits to each node, as well as the states and action
values. However, one challenge remains in how to effectively store the child indexes
while predictably determining whether or not a new child needs to be created. In
the case of the action node children of a state node, we can take advantage of the
fact that the set of available actions is constant and numbered throughout the tree
search. Therefore, we consider an array of child indexes for each individual belief
node, resulting in a 2D array for each layer. Each column corresponds to a single
state node, and each row represents a consistent action, eliminating the need to
store the action taken within the child node. Our action selection method is shown
in Algorithm 5 below. We are given the current depth and state index, and begin
by retrieving the indexes of each child action. If unassigned actions exist, these
entries are initialized to a value one greater than the maximum possible index. This
corresponds a virtual action which is never visited, ensuring we try the unassigned
actions. If none exist, we set untriedAction to false and retry the action with the
best UCT value.

Algorithm 5: Predictable Action Selection.
1 def selectChildAction(depth,curStateIdx):
2 childActionIdxs =

childActionNodes(depth).column(curStateIdx) ;
3 childActionValues = actionValues(depth + 1)[childActionIdxs] ;
4 childActionVisits = actionVisits(depth + 1)[childActionIdxs] ;
5 bool untriedAction = anyUnvistedChild(childActionVisits) ;
6 uctValues = uctValue(childActionValues,
7 childActionVisits,stateVisits(depth)[curStateIdx]) ;
8 int8 bestAction = maxIndex(uctValues) ;
9 int8 newAction = getRandomUntriedAction(childActionVisits) ;

10 int8 nextAction = newAction * untriedAction + bestAction *
!untriedAction ;

11 int8 nextActionIdx = numActionsAtDepth(depth + 1) *
untriedAction +
childActionNodes(depth)[bestAction,curStateIdx] *
!untriedAction ;

12 childActionNodes(depth)[nextAction,curStateIdx] =
nextActionIdx ;

13 numActionsAtDepth(depth + 1) += untriedAction ;
14 return nextAction ;

where depth and curStateIdx represent the current position of the tree search,
actionValues, actionVisits, stateVisits, numActionsAtDepth, and

74

childActionNodes represent global tree data arrays we can access by layer, and
we use the helper functions anyUnvistedChild, uctValue, getRandomUntriedAc-
tion to determine if unvisited child actions exist, compute the UCT value function
(Eq. (5.1)) for each action, and return a random untried action (or a default value if
none exist), respectively. Note we only need to return the selected nextAction, as
all other information has been stored in the global tree data arrays.

We use a similar method for the child state nodes. However, this is complicated
by the fact that the states are not already ordered like the actions are, and may
have unbounded branching as discussed before. To address this, we make two
modifications to the child state node array from the architecture of the child action
node array. First, we now add the state nodes to each column in order of generation,
instead of assigning a consistent meaning to each row. To track the number of state
nodes already added to each column (and hence where to add a new child state
node), we add a row to the bottom of the array which counts the number of state
nodes already present, initialized to zero. This doubles as the index which a new
state should be added to.

The other change we make from the child action node array is to assume a max level
of state branching. In simple MDPs, way may know this branching exactly, but in
more complicated problems it may be unclear. In the case of our planar spacecraft
with Gaussian noise, the branching is actually unbounded, as outlier states are rare
but possible. However, we also know that for each action taken, the resulting states
will be clustered around the noise free dynamics. For a given number of simulations
in the tree and noise level, we can assume a maximum level of branching and verify
it empirically. Further, we can also set different levels of assumed branching by
search layer, taking advantage of the our knowledge that actions closer to the root
will be taken more often, leading to more chances of branching to outlier states, and
actions further down the tree will branch less often. Other approaches could be taken
to bound the amount of state branching, including clipping the noise distribution or
varying the amount of noise or discretization in different layers of the tree.

The resulting child state node selection algorithm is given in Algorithm 6 below.
We are given the current depth, action index, and the state generated by simulating
the selected action. Like when selecting a child action, we begin by retrieving the
first 𝑁𝑆,𝑙 child state indexes from the column of the current action node, where 𝑁𝑆,𝑙
is the assumed state branching at layer 𝑙. If unassigned states exist, these entries are
initialized to point to the last possible state in the layer, which has a value initialized

75

to NaN. This ensures these entries will not match when we compare each child state
against the given state. We set the matchIdx to the child state matching the most
elements of the given state, however the matchFlag is only set if all states match.
As with the action selection, we use this flag to distinguish between whether to write
to matchIdx or a new entry in the child state node array, as well as determine the
value of nextStateIdx and if we should update the number of state nodes in the
layer and the current column of the child state node array.

Algorithm 6: Predictable Child State Selection.
1 def selectChildState(depth,curActionIdx,generatedState):
2 childStateIdxs = childStateNodes(depth).column(curActionIdx);
3 childStates = stateNodes(depth)[childStateIdxs] ;
4 for 𝑖 = 1 . . . 𝑁𝑆,𝑙 do
5 stateMatches[i] = Σ (childStates[i] == generatedState) ;

6 int8 matchIdx = maxIndex(stateMatches) ;
7 bool matchFlag = stateMatches[matchIdx] ==

size(generatedState);
8 int8 idxInChildArray = matchIdx * matchFlag +

childStateNodes(depth)[𝑁𝑆,𝑙 ,curActionIdx] * !untriedAction ;
9 int8 nextStateIdx =

childStateNodes(depth)[matchIdx,curStateIdx] * matchFlag +
numStatesAtDepth(depth) * !matchFlag ;

10 childStateNodes(depth)[nextStateIdx,curActionIdx] =
nextStateIdx ;

11 stateNodes(depth)[nextStateIdx] = generatedState ;
12 childStateNodes(depth)[𝑁𝑆,𝑙 ,curActionIdx] += !matchFlag ;
13 numStatesAtDepth(depth) += !matchFlag ;
14 return nextStateIdx ;

where curStateIdx is the index of the action node we are deteriming the child
of, generatedState is our generated state to compare against, stateNodes,
numStatesAtDepth, and childStateNodes represent global tree data arrays we
can access by layer, Σ sums the number of matched states, maxIndex() returns the
index of the best matching child state, and size() returns the number of elements
in the state. There is no issue with non-unique maxima for stateMatches as this
only occurs when no exact matches exist, resulting in matchFlag being set to false.
Again we only need to return the selected nextStateIdx. All other information

76

has been stored in the global tree data arrays.

Combining these two components results in our full array-based MCTS algorithm,
visualized below in Fig. 5.5. Each layer consists of 8 arrays, divided between the
action and state nodes, with columns representing a single action or state within a
layer. The parent state and action arrays store each node’s parent index. Alternatives
to Algorithms 5 and 6 can be constructed by searching over the parent arrays, however
these require exhaustive searches that scale poorly with the number of nodes in a
layer, and return varying numbers of nodes, which could reintroduce the need for
branch prediction.

77

Figure 5.5: Array-Based MCTS Diagram. Diagram of the first six simulations
of of the same tree search as shown in Figs. 5.3 and 5.4, now using an array-based
MCTS representation. Each layer consists of 8 arrays, 4 each corresponding to
action and state nodes. Each column corresponds by index to a state or action node
within the layer. The parent array gives the indexes of each node’s parent shown
by the arrows. The child action arrays store the indexes of the child actions in the
layer below for each available action, if any. The row of the child index indicates the
action taken (note the actions are 1-indexed). The child state arrays point to the child
state nodes that have resulted from a given action. The states nodes are sorted by
order of creation, with the last element each column indicating what index the next
child should be added to. The columns in layers 0 and 1 are limited by the maximum
possible branching due to the number of actions and states. The number of columns
in layer 2 is limited for visualization. For clarity, array entries which have not been
written to during the search are left blank. Darker colored states represent higher
rewards, and darker action values represent higher weighted averages of the rewards
encountered after the taken action. Darker visit counts represent a higher frequency
of visiting each node. The final layer has no child actions.

78

We present the complete pseudocode of our array-based MCTS algorithm below
in Algorithm 7. We first initialize the data arrays for each layer of the search to
the default values of zero, unless indicated otherwise. We then iterated down the
tree, using Algorithms 5 and 6 to select the action and state child nodes before
backpropagating up the tree in the standard MCTS fashion. This process is repeated
the specific number of simulations, and the action with the best value is then returned.

In Algorithm 7, rootState is the initial state, 𝑁 the number of simulations to
perform, maxDepth indicates how many layers are present in the tree, actionSet
is the fixed set of actions for all layers, 𝑁𝑆,1−maxDepth represents the state branching
limits at each depth, const(𝑚,𝑛,𝑐) is a function which creates an 𝑚 by 𝑛 matrix
with each entry set to 𝑐, and rewardFunction() gives a reward based on the current
state. The variables curMaxNodes and curMaxChildNodes capture the maximum
possible branching at the current layer and its children. Knowing that we start
with a single root node, there are at most size(actionSet) actions below it, and
size(actionSet)∗𝑁𝑆,1 state nodes below that, and so on. We also know that at most
one action and one state node can be added per layer, per simulation, leading to an
alternative bound on the number of nodes per layer. This limit on the number of
states per layer can be seen visually in Fig. 5.5. Finally, we note that there is no
discounting in the backpropagation step in Algorithm 7, as we consider the finite
horizon setting, but it can easily be added in.

POMDP Development
Extending our array-based MCTS search to apply to POMDPs in addition to fully
observable MDPs is straightforward. Since the true state of the system is now
unobservable to the tree solver, we are instead given an initial belief at the root
node, and propagate this forward in the tree search, replacing state nodes with belief
nodes. A belief node differs from the state nodes used in the MDP implementation
in two ways. First, instead of storing and comparing simulated states to determine if
a new child node should be appended under an action node, we use the observations
generated.

The second change is that we also store the belief at each node, by propagating
it forward for a given action and observation pair. For example, to adapt FEAST
and s-FEAST to an array-based implementation, we would use the marginalized
filter to propagate the belief, and the beliefs in each layer would be stored in 4
dimensional array, for each node, failure, and two dimensional covariance. This is

79

Algorithm 7: Array-Based MCTS
1 def arrayBasedMCTS(rootState,𝑁 ,maxDepth,actionSet,𝑁𝑆,1−maxDepth):

/* Initializing the Root Node */
2 stateNodes(0) = rootState;
3 childActionNodes(0) = const(size(actionSet),1,size(actionSet)) ;

/* Initializing Tree Data Arrays at Each Depth */
4 curMaxChildNodes = size(actionSet);
5 for 𝑙 = 1 . . . maxDepth do
6 curMaxNodes = curMaxChildNodes;
7 curMaxChildNodes = min(𝑁 ,curMaxChildNodes*𝑁𝑆,𝑙);
8 childStateNodes(𝑙) = const(𝑁𝑆,𝑙 + 1,curMaxNodes,curMaxChildNodes-1)

;
9 childStateNodes(𝑙)[𝑁𝑆,𝑙,:] = 0;

10 curMaxNodes = curMaxChildNodes;
11 stateNodes(𝑙)[curMaxNodes-1] = NaN ;
12 curMaxChildNodes = min(𝑁 ,curMaxChildNodes*size(actionSet));
13 childActionNodes(𝑙) =

const(size(actionSet),curMaxNodes,curMaxChildNodes) ;
14 for 𝑖 = 1 . . . 𝑁 do
15 curStateIdx = 0 ;
16 curState = rootState ;

/* Simulate Down the Tree */
17 for 𝑙 = 0 . . . maxDepth − 1 do
18 curAction = 𝑠𝑒𝑙𝑒𝑐𝑡𝐶ℎ𝑖𝑙𝑑𝐴𝑐𝑡𝑖𝑜𝑛(𝑙,curStateIdx) ;
19 curActionIdx = childActionNodes(𝑙)[curAction,curStateIdx];
20 stateParentNodes(𝑙 + 1)[curActionIdx] = curStateIdx;
21 curState = simulate(curState,actionSet[curAction]);
22 curStateIdx = 𝑠𝑒𝑙𝑒𝑐𝑡𝐶ℎ𝑖𝑙𝑑𝑆𝑡𝑎𝑡𝑒(𝑙 + 1,curActionIdx,curState);
23 actionParentNodes(𝑙 + 1)[curStateIdx] = curActionIdx;
24 summedReward = 0;

/* Backpropagate Up the Tree */
25 for 𝑙 = maxDepth − 1 . . . 0 do
26 summedReward += rewardFunction(stateNodes(𝑙 + 1)[curStateIdx];
27 curActionIdx = actionParentNodes(𝑙 + 1)[curStateIdx];
28 actionVisits(𝑙 + 1)[curActionIdx] += 1;
29 actionValues(𝑙 + 1)[curActionIdx] += (summedReward

-actionValues(𝑙 + 1)[curActionIdx])/
actionVisits(𝑙 + 1)[curActionIdx] ;

30 curStateIdx = stateParentNodes(𝑙 + 1)[curActionIdx];
31 stateVisits(𝑙)[curStateIdx] += 1

32 return arg max actionValues(0) ;

80

expensive, as is recomputing the belief update each time we regenerate a belief node
to avoid branching. In the chapter summary, we discuss possible hybrid approaches
to mitigate the price paid for excess repeated computation.

5.4 Preliminary Results
Having developed our array-based MCTS algorithm in the pervious section, we an-
alyze its performance in both MDP and POMDP settings here. We compare against
baselines of a traditional tree-based implementation and an alternative architecture
which uses a single state node array and single action node array shared by all layers
of the tree, to justify our choice of a layer based approach. For consistency, each
search method was implemented in C++17, with the same compiler optimizations
and libraries. All experiments were performed on a AMD Ryzen 7 3700X (8-Core
Processor, 3593 Mhz) with 32 GB of memory available.

First, we validate that our array-based MCTS can solve planning problems by
considering a MDP with a non-convex obstacle. The challenge is that planning
methods must be able to consider far enough into the future to discover that going
around the obstacle is optimal, as opposed to a simple gradient based solution
which will get stuck against the obstacle wall. We used the same planar spacecraft
dynamics model as in Chapters 2 and 3 to validate FEAST and s-FEAST, except
that the model is now fully observable and not subject to any faults. In Fig. 5.6(A),
we present a 12 time step simulation, demonstrating our array-based method can
successfully solve this MDP problem. In Fig. 5.6(B) we show the growth of the
array-based search over a single time step, validating that a branching search is
being performed. Note that the state discretization results in branches snapping to
the same points in space. Some simulations result in points inside the obstacle.
These receive a large negative penalty, and are not selected by the algorithm.

81

Figure 5.6: Array-based MCTS solving a non-convex problem. Tree search
around a non-convex obstacle. (A) The array-based MCTS method successfully
escapes the local minimum and navigates to the goal state. (B) One iteration of the
array-based MCTS search. Note the state discretization results in branches snapping
to the same points in space.

Next, we consider the wall-clock time performance of our array-based tree search
on this MDP problem. In Fig. 5.7, we present the results of averaging the simulation
times of the first 10 time steps of this experiment over 10 trials. We note that across a
wide range of total simulations, our method demonstrates consistently better scaling
with increased simulation depth than the tree-based method as well as the array-
based method with no layer sorting. Interestingly, the array-based method with no
sorting by layer has the same or worse scaling with maximum simulation depth than
the tree-based implementation. Combined with its dramatically worse wall clock
time, this suggest that sorting the nodes by layer is necessary for efficient memory
access, and may indicate that the most frequently accessed nodes near the root of
the search are in fact remaining within the processor cache.

Another general trend observed was that the tree-based search took longer during
the later time steps of the experiment, while the array searches did not. This may
be due to the tree more efficiently storing broader searches with more branching,
which typically occurred at the beginning of the experiment, than the array-based
implementations, which may be faster when the same values are repeatedly accessed
in the CPU cache.

Finally, we compare the performance of our array-based method with tree-based
implementations in partially observable planning settings. As a motivating problem,
we implement FEAST using our array-based algorithm, and present the results in

82

Figure 5.7: Array-based MCTS performance on the non-convex problem. The
wall clock time of our array-based MCTS search compared with a tree-based im-
plementation, and an alternative array-based MCTS algorithm that does not sort its
nodes into layers. All times are averaged over 100 time steps (10 simulations of 10
steps each). Lower values indicate faster execution.

Fig. 5.8. Now we observe that a persistent performance gap remains between the
two methods at all levels of simulation we considered in Fig. 3.3, and the improved
scaling with simulation depth has disappeared. This may suggest that recomputing
the belief at each node is prohibitively expensive or storing the large amount of
data is eliminating the advantage our array-based method had. However, we also
see that the performance gap is small, meaning that further optimizations, such as
deployment on a GPU or improved algorithm design might lead to us outperforming
the tree-based method.

5.5 Context with Related Work
There exists a significant body of work to accelerate MCTS and other tree search
methods. One dominant area of research is methods of parallelizing tree search
to take advantage of multi-threaded computing algorithms and processors such as
GPUs, which excel at executing many operations in parallel. The challenge however,
is that tree search methods are fundamentally sequential, as each search uses infor-
mation gained during the previous backpropagation step. Multiple approaches have

83

Figure 5.8: Array-based MCTS performance on the active fault estimation
problem. The wall clock time of our array-based MCTS search compared with a
tree-based implementation. All times are averaged over 100 time steps (10 simula-
tions of 10 steps each). Lower values indicate faster execution.

been taken to parallelization. The simplest approach is root parallelization [123],
where multiple independent tree searches are run. On completion, the value func-
tions at each root node are averaged to determine the overall optimal value [124].
While conceptually simple, this approach is inefficient, as it results in many repeated
computations. A more efficient approach is leaf parallelization [123], where roll
outs from newly added leaf nodes are parallelized across multiple threads [124].
This minimizes repeat computation, but can only be employed at the end of the tree.
Other approaches perform multiple searches within the same tree, but must carefully
manage the communication between threads to avoid data corruption, introducing
overhead [123]. Still other approaches combine several of these techniques, such as
by using CPUs for in-tree parallelization, and GPUs for leaf parallelization [107],
[115], [116].

Other approaches seek out heuristics to guide the tree search for more efficient explo-
ration. Arguably the most well known instance of this approach is Alpha Go [125],
which used learned value functions to approximate the outcome of a game from
an intermediate position, giving MCTS earlier signals to bias its exploration to-

84

wards. Similar approaches have been taken in real-time motion planning, where an
expert tree search is used to train a neural network enabling more efficient online
planning [126]. Still other approaches seek to leverage domain specific knowl-
edge to modify the tree search, by limiting actions, setting sub goals, or imposing
constraints [127]. While they achieve substantial empirical performance increases,
parallelization, machine learning, and other heuristic methods loose the theoretical
guarantees of traditional MCTS search [35] or more recent analysis [36]. This in-
spired our approach of optimizing the implementation of MCTS algorithms instead
as a complementary approach. As we do not need to modify the search algorithm,
we can run the original search algorithm and retain the theoretical guarantees or
apply our implementation to these parallelization and heuristic methods as well.

Arrays have previously been proposed to compress tree searches in the context of
string matching for natural language processing [128]. Branchless search algo-
rithms have also previously been identified as desirable in the context of binary
search problems [129], to avoid the penalties of branch misprediction on pipelined
architectures [119]. However, these methods have yet to be applied to MCTS or
decision making problems. Making branching predictable or avoiding it entirely
is also a common technique in GPU optimization [130], [131], and we believe our
array-based MCTS algorithm will enable better adaption of search methods to hard-
ware accelerators. We will discuss this and other opportunities for future work in
the next section.

5.6 Chapter Summary and Opportunities for Future Work
In this chapter, we have introduced an array-based implementation of MCTS. This
method offers several advantages over traditional tree implementations. It requires
no branch predictions, which means that it is suitable for processors with limited or
poor branching capabilities such as GPUs. Its array-based data structure can also be
efficient read and written too, and by storing each layer of the tree search separately,
we increase the likelihood that the most frequently accessed nodes will remain in
the cache.

In our experiments, we have validated that our method both successfully solves
classic MDP problems, and out scales the tree-based implementation with increasing
depth. In the POMDP setting, our algorithm achieved comparable speeds to the tree-
based implementation, but a persistent gap of several tenths of a second remained
regardless of the number of simulations or depth, which we suspected may have

85

been due memory latency and the expensive recomputation of belief updates. This
leads us to our first of several opportunities for future work.

While recomputation is inevitable if we wish to avoid branch prediction, one way to
minimize the redundant effort is to identify which layers will be fully expanded by the
end of the tree search. A hybrid approach could first expand these layers completely
before computing the rest of the tree. On subsequent simulations, these first layers
could be efficiently bypassed, and our predictable array-based search applied only
to the layers which will not be fully explored. We anticipate a method like would
enable our array-based search would outperform the tree-based implementation in
the POMDP experiment as well.

While GPUs and other hardware accelerators with limited branching capabilities
were a motivating application for the development of our method, the results pre-
sented here are all run on a CPU. Deploying our method on hardware accelerators
is the most obvious opportunity for future work, and we anticipate significant per-
formance improvements can be achieved. Similarly, dedicated profiling could be
performed to identify other opportunities for algorithmic optimization, particularly
to verify our intuition that keeping the portions of the tree close to the root in the
processor cache is essential for rapid searches.

86

C h a p t e r 6

EXTENSIONS TO ADVERSARIAL MULTI-AGENT SETTINGS

[1] J. Ragan, J. Ibrahim, S.-J. Chung, and F. Hadaegh, “Mitigating stealth at-
tacks via game-theoretic switching in multi spacecraft systems,” Interna-
tional Astronautical Congress (Review at Acta Astronautica), 2024. [On-
line]. Available: https://iafastro.directory/iac/paper/id/
89213/summary/,

[2] H. Tsukamoto, J. D. Ibrahim, J. Hajar, J. Ragan, S.-J. Chung, and F. Y.
Hadaegh, “Robust optimal network topology switching for zero dynamics
attacks,” in 2024 63nd IEEE Conference on Decision and Control (CDC)
(© 2024 IEEE), 2024. [Online]. Available: https://arxiv.org/abs/
2407.18440,

In the pervious chapters, we developed FEAST and s-FEAST as methods for active
fault estimation which enable robotic systems to autonomously test for anomalies by
constructing trees of possible actions and observations, then selecting the branches
which lead to the most informative (and safe) futures. While we developed this
idea of planning active information gathering in single agent settings, our ideas
naturally extend to multi-agent settings as well. One simple example would be to
replace the comet obstacle in Chapter 3 with an independent agent, and modify the
safety constraints to account for the actions (or range of actions) the other agent will
take. While a more complicated problem, extensions like this are direct extension
of the safe active fault estimation problem, and we expect s-FEAST to perform well
in these settings as well, provided the computational power is scaled to match the
problem complexity. In this chapter, we will instead explore applications of our
active tree search methodology to a new class of inherently multi-agent problems.

6.1 Motivation
Formation flying spacecraft working collaboratively to achieve a mission objective
present the possibility for greater performance than a single monolithic architec-
ture [20], [21], in domains ranging from interferometry [132]–[134] to inspec-
tion [135]–[137]. At the same time, this increased system complexity presents
increased opportunity for outside attacks.

https://iafastro.directory/iac/paper/id/89213/summary/
https://iafastro.directory/iac/paper/id/89213/summary/
https://arxiv.org/abs/2407.18440
https://arxiv.org/abs/2407.18440

87

Recent work has shown that spacecraft systems are vulnerable to cyberattacks [138],
[139], including the possibility for full seizure of control [140]. For formation-flying
missions this introduces the possibility of rouge agents acting against the group’s
objectives.

While formation flying can perform relative navigation to jointly estimate the state
of the network [141], [142], each spacecraft cannot individually monitor every agent
to ensure nominal performance. Instead, they must rely on collaborative sensing
capabilities and information shared among the formation to establish an estimate of
the full network’s state. This reliance on trusted communication and collaboration
presents an opportunity for a rouge actor to exploit, enabling it to avoid detection
by sharing false observations.

Defending against stealth attacks is challenging, as a covert attack has both high
knowledge about the system and the resources to exploit it [143]. Traditional ap-
proaches develop conditions under which no attack can be stealthy [144], [145], or
which bound the effect of stealth attacks [146]–[149]. However in some systems,
these conditions cannot be satisfied and the effects of stealth attacks may be un-
bounded. One such example is the angles only navigation problem we consider,
where regardless of the selected observation topology, parts of the state space will
be unobservable in the presence of false sensing data.

To address this, the system must be modified to reveal stealthy attacks. As changing
the dynamics of the system is often infeasible, we instead consider switching the
multi-agent network topology, and seek methods to find the optimal reconfiguration.
In this chapter, we apply switching-based detection approaches to stochastic systems
with nonlinear observations and a general probabilistic notion of stealthiness. As
real spacecraft systems are inherently subject to noisy disturbances and measure-
ments, the detection metric we propose provides a means for determining whether
unexpected measurements are sufficiently anomalous to indicate the presence of an
attack. An attacker trying to avoid detection may then try to “hide in the noise,”
leading to a two-player, zero-sum game where the attacker seeks to maximize the
disruption without triggering detection, while the defender attempts to reveal the
attack and bound the influence of any undetected attacks.

The remainder of the chapter is organized as follows. First, we develop a general
framework for an observation switching system subject to control input attacks
and false observations. We then show how switching between topologies can
be formulated as a constrained optimization problem, much like the safe active

88

fault estimation problem we considered in Chapter 3. When the attacker is also
allowed to change strategies, we formulate the problem of stealth attacks in this
system as a zero-sum game between the attacker and defender. Taking inspiration
from s-FEAST and the methods we developed for safe active fault estimation, we
then reformulate this problem into a form suitable for Monte Carlo Tree Search
(MCTS) methods to develop the Switching System under Stealth Attacks Monte
Carlo Tree Search (S3AM) algorithm which solves for both optimal attacks and
defenses. Finally, we validate our algorithm by demonstrating the ability to limit
the disruption of stealthy attacks in an angles only navigation system.

6.2 Problem Formulation
In the development of our method, we consider the following discrete-time system
with linear dynamics and nonlinear sensing:

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘 + 𝐵𝑎𝑘 + 𝑤𝑘 (6.1)

𝑦
𝑗

𝑘
=

ℎ 𝑗 (𝑥𝑘 , 𝑑𝑘) + 𝑣𝑘 if 𝑗 ≠ 𝔞

𝑦𝑎
𝑘

if 𝑗 = 𝔞
(6.2)

where the 𝑘 subscript denotes a time index, 𝐴 is the state transition matrix, 𝐵 is the
control influence matrix, ℎ is the nonlinear observation function, 𝑥 ∈ R𝑛 is the state
of the system, 𝑢 ∈ R𝑚 is the control input, 𝑦 ∈ R𝑝×R𝑞 are the observations indexed
by 𝑗 , and the stochastic process and measurement noise sequences 𝑤𝑘 and 𝑣𝑘 are
assumed to be zero mean, mutually independent, and independently and identically
distributed (i.i.d.).

