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ABSTRACT 

ab 2 ( In this thesis we study s i mple groups of order p qr p, q, and 

r prime numb ers). John Thompson has shown that, in any simple 

jp,q,rl-group, the primes dividing the group order are 2, 3, and an 

element of j5, 7, 13, 17l. Richard Brauer and David Wales have 

ab classified simple groups of order p qr. In the case of interest 

here, known results permit us to write the group order as 2aqbr2 

unless the group is isomorphic to A
5

. We shall deal primarily with 

the case r = 3. 

Let G be a simple group with !GI = 2aqb32. Recent work of 

W. J. Wong on the relation between blocks and exceptional characters 

provides the key to obtaining information about the principal 3-block 

of G. Using the block-section orthogonality relations, we obtain 

diophantine equations for the degrees of the irreducible characters 

in this block. Methods are developed for solving the type of equation 

which arises. Finally, we perform a detailed analysis of the solu­

tions; the most important technique is restriction of characters to 

3-local subgroups. 

Let k
3

(G) denote the number of conjugacy classes of 3-elements in 

G. It is proven that, if k
3

(G) ~ 3, then G must be isomorphic to one 

of the linear groups PSL2 (8) or PSL2 (17). If k
3

(G) = 2, either G is 

isomorphic to the alternating group A6 or else the principal 3-block 

of G has one of three explicit forms. Results for the case k
3

(G) = 1 

a 2 2 
are weaker; however, they permit us to show that !Gl f 2 q 3 nnd toot, 

with known exceptions, \GI> 106 . The latter result serves to prove 
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the nonexi3tence of a simple group for a number of previou3ly 

unresolved orders. 

In deriving the above theorems, we establish a number of 

a b 2 preliminary results valid in any simple group of order 2 qr. 

We also prove a number of theorems on 3-blocks of defect 2 and 

2 
groups of order 3 t, (3,t) = 1. 
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CHAPTER I. INTRODUCTION 

An elementary theorem of finite group theory states that a group 

of prime power order is solvable and hence not simple. In 1904, 

W. Burnside [10] used character theory to derive the same conclusion 

for a group of order paQb, p and Q distinct primes. A group of order 

ab c p Q r may be simple; eight examples are known, namely: 

Group Order Group 

PSL
2

(8) 

u
3

(3) 

PSL
3 

(3) 

PSL2 ( 17) 

Order 

The determination of all simple groups whose order is divisible by 

exactly three distinct prime factors is a longstanding, unsolved 

problem. 

Recently John Thompson [28] classified minimal si.rrrple groups -­

that is, simple groups all of whose proper subgroups are solvable. It 

follows easily that, if there exists a simple group whose order is 

divisible only by the primes p, Q, and r, then there exists a minimal 

simple group with this property. By Thompson's result, the minimal 

simple group must 'be A
5

, PSL
2

(7), PSL
2

(8), PSL
3

(3), or PSL
2

(17). Thus 

a simple group whose order is divisible by only three distinct primes 

ab c 
must bave order 2 3 p, where p E [5, 7, 13, 17}. 

Simple groups of this type in which one of the primes appears to 

the first power only have been classified completely, Tho di:f'flcul,t • 

case, that in which c = 1, is due to R, Bruuer for p ~ 5 [6] and 
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D, Wales for p = 7, 13, and 17 [29, 30, 31]. Exactly the eight groups 

listeu on the preceding page arise. 

ab 2 We shall investigate simple groups of order p qr. If r = 2, 

the Sylow 2-subgroups would have order 4; all simple groupa with this 

property are known [15-Chapter 16], and the only one with exactly 

three distinct prime factors in the order is A
5

. Hence we shall write 

the group order as 2aqbr2, with r E [3, 5, 7, 13, 17}. We shall deal 

pr:iJnarily with the case r = 3. PSL2 (8) and PSL2 (17) will be character­

ized as the only simple groups of order 2aqb32 having more than two 

conjugacy classes of 3-elements. We shall come close to characterizing 

A
6 

as the unique simple group of order 2aqb32 with two classes of 

3-elements. Weaker results will be proven for the case of a single 

class of 3-elements. 

Chapter II will set forth some notation and conventions. 

Chapter III will present results on the r-local structure of a 

ab 2 simple group of order 2 qr. We shall show how to apply exceptional 

character theory to obtain from these results information about the 

principal r-block of the full group. 

Chapter rv will deal with fusion and 3-block structure in an 

arbitrary simple group of order 32t, (3,t) = 1. 

In Chapter V, we shall combine the results of III and N to 

produce the fragment of the character table of a simple group of order 

2a b32 d. t th • • 1 3 bl k d th 3 i , ~ q correspon 1ng o e pr1nc1pa - oc an e -s·ngu.i.ur 

elements. The block-section orthogonality relu.tiono then yield cliopha.n­

tine equations for the degrees of the characters in the principal 

3-block, 
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In Chapter VI, methods will be developed for solving the diophan-

tine eq_uations. 

