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A,
ABSTRACT

In this thesis we stﬁdy simple groups of order paq_br2 (p, q, and
r prime numbers). John Thompson has shown that, in any simple
{p,q,r}-groupJ the primes dividing the group order are 2, 3, and an
element of {5, 7, 13, 17}. Richard Brauer and David Wales have
classified simple groups of order pa@br. In the case of interest
ab 2

here, known results permit us to write the group order as 2°q r

unless the group is isomorphic to A We shall deal primarily with

5
the case r = 3,

Let G be a simple group with lGl = 2aqp32. Recent work of
W. J. Wong on the relation between blocks and exceptional characters
provides the key to obtaining information about the principal 3-block
of G. Using the block-section orthogonality relations, we obtain
diophantine equations for the degrees of the irreducible characters
in this block. Methods are developed for solving the type of equation
which arises., TFinally, we perform a detailed analysis of the solu-
tions; the most important technique is restriction of charactgrs to
3-local subgroups.

Let k3(G) denote the number of conjugacy classes of 3-elements in
G. It is proven that, if kB(G) > 3, then G must be isomorphic to one
of the linear groups PSL2(8) or PSL2(17). T k3(G> = 2, either G is
isomorphic to the alternating group A6 or else the principal 3-block
of G has one of three explicit forms. Results for the case k3(G) =

are weaker; however, they permit us to show that [Gl # 28'(1232 and that,

6

with known exceptions, lGl > 107, The latter result serves to prove
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the nonexistence of a simple group for a mumber of previously

unresolved orders.

In deriving the above theorems, we establish a number of
preliminary results valid in any simple group of order Qaqbr2.
We also prove a number of theorems on 3-blocks of defect 2 and

groups of order 32t, (3,8) = 1.
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CHAPTER I, INTRODUCTION

An elementary theorem of finite group theory states that a group
of prime power order is solvable and hence not simple. In 190&,
W, Burnside [10] used character theory to derive the same conclusion
for a group of order paqP, p and q distinct primes, A group of order'

paébrc may be simple; eight examples are known, namely:

Group Order Group Order
A 22.3-5 PSL2(8) 23~32-7

2 3 2 5.3
Ag 26-3)+-5 U5(3) 21{3 -7
Uu(z) g3 %eg PSL3(3) 2;.33-13
L (7) 2537 BsL,(17)  2%3%17

The determination of all simple groups whose order is divisible by
exactly three distinct prime factors is a longstanding, unsolved
problem,

Recently John Thompson [28] classified minimal simple groups --
that is, simple groups all of whose proper subgroups are solveble, It
follows easily that, if there exists a simple group whose order is
divisible only by the primes p, q, and r, then there exists a minimal
simple group with this property. By Thompson's result, the minimal

simple group must be A PSL2(7), PSL2(8), PSL3(3), or PSL2(17). Thus

57
a simple group whose order is divisible by only three distinct primes
mst have order 2a3bpc, where p € {5, 7, 13, 17}.

Simple groups of this type in which one of the primes appears‘to
the first power only have been classified completely. The difficulﬁ'

case, that in which ¢ = 1, 1s due to R, Brouver for p = 5 [6] and
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D, Wales for p = 7, 13, and 17 [29, 30, 31]. Exactly the eight groups
listed on the preceding page arise,

We shall investigate simple groups of order paébrz. Ifr=2,
the Sylow 2-subgroups would have order 4; all simple groups with this
property are known [15-Chapter 16], and the only one with exactly

three distinct prime factors in the order is A
2

5° Hence we shall write

the group order as anbr , with r € {3, 5, 7, 13, 17}. We shall deal
primarily with the case r = 3, PSL2(8) and, PSL2(17) will be character-
ized as the only simple groups of order 2aib32 having more than two
conjugacy classes of 3-elements, We shall come close to character;zing
A6 as the unique simple group of order 2aib32 with two classes of
3-elements, Weaker results will be proven for the case of a single
class of 3-elements,

Chapter ITI will set forth some notation and conventions.

Chapter III will present results on the r-local structure of a
simple group of order QaQbrg. We shall show how to apply exceptional
character theory to obtain from these results information about the
principal r-block of the full group.

Chapter IV will deal with fusion and 3-block structure in an
arbitrary simple group of order 32t, (3,%t) = 1.

In Chapter V, we shall cormbine the results of III and IV to
produce the fragment of the character table of a simple group of order
2aqb32 corresponding to the principal 3-block and the 3=-singular
elements., The block-section orthogonality relations then yleld dlophan-
tine eqﬁations for the degrees of the characters in the principal

3-block,



In Chapter VI, methods will be developed for solving the diophan-
tine equations.

In Chapter VII, some results about the structure of the 3-local
subgroups will be proven., We shall then consider the restriction of
characters of the full group to these subgroups in an attempt to
determine whether the solutions to the equations actually occur as
the principal 3-block degrees of a simple group.

Chapter VIII will give applications to the problem of determining
all simple groups of order less than one million., It will be shown
that no unknown simple group of this type can have order 2adb 2;
this result eliminates six cases from the list of previously unresolved
orders.

Chapter IX contains a summary of the major results on simple

groups of order 2aib32.



CHAPTER II. NOTATION AND CONVENTIONS

The notation employed here will be primarily the standard
notation of finite group theory, such as appears in Gorenstein's

Finite Groups [15). A list of symbols appears in Appendix I; in

this chapter, we shall introduce only a few of the less standard
ones.,

Let G be a group, H a subgroup, and p a prime number. Bo(p,H)
will denote the principal p-block of H., Frequently we shall write
Bo(p) in place of Bo(p,G). If S is any set containing an element
which is in some sense trivial, S* will denote the set of nontrivial
elements of S, Thus H¥ is the set of nonidentity elements of H and
Bo(p,H)* is the set of nonidentity characters in Bo(p,H). If g and u
are group elements, éu will mean u-1gu. If K and L are groups, K-L
will denote any semidirect product of K by L, that is, any split
extension of K by L; in general, K:L is not uniquely defined.

To shorten the statement of theorems, we shall adopt several
conventions. A "group" will always meen a finite group. Unless
stated otherwise, a "simple group" will mean a noncyclic simple group.
A "p-element" will be a nonidentity element of order a power of p.

2,” it will always be under-

In a phrase such as "a group of order paibr
stood that p, q, and r are distinct prime numbers and that a and b
are arbitrary nonnegative integers.

Groups will glways be denoted by capital letters, Lower cace

Iatin letters will be used for group elements, Characters of groups

will be denoted by Greek letters. The symbol e, often subscripted,



will stand for a sign, that is, a variable which takes on values +1.
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CHAPTER III. THE r-LOCAL SUBGROUPS OF A SIMPLE GROUP OF ORDER 2aibr2

Let G be a simple group of order 2a§br2. In this chapter, we shall
derive results on the r-subgroups of G and their centralizers and nor-
malizers, In Section 4, we shall show how these results may, in prin-
ciple, be applied to obtain a fragment of the character table of G

corresponding to the block Bo(r) and an r-section,

1. The Sylow r-subgroups

The Sylow r-subgroups of G are either cyclic or elementary abelian,
In the former case, E. C, Dade's theory of blocks with cyclic defect
groups yilelds enough information to obtain, at least for certain values
of r, a complete characterization of G, In fact, the general classifi-
cation theorems do not require that the exponent of r be 2, As a

corollary, we obtain:

Theorem 3.1 Let G be a simple group of order 2aébr2 (¢=3, 5 7, 13,
or 17) in which the Sylow r-subgroups are cyclic. Then
1) r= 3 only if G is PSL2(8) or PSL2(17)

2) r;és.

Proof (1) is a corollary of a theorem of Herzog [19-Theorem.1].

(2) follows from a theorem of the author [22-Theorem 1].

Since our interest is primarily in the case r = 3, we shall assume,

when necessary, that the Sylow r-subgroups are elementary abelian,



2. 8ylow intersections

A subgroup K of a group H is called strongly self-centralizing if

CH(k) = K whenever k € K*,

Theorem 3.2 Let G be a simple group of order 2aqpr2, Either

(1) G contains two Sylow r-subgroups with nonidentity
intersection

or (2) The Sylow r-subgroups of G are strongly self-centralizing.

If r = 3, alternative (2) occurs only if G is Ag, PSL2(8), or-PSL2(17).

Proof Suppose alternative (2) does not occur, Let g be a nonidentity

r-element and u be a nonidentity r'-element such that gu = ug. Without
loss of generality, u has prime order, Assume u has order q; if u has

order 2, the same proof holds with 2 and g interchanged,

E( ) x(1) x(gu) = 0 since gu is g-singuler [3,II-7C]. We may
Bola

write this as 1+ £ x(1) x(gu) = 0. It follows that Bo(q) contains
a nonidentity character 1 with T(1) # O (mod 2) and T(gu) # 0. The
first condition implies that T(1) = q?Tn, where n is 0, 1, or 2, If

n = 2, T would lie in an r-block of defect O and hence vanish on the
r-singular element gu [3,I], contrary to assumption. If n = 0, the
degree of T would be a power of q, contradicting T € Bo(q) by a theorem
of Brauer and Tuan [9-Lemma 2], Hence n = 1 and 1) lies in an r-block of
defect 1 [1-Theorem 3]; the defect group has order r. But the defect
group is the intersection of two Sylow subgroups [16-Theorem 2], Thus
alternative (1) holds.

Suppose alternative (2) holds and r = 3, If the Sylow 3-subgroups
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of G are cyclic, then by Theorem 3.1 the only possibilities for G are
PSL2(8) and PSL2(17). Both of these groups do in fact have strongly
self-centralizing Sylow 3-subgroups. If the Sylow 3-subgroups of G are
elementary abelian, G must be A6 by the complete classification of all
simple groups with a strongly self-centralizing, elementary abelian

Sylow subgroup of order 9 [19-Theorems 13.3, 13.5].

Clearly alternatives (1) and (2) of Theorem 3.2 are mutually
exclusive,

If (2) holds, theorems of Brauer and Leonard [8] yield detailed
information concerning the r-block structure of G, Also, the number
n, of Sylow r-subgroups satisfies n, =1 (mod r2); this follows from the
proof of the Third Sylow Theorem [17-Theorem 4,2,3].

If (1) holds , cormbinatorial methods give some information, Let
K1, K2, . Kﬁ be representatives of the conjugacy classes of subgroups

of order r, all chosen in a fixed Sylow r-subgroup R, Let:

n, = 1 + rs,, = number of Sylow r-subgroups of G
ki = number of conjugates of Ki in R

By = N(K;)

1 + rbi = number of Sylow r-subgroups of Hi

mumber of Sylow r-subgroups of
G containing Ki.

We may order the Ki so that b1, b2, S bm' are positive and

b %5 bm are zero, The nunbers 1 + rb, must be of the form 2uqv.

2 1
Alternative (1) holding is equivalent to m' > 0; if (1) fails to hold,

the formulas which follow are trivially valid but yield no information,
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The equations below are attributed to Richard Brauer., Proofs

appear in [18-Section 3, part 15].

Lerma 3.3 (&) nk, = [G:H|(1+rby) fori=1,2 ..., m.
ml

(v) .z kib

=5, (mod r).
i=1

L

Using Lemma 3.3 and other theorems on the permutation representa-
tion of G on the cosets of Hi’ the author has investigated simple groups
of order 233b52 in which the number of Sylow 5-subgroups does pot exceed
485, The method seems to break down as the number of Sylow 5-groups
becomes larger. Lemma 3.3 will be used in Chapter VIII, in which we

treat simple groups of order less than one million,

3. Centralizers and normalizers of subgroups of order r

Let G be a group of order QaQbre. The theorems of this section
will not require that G be simple, Let D be a subgroup of order r, We
shall characterize C(D)/Or'(C(D)) and, N(D)/Or,(N(D)).

Simple groups of order 22ibr have been classified completely.

For r = 5, the classification is due to Richard Brauer [6]; for r = 7,
13, and 17, to David Wales [29, 30, and 31]. If r = 3, it follows from
[6-Proposition 1] that the Sylow 3-group is self-centralizing, and Feit
and Thompson have classified all simple groups with a self-centralizing
subgroup of order 3 [14-page 186]. Alternatively, the classification
for r = 3 may be obtained easily by direct application of Brauer's
theory of blocks in groups whose order contains a prime to the first

power [ 2],
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The automorphism groups of the simple groups of order 2aqbr are
also known [27]. We shall be interested in groups H such that
SCHC Aut(S) for some simple group S of order Qaqbr, that i;fs, in
extensions of simple groups of order anbr by subgroups of their outer
automorphism groups. Table 1 lists the simple groups of order 28‘qbr :
and the groups H of the type just mentioned. This type of group will

arise frequently, so we make the following definition,

Definition 3.4 #(r) = { H | H is a group and S ¢ H < Aut(S) for some

simple group S of order 28‘qbr 1.

#(r) may be obtained immediately from Table 1, For example,
¥(3) = {As, SB’ PSL2(7), PGL2(7) }. Of course, ¥(r) is empty if

r £ {3, 5, 7, 13, 17}.

Lemma 3.5 If H is any group of order anbr, then either

(1) #/0,,(H) is a Frobenius group of order rd, d|(r-1), with

Frobenius kernel of order r

or (2) H/Or,(H) € ¥(r).

Proof Denote H/O_,(H) by H. Let K be a minimal normal subgroup of
—_— 7
H, X is characteristically simple and hence is a direct product of

(possibly cyclic) isomorphic simple groups [ 15-Theorem 2.1.4]. The order

of H and the condition or,('ﬁ) = 1 imply that either |K| = r or else K
is a simple group of order 2'q'r. Since K is normal in 1, ﬁ/cﬁ(K) is
isomorphic to a group of automorphisms of K,

Suppose |K| = r. Cﬁ(K) = K x V for some r'-group V [15-Theorem

7.6.5]. V is characteristic in C-I-{-(K) and hence normal in H, Since
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3,5

3,7

13

17

11
TABLE 1

Simple groups S of order 2aqPr
and groups H such that S < H < Aut(S)

s s laut(s):s] "
Ag 60 2 i) Ag i1) S5
PSL,(7) 168 2 ii) PSL(7)  11) PGL,(7)
Ag 360 L i) Ag ii) S¢ iii) PGL2(9)

iv) An extension of PSL,(9) by a
field automorphism of order 2

v) An extension of PGL,(9) by &
field automorphism of order 2,
written PTL,(9)

Uh(2) 25920 2 i) Uu(e)

ii) An extension of Uy(2) by
a field automorphism of
order 2

PSL2(8) 504 3 i) PSL2(8)

ii) An extension of PSL,(8) by
a field automorphism of
order 3, written PTL,(8)

U3(3) 6048 2 i) U3(3)

ii) An extension of Ux(3) by
a field automorphism of order
2, isomorphic to G2(2)

PSL3(3) 5616 2 i) PSL3(3)

ii) An extension of PSL(3) by a
graph automorphism of order 2

PSL,(17) 2448 2 i) BSLy(17)  i1) PGL,(17)°
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Or,(ﬁ) =1, V=1, Thus H/K is isomorphic to & group of automorphisms
of X and hence has order dividing r-1. It follows easily that H is
a Frovenius group with kernel K, Hence (1) holds.

Suppose K is a simple group of order 2°q'r. Oﬁ(K) is an r'-group,
for suppose an element g of order r centralized K, . g ﬁ K, so (g) X K
would be a subgroup of H, contrary to 7 dividing |{g) x K|. Hence
Cﬁ(K) = 1. Thus H is isomorphic to a group of automorphisms of K.

It follows that H € ¥(r) and (2) holds.

Lemma 3.6 If H is any group and D is a p-subgroup, then
0,.(c(0)) = o, (¥(0)).
Proof Op'(C(D)) is characteristic in C(D) and hence normal in N(D),
It follows that Op'(C(D)) = op,(N(D)).

D is normal in N(D) and Op,(N(D)) is normal in N(D). Hence
[D,op,(N(D))] cdn Op,(N(D)) = {1}. Thus op,(N(D)) centralizes D,

It follows that Op,(N(D)) c Op,(C(D)),

Denoting C(D)/Or,(N(D)) and N(D)/Or,(N(D)) by C(D) end N(D)

respectively, we obtain:

Theorem 3.7 Let G be a group of order 2a‘q:br2 with elementary abelian
Sylow r-subgroups. If-D is a subgroup of order r, then:
CD)=DxU
and N(D) = D-T,
where either U € ¥#(r) or U is a Frobenius group of order rd, d dividing

r-1, and T is an extension of U by a cyclic group of order dividing r-1.
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Proof C(D) has elementary abelian Sylow r-subgroups of order r2.
It follows from a theorem of Gaschiitz [24-Theorem IV.8.b] that C(D) is
a split extension of D. Thus there exists a group V of order qunr
such that C(D) = D x V, Since D is an r-group, Or,(C(D)) = Or,(V).
Thus C(D) =~ D X V/Or,(V). Applying Lemma 3.5 to the group V gives the
required form for C(D), with U = V/Or‘(V).

N(D) has elementary abelian Sylow r-subgroups, so by the theorem
of Gaschutz, N(D) is a split extension of D, that is, there exists a
subgroup W such that N(D) = D-W, V is the subgroup of W centralizing
D, Or,(N(D)) C W, since Or,(N(D)) = Or,(C(D)) = or|(v). It follows
that N(D) == D-(w/or,(N(D))). Set T = w/or,(N(D)). Then
/U = (W/Or,(N(D))) / (V/Or,(N(D))) >~ W/V = D-W/D-V = N(D)/C(D). .
N(D)/C(D) is isomorphic to a group of automorphisms of D and hence is a

cyclic group of order dividing r-1. Thus the same holds for T/U.

L. The use of exceptional character theory

Let G be a group of order Qadbre with elementary abelian Sylow

r-subgroups. Let D be a subgroup of order r, From Theorem 3,7, we

can obtain all possibilities for C(D) and N(D). For C(D), there are
6, 12, 10, 8, or 7 alternatives according as to whether r is 3, 5, 7,
13, or 173 for T(D) the number of alternatives is somewhat larger, In
principle, at least, we can write down the character table for each
possibility for N(D).

From the character table of N(D), we can obtain a fragment of the

character table of G whose rows correspond to the block Bo(r), The
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following two principles are used:
1) N(D) and N(D) have the same principal r-block,

2) Induction of exceptional characters from N(D) to
G "respects blocks" and, in particular, "preserves"

the principal r-block.

We shall now make these notions precise. To each ordinary
irreducible character T of ﬁTﬁT, there corresponds an ordinary irredu-
cible character T' of N(D) defined by 7'(g) = ﬂ(Or,(N(D))g). The
mapping T '+ 7' is a one-to-one mapping of the irreducible characters of
N(D) onto the set of irreducible characters of N(D) having\or,(N(D)) in
the kernel., Brauer [4,I-pp. 155-156] shows that the principal r-block
of N(D) is mapped onto the principal r-block of N(D).

The relation between blocks and exceptional characters is
presented by W, J. Wong in [32]. We shall be interested only in what
Wong terms the "ordinary" case -- that is, the case in which I (a set
of primes) contains all the primes dividing the group order. This’
case is discussed in [32-Section 4]; a brief summary follows.