This system is under attack, with malicious inputs, 𝑎𝑘 ∈ A𝑘 ⊂ R𝑚 and false
observation data 𝑦𝑎

𝑘
replacing the 𝔞-th measurement. To detect these attacks, the

defender can reconfigure the system, by selecting a new sensing topology 𝑑𝑘 ∈ D,
changing the observation function ℎ. The sets of possible attacks at each time step,
A𝑘 , and topologies, D, are assumed to be finite and the attacks are assumed to be
bounded as ∥𝑎∥ < 𝑎max,∀𝑎 ∈ A𝑘 .

The attacker and defender each carry a belief over the state of the system. Like in
Chapter 2, we update these beliefs at each time step using a Bayesian update [31]:

89

𝑏𝑑𝑘 (𝑥) =
P(𝑦𝑘 | 𝑥𝑘 , 𝑑𝑘 , 𝑢𝑘)

∫
P(𝑥𝑘 | 𝑥𝑘−1, 𝑑𝑘 , 𝑢𝑘)𝑏𝑑𝑘−1(𝑥)d𝑥𝑘−1

P(𝑦𝑘 | 𝑦𝑘−1, 𝑑𝑘 , 𝑢𝑘)
(6.3)

𝑏𝑎𝑘 (𝑥) =
P(�̃�𝑘 | 𝑥𝑘 , 𝑑𝑘 , 𝑢𝑘 + 𝑎𝑘)

∫
P(𝑥𝑘 | 𝑥𝑘−1, 𝑑𝑘 , 𝑢𝑘 + 𝑎𝑘)𝑏𝑎𝑘−1(𝑥)d𝑥𝑘−1

P(�̃�𝑘 | 𝑦𝑘−1, 𝑑𝑘 , 𝑢𝑘)
(6.4)

The defender is unaware of the attack input, so updates its belief using 𝑢𝑘 and 𝑦𝑘 ,
whereas the attacker updates its belief using 𝑢𝑘 + 𝑎𝑘 , the true input to the system,
and the unattacked (noisy) measurement �̃�𝑘 , which is defined as:

�̃�
𝑗

𝑘
=

𝑦
𝑗

𝑘
if 𝑗 ≠ 𝔞

ℎ𝔞 (𝑥𝑘 , 𝑑𝑘) + 𝑣𝔞 if 𝑗 = 𝔞
(6.5)

where 𝑣𝔞
𝑘

indicates the (unknown) component of the process noise affecting the 𝔞-th
measurement. The initial belief, 𝑏0(𝑥), is shared between the attacker and defender,
and is assumed to be unbiased. At each time step, the attacker is assumed to know
the defender’s belief, but not vice versa. For brevity, we will omit the explicit 𝑥
dependence on beliefs going forward.

We define the stealthiness of the attacker by whether 𝑏𝑑
𝑘

given by Eq. (6.3) signifi-
cantly differs from the nominal, unattacked prior belief:

𝑏𝑛𝑘 =

∫
P(𝑥𝑘 | 𝑥𝑘−1, 𝑑𝑘 , 𝑢𝑘)𝑏𝑑𝑘−1(𝑥)d𝑥𝑘−1 (6.6)

To determine statistical significance, we employ the Wasserstein-2 metric to compute
the distance between these beliefs [150], [151]. We bound this distance as:

W2(𝑏𝑑𝑘 , 𝑏
𝑛
𝑘) ≤ 𝛼 (6.7)

where 𝛼 is a user defined parameter set to limit the false alarm rate tolerable to
the defender. Thresholding Wasserstein distance metrics as a method to detect
stealth attacks has previously been proposed for linear time-invariant stochastic
systems [152], [153]. Here we extend this approach to non-linear observations and
switching systems.

In practice, evaluating the Bayesian updates in Eqs. (6.3) and (6.4) may be in-
tractable, especially in nonlinear systems. Instead, we will consider nonlinear filters
to propagate 𝑏𝑑 and 𝑏𝑎. In this case, 𝑏𝑛 corresponds to prior distribution of the
defender’s filter before measurement updates are.

90

Zero-Sum Game Formulation
This definition of attack stealthiness motivates us to understand how disruptive a
stealth attack can be to the system given by Eqs. (6.1) and (6.2). To mitigate this
risk, we seek well designed defensive strategies.

We formalize our problem as a two player game over 𝐾 time steps. At each time
step, the attacker seeks to maximize and the defender seeks to minimize a stage
cost function, 𝐽𝑘 , subject to this stealthiness constraint. The simple stage cost we
consider is to regulate the system about a nominal position while minimizing the
state disruption and the control effort of each agent:

𝐽𝑘 = (𝑥𝑘 − 𝑥0)⊤𝑄𝑘 (𝑥𝑘 − 𝑥0) + 𝑢⊤𝑘 𝑅𝑘𝑢𝑘 (6.8)

where 𝑥0 is the nominal initial positions of each agent and𝑄𝑘 and 𝑅𝑘 are symmetric
positive definite costs for the displacement and control effort. Summing these stage
costs over the time horizon results in the following value function:

𝑉 (𝑏0, 𝜋𝑑 , 𝜋𝑎) = E
[
𝐾∑︁
𝑘=1

𝐽𝑘 | 𝑏0, 𝜋𝑑 , 𝜋𝑎

]
(6.9)

s.t. Eqs. (6.1), (6.2), (6.3), (6.4),

𝑑𝑘 ∼ 𝜋𝑑 (𝑏𝑑𝑘), 𝑎𝑘 ∼ 𝜋𝑎 (𝑏
𝑑
𝑘 , 𝑏

𝑎
𝑘)

𝑢𝑘 = 𝑔(𝑏𝑑𝑘)
𝑦𝑎𝑘 = E[ℎ

𝔞 (𝑥𝑘 , 𝑑𝑘) | 𝑏𝑑𝑘−1, 𝑢𝑘 , 𝑎𝑘 = 0] + �̂�𝔞
𝑘

(6.10)

where 𝑉 (𝑏0, 𝜋𝑑 , 𝜋𝑎) represents the expected disruption of the attacker policy over
𝐾 time steps, given the initial belief and defense policy. Note the difference with
the value function defined in Chapter 2, as we now have two opposing players.

The control inputs are determined by the function 𝑔 from the current defense belief.
The false observation data 𝑦𝑎

𝑘
is designed to mimic the expected behavior of the

attacked system, including additive noise �̂�𝔞
𝑘

with the same distribution as the sensing
noise 𝑣𝑘 . The policies, 𝜋𝑑 ∈ Π𝑑 and 𝜋𝑎 ∈ Π𝑎, are stochastic maps from the
information available to each player to sensing topologies and attacks, respectively.
Importantly, these policies can incorporate reasoning about the opposing player’s
objectives, and the attacker is aware of the current defender belief 𝑏𝑑

𝑘
when planning

𝑎𝑘 . As with the single player policies in the previous chapters, these policies are

91

also closed-loop solutions which select new topologies and attacks at each time step
in response to the updated beliefs stemming from the new observation.

We note that the attacker and defender consider opposite stage costs, making this a
zero sum game. This is because we formulate the problem from the perspective of
the defender maximizing its robustness to attack. In this case, the most adversarial
attack is that designed to precisely disrupt the defender’s objective. We summarize
this and our other assumptions as follows:

Assumption 1. We assume the following in formulating the zero-sum game.

1. Both the defender and the attacker know 𝐴, 𝐵, ℎ, D, A, 𝑉 and 𝑔, as well as
the estimator and the distributions of 𝑤𝑘 and 𝑣𝑘 .

2. The attack 𝑎𝑘 and false observations 𝑦𝑎
𝑘

are unknown to the defender and the
topology 𝑑𝑘 is unknown to the defender until after it selects 𝑎𝑘 .

3. The belief of the defender 𝑏𝑑
𝑘

is know to the attacker when planning its attacks,
creating its false observation and updating its belief, but the attacker’s belief
𝑏𝑎
𝑘

is unknown to the defender.

4. Both the defender and the attacker know the parameters 𝐾 , 𝛼, and 𝔞 as well
as the reformulation parameters we will introduce in Section 6.3.

5. There are no other disturbances or uncertainties beyond the stochastic noise,
attack input and false observation data in the system.

These assumptions give both the attacker and defender full knowledge of the system
dynamics and the attacker knowledge of the defender’s current information, which
enables stealth attacks and presents a worst-case scenario for the defender. Shared
knowledge of the system parameters is a simplifying assumption, as it ensures the
algorithm we develop to solve for both the best attack and defense is consistent.
Assuming the defender is aware of which agent will be compromised, if any, is a
reasonable assumption when grounds for suspicion exist, such as previous anoma-
lous behavior or a documented vulnerability. However, lifting this assumption and
generalizing to suspecting all agents simultaneously is an opportunity for future
work.

92

Considering Secondary Objectives
In addition to minimizing or maximizing the disruption to the system that is captured
by value function of Eq. (6.9), the defender or the attacker may have additional
objectives, such as preventing or maintaining stealth, controllability, observability,
or more. One approach to achieving these objectives is to specify individual metrics
for each goal, such as the following observability criterion:

𝐽𝑘,obs = 𝑦
𝑇
𝑘 𝑦𝑘 (6.11)

which quantifies how large the observation signal is at timestep 𝑘 . Since a clearly
observable signal may be desirable to the defender, we could modify the stage cost
(Eq. (6.8)), to instead be:

𝐽𝑘 = (𝑥𝑘 − 𝑥0)⊤𝑄𝑘 (𝑥𝑘 − 𝑥0) + 𝑢⊤𝑘 𝑅𝑘𝑢𝑘 − 𝑐𝐽𝑘,obs (6.12)

and the value function in Eq. (6.9) accordingly to represent that minimizing dis-
ruption and control effort is still good, but now we also want large observability.
But this leads to a challenge. How should we appropriately quantify 𝑐 to properly
weigh the the competing objectives? Further, since observability is desirable, we
now have a negative term in the stage cost, so Eq. (6.12) is not convex. Worse, the
cost is potentially unbounded, as depending on the observation function ℎ, infinite
𝐽𝑘,obs may be possible with finite disruption and control effort, or at least scale more
rapidly regardless of choice of 𝑐.

The challenge illustrated by this example is a common issue with multi-objective
optimization. From the intuition we developed in Chapter 3, an effective solution
is to consider transforming the secondary objectives into constraints instead. Like
with the safety thresholds we considered in the safe active fault estimation problem,
stealth, controllability and observability, are all better formulated as constraints. In
the example above, while observability is desirable, beyond a minimum level we do
not need a larger signal.

We can apply this intuition to our zero-sum game to impose on the attacker a stealth
constraint (Eq. (6.7)) that it must satisfy to avoid losing by default, and formulate the
two player game in the minimax sense. The defender seeks topologies that minimize
the disruption that an optimal attacker can cause, and can win by detecting the attack.

93

This formulation provides a robust defense policy similar to the approach of H∞
control to minimize the effect of the worst-case disturbance [154].

Definition 10 (Robust stealth attack zero-sum game). The problem of robustly
selecting defense policies to minimize the disruption of an adversarial attacker is
formalized as:

min
𝜋𝑑∈Π𝑑

max
𝜋𝑎∈Π𝑎

E

[𝐾∏
𝑘=1

(
1𝛼 (𝑏𝑑𝑘 , 𝑏

𝑛
𝑘)

)
𝑉 (𝑏0, 𝜋𝑑 , 𝜋𝑎) | 𝑏0, 𝜋𝑑 , 𝜋𝑎

]
(6.13)

where
∏

indicates a product, and the the indicator over 𝛼-stealthy attacks
1𝛼 (𝑏𝑑𝑖 , 𝑏𝑛𝑖) = 1 ifW2(𝑏𝑑𝑖 , 𝑏𝑛𝑖) ≤ 𝛼 and 0 otherwise.

Note that by construction,
∏𝐾
𝑘=1

(
1𝛼 (𝑏𝑑𝑘 , 𝑏

𝑛
𝑘
)
)
= 1 only if every time step up to and

including time 𝐾 satisfies the stealthiness constraint. Also, from the definition of
Eq. (6.9) the value function in Eq. (6.13) can be factored out of the expectation.
Since the number of defense topologies and attacks is finite, the policy sets are finite-
dimensional compact sets. The cost functional is continuous (and jointly convex)
in each of its arguments. Therefore, by Theorem 4.7 of [155], this game satisfies
the sufficient conditions for the existence of at least one mixed Nash equilibrium.
Further, the minimax formulation of Eq. (6.13) can equivalently be posed as a
maximin problem, considering the best attack to respond to a chosen defense [156].

6.3 Problem Reformulation
While Definition 10 formalizes our problem, solving the robust stealth attack zero-
sum game may be numerically intractable. This motivates us to reformulate the
problem and develop a MCTS method to asymptotically approximate optimal so-
lutions, as we did in Chapters 2 and 3. In addition to the single player cases we
considered previously, MCTS methods have a rich history when applied to two
player games [34], [127], [157], and can be shown to converge to the optimal mini-
max value [34], [158] in two player, zero-sum games. These two player formulation
maintain their desirable asymptotic convergence properties and still only require ac-
cess to a system model and a stage cost function to search for optimal solutions [35],
making them well suited to solving the robust stealth attack zero-sum game.

However, the MCTS methods we employ require value functions that can be de-
composed into a stage cost and a cost to go, as 𝑉 (𝑏0) = 𝐽 (𝑏0) + E[𝑉 (𝑏1)]. Equa-
tion (6.13) cannot be, as

∏𝐾
𝑘=1

(
1𝛼 (𝑏𝑑𝑘 , 𝑏

𝑛
𝑘
)
)

is a function of all time steps up to

94

the horizon. Further, the MCTS analysis we adopt assumes stage costs bounded
between 0 and 1. This motivates the problem reformulations we present in this
section.

Equivalent Reformulation
To make the problem posed by Eq. (6.13) compatible with these solvers, we adopt
the following transformation of the stage cost (motivated by the reformulation we
made in Chapter 3 when developing s-FEAST):

𝐽𝛼𝑘 =

𝑘∏
𝜅=1

(
1𝛼 (𝑏𝑑𝜅 , 𝑏𝑛𝜅)

) (
𝐽𝑠 + (1 − 𝐽𝑠)𝐽sat

𝑘

)
(6.14)

𝐽sat
𝑘 =

𝐽𝑘

1 + 𝐽𝑘
(6.15)

where 𝐽𝑠 = 𝐾
𝐾+1 , and 𝐽sat

𝑘
is a saturated stage cost that is a strictly monotonic

transformation of 𝐽 to the interval [0, 1). We define 𝑉𝛼 (𝑏0, 𝜋𝑑 , 𝜋𝑎) as the value
function given by Eq. (6.9), with 𝐽 replaced by 𝐽𝛼.

Given this transformation, we have the following theorem:

Theorem 6 (Equivalent unbounded reformulation). The Nash equilibria of the fol-
lowing problem with the transformed stage cost given by Eq. (6.14), are also Nash
equilibria of the robust stealth attack zero-sum game:

min
𝜋𝑑∈Π𝑑

max
𝜋𝑎∈Π𝑎

𝑉𝛼 (𝑏0, 𝜋𝑑 , 𝜋𝑎) (6.16)

Proof. The saturation function given by Eq. (6.15) maps the original cost 𝐽𝑘 , which
is non-negative, to the interval [0, 1). This transformation is strictly increasing and
continuous for all 𝐽𝑘 ≥ 0. As 𝐽𝑘 → 0, 𝐽sat

𝑘
→ 0, and as 𝐽𝑘 → ∞, 𝐽sat

𝑘
→ 1. There-

fore, the saturation function is a strictly increasing and continuous transformation,
preserving the order of best responses.

The full transformation is given by Eq. (6.14). When the stealth constraint is satisfied,
it is an affine transformation of the saturated cost 𝐽sat

𝑘
with positive coefficients. Since

affine transformations preserve monotonicity and the saturation function (Eq. (6.15))
is strictly increasing, Eq. (6.14) is also strictly increasing in 𝐽𝑘 .

Under strictly monotonic and affine transformations, Nash equilibria are invari-
ant [159]–[161]. Thus, the transformed and untransformed games share the same
Nash equilibria.

95

When the stealth constraint is not satisfied, the transformation is not strict. However,
equilibria not satisfying the stealth constraint represent scenarios where the defender
can win by revealing the attack. By construction of 𝐽𝑠, the minimum value of any
combination of polices which are expected to remain stealthy is 𝐾𝐽𝑠, which is higher
than the maximum expected value of any policy combination where the attack is
expected to be detected, 𝐾 −1, as 𝐾𝐽𝑠 = 𝐾2

𝐾+1 >
𝐾2−1
𝐾+1 = 𝐾 −1. Therefore, under this

transformation equilibria which are stealthy remain strictly separated from those
which are not. □

This equivalence means methods that converge to the solutions of the transformed
problem, such as the MCTS algorithm we present in Section 6.4 also solve the
original robust stealth attack zero-sum game.

Chance Constraint Modification
To a stealthy attacker, Eq. (6.7) represents a constraint that it must satisfy, since
the above reformulation results in stealthy attacks always outperforming those that
are detected. However, in the presence of noise and stochastic polices like we
consider in this chapter, an attacker cannot guarantee satisfaction when planning in
advance. This can lead to a trivial solution where the attacker prioritizes stealth
above disruption, taking no actions. Therefore, we modify the robust stealth attack
zero-sum game given by Definition 10 so that the attacker seeks to satisfy the
following chance constraint on the probability of detection:

P(W2(𝑏𝑑𝑘 , 𝑏
𝑛
𝑘) > 𝛼 | 𝑏0, 𝜋𝑑 , 𝜋𝑎) < 𝛽,∀𝑘 (6.17)

where 𝛽 ∈ (0, 0.5) is an attacker specified risk. Note that to avoid the trivial solution
of no attacks, the risk should be higher than the false alarm rate of the unattacked
system, or this condition cannot be satisfied. The modified problem is:

Definition 11 (Chance-constrained robust stealth attack zero-sum game). The
chance-constrained robust stealth attack zero-sum game is given by:

min
𝜋𝑑∈Π𝑑

max
𝜋𝑎∈Π𝑎

E

[𝐾∏
𝑘=1

(
1
𝛽
𝛼 (𝑏𝑑𝑘 , 𝑏

𝑛
𝑘)

)
𝑉 (𝑏0, 𝜋𝑑 , 𝜋𝑎) | 𝑏0, 𝜋𝑑 , 𝜋𝑎

]
(6.18)

where 1𝛽𝛼 (𝑏𝑑𝑘 , 𝑏
𝑛
𝑘
) = 1 if P(W2(𝑏𝑑𝑖 , 𝑏𝑛𝑖) > 𝛼) < 𝛽 and 0 otherwise.

96

This modified problem can also be transformed to an equivalent problem compatible
with MCTS in the same manner as Theorem 6.

Corollary 1. The Nash equilibria of the following problem are also Nash equilibria
of the chance-constrained robust stealth attack zero-sum game:

min
𝜋𝑑∈Π𝑑

max
𝜋𝑎∈Π𝑎

𝑉
𝛽
𝛼 (𝑏0, 𝜋𝑑 , 𝜋𝑎) (6.19)

where 𝑉 𝛽𝛼 is defined by replacing 1𝛼 in 𝑉𝛼 with 1𝛽𝛼.

Proof. The only difference between the robust stealth attack zero-sum game (Def-
inition 10) and the chance-constrained robust stealth attack zero-sum game (Defi-
nition 11) is the definition of the indicator functions, 1𝛼 and 1𝛽𝛼. Since Theorem 6
does not depend on the choice of indicator function, the reformulation holds for both
problems. □

This modification allows our MCTS based method to plan defenses against attackers
that risk detection, which will be more disruptive to the system. However, to analyze
the effectiveness of our defense, we will use the original transformed metric give by
Eq. (6.14). The risk tolerance of the attacker is not important to from the perspective
of the defender, instead we wish to quantify how well we minimize the effect of
stealthy attacks.

Conservative Stealth Approximation
While the previous reformulations in Sections 6.3 and 6.3 make the robust stealth
attack zero-sum game compatible with MCTS solvers, evaluating 1𝛽𝛼 may be in-
tractable when planning within a tree. Instead, we adapt the theory in Chapter 3
to develop a conservative chance constraint on the probability of detection using a
finite sample approximation. For each new attack considered, 𝑀 simulations are
performed from the perspective of the attacker. For each 𝑖-th simulation, a possible
state 𝑥𝑘−1 is drawn from 𝑏𝑎

𝑘−1, and propagated through the system model (Eqs. (6.1)
and (6.2)) along with 𝑢𝑘 and the (assumed) 𝑑𝑘 to generate an observation and update
𝑏𝑑
𝑘

according to Eq. (6.3). We then compute 𝑊𝑖 = W(𝑏𝑑𝑘 , 𝑏
𝑛
𝑘
) for each sample and

define the sample mean and standard deviation of the Wasserstein-2 distance as:

97

�̂�𝑊 =
1
𝑀

∑︁
𝑖

𝑊𝑖 (6.20)

�̂�2
𝑊 =

𝑀 + 1
𝑀 (𝑀 − 1)

∑︁
𝑖

(𝑊𝑖 − �̂�𝑊)2 (6.21)

We claim that �̂�𝑊 is an unbiased estimator of W2(𝑏𝑑𝑘 , 𝑏
𝑛
𝑘
), so when �̂�𝑊 > 𝛼,

the sample mean indicates an attack is present with > 50% probability. Since
𝛽 ∈ (0, .5), we focus our attention on the case where �̂�𝑊 < 𝛼.

Theorem 7 (Conservative finite sample approximation of stealth). Adapting the
finite sample approximation of Chebyshev’s Inequality first developed by Saw et
al. [46] and simplified by Kabán [47], we can conservatively achieve this bound
with the following condition when �̂�𝑊 ≤ 𝛼 − �̂�𝑊 and 𝑀 ≥ 2:

1
𝑀 + 1

⌊
𝑀 + 1
𝑀

(
�̂�2
𝑊
(𝑀 − 1)

(𝛼 − �̂�𝑊)2
+ 1

)⌋
≤ 1 − 𝛽. (6.22)

Proof. Considering the distance metric between the nominal and realized beliefs as
a random variable 𝑊 resulting from the system noise and the possibly stochastic
policies, the condition for remaining stealthy isP (𝑊 > 𝛼) < 𝛽. Under the assump-
tion �̂�𝑊 < 𝛼, we subtract the empirical mean and upper bound the one sided tail
probability with a two-sided condition:

P (𝑊 > 𝛼) = P (𝑊 − �̂�𝑊 > 𝛼 − �̂�𝑊)
≤ P (|𝑊 − �̂�𝑊 | > 𝛼 − �̂�𝑊) (6.23)

Using Eq. (3.17), and choosing 𝜆 =
𝛼−�̂�𝑊
�̂�𝑊

we have:

P (|𝑊 − �̂�𝑊 | > 𝛼 − �̂�𝑊)

≤ 1
𝑀 + 1

⌊
𝑀 + 1
𝑀

(
�̂�2
𝑊
(𝑀 − 1)

(𝛼 − �̂�𝑊)2
+ 1

)⌋
(6.24)

Combining Eqs. (6.23) and (6.24) completes the proof. □

In addition to the shared parameters listed in Assumption 1, the attacker and defender
are assumed to also know the parameters 𝛽 and 𝑀 and are aware of the transformed
value function 𝑉 𝛽𝛼 .

98

6.4 Main Method (S3AM Algorithm)
In this section, we present the Switching System under Stealth Attacks Monte Carlo
Tree Search (S3AM) Algorithm and the adaptions made from existing partially
observable tree search algorithms to solve zero-sum stealth constrained games.
Given the corresponding information, our algorithm converges to both the defense
and attack policies in Eq. (6.9).

S3AM Algorithm
We start with the algorithmic structure, full Bayesian updates, and chance constraints
of s-FEAST (Chapter 3), and adapt it to the two player adversarial setting, as
presented in Algorithm 36 below. This pseudocode solves for both the optimal
defense and attack. Note that while the tree first selects a defense and then an
attack at each time step, we could equivalently select an attack first and then a
defense. This is because neither player is aware of the other’s selection until they
are simultaneously applied to the system, and the cost function in Definition 10 and
its reformulations are continuous and convex, [156].

In the algorithm’s notation, a node is defined as an ordered history 𝐻 of defense
topologies, attacks, and observations, with corresponding number of visits 𝑁 (𝐻)
and value estimate �̂� (𝐻). Each simulation is performed from the root node until the
depth, 𝛿, reaches the maximum depth𝐾 . Defenses and attacks are selected according
to the UCT augmented value function with exploration parameter 𝑐 [35]. New states
and observations are simulated by the model-based generator 𝐺 which encodes
Eqs. (6.1),(6.2),(6.10) and discretizes the observations to yield finite observation
branching, which is necessary to avoid degenerate tree searches [162]. Both the
defender and attacker beliefs 𝑏𝑑 and 𝑏𝑎 are updated throughout the tree, with the
attacker belief treated as the system ground truth, while the defender belief is used
to determine if detection has occurred. When the defender performs the tree search,
𝑏𝑎 is assumed to be the same as 𝑏𝑑 at initialization. When the attacker performs
the tree search, it can provide its knowledge of the true 𝑏𝑎. The nominal belief 𝑏𝑛

is predicted by the filter prior function F − [𝑑𝛿+1, 𝑢𝛿+1, 𝑏𝑑] at each time step given
the defense, input and previous belief. F [𝑑𝛿+1, 𝑦𝛿+1, 𝑢𝛿+1, 𝑏𝑑] represents the filter
updates given measurement 𝑦𝛿+1.