In Chapter VII, some results about the structure of the 3-local 

subgroups will be proven. We shall then consider the restriction of 

characters of the full group to these subgroups in an attempt to 

determine whether the solutions to the eq_uations actually occur an 

the principal 3-block degrees of a simple group. 

Chapter VIII will give applications to the problem of determining 

all simple groups of order less than one million. It will be Ghown 

ab 2 that no unknown simple group of this type can have order 2 q_ 3 ; 

this result eliminates six cases from the list of previously unresolved 

orders. 

Chapter IX contains a summary of the major results on simple 

groups of order 2aq_b32. 
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CHAPTER II. NOTA TION AND CONVENTIONS 

The notation employed here will be primarily the standard 

notation of finite group theory, such as appears in Gorenstein'a 

Finite Groups [15]. A list of symbols appears in Appendix I; in 

this chapter, we shall introduce only a few of the less stand.a.rd 

ones. 

Let G be a group, H a subgroup, and p a prime number. Bo (p, H) 

will denote the principal p-block of H. Frequently we shall write 

Bo(p) in place of Bo(p,G). If Sis any set containing an element 

which is in some sense trivial, S* will denote the set of nontrivial 

elements of s. Thus H* is the set of nonidentity elements of Hand 

Bo (p, H)* is the set of nonidentity characte~s in Bo(p,H). If g and u 

u . -1 are group elements, g will mean u gu. If Kand Lare groups, K•L 

will denote any semidirect product of K by L, that is, any split 

extension of K by L; in general, K•L is not uniquely defined. 

To shorten the statement of theorems, we shall adopt several 

conventions. A "group" will always mean a finite group. Unless 

stated otherwise, a "simple group11 will mean a noncyclic simple group. 

A "p-element" will be a nonidentity element of order a power of p. 

ab 2 In a phrase such as "a group of order p qr , 11 it will always be under-

stood that p, q, and rare distinct pr:ilne numbers and that a and b 

are arbitrary nonnegative integers. 

Groups will always be denoted by capital letters. Lower cace 

I.a.tin letters will be used for group elements. Cho.ro.cter:1 of (!,:rou.po 

will be denoted by Greek letters. The symbol e, of'tun oubocriptcQ, 
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will stand for a sign, that is, a variable which takes on values ,!_1. 
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CHAPI'ER III. TJIB r-LCCAL SUBGROUPS OF A STI{PLE GROUP OF ORDER 2aqbr2 

ab 2 Let G be a simple group of order 2 qr. In this chapter, we shall 

derive results on the r-subgroups of G and their centralizers and nor­

malizers. In Section 4, we shall show how these results may, in prin­

ciple, be applied to obtain a fragment of the character table of G 

corresponding to the block Bo(r) and an r-section. 

1. The Sylow r-subgroups 

The Sylow r-subgroups of Gare either cyclic or elementary abelian. 

In the former case, E. C. Dade's theory of blocks with cyclic defect 

groups yields enough information to obtain, at least for certain values 

of r, a complete characterization of G. In fact, the general classifi­

cation theorems do not require that the exponent of r be 2. As a 

corollary, we obtain: 

Theorem 3. 1 a b 2 ( Let G be a simple group of order 2 qr r = 3, 5, 7, 13, 

or 17) in which the Sylow r-subgroups are cyclic. Then 

1) r = 3 only if G is PSL2(8) or PSL2(17) 

2) r 'f 5-

Proof (1) is a corollary of a theorem of Herzog [19-Theorem 1]. 

(2) follows from a theorem of the author [22-Theorem 1]. 

Since our interest is primarily in the case r = 3, we shall assume, 

when necessary, that the Sylow r-subgroups are elementary abelian. 
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2. Sylow intersections 

A subgroup Kofa group His called strongly self-centralizing if 

CH(k) = K whenever k EK*. 

Theorem 3.2 ab 2 Let G be a simple group of order 2 qr. Either 

(1) G contains two Sylow r-subgroups with nonidentity 
intersection 

or (2) The Sylow r-subgroups of Gare strongly self-centralizing. 

If r = 3, alternative (2) occurs only if G is A6, PSL2(8), or PSL2(17). 