Let p be a fixed prime. Let G be a finite group, H a subgroup of
G, and S an invariant subset of H, MH(S) denotes the module of general-
ized characters of H vanishing on H-S. M/(S,b) denotes the submodule of
MH(S) consisting of linear combinations of irreducible characters in the
p-block b of H,

For the ordinary case, S is special in G if

i) Two elements of S conjugate in G are conjugate in H
and ii) CG(S) CH for all s € S,

S is complete if it is the union of p-sections of H, S is closed if
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s* € S whenever s € S and i is prime to the order of s.
Assume that S is a closed complete special invariant subset of the
subgroup H of G, Let B be a block of G with irreducible characters
Xqs Xpr oo Xye Let ﬂ1, Tos wees Ty be the irreducible characters of

H contained in blocks © of H such that bG = B, Let & $

12 %®os ey 61-,
be a basis of L M(S,b). Define the t x n matrix A = (a ) by
bG=B ij

G
Qi =3 a nj' By [32-Theorem 7], the induced characters Qi are linear
5 ,

combinations of the irreducible characters in B; thus there exists a

i3

; " G
t x m matrix C = (Cij) of integers such that &, = § €4 X3 By
[ 32-Theorem 10), there exists an n x m matrix X = (xij) of integers such

that AX = C, and for any such matrix X,

xi(s} = ? xjinj(s) for all s € S,

G
Also, anT = ccT since the mepping &; -+ &, dis an isometry, that is,

G, G
<§i :QJ‘ g = <Qi’§j>'

Now suppose that B is the principal block Bo(p) of G and that
H is the normalizer of a p-group D. If b is & block of H with defect
group D', then D ¢ D' [3,I-9F]. Hence CG(D') = CG(D) C H, and it fol

¢ _ B ifand only if b = Bo(p,H). Thus

lows from [4-Theorem 3] that b
the characters n1, n2, Ry nn are precisely the characters in the

principal p-block of H,

Let G be a group and g an element of prime order p. Let H = N({g)),
S = {h € H| h* = g for some integer i}, and B = Bo(p). Then S is &
closed complete special invariant subset of H, and all the results of

the preceding two paragraphs can be applied., In particular, the
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results may be applied in the case in which G 1s a group of order

Qaqpre‘with.elementary abelian Sylow r-subgroups, D is a subgroup of
order r, and H = N(D)., 1In this case, Theorem 3,7 enables us to obtain
the characters T]T, Moy +e, T, and the basis 915 85p eees Oy

for MH(S,Bo(r,H)). In Chapter V, the process will be carried out for

the case r = 3,
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CHAPTER IV. SIMPLE GROUPS OF ORDER 3-t

Thus far, we have investigated simple groups of order Zaqbr2 where

? 4
r € {3, 5, 7, 13, 17}. Henceforth we shall restrict ourselves to the
case r = 3, A number of results on fusion and block structure depend
only on the group order being of the form 32t, (3,t) = 1. In most

cases, the group need not be simple; it suffices for there to be no

normal subgroup of index 3, that is, for |G:G'| to be prime to 3.

1. Fusion of 3-elements

Theorem 4,1 Let G be a group of order 32t, (3,t) = 1, with elementary
abelian Sylow 3-subgroups. Assume G does not contain a normal subgroup
of index 3. Let P be a Sylow 3-subgroup. Then, for appropriately
chosen generators & and b of P, fusion of 3-elements of P occurs in

one of the following ways:

a) a B L P o A (T, Qg» Z8)
b) a~ 8w b s B il = BTH = 8 h = dhT (D8, Zh)
c) B~ B s T N (Du)
d) a ~ a2 b ~ b2 ab ~ a-b° a7 ~ ab° (Z2>'

For each case, the possible structures of N(P)/C(P) are given in paren-

theses (T denotes the Sylow 2-subgroup of GL2(3)).

Corollary 4.2 ILet G be a group of order 32t, (3,t) = 1, which does

not contain a normal subgroup of index 3. Then every 3-element of G

is conjugate to its inverse,
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Corollary 4.3 Let G be a group of order 32t, (3,t) = 1, which does

not contain a normal subgroup of index 3. Then every character of G

is integer-~valued on the elements of order 3.

Corollary 4.4 Let G be a group of order 32t, (3,t) = 1, which does

not contain a normal subgroup of index 3. Then x(g) = x(1) (mod 3)

for all characters x and all elements g of order 3.

Proof of Theorem 4.1 P is abelian; hence two elements of P are conju-

gate in G if and only if they are conjugate in N(P) [17-Lemma 14.3.1].
N(P)/C(P) is isomorphic to a group of automorphisms of P and hence to a
group of permutations of P¥, Denote this permutation group by A. Two
elements of P¥ are conjugate if and only if they lie in the same orbit
of A,

Suppose A has an orbit of length 1, say {a}. Computing the trans-
fer VGaP exactly as in the proof of Burnside's Theorem on normal

p-complements [17-Theorem 14.3,1], we obtain V = a, Thus

cap(a)
VGaP(G) = (a) or P, In the first case, Ker(VGaP) is a normal subgroup
of G of index 3; in the second, the inverse image of (a) is a normal
subgroup of index 3. This contradicts the hypothesis of the theorem,
Hence no orbit of A has length 1.

We may consider P as a 2 dimensional vector space over GF(3).
Aut(P) is isomorphic to GL2(3). |GL2(3)| = 48, A is isomorphic to
a subgroup of GL2(3) of order prime to 3, hence to a subgroup of a

Sylow 2-group of GL.(3). The matrices u = 2 1 oma we (! ©
: 2 2 0 2



with elements in GF(3) satisfy WO =1, v = 1, u = u”, Therefore,
= {u,v) is a Sylow 2-subgroup of GL2(3). T may be considered as a
permutation group on P¥; then A is a subgroup of some conjugate of T.
The lattice of subgroups of T is shown in Figure 1 on the next page.
T, Qg, and Zg act transitively on P¥, Dy, Z), Zu‘, and Zh" have orbits
2
}

{a,b,a2,b- and {ab,aeb,a2b2,ab2} on P¥, where a is (1,0) and b is

(0,1), (0,1), (1,1), and (1,2) respectively for the four groups.
%

D) and D) ' have orbits {a,a"}, {b,bg} and, {ab,azb,azbz,abg} on P¥,

with a = (1,0) and b = (0,1) for D) and a = (1,1) and b = (1,2) for D),
Z, has orbits {a,az}, {v, % {ab, a2b }, and a2b ab2} on P¥, with

= (1,0) and b = (0,1). The remaining subgroups of T fix an element
of P*¥, A does not fix an element of P¥ by the last paragraph; hence,
if A is a subgroup of T, one of the alternatives of the theorem holds
for an appropriate choice of the generators a and b of P. Clearly the

same is true if A is a subgroup of a conjugate of T,

Proof of Corollary 4.2 If the Sylow 3~subgroups of G are elementary

abelian, Corollary 4,2 follows immediately from Theorem 4.1, If they
are cyclic, Aut(P) is a cyclic group of order 6. N(P)/C(P) is a
3'-group of automorphisms of P and hence has order 1 or 2. In the
first case, G would have a normal 3-complement [17-Theorem 14.3.1];
hence G would have a normal subgroup of index 3, contrary to assumption,
Therefore |N(P)/C(P)| = 2, and N(P)/C(P) induces the automorphism of P

of order 2, which maps every element to its inverse.

Proof of Corollary 4,3 Let g be an element of order 3. It follows

from Corollary 4.2 that g ~ g" whenever (m,3) = 1, Hence every



20
FIGURE 1

Lattice of subgroups of a Sylow 2-group of GL2(3)

T=(u, v)
Z8=(u) D8=(u2,v) Q8=(u2,uv)
74 =(u2) D =(uu ) D '=(u)+ uév) Z, *=(uv) V7 "=(u3v)
Y I ’ L ’ L g
L'y 2y 2=y 2= 2ty
(1

Zn denotes a cyclic group of order n
Qh denotes a quaternion group of order n

Dn denotes a dihedral group of order n
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character of G is rational on g.

Proof of Corollary 4.4  ILet € be a primitive cube root of unity. Let

D = (g) and let 7 be the character of D defined by ﬂ(gl) = gl. Since

g ~8, (xlpM =3 (1) + m@) + g%(E)) = 3 (1) - x(e)).

(XlD,ﬂ) is an integer; hence the corollary holds.

2. Congruences for the degrees of the characters

Corollary 4.4 gives a congruence between the degrees of the
characters and their values on elements of order 3. In this section,

we shall obtain stronger congruences.

Theorem 4.5 Let P be an elementary abelian p-group of order p2.
Let X be a rational (possibly reducible) character of P, If

815 8oy ooy gp+1 are generators of the p+1 subgroups of order p, then:

pti

0+ 1) x(1) = 2 x(gy)  (mod 7).

Proof Since X is rational, X(g) = x(g') whenever g € P and (i,p) = 1.
Let ni be a linear character of P having kernel (gi); ﬂi can be ob-

tained from a nonidentity character of P/(gi). If J # 14,

{ﬂi(gjk)l k=1,2,...,p-1} = {primitive p'th roots of unity}. The sum
of the primitive p'th roots of unity is -1; hence we obtain
p-1 k . cpos s

pis ﬂi(g. ) =u{p 1 ifi = Computing the inner product of x and 1.,
k=1 J -1 if i f g &

we obtain: pt1 p-1

2
PN = x(1) + = x(g.) = m.(s.
* =1 9 k=t 15°8;

]

.

x(1) + (p - 1) X(gi) - J?i x(gj).
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Adding the equations for i =1, 2, ..., p+l gives:

o Pt P+
p- = (M) = (p+1)x(1) - = x(g).

i=1 i=1
As the left side of the above equation is divisible by p2, so is the

right side; this proves the theorem,

Corollary 4.6 Let G be a group of order 32t satisfying the hypotheses

of Theorem 4,1, Let X be any character of G. Corresponding to the
four alternatives of Theorem h.1, we have the following congruenceé:

a) x(1) =x(g,) (mod 9)

p) 2 x(1) =x(g) + x(g,) (mod 9)
e) x(1) =2x(g) *+x(egy) * x(g5)  (mod 9)
a) b x(1) = x(g) + x(gy) + x(gg) + x(gy) (mod 9).

Here the g, are representatives of the conjugacy classes of 3-elements,
and in (c), g, is in the class intersecting a Sylow 3-group in L

elements,

Proof By Corollary 4.3, X 1is rational on the elements of a Sylow

3-subgroup. Corollary 4.6 then follows immediately from Theorems k4.1

and 4.5.

3. Results on 3-blocks

This section will present some results on blocks, and in particular
3-blocks, which will be applied in Chapter 5.
The following notation will be used. B will be a p-block of defect

d containing m ordinary irreducible characters x1, Koy eeey X and
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n modular irreducible characters Pys Por wees Ppe The number of
ordinary and modular characters in B will also be denoted by k(B) and
4(B) respectively. x; will denote xi(1). D will be the decomposition
matrix of B and C the Cartan matrix. Define the m x m matrix A = (aij)

vy ey = @YD) (T x.(8) X3(&) )

g p-reg
Brauer and Feit [7] show that the matrix A has the following

properties:

A is a symmetric m X m matrix of integers.

A = pch'1DT.
A2 = pQA.

X, X,
-] = 1
B # 0 (mod p) for some k, and 855 ——El B (mod p)

for all 1i,J, congruences being in the ring of

local integers for p.

If E = (e,.) is a matrix, then E, | . will denote the
=l Loydlyyeseyd
1# 2 W

matrix formed from row i1, row 12, coey TOW iw of E in that order,

ipyeee,d

i J
and E | will denote the matrix formed from column i1,

column i2, oo, COlumn iw of E. E. and E* will denote the matrices
28

formed from E by deleting row i and column i respectively. Thus, if
é e e |
E =131 733
e e, e )
21 23

E is a 3 X 3 matrix,

A well-known theorem states that, if F is k X w and E is w X k,

. g, 00051 ;
then det(EF) = - -3 det(E 1 W) det(F. Ts

s . - N |
1<3,<ig<...<i <k 1 W
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<k <,..<k <m

Lerma 4.7  Let Sij = { <k1:k 1 2 n-1 ="

oree oK o) | 1<k

k, #1,J for  =1,2,...,n-1 }.  Then

a
_ D
855 = Tot(e) { = det(Di,k ok ) det(Dj’k nak |
Sij 1 n-1 1 n-1
A1 _ -1.T. __a
Proof Let (ust) =C ', A= pdDC D™; hence 845 =D szt disustdjt'
J

= s+t By B _ pbe B

s £ §
det(C%) =X det(Dk K ) det(Dk K

S 1)0.., n—1 1)..0, n-1

) , where

g = | (k1,k2,...,kn_1) | 1< ky <k, <...< k ,<m {4 Conbining
these formulas yields:
d 7~ : A
P s+t t s
a,. = z 4a.. ((-1) T det(D : ) det(D )) d.
ij ~ det(C) 5,1t is s k1""’kn-1 k1""’kn—1 Jt
Pd S s t €
= 2 = (-1)%a,  det(D ) = (-1)"d., det(D )
aetC) 5 § s Kppeeosdy 47 g Jt S TARRFL
o4
= qet(ey = det(Dy o g ) aet(Dy g K -

S ’ 1,..., n-1 ) 1’.", n-1
In the above formula, the sum need run only over the terms of Sij’
as all other terms are zero.

If G is a group and B is a p-block of defect d, Brauer [3,I] has
shown that £(b) < k(B) - 1 and that one elementary divisor of C is pd
and the others are lower powers of p. As an application of Lemma 4.7,

we shall derive a stronger result on the elementary divisors for the

case 4(B) = k(B) - 1.
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Theorem +.8 Let G be a group and let B be a p-block of defect d such

that £(B) = k(B) - 1. Let C denote the Cartan matrix of B. Then one
d

elementary divisor of C is pd and the others all are 1. Det(C) = p

Proof Let D be the decomposition matrix of B, Let W, = det(Da).
e i

By Lemma 4,7, a5y = (pd/det(C))vij, where v.. = ¥ w.° and

1 1L kfél k
- il . :
vij =t=1 wiwj for 1 # 3.
Suppose pd+1 divides det(C). Since A is a matrix of integers, p

must divide vij for all i and j. Suppose p does not divide Wy e
o

p | w, ws for all j # io; hence p | ws for all J # io. Let jo # io.
[e]

P [ z wkz, a contradiction since p fails to divide exactly one term
k#do

in the sum, Thus p must divide w, for all i. ILet n = 4(B). We have

shown that p divides the determinant of every n X n submatrix of D;

hence p divides the n'th determinantal divisor of D, contrary to a

theorem of Brauer [11-Corollary 84.18] stating that the determinantal

divisors of D are 1.

Thus p

does not divide det(C). Det(C) is the product of the
elementary divisors of C, all of which are powers of p [3,I-5B] and

one of which is pd'[3,I-6C]. It follows that the remaining elementary
d

divisors all must be 1 and that det(C) = p

Henceforth we shall investigate 3-blocks.

Theorem 4,9  In any 3-block of positive defect, the number of

irreducible characters of height O is a multiple of 3.
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Proof Denote the block by B and the height of a character X in B by

]

A(X). Choose r such that 8. #0 (mod 3). a (xj/xr)arr (mod 3).

rj
It follows that a5 = 0 (mod 3) if and only if x(xj) > 0. Since

2 2 _ 2 . : _
AT = QA ? 8,4 = 9a.. =0 (mod 3)., Now a,y 1s congruent to O modulo
3 if x(xj) > 0 and arj2 is congruent to 1 modulo 3 if x(xj) = {,

Thus Z 1 = 0. It follows that the number of characters of height
x(xj)=0

zero is a multiple of 3.

Theorem 4.10 A 3-block of defect 2 contains 3, 6, or 9 irreducible

characters. If the block is principal, the number of characters is

6 or 9.

Proof The first statement follows from Theorem 4.9, the fact that a
block of defect 2 contains no characters of positive height [7-Thecorem 21,
and the fact that a p-block of defect 2 contains at most p2 irreducible
characters [7-Theorem 1%],

Let Bo(3) be the principal 3-block of G, where G is a group of
order 32t, (3,t) = 1. We must prove that k(Bo(3)) # 3. Assume the
contrary. If Bo(3) contains only one modular irreducible character,
namely the identity character, then a theorem of Brauer [4,I-Cor. 3]
shows that G has a normal 3-complement H, H = O

3'(
is a group of order 9. G/O3'(G) has 9 characters in its principal

G); hence G/o3,(G)

3-block. Since the principal 3-blocks of G and G/O3,(G) are identical
(4, I-p. 156], Bo(3) must contain 9 characters, contrary to assumption.
We conclude that Bo(3) contains 2 modular characters,

By [3,II-7D] and [4,I-Th, 3], k(Bo(3)) = 2(Bo(3,C(g))), where g
g



a7
ranges over the identity and a set of representatives of the conjugacy
classes of 3-elements., The term on the left is 3, and the term on the
right corresponding to g = 1 is 2, We conclude that there is only one
conjugacy class of 3-elements and that, if g is in this class,
2(Bo(3,C(g)))=1. Hence C(g) hasQa normal 3-complement [4, I-Cor. 3].

If H is any group, define A(H,x) = I |x(x)[2. By [k, II-Page 310],
Bo (P) H)

A(G,g) = a(ele),1) = l(C(g)/OB,(C(g)),1) = 9; the last equality follows
because C(g)/03,(0(g)) is a group of order 9, All the 3-elements of G
are conjugate; hence every character of G is rational on g. It follows
that the fragment of the character table of G corresponding to Bo(3)

and the 3-singular elements has the form:

The block-section orthogonality relations [3,II-7C] imply

1 +2f +2f, = O, This contradiction completes the proof.

2 3

Theorem 4,11 Let G be a group of order 32t, (3,t) = 1, not containing
a normal subgroup of index 3. If the principal 3-block of G contains
exactly 2 modular irreducible characters, then it contains exactly 6

ordinary irreducible characters.

Proof In view of Theorem 4,10, it suffices to show that Bo(3) does not
contain 9 ordinary irreducible characters., Assume the contrary., Iet D

be the 9 X 2 decomposition matrix of Bo(3). The rows and columns may be
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arranged so that the first row corresponds to the identity character
and the first column to the identity modular character. We shall use
the results of Brauer and Feit [7] on the matrix A, defined earlier,

If J 2 2, then 4,

32 {for

> 3 5 . = a,
0, for suppose ng were O; then xJ(x) dJ1
all 3-regular elements x; the kernel K of Xj would contain all 3-regular
elements of G; hence G/K would have order 3 or 9, and in either case G

would contain a normal subgroup of index 3, contrary to assumption,
By Lemma 4.7, a,, = _—QT—T % a,.2 Det(C) is either 9 or 27
v 0 891 T Fet(C sop 42 °

according as to whether the smaller elementary divisor of C is 1 or 3
[3,I-6C]. 0< a5 <9y [7-page 363]. [T7-Equation 7] yields, for the

5 #0 (mod 3) for all i and j. It follows that

9
a, € {1, 2, 4,5, 7, 8landa = 4
J=2

case p = 3, a

.. = a,
ii J

2
32 € {1,2,4,5,7,8,3,6,12,15,21,24].
It is straightforward to check that, among the numbers in the last set,

only 8 and 24 are sums of exactly 8 nonzero squares. Hence

9

by dj22 = 8 or 24; in either case 8y = 8. Since Bo(3) has 2 modular
J=2

irreducibles, tr(A) = 9.2 = 18 (This follows from [5,II-5C] upon

noting that A is pd times the matrix M<1) of [5]). From the

l]

condition ay, =a,, =2 (mod 3), we obtain a,; > 2 for all i,
It follows that tr(A) = £ g5 2 8 + 8+2 = 24, contrary to tr(A) = 18.