When a previously unexplored history is encountered, the simulation rolls out to
the max depth by uniformly sampling random actions from the defense topology
and attack sets D and A. For each new attack considered, 𝑀 simulations are

99

Algorithm 8: S3AM
globals: �̂� (·) ← 0, 𝑁 (·) ← 0, 𝑆(·) ← ∅

1 def search(𝔞, 𝑏𝑑 , 𝑏𝑎 = ∅):
2 if 𝑏𝑎 = ∅ then 𝑏𝑎 = 𝑏𝑑;
3 for 𝑖 ← 1 to 𝑁 do
4 simulate(∅, 0, 𝔞, 𝑏𝑑 , 𝑏𝑎) ;
5 𝑑∗ = arg min𝑑 �̂� ({𝑑}) ;
6 𝑎∗ = arg max𝑎 �̂� ({𝑑∗, 𝑎}) ;
7 return 𝑑∗, 𝑎∗ ;
8 def simulate(𝐻𝛿, 𝛿, 𝔞, 𝑏𝑑 , 𝑏𝑎):
9 if 𝛿 > 𝐾 then return 0 ;

10 𝑥𝛿 ∼ 𝑏𝑎 ;
11 𝑑𝛿+1 ← arg max𝑑 −�̂� (𝐻𝛿 ∪ 𝑑) + 𝑐

√︃
log 𝑁 (𝐻𝛿)
𝑁 (𝐻𝛿∪𝑑) ;

12 𝑎𝛿+1 ← arg max𝑎 �̂� (𝐻𝛿 ∪ {𝑑𝛿+1, 𝑎}) + 𝑐
√︃

log 𝑁 (𝐻𝛿∪𝑑𝛿+1)
𝑁 (𝐻𝛿∪{𝑑𝛿+1,𝑎}) ;

13 𝑢𝛿+1 ← 𝑔(𝑏𝑑);
14 if 𝑆(𝐻𝛿 ∪ {𝑑𝛿+1, 𝑎𝛿+1}) = ∅ then
15 𝑏𝑛 = F − [𝑑𝛿+1, 𝑢𝛿+1, 𝑏𝑑];
16 for 𝑖 ← 1 to 𝑀 do
17 (·, ·, 𝑏𝑑 , ·) = propogate(𝑥𝛿, 𝑢𝛿+1, 𝑎𝛿+1, 𝑑𝛿+1, 𝔞, 𝑏𝑑 , 𝑏𝑎) ;
18 𝑊𝑖 ←W(𝑏𝑑 , 𝑏𝑛);
19 �̂�𝑊 , �̂�𝑊 ← sampleStatistics({𝑊1, ...,𝑊𝑀}) ;
20 𝑆(𝐻𝛿 ∪ {𝑑𝛿+1, 𝑎𝛿+1}) ← approxStealthCond(�̂�𝑊 , �̂�𝑊 , 𝑀, 𝛼, 𝛽) ;
21 𝑥𝛿+1, 𝑦𝛿+1, 𝑏𝑑 , 𝑏𝑎 = propogate(𝑥𝛿, 𝑢𝛿+1, 𝑎𝛿+1, 𝑑𝛿+1, 𝔞, 𝑏𝑑 , 𝑏𝑎) ;
22 𝐻𝛿+1 ← 𝐻𝛿 ∪ {𝑑𝛿+1, 𝑎𝛿+1, 𝑦𝛿+1} ;
23 �̂�𝛿+1 ← 𝐽𝑠 + (1 − 𝐽𝑠) ∗ 𝐽sat(𝑥𝛿+1, 𝑢𝛿+1);
24 �̂�𝛿+1 ← �̂�𝛿+1 ∗ 𝑆(𝐻𝛿 ∪ {𝑑𝛿+1, 𝑎𝛿+1}) + simulate(𝐻𝛿+1, 𝛿 + 1, 𝔞, 𝑏𝑑 , 𝑏𝑎);
25 𝑁 (𝐻𝛿) + + ;
26 𝑁 (𝐻𝛿 ∪ 𝑑𝛿+1) + + ;
27 𝑁 (𝐻𝛿 ∪ {𝑑𝛿+1, 𝑎𝛿+1}) + + ;
28 �̂� (𝐻𝛿 ∪ 𝑑𝛿+1) ← �̂� (𝐻𝛿 ∪ 𝑑𝛿+1) + �̂�𝛿+1−�̂� (𝐻𝛿∪𝑑𝛿+1)𝑁 (𝐻𝛿∪𝑑𝛿+1) ;

29 �̂� (𝐻𝛿 ∪ {𝑑𝛿+1, 𝑎𝛿+1}) ← �̂� (𝐻𝛿 ∪ {𝑑𝛿+1, 𝑎𝛿+1}) + �̂�𝛿+1−�̂� (𝐻𝛿∪{𝑑𝛿+1,𝑎𝛿+1})𝑁 (𝐻𝛿∪{𝑑𝛿+1,𝑎𝛿+1}) ;
30 return �̂�𝛿+1 ;
31 def propogate(𝑥𝛿, 𝑢𝛿+1, 𝑎𝛿+1, 𝑑𝛿+1, 𝔞, 𝑏𝑑 , 𝑏𝑎):
32 (𝑥𝛿+1, 𝑦𝛿+1) ∼ 𝐺 (𝑥𝛿, 𝑢𝛿+1, 𝑎𝛿+1, 𝑑𝛿+1) ;
33 𝑏𝑎 ← F [𝑑𝛿+1, 𝑦𝛿+1, 𝑢𝛿+1 + 𝑎𝑘+1, 𝑏𝑎] ;
34 𝑦𝔞

𝛿+1 ← E[ℎ𝔞 (𝑥𝑘 , 𝑑𝑘) | 𝑏𝑑 , 𝑢𝛿+1, 𝑎𝛿+1 = 0] + �̂�𝔞
𝑘

;
35 𝑏𝑑 ← F [𝑑𝛿+1, 𝑦𝛿+1, 𝑢𝛿+1, 𝑏𝑑] ;
36 return 𝑥𝛿+1, 𝑦𝛿+1, 𝑏𝑑 , 𝑏𝑎 ;

100

performed to compute the sample statistics via sampleStatistics, which follows
Eqs. (6.20),(6.21). These statistics are used to empirically estimate the stealth
chance constraint (Eq. (6.17)) using approxStealthcond which returns the boolean
output of Eq. (6.22). As with FEAST and s-FEAST, to save recomputing the belief
propagation at each node, our algorithm saves the nodes encountered during roll
outs instead of discarding them. After completing all 𝑁 simulations (the level of
planning), the defense which minimizes the maximum disruption from an attack
and that corresponding attack are returned. The defender and attacker each apply
their respective solutions to the system. The resulting observation is used to update
the system’s beliefs, and a new tree is planned from this new root node to select the
next defense and attack. A diagram of our tree search is provided below in Fig. 6.1.

Motivating Problem: Angles Only Relative Navigation
In this section, we develop the angles only relative navigation problem we consider
in our simulations. A group of 𝑃 spacecraft with two-dimensional double integrator
dynamics are collaboratively estimating the joint state of the system, and seeking to
minimize the disruption of the formation. However, one of the agents is compro-
mised by the attacker. For this adversary agent, the attacker can select attack inputs
to disrupt the formation and will also report false observations to hide its activities.
For this system, the state and control influence matrices in Eq. (6.1) are given as:

𝐴 =

𝐴1 0 0

0 . . . 0
0 0 𝐴𝑃

 , 𝐵 =

𝐵1 0 0

0 . . . 0
0 0 𝐵𝑃

 (6.25)

𝐴 𝑗 =

1 Δ𝑡 0 0
0 1 0 0
0 0 1 Δ𝑡

0 0 0 1

, 𝐵 𝑗 =

Δ𝑡2

2 0
Δ𝑡 0
0 Δ𝑡2

2
0 Δ𝑡

(6.26)

where Δ𝑡 is the time step between time 𝑘 −1 and 𝑘 , 𝐴 𝑗 is the block dynamics matrix
and 𝐵 𝑗 the block control influence matrix for the 𝑗-th spacecraft. The corresponding
states 𝑥 ∈ R4𝑃, control action 𝑢 ∈ R2𝑃, and observation 𝑦 ∈ R2𝑃 are similarly
defined per agent, with 𝑥 𝑗

𝑘
, 𝑢 𝑗

𝑘
, and 𝑦 𝑗

𝑘
indicating the component corresponding to

the 𝑗-th agent. Let 𝔞 again be the index of the attacker. The control and observations
are:

101

Figure 6.1: Diagram of the S3AM algorithm. Here, brighter nodes represent
system states which are more disruptive and stealthy, while darker nodes are less
disruptive or less stealthy. Circular nodes represent belief nodes, from which a
defense node (diamond shaped) is selected by the defender from the defense set.
The attacker then selects an attack node (square shaped) from the attack set. A
defense node has the same color as the worst (brightest) attack under it. The attack
has the same color as the average belief node under it. When there is no exploration,
the defender select the darkest node available, represented by the green arrows,
aware that the attacker will select the brightest node available, represented by the
red arrows. Exchanging the order of defense and attack selection results in an
equivalent tree search [156].

𝑢
𝑗

𝑘
= −𝐾LQRE[𝑥 𝑗 | 𝑏𝑑𝑘] (6.27)

𝑦
𝑗

𝑘
=

[∠

𝑗 ,𝑑
𝑗

𝑘

, 0] + 𝑣 𝑗
𝑘

if 𝑗 ≠ 𝔞, 𝑑
𝑗

𝑘
≠ 𝑃 + 1

[∠
𝑗 ,𝑑

𝑗

𝑘

, ∥𝑥 𝑗
𝑘
∥] + 𝑣 𝑗

𝑘
if 𝑗 ≠ 𝔞, 𝑑

𝑗

𝑘
= 𝑃 + 1

𝑦𝑎
𝑘

if 𝑗 = 𝔞

(6.28)

102

where 𝐾LQR is the LQR gain resulting from the𝑄𝑘 and 𝑅𝑘 terms of the cost function
and E[𝑥 𝑗 | 𝑏𝑑

𝑘
] is the defender’s estimate of the 𝑗-th agent’s state. For this system,

the sensing topology determines which agent each spacecraft is currently looking
at, with 𝑑𝑘 ∈ [1, . . . , 𝑃 + 1]𝑃 and 𝑑 𝑗

𝑘
≠ 𝑗 the target of the 𝑗-th spacecraft. With this,

∠
𝑗 ,𝑑

𝑗

𝑘

is the angle between each spacecraft and its target. The origin of the relative
navigation is the 𝑃 + 1 reference target, and observing this reference also provides
a line of sight distance. When looking elsewhere, the spacecraft is aware the range
measurement is 0, representing no information. This is necessary to provide a
scale for the formation, and the reference target could represent a central trusted
spacecraft, an inspection target, or some other important feature. The attack set at
each time step is given by:

A𝑘 = A + 𝐾LQRE[𝑥𝔞 | 𝑏𝑑𝑘] (6.29)

where A is the set of common attack actions at every time step. In effect, the
adverse agent ignores the nominal control action and selects its own independent
attack action.

6.5 Results
In this section, we study the chance-constrained robust stealth attack zero-sum
game in our angles only relative navigation system and demonstrate the performance
of our proposed algorithm through numerical simulations.

Overview of Experiments
We consider three different scenarios. First, to establish a false alarm rate, we
consider the distributed angles only navigation system when there are no attacks
present. Using this experiment to determine a threshold for detection, we then
consider how planning allows the attacker to disrupt the system and avoid detection
when employed against a baseline approach of randomly selecting a defense topol-
ogy. In our final scenario, we show that by employing our proposed method to plan
defenses over a horizon, the defender can successfully limit the effect of stealthy
attacks on our system, by forcing the attacker to cause less disruption or be revealed.
We first analyze the quantitative results of each experiment then provide qualitative
examples a the end of the section.

The defenses are selected from a set of eight topologies, designed so that each agent
inspects and is inspected by its neighbors equally often, and so that every agent

103

looks at the reference target in two different topologies. The attacks are selected
from an attack set of five options: either to take no action, or apply an acceleration
of ±0.01 m/s2 in both the x and y directions. The magnitude of this attack input
is scaled to match the process and sensor noise, which are zero-mean Gaussians.
As a baseline, we also consider the effectiveness of randomly selected defenses
and attacks from these sets. For each experiment, the attacker’s tolerable detection
threshold is 𝛽 = 0.25). Further implementation details are provided in Appendix D.

Unattacked System
To determine an appropriate value of 𝛼, we consider our first scenario, where no
attacker is present in the system. The results are shown in Fig. 6.2 below. In
Fig. 6.2A, we see the disruption in the system grows initially due to the process
and sensor noise, before reaching a steady state value as a result of the feedback
control. In Fig. 6.2B, we see the same occurs for the Wasserstein-2 distance, where
the steady state value of 0.12 with a standard deviation of 0.09 is reached after 17
time steps. We use this to set the detection threshold to a value of 𝛼 = 0.5, which is
more than 3 standard deviations from this sample mean. Given this threshold, the
false alarm rate is shown in Fig. 6.2C, which shows the fraction of trials which have
had no detection events at any time up to and including the current time step. Once
steady state conditions are reached, a steady false alarm rate of 0.66% per second
occurs. Because outlier noise values are possible, though unlikely, false alarms are
to be expected and the value of 𝛼 must be tuned by the defender to balance false
positives and sensitivity to attacks. We envision our method being used to plan in
the near-term, when we have reason to suspect a malicious agent may be present.
Therefore, we target a 5% false positive rate over a 20 time-step duration, and see
we achieve a rate of 5.2% as well as converged behavior in these experiments. We
will use this horizon and 𝛼 = 0.5 for the remaining experiments.

Effect of Planning on the Attacker
To demonstrate the difficulty of detecting an attacker which plans stealthy attacks,
we consider the baseline of random defense selection against attackers of increasing
levels of planning in Fig. 6.3 below. In this scenario, we first consider an attacker
which randomly selects from the attack set. We see in Fig. 6.3A this leads to rapid
disruption of the formation. This is unsurprising, as a random attack input leads
to random walk-like behavior, which is a stochastic process well known to exhibit
unbounded variance [163]. However, Fig. 6.3B&C shows this comes at the price of

104

Figure 6.2: Unattacked system results. The disruption, Wasserstein-2 stealth
metric and false alarm rate are averaged over 6000 simulations, and the 1 − 𝜎 error
region is shown.

dramatically reduced stealthiness. In Fig. 6.3D, we see this lack of stealthiness also
results in poor performance on the transformed disruption metric given by Eq. (6.14),
demonstrating that a random attacker cannot efficiently solve the chance-constrained
robust stealth attack zero-sum game.

Instead, we employ our tree search method given by Algorithm 36, which conser-
vatively plans the most disruptive attack given the best possible defense the random
defender might employ as well as the anticipated future results. We see in Fig. 6.3A
that the overall disruption that results form this strategy is decreased compared to

105

a random attacker that does not consider stealthiness, but still grows steadily while
minimizing detection (Fig. 6.3B&C) and achieving a high transformed disruption
(Fig. 6.3D).

We note in Fig. 6.3C that for all levels of planning, the attacker satisfies the desired
point-wise stealthiness of 25%. However, alarms are raised more frequently than
the unattacked system, at least 3.28 times more often by the end of the experiment
(Fig. 6.3B). This matches our intuition that the attacker must take risks to disrupt the
system, and validates the detection threshold selected, as the increased alarm rate
even in the presences of stealthy attacks indicates the detection metric is succeeding
at identifying anomalous behavior. We also see a direct correlation between point-
wise stealth shown in Fig. 6.3C and overall stealth in Fig. 6.3C, suggesting attackers
that are detected once are more likely to be detected again. This validates the
structure of our transformed disruption metric and tree search, which labels all
future states as not stealthy once an alarm has been raised.

Noticeably, increasing the planning level of the attacker does not improve the ob-
served performance on any metric. In fact, higher values of planning of 𝑁 = 5000
and 10, 000 actually slightly worsen the observed performance. This is possibly due
to the higher levels of planing being overly conservative when considering the best
defense possible. It may also be due to the solver encountering a local minima by
prematurely ruling out possible attacks. In the next scenario we will see similar local
minima behavior with increased resources for the defender until very high levels of
planning are achieved. Because of this trend, we select 𝑁 = 2000 as the level of
adversary planning to compare our planned defenses against.

Effect of Planning on the Defender
In the last simulation we consider, we show the effect of increased planning on the
ability to select defenses to best limit the disruption of a stealthy attacker. In Fig. 6.4
below, we see that all levels of planning initially out perform the random defender
in both reducing stealthiness of the attacker and the transformed disruption metric,
with the highest level of planning, 𝑁 = 20, 000, maintaining the performance gap
throughout the experiment. However, increasing the level of planning does not
uniformly increase the performance of the defender. Like with the attack planner,
higher levels of planning initially lead to worse performance, in this case in the
form of increased stealthiness for the attacker. It is not until the highest level
of planning, 𝑁 = 20, 000, that consistently lower levels of attack stealthiness are

106

achieved throughout the experiment (Fig. 6.4B), along with lower levels of the
transformed disruption metric (Fig. 6.4C). This indicates there may again be a local
minima present in the tree search that high levels of planning are needed to escape,
or that an alternative strategy is being discovered. Together, these results validate
that planning outperforms the random baseline and that sufficiently high levels of
planning yield further improvements. It also establishes that random defenses are a
strong baseline, and indicates the tree quickly rediscovers this behavior. This is not
unsurprising, as randomness has been employed in real-world settings to increase
the effectiveness of security screenings [164], [165], and efficiently use existing
resources [166].

Due to computation limits, particularly the memory requirements of the larger
tree searches, increased levels of planning were not explored. Optimizing the
implementation of the S3AM was not an objective of this work, but our investigation
suggests it is a promising opportunity for future work.

Qualitative Experiments
In this section we look at several qualitative experiments to better understand the
behavior that leads to successful stealthy attacks and detections in this system. In
Fig. 6.5 below, we see a simulation between a random attacker and defender. At
the shown time, the agent controlled by the random attacker has drifted far from
its nominal position, indicated by a tick mark, and has significantly deviated from
the defender’s centralized belief of the formation’s state. As one of the other agents
is currently observing it, this discrepancy leads to a large Wasserstein-2 deviation
between the updated and predicted belief, triggering a detection.

In comparison, we can look at the behavior of the planned attacker against a planned
defense. In Fig. 6.6 below, we see the attacker has remained closer to its nominal
position and the centralized belief, however the defender’s belief is less accurate for
the attacker than the other agents. At this time step, one of its neighbors is observing
it, but due to only receiving a relative angle measurement, this will not trigger a
detection as the observation the inspecting spacecraft receives is consistent with
the defender’s belief. However, in the next time step shown in Fig. 6.7, a different
neighbor observes the adversary and catches it out of position, raising an alarm.

107

These qualitative scenarios also demonstrate the need for switching to detect stealth
attacks. In each time step shown, the adversary could move arbitrarily far along the
line of sight of the agent inspecting it, and no anomaly would be noticed until the
formation switches and a different neighbor observed the discrepancy. Similarly, if
the adversary had no other spacecraft observing it, it could have moved undetected
without restriction, unless the formation reconfigured and observed it.

6.6 Context with Related Work
To address the challenge of stealth attacks, other works propose methods of mod-
ifying the system to reveal any currently present stealth attacks [167]–[169], and
we have discussed in this chapter different ways of optimizing against several user
defined objectives [170]. However, existing approaches are restricted to linear,
noise-free systems and specific classes of stealth attacks; namely zero dynamics
attacks which leverage output zeros to remain indistinguishable from the unattacked
system. Some prior work also considers attacks which provide false information
to the centralized monitor, but resolves this through a decentralized approach unaf-
fected by the compromised observations [169].

These approaches to detecting attacks bear resemblance to traditional Fault De-
tection, Isolation, and Recovery (FDIR) methods [17], [57], including geometric
methods which seek to make all possible system faults observable [171]. However,
unlike faults, attacks are assumed to be adversarial, seeking to maximize disruption
or damage to the system. They are also often restricted to affecting the control
inputs, sensing outputs, or communication channels, whereas faults can also result
in changes to the system dynamics.

Game-theoretic formulations have previously been proposed to study systems under
attack [172]–[174], including methods to defend through design [175] or control of
dynamic systems [176]. Here, we extend this approach to switching to detect stealth
attacks. Game-theoretic formulation naturally extends to planning both attacks and
defenses over a time horizon, as opposed to fixed attacks or single reconfigurations
of the sensing topology typically explored in the literature [167]–[170].

6.7 Chapter Summary
We have formalized the problem of constructing and detecting stealth attacks in a
multi-spacecraft system which switches observation topologies. By using a metric
for the distance between the expected and estimated formation beliefs, we demon-
strate the ability to detect anomalous observations which could indicate the presence

108

of false data or hidden attacks in the system. Further, we showed that MCTS based
planning methods both enable attackers to maintain stealth with high probability,
and defenders to select observation topologies that limit the disturbance an attack
can cause while remaining stealthy.

This chapter demonstrates the feasibility of applying game algorithms to consider
the complicated problem of stealth attacks. Having done so, there are several op-
portunities for future work. We assumed an attacker with accurate knowledge of the
current defense belief. Work could be done on means to limit the availability of this
information to the attacker, or to plan defenses in scenarios where the attacker has
even more privileged information, such as knowing what the next defense will be.
Similarly, limiting the information available to the defender will make the problem
more challenging. In particular, we assumed the defender was aware of which agent
would be compromised, if any. One way to adapt our method to the generalized
scenario of suspecting all agents would be to perform parallel tree searches for
each possibly compromised agent, then select the defense which simultaneously
minimizes the expected disruption for all of them. This method proved to be com-
putationally intractable for our currently available resources, but would be enabled
by future work to optimize tree searches for partially observable dynamic systems
with high dimensional beliefs or hardware advances. Other investigations could
apply our method to new defense objectives ranging from maintaining operational
performance to avoiding collisions between agents.

109

Figure 6.3: Planned attack vs. random defense. The disruption, total stealth,
point wise stealth and transformed disruption for various levels of attack planning
against a random defense. Results are averaged over at least 1000 simulations for
each planning level. Note that for readability, the data for each time step is artificially
spread out horizontally and 1 − 𝜎 error regions are shown.

110

Figure 6.4: Planned attack vs. planned defense. The disruption, total stealth,
and transformed disruption metric for various levels of defense planning against an
attack with constant level of planning (𝑁 = 2000). Results are averaged over at least
1000 simulations for each planning level. Note that for readability, the data for each
time step is artificially spread out horizontally and 1 − 𝜎 error regions are shown.

111

Figure 6.5: Simulation of a random attacker versus a random defender. The
adversary is the center agent of the top row (agent 5), indicated by red antennas and
sensor. The centralized belief of the formation’s state is represented as a probability
density. Tick marks indicate each agent’s nominal position. Spacecraft are capable
of looking at their neighbors (indicated by dotted gray connections) and the reference
target. Each agent’s measurement direction is indicated by an arrow, and a dashed
line representing an active sensing link. A solid line indicates the agents are looking
at each other. The exclamation points indicate a detection has occurred.

112

Figure 6.6: Simulation between a planned (𝑁 = 2000) attacker and a planned
(𝑁 = 20, 000) defender. The adversary is the center agent of the top row (agent 5),
indicated by red antennas and sensor. The centralized belief of the formation’s state
is represented as a probability density. Tick marks indicate each agent’s nominal
position. Spacecraft are capable of looking at their neighbors (indicated by dotted
gray connections) and the reference target. Each agent’s measurement direction is
indicated by an arrow, and a dashed line representing an active sensing link. A solid
line indicates the agents are looking at each other.

113

Figure 6.7: Simulation between a planned (𝑁 = 2000) attacker and a planned
(𝑁 = 20, 000) defender. The adversary is the center agent of the top row (agent 5),
indicated by red antennas and sensor. The centralized belief of the formation’s state
is represented as a probability density. Tick marks indicate each agent’s nominal
position. Spacecraft are capable of looking at their neighbors (indicated by dotted
gray connections) and the reference target. Each agent’s measurement direction is
indicated by an arrow, and a dashed line representing an. A solid line indicates the
agents are looking at each other. The exclamation points indicate a detection has
occurred.

114

C h a p t e r 7

EXTENSIONS TO OPTIMAL RELATIVE ORBITS

[1] J. Ragan, R. Ahmed, K. Matsuka, I. Seker, S.-J. Chung, and M. Lavalle,
“Optimizing formation flying orbit designs,” Advances in the Astronauti-
cal Sciences AAS/AIAA Spaceflight Mechanics, vol. 176, 2021. [Online].
Available: http://www.univelt.com/book=8507,

[2] J. Lathrop, W. Cook, J. Ragan, and S.-J. Chung, “Applying monte carlo
tree search for orbit selection in multi-agent inspection,” Proceedings of
the 2022 AAS/AIAA Astrodynamics Specialist Conference, 2022. [Online].
Available: https://www.space-flight.org/docs/2022_summer/
ASC22_FullProgram_Compiled.pdf,

We discuss planning optimal formation flying orbits in this chapter. We consider
both online, real-time reconfiguration as well as offline optimization for mission
planning. Like the other topics of this thesis, a unifying them is the optimization of
novel and non-convex objectives, subject to hard to evaluate constraints.

7.1 Motivation
We have discussed in the previous chapter how formation flying spacecraft have the
potential to perform more complex tasks and produce higher quality science while
achieving a higher level of redundancy compared to similar monolithic missions
in terms of both cost and launch mass, but also introduce new challenges and
vulnerabilities. Once such challenge is the increased complexity of orbit design.
Each additional spacecraft has its own set of design variables to consider, greatly
increasing the size and dimensionality of the parameter space [177].

We study the optimal orbit assignment problem in two cases. First, we consider an
Earth observation science mission using Synthetic Aperture Radar (SAR) which was
proposed in response to the 2017 Earth Science Decadal Survey [178]. Such mis-
sions can provide high resolution 3-D maps of vegetation [179], [180], but present
a challenging offline optimization problem. We then consider on-orbit multi-agent
inspection, which can enable on-orbit servicing, assembly, and manufacturing [181],
external fault detection [182], and interactions with unknown and potentially unco-
operative objects [183]. However, the inspection point of interest (POIs) may be
unknown in advance or change mid-mission, requiring online orbit assignment.

http://www.univelt.com/book=8507
https://www.space-flight.org/docs/2022_summer/ASC22_FullProgram_Compiled.pdf
https://www.space-flight.org/docs/2022_summer/ASC22_FullProgram_Compiled.pdf

115

The remainder of the chapter is organized as follows. In the next section, we review
Relative Orbital Mechanics, and TomoSAR and Information Costs. We then consider
each of our orbit assignment settings, by formulating the problem, developing our
solution, and presenting numerical validations of our method. Finally, we provide a
context with other literature and a summary of the chapter.