Proof Suppose alternative (2) does not occur. Let g be a nonidentity 

r-element and u be a nonidentity r'-element such that gu = ug. Without 

loss of generality, u has prime order. Assume u has order q; if u has 

order 2, the same proof holds with 2 and q interchanged, 

t x(1) x(gu) = O since gu is q-singular [3,II-7C]. We may 
Bo (q) 

write this as 1 + r x(1) x(gu) = O. It follows that Bo(q) contains 
Bo(q)* 

a nonidentity character~ with ~(1) F O (mod 2) and ~(gu) f o. The 

first condition implies that ~(1) = cfrn, where n is O, 1, or 2. If 

n = 2, ~ would lie in an r-block of defect O and hence vanish on the 

r-singular element gu [3,I], contrary to assumption. If n = o, the 

degree of~ would be a power of q, contradicting~ E Bo(q) by a theorem 

of Brauer and Tuan [9-Lemma 2]. Hence n = 1 and ~ lies in an r-block of 

defect 1 [1-Theorem 3]; the defect group has order r. But the defect 

group is the intersection of two Sylow subgroups [16-Theorem 2]. l"huo 

alternative (1) holds. 

Suppose alternative (2) holds and r = 3. If the Sylow 3-subgroups 
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of Gare cyclic, then by Theorem 3.1 the only possibilities for Gare 

FSL2(8) and PSL2(17). Both of these groups do in fact have strongly 

self-centralizing Sylow 3-subgroups. If . the Sylow 3-subgroups of Gare 

elementary abelian, G nrust be A6 by the complete clas3ification of all 

simple groups with a strongly self-centralizing, elementary abelian 

Sylow subgroup of order 9 [19-Theorems 13.3, 13.5]. 

Clearly alternatives (1) and (2) of Theorem 3,2 are nrutually 

exclusive. 

If (2) holds, theorems of Brauer and Leonard [8] yield detailed 

information concerning the r-block structure of G. Also, the number 

n of Sylow r-subgroups satisfies n = 1 (mod r 2 ); this follows from the r r 

proof of the Third Sylow Theorem [17-Theorem 4,2.3]. 

If (1) holds, corr~inatorial methods give some information. Let 

K
1
, K2, ... , Km be representatives of the conjugacy classes of subgroups 

of order r, all chosen in a fixed Sylow r-subgroup R. Let: 

nr = 1 + rsr = number of Sylow r-subgroups of G 

k. = number of conjugates of K. in R 
l l 

1 + rb. = number of Sylow r-subgroups of H. 
l 1 = number of Sylow r-subgroups of 

G containing K .. 
l 

We may order the Ki so that b1, b2, ... , bm, are positive and 

UV 
bm'+1, ... , bm are zero. The numbers 1 + rbi must be of the form 2 q. 

Alternative (1) holding is equivalent tom'> O; if (1) fails to hold, 

the formulas which follow are trivially valid but yield no information. 
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The eq_uations below are attributed to Richard Brauer. Proofs 

appear in [18-Section 3, part 15]. 

Lennna 3.3 (a) n k = r i I G: Hi I ( 1 + rb i) for i = 1, 2, o•o, m. 

m' 
(b) !: kibi - s (mod r). 

i=1 r 

Using Lemma 3.3 and other theorems on the pernrutation representa­

tion of G on the cosets of H., the author has investigated simple groups 
J. 

of order 2a3b52 in which the number of Sylow 5-subgroups does ~ot exceed 

485. The method seems to break down as the number of Sylow 5-groups 

becomes larger. Lemma 3.3 will be used in Chapter VIII, in which we 

treat simple groups of order less than one million. 

3. Centralizers and normalizers of subgroups of order! 

ab 2 Let G be a group of order 2 qr. The theorems of this section 

will not require that G be simple. Let D be a subgroup of order r. We 

shall characterize C(D)/0 ,(C(D)) and N(D)/0 ,(N(D)). r r 
2 b Simple groups of order 2 qr have been classified completely. 

For r = 5, the classification is due to Richard Brauer [6]; for r = 7, 

13, and 17, to David Wales [29, 30, and 31]. If r = 3, it follows from 

[6-Proposition 1] that the Sylow 3-group is self-centralizing, and Feit 

and Thompson have classified all simple groups with a self-centralizing 

subgroup of order 3 [14-page 186]. Alternatively, the classification 

for r = 3 may be obtained easily by direct application of Brauer's 

theory of blocks in groups whose order contains a prime to the first 

power [ 2]. 
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ab The automorphism groups of the simple groups of order 2 qr are 

also known [27]. We shall be interested in groups H such that 

S::: H::: Aut(S) for some simple group 

extensions of simple groups of order 

ab S of order 2 qr, that is, in 

ab 2 qr by subgroups of' their outer 

automorphism groups. ab Table 1 lists the simple groups of order 2 qr 

and the groups Hof the type just mentioned. This type of group will 

arise frequently, so we make the following definition. 

Definition 3.4 U'(r) = [ H I His a group and S s; H ~Aut(S) for some 

simple group S of order 2aqbr }. 

U'(r) may be obtained immediately from Table 1. For example, 

¾(3) = [ A
5

, s
5

, PSL2(7), PGL2(7) }. Of course, ,U'(r) is empty if 

r ~ [3, 5, 7, 13, 17}. 