Hence the theorem holds.

As an application of Theorem 4,11, we shall obtain the principal
3-block of a group of order 32t in which the centralizer of a Sylow

3-group has index 2 in the normalizer,
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Theorem 4,12 Let G be a group of order 32t, (3,t) = 1, not containing

a normal subgroup of index 3. Let P denote a Sylow 3-subgroup. Assume

that P is elementary abelian and |N(P):C(P)| = 2. Then there exists a

sign ¢ (e = +1) and an integer f such that f

n

7e (mod 9) and the

principal 3-block of G has the following form:

1 s(g,) s(gy) s(eg) S(g,)
X4 1 1 1 1 1
Xo f € € € -2¢
X3 f € € -2¢ €
Xy -4 € -2¢ € €
X5 & -2¢e € € €
X6 f4e ~€ -€ -€ -€

Here g1, g2, g3 and gu denote representatives of the four classes of
3-elements, and S(gi) denotes the 3-section of g, The characters

X0 x3, xu, and X5 agree on 3-regular elements,

Proof By Theorem 4,10, Bo(3) contains 6 or 9 ordinary irreducible
characters, Assume the latter alternative occurs. By [3,II-7D]

L
and [4,I-Th. 3], ‘k(Bo(3)) = ¢(Bo(3)) + = 4(Bo(3,C(g;))).

i=1
2(B_(3)) # 1 since the hypotheses imply that G does not have a normal
3-complement [U4, I-Corollary 3]. 4(Bo(3)) # 2 by Theorem 4,11, It
follows that £(Bo(3)) > 3 and _% L(Bo(3,C(gi))) < 6. Hence there are
at least two distinect classes ;;13—elements for which the centralizer

has a single modular character in its principai 3-block and hence has

a normal 3-complement; let g and g' be representatives of two such
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classes. C(g)/OB,(C(g)) and C(g')/OB,(C(g')) are groups of order 9,
Defining the function A as in [4, II-Section 3], we obtain
r(C(g)) = K(C(g)/03.(c(g))) =9,

]X(g)|2 = 9, By Corollary 4.3, x(g) is rational for
)

A (G,g)

Thus
X BO(3

all characters x; hence X(g) is integral. Hence for each character

miM

in Bo(3), there is a sign ey such that x(g) = €y Similarly, there
is a sign ex' such that X(g') = eX'. By Corollary k. ki,

x(g) = x(1) = x(g') (mod 3); it follows that 8, = ex'. Block-

section orthogonality [3,II-7C] gives: z
XEBo(

Since each term in the sum is 1, this is a contradiction.

ee,' =0,
3) **%
We have shown that Bo(3) must contain 6 ordinary irreducible

in
characters. As before, k(Bo(3)) = 4(Bo(3)) + i§1 L(Bo(3,c(gi)))-

It follows that £(Bo(3)) = 2 and &(30(3,c(gi))) =1 fori=1, 2, 3, 4

C(gi) has a normal 3-complement and, as above, I lx(gi)‘z =9,
% € Bo(3)

For each i, there must be one character X in Bo(3) for which

lx(gi)l = 2; for the remaining characters, |x(gi)| = 1, The columns
of the character table corresponding to 815 8o g3, and e, must fit
together in such a way as to satisfy the block-section orthogonality
relations [3,II-7Cj and the condition x(gi) = X(gj) (i, = 1,2,3,4);
apart from a permutation of the rows, this can occur only in the way
given in the statement of the theorem. The column corresponding to 1

must have the form given in order to be orthogonal to the columns of

i

815 gz, g3, and g+ The condition f 7e¢ (mod 9) follows immediately

from Corollary 4.6. Since C(gi) has a normal 3-complement,
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[L4, I-Corollary 5] implies that each character in Bo(3) is constant
on the 3-section of g; - Finally, if x is any 3~regular element,

orthogonality between the column of x and those of the g; shows that

%) = Xg(x) = %, () = X5x).
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CHAPTER V., SIMPLE GROUPS OF ORDER 2adb32: OBTAINING THE DEGREE EQUATION

Let G denote a simple group of order 2aqp32. In this chapter, we
shall determine all.possibilities for the fragment of the character
table of G corresponding to the principal 3-block and the 3-singular
elements. A number of alternatives will arise, corresponding to
different fusion patterns (Theorem 4.1) and different structures for
N(D) (Theorem 3.7). For each alternative, the block-section orthog-
onality relations will yield diophantine equations for the degrees of
the principal 3-block characters; equations obtained in this manner

will be referred to as degree equations.

1. Preliminary results

Lemma 5.1 If G is a simple group of order 2acib32 not isomorphic to

PSL2(17), then q is 5 or 7.

Proof We remarked earlier that Thompson's classification of minimal
simple groups [28] implies that q € {5, 7, 13, 17}. If q were 13, G
would involve the minimal simple group PSL3(3), a contradiction since

33

divides [PSL3(3)|. If q is 17, G involves the minimal simple grbup
PSL2(17). PSL2(17) has cyclic Sylow 3-groups of order 9 [21-8.10];
hence G has cyclic Sylow 3-groups, and Theorem 3.1 implies that

Gm%%ﬁﬂ.

Theorem 3.1 also tells us that, if G is not isomorphic to PSL2(8)

or PSL2(17), the Sylow 3-subgroups are elementary abelian,
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The final step in many subsequent arguments will be application of

the following lemma.

Lerma 5.2 Let G be a simple group of order 2aqb32. Suppose the
principal 3-block contains two irreducible characters whose degrees

are consecutive integers. Then G is isomorphic to PSL2(8) or PSL2(17).

Proof If q is 17, then Lemma 5.1 tells us that G is isomorphic to
PSL2(17). The principal 3-block of PSL2(17) does in fact contain two
consecutive degrees, namely, 16 and 17.

Assume g is 5 or 7. Let the consecutive degrees be o* and qy.
Then 2° - qy = +1, TFor low values of g, the solutions to this equa-
tion are well-known (The methods of Chapter VI, developed to solve a
much more general type of equation, are applicable in this case). For
a =5, (2%d") is (2,1) or (4,5); for q =7, (2,0¥) is (2,1) or (8,7).
Thus G must have an irreducible representation of degree 2, L, or 7.
All such simple groups are known [13-Section 8.5]; the only one whose
order has the form 2a§b32 is PSL2(8), which has an irreducible represen-
tation of degree 7. In fact, this representation is in the principal
3-block, and the principal 3-block also contains a representation of

degree 8,

By Theorem 4,1, a simple group of order 2aqb32 has 1, 2, 3, or 4
conjugacy classes of 3-elements. The difficulty of the classification
problem will vary.inversely with the number of classes; if the number

is 4, the following theorem provides a complete classification,
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Theorem 5.3 A simple group of order 2aq,b32 having 4 conjugacy classes-

of 3-clements is isomorphic to PSL2(8) or PSL2(17).

Proof By Theorem 4.12, the principal 3-block of the group must contain
two characters of consecutive degrees. Hence Lemma 5.2 gives the

desired conclusion,

2. Applying the exceptional character theory

In this section, we shall apply the exceptional character theory
outlined in Chapter III, Section 4 to a group of order 2aqp32. As in
Chapter III, N(D) and C(D) will denote respectively N(D)/O3,(N(D)) and
C(D)/O3,(N(D)). More generally, if S is any subset of N(D), S will
denote the image of S under the natural mapping from N(D) to N(D).

D is isomorphic to D; hence the two groups will be identified.

Theorem 5.4 Let G be a group of order anp32, q equal 5 or 7, with
elementary abelian Sylow 3-subgroups. Assume G does not contain a

normal subgroup of index 3. If D = {g) is a subgroup of orderv3, then

one of the following alternatives occurs for C(D) and N(D):

c(@) N(D)

L DXA S, XA_ or DS

3 3 3 2
ii. DX S, S5 X Sy '
e O D X Ag | S5 X Ay or D5y
iv. p X S5 S5 X S
v. - DX PSL2(7) s3 % PSL2(7) or D-PGL2(7)
vi. D X PGL,(T) S5 X PO, (7)
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Here D-H denotes a semidirect product of D by H which is not direct; for

the cases arising here, it is uniquely determined.

Proof The alternatives for CiDi follow immediately from Theorem 3,7,

The alternatives listed for N(D) are those obtained from Theorem 3.7 for
which N(D) does not centralize D. Let D = {g). By Corollary 4.2, there
exists x € N(D) such that g = g-1. X = §_1. g has order 3; hence

NZDi does not centralize D,

Appendix IT contains fragments of the character tables of the
various alternatives for ﬁT57, except S3 X A3 and D~S3 (Tables for these
two groups will not be needed). The fragments are those corresponding
to the principal 3-blocks. Each fragment may also be considered ac a
fragment of the character table of N(D) corresponding to the principal
3-block, provided each column represents a set of conjugacy classes of
N(D) mapped to a single class of N(D). We shall denote such a set by
brackets; specifically, [x] will denote {y € N(D)| ¥ is conjugate to X
in N(D)}. Using the results of Wong [32], summarized in Chapter IIIL,

Section L, we obtain:

Theorem 5.5 Let G be a group of order 32t, (3,t) = 1, for which the
conclusion of Theorem 5.4 holds. Then there are seven possible cases
for the fragment of the character table of G corresponding to the
principal 3-block and the 3-section of a 3-element g; the cases are
given on the next.two pages. Cases i and 1i' correspond to alternative i
of Theorem 5.4; cases ii, iii, iv, v, and vi correspond to alternatives

ii, iii, iv, v, and vi of Theorem 5.4 respectively. €; denotes a sign.
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Case i 1 [e] Case i! 1 [g]
X1 1 1 X1 1
Xo | T e Xo €5
X3 | T3 &3 X3 °3
Xy | Ty ey X | Ty ey
X5 | T5 €5 X5 | 5 €5
X6 | T % X¢ | g =%
A
Xg | Tg g
X9 | To %9
Case ii 1 [e] [av]
X4 1 1 1
Xo | T ey &
Xz | T3 B3 "y
Xy, fl; ~Ey By vV is an element of order 2
& . in 85, W 48 4n G(D).
X5 | f5 -f5 €5 3
% |.% . %
X; | T 2e, 0
x9 f9 269 @)
Case iii 1 (el lev] [ev®] [ew]
X, 1 1 1 1 1
o | T, &, &, &, s
% f € € e €
X f3 _433 33 3 03 . V and W are elements
L L Y L o of A5
X £ e € e 0
5 -
X f5 --LLG:5 65 35 0 v = (123L45)
6 6 6 6 6 7 = (12)(34)
X7 f7 567 0 0 e7
X8 f8 5€8 0 68;
X9 f9 569 0 e9




Case iv

Case v

Case vi

3T

1 (el [ev] [ew] [ex] [eyl
1 1 1 1 1 1
£ € e € € € Vv, W, X, and ¥

2 2 2 2 62 62 a;e éleﬁents of
f3 ¢35 ¢33 ¢33 €3 8
fu -L“el“ eu O O 26)4 _

! heg eg O 0 2 v = (12345)
£¢ _ue6 P 0 0 2e¢ w = (12)(34)
f7 567 0 ey ¢;  ~eq X = (1234)
fg Seg 0 eg sg  -¢g ¥ = (12)
fg 2% 0 S5 ¢ "%

2 6

1 (g] [ev] [ev] Lew] [evw']

1 1 1 1 1 1
f2 62 62 e2 62 62 _ _

f € € € e € v and w are

3 3 3 3 3 03 elements of
£, -Tey &, & O Bs1,(7)
f5 —765 65 65 0 0
fe -766 €g € 0 0 ¥ has order L
f7 8e7 0 0 ¢ ¢ W has order 7
f8 868 0 0 €8 €8
g S5 0 0 & 8
1 [e] Lev] [ex] Lgy] [eu] [ew] [ez]

1.1 -1 1 1 1 1 v, % 7Y,z
S T T T L v
f3 €3 3 €3 €3 €3 €3 €3 BAL,(7)

f& _7€h 64 64 eu eu 0 -eu §7 _
f5 —765 €5 65 €5 65 0 -65 58 ] 22 )
6 =T% 6 % %% °% 0 =% 5 3
A v o=V
f7 867 0 0 0] 0 €7 237 7
fg 8e8 0 0 0 0 cg 2¢g f = :2
y =¥
f9 869 0 0 0 0 ey 2% =
: T =7

of
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Proof Assume first that alternative ii, iii, iv, v, or vi of
Theorem 5.4 holds. We shall use the notation introduced in Chapter III,
Section 4, The set S of special classes will be {x € N(D) | 5 & g for
some i}, In each case, S has a basis {@1,§2}, where
g, =M Ty - Mg =T =T Tgand 8y =My kT, - T+ T+ N - T
The matrix A is as follows:

1 1 -1 -1 -1 1 0 0 O
1 1 -1 0O o0 o 1 1 =-1].

2}

The matrix C is an integral matrix satisfying the equation AAT = CC
Each entry in the first column of C is 1, for x1 and ﬂ1 are the identity
characters of G and N(D) respectively; hence Ciq = <§iG,x1) = (@i,ﬂ1> =1,
By‘Theorem L.10, Bo(3) contains 6 or 9 irreducible characters; hence C

has 6 or 9 columns. Suppose C has a column consisting entirely of

zeroes. Let X be an integral matrix such that AX = C, If column J

of C contains only zeros, we may replace column j of X by a column of
zeroes and still maintain the equality. Then xj(g) = § xijni(g) = 0,

By Corollary k4.3, xj(1) = 0 (mod 3), contrary to Xj being in a

principal 3-block of defect 2. We conclude that no column of C consists
entirely of zeroes. Apart from a permutation of the rows and columns,

the only possibility for the matrix C is the following:

[1 €y €5 €, €5 € 0 0 0O

1 e2 63‘ 0 0 0 e7 e8 €

9

The ¢, are signs (i.e. 6, = +1). A matrix X satisfying the equation

AX = C is the following:



w
\O

1 €5 63 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
6] 0 0 —eu -65,-66 0 0 0

X = 0 0 0 0 9] 0 0 0 0
0 0 0 0 0 0 0 0 0
0] 0 0 0 0 0] e7 e8 69
0 0] 0 0 0 0 0 0
0 0 0 0 0 0

. . - ’
If s is in a special class, xi(s) can be computed from the formula:
xi(s) = z xjiﬂj(s). We obtain the fragments of the character table of
G given in the statement of the theorem.

Now assume that alternative i of Theorem 5.4 holds. In this case,
the desired conclusion can be obtained without using exceptional

characters. As in [M,II-Section III], let the function A be defined on

G by A(G,x) = 3 lx(x)]z. C(D) is a group of order 9; hence,
X € Bo(3)

using the results of [L,II], we obtain

A (G,g) = A(C(g),1) = A(C(e),1) =9 .
By Theorem 4,10, Bo(3) contains 6 or 9 characters., Corollary 4.3
implies that X(g) is rational. It follows easily that one of the

two alternatives in the statement of the theorem holds,

Definition 5.6 The alternatives of Theorem 5.5 will be referred to as

the "cases for g" or "cases for the class of g." For example, we will
say that case i' occurs for g if C(g)/03,(C(g)) ~ (g) x A3 and if
the fragment of the character table of G corresponding to Bo(3) and

the 3-section of g is that of case i' of Theorem 5.5.
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3. A single conjugacy class of 3-elements

For a simple group of order Qaqp32 with a single conjugacy class
of 3-elements, Theorem 5.5 gives the fragment of the character table
corresponding to the principal 3-block and the 3-singular clements.

The block-section orthogonality relations and the congruences developed
in Chapter IV, Section 2 yield the following equations for the degrees

in Bo(3).

Theorem 5.7 Let G be a simple group of order 2acib32 containing a
single conjugacy class of 3-elements. Depending on which case occurs
in Theorem 5.5, the degrees fi of the irreducible characters in the

principal 3-block of G satisfy one of the following sets of equations:

9
Case i: 1 + .22 eifi =0 fi'E €, (mod 9) for i = 2,3,...,9
1=
~ 5 . =a, (mod 9) for
Case i': 1+ £ e.f. +2¢,f, =0 i=2,3,4,5
j=2 * % 676 £, = 2e, (mod 9)
6 6
6 £ =8y (mod 9) for
Case ii: i1+ B ef, =0 1= 2,3
j=p * 1 f. = 8¢, (mod 9) for
i X
3 9 i=h5,6
= (mod 9) for
14 F e f 4 T oef =0 G ooy WG] 5e8
i=2 1=7 e 19
6 —_—

Case iii 1+ % e.f, =0 oy & (mod 9) for
and i =+ _ 253
Case iv: fi = (mOd 9) {or

3 9 L = 39,0
1+ % e,f. + £ e.f, =0 Ti7 (mod 9) for

qup 1A LT, T =7,8,9
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6 fi =6, (mod 9) for
Case v 1+ & e¢,f. =0 i=2,3
and j=0 * 3 f£. =2¢. (mod 9) for
Case Vvi: = toi=h,5.6
3 4 f; = 8€i (mod 9) for
1+ Z e.f.+ £ e;f£, =0 i=1,8,9.
jop 1A gop i
X, ¥

In each case, ei =+ 1 and fi =2 q * for some integers xi and Vi

Proof PSL2(8) and PSL2(17) have more than one conjugacy class of
3-elements., Hence Theorem 3.1 and Lemma 5.1 imply that q is 5 or 7 and
that G has elementary abelian Sylow 3-subgroups. Theorem 5.5 gives

fragments of the character table of G. b x(1) x(n) = 0 for
X € Bo(3)

all 3-singular elements h [3,II—7C]. Setting h = g, we obtain the
equations for cases i and i'. With h = gv, we obtain the first
equation for cases ii, iii, iv, v, and vi; with h = gw, we get the
second equation for cases iii, iv, v, and vi. To derive the second
equation for case ii, we add the equations obtained with h = g and
h = gv and divide the sum by 2.

The congruences follow immediately from Corollary 4.6,

4, More than one conjugacy class of 3-elements

Let G be a simple group of order 2a4b32. Assume that G is not
isomorphic to PSL2(8) or PSLQ(T7); then Theorem 5.5 is applicable. If
G has more than one class of 3-elements, we must consider how the
fragments of the character table corresponding to the different classes

fit together. First we make the following definition.
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Definition 5.8 Let Xqs Koy ooy Xy be the irreducible characters in

2}
the principal 3-block of G. For h € G, Y(h) will denote the

n-dimensional colwmn vector with entries X1(h), xg(h), e xn(h).

Lemma 5.9 Let G be a simple group of order 2adb32 not isomorphic to
PSL2(8) or PSL2(17). Assume G has more than one conjugacy class of

3-elements; let g4 and g2 be representatives of two such classes. Then:

1) If case i' occurs for g1, case i' must also occur for 32.

2) If case iii or case iv occurs for g1, case v or case vi

cannot occur of g2.

3) Y(h1)°Y(h2) =0 (i.e. Y(h1) and Y(hg) are orthogonal)

whenever h1 is in the 3-section of g1 and h2 is in the

3-section of g2.

4) x(g,) =x(e,) (mod 3). Hence, if x(g,) = me, and
X(gz) = My, then €, = €, provided m, = m, (mod 3) and
¢, = -¢, provided m, = om, (mod 3).