7.2 Background
This section introduces background material on passive relative orbits, synthetic
aperture radar, and information cost metrics. We will use this material to perform
our offline optimization for Earth observation science mission and online orbit
selection for multi-agent inspections in the next two sections.

Relative Orbital Mechanics
In the design of any formation flying mission, minimizing passive drift is desirable
to avoid prohibitive fuel consumption [21]. This has motivated the development of
Passive Relative Orbits (PROs), which are formations of spacecraft which remain
close under unforced orbital dynamics, eliminating the need for fuel consumption
outside of station keeping maneuvers [184]. The simplest and most straight forward
method of developing a PRO is to use the linearized mechanics of the Hill-Clohessy-
Wiltshire (HCW) equations and eliminate the secular drift terms [185]. However, it
neglects both the non-linear dynamics of Keplerian orbital motion and perturbations
experienced in low earth orbit (LEO). Assuming each spacecraft have homogeneous
drag coefficients, 𝐽2 effects due to Earth’s oblatness are the predominant perturba-
tion on relative orbital mechanics. These can be corrected via energy matching
conditions, resulting in a nominal drift of as little as 8 millimeters per orbit on
kilometer scale formations [186].

To study the evolution of PROs, it is convenient to evaluate the formation in a local
reference frame. A common choice is the local vertical, local horizontal (LVLH)
frame. This frame is attached to a reference spacecraft designated as the chief,
and rotates along the orbit such that the 𝑥 (radial) direction, is radially outward
from the chief; the 𝑧 (cross track) direction is along the angular momentum vector
of the chief’s orbit; and the �̂� (along track) direction completes the right-handed
coordinate system. In this frame, the remaining spacecraft, known as the deputies,
appear to orbit the chief spacecraft with the same period as the formation’s orbit
around Earth. We will use this frame for the remainder of this chapter. Additional
details on computing this frame are provided in Appendix E.

116

Synthetic Aperture Radar Tomography
Interferometry is a natural science application of formation flying [132], [133].
In this chapter, we focus on SAR applications in particular, in the context of the
Distributed Aperture Radar Tomographic Sensors (DARTS) mission concept, part
of a NASA Instrument Incubator Program which aims to perform frequent, 3D
mapping of Earth’s surface topography and vegetation on a near weekly observation
cadence [134].

2D imaging radars typically use high bandwidth waveforms and employ the SAR
technique of combining multiple radar measurement taken along an orbital trajec-
tory, effectively creating a larger synthetic antenna aperture [187]. These techniques
achieve fine range (cross-track) and azimuth (along-track) resolution, but lack depth
information such as the vertical structure of vegetation.

Synthetic Aperture Radar tomography (TomoSAR) [179], [188], [189] is a radar
imaging technique developed to create three dimensional maps of natural targets.
While it is possible to create a radar tomogram by combining 2D images from
repeated passes of a single-agent, the DARTS mission concept proposes using
multiple formation flying spacecraft to create a synthetic baseline in the cross-track
direction instead. This allows for combining numerous 2D slices to create a 3D
image in a single orbit pass. The advantages of single-pass TomoSAR imaging are
significantly lower temporal decorrelation [190], [191], which can result in poor
tomographic accuracy over vegetated areas [192], [193], shorter time to achieve
global coverage, and better detection of time varying features. This formation is
visualized in Fig. 7.1.

To quantify performance of a TomoSAR system as a function of the spacecraft
formation, we consider: (1) the tomographic (vertical) resolution 𝛿𝑛, and (2) the
nearest ambiguity location ℎ𝑎𝑛. Tomographic resolution, is inversely proportional
to the formation baseline, while the nearest ambiguity location (for uniformly dis-
tributed platforms) is inversely proportional to the separation between agents. These
quantities are modeled approximately as:

𝛿𝑛 =
𝜆𝑟0
2𝐿𝑛

(7.1)

ℎ𝑎𝑛 =
𝜆𝑟0
2𝜇𝑛

(7.2)

where 𝐿𝑛 is the formation baseline, 𝜇𝑛 is the separation between uniformly dis-
tributed platforms, 𝜆 is the wavelength of the radar system (assumed to be 24 cm

117

Figure 7.1: Synthetic Aperture Radar formation diagram. This formation is
flying out of the page, so its velocity vector is omitted. Note that the baseline and
and separations between each platform normal to the look direction are the quantities
of interest. Here 𝜃 denotes the look angle of the formation and defines the radar look
axis. 𝛼 indicates the formation is likely not parallel with the ground. This diagram
neglects the curvature of the Earth for simplicity. Reproduced with permission from
Seker and Lavalle [194].

(L band) for DARTS), and 𝑟0 is the range to the target. The subscript 𝑛 indicates
projection onto the normal direction perpendicular to both the look and along track
directions. Note both these equations assume each platform transmits and receives
individually. Other radar modes have a different constant factor. These quantities
are visualized in Fig. 7.1. Note that Eq. (7.2) assumes a uniform spacing between
the SAR platforms. In our analysis, we use the approximate nearest ambiguity, ℎ̄𝑎𝑛,
computed by replacing 𝜇𝑛 in Eq. (7.2) with the average separation �̄�𝑛.

To visualize why the nearest ambiguity is an important concern, consider the sim-
ulated radar measurements presented in Fig. 7.2. The nearest ambiguity refers to
the distance between a main feature of interest, e.g., one of the target points of the
simulated array, to the nearest replica of that feature. These replicas are artifacts
resulting from the a discrete approximation of the synthetic aperture. Were these
signals to overlap, distinguishing them is challenging, if not impossible. This be-
havior can be seen in the last example of Fig. 7.2, where the platform spacing and
formation baseline have both doubled, resulting in overlapping ambiguities. Hence,
it is desirable to keep the minimum ambiguity distance greater than the expected
target height. For our analysis, a 30 meter constraint was used for good performance
on most forests worldwide.

118

Figure 7.2: Simulation results adapted from Seker and Lavalle [194]. De-
picted are: (A) the nominal configuration of the simulation (B) decreased formation
baseline with unchanged platform spacing and (C) doubled baseline and platform
separation.

119

Information Cost for Inspection
To optimize formation flying orbits for inspection tasks, we need a notion of value
to quantify how well a formation performs an inspection. This is provided by the
information cost 𝐻, defined as:

𝐻 (P) =
∑︁
𝑠∈POIs

𝐻𝑃𝑂𝐼 (P, 𝑠) (7.3)

𝐻𝑃𝑂𝐼 (P, 𝑠) = ©«𝑤−1 +
∑︁
𝑝∈P

𝑓 (𝑝, 𝑠)−1ª®¬
−1

(7.4)

𝑓 (𝑝, 𝑠) =

dist2(𝑝, 𝑠), if 𝑠 visible from 𝑝

∞, otherwise
(7.5)

Following the notation of Nakka et al. [195], 𝑝 ∈ 𝑆𝐸 (3) is the position and attitude
of a sensor on-board a deputy satellite and 𝑠 ∈ R3 is the position of a point of interest
onboard the target spacecraft. The function 𝑓 (𝑝, 𝑠) incorporates the observation
model between a particular sensor pose 𝑝 and a point of interest 𝑠. In Eq. (7.5), we
model the ability of a camera to gather information about a point at a distance as
inversely proportional to the squared Euclidean distance.

The information cost 𝐻 is a function of a set of PRO orbit poses P and a set of
points of interest 𝑠 ∈ POIs [195], [196]. It serves as a proxy for the variance of the
final estimation error after each observation along the PRO orbits in P. To do so,
𝐻 sums of the estimation variance of each point of interest 𝑠, given an observation
contribution 𝑓 (𝑝, 𝑠) and prior variance 𝑤.

The information cost of a particular point of interest 𝑠 is a reciprocal sum of the
baseline variance 𝑤 and the variance of observations made by all deputy satellites
throughout their orbit. The setP in Eq. (7.4) is the set of sensor poses corresponding
to every measurement taken from each deputy along their orbits.

The baseline variance 𝑤 represents the uncertainty in our prior model (if any) of
the target. In the limit of 𝑤 approaching infinity, this means there is zero prior
information about the target. In reality, we will always have some slight prior
information about the target, and therefore 𝑤 will be a finite quantity.

120

7.3 Offline Orbit Design for SAR
We wish to design a formation of spacecraft that provide high resolution TomoSAR
images, while maintaining the required ambiguity separation. Like in Chapters 3
and 6, this results in a constrained optimization problem of the form:

min
𝑥0

𝐹 𝑓 (𝑥0) + 𝛼𝐹𝑠 (𝑥0)

subject to ℎ̄𝑎𝑛 (𝑥0, 𝑡) ≥ 30∀𝑡
(7.6)

where ℎ𝑎𝑛 (𝑥0, 𝑡) is computed by propagating the relative orbital dynamics, 𝐹 𝑓 (𝑥0) is
the fuel penalty model and 𝐹𝑠 (𝑥0) is the science objective model given by:

𝐹 𝑓 (𝑥0) = exp
(
Δ𝑉0(𝑥0)

ISP

)
(7.7)

𝐹𝑠 (𝑥0) = −
∫ 𝑡 𝑓

𝑡0

2𝐿𝑛 (𝑥0, 𝜏)
𝜆𝑟0

d𝜏 (7.8)

where Δ𝑉0(𝑥0) is the largest initial velocity magnitude of the deputy spacecraft
required to achieve the 𝐽2 invariant PROs [186], and ISP is the the specific impulse
of the agents’ propulsion systems. As a result, 𝐹 𝑓 (𝑥0) models the fuel mass required
by the formation, and 𝐹𝑠 models the science value (the reciprocal of the resolution
in Eq. (7.1)) integrated along the trajectory from 𝑡0 to 𝑡 𝑓 . The parameter 𝛼 > 0
is an explicit design parameter that controls the trade off between increased launch
mass and increased scientific merit, which is a common trade in space mission
designs. If a launch mass budget is specified instead, we could reformulate 𝐹 𝑓 (𝑥0)
as a constraint in the same fashion as our reformulations in Chapters 3 and 6.
Similarly, we can extend this approach to other combinations of science objectives
and constraints [134], but will focus on resolution and ambiguity as our examples
in this chapter.

Due to both the objective and constraint depending on integrating over the orbital
dynamics, the problem defined by Eq. (7.6) is non-convex, making it unsuitable
for typical optimization techniques, which require either convexity or the ability to
readily convexify the constraints [197], [198]. Instead, like we have done in previous
chapters, we will seek numerical methods which provide good approximations of the
optimal solution, and can converge to better solutions with increased computational
power.

To solve this problem, we employ a genetic algorithm as a heuristic method. Genetic
algorithms work by mutating the best currently known solutions to an optimization

121

problem, in our case using Gaussian noise, to seek better related solutions [199].
They are effectively a local minimum search algorithm, which a small chance of
mutations escaping to explore other regions of the configuration space. We bias
this escape probability in the cross-track direction to seek increases in tomographic
baseline, and impose our ambiguity constraint using a barrier function. Our method
has the downside of potentially converging to sub-optimal solutions, or requiring
many generations to converge, while not providing a closed form solution. However,
its advantages are that it imposes no requirements on the objective or constraints
and that given a feasible initial configuration it will only improve upon it.

In the next subsection, we present numerical results which validate our algorithm.
We note that other design parameters, including the choice of spacecraft, instru-
ments, and the chief orbit (for ground track coverage and frequency of repeated
observations) were considered to have been already fixed for the purposes of this
analysis.

Simulation Results
We studied the initial positions converged to after over 100 iterations of our genetic
algorithm for formations of six and four spacecraft. The resulting formations are
depicted in Figures 7.3 and 7.6, respectively.

Looking at the six spacecraft formation, we note that it achieves a very small drift
rate in the along track and radial directions, and stays bounded within the cross
track direction. This formation satisfies the ambiguity constraint imposed by the
optimization problem, and achieves an average resolution of 7.57 m. The resolution
and ambiguity over the first day is shown in Figures 7.4 and 7.5, and is representative
of the behavior through the full 12 day period of interest. We note that the 30 m
ambiguity constraint is active (there time steps with ambiguity equal to 30 m). This
is a well known optimality condition [29], suggesting the genetic algorithm has
converged to at least a local minima. The periodic behavior of the resolution and
ambiguity match the orbit period, and demonstrate the strong trade off between
resolution and ambiguity expected from Eqs. (7.1) and (7.2).

Similar results are produced by the genetic algorithm for 4 spacecraft. The forma-
tion is notably more compact to satisfy the ambiguity constraints of the optimization
problem. The average resolution of this orbit is 10.82 m, and the average baseline of
the formation is 9.72 km. The resulting resolution and ambiguities over the course of
the orbit are shown in Figures 7.7 and 7.8. Unsurprisingly, with less agents, a more

122

(A) 3D orbit view (B) Along track vs. radial dynamics

(C) Cross track vs. radial dynamics (D) Cross track vs. along track dynamics

Figure 7.3: 6 spacecraft (5 deputy) formation. The formation produced by the
genetic algorithm is shown in 3D and 2D views. The look direction of the forma-
tion and formation baseline axis are shown in pink (dashed) and brown (dotted),
respectively.

123

Figure 7.4: 6 spacecraft (5 deputy) formation resolution. Shown over the period
of a day.

Figure 7.5: 6 spacecraft (5 deputy) formation ambiguity. Shown over the period
of a day. Note the 30 m ambiguity constraint is achieved.

124

(A) 3D orbit view (B) Along track vs. radial dynamics

(C) Cross track vs. radial dynamics (D) Cross track vs. along track dynamics

Figure 7.6: 4 spacecraft (3 deputy) formation. The formation produced by the
genetic algorithm is shown in 3D and 2D views. The look direction of the forma-
tion and formation baseline axis are shown in pink (dashed) and brown (dotted),
respectively.

125

Figure 7.7: 4 spacecraft (3 deputy) formation resolution. Shown over the period
of a day.

Figure 7.8: 4 spacecraft (3 deputy) formation ambiguity. Shown over the period
of a day. Note the 30 m ambiguity constraint is achieved.

126

compact formation is needed to maintain a sufficiently high ambiguity separation,
and the resolution suffers as a result. We can compare our results with the High
Resolution Wide Swath (HRWS) mission concept, which also uses a chief and 3
deputy vehicles to perform SAR observations [200]. Taking a conservative estimate,
the HRWS orbit has an average baseline of approximately 800m. Adjusting for dif-
ferences in frequency and altitude in Eq. (7.1), HRWS achieves the same resolution
as our proposed DARTS formation, however does not provide any guarantees of
ambiguity constraint satisfaction, validating our algorithm’s performance and our
additional utility.

7.4 Real-time Orbit Selection for Inspection
Our goal is to find the optimal set of PROs P∗ from a pre-computed library that
minimizes the information cost 𝐻 for a particular target satellite. We denote indi-
vidual PROs in a library of size 𝑛 by 𝑂𝑖 for 𝑖 = 1, ..., 𝑛. We use P to denote a set
of PROs, such as P = 𝑂1

⋃
𝑂5

⋃
𝑂9 being the collection of PROs 1, 5, and 9 from

the library. For a library 𝐶 = {𝑂1, 𝑂2, ..., 𝑂𝑛} of PROs and a fixed point of interest
configuration, the optimal set P∗ is defined as the union of 𝑇 orbits 𝑂𝑖 for 𝑇 indices
1 ≤ 𝑖 ≤ 𝑛 that minimize 𝐻 (P).

To find the global optimal set of PROs of size 𝑇 from a library of candidate PROs of
size 𝑛, we must consider all

(𝑛
𝑇

)
= 𝑛!
𝑇!(𝑛−𝑇)! combinations of PROs. When evaluating

a candidate-optimal set of PROs P, the information cost 𝐻 is found by integrating
through the orbits of all 𝑇 PROs and checking visibility of every point of interest
𝑠 on the target body every 5 seconds. This evaluation is expensive, and finding
the globally optimal solution requires performing it combinatorially many times,
making real-time optimization intractable when 𝑛 is large. Instead, much like we
did in Chapters 2, 3, and 6, we will seek out methods that can asymptotically
approximate this optimization, and enable any-time solutions.

Asymptotic Approximation as a Sequential Decision-Making Process
Instead of solving for the complete set of PROs at once, which scales combinatorially,
we alternatively frame the online assignment of pre-computed PROs to deputy
satellites as a sequential decision-making process. This will allow us to employ
Monte Carlo Tree Search (MCTS) methods similar to the one used in previous
chapters. Now, each decision is the assignment of a new deputy to a pre-computed
orbit, with the goal of maximizing the information-gathering ability of the final
size 𝑇 formation. In particular, we will take advantage of MCTS’s strength in

127

combinatorial games where the value of early decisions may be unclear until a end
state is reached, such as its notable success in Go [125].

Fig. 7.9 visualizes our tree search algorithm. The root node is an empty set,
represented by no orbits around the target satellite. The edges below the root node
add one PRO, 𝑜𝑖, 𝑗 , indicating orbit 𝑗 is added to a node in layer 𝑖. These PROs are
represented by the elliptical orbits around the target. Below each child node, the
tree continues to extend downward, adding one additional PRO per layer to reach
size 𝑇 .

Figure 7.9: Qualitative visualization of a partially expanded tree search. Each
node of the tree is a set of PROs, represented as orbits around the target. The color
of a node indicates the cost (darker is lower) associated with a set of PROs and some
points of interest on the target. The size represents the estimated value of each node,
based on the average backpropogated reward.

Previous work has explored greedy solutions to this decision making problem [195].
At each step, the next PRO to add to the set is chosen by minimizing the information
cost of the added-to set of orbits. This procedure is faster than a global optimum
search, as 𝑇 decisions are to be made, and each requires 𝑛 evaluations or fewer,
yielding 𝑂 (𝑛𝑇) evaluations total.

This approach, while fast, fails to plan long-term, and we will show this can lead to
sub-optimal orbit designs. One reason for this is the inability to wait until all orbits
are chosen to evaluate the formation cost. Instead, the greedy algorithm requires
cost evaluations with incomplete sets of PROs containing fewer than 𝑇 orbits. In

128

situations with little prior information, this can yield extremely large information
costs (𝐻). If a single orbit cannot see every point of interest on the target, the full
contribution 𝑤 from each unseen point is added to the information cost, representing
the high uncertainty remaining. In the limit 𝑤 → ∞, the greedy approach will fail,
as the cost of every first choice of PRO will be ∞. In the example illustrated in
Fig. 7.9, the optimal solution for a two orbit formation is the darkest node at the
bottom of the dree. However, a greedy policy would select the right branch of the
tree at its first step, missing the most-optimal solution.

Simulation Overview
We provide an overview of the simulations used to validate our algorithm in this
section. Further details are provided in Appendix E. For each of our experiments,
we consider one of the three points of interest configurations show in Fig. 7.10.
These consist of: six points uniformly distributed on a sphere, an asymmetric target
with a cluster of points on one side, and fifty points evenly distributed on the target
satellite.

Figure 7.10: The three Point of Interest configurations studied (LVLH coor-
dinates). In the first configuration, (left) six points of interest are placed at the
positive and negative extremes of each axis. In the second configuration (center),
more points of interest are placed on the positive-x hemisphere and meridian sep-
arating the positive- and negative-x hemispheres. This configuration represents a
target satellite with more components of interest on one side. In the third config-
uration (right), 50 points of interest are evenly distributed across the target. This
configuration represents a target satellite over which complete coverage is desired.

We first search over small libraries where the optimal formation can be tractably
computed through exhaustive search (𝑛 = 8, ..., 20, 𝑇 = 4) to show our algo-
rithm converges towards the optimal formation while the greedy algorithm quickly

129

becomes sub optimal. We then consider large libraries and formations (𝑛 =

80, 100, 120, 140, 160, 𝑇 = 10) where the optimal formation cannot be readily
found, to show we maintain a performance gap as the problem scales. In all forma-
tions, we construct the PROs by selecting initial positions uniformly distributed on
a sphere centered on the inspection target, at radii of approximately 1 km.

Unlike the ray-casting based visibility check for the evaluation of 𝑓 (𝑝, 𝑠) used in
pervious work [195], we consider a visibility cone method to evaluate 𝑓 (𝑝, 𝑠) along
each PRO and assume the sensor is always pointed at the target. We model the prior
information with a baseline variance of 𝑤 = 100 for all points.

Our MCTS algorithm is similar to the versions presented in Chapters 2 and 3, with
a slight modification to prevent continued selection of fully expanded branches in
small libraries and formations. Pseudocode and details of our algorithm are also
included in Appendix E.

Simulation Results
In every scenario, the MCTS algorithm outperformed the greedy algorithm in in-
formation cost. The cost for the three point of interest configurations are shown in
Fig. 7.11. This figure shows the cost evaluated for PRO libraries of size varying
from 𝑛 = 8 to 𝑛 = 20. Each point of interest can contribute up to 𝑤 = 100 to the
total information cost, which is then normalized by the number of points of interest
in a configuration. The value in Fig. 7.11 represents un-gathered information.

In Configuration 1, assigning four orbits to observe six points of interest allows very
good coverage of the points, with 65% of the information about each point being
gathered on average by our method and the optimal solution. The clustering of
points in Configuration 2 allows even better coverage as, near-pass observations of
multiple points can be made with a single orbit, whereas the 50 uniformly-spread
points in Configuration 3 cannot be efficiently inspected by 4 orbits. Notably, even
in the third configuration, the MCTS solution typically matches the optimal solution
exactly, and always outperforms the greedy policy.

MCTS especially outperforms the greedy assignment policy when the points of
interest are not uniformly distributed on the target, as in POI configuration 2. Here,
MCTS always finds a set of orbits with a cost within 20% of the optimal cost while
the greedy policy finds solutions 30% to 270% worse than the optimal. The resulting
formations for the greedy, MCTS, and optimal policies are shown in Fig. 7.12 for a
PRO library of size 𝑛 = 12 and the second POI configuration.

130

Figure 7.11: The information cost of greedy and MCTS orbit assignment poli-
cies. In each graph, the size of the PRO library used in the simulation is the x-axis,
and the normalized information cost is shown on the y-axis. The point of interest
configurations are six uniform points, one hemisphere containing more points, and
fifty uniform points.

Figure 7.12: Resulting PRO formations. Shown are all three studied orbit assign-
ment policies for the second POI configuration and library of size 𝑛 = 12. The
MCTS policy agrees with the optimal solution of PROs with indices {0, 9, 11, 5}.
The greedy solution found a sub-optimal arrangement of PROs, {1, 6, 9, 7}. For
this simulation, the information cost of the optimal and MCTS sets is 𝐻 = 303 and
the information cost of the greedy set is 𝐻 = 642 (a factor of 2.12 worse). The target
is indicated by the black dot in the center of each figure.

We also show orbit solutions found for the larger library sizes. The left plot of
Fig. 7.13 shows the information cost per POI for the large library sizes applied to
Configuration 3, where the small libraries performed the worst. The global optimum
was not solved for and is not shown.

The orbit solutions shown in center and right plots of Fig. 7.13 showcase the
weakness of the greedy approach. The greedy policy selects the smallest central

131

Figure 7.13: Resulting Information cost and representative orbit solutions for
𝑛 = 80, 100, 120, 140, 160. On the left, the information cost of the greedy and
MCTS policies are compared. The optimal solution was not found for these library
sizes. The center and right images are the orbit solutions found for 𝑛 = 100, 𝑇 = 10
by the greedy and MCTS policy, respectively. For this simulation, the information
cost of the MCTS set is 𝐻 = 2944, 58.8 per POI, and the information cost of the
greedy set is 𝐻 = 4441, 88.82 per POI (a factor of 1.51 worse). The target is
indicated by the black dot in the center of each figure.

orbit (in blue) as the first choice of orbit, as it performs a close pass to many points.
This choice results in the final set being sub-optimal, as the points of interest can be
more optimally observed through a set of PROs further away from the target. The
MCTS policy finds this set whose information cost is a factor of 1.51 better.

On even the largest (𝑛 = 160,𝑇 = 10) libraries and formations, our MCTS algorithm
balances well the trade off between rapid execution and performance. In this setting,
the MCTS algorithm takes 148 s to complete, compared to 89 s for the greedy
algorithm and an estimated 4.14 million years for a naive brute force evaluation.
Even in the smaller formations, it took up to 278 s for a brute force evaluation of the
𝑛 = 20 library, where as MCTS ran in 5.74 s and recovered the optimal solution.

Finally in Fig. 7.14, we show the information cost averaged over five random seeds
of the as-yet best set of PROs found versus iteration of the Monte-Carlo tree search
policy. The orbit assignment tasks shown are the same as shown in Fig. 7.12 (𝑛 = 16,
POI Configuration 2) and Fig. 7.13 (𝑛 = 100, POI Configuration 3). In the case of
a small library size (left plot), every instance of the MCTS algorithm arrives at the
optimal set of PROs by iteration 45. In the right plot, the MCTS cost continues to
decrease until the search is terminated at iteration 𝑀 = 1000.

132

Figure 7.14: The current-best set performance over MCTS iteration. The left
plot is for POI Configuration 2, library 𝑛 = 12, the same simulation as in Fig. 7.12.
The performance of the optimal policy and the greedy policy are shown as red and
green lines, respectively. By iteration 45, the tree search has arrived at the optimal
solution. The right plot corresponds to POI Configuration 3, library 𝑛 = 100, the
same simulation as in Fig. 7.13. Only the MCTS and greedy costs are shown, as
the optimum was not computed for this library. Both plots are averaged across five
random seeds.

7.5 Context with Related Work
Offline Orbit Design for SAR
With the success of the TanDEM-X mission in 2010, [201] several follow up forma-
tion flying synthetic aperture radar (SAR) missions have been proposed in previous
work, including its candidate successor Tandem-L [202]. Proposed advances to
existing formation flying SAR missions include adapting the Sentinel-1 mission
in similar manner as TadDEM-X by adding two receive-only companions [203],
[204], or modifying the TandDEM-X mission design to include up to four compan-
ion satellites [200], [205]. However, no formation of 6 or more spacecraft has been
proposed.

Optimizing formation flying trajectories is also a widely studied research topic [206]–
[210], including research into optimal formation reconfigurations via analytic meth-
ods [210] as well as genetic algorithms [206]. Previous formation flying optimization
work have optimized the formation stability [211] or fuel costs due to Δ𝑉 (veloc-
ity change) [212], but have not considered a science objective function or applied
optimization techniques to an orbital TomoSAR formation.