Lemma 3.5 

or 

a b If His any group of order 2 qr, then either 

(1) H/Or 1 (H) is a Frobenius group of order rd, dl(r-1), with 

Frobenius kernel of order r 

(2) H/ O , ( H) E ¾( r) . r 

Proof Denote H/0 , (H) by H. Let K be a minimal normal subgroup of r 

H. K is characteristically simple and hence is a direct product of 

(possibly cyclic) isomorphic simple groups [15-Theorem 2.1.4]. The order 

of Hand the condition Or 1 (H) = 1 imply that either !Kl= r or else K 

is a simple group of order 2mqnr. Since K is normal in TI, H/°i{(K) is 

isomorphic to a group of automorphisms of K. 

Suppose !Kl= r, 4r(K) = K XV for some r'-group V [15-Theorem 

7.6.5]. V is characteristic in 4r(K) and hence normal in H. Since 



r s 

3,5 

5 

5 

7 

7 

13 

17 

11 

TABLE 1 

Simple groups S of order 2aqbr 
and groups H such that S ~ H ~Aut(S) 

ill !Aut(s) :SI 

60 2 

168 2 

360 4 

25920 2 

504 3 

6o48 2 

2 

2448 2 

H 

i) A6 ii) s6 iii) PGL2(9) 

iv) An extension of PS½(9) by a 
field automorphism of order 2 

v) An extension of PGL2(9) by a 
field automorphism of order 2, 
written PrL2(9) 

i) u4(2) 

ii) An extension of U4(2) by 
a field automorphism of 
order 2 

i) PSL2(8) 
ii) An extension of PSL2(8) by 

a field automorphism of 
order 3, written PrL2(8) 

i) u
3

(3) 

ii) An extension of U3(3) by 
a field automorphis~ of order 
2, isomorphic to G2(2) 

i) PSL
3

(3) 

ii) An extension of PSL3(3) by a 
graph automorphism of order 2 
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O ,(H) = 1, V = 1. Thus H/K is isomorphic to a group of automorphisms r 

of Kand hence has order dividing r-1. It follows easizy that His 

a Frobenius group with kernel K, Hence (1) holds, 

Suppose K is a simple group of order ~qnr. °if(K) is an r'-group, 

for suppose an element g of order r centralized K. g ~ K, so (g) X K 

would be a subgroup of H, contrary to r 2 dividing l(g) X Kl, Hence 

°tt(K) = 1. Thus H is isomorphic to a group of automorphisms of K. 

It follows that H E ¾(r) and (2) holds. -

Lermna 3.6 If His any group and Dis a p-subgroup, then 

0 ,(C(D)) = 0 ,(N(D)). 
p p 

Proof O ,(C(D)) is characteristic in C(D) and hence normal in N(D). 
p 

It follows that O ,(C(D)) c O ,(N(D)). 
p - p 

Dis normal in N(D) and O ,(N(D)) is normal in N(D). Hence 
p 

[D,O ,(N(D))J cD n O ,(N(D)) = [1}. Thus O ,(N(D)) centralizes D. 
p - p p 

It follows that O ,(N(D)) c O ,(C(D)). 
p - p 

Denoting C (D )/0 , (N(D)) and N(D )/0 , (N(D)) by 'c'('D'Y and .1i"(Dj r r 

respectively, we obtain: 

Theorem 3.7 Let G be a group of order 2aqbr2 with elementary abelian 

Sylow r-subgroups. If--D is a subgroup of order r, then : 

and NCTfY""' D•T, 

where either U E U'(r) or U is a Frobenius group of order rd, d dividing 

r-1, and Tis an extension of U by a cyclic group of order dividing r-1. 
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Proof C(D) has elementary abelian Sylow r-subgroups of order r 2 . 

It follows from a theorem of Gaschutz [24-Theorem IV.8.b] that C(D) is 

a split extension of D. 

such that C(D) =DX V. 

Thus c(D}" ""' D x V/0 , (V). 

Thus there exists a group V of order 2rng_nr 

Since Dis an r-group, 0 ,(C(D)) = 0 ,(v). r r 

r Applying Lennna 3.5 to the group V gives the 

required form for c(jS"}, with U = V/0 ,(V). r 

N(D) has elementary abelian Sylow r-subgroups, so by the theorem 

of Gaschutz, N(D) is a split extension of D, that is, there exists a 

subgroup W such that N(D) = D•W. Vis the subgroup of W centralizing 

D, 0 ,(N(D)) cw, since O ,(N(D)) = 0 ,(C(D)) = 0 ,(V). It follows 
r - r r r 

that N{DY""' D·(W/or,(N(D))). Set T = w;or,(N(D)). Then 

T/U = (W/0 , (N(D))) / (V/0 , (N(D))) """W/V ""'D•W/D•V = N(D)/C(D). r r . 