2

Proof If case i' occurs for g, then Bo(3) contains 6 irreducible
characters; it follows from Theorem 5.5 that case i' must also occur for
gse
5 6 : a_b. 2 .
If case iii or case iv occurs for &4s then IG[ = 2 537 since A5

is involved in G. Case v or case vi cannot occur for 85) since in these
cases, |G| = 2a7b32-
(3) follows immediately from the block-section orthogonality

equation % X(h1) x(hz) =0 [3,II-7¢].
% & Bo(3)'

By Corollary 4.k, x(gi) =x(1) (mod 3) for i = 1, 2. Hence

(4) holds.
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Lemma 5.10 Let G be a simple group of order 2adb32. Then case i

occurs for at most one class of 3-elements.

Proof  Suppose case 1 occurs for g1 and g2, where g1 and g2 are
non-conjugate 3-elements, Theorem 5.5 gives fragments of the character
table. For i =2, 3, ..., 9, there exist signs €, and ei' such that
- = v
xi(g1) ¢, and Xi(ge) e;'. Tt follows fr;m Lerma 5.9, Part L
= 1 3 o = |
that e, = e,' for all i. Y(g1) Y(gg) 1 + g €5€, 9, contrary to

Lemma 5.9, Part 3.

If fragments corresponding to different classes of 3-elements do
fit together in such a way that the conditions of Lemma 5.9 are
satisfied, we may obtain diophantine equations for the degrees fi in
Bo(3) by setting Y(1)-[§aiY(hi)] = 0 for any real numbers a, and
3-singular elements h, (not necessarily in different 3-sections). Also,
congruences may be obtained from Corollary 4.6,

In each of cases iii, iv, v, and vi, the character table has a

fragment of the form

x1 1 1 1
. 2 f2 %
A 3 %3 %3
Xy, _Bell- E1, o)
X5 -565 65 0
Xg| - P % O
Xo (B+1)67 0 ¢y
Xg (B+1 )68 0 £
Xg | (B+1)eg 0 e
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with B = 4 in cases 1ii and iv and § = 7 in cases v and vi, In case ii,
the character table almost has a fragment of this form with 8 = 1; only
the column of gw 1s missing. We may obtain a column vector identical
to the column of gw by taking one half the sum of the columns of g and
of gv; this column is orthogonal to any column of another 3-section.
Hence we shall assume that, in case ii, there is a fragment of the form
just given with B = 1; the "column of gw" will be used only in

orthogonality relations.

In considering how fragments corresponding to different classes
of 3-elements can fit together, we need to consider the various fusion
patterns (Theorem 4.1) and, for a given fusion pattern, the various
cases (Theorem 5.5) which occur for each class of 3-elements. The

following notation will be useful.

Definition 5.11 Let z € {a,b,c,d} and let X € (4,07, 44 434 4w, ¥, vl }
for j = 1, 25 «.uy O A simple group of order 2a§b32, not isomorphic

to PSL2(8) or PSL2(17), will be said to be of type z-X ,%,,...,X

provided that fusion pattern z (Theorem 4,1) occurs and that cases
x1, x2, sy 0d xn respectively occur for the n conjugacy classes of
3-elements (n must be 1, 2, 3, or 4 according as to whether z is a, b

c, or d).

J
For example, G is of type b-i,iv if alternative b of Theorem U1
occurs and if case i occurs for one class of 3-elements and case iv

for the other.
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5. Two conjugacy classes of 3-elements

Throughout this section, G will denote a simple group of order
2aqp32 with exactly two conjugacy classes of 3-elements. Representa-
tives of the two classes will be denoted by g and g'. A "prime"
following a symbol will indicate that the object is associated with the
second class; for example, if case 1ii occurs for the second class,
the elements v and w of Theorem 5.5 will be written v' and w'.

We shall treat separately the following three alternatives:

1) Case i' occurs for both classes, that is, G is of
type b-i',i'.

2) Case i occurs for one class and case ii, iii, iv, v, or vi
occurs for the other,

3) A case numbered ii or higher occurs for each class.

Theorem 5.12 Let G be a simple group of order 2aq:b32 with two classes

of 3-elements. If case i' occurs for both classes, the character table

has the following fragment:

1 g g'
x| 11
Xo | T2 & %
X3 | T3 €3 3
X | By % %y
X5 | T5 "5 2%
X6 | Ts 265 "%

The degrees in Bo(3) satisfy the conditions:

1 + e2f2 4 e3f3 + euf2+ + €5 5 =0

£, =e, (mod 9) for i = 2,3,k fg = 56 (mod 9).
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Proof Using Lemma 5.9, Parts 3 and h, we obtain easily that there

is a fragment of the type:

1 g, g5
x1 1 1 1
Xo T € €

Y(1)-[Y(g1)-Y(g2)]'= 0; hence ejfy - egfg = 0. Since fy and fy are

positive, € and e are both positive or both negative; hence 65 = €ge

It follows that f5 = f6’ and the character table has a fragment of the

type in the statement of the theorem.

Y(1)-[Y(g1)+Y(g2)] = 0; hence we obtain the equation in the theorem.

The congruences follow immediately from Corollary 4.6.

Theorem 5.13 There are no simple groups of order Zaqp32 with two

classes of 3-elements, in which case i occurs for one class and

case ii, iii, iv, v, or vi occurs for the other class,

Proof Assume that G is a group of this type. We may assume that

case 1 occurs for the second class. It follows from Lemma 5.9,

Part 4 that the character table has a fragment:



1 g gv gw g
X, | 1 1 1 1 1
Xo | T2 &2 %2 %2 %
%3 | T3 s °3. %3 %
Xh fh -Beu eu 0 -eu
X5 | Ts s &5 0 %5
X6 f6 -Be6 66 0] B ¢
X | Ty (g+1)e 0 e, =%
X8 fg (B+1)€8 0 €g  -€g
X5 | %9 (B+1 )69 0 g "%

Here B is 1 if case ii occurs for g, 4 if case iii or case iv occurs
for g, and 7 if case v or case vi occurs for g. 1 + €2f2 + e3f3 =0
since Y(1)-[Y(gv)+¥(gw)+¥(g')] = 0. On the other hand, Corollary 4.6

implies f, = e (mod 9) for i = 2, 3; hence 1 + 8,5, + e3f3 = 3 (mod 9).

Theorem 5.1k4 Let G be a simple group of order 2a§b32 with two conjugacy

classes of 3-elements. Suppose that a case numbered ii or higher occurs

for each class. Then the character table of G has a fragment:

1 g &v gv g' g'v' g'vw'
X4 1 1 1 1 1 1
X5 f2 €5 €5 €y 'e, -e, O
X3 f3_ €3 €3 €3 -(B'+1)e3 g ==
Xy, fh -Bel+ €), 0 .
~ 05 €5 0
6 -6 beg S¢ O (B'+1)e6 0 cg
X f7 (B+1)e7 ¢y ~€q -€p =€
Xg fg (B+1)e8 0 eg -B'eg €g O

x9 f9 (5+1)e9 0 e9 (5'+1)e9 0 69
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Here B is 1 if case ii occurs for the first class, 4 if case iii or
case iv occurs, and 7 if case v or case vi occurs; B' depends in the
same way on which case occurs for the second class. The following

equations and congruences hold:

1+ e f, +ecfe + e9f9 =0 = 5(1+5')62
3 = Lp'e
1 - €)+f)+ + €8f8 + €9f9 =0 f)_l_ = )4(1'*'5)6
f. = Lh(p+p')e
1 +e¢e f_+e, £, -¢f =0 5
593 676 71 f6 = 5(1_B+B|)e6
1+ e3f3 + 65f5 ok €8f8 =0 f7 = 5567
fg = 5(1+-B")
2, = 5(2+p48").

Proof Xy, Xoy +++) Xg are the characters in Bo(3). By convention,
X, is always the identity character. {1,2,3,4,5,6,7,8,9} may be

partitioned into three sets X1, X2, and X3 as follows:

ke
Il

I

i Ix.(g) 1, X is constant on the 3-section of g
1 i ? _

kel
]

B, X is not constant on the 3-section of g }

]

5 { i lxi(g)[

>
1l

;=i @) =8+ 1}

{1,2,3,4,5,6,7,8,9} may also be partitioned into sets X' x2',‘and %

defined as above except with B' and g' replacing B and g.

x| = %]
k

The matrix U

3"

Il

3fork=1, 2, 3. Let U = |xj n xk'l for j,k = 1,2,3,

(ujk) is a 3 x 3 matrix of nonnegative integers in which

each row sum and each column sum is 3; also u,, > 0, The key observa-

11
tion is the following: The matrix U completely determines how the

fragments corresponding to the sections of g and g' fit together, that
is

, the matrix U determines, apart from the order of the rows and from
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signs 62, T 69, the fragment of the character table corresponding to
Bo(3) and the 3-singular elements. In particular, given U, we can
compute Y(h)-Y(h') whenever h is in the 3-section of g and h' is in the
3-section of g'. The only matrix U for which all these inner products
vanish is the matrix in which each entry is 1. In this case, we may

assume the sets are:

ol
1

{1,2,3} X

1
S
e
N
e
o
"~

) = {7:819}
{1,&,7} Xe" = {2:5)8} X' = {3:6)9}-

3
I

We obtain the fragment given in the statement of the theorem., The
four equations follow respectively from:
¥(1)-[¥(gv)+¥(gw)-¥(g'v' )+2¥(g'w')] = O
¥(1)-[-¥(gv)+ex(gw)+¥(g'v' )+¥(g'w' )] = 0
¥(1)-[2¥(gv)-Y(gw)+¥(g'v' )+¥(g'w" )]

Y(1)-[¥(gv)+¥(gw)+2Y(g'v' )-Y(g'w')]

0

.

1]

Finally, the congruences are a direct consequence of Corollary 4.6.

The four equations of Theorem 5.14 contain all the information
obtainable from the orthogonality relations; any degrees satisfying the

four equations will satisfy all the orthogonality relations,
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6. Three conjugacy classes of 3-elements

Theorem 5.15 There are no simple groups of order 2aq_b32 containing

exactly 3 conjugacy classes of 3-elements

Proof In view of Lemmas 5.9 and 5.10, it suffices to consider the

following cases:
1) Case i' occurs for each class.

2) Case i occurs for one class and cases ii, iii, iv, v

or vi occur for the other classes.

3) Cases ii, iii, iv, v, or vi occur for each class.

Assume case i' occurs for each class. By Lemma 5.9, parts 3 and M,

the character table has a fragment:

1 g g' g"
X4 1 1 1 1
Xo | To ey & €
X3 i °3
X)-l- fh : €)+ €u -2€)+
x5 f5 65 —265 65
X6 | T6 %6 ¢ “

Y(1)-[Y(g)+¥(g' )+¥(g")] = 0; hence 1 + e,f, + €5fy = 0. On the other

ey (mod 9) for i = 2, 3; hence

Il

hand, Corollary 4.6 implies i

1 + e2f2 + e3f3 = 3 (mod 9).

Assume that a case numbered ii or higher occurs for the first and
second classes and that case i occurs for the third class. The
fragments for the second and third classes must fit together as in

Theorem 5.13 (The assumption that G had only two conjugacy classes of
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3-elements was not used in deriving the fragment given in Theorem 5.13,
although it was needed to obtain the congruences), As in the proof
of Theorem 5.13, block-section orthogonality yields the equation:

+¢ f + e, f. =0, i 1 oS
1 e2 5 e3 3 O\ This contradicts Lemma 5,2

Finally, assume that a case numbered ii or higher occurs for each
of the 3 classes. The fragments corresponding to any two of the classes
must fit together as in Theorem 5.1k, As in the proof of Theorem 5.1k,
we define the sets X1, XZ’ X3, the sets X1'; X2', X3', and the sets

X1", X2"’ X3” (primed objects are associated with the second class and

Gouble-primed objects with the third class). As in Theorem 5.1k, no

generality is lost in assuming:

X1 = {1,083} X2 = {4,5,6} X3 = {7)8;9}
X1" = “))'57} Xg’ = {2:5)8} X3' = {3)6:9}0
For i = 1, 2, 3, the set Xi” must be such that lXi" n le = 1 and
[Xi” n xj'} =1 (=1, 2, 3). Also, 1 € x1". There are four
alternatives for the sets X1", X2", X3", namely:
Alternative _l: Eg: fﬁi
1 (1,59} {2,671 13,18}
2 t,5,9) 13,48} {2,6,7]
3 {1,681 {2,h,9)  {3,5,7]
b {1,6,8] {3,5, 71 {2,149}

For each alternative, we obtain a fragment of the character table of
the group corresponding to Bo(3) and the 3-singular elements. For

alternative 1, the fragment is:
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" m"n__n

rn_n

1 g &v gw g' g'v' g'w' g ev gw
Xg | 1 1 11 11 11
X £, €, €y &, 5'62 -e, O B”e2 ~e, 0
X3 f3 €3 €3 &g -(5'+1)e3 0 -€5 -(5"+1)e3 -3
X, | fy  Bey e O 0 T e L AL R
X5 f5 -565 65 0] -B'e5 65 0 -€ —65 -€
X6 | T5  Beg e 0 (B'*l)sg 0 e -pUeg €5 O
Xo f7 (B+1)e 0 e -6, =€, =€ -5"67 e, 0
Xxg | Tg (Btt)eg O eg  -Bleg eg O (B"tl)eg O eg
X9 f9 (5+1)e9 0 69 (B'+1)e9 0 69 -89 -69‘ -69

Here B is 1 if case ii occurs for the first class, 4 if case iii or case
iv occurs, and 7 if case v or case vi occurs. B' and B" depend
similarly on which case occurs for the second and third classes.
The orthogonality relation Y(1)-[Y(gw)+Y(g'v')+¥(g"w")] = 0 yields
1 + €8f8 = 0; hence f8 = 1, contrary to the assumption that the group igs
simple.

The other alternatives are handled similarly. For alterhative 2,
the orthogonality relation Y(1)-[Y(gv)+¥Y(g'w')+¥Y(g"w")] = 0 yields
the equation 1 + €6f6 = 0.

For alternative 3, the relation

Y(1) - [Y(gv)+¥(g'v' )+Y(g"w" )] = O implies that 1 + e_f_ = O.

575

alternative 4, Y(1)-[Y(gw)+¥(g'w' )+¥(g"w")] = 0 implies 1 + €9f9 = {,

For
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7. Summary of the degreec equations

Thus far, we have proven that a simple group of order 2aqp32, not
isomorphic to PSL2(8) or PSL2(17), has one or two conjugacy classes of
3-elements. Theorems 5.7, 5.12, and 5.14 give the degree equations; a
summary of the equations follows.,

9
Type a-i: 1 + iiz e, f; =0 £, =e, (mpd 9)

Type a-1i': 1+ e £, + e L, + ehfh 6 £ #b 2e6f6 =0

272 * "33 575
£, =y (mod 9) for i =2, 3, 4, 5
fe = 2¢; (mod 9)
AYBLS B, TF Bgly t gy + 60 ¥ 6.5, + Bl =0
a-iii, a-iv,
a-v, and a-vi: 1 +e f +ef. +e f +efn+te f =0

272 3o T 8°8 99

1

N (mod 9) for i =2, 3

i
; =08y (mod 9) for i =4, 5, 6
; =n'e (mod 9) for i =7, 8, 9

n is 8 for a-ii, 5 for a-iii and a-iv, and
2 for a-v and a-vi

n' is 2 for a-ii, 5 for a-iiil and a-iv, and
8 for a-v and a-vi

Type b-i',i'; 1~ 62f2 + e3f3 + e:uf‘)+ + €5f5 =0

b-b
I}

o (mod 9) for i =2, 3, 4, 5
= Se¢ (mod 9)

'—b
()Y
|
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Types b-ii,ii; 1 +e f,+e L, +¢ =0
boii,iii; b-ii,iv; B2 w6 99
b-ii,v; b-ii,vi; 1+ (¢, )f) + efy + €. f =0
b-iii,iii; b-iii,iv; 5% T8 T g
b-iv,iv; b-v,v;. 1 # e5f5 *oegfe + (—e7)f7 =0

b-v,vi; and b-vi,vi:

-

+e . f.  +e f_ + ¢

3tz * e5tg + egfg = 0

=n.e. (mod 9) for i =2, 3,5, 6, 8, 9
ni(—ei) (mod 9) for i =L, 7

n. as given in the table below

b-iii,iii  Db-v,v

beid, G ik PELY b siidy  Bevw
’ Bellyaw  BeRLVE e v bovi, vi
) 2

n, 1 7 L | 7 L
ng L 7 1 7 1
n, 8 2 5 5 2
ng 5 2 8 5 p
B, L b L 7 1
ng 5 8 2 5 ]

2 8 . 8
Iy > P
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CHAPTER VI, SIMPLE GROUPS OF ORDER 2aib32: SOLVING THE DEGREE EQUATIONS

In this chapter, we shall develop methods for solving the degree
equations obtained in Chapter V. It will turn out that many, if not

all, of the equations have an "essentially" finite number of solutions.

1. The equations

Let I be a fixed, finite set of primes. A [l-number will be a
nonzero integer each of whose prime factors lies in II. Let
m,, m3, ceey T be fixed nonzero integers. We shall consider the equa-
tion:
+m £+ + ... + =
1) 1 m,f, m3f3 . mkfk 0
f2, f3, ooy T unknown [[-numbers.
In addition to equation (1), we may have congruences for the unknowns:

2) £, = e, (od 2) for & =92, 3, «ves K

Here z, c c, are fixed integers. In fact, we may assume that we

0y eees O
always have the congruences (2), for they hold trivially with z = 1,
Ch = oo =Cp = 0.

The methods to be developed are applicable for any finite set II of
primes; however, for simplicity, we shall assume [H[ = 2 and denote the

X, VY.

primes in I by p and q. The fi of equation (1) can be written as p 1q l;
the unknowns become x2, oty Xk’ y2, v 5% 655 yk.

Each of the degree equations in Chapter V, Section 7 breaks up into
a finite number of equations of the form (1); one equation ol this type

is obtained for each fixed choice of the signs ei. We also have congru-

ences of the form (2) with z = 9.
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Equation (1) and the congruences (2) may have an infinite number

of solutions. Suppose that (f.,f ) is any solution for which

07 3:-°';fk

there exists a proper subset S of {2, 3, ..., k} such that

1+ I mf =0, Let s¢ denote the complement of S in {2, 3, ..., k}.
ies *
1+ Z mf, + £ m,(yf.) = 0 for any integer y. Thus we
< L &L . c & 1
i€s i &S
y

obtain a solution to equation (1) for each integer y of the form p q”;

Then

if y= 1 (mod z), the congruences (2) also hold.

The author conjectures that this is the only way in which the
number of solutions may be infinite. To make this statement more "
precise, we define a solution (fz,f3,...,f£) to equation (1) to be

basic if, for each proper subset S of {2, 3, ..., k}, 1 + Z m £, # 0.
168

The conjecture then becomes: Equation (1) has only a finite number of
basic solutions.

We shall shcw'that the conjecture is valid for a number of
specific choices of the constants p, q, X, My eeey M. Also, in
Section 3, it will be proven that equation (1) has only a finite
nmurber of basic solutions for which X < M for all i, M being any fixed
integer,

In meny cases, the congruences (2) imply that every solution of (1)
is basic. For exémpie, in the equation 1 + g eifi = 0 with the
congruences fi = € (mod 9), every solution is basic; for if S is a

proper subset of {2, By iy 9}, 1 g eifi = lS[ + 1 (mod 9).
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2. The method of congruences

In this section, we shall present a method of determining all

solutions of equation (1) and the congruences (2).
- : %o ¥ *3 V3 *k Yk
e quantity 1 + mp q + m3p d = * wss £ mP q will be

denoted by (¥*). The key to applying congruences is the following

1
elementary observation: If pt = qt =1 (mod r), then (*) can be
computed modulo r from the values of X5y x3, ceey X modulo t and of

Yo, y3, i 6y yk modulo t'.