133

Real-time Orbit Selection for Inspection
Previous work have included the design of estimators for multi-agent inspec-
tion [135], offline optimization of orbits for visual inspection [136], greedy as-
signment using orbits designed offline [213], and deep-learning for online orbit
reconfiguration [214]. Our method extends this work by providing a new search
based methodology, extending the strengths of MCTS algorithms demonstrated in
pervious chapters to the real-time orbit assignment problem.

7.6 Chapter Summary
In this chapter, we have extended our work on optimal planning to the domain of
formation flying orbit design through consideration of two problems. In the first, we
considered offline optimization of a formation of TomoSAR spacecraft to maximize
a science output matrix while satisfying constraints to ensure usable measurements.
Using a genetic algorithm, we developed formations for four and six spacecraft,
demonstrating the utility and feasibility of our method. This approach could be
extended to other science driven metrics or constraints, or other missions where
performance is a direct function of relative orbital dynamics.

The second problem we considered demonstrated how our real-time search algo-
rithms could be deployed to reconfigure an existing swarm of spacecraft to achieve
inspection tasks. By using MCTS to efficiently search the design space, we were able
to reliably outperform a greedy method, and do so in a fraction of the time needed
for exhaustive brute force searches. Combined with the extensions to information
gathering problems and probabilistic constraints explored in previous chapters, this
work demonstrates the broad applicability of MCTS planning methods in domains
where a trade off between optimality and real-time performance is desirable.

134

C h a p t e r 8

CONCLUSION

Over the course of this thesis, we have employed MCTS and other planning algo-
rithms to solve a range of emerging challenges for space missions. We have shown
that careful formalizing of the problems of interest can result in forms that our
methods can efficiently search over while provably converging to optimal solutions.
In Chapter 2, this approach enabled us to perform and scale better in information
gathering problems than existing partially observable methods. In Chapter 3, it
enabled us to further extend our method to include chance constraints which can
provide guarantees of safety under mild conservative approximations. In Chapter 4,
we discussed why our methodology was needed for information gathering problems,
and discussed our applicability to other systems and real-time scenarios.

Our work in active fault estimation then motivated us to consider new methods of
MCTS planning, creating in Chapter 5 an array-based alternative to the conven-
tional implementations which feature predictable branching. We also considered
extensions to multi-agent systems, both to defend against adversarial stealth attacks
in Chapter 6, and to plan optimal orbital configurations in Chapter 7.

A unifying theme of this thesis has been using planning to act optimally in the face
of uncertain future information. This uncertainty has come from faults, external
actors, and complexity. Often, the number of possible futures has been far too
large to exhaustively search over. However, by efficiently balancing exploring new
possibilities with focusing our attention on areas with high probabilities of success
and reward, we have shown that autonomous agents can act intelligently in ways that
can be readily interpreted by human operators. In doing so, our research has also
presented several promising opportunities for future work.

8.1 Future Work
Continuous Fault Models
In our development of FEAST and s-FEAST in Chapters 2 and 3, we considered
enumerated faults selected by an operator based on faults seen in prior events,
modeling of likely fault scenarios, or chosen to monitor particularly dangerous
failures. This allowed us to condition our marginalized filter on each fault scenario,

135

and efficiently decompose the belief over state and fault space. By assuming a
structure of the faults, we were also able to successfully avoid observability concerns
which can arise when there is no direct sensing of the faults or too general of an
input-output model. However, the trade off is that a finite, enumerated set of faults
may not be suitable to scenarios where unknown or unmodeled faults dominate,
or where slight differences between the modeled and actual faults lead to large
differences in observations. Approaches we considered to address this gap include
modeling the enumerated faults as particles and leveraging techniques from particle
filtering such as resampling or diffusion to explore the fault space. Alternatively,
the enumerated faults could be instead formulated as a continuous region of similar
faulty behavior instead of a single point in fault space, and observations consistent
with any fault in these regions could be equally weighted.

Improved MCTS Performance in Dynamical Systems
Our work to create an implementation of Monte Carlo Tree Search using arrays
instead of tree objects to store the search data has presented promising preliminary
results. However, there remains plenty to be done to further optimize this method.
One particular area of interest is taking advantage of the algorithm’s avoidance
of branch prediction to deploy our method on hardware accelerators which have
limited branching capabilities, such as GPUs. Thorough profiling of our algorithm
could also be performed, to identify areas where more optimization is possible,
and to validate our intuition about the importance of the processor cache to our
method’s performance. Additional algorithmic optimizations can be performed,
especially by taking advantage of domain or problem specific knowledge to identify
fully expanded layers of the tree and tighter bounds on state branching. Finally, we
predict that this approach would pair well with ongoing efforts to parallelize MCTS,
and may open new avenues to do so.

136

BIBLIOGRAPHY

[1] Y. Gao and S. Chien, “Review on space robotics: Toward top-level science
through space exploration,” Science Robotics, vol. 2, no. 7, eaan5074, 2017.
doi: 10.1126/scirobotics.aan5074. eprint: https://www.science.
org/doi/pdf/10.1126/scirobotics.aan5074. [Online]. Available:
https://www.science.org/doi/abs/10.1126/scirobotics.
aan5074.

[2] J. Balaram, M. Aung, and M. P. Golombek, “The ingenuity helicopter on
the perseverance rover,” Space Science Reviews, vol. 217, no. 4, p. 56, 2021.

[3] Y. Li, H. Li, W. Liu, et al., “A networking perspective on starlink’s self-
driving leo mega-constellation,” in Proceedings of the 29th Annual Interna-
tional Conference on Mobile Computing and Networking, ser. ACM Mobi-
Com ’23, Madrid, Spain: Association for Computing Machinery, 2023, isbn:
9781450399906. doi: 10.1145/3570361.3592519. [Online]. Available:
https://doi.org/10.1145/3570361.3592519.

[4] S. Nag, D. D. Murakami, N. A. Marker, M. T. Lifson, and P. H. Kopardekar,
“Prototyping operational autonomy for space traffic management,” Acta
Astronautica, vol. 180, pp. 489–506, 2021.

[5] F. Rossi, D. A. Allard, R. Amini, et al., “Workflows. user interfaces, and al-
gorithms for operations of autonomous spacecraft,” in 2023 IEEE Aerospace
Conference, IEEE, 2023, pp. 1–17.

[6] T. Uhlig, F. Sellmaier, and M. Schmidhuber, Spacecraft operations. Springer,
2015.

[7] I. A. Nesnas, L. M. Fesq, and R. A. Volpe, “Autonomy for space robots: Past,
present, and future,” Current Robotics Reports, vol. 2, no. 3, pp. 251–263,
2021.

[8] P. S. Morgan, “Fault protection techniques in JPL spacecraft,” version V2,
2005. doi: 2014/39531. [Online]. Available: https://hdl.handle.
net/2014/39531.

[9] A. Nelessen, C. Sackier, I. Clark, et al., “Mars 2020 entry, descent, and
landing system overview,” in 2019 IEEE Aerospace Conference, 2019, pp. 1–
20. doi: 10.1109/AERO.2019.8742167.

[10] A. Johnson, S. Aaron, J. Chang, et al., “The lander vision system for Mars
2020 entry descent and landing,” Guidance, Navigation, and Control 2017,
vol. 159, no. JPL-CL-CL# 17-0445, 2017.

https://doi.org/10.1126/scirobotics.aan5074
https://www.science.org/doi/pdf/10.1126/scirobotics.aan5074
https://www.science.org/doi/pdf/10.1126/scirobotics.aan5074
https://www.science.org/doi/abs/10.1126/scirobotics.aan5074
https://www.science.org/doi/abs/10.1126/scirobotics.aan5074
https://doi.org/10.1145/3570361.3592519
https://doi.org/10.1145/3570361.3592519
https://doi.org/2014/39531
https://hdl.handle.net/2014/39531
https://hdl.handle.net/2014/39531
https://doi.org/10.1109/AERO.2019.8742167

137

[11] C. Pardini and L. Anselmo, “Evaluating the impact of space activities in
low earth orbit,” Acta Astronautica, vol. 184, pp. 11–22, 2021, issn: 0094-
5765. doi: https://doi.org/10.1016/j.actaastro.2021.03.030.
[Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0094576521001430.

[12] K. Howard and A. Von Ah, “Large constellations of satellites: Mitigating
environmental and other effects,” Government Accountability Office, Wash-
ington, DC, USA, GAO Report No. GAO-22-105166, 2022.

[13] B. Balaram, T. Canham, C. Duncan, et al., “Mars helicopter technology
demonstrator,” in 2018 AIAA Atmospheric Flight Mechanics Conference,
2018, p. 0023.

[14] W. S. Slater, N. P. Tiwari, T. M. Lovelly, and J. K. Mee, “Total ionizing
dose radiation testing of NVIDIA Jetson Nano GPUs,” in 2020 IEEE High
Performance Extreme Computing Conference (HPEC), 2020, pp. 1–3.

[15] P. R. Turner, “Command and telemetry in autonomous spacecraft design,”
in International Telemetering Conference Proceedings, International Foun-
dation for Telemetering, vol. 20, 1984.

[16] R. Rudd, J. Hall, and G. Spradlin, “The voyager interstellar mission,” Acta
Astronautica, vol. 40, no. 2-8, pp. 383–396, 1997.

[17] I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A survey of fault detection, iso-
lation, and reconfiguration methods,” IEEE Transactions on Control Systems
Technology, vol. 18, no. 3, pp. 636–653, 2009.

[18] A. Wander and R. Förstner, Innovative fault detection, isolation and recovery
strategies on-board spacecraft: state of the art and research challenges.
Deutsche Gesellschaft für Luft-und Raumfahrt-Lilienthal-Oberth eV Bonn,
Germany, 2013.

[19] M. McIntyre, W. Dixon, D. Dawson, and I. Walker, “Fault detection and
identification for robot manipulators,” in IEEE International Conference on
Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004, vol. 5, 2004,
4981–4986 Vol.5. doi: 10.1109/ROBOT.2004.1302507.

[20] S. Bandyopadhyay, R. Foust, G. P. Subramanian, S.-J. Chung, and F. Y.
Hadaegh, “Review of formation flying and constellation missions using
nanosatellites,” Journal of Spacecraft and Rockets, vol. 53, no. 3, pp. 567–
578, 2016. doi: 10.2514/1.A33291. eprint: https://doi.org/10.
2514/1.A33291. [Online]. Available: https://doi.org/10.2514/1.
A33291.

[21] D. P. Scharf, F. Y. Hadaegh, and S. R. Ploen, “A survey of spacecraft
formation flying guidance and control. part II: Control,” in Proceedings of
the 2004 American Control Conference, IEEE, vol. 4, 2004, pp. 2976–2985.

https://doi.org/https://doi.org/10.1016/j.actaastro.2021.03.030
https://www.sciencedirect.com/science/article/pii/S0094576521001430
https://www.sciencedirect.com/science/article/pii/S0094576521001430
https://doi.org/10.1109/ROBOT.2004.1302507
https://doi.org/10.2514/1.A33291
https://doi.org/10.2514/1.A33291
https://doi.org/10.2514/1.A33291
https://doi.org/10.2514/1.A33291
https://doi.org/10.2514/1.A33291

138

[22] D. C. Schedl, I. Kurmi, and O. Bimber, “An autonomous drone for search
and rescue in forests using airborne optical sectioning,” Science Robotics,
vol. 6, no. 55, eabg1188, 2021.

[23] V. Verma, M. W. Maimone, D. M. Gaines, et al., “Autonomous robotics is
driving Perseverance rover’s progress on Mars,” Science Robotics, vol. 8,
no. 80, eadi3099, 2023.

[24] T. Ishigooka, S. Honda, and H. Takada, “Cost-effective redundancy approach
for fail-operational autonomous driving system,” in 2018 IEEE 21st Inter-
national Symposium on Real-Time Distributed Computing (ISORC), 2018,
pp. 107–115. doi: 10.1109/ISORC.2018.00023.

[25] A. Mantooth, C.-M. Zetterling, and A. Rusu, “Venus calling silicon carbide
radio circuits can take the heat needed to phone home from our hellish sister
planet,” IEEE Spectrum, vol. 58, no. 5, pp. 24–30, 2021.

[26] S. A. Jacklin, “Small-satellite mission failure rates,” NASA Ames Research
Center, Tech. Rep., 2019.

[27] F. A. Authority, FAA aerospace forecast: Fiscal years 2019-2039, 2019.

[28] M. Osborne, J. Lantair, Z. Shafiq, et al., “UAS operators safety and reliabil-
ity survey: Emerging technologies towards the certification of autonomous
UAS,” in 2019 4th International Conference on System Reliability and Safety
(ICSRS), 2019, pp. 203–212. doi: 10.1109/ICSRS48664.2019.8987692.

[29] D. E. Kirk, Optimal control theory : an introduction. Courier Corporation,
2004.

[30] M. J. Kochenderfer, Decision Making Under Uncertainty: Theory and Ap-
plication. The MIT Press, Jul. 2015.

[31] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics (Intelligent robotics
and autonomous agents). MIT Press, 2005.

[32] J. Speyer, J. Deyst, and D. Jacobson, “Optimization of stochastic linear
systems with additive measurement and process noise using exponential
performance criteria,” IEEE Transactions on Automatic Control, vol. 19,
no. 4, pp. 358–366, 1974. doi: 10.1109/TAC.1974.1100606.

[33] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and acting
in partially observable stochastic domains,” Artificial Intelligence, vol. 101,
no. 1-2, pp. 99–134, 1998.

[34] C. Browne, E. J. Powley, D. Whitehouse, et al., “A survey of Monte Carlo
tree search methods,” IEEE Transactions on Computational Intelligence and
AI in Games, vol. 4, no. 1, pp. 1–43, 2012. doi: 10.1109/TCIAIG.2012.
2186810.

[35] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in Eu-
ropean conference on machine learning, Springer, 2006, pp. 282–293.

https://doi.org/10.1109/ISORC.2018.00023
https://doi.org/10.1109/ICSRS48664.2019.8987692
https://doi.org/10.1109/TAC.1974.1100606
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/TCIAIG.2012.2186810

139

[36] D. Shah, Q. Xie, and Z. Xu, “Non-asymptotic analysis of Monte Carlo tree
search,” in SIGMETRICS (Abstracts), ACM, 2020, pp. 31–32.

[37] D. Silver and J. Veness, “Monte-Carlo planning in large POMDPs,” Ad-
vances in neural information processing systems, vol. 23, pp. 2164–2172,
2010.

[38] G. Süssmann, “Uncertainty relation: From inequality to equality,” Zeitschrift
für Naturforschung A, vol. 52, no. 1-2, pp. 49–52, 1997.

[39] R. G. Brown and P. Y. Hwang, “Introduction to random signals and ap-
plied kalman filtering: With matlab exercises and solutions,” Introduction
to random signals and applied Kalman filtering: with MATLAB exercises
and solutions, 1997.

[40] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, et al., “FastSLAM: a fac-
tored solution to the simultaneous localization and mapping problem,” Eigh-
teenth National Conference on Artificial Intelligence, vol. 593598, 2002.

[41] M. Kontitsis, E. A. Theodorou, and E. Todorov, “Multi-robot active SLAM
with relative entropy optimization,” in 2013 American Control Conference,
2013, pp. 2757–2764. doi: 10.1109/ACC.2013.6580252.

[42] J. Marino, M. Cvitkovic, and Y. Yue, “A general method for amortizing
variational filtering,” in Advances in Neural Information Processing Systems,
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett, Eds., vol. 31, Curran Associates, Inc., 2018.

[43] Y. K. Nakka, R. C. Foust, E. S. Lupu, et al., “A six degree-of-freedom
spacecraft dynamics simulator for formation control research,” in AAS/AIAA
Astrodynamics Specialist Conference, AIAA, 2018.

[44] R. Foust, E. Lupu, Y. Nakka, S.-J. Chung, and F. Hadaegh, “Autonomous
in-orbit satellite assembly from a modular heterogeneous swarm,” Acta
Astronautica, vol. 169, pp. 191–205, Jan. 2020, issn: 0094-5765. doi: 10.
1016/j.actaastro.2020.01.006. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0094576520300060.

[45] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge university
press, 2004.

[46] J. G. Saw, M. C. Yang, and T. C. Mo, “Chebyshev inequality with estimated
mean and variance,” The American Statistician, vol. 38, no. 2, pp. 130–132,
1984.

[47] A. Kabán, “Non-parametric detection of meaningless distances in high di-
mensional data,” Statistics and Computing, vol. 22, pp. 375–385, 2012.

[48] A. Agrawal and K. Sreenath, “Discrete control barrier functions for safety-
critical control of discrete systems with application to bipedal robot navi-
gation.,” in Robotics: Science and Systems, Cambridge, MA, USA, vol. 13,
2017, pp. 1–10.

https://doi.org/10.1109/ACC.2013.6580252
https://doi.org/10.1016/j.actaastro.2020.01.006
https://doi.org/10.1016/j.actaastro.2020.01.006
http://www.sciencedirect.com/science/article/pii/S0094576520300060
http://www.sciencedirect.com/science/article/pii/S0094576520300060

140

[49] D. Morgan, G. P. Subramanian, S.-J. Chung, and F. Y. Hadaegh, “Swarm
assignment and trajectory optimization using variable-swarm, distributed
auction assignment and sequential convex programming,” The International
Journal of Robotics Research, vol. 35, no. 10, pp. 1261–1285, 2016.

[50] D. Morgan, S.-J. Chung, and F. Y. Hadaegh, “Model predictive control of
swarms of spacecraft using sequential convex programming,” Journal of
Guidance, Control, and Dynamics, vol. 37, no. 6, pp. 1725–1740, 2014.

[51] Y. K. Nakka and S.-J. Chung, “Trajectory optimization of chance-constrained
nonlinear stochastic systems for motion planning under uncertainty,” IEEE
Transactions on Robotics, vol. 39, no. 1, pp. 203–222, 2022.

[52] R. Cosner, P. Culbertson, A. Taylor, and A. Ames, “Robust Safety under
Stochastic Uncertainty with Discrete-Time Control Barrier Functions,” in
Proceedings of Robotics: Science and Systems, Daegu, Republic of Korea,
Jul. 2023. doi: 10.15607/RSS.2023.XIX.084.

[53] T. A. N. Heirung and A. Mesbah, “Input design for active fault diagnosis,”
Annual Reviews in Control, vol. 47, pp. 35–50, 2019, issn: 1367-5788.

[54] G. Shani, J. Pineau, and R. Kaplow, “A survey of point-based pomdp
solvers,” Autonomous Agents and Multi-Agent Systems, vol. 27, no. 1, pp. 1–
51, 2013.

[55] K. A. Svendsen and M. L. Seto, “Partially observable Markov decision
processes for fault management in autonomous underwater vehicles,” in
2020 IEEE Canadian Conference on Electrical and Computer Engineering
(CCECE), 2020, pp. 1–7. doi: 10.1109/CCECE47787.2020.9255782.

[56] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P.
Tabuada, “Control barrier functions: Theory and applications,” in 2019 18th
European Control Conference (ECC), 2019, pp. 3420–3431.

[57] M. Tipaldi and B. Bruenjes, “Survey on fault detection, isolation, and re-
covery strategies in the space domain,” Journal of Aerospace Information
Systems, vol. 12, no. 2, pp. 235–256, 2015.

[58] M. Visinsky, J. Cavallaro, and I. Walker, “Robotic fault detection and fault
tolerance: A survey,” Reliability Engineering & System Safety, vol. 46, no. 2,
pp. 139–158, 1994, issn: 0951-8320.

[59] R. Mattone and A. De Luca, “Relaxed fault detection and isolation: An
application to a nonlinear case study,” Automatica, vol. 42, no. 1, pp. 109–
116, 2006.

[60] F. Baghernezhad and K. Khorasani, “Computationally intelligent strategies
for robust fault detection, isolation, and identification of mobile robots,”
Neurocomputing, vol. 171, pp. 335–346, 2016.

https://doi.org/10.15607/RSS.2023.XIX.084
https://doi.org/10.1109/CCECE47787.2020.9255782

141

[61] K. Tidriri, N. Chatti, S. Verron, and T. Tiplica, “Bridging data-driven and
model-based approaches for process fault diagnosis and health monitoring:
A review of researches and future challenges,” Annual Reviews in Control,
vol. 42, pp. 63–81, 2016, issn: 1367-5788. doi: https://doi.org/10.
1016/j.arcontrol.2016.09.008. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S1367578816300669.

[62] E. Khalastchi and M. Kalech, “On fault detection and diagnosis in robotic
systems,” ACM Computing Surveys (CSUR), vol. 51, no. 1, pp. 1–24, 2018.

[63] A. Marino, F. Pierri, and F. Arrichiello, “Distributed fault detection isola-
tion and accommodation for homogeneous networked discrete-time linear
systems,” IEEE Transactions on Automatic Control, vol. 62, no. 9, pp. 4840–
4847, 2017. doi: 10.1109/TAC.2017.2694556.

[64] S. Hayden, A. Sweet, and S. Christa, “Livingstone model-based diagnosis of
earth observing one,” in AIAA 1st Intelligent Systems Technical Conference,
2004, p. 6225.

[65] R. Mackey, A. Nikora, C. Altenbuchner, et al., “On-board model based fault
diagnosis for cubesat attitude control subsystem: Flight data results,” in 2021
IEEE Aerospace Conference, 2021, pp. 1–17.

[66] M. Šimandl and I. Punčochář, “Active fault detection and control: Unified
formulation and optimal design,” Automatica, vol. 45, no. 9, pp. 2052–2059,
2009.

[67] M. Sampath, S. Lafortune, and D. Teneketzis, “Active diagnosis of discrete-
event systems,” IEEE Transactions on Automatic Control, vol. 43, no. 7,
pp. 908–929, 1998.

[68] E. Chanthery, Y. Pencolé, and N. Bussac, “An ao*-like algorithm implemen-
tation for active diagnosis,” in 10th International Symposium on Artificial
Intelligence, Robotics and Automation in Space, i-SAIRAS, Citeseer, 2010,
pp. 75–76.

[69] E. Chanthery, L. Travé-Massuyès, Y. Pencolé, R. De Ferluc, and B. Dellan-
drea, “Applying active diagnosis to space systems by on-board control pro-
cedures,” IEEE Transactions on Aerospace and Electronic Systems, vol. 55,
no. 5, pp. 2568–2580, 2019.

[70] L. Blackmore and B. Williams, “Finite horizon control design for optimal
discrimination between several models,” in Proceedings of the 45th IEEE
Conference on Decision and Control, 2006, pp. 1147–1152.

[71] J. A. Paulson, T. A. N. Heirung, R. D. Braatz, and A. Mesbah, “Closed-
loop active fault diagnosis for stochastic linear systems,” in 2018 Annual
American Control Conference (ACC), 2018, pp. 735–741. doi: 10.23919/
ACC.2018.8431031.

https://doi.org/https://doi.org/10.1016/j.arcontrol.2016.09.008
https://doi.org/https://doi.org/10.1016/j.arcontrol.2016.09.008
https://www.sciencedirect.com/science/article/pii/S1367578816300669
https://www.sciencedirect.com/science/article/pii/S1367578816300669
https://doi.org/10.1109/TAC.2017.2694556
https://doi.org/10.23919/ACC.2018.8431031
https://doi.org/10.23919/ACC.2018.8431031

142

[72] J. K. Scott, R. Findeisen, R. D. Braatz, and D. M. Raimondo, “Input design
for guaranteed fault diagnosis using zonotopes,” Automatica, vol. 50, no. 6,
pp. 1580–1589, 2014.

[73] D. M. Raimondo, G. R. Marseglia, R. D. Braatz, and J. K. Scott, “Closed-
loop input design for guaranteed fault diagnosis using set-valued observers,”
Automatica, vol. 74, pp. 107–117, 2016.

[74] S. L. Campbell and R. Nikoukhah, Auxiliary signal design for failure detec-
tion. Princeton University Press, 2015, vol. 11.

[75] S. Campbell, K. Horton, and R. Nikoukhah, “Auxiliary signal design for
rapid multi-model identification using optimization,” Automatica, vol. 38,
no. 8, pp. 1313–1325, 2002.

[76] S. Campbell, K. Drake, I. Andjelkovic, K. Sweetingham, and D. Choe,
“Model based failure detection using test signals from linearizations: A
case study,” in 2006 IEEE Conference on Computer Aided Control System
Design, 2006 IEEE International Conference on Control Applications, 2006
IEEE International Symposium on Intelligent Control, 2006, pp. 2659–2664.

[77] J. Bongard, V. Zykov, and H. Lipson, “Resilient machines through continu-
ous self-modeling,” Science, vol. 314, no. 5802, pp. 1118–1121, 2006.

[78] K. Hang, W. G. Bircher, A. S. Morgan, and A. M. Dollar, “Manipulation for
self-identification, and self-identification for better manipulation,” Science
Robotics, vol. 6, no. 54, eabe1321, 2021.

[79] B. Chen, R. Kwiatkowski, C. Vondrick, and H. Lipson, “Fully body visual
self-modeling of robot morphologies,” Science Robotics, vol. 7, no. 68,
eabn1944, 2022.

[80] E. Altman, Constrained Markov decision processes. Routledge, 2021.

[81] P. Poupart, A. Malhotra, P. Pei, K.-E. Kim, B. Goh, and M. Bowling, “Ap-
proximate linear programming for constrained partially observable Markov
decision processes,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 29, 2015.

[82] D. Kim, J. Lee, K.-E. Kim, and P. Poupart, “Point-based value iteration for
constrained POMDPs,” in Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI), vol. 11, 2011, pp. 1968–1974.

[83] K. H. Wray and K. Czuprynski, “Scalable gradient ascent for controllers in
constrained POMDPs,” in 2022 International Conference on Robotics and
Automation (ICRA), 2022, pp. 9085–9091.

[84] A. Undurti and J. P. How, “An online algorithm for constrained POMDPs,”
in 2010 IEEE International Conference on Robotics and Automation, 2010,
pp. 3966–3973.

143

[85] J. Lee, G.-h. Kim, P. Poupart, and K.-E. Kim, “Monte-carlo tree search for
constrained POMDPs,” in Advances in Neural Information Processing Sys-
tems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,
and R. Garnett, Eds., vol. 31, Curran Associates, Inc., 2018.