N(D)/C(D) is isomorphic to a group of automorphisms of D and hence is a 

cyclic group of order dividing r-1. Thus the same holds for T/U. 

4. The~ of exceptional character theory 

Let G be a group of order 2ag_br2 with elementary abelian Sylow 

r-subgroups. Let D be a subgroup of order r, From Theorem 3.7, we 

can obtain all possibilities for c(D; and N\DY. For cDSJ, there are 

6, 12, 10, 8, or 7 alternatives according as to whether r is 3, 5, 7, 

13, or 17; for Nfi5; the number of alternatives is somewhat larger. In 

princ i ple, at least, we can write down the character table for each 

possibility for NTJ51, 

From the character table of N"('Dl', we can obtain a fragment of the 

character table of G whose rows correspond to the block B0 (r). The 
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following two principles are used: 

1) N(D) and N(D; have the same principal r-block. 

2) Induction of exceptional characters from N(D) ta 

G "respects blocks" and, in particular, "preserves" 

the principal r-block. 

We shall now make these notions precise. To each ordinary 

irreducible character~ of N{D)°, there corresponds an ordinary irredu­

cible character ~1 of N(D) defined by ~1 (g) = ~(O 1 (N(D))g). The r 

mapping~ -➔ ~ 1 is a one-to-one mapping of the irreducible characters of 

N(D'Y onto the set of irreducible characters of N(D) having, 0 1 (N(D)) in r 

the kernel. Brauer [4,I-PP· 155-156] shows that the principal r-block 

of N{i51 is mapped onto the principal r-block of N(D). 

The relation between blocks and exceptional characters is 

presented by W. J. Wong in [32]. We shall be interested only in what 

Wong terms the "ordinary" case -- that is, the case in which II (a set 

of primes) contains all the primes dividing the group order. This 

case is discussed in [32-Section 4]; a brief summary follows. 

Let p be a fixed prime. Let G be a finite group, Ha subgroup of 

G, and San invariant subset of H. ~(S) denotes the module of general­

ized characters of H vanishing on H-S. ~(S,b) denotes the submodule of 

lv\r(s) consisting of linear combinations of irreducible characters in the 

p-block b of H. 

For the ordinary case, Sis special in G if 

i) Two elements of S conjugate in Gare conjugate in H 

and ii) CG(s) ~ H for alls ES. 

Sis complete if it is the union of p-sections of H. Sis closed if 
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i s ES whenever s ES and i is prime to the order of s. 

Assume that Sis a closed complete special invariant subset of the 

subgroup Hof G. Let B be a block of G with irreducible characters 

x
1
, x2, ... , Xm• Let ~1, ~2, ... , 1\-i be the irreducible characters of 

H contained in blocks b of H such that bG = B. Let ~1, ~2, ... , ~t 

be a basis of k ~(S,b). Define the t x n matrix A= (a1j) by 
bG=B 

i
1 

= r; a .. ~ .. By [32-Theorem 7], the induced characters ~iG are linear 
j J.J J 

combinations of the irreducible characters in B; thus there exists a 

G 
t x m matrix C = ( c .. ) of integers such that ~

1
. = r: c. ·X.. By 

J.J j J.J J 

[ 32-Theorem 10 ], there exists an n x m matrix X = (x .. )' of integers such 
J.J 

that AX = C, and for any such matrix X, 

x.(s) = r: x .. ~.(s) 
J. j JJ. J 

for alls ES. 

Also, MT= CCT since the mapping ~i ➔ ~iG is an isometry, that is, 

G G 
<ti , t j ) = <Qi' t j). 

Now suppose that Bis the principal block Bo(p) of G and that 

His the normalizer of a p-group D. If bis a block of H with defect 

group D', then D ~D• [3,I-9F]. Hence CG(D') S::CG(D) ~H, and it fol­

lows from [4-Theorem 3] that bG = B if and only if b = Bo(p,H). Thus 

the characters ~1, ~2, ... , 1\i are precisely the characters in the 

principal p-block of H. 

Let G be a group and g an element of prime order p. Let H = N((g)), 

S = {h E HI hi= g for some integer i}, and B = B0 (p). Then Sis a 

closed complete special invariant subset of H, and all the results of 

the preceding two paragraphs can be applied. In particular, the 



results may be applied in the case in which G is a group of order 

2alr2 'With elementary abelian Sylow r-subgroups, D is a subgroup of 

order r, and H = N(D). In this case, Theorem 3.7 enables us to obtain 

the characters ~
1
, ~2, ... , \ and the basis i 1, i 2, ••. , ~t 

for ~(S,Bo(r,H)). In Chapter V, the process will be carried out for 

the case r = 3. 
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CHAPTER IV. SIMPLE GROUPS OF ORDER 32t 

ab 2 Thus far, we have investigated simple groups of order 2 qr, where 

r E \3, 5, 7, 13, 17\. Henceforth we shall restrict ourselves to the 

case r = 3. A number of results on fusion and block structure depend 

only on the group order being of the form 32t, (3,t) = 1. In most 

cases, the group need not be simple; it suffices for there to be no 

normal subgroup of index 3, that is, for IG:G' I to be prime to 3. 