There are two stages to the procedure. In the first stage, we
determine all possibilities for the exponents Xo» X3, ceey X modulo N
and the exponents Vos y3, cees Vi modulo N', where N and N' are

appropriately chosen integers; in the second, we determine the exponents

absolutely.

For the first stage, we need three sequences as follows:

of positive integers such that u, = 1,

. n
i) A sequence {ui}. 0

i=0

u_ =N, and u, |u, , for all i.
n ilis+

1

of positive integers such that v, = 1,

ii) A sequence {v 5

i}i=O

= y i
T, N', and vilvi+1 for all i.

iii) A sequence {&. 1

;$5.q, where @, is a set of primes with

Ui
the property that p

n

Vi
g~ =1 (mod r) for all r € 8.

The process is inductive. Let 1 < J < n, Assume that, after step J-1,

we know all possibilities for the Xi modulo u and the yi modulo

J-1

v -- that is,.assume that we have determined an integer LJ_1 and

J-1
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a set {(xgs,XBS,...,xks,ygs,y3s,...,yks)[ s = 1,2,...,LJ_1} such that,
3 (xe,...,xk,yz,...,yk) is any solution of (1), there exists
an integer s such that x, = x, (mod uJ_1) and y; =V, (mod VJ_1).

We shall say that we have L cases for the exponents, each case

J-1
corresponding to a value of s. In step J, each case is divided into
subcases according to the values of the X, modulo Uy and the vy modulo
v;. Each case divides into (uJ/uJ_1)k-1(VJ V'J“1)k-1 subcases as X
ranges over the values Xeo0 %y + Uroqs oo Xig + (uJ/uJ_1 - 1)uJ_1
end y, over the values ¥, , ¥; o + Vy_q» eeos ¥y * (vJ Vi~ 1)VJ_1.
For each subcase, (*) is computed modulo each prime in 63; if a nonzero
quantity is obtained for any one of the primes, the subcase is discarded.
This completes step J; the subcases which remain form the sef of cases
with which we begin step J+1 unless J = n, in which case the remaining
subcases give all possibilities for the exponents xs modulo N and the
exponents yi modulo N',

Of course, some of the cases may not correspond to actual solutions,
To obtain meaningful results, it is necessary to produce enocugh primes
in the sets 63 so that all or nearly all of the extraneous cases are
eliminated.

In the second stage, congruences modulo powers of p and q are
used to determine some or all of the exponents absolutely. We shall
describe a check modulo qB. Assume that stage 1 has been performed
for integers N and N' such that pN = 1 (mod qB) and N' > g, We have
a set {(xes,...,':aks,yes,...,yks)l s = 1,2,...,L } such that, if
(xz,...,xk,y2,...,yk) is any solution of (1) and (2), there exists

s such that x, = x, (mod N) and ¥y = Vg (mod N') for i =2, 3, ..., K.
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Suppose that (xg,...,xk,ye,...,yk) is any solution. For some s, we may

g

write vy = yi~ ..y N, P T may be computed

B

+ 4,0 for i =2, 3,

X yl

s X y.h
modulo q~; in fact, p -~ =p ~° (mod qB). ar=q* (mod qs) if t, =0

yo
and ¢~ =0 (mod qB) if ¢, > 0. Thus, for a given case (i.e. for a

given value of s), there are at most ol possibilities for (¥*) modulo

B

q~, depending on which of the integers tg,‘t3, ceny tk are zero, If

none of the alternatives for (%) is zero, the case is discarded. If
a zero value for (*) is obtained only for alternatives in which t, =0,

we have shown that Yy = ¥ that is, we have determined the exponent X,

B

is’
absolutely (for the case numbered s). Frequently, a check modulo ¢
for sufficiently high B suffices to determine Vos y3, cees Ty absolutely.
To determine the vy absolutely in case s, it is necessary that g be
greater than the maximum of the integers

Vogr y3s, 5 55 yks; further discussion of this point appears is
[22-Section 3].

y

Similarly, a check modulo p' may be used to determine some or all

of the exponents Xy X «ssy X, absolutely, If Yo y3, seey Yy aTE

3’ k
already known absolutely, g o may be computed absolutely for i = 2, 3,
.., k. Hence we may use any vy for which N > v.

Having outlined the method of congruences, we now present some
modifications. The congruences (2) may be used to eliminate cases in
the first stage of the procedure., Let ep and eq be the exponents of
p and q modulo z respectively. Let J be the smallest subscript such
that epluJ and eq[vJ. Then, in step J, we may check the conditions

X3 Y1 _

pqg T =c (mod z) for i =2, 3, ..., k and discard any subcase for

which one or more of the congruences fails,
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In equation (1), the first term is 1; it follows that there muost
be another term relatively prime to p and another term relatively
prime to q. Thus there exist J and J' such that Xj = yj, = 0
this reduces the number of subcases into which each case is divided in
step J to (uJ/uJ_1)k'2(VJ/VJ;1)k-g. Symmetry assumptions may be used
to reduce the number of cases further.

The method of congruences is easily programmed on a computer. The
steps are represented by nested "do" loops. The nunber of terms in the
equation must be reasonably small -- no greater than six or éeven --
in order for the program to run in a matter of minutes. Also, in order

to determine all solutions absolutely, the number of solutions must in

fact be finite; in particular, there must be no non-basic solutions.

2, A second method for solving the degree equations

In this section, we shall present a method for determining all
basic solutions of equation (1) and the congruences (2) for which
x, < M, M being some fixed integer, and Yy is arbitrary (i = 2,3,...,k).
This method will be used in cases in which the method of congruences

breaks down,

Temma 6.1 Let M be a nonnegative integer. The equation

Xn ¥V Xa V¥ | b T
272 k Yk
1 + m2p q  + m3p 3q 3 + ... + mp q° = 0

has only a finite number of basic solutions for which Xg < M for all i,

Proof If j is a nonzero integer, let p(j) denote the power to which

p occurs in the prime factorization of j and let o(j) denote the power
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to which g occurs. For i =2, 3, ..., k, let §, = {mipqul x <M, x and
v are nonnegative integers}. Let S be the union of S5y S35 wvr, a0d Sy,

Rearranging the terms, we may write the equation as:

i) 14w, +wg Lt =0, 1+ I w, #0if TE{2, ...k}

i €T
ii) w, €85 for all i
115 c(wg) < c(W3) £ ous 5 c(wk)
iv) There is a permutation B of {2, 3, ..., k}

such that w. € S_,.y for each i,
i 7p(4)

We shall show that the number of solutions is finite even without

the last condition,

The elements of S may be arranged in a sequence {SiFZ=1 such that
c(s1) < c(sz) < 0(33) < ..., for there are only a finite nunber of
elements of S for which ¢ takes on values less than any fixed integer.
Define a function h on the nonnegative integers by setting h(j) equal
to the largest integer i for which c(si) < 3.

Let Z, = {(1,w,,...,W,;)| there exist WiiqreeesW Such that
Wos Wy s eny Wy satisfies i, ii, and iii abovel; Ei is defined for
i=1,2, ..., k. Clearly 21 is finite; our objective is to show that
Zk is finite. Assume by induction that Zi is finite, Suppose
(1,w2,...,wi,wi+1) €Z,44. Then (1,w2,...,wi) €2, Let
vEltw, b bW, v # 0 by condition (i) above. If (wQ,...,wk)
satisfies i, ii, and iii above, then c(wi+1 T owen P wk) = o(-v) = o(v);
by condition (iii), o(wi+1) < o(v); hence Vipq = S for some j such
that j < h(o(v)). Thus there are only a finite number of possibilities
for an element (1,w2,...,wi+1) in I, for which (1,w2,...,wi) is a

given element of Zi. Since Zi is finite, so is Ei+ By induction

10
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Ek is finite.

The proof of Lemme 6.1 gives a constructive method for obtaining

the solutions. In place of the infinite sequence {si}i—1’ we use a
sufficiently long finite sequence, The sets Zi are constructed by

setting L., = {(1,w2,...,wj,w )| (1,w2,...,wj) € £y end Wy, = s, for

J+

some n with r < n < h(c(1+w +...+wj)), where r is the integer such that

2
wj = sr}. Finally, we obtain the solutions by selecting those elements
of Zk for which 1 + Vs L Wy = O

The method outlined above is easily programmed for a computer and
turns out to be very efficient. Even if a bound for the exponents Yy
is given, considerable computer time can be saved by ordering the possi-

ble values for the unknowns as in Lemma 6.1.

L, The solutions

In this section, solutions are given for degree equations obtained
in Chapter V for simple groups of order 2a¢b32 with two classes of
3-elements. When the method of congruences is used, the sequences
{ui}, {vi}, {¢,} are given, as are the powers of 2 and q used at the
final stage to determine the exponents absolutely. For the case of
a single class of 3-elements, solutions wiil be given in Chapter VII,
For future reference, the equations which follow will be labeled A, .B,

C, B, B, ¥, and G.
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X, Y.

A) 1+ e2f2 + er - eufh + e5f5 = 0, fi = P 1q T with qg=5o0rT

H
m w

e (mod 9) for i = 2,3,4 f. = 5€5 (mod. 9)

i 5

- T S
0 1 1 (

' S Check congruences
L 6 6 7 (if g=5) between f, and ei)
2 12 12 13, 5 (if g=T)
3 36 36 19, 37
L 72 14k 17, 13
5 144 288 97
6 288 576 577, 193
7 288 1152 1153
8 288 2304 257

10 5

Check sum modulo 2 =~ and then modulo q

Solutions to (A) for g = 5
1) 1+1+1+1-4=0 8) 1-8-8+10+5=0
2) 1+1+1-8+5=0 9) 1 +10+64 -80+5=0
3) 1+1-8+10-4=0 10) 1 -8+ 100 - 125 + 32 =0
4) 1+ 1+ 10 = 512 + 500 = O 11) 1 +10 + 64 - 125 + 50 = 0
5) 1+ 1 800 - 1250 + 2048=0 12) 1 -8 - 8 + 640 - 625 = 0
6) 1 +64 +64-125 -4 =0 13) 1 + 64 + 100 - 125 ~ 4O =0
7) 1 =125 - 512 + 640 -4 =0 14) 1 + 64k - 80 + 640 - 625 = 0O
Solutions to (A) for g = 7
1) 1+1+1+1-L4=0 4) 1 -8-8+ 64 -L49 =0
2) 1+1-8-8+14=0 5) 1 -224- 512 + 784 - 49 = 0

3) 1-8+28+28-49=0
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Note TFor solution (5) to equation (A) for q = 5, checking the sum

oy
modulo 210 and 5”7 is not sufficient to determine all the exponentg

absolutely; however, it does show that x = 0 and consequéntly

o~ Yo

5 = 1; hence the solution cannot occur for a simple group. Further

Pl
a

steps are required to determine all the exponents absolutely.

(8) 1+ e Ty ebfb +ef =0, f,=27q" for i=a,byc, gq=50rfT

£, =e, (mod 9) £, = 26, (mod 9) f = 5€ (mod. 9)

=
o
<
|

i -
9 3 L v (Check congruences
1 6 6 between f, and ei)
2 12 12 13, 5 (if g=7), 7 (if a = 5)
3 36 36 19, 37
L 72 1l 17, 73
5 1Lk 288 97
6 288 576 193, 577

Check sum modulo 28 and then modulo qh

Solutions to (B) for g = 5
1) 1+1+2-L4=0 5) 1 -8-25+32=0
2) 1=-8+2+5=0 | 6) 1+ 640 - 16 - 625 =0
3) 1-125+128-L=0 7) 1 +64-25-Lk0=0
4) 1 +10-16+5 =0

Solutions to (B) for g = 7

1) 1+1+2-L=0 4) 1 -84+56 =49 =0
2) 1+1-16+1 =0 5) 1+ 64 - 16 - L9 =0
3) 1-8-~7+14 =0



+ .+ = A =
ey 1+ eafa e Ty ecfc o, f 5 " for 1 = a,b,c

iy
a

I}

2¢, (mod 9) £, =2 (mod9) £, =he (mod 9)

The method of solution is exactly the same as that for (B)

Solutions Eg §C§

1) 1+2+2-5=0 3) 1-16+20-5=0
2) 1+20-25+L4=0 4y 1 -16-25+ 40 =0
X, Ve
(D) t1+ef +ef +ef =0, £f;=275" fori=ab,c
£, = 5e, (mod 9) £, = 5e (mod. 9) £, = Te, (mod. 9)
= e i !
0 1 1
(Check congruences
1 6 6 between f, and ei)
5 12 12 7, 18
3 36 36 19, 37
N 72 14 17+ T3
5 144 288 97
6 288 . 576 1935 27T
7 32+0e'7 6k-9-7 29, 43, 113, 127
8 32:9-7 256-9-7 297 1153
g 128.9.7 256.9.7 ' 769
10 25797 512:9.7 10753

11

Check sum modulo 2 and then modulo 55
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Solutions to (D)

1Y 1= b5 .20 3) 1 - 400 - 625 + 1024 = O
2) 145 =256 +250 =0
X. V.
(B) 1+e,f +ef +ef =0, f£;=275" foris=a,b,c
£, E838 (mod 9) £ = Se (mod. 9) £, El%ec (mod 9)

The method of Section 3 was used to
yi < 7 for all i

Solutions to (E) with y; < 7 for all i

find solutions with

1) 1-1+4+t-t=0 (any appropriate value of t)
2) 1+8-L4-5=0
3) 1=10+5+L4=0
*3 4
(F 1+ eafa + ebfb + ecfc =0, fi =2 75 " for i = a,b,c
£ = 8ea(mod 9) £ =e (mod 9) 2, 8€c (mod 9)

The method of Section 3 was used to
¥; < 4 for all i

Solutions to (F) with ¥y < L4 for all i

1)

2)

11+t =-=t=0
1+8+1-10=0

find solutions with

(any sppropriate value of t)



(G) 1 +eafa+ebfb+ecfc=o’ f. =2

£, = 8ea (mod. 9) £, = 5e (mod 9) £ = uec (mod 9)

The method of Section 3 was used to find solutions with
vy < 2 for all i

Solutions to (G) with y, <2 for all i

1) 1 -1+t -1%t=0 (any appropriate value of t)
2) 1 -6k + 1k +L49 =0
3) 1 -64 - 49 +112 =0
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CHAPTER VII, SIMPLE GROUPS OF ORDER Qaqb32: ANALYSING THE SOLUTIONS

In this chapter, we shall attempt to determine whether the
solutions obtained in Chapter VI actually occur as the degrees of the
principal 3-block characters of a simple group. The most important
technique will be restriction of the characters to 3-local subgroups.
In the first few sections, we shall derive some properties of these

subgroups and some congruences for the characters.

1. Fixed-point-free automorphisms of order 3

Lemma 7.1 Let P be a p-group. If o is a fixed-point-free automorphism

of P of order 3, then:

1) If p =2 (mod 3), o leaves invariant an elementary

abelian subgroup of order p2.

2) Ifp=1 (mod 3), o leaves invariant an elementary

5

abelian subgroup of order p or p~.

Proof Let g be an element of order p. Let K = (g,gc,goz). K is
invariant under ¢ since ¢ permutes the elements of {g, go, gc2}. By
[15-Theorem 10.1.5], the elements g, go, and gce commute; it follows
that K is an elementary abelian p-group of order at most p3.
Suppose p = 2 (mod 3). o permutes the nonidentity elements of K
in orbits of length 3; hence |K| =1 (mod 3). It follows that |K| = p2.
Suppose p = 1 (mod 3) and |K| = p2. K contains p+1 subgroups of

order p; o permutes these in orbits of length 3 or 1. Since

p+1 # 0 (mod 3), o leaves invariant a subgroup of order p.
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2. Congruences for the characters

Lerma 7.2 Let P be an elementary abelian p-group of order p2. Let
X be a rational (possibly reducible) character of P. If Bys ooy gp+1

are generators of the p+1 subgroups of order p, then:

pt1 o
(p + 1) x(1) = =z x(g;) (mod p7).

Proof Restatement of Theorem 4.5,

Lemma 7.3 Let P be a cyclic group of order pn. Iet X be a rational

(possibly reducible) character of P. If g € P, g = 1, then:

x(1) = x(g) (mod p").

n-1
Proof ILet h be a generator of P such that hP = g. Let € be a

primitive pn'th root of unity. Let T be the character of P defined by

ﬂ(hi) =g, I, will denote {1 e’ is a primitive pk'th root of unity,

0Li< pn}. If 1,j € I, then x(hi) = x(hj) since X is rational.
pr (XM = £ x(u) 1)
ueE?P
n 5 P
=T = x(») @)
1=Q g & Hi
n n-i :
=z x(®® ) =z g
i=0 j € Hi
= x(1) - x(g).

The last equality follows from the fact that the sum of the pl'th roots

of unity is -1 1if 1 = 1 and 0 if 1 > {, Since (x,ﬂ) is an integer, the
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assertion of the lemma follows.

If |P| = 2, the congruence of Lemma 7.3 can be strengthened. The

following lemma was suggested to the author by Prof. Marshall Hall, Jr.-

Lemma 7.4 If X is a character of a simple group G and if t is an

involution of G, then x(1) = x(t) (mod 4).

Proof Let X be the character of the representation p. ILet p(t) have

a eigenvalues +1 and b eigenvalues -1. Then X(1) = a + b and .

x(t) =a -1, so x(1) - x(t) = 2b. It suffices to prove that b is even,
Suppose b is odd. Then det(p(t)) = -1. ILet N = {g € G| det(p(g))

= 1}. N is a proper, normal subgroup of G. G/N is isomorphic to

a multiplicative group of roots of unity and hence is abelian., This

contradicts the simplicity of G; for if N = (1), G is abelian, and if

N # (1), G contains a nontrivial, proper, normal subgroup.

The next sequence of lemmas will deal with characters of a group
of order 32t which are constant on an appropriate set of 3-singular

elements,

Lemma 7.5 Supposé G is a group of order 32t, (3,t) = 1, with a Syiow
3-subgroup P, Suppose u is an element of prime order r (r # 3) in
C(P). If x is a (possibly reducible) character of G-which is rational
on u and is constant on the 3-singular eleménts of P X (u), then

x(1) =x(a) (mod 9r).

If, in addition, G is simple and r = 2, x(1) = x(u) (mod 36).
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Proof  Let § be a primitive r'th root of unity, and let 1) be the
character of P X (u) defined by ﬂ(gui) = gi for g € P. By hypothesis,
x(gui) = x(g) for all i and all g € P¥, Also, since X is rational,

X(ul) = x(u) for 1 < i < r-1, Hence:

r-1 . .
or (x,M = = £ x(gu) N(au’)
gEP 4=0
Fa] & g ol i 3
=x(1) + & x(u”) nu”) + = x(gu™) N(gu™)
i=1 g € P¥ 1i=0
r-1 i r-1 i
=x(1) +x(u) = g7+ £ x(g) = ¢
i=1 g € P¥ i=0
= x(1) - x(u).

Since {x,T) is an integer, the assertion x(1) =x(u) (mod 9r) holds.
If, in addition, G is simple and r = 2, the second assertion follows

imnediately from Lemma 7.4 and the first part of Lemma 7.5.