[86] A. Jamgochian, A. Corso, and M. J. Kochenderfer, “Online planning for con-
strained POMDPs with continuous spaces through dual ascent,” in Proceed-
ings of the International Conference on Automated Planning and Scheduling,
vol. 33, 2023, pp. 198–202.

[87] S. Thiébaux, B. Williams, et al., “Rao*: An algorithm for chance-constrained
POMDP’s,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence, vol. 30, 2016.

[88] M. Khonji, A. Jasour, and B. C. Williams, “Approximability of constant-
horizon constrained POMDP.,” in Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 2019, pp. 5583–5590.

[89] S. Hong, S. U. Lee, X. Huang, M. Khonji, R. Alyassi, and B. C. Williams,
“An anytime algorithm for chance constrained stochastic shortest path prob-
lems and its application to aircraft routing,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), 2021, pp. 475–481. doi:
10.1109/ICRA48506.2021.9561229.

[90] M. P. Vitus and C. J. Tomlin, “Closed-loop belief space planning for linear,
Gaussian systems,” in 2011 IEEE International Conference on Robotics and
Automation, 2011, pp. 2152–2159. doi: 10.1109/ICRA.2011.5980257.

[91] V. Indelman, L. Carlone, and F. Dellaert, “Planning in the continuous do-
main: A generalized belief space approach for autonomous navigation in
unknown environments,” The International Journal of Robotics Research,
vol. 34, no. 7, pp. 849–882, 2015.

[92] D. Hafner, T. Lillicrap, M. Norouzi, and J. Ba, “Mastering atari with discrete
world models,” arXiv preprint arXiv:2010.02193, 2020.

[93] R. Rafailov, T. Yu, A. Rajeswaran, and C. Finn, “Offline reinforcement
learning from images with latent space models,” in Proceedings of Machine
Learning Research, 2021, pp. 1154–1168.

[94] D. Ghosh, A. Ajay, P. Agrawal, and S. Levine, “Offline RL policies should be
trained to be adaptive,” in Proceedings of the 39th International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research,
vol. 162, Jul. 2022, pp. 7513–7530.

[95] R. He, E. Brunskill, and N. Roy, “Puma: Planning under uncertainty with
macro-actions,” in Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 24, 2010, pp. 1089–1095.

https://doi.org/10.1109/ICRA48506.2021.9561229
https://doi.org/10.1109/ICRA.2011.5980257

144

[96] H. Ma and J. Pineau, “Information gathering and reward exploitation of
subgoals for pomdps,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 29, 2015.

[97] M. T. Spaan, T. S. Veiga, and P. U. Lima, “Decision-theoretic planning under
uncertainty with information rewards for active cooperative perception,”
Autonomous Agents and Multi-Agent Systems, vol. 29, pp. 1157–1185, 2015.

[98] L. Dressel and M. Kochenderfer, “Efficient decision-theoretic target lo-
calization,” in Proceedings of the International Conference on Automated
Planning and Scheduling, vol. 27, 2017, pp. 70–78.

[99] J. C. Saborío and J. Hertzberg, “Towards domain-independent biases for
action selection in robotic task-planning under uncertainty.,” in International
Conference on Agents and Artificial Intelligence, 2018, pp. 85–93.

[100] A. Dixit, M. Ahmadi, and J. W. Burdick, “Risk-sensitive motion planning
using entropic value-at-risk,” in 2021 European Control Conference (ECC),
2021, pp. 1726–1732.

[101] R. H. Byrd, J. C. Gilbert, and J. Nocedal, “A trust region method based on
interior point techniques for nonlinear programming,” Mathematical pro-
gramming, vol. 89, pp. 149–185, 2000.

[102] H. Tsukamoto, B. Rivière, C. Choi, A. Rahmani, and S.-J. Chung, “CaRT:
Certified safety and robust tracking in learning-based motion planning for
multi-agent systems,” in 2023 62nd IEEE Conference on Decision and Con-
trol (CDC), 2023, pp. 2910–2917.

[103] M. Vahs, C. Pek, and J. Tumova, “Belief control barrier functions for risk-
aware control,” IEEE Robotics and Automation Letters, vol. 8, no. 12,
pp. 8565–8572, 2023. doi: 10.1109/LRA.2023.3330662.

[104] Z. Laouar, R. Mazouz, T. Becker, Q. H. Ho, and Z. N. Sunberg, “Feasibility-
guided safety-aware model predictive control for jump Markov linear sys-
tems,” arXiv preprint arXiv:2310.14116, 2023.

[105] S. C. Surace, A. Kutschireiter, and J.-P. Pfister, “How to avoid the curse of
dimensionality: Scalability of particle filters with and without importance
weights,” SIAM Review, vol. 61, no. 1, pp. 79–91, 2019.

[106] S. Basu, S. Rajesh, K. Zheng, S. Tellex, and R. I. Bahar, “Parallelizing
POMCP to solve complex POMDPs,” in Robotics: Science and Systems
(RSS) Workshop on Software Tools for Real-time Optimal Control, 2021.

[107] P. Cai, Y. Luo, D. Hsu, and W. S. Lee, “Hyp-despot: A hybrid parallel
algorithm for online planning under uncertainty,” The International Journal
of Robotics Research, vol. 40, no. 2-3, pp. 558–573, 2021.

https://doi.org/10.1109/LRA.2023.3330662

145

[108] R. D. Lorenz, “Calculating risk and payoff in planetary exploration and life
detection missions,” Advances in Space Research, vol. 64, no. 4, pp. 944–
956, 2019, issn: 0273-1177. doi: https://doi.org/10.1016/j.asr.
2019.05.026. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0273117719303539.

[109] G. Oriolo, G. Ulivi, and M. Vendittelli, “Real-time map building and naviga-
tion for autonomous robots in unknown environments,” IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 28, no. 3,
pp. 316–333, 1998. doi: 10.1109/3477.678626.

[110] P. Arm, G. Waibel, J. Preisig, et al., “Scientific exploration of challeng-
ing planetary analog environments with a team of legged robots,” Science
Robotics, vol. 8, no. 80, eade9548, 2023.

[111] T. Lew, A. Sharma, J. Harrison, A. Bylard, and M. Pavone, “Safe active dy-
namics learning and control: A sequential exploration–exploitation frame-
work,” IEEE Transactions on Robotics, vol. 38, no. 5, pp. 2888–2907, 2022.
doi: 10.1109/TRO.2022.3154715.

[112] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-based
model predictive control for safe exploration,” in 2018 IEEE Conference on
Decision and Control (CDC), 2018, pp. 6059–6066. doi: 10.1109/CDC.
2018.8619572.

[113] M. O’Connell, G. Shi, X. Shi, et al., “Neural-fly enables rapid learning for
agile flight in strong winds,” Science Robotics, vol. 7, no. 66, eabm6597,
2022.

[114] E. S. Lupu, F. Xie, J. A. Preiss, J. Alindogan, M. Anderson, and S.-J. Chung,
“Magic vfm-meta-learning adaptation for ground interaction control with
visual foundation models,” IEEE Transactions on Robotics, 2024.

[115] K. Rocki and R. Suda, “Large-scale parallel monte carlo tree search on
gpu,” in 2011 IEEE International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum, 2011, pp. 2034–2037. doi: 10.
1109/IPDPS.2011.370.

[116] N. A. Barriga, M. Stanescu, and M. Buro, “Parallel uct search on gpus,” in
2014 IEEE Conference on Computational Intelligence and Games, 2014,
pp. 1–7. doi: 10.1109/CIG.2014.6932879.

[117] M. Pharr and R. Fernando, GPU Gems 2: Programming techniques for
high-performance graphics and general-purpose computation (gpu gems).
Addison-Wesley Professional, 2005, ch. 34.

[118] J. Bradbury, R. Frostig, P. Hawkins, et al., JAX: Composable transformations
of Python+NumPy programs, version 0.3.13, 2018.

https://doi.org/https://doi.org/10.1016/j.asr.2019.05.026
https://doi.org/https://doi.org/10.1016/j.asr.2019.05.026
https://www.sciencedirect.com/science/article/pii/S0273117719303539
https://www.sciencedirect.com/science/article/pii/S0273117719303539
https://doi.org/10.1109/3477.678626
https://doi.org/10.1109/TRO.2022.3154715
https://doi.org/10.1109/CDC.2018.8619572
https://doi.org/10.1109/CDC.2018.8619572
https://doi.org/10.1109/IPDPS.2011.370
https://doi.org/10.1109/IPDPS.2011.370
https://doi.org/10.1109/CIG.2014.6932879

146

[119] C. V. Ramamoorthy and H. F. Li, “Pipeline architecture,” ACM Comput.
Surv., vol. 9, no. 1, pp. 61–102, Mar. 1977, issn: 0360-0300. doi: 10.
1145/356683.356687. [Online]. Available: https://doi.org/10.
1145/356683.356687.

[120] R. Murphy, “On the effects of memory latency and bandwidth on supercom-
puter application performance,” in 2007 IEEE 10th International Symposium
on Workload Characterization, 2007, pp. 35–43. doi: 10.1109/IISWC.
2007.4362179.

[121] S. E. Anderson, “Bit twiddling hacks,” URL: http://www.arvifox.com/wp-
content/uploads/2015/08/Bit-Twiddling-Hacks.pdf, 2005.

[122] A. Angelou, A. Dadaliaris, M. Dossis, and G. Dimitriou, “Branchless
code generation for modern processor architectures,” in Proceedings of
the 25th Pan-Hellenic Conference on Informatics, ser. PCI ’21, Volos,
Greece: Association for Computing Machinery, 2022, pp. 300–305, isbn:
9781450395557. doi: 10.1145/3503823.3503879. [Online]. Available:
https://doi.org/10.1145/3503823.3503879.

[123] G. M. .-. Chaslot, M. H. Winands, and H. J. van Den Herik, “Parallel monte-
carlo tree search,” in Computers and Games: 6th International Conference,
CG 2008, Beijing, China, September 29-October 1, 2008. Proceedings 6,
Springer, 2008, pp. 60–71.

[124] T. Cazenave and N. Jouandeau, “On the Parallelization of UCT,” in Pro-
ceedings of the Computer Games Workshop, Amsterdam, Netherlands, Jun.
2007. [Online]. Available: https://hal.science/hal-02310186.

[125] D. Silver, A. Huang, C. J. Maddison, et al., “Mastering the game of go with
deep neural networks and tree search,” nature, vol. 529, no. 7587, pp. 484–
489, 2016.

[126] B. Riviere, W. Hönig, M. Anderson, and S.-J. Chung, “Neural tree expansion
for multi-robot planning in non-cooperative environments,” IEEE Robotics
and Automation Letters, vol. 6, no. 4, pp. 6868–6875, 2021.

[127] M. Świechowski, K. Godlewski, B. Sawicki, and J. Mańdziuk, “Monte carlo
tree search: A review of recent modifications and applications,” Artificial
Intelligence Review, vol. 56, no. 3, pp. 2497–2562, 2023.

[128] J.-I. Aoe, “An efficient digital search algorithm by using a double-array struc-
ture,” IEEE Transactions on Software Engineering, vol. 15, no. 9, pp. 1066–
1077, 1989. doi: 10.1109/32.31365.

[129] A. Elmasry and J. Katajainen, “Branchless search programs,” in Experimen-
tal Algorithms, V. Bonifaci, C. Demetrescu, and A. Marchetti-Spaccamela,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 127–138,
isbn: 978-3-642-38527-8.

https://doi.org/10.1145/356683.356687
https://doi.org/10.1145/356683.356687
https://doi.org/10.1145/356683.356687
https://doi.org/10.1145/356683.356687
https://doi.org/10.1109/IISWC.2007.4362179
https://doi.org/10.1109/IISWC.2007.4362179
https://doi.org/10.1145/3503823.3503879
https://doi.org/10.1145/3503823.3503879
https://hal.science/hal-02310186
https://doi.org/10.1109/32.31365

147

[130] T. D. Han and T. S. Abdelrahman, “Reducing branch divergence in gpu
programs,” in Proceedings of the fourth workshop on general purpose pro-
cessing on graphics processing units, 2011, pp. 1–8.

[131] P. Hijma, S. Heldens, A. Sclocco, B. van Werkhoven, and H. E. Bal, “Op-
timization techniques for gpu programming,” ACM Comput. Surv., vol. 55,
no. 11, Mar. 2023, issn: 0360-0300. doi: 10.1145/3570638. [Online].
Available: https://doi.org/10.1145/3570638.

[132] M. Aung, A. Ahmed, M. Wette, et al., “An overview of formation flying
technology development for the terrestrial planet finder mission,” vol. 4,
Apr. 2004, 2667–2679 Vol.4, isbn: 0-7803-8155-6. doi: 10.1109/AERO.
2004.1368062.

[133] S. P. Hughes and F. H. Bauer, “Preliminary optimal orbit design for the laser
interferometer space antenna (lisa),” in 25th Annual Guidance and Control
Conference, 2002.

[134] M. Lavalle, I. Seker, J. Ragan, et al., “Distributed aperture radar tomographic
sensors (darts) to map surface topography and vegetation structure,” in 2021
IEEE International Geoscience and Remote Sensing Symposium IGARSS,
2021, pp. 1090–1093. doi: 10.1109/IGARSS47720.2021.9553170.

[135] G. Zhai, J. Zhang, and Z. Zhou, “On-orbit target tracking and inspection
by satellite formation,” Journal of Systems Engineering and Electronics,
vol. 24, no. 6, pp. 879–888, 2013. doi: 10.1109/JSEE.2013.00102.

[136] H. Nourzadeh and J. McInroy, “Multi-agent orbit design for visual per-
ception enhancement purpose,” International Journal of Advanced Robotic
Systems, vol. 11, no. 10, p. 161, 2014. doi: 10.5772/58894. eprint: https:
//doi.org/10.5772/58894. [Online]. Available: https://doi.org/
10.5772/58894.

[137] J. Lathrop, W. Cook, J. Ragan, and S.-J. Chung, “Applying monte carlo
tree search for orbit selection in multi-agent inspection,” in 2022 AAS/AIAA
Astrodynamics Specialist Conference, 2022.

[138] G. Falco, A. Viswanathan, and A. Santangelo, “Cubesat security attack tree
analysis,” in 2021 IEEE 8th International Conference on Space Mission
Challenges for Information Technology (SMC-IT), IEEE, 2021, pp. 68–76.

[139] M. Manulis, C. P. Bridges, R. Harrison, V. Sekar, and A. Davis, “Cyber
security in new space: Analysis of threats, key enabling technologies and
challenges,” International Journal of Information Security, vol. 20, pp. 287–
311, 2021.

[140] J. Willbold, M. Schloegel, M. Vögele, M. Gerhardt, T. Holz, and A. Abbasi,
“Space odyssey: An experimental software security analysis of satellites,” in
2023 IEEE Symposium on Security and Privacy (SP), IEEE, 2023, pp. 1–19.

https://doi.org/10.1145/3570638
https://doi.org/10.1145/3570638
https://doi.org/10.1109/AERO.2004.1368062
https://doi.org/10.1109/AERO.2004.1368062
https://doi.org/10.1109/IGARSS47720.2021.9553170
https://doi.org/10.1109/JSEE.2013.00102
https://doi.org/10.5772/58894
https://doi.org/10.5772/58894
https://doi.org/10.5772/58894
https://doi.org/10.5772/58894
https://doi.org/10.5772/58894

148

[141] K. Matsuka, A. O. Feldman, E. S. Lupu, S.-J. Chung, and F. Y. Hadaegh,
“Decentralized formation pose estimation for spacecraft swarms,” Advances
in Space Research, vol. 67, no. 11, pp. 3527–3545, 2021.

[142] K. Matsuka, A. Santamaria-Navarro, V. Capuano, A. Harvard, A. Rahmani,
and S.-J. Chung, “Collaborative pose estimation of an unknown target using
multiple spacecraft,” in 2021 IEEE Aerospace Conference (50100), 2021,
pp. 1–11.

[143] A. Teixeira, D. Pérez, H. Sandberg, and K. H. Johansson, “Attack models
and scenarios for networked control systems,” in Proceedings of the 1st
international conference on High Confidence Networked Systems, 2012,
pp. 55–64.

[144] F. Pasqualetti, F. Dörfler, and F. Bullo, “Attack detection and identification in
cyber-physical systems,” IEEE Transactions on Automatic Control, vol. 58,
no. 11, pp. 2715–2729, 2013. doi: 10.1109/TAC.2013.2266831.

[145] S. D. Bopardikar and A. Speranzon, “On analysis and design of stealth-
resilient control systems,” in 2013 6th International Symposium on Resilient
Control Systems (ISRCS), IEEE, 2013, pp. 48–53.

[146] A. M. Teixeira, “Security metrics for control systems,” in Safety, Security
and Privacy for Cyber-Physical Systems, Springer, 2021, pp. 99–121.

[147] D. I. Urbina, J. A. Giraldo, A. A. Cardenas, et al., “Limiting the impact
of stealthy attacks on industrial control systems,” in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communications Security,
ser. CCS ’16, Vienna, Austria: Association for Computing Machinery, 2016,
pp. 1092–1105, isbn: 9781450341394. doi: 10.1145/2976749.2978388.
[Online]. Available: https://doi.org/10.1145/2976749.2978388.

[148] A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson, “A secure
control framework for resource-limited adversaries,” Automatica, vol. 51,
pp. 135–148, 2015, issn: 0005-1098. doi: https://doi.org/10.1016/
j.automatica.2014.10.067. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0005109814004488.

[149] T. Sui, Y. Mo, D. Marelli, X. Sun, and M. Fu, “The vulnerability of cyber-
physical system under stealthy attacks,” IEEE Transactions on Automatic
Control, vol. 66, no. 2, pp. 637–650, 2021. doi: 10.1109/TAC.2020.
2987307.

[150] R. L. Dobrushin, “Prescribing a system of random variables by conditional
distributions,” Theory of Probability & Its Applications, vol. 15, no. 3,
pp. 458–486, 1970.

[151] L. N. Vaserstein, “Markov processes over denumerable products of spaces,
describing large systems of automata,” Problemy Peredachi Informatsii,
vol. 5, no. 3, pp. 64–72, 1969.

https://doi.org/10.1109/TAC.2013.2266831
https://doi.org/10.1145/2976749.2978388
https://doi.org/10.1145/2976749.2978388
https://doi.org/https://doi.org/10.1016/j.automatica.2014.10.067
https://doi.org/https://doi.org/10.1016/j.automatica.2014.10.067
https://www.sciencedirect.com/science/article/pii/S0005109814004488
https://www.sciencedirect.com/science/article/pii/S0005109814004488
https://doi.org/10.1109/TAC.2020.2987307
https://doi.org/10.1109/TAC.2020.2987307

149

[152] D. Li and S. Martínez, “High-confidence attack detection via wasserstein-
metric computations,” IEEE Control Systems Letters, vol. 5, no. 2, pp. 379–
384, 2021. doi: 10.1109/LCSYS.2020.3002689.

[153] V. Renganathan, N. Hashemi, J. Ruths, and T. H. Summers, “Distributionally
robust tuning of anomaly detectors in cyber-physical systems with stealthy
attacks,” in 2020 American Control Conference (ACC), 2020, pp. 1247–
1252. doi: 10.23919/ACC45564.2020.9147661.

[154] T. Başar and P. Bernhard, H-infinity optimal control and related minimax
design problems: a dynamic game approach. Springer Science & Business
Media, 2008.

[155] T. Başar and G. J. Olsder, Dynamic noncooperative game theory. SIAM,
1998.

[156] M. Sion, “On general minimax theorems.,” Pacific Journal of Mathematics,
1958.

[157] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck, “Monte-carlo tree search:
A new framework for game ai,” in Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment, vol. 4, 2008,
pp. 216–217.

[158] S. Gelly and D. Silver, “Achieving master level play in 9 x 9 computer go.,”
in AAAI, vol. 8, 2008, pp. 1537–1540.

[159] S. Morris and T. Ui, “Best response equivalence,” Games and Economic
Behavior, vol. 49, no. 2, pp. 260–287, 2004.

[160] H. Moulin and J. .-. Vial, “Strategically zero-sum games: The class of games
whose completely mixed equilibria cannot be improved upon,” International
Journal of Game Theory, vol. 7, pp. 201–221, 1978.

[161] G. Ostrovski, “Topics arising from fictitious play dynamics,” Ph.D. disser-
tation, University of Warwick, 2013.

[162] Z. N. Sunberg and M. J. Kochenderfer, “Online algorithms for POMDPs
with continuous state, action, and observation spaces,” in ICAPS, AAAI
Press, 2018, pp. 259–263.

[163] G. F. Lawler and V. Limic, Random walk: a modern introduction. Cambridge
University Press, 2010, vol. 123.

[164] M. Zeballos, C. S. Fumagalli, S. M. Ghelfi, and A. Schwaninger, “Why and
how unpredictability is implemented in aviation security–a first qualitative
study,” Heliyon, vol. 9, no. 3, 2023.

[165] S. M. Ghelfi-Waechter, A. Bearth, C. S. Fumagalli, and F. Hofer, “To-
wards unpredictability in airport security,” Journal of Airport Management,
vol. 13, no. 2, pp. 110–121, 2019.

https://doi.org/10.1109/LCSYS.2020.3002689
https://doi.org/10.23919/ACC45564.2020.9147661

150

[166] U. Haldimann, “Unpredictability in aviation security: How to improve the
effectiveness of current security concepts by adding the element of surprise,”
Journal of Airport Management, vol. 12, no. 1, pp. 5–12, 2018.

[167] A. Teixeira, I. Shames, H. Sandberg, and K. H. Johansson, “Revealing
stealthy attacks in control systems,” in 2012 50th Annual Allerton Conference
on Communication, Control, and Computing (Allerton), 2012, pp. 1806–
1813. doi: 10.1109/Allerton.2012.6483441.

[168] Y. Mao, H. Jafarnejadsani, P. Zhao, E. Akyol, and N. Hovakimyan, “Novel
stealthy attack and defense strategies for networked control systems,” IEEE
Transactions on Automatic Control, vol. 65, no. 9, pp. 3847–3862, 2020.
doi: 10.1109/TAC.2020.2997363.

[169] M. Bahrami and H. Jafarnejadsani, “Detection of stealthy adversaries for
networked unmanned aerial vehicles,” in 2022 International Conference on
Unmanned Aircraft Systems (ICUAS), 2022, pp. 1111–1120. doi: 10.1109/
ICUAS54217.2022.9836208.

[170] H. Tsukamoto, J. D. Ibrahim, J. Hajar, J. Ragan, S.-J. Chung, and F. Y.
Hadaegh, “Robust optimal network topology switching for zero dynamics
attacks,” in 2024 63nd IEEE Conference on Decision and Control (CDC)
(© 2024 IEEE), 2024. [Online]. Available: https://arxiv.org/abs/
2407.18440,

[171] C. De Persis and A. Isidori, “A geometric approach to nonlinear fault detec-
tion and isolation,” IEEE Transactions on Automatic Control, vol. 46, no. 6,
pp. 853–865, 2001. doi: 10.1109/9.928586.

[172] T. Spyridopoulos, G. Karanikas, T. Tryfonas, and G. Oikonomou, “A game
theoretic defence framework against dos/ddos cyber attacks,” Computers &
Security, vol. 38, pp. 39–50, 2013.

[173] M. Zhang, Z. Zheng, and N. B. Shroff, “A game theoretic model for defend-
ing against stealthy attacks with limited resources,” in Decision and Game
Theory for Security: 6th International Conference, GameSec 2015, London,
UK, November 4-5, 2015, Proceedings 6, Springer, 2015, pp. 93–112.

[174] A. Attiah, M. Chatterjee, and C. C. Zou, “A game theoretic approach to
model cyber attack and defense strategies,” in 2018 IEEE International
Conference on Communications (ICC), 2018, pp. 1–7. doi: 10.1109/ICC.
2018.8422719.

[175] A. T. Nguyen, A. M. Teixeira, and A. Medvedev, “A single-adversary-single-
detector zero-sum game in networked control systems,” IFAC-PapersOnLine,
vol. 55, no. 13, pp. 49–54, 2022.

[176] C. Wu, X. Li, W. Pan, J. Liu, and L. Wu, “Zero-sum game-based optimal
secure control under actuator attacks,” IEEE Transactions on Automatic
Control, vol. 66, no. 8, pp. 3773–3780, 2021. doi: 10.1109/TAC.2020.
3029342.

https://doi.org/10.1109/Allerton.2012.6483441
https://doi.org/10.1109/TAC.2020.2997363
https://doi.org/10.1109/ICUAS54217.2022.9836208
https://doi.org/10.1109/ICUAS54217.2022.9836208
https://arxiv.org/abs/2407.18440
https://arxiv.org/abs/2407.18440
https://doi.org/10.1109/9.928586
https://doi.org/10.1109/ICC.2018.8422719
https://doi.org/10.1109/ICC.2018.8422719
https://doi.org/10.1109/TAC.2020.3029342
https://doi.org/10.1109/TAC.2020.3029342

151

[177] M. Delpech, F. Malbet, T. Karlsson, R. Larsson, A. Léger, and J. Jorgensen,
“Flight demonstration of formation flying capabilities for future missions
(neat pathfinder),” Acta Astronautica, vol. 105, no. 1, pp. 82–94, Dec. 2014,
issn: 0094-5765. doi: 10.1016/j.actaastro.2014.05.027. [Online].
Available: http://dx.doi.org/10.1016/j.actaastro.2014.05.
027.

[178] N. R. Council, Thriving on Our Changing Planet: A Decadal Strategy for
Earth Observation from Space. National Academic Press, 2017.

[179] A. Reigber and A. Moreira, “First demonstration of airborne SAR tomog-
raphy using multibaseline L-band data,” Geoscience and Remote Sensing,
IEEE Transactions on, vol. 38, no. 5, pp. 2142–2152, Sep. 2000.

[180] A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P.
Papathanassiou, “A tutorial on synthetic aperture radar,” IEEE Geoscience
and remote sensing magazine, vol. 1, no. 1, pp. 6–43, 2013.

[181] M. B. Wooten and I. D. Walker, “A novel vine-like robot for in-orbit inspec-
tion,” 45th International Conference on Environmental Systems, 2015.

[182] J. P. Davis, J. P. Mayberry, and J. P. Penn, “On-orbit servicing: Inspection
repair refuel upgrade and assembly of satellites in space,” The Aerospace
Corporation, report, 2019.