1. Fusion of 3-elements 

Theorem 4.1 2 Let G be a group of order 3 t, (3,t) = 1, with elementary 

abelian Sylow 3-subgroups. Assume G does not contain a normal subgroup 

of index 3. Let P be a Sylow 3-subgroup. Then, for appropriately 

chosen generators a and b of P, fusion of 3-elements of P occurs in 

one of the following ways: 

a) 
2 

~b 
2 ~ a¾ 2 ~ a¾ ~ ab 2 

(T, Q,8, z8) a~a ~b ~ ab 

b) 
2 2 

a~a ~b~b ab ~ a¾ 
2 

~ a¾ ~ ab 2 
(D5, Z4) 

c) 2 b ~ b
2 ab ~ a¾ 2 ~ a¾ ~ ab 2 

(D4) a~a 

d) 2 
b ~ b 2 ab ~ a¾2 a¾~ ab 2 

(Z2). a~a 

For each case, the possible structures of N(P)/C(P) are given in paren­

theses (T denotes the Sylow 2-subgroup of GL
2
(3)). 

Corollary 4.2 Let G be a group of order 32t, (3,t) = 1, which does 

not contain a normal subgroup of index 3. Then every 3-element of G 

is conjugate to its inverse. 



Corollary 4.3 Let G be a group of order 32t, (3,t) = 1, which does 

not contain a normal subgroup of index 3. Then every character of' G 

is integer-valued on the elements of order 3. 

Corollary 4.4 Let G be a group of order 32t, (3,t) = 1, which does 

not contain a normal subgroup of index 3. Then x(g) = x(1) (mod 3) 

for all characters x and all elements g of order 3. 

Proof of Theorem 4.1 Pis abelian; hence two elements of Pare conju-

gate in G if and only if they are conjugate in N(P) [17-Lennna 14.3.1]. 

N(P)/C(P) is isomorphic to a group of automorphisms of P and hence to a 

group of permutations of P")E-, Denote this permutation group by A. Two 

elements of p-lE- are conjugate if and only if they lie in the same orbit 

of A. 

Suppose A has an orbit of length 1, say \a\. Computing the trans­

fer VG-+P exactly as in the proof of Burnside's Theorem on normal 

p-complements [17-Theorem 14.3.1], we obtain VG-+P(a) = a. Thus 

VG-+P(G) = (a) or P. In the first case, Ker(VG-+P) is a normal subgroup 

of G of index 3; in the second, the inverse image of (a) is a normal 

subgroup of index 3. This contradicts the hypothesis of the theorem, 

Hence no orbit of A has length 1. 

We may consider Pas a 2 dimensional vector space over GF(3). 

Aut(P) is isomorphic to GL2 (3). IGL2(3) I = 48. A is isomorphic to 

a subgroup of GL2(3) of order prime to 3, hence to a subgroup of a 

Sylow 2-group of GL2(3). The matrices u = l: :1 and 
V = [~ :] 
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with elements in GF(3) satisfy 
8 2 V 

U = 1, V = 1, U Therefore, 

T = (u,v) is a Sylow 2-subgroup of GL2(3). T may be considered as a 

permutation group on J>)(-; then A is a subgroup of some conjugate of T. 

The lattice of subgroups of Tis shown in Figure 1 on the next page. 

T, Q
8

, and z
8 

act transitively on J>)(-. n
8

, z4, z4
1

, and z4
11 have orbits 

!a,b,a2,o2 \ and !ab,a¾,a¾2,ab2 \ on P*, where a is (1,0) and bis 

(o, 1 ), (o, 1 ), (1, 1 ), and (1,2) respectively for the four groups. 

n4 and n4
1 have orbits \a,a2 \, \b,b 2 \ and \ab,a¾,a¾

2
,ao

2
\ on P*, 

with a= (1,0) and b = (o, 1) for n4 and a= (1, 1) and b = (1,2) for D1~•. 

z2 has orbits \a,a
2

\, lb,b2 l, \ab,a¾2 \, and \a¾,ab
2

\ on P*, with 

a= (1,0) and b = (o, 1 ). The remaining subgroups of T fix an element 

of J>)(-. A does not fix an element of P* by the last paragraph; hence, 

if A is a subgroup of T, one of the alternatives of the theorem holds 

for an appropriate choice of the generators a and b of P. Clearly the 

same is true i .f A is a subgroup of a conjugate of T. 