Lerms, 7.6 Suppose G is a group of order 32t. Suppose g 1s an element
of order 3 and u is an element of prime order r such that u € C(g).
If x is a (possibly reducible) character of G which is 'rational on u

and is constant on the 3-singular elements of {g) x (u), then

x(1)

x(u) (mod 3r).

nm

If, in addition, G is simple and r = 2, x(1) = x(u) (mod 12).

'

Proof  The proof is analogous to that of Lemma 7.5; the group P is

replaced by the group (g).
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Lemma. 7.7 Let G be a group of order 32t, (3,t) = 1, and let g be an
element of order 3 contained in a Sylow 3-subgroup P. Suppose that
5 divides |O3,(C(g))[ and that 5 does not divide |[C(P)|. Then C(g)
contains a subgroup {(g) x V, where V is an elementary abelian group of
order 25 contained in 03,(C(g)) and normalized by P. V contains elements
u and v of order 5 such that, if X is any character of G rational on V
and constant of the 3-singular elements of {g) X V, then

2 x(1) =x(u) +x(v) (mod 75).
X takes on the value x(u) on 12 elements of V and the value X(w) on 12

elements of V.

Proof Choose h € P, h ¢ (g). ILet o be the inner automorphism of C(g)
defined by Xg = Xh. o leaves invariant the characteristic subgroup
03,(C(g)). Hence ¢ permutes the Sylow 5-subgroups of 03,(C(g)) in orbits
of length 3 or 1. The number of subgroups divides [03,(C(g))| and hence
is prime to 3; it follows that ¢ leaves invariant a Sylow 5-subgroup of
03‘(C(g)). o acts fixed-point-free on this subgroup since the hypotheses
imply that no element of the subgroup centralizes P. By Lemma 7.1, o
leaves invariant an elementary abelian group V of order 25 contained in
the Sylow S5-subgroup. Clearly V is normalized by P.

V contains 6 subgroups of order 5. o permates these groups in two
orbits of length 3. Choose u and v such that {u) and {(v) are in
different orbits. Since X is rational, it is constant on the 12
nonidentity elements of the 3-subgroups in the orbit of {(u); a similar
statement holds for (v). Let n, be the character of {g) x V defined by

n1(glu3vk) = §J, where € is a primitive S'th root of unity. Define ﬂz by
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k

ﬂg(gluavk) = €. Computing (x,ﬂ1> and (x,ﬂe) as in the proof of

Lerma 7.5, we obtain:

75X, M 2+X, 0 ) = 2 x(1) = x(w) = x(v).

Thus all the assertions of the lemms hold.

Lerma 7.8 Let G be a group of order 32t, (3,t) = 1, and let g be an
element of order 3 contained in a Sylow 3-subgroup P. Suppose that

2 divides 103,(C(g))l and that 2 does not divide |C(P)|. Then C(g)
contains a subgroup {g) X V, where V is a four-group in 03,(C(g))
normalized by P, If X is any character of G constant on the 3-singular
elements of {g) X V, then x(1) = x(u) (mod 12) for each nonidentity

element u of V,

Proof Analogous to the proof of Lemma 7.7.

3. Miscellaneous lermas on characters

Lerma. 7. If X is a character of a group G which is rational on an

element x of prime order r, then x(x) > %%T x(1).

Proof Iet g be a ﬁrimitive r'th root of unity, Let € have multiplicity
b as an eigenvalue of p(x), where p is a representation having X as its
character, Since X(x) is rational, gi also has multiplicity b whenever
(i,r) = 1. Let 1 have multiplicity c as an‘eigenvalue of p(x). Then

x(1) = ¢ + (z-1)b and x(x) = ¢ - b. Hence x(1) > (r-1)b > ~{r-1)x(x).
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Lemma 7.10 If the character X of the group G is rational on g, then

x(1) divides [G:C(g)|x(&).

Proof  |G:C(g)|x(g)/x(1) is an algebraic integer [17-Theorem 16,8.3]

anda rational number; hence it is a rational integer.

The next lemma gives a variation of a well-known formula, proven

in [20-Section 2],

Lemma 7.11 Let G be a simple group of order 2adb32. Assume that, for
some 3-element g, C(g) has a normal 3-complement. Let w and v be

arbitrary elements of G. Then

() ()(e)
S KD =7

Proof  The proof which follows is essentially ldentical to the
derivation of [20-Equation 2.1], except that we shall use only the
characters of Bo(3) rather than all irreducible characters.

Let U and V be the class sums (in the complex group algebra) of the

classes of u and v respectively. ILet C 02, ey Cs’ . By Cr be the

1)

complete set of class sums, 01, 02, ceoy CS being the sums corresponding
; r

to classes in the 3-section of g. We may write UV = Z k
1

is the number of ways that an element in the class corresponding to Ci

.C., where k,

1 1 1
can be written as the product of a conjugate of u and a conjugate of v.
Let ci denote an element in the class corresponding to Ci’ If X ic an
irreducible character of G, then C; = ICi[x(ci)/x(1) is a homomorphism

from the center of the complex group algebra to the complex numbers,
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5 _
Hence |U]|V] x(u) x(v) = x(1) = lCi[ x(ci) k,. Multiplying by
1
x(g)/x(1) and swming over all characters in Bo(3), we obtain:
r

ol vix@x(vix(el/x(1) = = e, |k, [ = x(e; Mx(e] 1.

o(3) i=1 Bo(3)
The block-section orthogonality relations [3,II-7C] imply that the
quantity in brackets is zero unless c, is in the 3-section of g, that is,
unless 1 < s. Since C(g) has a normal 3-complement, case i or case i'
(of Theorem 5.5) occurs for g, and it follows from Theorem 5.5 that

each principal 3-block character is constant on the section of g and

that I ]X(g)[2 =9, It follows that:
Bo(3)

2 xG@e)(1) = T olelk, / [vllv] .
Bo(3> i=1

xr S
since |U||V] = = |c |k, o< Z[c, |k, / |U]|v] < 1. Hence the
e = = i=1

assertion of the theorem holds.,

Lerma 7.12 (Block separation) Let G be a simple group of order 2aqp32

not containing elements of order 3g. Let 1 + I m.e.f. = 0 be a
i€s

degree equation for G, obtained in Chapter V (A1l the degree equations

are of this form; in fact, except in the equation for type a-i', each

i ). Write f Rt Let T L &8 > < Let
m, is 1). Write £, =2 "g " = 44 [ x; >0, y; <Db-1}.
2T denote the power set of T. Then there exists U € QT such that

_ b
1T+ T m oef =0 (mod q ).

i =
Proof By [9-ILemma 3], 3 (1) x(h) = 0 (mod qb) whenever h

Bo(3) N Bo(q)
is a 3=-singular element, In Definition 5.8, we defined the column
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vector Y(h) to be the vector whose components are the values of the
principal 3-block characters on h. Let Z(h) be the column vector
obtained from Y(h) by deleting entries corresponding to characters not
in Bo(q). The degree equations were obtained from othogonality rela-
tions of the form Y(1)—[a1Y(h1)+...+akY(hk)] = 0, where each h, is
3-singular. These relations remain valid if Y is replaced by Z, pro-
vided that the equality is replaced by a congruence modulo db. It

follows that 1 + £ m.e.f, =0 (mod ib), where U denotes
ievp * 47

{1] X; € Bo(3) N Bo(g)}. (To obtain the congruence from the orthogo-
nality relation, it 1s necessary to divide by some integer n; however,
in all cases, n is relatively prime to q). Now U & T since Bo(q)
contains no characters of degree a power of g [9-Lemma 2] and no

characters of degree divisible by éb-1 [1-Theorem 3].

L. Two classes of 3-elements

This sectilion will deal with simple groups of order 2acib32
containing exactly two conjugacy classes of 3-elements. The possibil=-
ities for the principal 3-block will be determined explicitly. One
such group is known, namely A6.

Theorems 5.12 and 5.14 give fragments for the character table.
The equations and congruences for the principal 3-block characters
are summarized in Chapter V, Section 7. Solutions are given in
Chapter VI, Section L,

An algebraic conjugate of a character in Bo(3) is in Bo(3)

[4, I-Lemma 2], Hence, if X is the only character of a given degree in
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Bo(3), then x is rational, More generally, if X € Bo(3) and if, for
any other character X' in Bo(3), there is an element g (depending on
x') such that x(g) and x'(g) are distinct rational numbers, then ¥

is a rational character. Using the fragment given in Theorem 5.1&, we

obtain that, if G is of type b-x,y with x,y > ii, all characters in

Bo(3) are rational, G will denote a simplg group of order 2aqp32.

Lemma 7.13 G is not of type b-ii,ii.

Proof If G were of type b-ii,ii, equation (B) of Chapter VI, Section L
would hold for f,, fy, and fy (Geen 1# 8,8, + egfy * gl = 0, I, = ¢,
(mod 9), f9 = 269 (mod 9), fe = 5S¢ (mod 9))., If q =5, Bo(3) contains
a character of degree at most 25; if g = 7, it contains a character of
degree at most 16. By the remark above, these characters are rational,
A theorem of Schur [25] shows, in the former case, that
b < [25/4] + [25/20] = 7, and, in the latter case, that b < [16/6] = 2.
If g = 5, then f5, f6’ and f,7

all i, Hence Bo(3) contains a nonidentity character of degree at most

satisfy equation (E) and y; 7 for

5, contrary to known results [13-Section 8.5].

If g =7, then f5, f6’ and f7

for all i. Only solutions (2) and (3) are possible. In either case,

satisfy equation (G) and ¥; 22

Bo(3) contains an irreducible character X of degree 49 and |x(g)| = 1 or
2 if g is a 3-element. By Lemma 7,10, 49 divides |G:C(g)| for all
3-elements g; hence G contains no element of order 21. Both solutiong

fail to satisfy the 7-block separation criteria (Lemma 7.12).

Lemma 7.14% G is not of type b-ii,iii or type b-ii,iv,
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Proof Assume the contrary. [G] = 225032, Equation (C) holds

for f5’ f6, and f7.

16, and the theorem of Schur shows that b < [16/4] = k. Then fg, 1),

Hence G has a rational character of degree at mogst

and f9 satisfy equation (F) and ¥; < 4 for all i, It follows that G

has a nonidentity character of degree 1, contrary to the simplicity of G.

Lemmsa, 7.15 G is not of type b-ii,v or type b-ii,vi.

Proof Assume the contrary. |G| = 2a7b32. Equation (B) holds for

fh’ f8, and f9. G hes a rational character of deg?ee at most 16 and
consequently b < [16/6] = 2, Since G has no character of degree less
than 7, solution (4) or (5) of equation (B) mmust occur. In either case,
f9 = 49, 4t g be an element of order 3 such C(g)/OB,(C(g)) ok

(g) x BL(7) or (g) x BGL,(7). By Theorem 5.1k, X,(g) = +8. Temma 7.10
implies that 49 divides |G:C(g)|. Since 7 divides |C(g)|, this contra-

dicts © < 2.

Lemma 7.16 G is not of type b-v,v, type b-v,vi, or type b-vi,vi,

a_b.2

Proof Assume the contrary. IGI =273, T f5’ and f8 satistfy

3)
equation (B). As in the proof of Lemma 7.15, b < 2 and fg = L9,

By Theorem 5. 1L, x8(g) = +8 for the elements g in one of the classes of
elements of order 3. Then L9 divides |G:C(g)| and 7 divides |C(g)],

contrary to b < 2.,

Lermae 7.17  Suppose G is of type b-iii,iii, type b-iii,iv, or type

b-iv,iv. Then the degrees T, fj, ..., Ty are either 1024, 1024, 102k,

Loo, 625, 102k4, 625, LOO respectively or else the same except with LOO
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and 625 interchanged.
Proof Equation (D) holds for T fgy ond £,5 for fg, fg, and f);
52 T, and f7; and. for f5, fg, and f3. Since G does not have

a representation of degree 5 or less, only solution (3) of equation (D)

for £
can occur, We obtain the two alternatives given in the lemma,

The two alternatives of Lemma 7.17 are not symmetric, since x9 is
the only character in Bo<3) which takes on the value +5 on each element

of order 3 (Theorem 5.14).

Lemma 7.18 If G is of type b-i',i', then one of the following holds:

1) G=Ag.

2) q =5, and the degree equation is 1 + 64 - 80 + 640 - 625 = O,

3) q

7, and the degree equation is 1 -224 -512 +784 -L49 = O,

Proof Assume first that g = 5. The degree equation is equation (A)
of Chapter VI, Section L4, Solution (8) occurs if G > Ag; otherwise
solutions (1) through (9) cannot occur since G has no representation of
degree 5 or less. If solution (10) or (11) occured, G would have a
rational character of degree at most 10, implying that b < [10/4] = 2;
this contradicts fhe fact that, in either case, G has an irreducible
character of degree 53.

Suppose that solution (12) occurs. Bo(3) contains two characters
of degree 8, namely X, 8nd X3 Let X = X x3; X 1s a rational
character of deg£ee 16, It follows that b < [16/4] = L. X5 has degree

5u and x5(g) =1 or -2 if g is a 3-element. By Lemma 7.10, 5h divides
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{G:C(g)l if g is a 3-element. Hence G contains no elements of order
15, Let P denote & Sylow 3-group containing the element g of order 3.
Suppose t is an element of order 2 in C(P). By Lemma 7.5,
xe(t) = 8 (mod 36); hence x2(t) < -28, a contradiction. Thus C(P) = P,
Suppose 2 divides [03'(C(g))]. By Lemma 7.8, 03,(C(g)) contains &
four-group V, and if v is a nonidentity element of V, xz(v) =8
(mod 12); hence X2(V) = -4, Iet T be the identity character of V.
Then (xglv,ﬂ) = %(8-&-&-&) = -1, a contradiction, We conclude that
03,(C(g)) = 1, Since case i' occurs for g, C(g) = P. Thus P is
strongly self-centralizing, contrary to Theorem 3.2,

Suppose that solution (13) occurs. Let g and g' be representatives

of the two classes of elements of order 3. Let t € G, By Lemma 7.11,

2 2
0< I X\t 1X <9%9and 0< I Zﬁi%quiﬁi)-s 9, Taking one-
Bo(3) X Bo(3) X

half the sum of these inequalities and substituting the values of

x(g), x(g'), and x(1) given in Theorem 5.12, we obtain:

5 eixi(t)2
0<1+ & ———— <9,
— . f. e
i=2 i

Let g and g' be contained in a Sylow 3-subgroup P. Suppose that

t is an element of order 5 in C(P). From Lemmas 7.5 and 7.9,

X.(t) = £, (mod 45) and -f. /4 < x,(t) < £, for i =2, 3, L4, 5,

§ i il =" ol

The block-section orthogonality relations imply that

1 + e2x2(t) - §3x3(t) + euxu(t) + eSXS(t) = 0, There are only two

vectors (xe(t),x3(t),xu(t),xs(t)) which satisfy the criteria given in

the last two sentences, namely (19,55,80,-5) and (19,10,35,-5). For
' 2

e, X, ()

these two alternatives, 1 + I =
Bo(3) i

is respectively -14.93 and
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-2.78. In either case, the inequality obtained from Lemma 7.11 is
violated. We conclude that 5 does not divide |C(P)|. Suppose
5 divides l03,(C(g))[. Lemma 7.7 is applicable. Iet V, u, and v be
as in Lemma 7.7. We assert that the integers xi(u) and xi(v)
(i = 2,3,&,5) satisfy the following conditions:

a) -£, /b < xi(u) < f, -f‘i/1+ < xi(v) < f;

:1.’
b) X, ()

i
n

xi(v) £y (mod 15)

|

c) xi(u) + xi(v) BEy (mod. 75)(

>
a) 1+ T ex;(w) =0, 1+ T ex(v)=0
i=2 i=2

e) £, +12x,(u) + 12xi(v) >0

£) £+ 2 () - 3x,(v) >0

g) f; - 3x () +2x,(v) >0

e %y (w)? e (v)°

h) 01+ 2% —F—<9 02 I —~~S—<9.
Bo(3) i Bo(3) i

(a), (), (e), and (d) follow respectively from Lemma 7.9, Lemma 7.6,
Lemma 7.7, and the block-section orthogonality relations. (h) was
proven on the last page. Let ﬂ1 be the identity character of V, ﬂ2
the character defined by ﬂe(ukvj) = gj, where £ is a primitive 5'th
root of unity, and.ﬂ3 the character defined by ﬂ3(ukvj) = §k. Then
(e), (£), and (g) follow from the fact that <xi|V,n1>, <xi|V,n2>, and

(xi[v,ﬂ3) are nonnegative,
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Now a coampter was used to determine all integersixi(u) and xi(v)
(i = 2,3,4,5) which satisfy (a), (b), (ec), and (d). For each
alternative, conditions (e), (f), (g), and (h) were checked; in every
case, at least one of these conditions failed. Hence 5 does not
divide |o3,(c(g))1. Similarly, 5 does not divide |o3,(c(g'))|. Since
C(g) and C(g') have normal 3-complements, this implies that G contains
no elements of order 15. Then 5-block separation (Lemma 7.12) provides
a contradiction,

Thus far we have proven that, if q = 5, alternative (1) or (2) of
Lexma 7.18 holds.

Assume now that q = 7. Solutions (1) and (2) of equation (A)
cannot occur since G does ﬁot have a nonidentity linear character.
If solution (3) occured, G would have a rational character of degree 8,
implying that b < [8/6] = 1, contrary to known results [29]. Suppose
that solution (4) occurs. The argument is similar to that for solution
(12) with @ = 5. G has a rational character of degree 16. Hence
b < [16/6] = 2. The existence of an irreducible character of degree 49
implies, using Lemma 7,10, that G has no elements of order 21,
If G contained elements of order 6, we would obtain & contradiction
exactly as in the case of solution (12) for q = 5. Hence the Sylow
3-groups of G are strongly self-centralizing, contrary to Theorem 3.2,
We conclude that only solution (5) can occur, that is, alternative (3)

of Lemma 7.18 must hold.

The results derived in this section are summarized in the following

two theorems, As in Chapter V, [x] denotes {y € N({g)) | ¥ is conjugate
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to X in NZZgSS }. Here a bar over a symbol denotes the image modulo
05, (1(<e2)).

Theorem 7,19 Let G be a simple group such that:

1) !GI = 2adb32, q prime,

2) G has two conjugacy classes of 3-elements,

3) All 3-local subgroups of G are solvable,
Let g and g' be nonconjugate elements of order 3.

Then C(g) and C(g') have normal 3-complements, and one of the

following holds:
a) G is isomorphic to Ag.

b) q = 5, and the principal 3-block of G has the following form:

1 [e] [g']
x| 1 1
Xo 6l 1 1
80 -1 -1

Xy 6o 1 1
x5 | 625 1 -2
% | 625 -2 1

&) g = 7, and the principal 3-block of G has the following form:

1 [e] [g']

X4 1 1 1
Xo 2Pl -1 -9
x3 512 =1 -1
Xy - 784 1 1
'X5 L9 1 -2
X4 L9 -2 1
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Theorem 7,20 Let G be a simple group such that:

1) |G| = 2a§b32, q prime.