[183] T. P. Setterfield, “On-orbit inspection of a rotating object using a moving
observer,” Ph.D. dissertation, Massachusetts Institute of Technology, 2017.

[184] J. Sullivan, S. Grimberg, and S. D’Amico, “Comprehensive survey and
assessment of spacecraft relative motion dynamics models,” Journal of
Guidance, Control, and Dynamics, vol. 40, no. 8, pp. 1837–1859, 2017.

[185] W. H. CLOHESSY and R. S. WILTSHIRE, “Terminal guidance system for
satellite rendezvous,” Journal of the Aerospace Sciences, vol. 27, no. 9,
pp. 653–658, 1960. doi: 10.2514/8.8704. eprint: https://doi.org/
10.2514/8.8704. [Online]. Available: https://doi.org/10.2514/8.
8704.

[186] D. Morgan, S.-J. Chung, L. Blackmore, B. Acikmese, D. Bayard, and F. Y.
Hadaegh, “Swarm-keeping strategies for spacecraft under j2 and atmo-
spheric drag perturbations,” Journal of Guidance, Control, and Dynamics,
vol. 35, no. 5, pp. 1492–1506, 2012.

[187] J. Curlander and R. McDonough, Synthetic aperture radar: systems and
signal processing (Wiley series in remote sensing). Wiley, 1991, isbn:
9780471857709.

[188] J. Homer, I. Longstaff, and G. Callaghan, “High resolution 3-D SAR via
multi-baseline interferometry,” in Geoscience and Remote Sensing Sym-
posium, 1996. IGARSS ’96. ’Remote Sensing for a Sustainable Future.’,
International, vol. 1, May 1996, 796–798 vol.1.

https://doi.org/10.1016/j.actaastro.2014.05.027
http://dx.doi.org/10.1016/j.actaastro.2014.05.027
http://dx.doi.org/10.1016/j.actaastro.2014.05.027
https://doi.org/10.2514/8.8704
https://doi.org/10.2514/8.8704
https://doi.org/10.2514/8.8704
https://doi.org/10.2514/8.8704
https://doi.org/10.2514/8.8704

152

[189] G. Fornaro, F. Serafino, and F. Soldovieri, “Three-dimensional focusing with
multipass SAR data,” Geoscience and Remote Sensing, IEEE Transactions
on, vol. 41, no. 3, pp. 507–517, Mar. 2003.

[190] G. Fornaro, F. Lombardini, and F. Serafino, “Three-dimensional multipass
SAR focusing: Experiments with long-term spaceborne data,” Geoscience
and Remote Sensing, IEEE Transactions on, vol. 43, no. 4, pp. 702–714,
Apr. 2005.

[191] S. Tebaldini, “Algebraic synthesis of forest scenarios from multibaseline
PolInSAR data,” Geoscience and Remote Sensing, IEEE Transactions on,
vol. 47, no. 12, pp. 4132–4142, Dec. 2009.

[192] M. Lavalle, M. Simard, and S. Hensley, “A temporal decorrelation model for
polarimetric radar interferometers,” Geoscience and Remote Sensing, IEEE
Transactions on, vol. 50, no. 7, pp. 2880–2888, Jul. 2012, issn: 0196-2892.
doi: 10.1109/TGRS.2011.2174367.

[193] H. A. Zebker and J. Villasenor, “Decorrelation in interferometric radar
echoes,” IEEE Transactions on Geoscience and Remote Sensing, vol. 30,
no. 5, pp. 950–959, Sep. 1992.

[194] I. Seker and M. Lavalle, “Tomographic performance of multi-static radar
formations: Theory and simulations,” Remote Sensing, vol. 13, no. 4, p. 737,
2021.

[195] Y. K. Nakka, W. Hönig, C. Choi, A. Harvard, A. Rahmani, and S.-J. Chung,
“Information-based guidance and control architecture for multi-spacecraft
on-orbit inspection,” AIAA Scitech 2021 Forum, 2021.

[196] M. Schwager, D. Rus, and J.-J. Slotine, “Unifying geometric, probabilistic,
and potential field approaches to multi-robot deployment,” The International
Journal of Robotics Research, vol. 30, no. 3, pp. 371–383, 2011.

[197] J. Nocedal and S. J. Wright, Numerical Optimization. Springer, 1999.

[198] R. T. Rockafellar, Convex Analysis. Princeton University Press, 1970.

[199] D. E. Goldberg, Genetic algorithms in search, optimization and machine
learning. Addison-Wesley Publishing Co, 1989.

[200] S. Spiridonova and R. Kahle, “Hrws - an ambitious 4+ satellite formation
flying mission,” in 27th International Symposium on Space Flight Dynamics,
2019. [Online]. Available: https://elib.dlr.de/127795/.

[201] G. Krieger, M. Zink, M. Bachmann, et al., “Tandem-x: A radar interfer-
ometer with two formation-flying satellites,” Acta Astronautica, vol. 89,
pp. 83–98, 2013, issn: 0094-5765. doi: https://doi.org/10.1016/
j . actaastro . 2013 . 03 . 008. [Online]. Available: http : / / www .
sciencedirect.com/science/article/pii/S0094576513000805.

https://doi.org/10.1109/TGRS.2011.2174367
https://elib.dlr.de/127795/
https://doi.org/https://doi.org/10.1016/j.actaastro.2013.03.008
https://doi.org/https://doi.org/10.1016/j.actaastro.2013.03.008
http://www.sciencedirect.com/science/article/pii/S0094576513000805
http://www.sciencedirect.com/science/article/pii/S0094576513000805

153

[202] G. Krieger, I. Hajnsek, K. P. Papathanassiou, M. Younis, and A. Moreira,
“Interferometric synthetic aperture radar (sar) missions employing forma-
tion flying,” Proceedings of the IEEE, vol. 98, no. 5, pp. 816–843, 2010.
doi: 10.1109/JPROC.2009.2038948.

[203] P. Lopez Dekker, H. Rott, B. Chapron, and P. Prats-Iraola, “Stereo thermo-
optically enhanced radar for earth, ocean, ice, and land dynamics (stereoid),”
Mar. 2018. doi: 10.13140/RG.2.2.25804.46728.

[204] H. Rott, P. López-Dekker, S. Solberg, et al., “Sesame: A single-pass in-
terferometric sentinel-1 companion sar mission for monitoring geo- and
biosphere dynamics,” in 2017 IEEE International Geoscience and Remote
Sensing Symposium (IGARSS), 2017, pp. 107–110. doi: 10.1109/IGARSS.
2017.8126905.

[205] G. Krieger, M. Zonno, M. Rodriguez-Cassola, et al., “Mirrorsar: A frac-
tionated space radar for bistatic, multistatic and high-resolution wide-swath
sar imaging,” in 2017 IEEE International Geoscience and Remote Sensing
Symposium (IGARSS), 2017, pp. 149–152. doi: 10.1109/IGARSS.2017.
8126916.

[206] D.-Y. Kim, B. Woo, S.-Y. Park, and K.-H. Choi, “Hybrid optimization for
multiple-impulse reconfiguration trajectories of satellite formation flying,”
Advances in Space Research, vol. 44, no. 11, pp. 1257–1269, 2009, issn:
0273-1177. doi: https://doi.org/10.1016/j.asr.2009.07.
029. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0273117709005390.

[207] D. Morgan, S.-J. Chung, and F. Y. Hadaegh, “Model predictive control of
swarms of spacecraft using sequential convex programming,” Journal of
Guidance, Control, and Dynamics, vol. 37, no. 6, pp. 1725–1740, 2014.

[208] R. Foust, S.-J. Chung, and F. Y. Hadaegh, “Optimal guidance and control
with nonlinear dynamics using sequential convex programming,” Journal
of Guidance, Control, and Dynamics, vol. 43, no. 4, pp. 633–644, 2020.

[209] Y. K. K. Nakka, W. Hönig, C. Choi, A. Harvard, A. Rahmani, and S.-J.
Chung, “Information-based guidance and control architecture for multi-
spacecraft on-orbit inspection,” in AIAA Scitech 2021 Forum. doi: 10.
2514/6.2021-1103. eprint: https://arc.aiaa.org/doi/pdf/10.
2514/6.2021-1103. [Online]. Available: https://arc.aiaa.org/
doi/abs/10.2514/6.2021-1103.

[210] P. Palmer, “Optimal relocation of satellites flying in near-circular-orbit for-
mations,” Journal of Guidance, Control, and Dynamics, vol. 29, no. 3,
pp. 519–526, 2006. doi: 10.2514/1.14310. eprint: https://doi.org/
10.2514/1.14310. [Online]. Available: https://doi.org/10.2514/
1.14310.

https://doi.org/10.1109/JPROC.2009.2038948
https://doi.org/10.13140/RG.2.2.25804.46728
https://doi.org/10.1109/IGARSS.2017.8126905
https://doi.org/10.1109/IGARSS.2017.8126905
https://doi.org/10.1109/IGARSS.2017.8126916
https://doi.org/10.1109/IGARSS.2017.8126916
https://doi.org/https://doi.org/10.1016/j.asr.2009.07.029
https://doi.org/https://doi.org/10.1016/j.asr.2009.07.029
http://www.sciencedirect.com/science/article/pii/S0273117709005390
http://www.sciencedirect.com/science/article/pii/S0273117709005390
https://doi.org/10.2514/6.2021-1103
https://doi.org/10.2514/6.2021-1103
https://arc.aiaa.org/doi/pdf/10.2514/6.2021-1103
https://arc.aiaa.org/doi/pdf/10.2514/6.2021-1103
https://arc.aiaa.org/doi/abs/10.2514/6.2021-1103
https://arc.aiaa.org/doi/abs/10.2514/6.2021-1103
https://doi.org/10.2514/1.14310
https://doi.org/10.2514/1.14310
https://doi.org/10.2514/1.14310
https://doi.org/10.2514/1.14310
https://doi.org/10.2514/1.14310

154

[211] C. W. T. Roscoe, S. R. Vadali, K. T. Alfriend, and U. P. Desai, “Optimal
formation design for magnetospheric multiscale mission using differential
orbital elements,” Journal of Guidance, Control, and Dynamics, vol. 34,
no. 4, pp. 1070–1080, 2011. doi: 10.2514/1.52484. eprint: https:
//doi.org/10.2514/1.52484. [Online]. Available: https://doi.
org/10.2514/1.52484.

[212] A. W. Koenig, S. D’Amico, B. Macintosh, and C. J. Titus, “Optimal forma-
tion design of a miniaturized distributed occulter/telescope in earth orbit,” in
Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, 2015.

[213] B. Bernhard, C. Choi, A. Rahmani, S.-J. Chung, and F. Hadaegh, “Coor-
dinated motion planning for on-orbit satellite inspection using a swarm of
small-spacecraft,” in 2020 IEEE Aerospace Conference, 2020, pp. 1–13.
doi: 10.1109/AERO47225.2020.9172747.

[214] K. Yun, C. Choi, R. Alimo, et al., “Multi-agent motion planning using deep
learning for space applications,” in ASCEND 2020. doi: 10.2514/6.2020-
4233. eprint: https://arc.aiaa.org/doi/pdf/10.2514/6.2020-
4233. [Online]. Available: https://arc.aiaa.org/doi/abs/10.
2514/6.2020-4233.

[215] S. Glavaski and M. Elgersma, “Active aircraft fault detection and isolation,”
in 2001 IEEE Autotestcon Proceedings. IEEE Systems Readiness Technology
Conference. (Cat. No.01CH37237), 2001, pp. 692–705. doi: 10.1109/
AUTEST.2001.949453.

[216] R. Munos and A. W. Moore, “Variable resolution discretization in optimal
control,” Machine Learning, vol. 49, no. 2-3, pp. 291–323, 2002.

[217] Y. Bar-Shalom, X. R. Li, and T. Kirubarajan, Estimation with applications
to tracking and navigation: theory algorithms and software. John Wiley &
Sons, 2001.

[218] P. Virtanen, R. Gommers, T. E. Oliphant, et al., “SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python,” Nature Methods, vol. 17,
pp. 261–272, 2020.

[219] M. Lofqvist and J. Cano, “Accelerating deep learning applications in space,”
CoRR, vol. abs/2007.11089, 2020.

[220] G. Xu and D. Wang, “Nonlinear dynamic equations of satellite relative
motion around an oblate earth,” Journal of Guidance, Control, and Dy-
namics, vol. 31, no. 5, pp. 1521–1524, 2008. doi: 10.2514/1.33616.
eprint: https://doi.org/10.2514/1.33616. [Online]. Available:
https://doi.org/10.2514/1.33616.

https://doi.org/10.2514/1.52484
https://doi.org/10.2514/1.52484
https://doi.org/10.2514/1.52484
https://doi.org/10.2514/1.52484
https://doi.org/10.2514/1.52484
https://doi.org/10.1109/AERO47225.2020.9172747
https://doi.org/10.2514/6.2020-4233
https://doi.org/10.2514/6.2020-4233
https://arc.aiaa.org/doi/pdf/10.2514/6.2020-4233
https://arc.aiaa.org/doi/pdf/10.2514/6.2020-4233
https://arc.aiaa.org/doi/abs/10.2514/6.2020-4233
https://arc.aiaa.org/doi/abs/10.2514/6.2020-4233
https://doi.org/10.1109/AUTEST.2001.949453
https://doi.org/10.1109/AUTEST.2001.949453
https://doi.org/10.2514/1.33616
https://doi.org/10.2514/1.33616
https://doi.org/10.2514/1.33616

155

A p p e n d i x A

FEAST IMPLEMENTATION DETAILS

Shared System Parameters
The default parameters that were used in each experiment were as follows. The
actuator influence is 0.1 m/s (1 DOF single integrator system) or 0.1 N (2 DOF
double integrator system) with a spacecraft mass of 1 kg. The action space consists
of combinations of up to 3 thrusters firing at a constant value. This space is further
restricted by requiring the chosen action to have a non-zero acceleration on the
nominal system. In a fashion, this is the opposite approach of some traditional
active fault estimation methods, which sought to inject signals in the null space
of a vehicle so that it would be unaffected unless a fault had occurred [215]. The
system noise is set as a single parameter, 𝜎, which was varied by experiment.
The discretization scheme for the particle filter used by POMCP is a zeroth order
discretization [216] of 𝑑𝑥 = 1 m for the 1 and 2 DOF systems and 𝑑𝑣 = 1 m/s for the
2 DOF system. The time horizon is set to 𝐾 = 20, the tree exploration/exploitation
parameter is 𝑐 = 1.2, and the discount factor is 𝛾 = 0.9. The simulation time step
is chosen as Δ𝑡 = 1.0 s. The initial position covariance is 𝜎0 = 0.001. Finally
the success threshold is set to 0.81, roughly corresponding to a confidence of 90%.
Each experiment was performed over 1000 different random seeds, and the results
averaged and summarized below.

1 DOF Single Integrator System
We specify the following system (Eq. (2.14)), sensors (Eq. (2.15)) and faults
(Eq. (2.17)):

𝐴 =

[
1
]
, 𝐵 =

[
−Δ𝑡 −Δ𝑡 Δ𝑡 Δ𝑡

]
, 𝐶 =

[
1
1

]
,

Σ𝑤 = 𝜎2𝐼2, Σ𝑣 = 𝜎
2𝐼1, 𝜙𝐵 ∈ B4, 𝜙𝐶 ∈ B2

(A.1)

where 𝑓 (𝑥𝑘−1) in Eq. (2.14) is now the linear relation 𝐴𝑥𝑘−1. The system has
four actuators that affect the position of the system (two in each direction), and
two sensors that sense the position. Total binary failure can affect any of these
components.

156

2 DOF Double Integrator System
The 2 DOF system is defined with dynamics (Eq. (2.14)), sensors (Eq. (2.15)) and
faults (Eq. (2.17)) as:

𝐴 =

1 0 Δ𝑡 0
0 1 0 Δ𝑡

0 0 1 0
0 0 0 1

, 𝐵 =

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−Δ𝑡 −Δ𝑡 Δ𝑡 Δ𝑡 0 0 0 0

0 0 0 0 −Δ𝑡 −Δ𝑡 Δ𝑡 Δ𝑡

,

𝐶 =

1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0

, Σ𝑤 = 𝜎𝐼4, Σ𝑣 = 𝜎𝐼4, 𝜙𝐵 ∈ B8, 𝜙𝐶 ∈ B4

(A.2)

The systems has eight actuators that control the acceleration of the system, subject
disturbances in each axis, and four sensors that sense the position subject to stochastic
noise. Up to three simultaneous failures can affect both the sensors and actuators.

157

3 DOF Planar Spacecraft System
We specify the following planar satellite system where the spacecraft can translate
in two dimensions and has third rotational degree of freedom modeled after the
M-STAR spacecraft simulator hardware shown in Fig. 2.6. The planar spacecraft
system (Eq. (2.14)), sensors (Eq. (2.15)) and faults (Eq. (2.17)):

𝐴 =

1 0 0 Δ𝑡 0 0
0 1 0 0 Δ𝑡 0
0 0 1 0 0 Δ𝑡

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

, 𝐶 =

1 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0

,

𝐵 =

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
−Δ𝑡𝑐𝜃 −Δ𝑡𝑐𝜃 Δ𝑡𝑐𝜃 Δ𝑡𝑐𝜃 Δ𝑡𝑠𝜃 Δ𝑡𝑠𝜃 −Δ𝑡𝑠𝜃 −Δ𝑡𝑠𝜃 0 0
−Δ𝑡𝑠𝜃 −Δ𝑡𝑠𝜃 Δ𝑡𝑠𝜃 Δ𝑡𝑠𝜃 −Δ𝑡𝑐𝜃 −Δ𝑡𝑐𝜃 Δ𝑡𝑐𝜃 Δ𝑡𝑐𝜃 0 0
Δ𝑡ℓ −Δ𝑡ℓ Δ𝑡ℓ −Δ𝑡ℓ Δ𝑡ℓ −Δ𝑡ℓ Δ𝑡ℓ −Δ𝑡ℓ Δ𝑡 Δ𝑡

,

Σ𝑣 = 𝜎𝐼6, Σ𝑤 = 𝜎𝐼6, 𝜙𝐵 ∈ B10, 𝜙𝐶 ∈ B6

(A.3)
where 𝜃 the orientation of the spacecraft and 𝑠𝜃 and 𝑐𝜃 are shorthand for sin(𝜃) and
cos(𝜃), respectively, making the system non-linear. The systems has eight thrusters
and two reaction wheels that control the acceleration of the system, and six sensors
that sense the position and orientation. In each experiment, the thrusters exert a
force of 1 N, with a spacecraft mass of 1 kg. In this 3 DOF setting, each thruster
also has a torque of ±.4 Nm and the reaction wheels have a torque of .05 Nm with
a spacecraft moment of inertia of 4 kg/m2. As before, any of these sensors and
actuators can fail, and we allow up to three simultaneous failures.

Because of the non-linearity in this system, the linear propagation of Eq. (2.14) is
only approximate. To address this, in our simulations we perform an RK45 integra-
tion scheme for the state transition between time steps, subject to the same additive
noise term as in Eq. (A.3) above at each time step. We adapt the equivalent POMDP
in Lemma 1 accordingly, and note that none of our analysis in Theorem 1 explicitly
depend on the dynamics model, so we retain all of our theoretical guarantees of
convergence and optimality.

158

A p p e n d i x B

S-FEAST IMPLEMENTATION DETAILS

This appendix provides implementation details for each of the quantitative experi-
ments performed to validate s-FEAST.

Our source code is available at: https://github.com/treyra/s-FEAST.

Shared Experimental Parameters
We summarize the shared elements of each experiment here.

Failures:

• In the binary fault scenarios, faults with at most 3 simultaneous actuator and
sensor failures are considered.

• In the continuous degradation and bias scenarios, no limit on the number of
simultaneous faults was imposed, but two conditions where imposed when
randomly generating faults. First, each degradation or bias generated had a
50% chance to nominal (no degradation or bias). Off nominal degradations or
biases were then selected uniformly between 0 (no degradation or bias) and 1
(full degradation or bias). Second, when generating the possible failures, each
generated bias (including the true bias) was repeated 5 times with different
degradations, to create ambiguity between possible faults.

• The size of the failure space, 𝑁Φ, is at most 40 randomly selected possibilities,
including the true fault.

• In the binary fault scenarios, a selected failure scenario must have at least one
sensor for each degree of freedom, or it is replaced to ensure observability (no
restrictions are placed on actuator failures).

Actions (for s-FEAST, random, and greedy policies):

• The actions considered are combinations of up to 3 simultaneous thrusters
firing.

https://github.com/treyra/s-FEAST

159

• All thrusters fire at the same constant value.

• The action set is a random sub set of 20 different actions and consistent across
experiment trials and time steps.

Initial Belief:

• Uniform prior over the failure space (note our method will also work with any
initial failure belief that does not preemptively rule out the underlying failure).

• The physical belief is centered at the true initial value with a diagonal covari-
ance matrix of 𝜎0 = 0.001.

Experiment Duration:

• In each experiment, we consider a duration of 15 time steps.

• This duration is selected to validate that s-FEAST remains safe over at least
the planning horizon after identifying the underlying fault. Note that in all
experiments, each s-FEAST algorithm achieves a 90% or higher diagnostic
reward by the 10th time step.

We use the following parameters for s-FEAST in each experiment. The discretiza-
tion scheme for position observations within each tree search is a zeroth order
discretization [216] of 𝑑𝑥 = 0.125 m or 0.125 rad. The planning horizon is set
to 𝐾 = 4, the tree exploration/exploitation parameter is 𝑐 = 1.2, and the discount
factor is 𝛾 = 1 (in our hardware experiments a value of 𝛾 = .9 was used to promote
immediate action). The simulation time step is chosen as Δ𝑡 = 1.0 s. The desired
safety probability at each time step 𝛼 is set to 0.9 in all trials. For the hardware ex-
periments running in real-time, a nominal experiment time step of 1.3 seconds was
used. For each control loop the actual wall-clock-time between action commands
was used for propagating the marginalized filter.

160

3DOF Planar Spacecraft System
For each numerical experiment validating s-FEAST, we consider the 3 degree of
freedom (3 DOF) planar satellite system defined by Eq. (A.3) in Appendix A, with
the following changes to the process noise and faults:

Σ𝑤 =

𝜎2
𝑤,𝑥
(Δ𝑡)3

3 𝜎2
𝑤,𝑥
(Δ𝑡)2

2 0 0 0 0
𝜎2
𝑤,𝑥
(Δ𝑡)2

2 𝜎2
𝑤,𝑥Δ𝑡 0 0 0 0

0 0 𝜎2
𝑤,𝑦
(Δ𝑡)3

3 𝜎2
𝑤,𝑦
(Δ𝑡)2

2 0 0
0 0 𝜎2

𝑤,𝑦
(Δ𝑡)2

2 𝜎2
𝑤,𝑦Δ𝑡 0 0

0 0 0 0 𝜎2
𝑤,𝜃

(Δ𝑡)2
2 𝜎2

𝑤,𝜃
Δ𝑡

0 0 0 0 𝜎2
𝑤,𝜃

(Δ𝑡)3
3 𝜎2

𝑤,𝜃

(Δ𝑡)2
2

,

Σ𝑣 = 𝜎
2
𝑣 𝐼6, 𝜙𝐵 ∈ B10 or [0, 1]20, 𝜙𝐶 ∈ B6 or [0, 1]12

(B.1)

Now we consider the actuators and sensors subject to both binary faults as well as
continuous degradation and bias faults, following Eqs. (3.1) and (3.2).

The measurement noise is set as 𝜎𝑣 = .4, and the dynamics noise consists of
acceleration disturbances in each axis of 𝜎𝑤,𝑥 = .2, 𝜎𝑤,𝑦 = .2, and 𝜎𝑤,𝜃 = .01.
These are chosen so that orientation is dependent on the selected actuations, making
reorienting the spacecraft to use redundant thrusters a behavior that can be exploited
by each policy. The noise model we use is suggested by Bar-Shalom et al. [217] as a
method to capture continuous Gaussian white noise in systems evaluated at discrete
time steps.

When safety chance constraints are applied to the system, we require a 90% proba-
bility of remaining safe at each time step.

As in Appendix A, we note the linear propagation of Eq. (3.1) is only approximate
and perform an RK45 integration scheme for the state transition between time steps,
now subject to the same additive noise term as in Eq. (B.1) above at each time step.
We now adapt Lemma 3 accordingly, and note that Theorems 2-5 do not explicitly
depend on the dynamics model, so we again retain all of our theoretical guarantees
of convergence, optimality, and safety.

Baseline details
Control Barrier Functions (CBFs) are a control theoretic way to approach safety [56].
As in our formulation, a safe set is defined as the super-level set of a function
𝑋ℎ = {𝑥 | ℎ(𝑥) ≥ 0}, and safety of the system can be formalized as the forward
invariance of this set. Here, the function ℎ is a CBF if it certifies the forward

161

invariance of the safety set by satisfying: ∀𝑥, ∃𝑢 s.t. ¤ℎ(𝑥, 𝑢) ≥ −𝑘 (ℎ(𝑥)), where 𝑘 is a
classK function. This has been extended to discrete time systems as D-CBFs in [48]
by applying the equivalent condition (reformulated by [52]): ∀𝑥, ∃𝑢 s.t. ℎ(𝐹 (𝑥, 𝑢)) ≥
𝛽ℎ(𝑥), where 𝐹 is the state transition function. In our formulation, we take 𝛽 = 0
as the least restrictive condition.

SCP is a method to solve non-convex optimal control problems in an iterative fashion.
It works by convexifying the constraints at each time step about the trajectory
produced by the previous iteration and optimizing against these approximations [49],
[50]. With a suitable initial guess, SCP can solve a broad class of problems. We
initialize SCP with an initial guess of an unforced trajectory at each time step. This
guess is safe for the initial condition of each scenario considered.

As both CBF and SCP methods assume deterministic dynamics, the most likely
fault state and corresponding physical state estimate are assumed when selecting an
action, and a safety buffer is used to account for the process noise at each time step. A
value of 1.28𝜆max(Σ𝑤) was adopted, as positive deviations greater or equal to 1.28
standard deviations have 10% cumulative probability for Gaussian distributions.
Using obstacles with this safety buffer, if an initial state 𝑥𝑡−1 was fully observable
and the dynamics noise was the only uncertainty, then an action 𝑎𝑡 that resulted in
ℎ(E[𝑥𝑡]) ≥ 0 would achieve the desired safety probability of 90%.