Proof of Corollary 4.2 If the Sylow 3-subgroups of Gare elementary 

abelian, Corollary 4.2 follows immediately from Theorem 4.1. If they 

are cyclic, Aut(P) is a cyclic group of order 6. N(P)/C(P) is a 

3'-group of automorphisms of P and hence has order 1 or 2. In the 

first case, G would have a normal 3-complement [17-Theorem 14.3.1]; 

hence G would have a normal subgroup of index 3, contrary to assumption. 

Therefore !N(P)/C(P)I = 2, and N(P)/C(P) induces the automorphism of P 

of order 2, which maps every element to its inverse. 

Proof of Corollary 4.3 Let g be an element of order 3. It follows 

from Corollary 4.2 that g ~ gm whenever (m,3) = 1. Hence every 
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character of G is rational on g. 

Proof of Corollary 4.4 Lets be a primitive cube root of unity. Let 

D = (g) and let~ be the character of D defined by ~(gi) = Si• Since 

2 1 2 2 1 
g ~ g, <x!D,~> = 3 (x(1) + sx(g) + s x(g )) = 3 (x(1) - x(e)). 

<xln,~> is an integer; hence the corollary holds. 

2. Congruences for the degrees of the characters 

Corollary 4.4 gives a congruence between the degrees of the 

characters and their values on elements of order 3. In this section, 

we shall obtain stronger congruences. 

Theorem 4.5 Let P be an elementary abelian p-group of order p2
• 

Let X be a rational (possibly reducible) character of P. If 

g1, g2, ... , gp+1 are generators of the p+1 subgroups of order p, then: 

p+1 
(p + 1 ) X ( 1 ) = E X ( g . ) ( mod p 2 ) . 

i=1 1 

Proof Since xis rational, x(g) = x(gi) whenever g E P and (i,p) = 1. 

Let~- be a linear character of P having kernel (g.); ~- can be ob-
i l J. 

tained from a nonidentity character of P/(g.). If j f i, 
J. 

k 
\~.(g. )[ k = 1,2, ... ,p-1} = \primitive p'th roots of unity}. The sum 

J. J 

'of the primitive p I th roots of unity is -1 ; hence we obtain 

P~
1 ~ (g.k) ={p-1 if i = j 

k=1 i J -1 if if j . 

we obtain: 

Computing the inner product of x and~-, 
J. 

p+1 p-1 k 
= x(1) + z x(gj) z ~.(g. ) 

j=1 k=1 1 J 

= x(1) + (p - 1) x(g1 ) - E x(e.). 
jfi J 
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Adding the equations for i = 1, 2, ... , p+1 gives: 

As the left side of the above equation is divisible by p2, so is the 

right side; this proves the theorem. 

Corollary 4.6 2 Let G be a group of order 3 t satisfying the hypotheses 

of Theorem 4.1. Let X be any character of G. Corresponding to the 

four alternatives of Theorem 4.1, we have the following congruences: 

a) X ( 1 ) = X ( g 
1 

) ( mod 9 ) 

b) 2x;(1)=x(g1)+x(g2 ) (mod9) 

c) 4 x(1) = 2 x(g
1

) + x(g2) + x(g
3

) (mod 9) 

d) 4 x(1) = x(g1 ) + x(g2) + x(g
3

) + x(g4 ) (mod 9). 

Here the gi are representatives of the conjugacy classes of 3-elements, 

and in (c), g
1 

is in the class intersecting a Sylow 3-group in 4 

elements. 

Proof By Corollary 4.3, xis rational on the elements of a Sylow 

3-subgroup. Corollary 4. 6 then fol.lows immediately from Theorems 4.1 

and 4.5. 

3. Results 9E_ 3-blocks 

This section will present some results on blocks, and in purticulo.r 

3-blocks, which will be applied in Chapter 5. 

The following notation will be used. B will be a p-block of dcfoct 

d containing m ordinary irreducible characters x
1
, x2, ... , y1n and 
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n modular irreducible characters ~
1
, ~2, ... , ~n· The number of 

ordinary and modular characters in B will also be clenotecl by k(B) and 

t(B) respectively. x. will denote x.(1). 
l. l. 

D will be the decomposition 

matrix of Band C the Cartan matrix. Define the m x m matrix A = (a .. ) 
1J 

Brauer and Feit [7] show that the matrix A has the following 

properties: 

A is a symmetric m x m matrix of integers. 

A = p~C- 1DT. 

2 d 
A = p A. 

x.x. 
akk ,J, 0 (mod p) for some k, and a .. = .2.......J. a (mod p) r :t.J - 2 kk 

~ 
for all i,j, congruences being in the ring of 

local integers for p. 