2) G has two conjugacy classes of 3-elements.
3) Some 3-local subgroup of G is nonsolvable.
Iet g and g' be nonconjugate elements of order 3,
Then C(g)/05,(C(g)) = (&) x Ag or (g) X S5, and C(g')/05,(C(g")) =

(g') x A5 or {g') x S In particular, q = 5. The principal 3-block of

5.
G either has the form

1 [e] Lev]) [ew] [ex] [ey] (g'] [g'v'] [g'w'] [g'x'] [g'y']

X1 ' 1 1 1 1 1 1 1 1 1 1 1
Xo 1024 1 1 1 1 1 4 -1 0 0 -2
X3 1024 1 1 1 1 1 =5 0 -1 -1 1
X, 1024 I 0 G =2 11 1 1 1
X5 400 E = 0 0 =2 L -1 0 0 -p
Xg 625 o = 0 0 <2 <5 0 -1 -1 1
X7 1024 -5 0 =1 =1 1 1 1 1 1 1
g 625 -5 0 =1 =1 1 L -1 0 0 -2
Xg Loo -5 0 =1 =1 1 =5 0 -1 -1 1

or else has the same form with LOO and 625 interchanged. v, w, x, and
y are elements of S5’ defined in Theorem 5.5, case iv, If
C(g)/03,(C(g)) °‘A5, the columns of [gx] and [gy] are absent, and the

column of [gv] splits into two identical columns; a similar statement

holds with g replaced by g'.

The methods.developed in this chapter may be used to investigate
whether the fragments given by Theorems 7.19 and 7.20 actually occur in

the character table of a simple group of the appropriate type. A
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considerable amount of information cen be obtained; however, the author

has not been able to reach a contradiction in any of the cases.

5. A character of degree 8

Theorem 7.21 If G is a simple group of order 2aéb32 with an irreducible

character X of degree 8 in its principal 3-block, then G is isomorphic to

Ag or PSL2(8).

Proof Assume that G is not isomorphic to A or PSLE(B). In view of
Theorems 5.3, 5.15, 7.19, and 7.20, we may assume that G has a single
class of elements of order 3. ILet g have Qrder 3. Corollary 4,6 shows
that x(g) = -1. From the fragments given in Theorem 5.5, we see that
either
1) X is constant on 3-singular elements
or 2) Case ii occurs for g, and X is Xyys Xgs OF Xge

Suppose that alternative (2) occurs., ILet P be a Sylow 3-group contain-
ing g. If t is a 3'-element of C(P), then T is a 3'-element of C(P).

3’
Since X € Bo(3), Theorem 5.5 shows that X is constant on the 3-singular

P is the Sylow 3-group of {g) X S.; hence t = 1 and t € 03,(C(g)).

elements of P x (t).

Assume first that q = 5. Let € be a primitive 5'th root of unity,
and let ¢ be an automorphism of the field of [G]'th roots of unity such
that o(g) = §2. Let x' =x +x° + xcz + X°3. X' is rational on elements

of order 5.

Suppose that t and u are elements of C(P) of orders 2 and 5

il

respectively, By Lemma 7.5, x(t) = 8 (mod 36) and X'(u) = 32 (mod 45),
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Hence x(t) < -28 and x'(u)<-13, both contrary to Lemma 7.9, It
follows that C(P) = 1.
Suppose 2 divides ]O3|(C(g))]. Lemma{7.8 is applicable. 03‘(C(g))

contains a four-group V. If u is a nonidentity element of V, x(u) =8

I

(mod 12); hence x(u)

x|y = (B-=b-k)
has odd order,

-4, Let 7 be the identity character of V.,

-1, This contradiction shows that 03,(C(g))

Suppose 5 divides ‘03,(C(g))|. Lemmas 7.6 and 7.7 are applicable.
Let V, u, and v be as in Lemma 7.7. X'(u) + x'(v) = 64 (mod 75). We

may assume X'(u) < x'(v). x'(u) + x'(v) < -11; hence x'(u) < -6. By

Lemma 7.6, x'(u) = 32 (mod 15); hence x'(u) < -13. This contradicts
Lemma 7.9, We conclude that 03,(c(g)) = 1,

If case iii or case iv occurs for g, then C(g) = (g) x A5 or
() X SS. In either case, C(g) contains a four-group V., Lemma 7.6
shows that x(u) = -4 if u is a nonidentity element of V., As above,
(xlv,ﬂ) = -1, If case i or case i' occurs for g, then C(g) = P and
hence P i1s strongly self-centralizing, contrary to Theorem 3,2, If

case ii occurs for g, then C(g) = (g) x S C(g) contains a single

3°
Sylow 3-group; hence any two Sylow 3-groups of G intersect in the iden-
tity only, contrary to Theorem 3,2, This completes the proof of the
lemms if q = 5.

Now assume that |G| = 227°3%  some unpublished work of
J. H. Lindsay on representations of degree 8 shows that b < 1; applying
the results of [29] completes the proof of the lemma, Alternatively,

& direct proof can be given, similar to that for the case q = 5.

However, it is somewhat more difficult to show that 7 does not divide
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103,(C(g))|; an analogue of Lemms 7,1 for elementary abelian groups of
3

order p~ is needed.

6. Simple groups of order Qaq232

In this section, we shall show that there are no simple groups of
order 2aq232. Apparently this result was proven previously by Richard
Brauer but was not published, It serves to show the nonexistence of
a simple group for a number of orders less than one million which were

previously unresolved,

Theorem 7.22 There are no simple groups of order 2aq232, q prime,

Proof Assume that G is a counterexample. Suppose that the principal
3-block of G has the form given in alternative (c¢) of Theorem 7.19.
Application of Lemma 7.10 to xg shows that 49 divides |G:C(g)]|

and 49 divides |G:C(g')|; hence G contains no elements of order 21.
7-block separation (Lemms 7.12) yields a contradiction, Hence, in view
of Theorems 5.3, 5.15, 7.19, and 7.20, we may assume that G has a
single class of 3-elements.

The degree equations are given in Chapter 5, Section 7. In each
equation, the first term is 1 and the sum of the terms on the left is O;
it follows that at least one additional term is odd, Hence, in each
equation, there is an i such that fi = q i; moreover, in the equation for
case i', wg may assume that i # 6. Vs > 1 since the simple groups with
a character of degree q (g = 5 or 7) are known [13-Section 8.5], and none
has order 2aq232. It follows that y; = 2,

Chapter 5, Section 7 also gives congruences modulo 9 relating
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the integers fi and €. For every possible value of i and €y in each
degree equation (except for fc in the equation for case i'), the
congruence fails to hold when f; = q2 for the appropriate value(s) of q.

Hence there are no simple groups of order 2aq232.

7. Simple groups of order 2aq332

In this section, we shall determine explicitly the solutions to
the degree equations which could occur in a simple group of order 2§q332.

No such simple group is known,

Lemms 7.23  Suppose that G is a simple group of order 2aq332 and that
alternative (c) of Theorem 7.19 does not hold for G. Then G has one
class of 3-elements, G contains no elements of order 3q, and case i,

case 1', or case ii occurs for the 3-elements.

Proof  If alternative (b) of Theorem 7.19 held for G, or if the
conclusion of Theorem 7.20 held for G, G would have a character of
degree SM, a contradiction, Hence Theorems 5.3, 5.15, 7.19, and 7.20
show that G contains a single class of 3-elements.

The degree equations for G are given in Chapter V, Section 7.
In proving Lemma 7;22, we remarked that each degree equation must have
a term f, which is a power of g, say qyi, and that i # 6 if case i
occurs for the class of 3-elements. As in Lemma 7.22, we obtain a
contradiction if N < 2. Hence ¥y = 3.

Let g be an.element of order 3. ILet X4 be & principal 3-block
character such that fi = xi(1) = q3. If case iii or case iv occurs

for g, choose X4 such that fi appears in the first degree equation; if
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case v or case vi occurs, choose X4 such that fi appears in the second
degree equation., From the fragments given in Theorem 5.5, we obtain
that (xi(g),q) = 1, Lemma 7.10 shows that q3 divides |G:C(g)|. Hence
G contains no elements of order 3q.

Cases iii, iv, v, and vi are excluded immediately, since in each

of these cases, |C(g)| must be divisible by q.

The method described in Chapter VI, Section 3 was used to solve.
each of the degree equations for a simple group G of order 28'q332 with
a single class of 3-elements, In view of Theorem 7.21, the computer
was programmed to find only those solutions in which the degree of each
nonidentity character was greater than 8. For each solution, the
computer checked the g-block separation criteria given in Lemma 7,12;
if a contradiction was obtained, the solution was discarded. A
relatively small number of solutions remained; these were examined by
hand.

Using the remark in the third paragraph of Section L4 of this
Chapter, we see that, if any degree equation contains a single char-
acter of some given degree, then that character is rational. In
particular, any solution to a degree equation in which a single term
is 10 or 14 can be excluded, since a theorem of Schur [25] implies
that the exponent b of q in |G| is at most 2,

In cases ii, iii, iv, v, and vi, there are two degree equations.
The solutions to the two equations must fit together properly -- that

isg, if (f2',f3',fh',f5',f6') is a solution to the first equation and
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(fz",f3", f7",f8”,f ') is a solution to the second equation, then

{fg!’f3t } - {fz";fBH}'
The solutions not eliminated by any of these means are presented

in the theorem which follows.

Theorem 7.24 Let G be a simple group of order 2aq332, q prime, Then

G has no elements of order 3q (unless 7.19(c) holds), every 3-local
subgroup of G is solvable, and the alternatives for the type of G (Defi-

nition 5.11) and for the degree equation(s) (Chapter V, Section T) are:

q  type Degree equation(s)

5 a-i 1 =125 = 125 = 125 = 125 = 125 - 80 + 64 + 640 = O

" " 1 =125 +10+ 10+ 10 + 10 + 10 + 10 + 64 = 0O

nooow 1 - 125 + 10 + 10 + 1000 + 64 + 64 - 512 ~ 512 = 0

" N 1 =125 + 10 + 10 + 1000 + 64 + 64 - 5120 + L096 = O

" " 1 - 125 + 10 + 10 + 1000 + 640 - 512 - 512 - 512 = O

" " 1 =125 + 10 + 10 + 1000 + 640 - 512 - 5120 + L4096 = 0

" " 1 =125 + 10 + 10 + 1000 + 640 + 64000 - 32768 - 32768 = 0
" " 1 = 125 + 10 + 10 + 1000 + 640 + 64000 - 327680 + 26214k = 0
" & 1 - 125 + 100 + 100 + 100 - 80 - 800 + 64 + 640 = O

" " 1 - 125 + 100 + 1000 - 80 -~ 800 - 800 + 64 + 640 = 0

" " 1 - 125 + 100 + 1000 - 80 + 64 - 8000 + 640 + 6400 = O

5 a-i' 1 =125 + 10 + 10 + 64 + 2.20 = 0

" " 1 - 125 - 80 + 64 + 640 - 2:250 = 0O

5 a-ii 1-125+64-10-10+80 = 0, 1-125+64+20+20+20 = 0
7 a-i 1+ 343 +28 +28 +28 + 28 +28 +28 - 512 =0

" " 1+ 343 - 27hL - 224 - 224 - 224 + 1792 + 1792 - 512 = O
"o 1+ 343 - 27hh - 22k - 22h - 224 - 512 - 512 + 4096 = 0
" " 1 + 343 - 274l - 224 + 64 + 1792 + 1792 - 512 = 512 = 0
" " 1+ 343 - 274k - 224 + 64 - 512 - 512 - 512 + 4096 = O
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7 a-it 1+ 343 + 28 + 28 - 512 - 2:250 = O
7 a-ii  1+343-512-28-28+224 =0, 1+343-512+56+56+56 = 0
7 b-i',i' 1 - 224 - 512 + 784 - 49 = 0.

Corollary 7.25 A simple group of order 2a5332 has & rational character

of degree 20 or 64,
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CHAPTER VIII, SIMPLE GROUPS OF ORDER IESS THAN ONE MILLION

In this chapter, we shall prove that there are no unknown simple
groups of order less than one million in which the group order has the
form 2aqb32.

Several years ago, Marshall Hall, Jr., initiated a project to deter-
mine all simple groups with order less than one million, The techniques
are described in [18]; when that article was written, approximately 100
orders remained for which the existence of a simple group was unresolved.

Subsequent work reduced the number of unresolved orders to 28, Of these

orders, six have the form eaq?32, namely:

265332 = 72000
275332 = 144000
285332 = 288000
295332 = 576000
265“32 = 360000
275”32 = 720000 .
6.2_2

A seventh order, 2 325 e = 705600, can be handled by techniques
similar to those used in this thesis.
Let G be a simple group of one of the six orders listed above.

] > = x(1)2, It follows that alternative (b) of Theorem 7.19

o

can not hold for G and that the conclusion of Theorem 7.20 can not hold

for G. Theorems 5.3, 5.15, 7.19, and 7.20 show that G must have a

single class of 3-elements,
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Lemma 8.1 Let G be a simple group of order anb32 with a single class

of 3-elements. If g is an element of order 3, then |G:C(g)| =8 (mod 9).

Proof We shall epply Lemma 3.3, Adopting the notation used in Lemma

3.3, we have r = 3, m' =1, k, = 4 since an elementary abelian group of

1
order 9 has four subgroups of order 3, and |G:C(g)| = 2[G:H1| since g

is conjugate to its inverse.

Part (b) of Lemma 3.3 shows that Mb1 = s, (mod 3); it follows that

3 (

=1+ 3s, =1+ 3(hb1) =1 + 3b1 (mod 9)., Applying part (a), we

n
3 2
obtain Mwwﬂ=ﬂmm|=zm%ﬂw%052m4EB(mdm,

Theorem 8.2  There are no simple groups of order 72000, 144000, 288000,

576000, 360000, or 720000,

Proof Assume that G is a simple group of one of the orders listed
above. Let g denote an element of order 3. Case 1, case i', case ii,
case 1ii, or case iv must occur for g since |G| = 2a5b32. By Theorem
7.2k, cases iii and iv can occur only if b > k4, that is, if G bas order
360000 or 720000.

The degree equations are given in Chapter V, Section 7. The proof
of Theorem 7,22 shows that each degree equation contains a term fi = Syi
with ¥y 2 3; if case i' occurs, we may assume that i # 6, £, must
satisfy a congruence of the form f, = +n, (mod 9); this determines the
exponent vy modulo 3. Similarly, each degree equation contains a term

X ,
f =2 J, and the congruence fj = 0y (mod 9) determines x, modulo 3.

J b

In view of Theorem 7.21, x5 2 4., Using these facts, we obtain the

following:
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1) If case i occurs for g, there are characters X4 and
end X, such that £, = 125, £y = 64 or 512, x,(g) = -1,
and x.(g) = +1.

J

2) If case i' occurs for g, there are characters X4 and
"
xi(g)= -1, and xj(g) = +1 or +2; the values +2 occur
only if fj is 16 or 128.

such that £, = 125, fj = 16, 64, 128, or 512,

3) If case ii occurs for g, the first degree equation

contains terms fi and f. such that fi
f. = 64 or 512, x,(g) = +1 and xj(g)

J
4) If case iii or case iv occurs for g, the first degree

1l

125 and
+1

equation contains a term fi = 125 or 625 such that

(Xi(g),S) = 1, The second degree equation contains a
term fj = 32 or 64 such that (Xj(g),2) e

Suppose case i' occurs for g. Theorem T7.24 shows that the

alternative fj = 16 does not occur if IGI = 2a5332. For a group of

a_l 2

order 25 3, a <7, the degree equation of case 1' was solved

completely; no solution has a term equal to 16 and all terms greater

than 8.

23

Lemma 7.10 shows that 275~ divides |G:C(g)|. [G:C(g)| must divide

2953 o pTsb

or 2

only possibilities for |G:C(g)| are 25

L 2

5'. Also, Lemma 8.1 states that |G:C(g)| =8 (mod 9). The

ymn

%3 5. If |G:C(g)| = 2!

and 2

5)4’,

la| = 275 3 and |G:C(g)| = 9; hence a Sylow 3-subgroup of G is strongly

self-centralizing, contrary to Theorem 3.2, We conclude that

le:ce) | = 2%°

Suppose |G| is 275 32, 275332, 275 32, or 275

6.3 6.1 L

32. Then |C(g)| is

is 9, 18, 45, or 90, and C(g) has a single Sylow 3-subgroup [17-Theorem

9.3.1, Part 4].

Hence any two Sylow 3-subgroups of G intersect in the
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identity only, contrary to Theorem 3,2, We conclude that
o] = 2%32 or 295332,

Theorem 7,24 implies that case i, case i', or case ii occurs for g,
If case 1 or case i' occurs, Lemma 7,10 shows that no character in the
principal 3-block has degree divisible by 27. It follows from Theorem

7.24 that the degree equation is one of the following:

Case for g
i 1-125 + 64 + 10 + 10 + 10 + 10 + 10 + 10 = O
il 1 -125 + 64 + 10 + 10 + 2:20 = O
ii 1-125 +64 -=10-10+80 = 0, 1 =-125 +64 +20 +20 +20 = 0.

G has a character X of degree 10, Let P be a Sylow 3-group
containing g. Suppose t is an involution in C(P). It follows easily
that t € 03,(C(g)); hence X is constant on the 3-singular elements of
P x {(t). Then Lemms 7.5 yields a contradiction, We conclude that
c(p) = P,

8

Suppose that |G| = 2 5332. Then |C(g)| = 36. Lemma 7.8 shows that

03,(C(g)) contains an elemeﬁtary abelian subgroup V of order 4., In fact,
03,(C(g)) =V, lC(g)/OB,(C(g))[ =9, and case i1 or case i' occurs for g.
It is straightforward to show that C(g) is isomorphic to (g) x A) and
that N({g)) is isomorphic to S3 X A) or (g)-Su ((g)-Su denotes the semi-
direct product of {(g) by 8), which is not direct). |N(P)/C(P)| has order

8 or 16 (Theorem 4.1). 1In the latter case, |G:N(P)| = 253

, contrary to
the Sylow Theorems. Hence |N(P)/C(P)| = 8 and N(P)/C(P) is isomorphic to
Qg or Zg; in particular, N(P)/C(P) acts as a fixed-point-free group of

autcmorphisms of P, This implies that N({g)) is not isomorphic to
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S3 X Ah’ for if it were, an involution w in S3 would induce a nontrivial
automorphism of P fixing the elements of a subgroup of order 3. We
conclude that N({g)) == (g)-Su.

Next suppose that |G| = 295 3°. |c(g)| = 72. c(P) = P; it follows
that, if h € P - (g), the mapping x - xh is a fixed-point-free automor-
phism of 03,(C(g)). Since a group of order 8 cannot have a fixed-point-
free automorphism of order 3, 03,(C(g)) is elementary abelian of order U,
and C(g)/03,(C(g)) has order 18; consequently case ii occurs for G.

It is straightforward to show that C(g) = (g) X §), and N({g)) == 83 X ),

We shall denote the groups (g)'Su and S, X Sh by N1 and N

. 2

respectively. The character tables appear on the following page. N1
has two classes of 3-singular elements; g aﬁd gt are class representa-
tives. N2 has three classes of 3-singular elements; g, gt, and gv are
representatives. gt is conjugate to g in ﬁ??g?T;'neither element is
conjugate to gv. We note that t is one of the three conjugate involu-
tions of the four-group 03,(N((g)))

As in [20-Section 2], #(a'b'=c) will denote the number of ways
that ¢ can be written as the product of a conjugate of a and a conjugeate
of b, If a, Db, and ¢ are contained in a subgroup H, -# (a"b°=c) will
denote the nmumber of ways that ¢ can be written as the product of a
conjugate under H of a and a conjugate under H of b, We shall be
interested in #(t°t°=g) and #(t't'=gt).

I 7Y = g, then (g,tx,ty) is a dihedral group of order 6 [20-
Theorem 2]; it féllows that t* and t¥ are involutions of N({g)) - C(g)

and are conjugate in N({g)). It t™tY = gt, then (gt,t",t’) is a dihedral
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group of order 12, and £* and t¥ are involutions of N({g)) -cC(g).