The random and greedy policies are implemented using the same action space as
s-FEAST. The CBF policy is implemented as a minimal control problem subject
to the CBF constraint ℎ(𝑥𝑘+1) > 1.28𝜎𝑤 following the safety buffer. Since CBF
theory assumes unconstrained control, we allow actions up to 20 times larger than
the actuation limits of FEAST, and the problem is solved using the non-linear
minimization solver built into SciPy [218]. If the solver reaches its iteration limit (for
example, if the assumed system dynamics in the previous time step were inaccurate,
leading to an unexpected collision and in-feasibility), the last considered action is
returned.

The SCP policy is implemented at each time step as a convex program following [49],
[50] to convexify the safety constraints. The policy selects form a continuous control
space with the same actuation limits as s-FEAST and an initial guess of no control
action. If the program is infeasible, it tries to re-solve by minimizing the safety
violations. If the program is still infeasible, it returns the control input from the
previous iteration or the initial guess.

162

All baselines employ our marginalized filter to perform belief updates between
planning steps using the realized observation. This is done to isolate the performance
between the baselines and s-FEAST to the quality of actions selected.

163

A p p e n d i x C

S-FEAST ADDITIONAL RESULTS

In this appendix we provide supplementary results to our s-FEAST analysis for the
interested reader, including complete time series images of our hardware experi-
ments, real-time performance analysis, and additional numerical simulations.

All experimental data and code needed to produce the plots presented here and
Chapter 3 can be found at: https://doi.org/10.5061/dryad.xgxd254r1.

C.1 Additional Robotic Spacecraft Simulator Hardware Experimental Vali-
dation of s-FEAST

We present the evolution over time of a Discrete Control Barrier Function (D-
CBF), FEAST, and s-FEAST on our robotic spacecraft simulator in our safety-
critical scenario to demonstrate the need for our complete s-FEAST algorithm. All
experiments start with the spacecraft on a crash course with respect to the model
comet, with both retro thrusters completely failed. See the hardware results section
of Chapter 3 for experiment details. A video summary of these experiments can be
found at https://www.youtube.com/watch?v=aJ04dlgaP0o and an a side by
side comparison at https://youtu.be/z7Odjd4Ae_M.

D-CBF Spacecraft Simulator Experiment
For this baseline experiment, control actions are selected at each time step by a
D-CBF method to enforce the safety constraint. The D-CBF is implemented as
described in baseline details subsection of Appendix B using our marginalized filter
to update the failure belief between action selections, with the real-time modifica-
tions described in Chapter 3. In this experiment, the D-CBF method fails to prevent
collision and the fault estimate diverges.

https://doi.org/10.5061/dryad.xgxd254r1
https://www.youtube.com/watch?v=aJ04dlgaP0o
https://youtu.be/z7Odjd4Ae_M

164

Figure C.1: D-CBF spacecraft simulator hardware experiment. The state and
failure belief of a D-CBF method at each time step of our hardware experiment. The
unsafe region is overlaid in red, the position belief overlaid as a probability density,
the tree search overlaid in gray, and the failure belief overlaid in the upper right
corner. The constraint, position belief, and tree overlays are approximate.

FEAST Spacecraft Simulator Experiment
We next run FEAST alone on the robotic spacecraft simulator, to demonstrate that
without also considering safety, we will still crash.

165

Figure C.2: FEAST spacecraft simulator hardware experiment. The state and
failure belief of FEAST at each time step of our hardware experiment. The unsafe
region is overlaid in red, the position belief overlaid as a probability density, the tree
search overlaid in gray, and the failure belief overlaid in the upper right corner. The
constraint, position belief, and tree overlays are approximate.

s-FEAST Spacecraft Simulator Experiment
Finally, we run s-FEAST on the robotic spacecraft simulator, to validate our methods
ability to diagnose the underlying fault and remain safe.

C.2 Real-Time Performance Analysis
In this section, we discuss the implementation details of our algorithm needed to
achieve the real-time performance of our hardware experiments. Our algorithm
is currently implemented in Python using Google’s JAX to accelerate the NumPy
computations [118], primarily to accelerate the estimator propagation step, which
is our main computational bottle neck. For example, a tree of 100 simulations a
second, depth 4 and 40 possible failures, will compute 16,000 estimator updates a
second, and we found running these large, parallelizable array operations in JAX
resulted in approximately 50 times faster execution.

All the experiments we present in our work are run using JAX in the CPU only
configuration to speed up our estimator prediction and update steps. Because JAX’s
compiled Python code cannot have any logical branching, we do not currently use
JAX to accelerate the tree search itself; and running only the estimator updates on
a GPU and returning to the CPU to select the next action in the tree search roll out

166

Figure C.3: s-FEAST spacecraft simulator hardware experiment. The state and
failure belief of s-FEAST at each time step of our hardware experiment. The unsafe
region is overlaid in red, the position belief overlaid as a probability density, the tree
search overlaid in gray, and the failure belief overlaid in the upper right corner. The
constraint, position belief, and tree overlays are approximate.

was slower in our implementation, due to the overhead of moving data on and off
the GPU.

To validate s-FEAST for real-time computability, we run s-FEAST on the collision
course under the adversarial binary failure scenario presented in Chapter 3, for 20
random initial conditions, and present the average wall-clock-time in Fig. C.4. We
note the addition of the safety filter increases the variance of the average wall-clock-
time. However, the mean value of s-FEAST’s average wall-clock-time lies within
one standard deviation of mean value observed when running our algorithm without
the safety filter, labeled as FEAST in Fig. C.4. This validates our claims the safety
filter is computationally efficient and has a negligible effect on the performance of

167

our algorithm. Running on the robotic spacecraft, 85 simulations per time step was
a typical value for the computational budget of 0.78 seconds. Since this budget does
not include overhead from the logging and sensing portions of the control loop, this
performance appears to match well with these experiments. These experiments are
run on the NVIDIA Jetson AGX Orin 32GB Developer Kit, configured at max power
settings and clock speed. The Jetson Orin modules are a family of state-of-the-art
autonomy computers designed for energy-efficient robotics applications and they
are considered a promising candidate platform for future space autonomy [219].

Figure C.4: s-FEAST: Wall Clock Time. Average computation times for s-FEAST
running on Jetson Orin at increasing numbers of simulations. 1 SD error region
shown for the 20 trials.

C.3 Additional Numerical Simulations Scenario: Collision Course Under
Random Failures

In addition to the case of adversarial failures affecting a spacecraft on a collision
course with an obstacle, we can also consider the case of random failures affecting
the spacecraft. We consider both random binary failures in Fig. C.3A, and random
continuous degradations and biases in Fig. C.3B. Each experiment is initialized the
same as in the adversarial failure scenarios in Chapter 3, starting 10 m from the
obstacle on a 1 m/s approach velocity.

168

Figure C.5: Additional validation of s-FEAST. The numerical performance of our
algorithm compared with baselines on a crash course subject to random failures.
In both experiments, the robotic spacecraft starts 10 m from the obstacle with n
initial 1 m/s velocity towards the obstacle.(A) The robot is subject to random binary
failures of up to 3 components. (B) each component can now be randomly subjected
to continuous degradation or bias, with nominal components more likely. In all
experiments, s-FEAST considers 40 possible binary or general faults and starts
with a uniform prior over all possibilities. In the visualization of the spacecraft
component health in the left column, squares represent the thrusters and circles
abstractly represent the position and orientation sensors. Green components are
healthy, red are failed, and red actuations represent bias thrust of varying degrees
(sensor bias is not visualized). Note that for readability, the data for each time step
is artificially spread out horizontally.

169

A p p e n d i x D

S3AM IMPLEMENTATION DETAILS

Each of our experiments considered the angles only relative navigation problem.
The formation starts at rest, with each agent in its nominal position. Estimates
are updated and attacks and defenses switched after time steps of 1 second. The
attacker and defender share the same initial belief centered about these nominal
positions with a small covariance. These beliefs are used to select the initial attack
and defense, then are independently updated using the information available to each
player.

Tree search parameters:

• 𝑀 = 20 samples were used to evaluate the stealthiness of each attack encoun-
tered in the tree.

• 𝐾 = 10 was the max depth of each tree search.

• An exploration parameter of 𝑐 = 1.2 was used.

• A discretization level of 1 m was used.

Experiment parameters:

• Identity matrices were used as the LQR weights for 𝑄𝑘 and 𝑅𝑘 at all time
steps.

• The attack set used was as follows:[
0 0

][
1 1

][
1 −1

][
−1 1

][
−1 −1

]

170

• The defense topology set used was as follows (recall 7 refers to the reference
target, and that 𝑑𝑘 ∈ [1, . . . , 𝑃 + 1]𝑃 with 𝑑

𝑗

𝑘
≠ 𝑗 the target of the 𝑗-th

spacecraft): [
2 3 6 1 4 5

][
4 1 2 5 6 3

][
7 5 7 1 7 3

][
4 7 6 7 2 7

][
4 5 6 1 2 3

][
2 1 7 5 4 7

][
7 3 2 7 6 5

][
4 7 6 1 7 3

]
• As Gaussian process and sensor noise was used, an Extended Kalman Filter

was used as the estimator in each experiment. We used the same noise model
as in Appendix B to capture continuous Gaussian white noise in systems
evaluated at discrete time steps [217]:

Σ
𝑗
𝑤 =

𝜎2
𝑤
(Δ𝑡)3

3 𝜎2
𝑤
(Δ𝑡)2

2 0 0
𝜎2
𝑤
(Δ𝑡)2

2 𝜎2
𝑤Δ𝑡 0 0

0 0 𝜎2
𝑤
(Δ𝑡)3

3 𝜎2
𝑤
(Δ𝑡)2

2

0 0 𝜎2
𝑤
(Δ𝑡)2

2 𝜎2
𝑤Δ𝑡

(Δ𝑡)2
2

,

(D.1)

with 𝜎𝑤 = .01. The same block process noise was used for each agent,
including the adversarial agent.

• The sensing noise consisted of an independent one dimensional Gaussian
noise with standard deviation of 𝜎𝑣 = .01 applied to each measurement. Note
that when no range measurement was returned (due to the agent not looking
at the reference target), no noise was provided.

171

A p p e n d i x E

ORBIT OPTIMIZATION DETAILS

In this appendix, we provide additional details on our extensions to optimal orbit
designs.

E.1 Additional LVLH Frame Details
As defined in Chapter 7, the local vertical, local horizontal (LVLH) frame is given by
the 𝑥 (radial) direction, which is radially outward from the chief; the 𝑧 (cross track)
direction which is along the angular momentum vector of the chief’s orbit; and the
�̂� (along track) direction which completes the right-handed coordinate system. This
is in contrast to the fixed Earth-Centered Inertial (ECI) coordinate system, which
is referenced from the center of an inertially fixed Earth. In this coordinate frame,
�̂� is in the direction of the vernal equinox, �̂� is aligned with Earth’s axis, and 𝑌
completes a right handed coordinate system. The LVLH frame rotates in time with
the orbiting formation relative to the ECI frame. To find the LVLH frame for a given
time (for a circular orbit), the ECI frame can be transformed by a rotation about
the �̂� axis of Ω, the right ascension of the ascending node, followed by a rotation
about the transformed 𝑥 axis by 𝑖, the inclination, and finally a rotation about the
transformed 𝑧 axis of 𝜃, the argument of latitude at the given time instance. These
coordinate systems are visualized in Fig. E.1.

While useful in locating the LVLH frame, the traditional Keplerian orbital elements
are not as useful when describing the motion of a formation under perturbations.
To better describe the orbit of the formation, hybrid orbital elements consisting of
radial distance 𝑟, radial velocity 𝑣𝑥 , angular momentum ℎ, right ascension of the
ascending node Ω, inclination 𝑖 and argument of latitude 𝜃 are used, summarized in
an orbital element vector as [𝑟, 𝑣𝑥 , ℎ,Ω, 𝑖, 𝜃]. These 6 elements are used to represent
the chief orbit in the ECI frame, as the orbital dynamics under 𝐽2 perturbations can be
cleanly described using these elements [220]. From this representation the classical
orbital elements can be easily recovered, and the relative motion in the LVLH frame
converted back to ECI coordinates if desired.

172

Figure E.1: LVLH coordinate frame visualization. The local and ECI coordinate
frame and relevant orbital elements are shown for a single deputy/chief pair. Repro-
duced with permission from Morgan et al. [186].

E.2 Offline Orbit Design for SAR Implementation Details
Here we provide additional details about the orbital design for the DARTS mission.
First, in order to solve the relative orbital mechanics, a chief orbit was selected. The
NASA-ISRO Synthetic Aperture Radar (NISAR) mission was used as a reference for
the orbital design, due to the similar mission goals to the DARTS mission concept.
NISAR will orbit at an altitude of 747 km and an inclination of 98.4°, making it a
periodic sun synchronous orbit with a repeat frequency of 12 days, during which it
will complete 173 orbits.

A periodic sun synchronous orbit leverages the perturbation on the right ascension
of the ascending node due to 𝐽2, which causes orbits to precess around the Earth. At
the right combination of altitude and inclination, this precession will be at the same
rate of the Earth’s orbit around the sun, resulting in the orbit appearing to be fixed
relative to the sun. This means that the local time under the spacecraft is constant
year round, for a given latitude. In addition, by carefully selecting the altitude of
the orbit such that the ratio of orbit period to day length is rational, the ground
track of the orbit will be periodic, looping back on itself after a certain number of
days. Combined, these two properties result in a spacecraft that will return to each
observed location at a periodic interval, and that each observation of a location will
always be at the same time of day. This controls two variables in Earth observation
missions, and is often a desired behavior. For simplicity, we took the eccentricity 𝑒,
right ascension of the ascending node Ω, and starting argument of latitude 𝜃 to be 0.

173

In our numerical analysis, all orbits were modeled as under the influence of Earth’s
gravity including 𝐽2 effects, but higher order perturbations and three body effects
including those of the moon and sun were ignored. Similarly, at an altitude of 747
km, air resistance was assumed to be negligible, and we assume a homogeneous
spacecraft geometry, making the relative drag particularly small. While these ad-
ditional higher order perturbations will also affect the orbit, we expect them to be
on the same order of magnitude as the 7.55 mm/orbit drift rate in the along track
for the 𝐽2 invariant PROs [186]. Both of these effects can be addressed by normal
station keeping methods throughout the mission, and are assumed to be of the same
order of magnitude for all deputies, regardless of formation design, and hence are
not optimized for.

In order to improve convergence and numerical stability, the median separation was
used as a more robust statistic than the mean separation during initial convergence
of the genetic algorithm.

Note that several undetermined parameters must be tuned by the designer. Most
importantly, the number of agents does not directly enter into the objective function.
This was done deliberately to reduce the dimensionality of the optimization problem.
Instead of setting the number of agents as a variable to optimize over, the best
design for each size formation can be computed, and the trade off between scientific
merit versus added complexity and mission cost weighed by the design team or
program. Effectively, this is simply allowing the human designers to determine the
relative weighting between added agents and added resolution, but we recognize
that this evaluation will necessarily change as the mission is developed. Instead of
prematurely optimizing this parameter before a spacecraft design is finalized, the
trade space for each formation size of interest will be explored. In this analysis,
formations of 6 and 4 spacecraft were studied in particular. Similarly, the weighting
between the setup cost (in terms of the propellant used) and the science produced, 𝛼,
is also tuneable by the designer. In practice, the set up cost was found to be nominal,
and similar between most formations. For this analysis a value of 𝛼 = 1 was used
for simplicity, as this was not found to have a significant effect on the results of the
optimization. Instead, a large setup cost was usually indicative of a infeasible orbit
or a bad initial condition for the optimization algorithm.

174

E.3 Real-time Orbit Selection for Inspection Implementation Details
Here we provide additional implementation details for our numerical simulations.
All simulations were run in Python on a 10-core M1 2021 Macbook Pro with 16
GB of RAM.

PRO Details
Our chief satellite is the target of interest, a 10 meter sphere in the same orbit we
considered for the DARTS mission (altitude 747 km, eccentricity 0, inclination
98.4◦, right ascension of the ascending node 0◦, argument of periapsis 0◦). All
simulations start at the ascending node.

To generate a PRO library 𝐶, we fix the size of the PRO candidate space 𝑛. We
uniformly distribute 𝑛 points on a sphere according to a Fibonacci lattice. These
points represent the initial conditions of orbits in local vertical, local horizontal
(LVLH) coordinates (𝑥𝑖 (0), 𝑦𝑖 (0), 𝑧𝑖 (0)) for 𝑖 = 1, ..., 𝑛. We take all initial positions
to be on a sphere of fixed radius of 1 kilometer from the target satellite. The
initial velocities (¤𝑥𝑖 (0), ¤𝑦𝑖 (0), ¤𝑧𝑖 (0)) are found by solving for the 𝐽2-invariant orbits
corresponding to (𝑥𝑖 (0), 𝑦𝑖 (0), 𝑧𝑖 (0)) [186]. These initial positions and velocities
are forward integrated with 𝐽2-perturbed orbital dynamics over a single orbital period
to solve for the configuration (𝑥𝑖 (𝑡), 𝑦𝑖 (𝑡), 𝑧𝑖 (𝑡), ¤𝑥𝑖 (𝑡), ¤𝑦𝑖 (𝑡), ¤𝑧𝑖 (𝑡)) at each time step
𝑡 throughout the orbit. The configurations (𝑥𝑖 (𝑡), 𝑦𝑖 (𝑡), 𝑧𝑖 (𝑡)) are the sensor poses
used to evaluate the information cost 𝐻 (P). We use an orbital period of 6000
seconds, with a time step of 5 seconds. This corresponds to an orbit altitude of
approximately 750 kilometers.

Figure E.2: The orbits in the size 𝑛 = 16 PRO library. On the left are the initial
positions and velocities of the candidate PROs in LVLH coordinates. On the right
are the trajectories of all sixteen PROs after forward integrating for one orbit.

175

For thee PRO library sizes of 𝑛 = 80, 100, 120, 140, and 160, we again uniformly
distribute 𝑛 initial conditions on a sphere. We perturb the radius of the initial
condition sphere to a 1D Gaussian with mean 1 km and standard deviation 0.2 km.
For uniformity across simulations, each simulation ran on a size 𝑛 library use the
same randomly-perturbed space. This perturbation serves to create a less smooth
search space, so that we can examine the behavior of the MCTS and greedy policies
on a larger and more difficult search problem.

Visibility Checking Details
To find the information cost of viewing a point of interest 𝑠 on the surface of the
target satellite, we evaluate Eq. (7.4) for every configuration 𝑝 that each deputy
satellite takes around the target and perform the reciprocal sum with the baseline
variance 𝑤. To model visibility of a point of interest 𝑠 from a deputy satellite
position 𝑝, we project a 10-degree half-angle cone radially outward from 𝑠 and
check for intersections with 𝑝. For simplicity, we assume the sensor is always
oriented at the target. A visualization of the visibility-checking is shown in Fig. E.3.
We then sum the point-of-interest contribution for each point 𝑠 on the surface of
the target. The resulting sum is the total information cost 𝐻 of a set of PROs. We
refer to this as a cost to indicate that lower values of 𝐻 represent larger amounts
of information, and therefore more favorable configurations for viewing the target.
As shown in Eq. (7.4), completely unseen points of interest contribute cost 𝑤 to the
total information cost 𝐻.

Optimal and Greedy Orbit Assignment Details
The optimal set of 𝑇 PROs is found by checking every combination

(𝑛
𝑇

)
set of

PROs, and selecting the set with the lowest information cost. For the libraries of
size 𝑛 = 8, ..., 20, the formation size is 𝑇 = 4. For the larger libraries of size
𝑛 = 80, 100, 120, 140, and 160, the formation size is 𝑇 = 10. Finding the global
optimal set of PROs would take intractably long for these larger libraries, as it would
require searching over at least 1012 sets. For this reason, we considered only the
performance of the MCTS policy and the greedy policy for these libraries.

The greedy assignment of PROs is done sequentially. Beginning with an empty
set, all PROs in the library are ordered by evaluating the information cost for each
individually, and the lowest-cost PRO is chosen. For the next iteration, we select
a PRO that when combined with the first PRO results in the lowest-cost two orbit
formation. This process is repeated until 𝑇 PROs are chosen.

176

Figure E.3: Point of Interest visibility cone visualized. The target is shown as a
blue sphere at the origin of the image, with the visibility cone of a point of interest
on the negative-z side projected downward. Any deputy satellite in the PRO, shown
in red and green, only sees the point of interest for the green portion of its orbit.

Algorithm Details
When working with PRO libraries of size 𝑛 = 20 or less, we use 𝑀 = 100 iterations.
For the large libraries, 𝑛 = 80 and larger, we use𝑀 = 1000 iterations. The algorithm
represents possible sets of PROs in a tree structure, where each node of the tree is
a set of orbits P of up to size 𝑇 . An edge connecting a parent node to a child node
represents the addition of one PRO to the parent node’s set. As such, the number of
PROs in a set corresponds to that node’s depth in the tree.

Each node P also contains five pieces of data used for tree traversal. The first two
are values used in standard Monte-Carlo tree search: total cost P .𝑄 of the terminal
nodes below and total number of visits P .𝑁 to the branch starting at P. The next
three pieces of information are included as this Monte-Carlo tree search is relatively
shallow and wide (𝑇 << 𝑛). The as-of-yet best set of PROs found during the
search and the associated value are stored as P .best_set and P .best_cost. Updated
during the backpropagation step, these sets allow the algorithm to quickly report the
most-optimal set of PROs upon termination. The final component is a boolean flag,
denoted P .complete, storing whether every node is fully expanded below it. A node

177

at depth 𝑑 is fully expanded if it is either terminal (𝑑 = 𝑇) or if it has 𝑛 − 𝑑 children
(and therefore all PROs remaining in the library have been tried).

We use the standard UCT implementation to recursively select a node to expand [35],
with an exploration parameter of 𝑐 = 1.2. In our algorithm’s notation, this is given
as:

UCT(P,R, 𝑐) = R.𝑄/R.𝑁 − 𝑐
√︂

log (P .𝑁)
R.𝑁 (E.1)

Monte-Carlo tree search expands nodes randomly, to evaluate information cost and
time-to-run, we simulated orbit assignment using five randomly-generated seeds and
average the costs and times over five runs.

178

Algorithm 9: Monte-Carlo Tree Search
Input: 𝐶: Set of PRO candidates
Input: 𝑇 : Target set size
Input: 𝑐: Exploration/exploitation parameter
Input: 𝑀: Number of algorithm iterations
Output: P∗

𝑀𝐶𝑇𝑆
: The most optimal set of PROs found in 𝑀 iterations

1 Function MCTS(𝐶, 𝑇 , 𝑐, 𝑀):
2 Initialize empty tree T ;
3 for 𝑘 = 1 . . . 𝑀 do

/* Search down tree until reaching un-expanded node */

4 P ← SelectUntilUnexpandedNode(T .root, 𝑇, 𝑐);
/* Expand node */

5 P′← Expand random un-expanded child of P;
/* Add new node to tree */

6 T .append(P′);
/* Rollout node to end of decision process */

7 P′full ← P
′ filled with random PROs;

/* Find value of rolled-out node */

8 𝑉 ← 𝐻 (P′full);
9 P′.𝑄 ← 𝑉 ;

10 P′.𝑁 ← 1;
/* Backpropagate value/visit count */

11 while P is not root node do
/* Update cost */

12 P .𝑄 += 𝑉 ;
/* Update visit counts */

13 P .𝑁 += 1;
14 if 𝑉 ≤ P .best_cost then
15 P .best_set,P .best_cost← P′, 𝑉 ;

/* Update completeness flag */

16 if Tree below P is complete then
17 P .complete← True;

/* Step up the tree */

18 P ← P .parent;

19 return T .root.best_set;

179

Algorithm 10: SelectUntilUnexpandedNode
Input: P: Node to begin UCT-search at
Input: 𝑇 : Target set size
Input: 𝑐: Exploration/exploitation parameter
Output: P: Node selected to perform expansion

1 if P has un-expanded children then
/* Select this node */

2 return P;

/* Choose best child by UCT (Eq. eqrefeq:UCT) and recurse */

3 else
4 best_child← arg max

R∈P .incomplete_children

{
UCT(P,R, 𝑐)

}
;

5 return SelectUntilUnexpandedNode(best_child, 𝑇, 𝑐);

	Acknowledgements
	Abstract
	Published Content and Contributions
	Table of Contents
	List of Illustrations
	Introduction
	Safe Active Fault Estimation
	Efficient Array-Based Tree Search
	Real-time Multi-Agent Reconfiguration

	Fault Estimation via Active Sensing Tree Search (FEAST)
	Motivation
	Preliminaries
	Problem Statement
	Methods
	Numerical Simulations
	Robotic Spacecraft Simulator Hardware Experiments
	Chapter Summary

	Safe Fault Estimation via Active Sensing Tree Search (s-FEAST)
	Motivation
	Problem Statement
	Methods
	Robotic Spacecraft Simulator Hardware Experiments
	Numerical Simulations
	Chapter Summary

	s-FEAST realted work and discussion
	Context with Related Work
	Significance of s-FEAST
	Chapter Summary

	An Array-Based Implementation of Monte Carlo Tree Search
	Motivation
	Algorithm Overview
	Array-Based MCTS Algorithm
	Preliminary Results
	Context with Related Work
	Chapter Summary and Opportunities for Future Work

	Extensions to adversarial multi-agent settings
	Motivation
	Problem Formulation
	Problem Reformulation
	Main Method (S3AM Algorithm)
	Results
	Context with Related Work
	Chapter Summary

	Extensions to Optimal Relative Orbits
	Motivation
	Background
	Offline Orbit Design for SAR
	Real-time Orbit Selection for Inspection
	Context with Related Work
	Chapter Summary

	Conclusion
	Future Work

	Bibliography
	FEAST Implementation Details
	s-FEAST Implementation Details
	s-FEAST Additional Results
	Additional Robotic Spacecraft Simulator Hardware Experimental Validation of s-FEAST
	Real-Time Performance Analysis
	Additional Numerical Simulations Scenario: Collision Course Under Random Failures

	S3AM Implementation Details
	Orbit Optimization Details
	Additional LVLH Frame Details
	Offline Orbit Design for SAR Implementation Details
	Real-time Orbit Selection for Inspection Implementation Details