Hence #(t°t°=g) and #(t°t'=gt) are determined completely by the struc-
ture of N({g)) and the manner in which involutions of N({g)) -C(g)

fuse with t in the group G; specifically, #(t't°=g) = 5 #N(<g>)(z-z'=8)

and #(4°t"=gt) = = #N(<g>)(z’s'=gt), where z and s range over
z,s :

representatives of the classes of involutions of N({g)) not contained
in C(g) and conjugate under G to t.
N1 contains a single class of involutions not centralizing g; a

class representative is v. N2 contains three classes of involutions not
centralizing g; representatives are w, wt and wv. We assert that the
elements t, w, and wt are not all conjugate in G. Assume the contrary,
Bo(3) contains an irreducible character x of degree 10, By Lemma 7.6,
%(t) = -2, ILet U = 03,(N((g>)) x {(wy. U is an elementary abelian group
of order 8; if z is a nonidentity element of U, z is conjugate to t in G
and hence X(z) = -2. Tt follows that (x| ™ = =%, where, is the
identity character of U, This contradiction establishes the assertion,

We have the following alternatives for fusion and for #(t’t'=g)

and #(t't =gt):

N({(g))  Elts. conj. to t #(t° 1 =g) #(t°t =gt)

N1 - 0 0]
o v 18 6
N2 - 0
" w 3 0
" wt 9 6
" wv 18 6
" W, WV 21 6
" WE, WV 87 12
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83

Assume that |G| = 295°3%; then N({g)) = N,. Let S denote

.
% ()% (g
% € Bo(3> x{1

of the two possible solutions to the degree equation occurs., We assert

. The integers X(g) and X(1) depend only on which

that the integers x(t) satisfy:

1)-%ﬂﬂ5x®><ﬂﬂ

2)  x(t) =x(1) (mod 12)

3) =& _x(t) x(g) =0
Bo(3)

L) o0<s<9

2, (x5(8)) v (xg(t)).

5) = x(t)¥<e $3.5 2

Bo(3)

Here vg(n) denotes the largest integer k such that of givides n; v. is

P

defined analogously. % 1s constant on the three conjugate nonidentity

elements of the four-group O.,(C(g)); the first inequality in (1)

31
follows from the fact that the inner product of xt and the
05, (¢(&))

identity character of 03,(C(g)) is nonnegative. (2) follows from
Lemma 7.6 and (3) from the block-section orthogonality relations.
Lemma 7,11 shows that 0 <8 < 9. Let T be the class sum (in the com-
plex group algebra) of the class of t, and let r, s, Ci’ and ki be
as in the proof of Lemma 7,11, T = Cm for some m > s, Letting
U=V =T in the proof of Lemma 7.11, we obtain:

g S s o

=z |C. |k, > = |[C.]k. +|C |k > = |C, |k,
: L N i mim " i7i
i=1 i=1 i=1

The last inequality is strict because km >0 since t = txty, where

X

t, t*, and t¥ are the distinct involutions of the four-group 03,(C(g)).

The proof of Lemma 7.11 then shows that S < 9,
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P is not centralized by t; hence 3 divides |G:C(t)|. In either

solution to the degree equation, X3(1) = 26; Lemma 7.10 shows that

6-v t)) 3~ t
2 23 (¥) divides |G:C(t)|. Similarly, 5 5 A ld)

divides

|G:c(t)|. since |G| = 285332, |c(t)| must divide the right

side of (5). This establishes (5). Hence all the assertions hold.
A1l integers x(t) (X € Bo(3)) satisfying (1), (2), and (3) were

found; solutions for which (4) or (5) failed were then discarded. Two

solutions remained, corresponding to the following fragments:

1 g gt t 1 g gt t
X1 1 1 1 1 X 1 1 1T 1
Xp 125 -1 -1 5 Xp (125 =1 -1 5
X3 [ O 11 16 X |6+ 1 1 16
X (1011 -2 x, |10 1 1 -2
X5 10 1 1 -2 X5 10 1 1 -2
Xg 10 1 1 -2 Xg 20 2 2 -k
X7 10 1 1 -2
Xg 10 1 1 -2
X9 10 1 1 -2

2
For each of the above fragments, we may compute S = 32(3) X tx § .
o

In each case, S = 36/5. Setting U=V = T in the proof of Lemma Toily
s

we obtain: §=9 I |[C, |k, / [Tle. In the present case, s = 2; g and
i=1

gt are representatives of the two classes of 3-singular elements., Hence:

36 . g #(tit7=g) [6:C(g)| + #(t b =gt) [G:C(gt)|
2 lc:c(t)]?

|g:c(g)]| = 2653.and |G:c(egt)] = 26533. The two possibilities for

#(t°t°=g) and #(t"t°=gt) were given earlier, If t is not conjugate to
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v, the right hand side of the equation is O, a contradiction., If t
is conjugate to v, we compute that |G:C(t)| = 600 and |C(t)| = L8O,

Let n3 denote the number of Sylow 3-subgroups of C(t). Any
involution centralizing a group of order 3 is conjugate to t., We count
incidences of an involution in the centralizer of & group of order 3.

t has 600 conjugates, each of which centralizes n3 groups of order 3.

Every group of order 3 is conjugate to (g); hence there are

285332/72 = L4000 subgroups of order 3, each of which is centralized by

three involutions. Hence 600n3 = L000-3, and n, = 20. This contradicts
the Third Sylow Theorem, It follows that there is no simple group of

order 285332.

Next assume |G| = 2953 2; then N({g)) = N,.

x(£)° x x(£)° x
8= g _ﬁ__sziﬁl_ Let 8' = Z 3 . Conditions (1) and
Be(3) « #* Bo(3) X
(2) remain valid; we assert that (3), (4) and (5) may be replaced by:
3') £ x(ex(t) =0, = x(gv)x(t) =0
Bo(3) Bo(3)
L'y 0<s8<18, 0<s8'<6
, 3tv,(x4(t))
51) £ x(t)¥<e 2737
Bo(3)

As before, let

(x5 (t))
305502 0

(3') follows from the block-section orthogonality relations. The proof

of (4') is identical to that of Lemma 7,11 except for the evaluation

of BZ(3) x(ci)xl ); from the fragment in case ii of Theorem 5.5, we
(o] v

obtain that Z( x(ci)xig5 is 18 if c; is conjugate to g or gt and
Bo(3) '

0 if s is conjugate to gv; of course, the sum is O if c, is 3-regular,
4
It follows that O < S < 18. If replace g by gv in the proof of Lemma

7.11 and use the fact that I X(ci)xlgv5 is 6 if c, is conjugate to
Bo(3) |



102

gv and O otherwise, we obtain 0 < S' < 6, Hence (4') holds. The
proof of (5') is completely analogous to that of (5).

A computer was used to determine all integers X(t) satisfying (1),
(2) and (3'); for each solution, conditions (4') and (5') were checked.

Two alternatives for the X(t) remained:

1 g gt gv + (alt, 1) 't (alt, 4ii)
X1 1T 1 1 1 1
Xo | 125 =1 =1 -1 5 5
X3 6 1 11 L -8
XL 10 1 1 =1 -2 -2
X5 10 1 1 -1 -2 -2
X6 80 -1 -1 1 -l 8
X7 | 20 2 0 8 .8
Xg | 20 2 0 -L - B
X9 20 2 0 =l -4

For the two alternatives above, S is respectively 45/4 and 81/5.

Proceeding as in the proof of Lemma 7.11, we obtain:

o _ g Heg) lo:o(e)] ¢ A urmgh) oic(gn)]
a:c(s) |2
63 6.2

|G:c(g)]| = 2757 and |G:C(gt)| = 27573, There are two alternatives for S;
the six alternatives for #(t°t°=g) and #(t°t°=gt) were listed earlier,
Using the above formula, we obtain 12 alternatives for |G:C(t)l2; however,
only one of the twelve is a perfect square; specifically, if S = 45/4 and
t is conjugate to wv but not to wor wt, then lG:C(f)l2 = 57600 and

|G:c(t)| = 240, Lemma 7.10 applied to X, shows that 52 divides |G:C(t)].

2
This contradiction shows that there is no simple group of order 295332.
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CEAPTER IX. SUMMARY OF RESULTS

This chapter contains a summary of the principal results on simple
groups of order 2adb32. These results appear in Theorems 5.3, 5.15,

7.19, 7.20, 7.21, 7.22, 7.24, and 8.2,

Main Theorem, Part 1 Let G be a simple group such that:

a b :
1) |¢| = 9-27.q", q prime,
2) G has at least three conjugacy classes of 3-elements.,

Then G is isomorphic to PSL2(8) or PSL2(17).

Main Theorem, Part 2 Let G be a simple group such that:

1) IGI = 9-2a.§b, g prime,
2) G has two conjugacy classes of 3-elements,
3) All 3-local subgroups of G are solvable.
Let g and g' be nonconjugate elements of order 3.
Then C(g) and C(g') have normal 3-complements, and one of the

following holds:
a) G is isomorphic to Ag.

b) q =5, and the principal 3-block of G has the following form:

1 [e] [&']
X4 1 1 1
X5 [ 1 1
x3 80 =1 =1
X 640 1 1
x5 625 1 =2
Xg 625 <2 1




104

c) g =17, and the principal 3-block of G has the following form:

1 [g] [e']
X1 1 1 1
X o2k -1 -1
X3 512 "1 '1
Xy, 78k 1 1
Xs 49 1 =2
Xg 49 -2 1

Main Theorem, Part 3 Let G be a simple group such that:

1) lG[ = 9-2a-qp, q prime,
2) G has two conjugacy classes of 3-elements.
3) Some 3-local subgroup of G is nonsolvable.
Let g and g' be nonconjugate 3-elements,
Tnen q = 5, C(g)/03,(C(g)) = (&) x Ag or (&) x S, and
C(g')/03.(0(g')) ~(g') x Ay or (g') x S;. The principal 3-block of G

has either the form

1 [eg) [gv] [aw] [ex] [ey] [g'] [g'v'] [g'w'] [g'x'] [g'y']

X4 1 1 1 1 1 1 1 1 1 1 1
X, | 102k 1 1 1 1 1 L -1 0 0 2
X3 1024 1 1 1 1 1 =5 0 -1 -1 1
Xy 1024 L -1 0 0 =2 1 1 1
X5 Loo Lo -1 0 0 =2 o -1 0 0 -2
Xg 625 TR 0 0 <2 =5 0 - -1 1
X 1024 -5 0 =1 -1 1 1 1 1 1 1
Xg 625 -5 0 -1 =1 1 L -1 0 0 -2
Xg 4oo -5 0 -1 =1 1 =5 0 -1 -1 1

or else the same form with 400 and 625 interchanged. v, W, X, y, V', W',
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x', and y' denote elements of S

5% v = (12345), w = (12)(34), x = (1234),
y = (12); v\, w', x', and y' are defined analogously. If
C(g)/o3,(C(g)) =~ (g) x A5’ the columns of [gx] and [gy] are not present,

and the column of [gv] splits into two identical columns; an analogous

statement holds with g replaced by g'.

Main Theorem, Part 4 Let G be a simple group such that:

1) 6| = 9-2%.q°, q prime.

2) G has one conjugacy class of 3-elements.
Then ¢ = 5 or ¢ = 7. The principal 3-block of G does not contain a
character of degree 8. b & B3 L¥ b = 3, G has no elements of order 24,
every 3-local subgroup of G 1s solvable, and there are 21 possibilities
for the degrees of the principal 3-block characters (listed in

Theorem 7.24), Finally, |G| > 106.
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APPENDIX I, NOTATION

Groups, subgroups, elements: G and H denote groups, K and L denote

subgroups of G, and g, g1, 8oy 83 o0y &
denote elements of G

1 Identity element of G, or subgroup of G con-
taining the identity only

(g1,g2,.,.,gk) ‘ Subgroup of G generated by 815 Bps wvey By

lGl Order of G

|G:H| Index in G of H

gf g'1g1g

g1 ~ g2 g1 conjugate to g2

G =g G isomorphic to H

CL(K) Centralizer in L of K

NL(K) Normalizer in L of K

c.(g) | c.((ed)

c(x), n(K), c(g) (), N.(K), C.(g)

z(G) | , Center of G

G' Commutator subgroup of G

Or,(G) La?gest normal subgroup of G of order relatively
prime to r

Aut(G) ' Automorphism group of G

G x H Direct product of G and H

GeH A semidirect product of G by H (G is normal in
G+H, and H is homomorphic to a subgroup of
Aut(G))

G¥ ‘ G - {1}

W Transfer of G into 'K

G=K



[g1]

Special groups

U_(a)

Characters and blocks:
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The image of g4 under the natural homomorphism
of N({g)) onto N((g))/or,(N((g))). Definition
requires that r be a prime, g be an r-element,
and g, be an element of N({g)).

x| x € L}

{x € N((g))| §.~'§? in Z2g55}

Cyclic group of order i

Quaternion group of order i

Dihedral group of order i

Symmetric group on n letters

Alternating group on n letters

General linear group of degree n over GF(q)
Special linear group of degree n over GF(q)

Projective general linear group of degree n
over GF(q)

Projective special linear group of degree n
over GF(q)

Projective special unitary group of degree n
over GF(qe)

X and x' denote characters of a group G, and 7|
denotes a character of a subgroup H

Character of G defined by X°(g) = o(x(g))
(0 a field automorphism)
Restriction of x to H

Induced character



£(B)

A(x)

A (G,g)

A (G)

Number theory

(m,n)
[s]

P, Q, T
n|n

vp(n)

s
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Inner product of X and X' = T%T z  x(g)x' (&)
g €G

(X[ ™

Principal p-block of H

Principal p-block of G

Set of nonidentity characters of Bo(p)

Module of generalized characters of H vanishing
off the set S

Submodule of M _(S) consisting of linear combin-
ations of characters in the block b of H

Nurber of ordinary irreducible characters in
the block B

Number of modular irreducible characters in
the block B

Height of the character X (defined in [7])

b3 ]X(g)l2 (p a given prime)
% € BO(P)

A (G, 1)

Greatest common divisor of m and n
Largest integer less than or equal to s
Prime numbers

m divides n

Congruence

Greatest integer k such that pk divides n
+1

Absolute value of s
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APPENDIX ITI, CHARACTER TABLES

This section contains partial character tables of groups arising
as alternatives for N(D) in Theorem 5.4. Only the principal 3-block
characters are given. Also, the tables for the groups in alternative i
of the theorem are omitted.

The number of conjugates of an element t is denoted by h(t). In
each case, g is a generator of the group D. The special classes are
underlined; here a class is special if, for each element x in the c;ass,

some power of x equals g.

S s
3 83 S3. g3 = 8% = 15 g’ = 1
55 3 =v? =1, 0 =0

h(t) 1 2 3 2 L 6 3 6 9

t 1 € s h gh sh v gv sv

M, 1 1T 1 1 1 1 1 1

ﬂ2 i §F -1 1 1 <1 1 1 =1

n3 2 -1 0 2 -1 0 2 -1 ©

T, 1 1 1 f 1 =1 =1 =]

ﬂ5 {1 4 = 1 1 4 < =1 1

ﬂ6 2 =i 5 &1 O <2 1 DO

'ﬂ7 g -1 =1 = 0O O°

ﬂ8 2 2 2 4 -1 -1 6 0 0

T19 L =2 0 -2 1 0 0 0 ©




h = (123), v = (12345), w = (12)(34)
3 20 4o 60 12 24 36 12 24 36 15 30 L5

2

1

SwW

&l

SV

Sh'

sh

s3 X A5 (principal 3-block)
n(t)

-1
-1

hx

w] -

-1

15 30 30 90 60

1

h = (123), v = (123L45), w = (12)(3k4),
x = (45), vy = (1234), k

1.
if ¢ € Sy t & Ay

g3
=&

5
t

S .
g
-1

-1

-2

-3
0
-1

2 20 Lo 24 24 24
i

>
D
=2

1

2
10
10

D.S (prinéi al 3-block) D:
5 P )
n(t)



(345), v = (12345), w = (12)(3L),

g
P e

S3:
85:

S, X s5 (principal 3-block)

hy

(1234), vy = (12), X

X

o 1 M O v~ v~ O «~ «— O
O | w 1 |
= | ] | |
O | X A~ «~ AN~ «~
(Q\} | D A |
O | » O o N O == = O
oM | w ] 1]
o [V QV Q|
& | &l T T T
O | >» (VAN QV I Q. T o]
~ | I S D R R |
o | W O O O O ~ ~ O
o | w A i
OX— ~ O O O ~ v ~
O | i ]
%‘UJX AN O O O ~ «~
nw | = O O O O ~ ~ O
= | u ]
(@]
R | &l e B E -
n | = A O O O ~ v~
=
(AVE - O v~ «— O O O O
b~ | w 1
QO
2 | &l TT 7T @ e°r0°
= ¥ b AN v~ ~ N O O O
[QV] | I A |
O | w ] ]
o | o Lol il SR o o R
=< | [ [ I B |
o | g Al ~ ~—~ AN — —
QY] | I B |
N | v O\u,.u“.OSR./O
SRS ] | 1.-\4\4\.,“.55:_/
b A N 4+ 4+ O nn inn O
—
3&5678%
+ & & & & & &«

h(t)

S .

83 X PSL2(7) (principal 3-block)

h, v, and w are elements

PSL2(7):

order 3, 4, and 7 respectively

2 3 56 112 168 4o 84 126 21

ho 63 24 48 72 24 48 72

1

w

2 2 2
Vv gV SV VvV gV sv

sh

h gh

2-1 0 2 -1

-1
-1
-1

0 2

2 -1

-1 =1 =1 -1

-1 -1

-2

-1 0 0 0 0 O

1
-1

0 0 O O

-1

0 -2

1
-1
-1
-1

1

T 7 =7
U4 -7 0

0 0 0 O O

0]

1

2
-1
-1

-2

0 0 0 O
0 0 0 O
0 0 0 O

8 8 8 -1

8 8 -8
16 -8 0

2-1 0 2 -1

0

0]

1

h(t)

Tg

i
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=1

3
g

i

D-PGL2(7) (principal 3-block)

h, w, r, and z are elements

PGL2(7):

of order 3, 7, 8, and 2 respectively,

Let v = r2.

with rz = r3.

L2 L8 L8 48 168 8L 126 126

2 56 112 Lo 84 21

1

2
-1

~7

1k

-1

-8 -2

16

h(t) -

Tg

"

s3 % PGL2(7) (prin. 3-block)

ol

5

o ox

RN

g o

O g a

O 0 &
\O b= ~ ~ O O O O
[QVAN B ]
=~
=F § b= = o O 0 O
8V_ 1

&0
(oY B o] — «~ N O O O
=t > 1 i
O | P> - = O O O O
[QVAN I /] ]
b,
Q| L}
[QV/ - — ~ N O O O
= i 1
| < v e O = v ©
WOl »w 1
B
[l ] T = &= = = X
— | [ I |
=
Wl o ~- ~— N ~ «~
(TN | I N |
(SO NN BN ] 7JO8Q_UO
QU - | D~ b~ b O © @
-] - M I~ 4 © ® \O
— -—

—~ =t Q
S & P e R
~
<
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S3 % PGL2(7) (continued)

48 96 14 21 Lo 63 56 112 168

Lo 84 126 28 56 84

hz ghz shz

L
sV

L

in
SW vV gv




10,

5

12«

13.

14,

13-
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