If E = (e .. ) is a matrix, then E. . . will denote the 
:i.J :i..1, 1 2' • • ·' 1 w 

matrix formed from row i
1
, row i 2, .•. , row iw of E in that order, 

i1,i2,···,i 
and E w will denote the matrix formed from column i

1
, 

column i 2, ... , column iw of E. E~ and Ei will denote the matrices 
i 

formed from Eby deleting row i and column i respectively. Thus, if 

E is a 3 X 3 matrix, E
2 

= [e31 e33] 3, 2 • 
e21 e23 

then 

A well-known theorem states 

det(EF) = ~ 

1:::_i1<i2<· .• <i~ 

that, if F is k X w and E is w X k, 

det(Ei1' • •• ,iw) det(F. . ). 
1

1' • • ·' 
1
w 
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Lermna 4.7 Let Sij = ( (k1,k2, ... ,kn_ 1) j 1 ~k1 <k2 < ... <kn_ 1 $m, 

kt f i, j for t = 1 , 2, ... , n-1 \ . Then 

pd 
= --=-- ( I: det(D. ) det(D. ) 

det ( C) S . . 1, k1, ••• , kn_ 1 J, k1, ••• , kn_ 1 
J.J 

a .. 
J.J 

Proof Let (ust) 
-1 A ~ -1 T hence d 

I: d. u td·t• = C . = p C D ; a .. = p 
J.J s,t J.S S J 

" 
c~ (Dt lns. 1 s+t s 

Now u = det(C) (-1) det(C,.. ). = Hence st t t 

s t 
det(C,..) = I: det(Dk k ) det(Dks k ) , where 

t S 1 ' • • ·' n-1 1 ' • • ·' n-1 

these formulas yields: 

a .. 
pd 

I: d. ( = det(C) J.J s,t J.S 
s+t i s 

(-1) I: det(Dk . k ) det(Dk k )) dJ.t 
S 1 ' • • ·' n-1 1' • • ·' n-1 

" 
I: ( 1)td det(Dt ) 
t - jt k1' ••• ,kn-1 

pd 
= det(C) I: det (D. k k ) det (D. k k ). 

S 1 ' 1, ... , n-1 J, 1, ... , n-1 

In the above formula, the sum need 

as all other terms are zero. 

run only over the terms of S .. , 
J.J 

If G is a group and Bis a p-block of defect d, Brauer [3,I] hus 

shown that t(b) ~ k(B) - 1 and that one elementary divisor of C is pd 

and the others are lower powers of p. As an application of Lemma. 4.7, 

we shall derive a ·stronger result on the elementary divisors for the 

case ~(B) = k(B) - 1. 
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Theorem l,. 8 Let G be a group and let B be a p-block of defect d such 

that t(B) = k(B) - 1. Let C denote the Cartan matrix of B. Then one 

elementary divisor of C is pd and the others all are 1. Det(C) = pd. 

Proof Let D be the decomposition matrix of B. Let w. = det(D~). 
). l. 

By Lemma 4. 7, a .. = 
J.J 

d (p /det(c))v .. , where 
J.J 

v .. = 
).). 

and 

i+j 
V .. = -(-1 ) W.W. for i F j. 

J.J ). J 

must 

p 

p 

Suppose pd+1 divides det(C). Since A is a matrix of integers,· p 

Suppose p does not divide w . . v. . for all i and j . 
J.J 

divide 
l.o 

all j f io; hence p w. W. for 
lo J 

w. for all j f io. Let jo f io. 
J 

I: 
2 

wk ' 
kfjo 

a contradiction since p fails to divide exactly one term 

in the sum, Thus p must divide w. for all i. Let n = t(B). We have 
). 

shown that p divides the determinant of every n X n subma.trix of D; 

hence p divides the n'th determinantal divisor of D, contrary to a 

theorem of Brauer [11-Corollary 84.18] stating that the determinantal 

divisors of Dare 1. 

d+1 Thus p does not divide det(C). Det(C) is the product of the 

elementary divisors of c, all of which are powers of p [3,I-5B] and 

one of which is pd [3,I-6C]. It follows that the remaining elementary 

divisors all must be 1 and that det(C) = pd. 

Henceforth we shall investigate 3-blocks. 

Theorem 4.9 In any 3-block of positive defect, the number of 

irreducible characters of height O is a multiple of 3. 
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Proof Denote the block by Band the height of a character x in B by 

A(x). Chooser such that a f O (mod 3). a . = (x./x )a (mod 3). rr rJ J r rr 

It follows that a . = 0 (mod 3) if and only if A(X.) > O. Since 
rJ J 

A
2 = 9A, ~ a .

2 = 9a 
J rJ rr 

= 0 (mod 3). Now a .2 is congruent to O modulo 
rJ 

3 if A (x.) > o and a . 
2 

J rJ 
is congruent to 1 modulo 3 if A(X.) = O. 

J 

Thus ~ 1 = o. It follows that the number of characters of height 
A(x.)=O 

J 
zero is a multiple of 3. 

Theorem 4.10 A 3-block of defect 2 contains 3, 6, or 9 irreducible 

characters. If the block is principal, the number of characters is 

6 or 9. 

Proof The first statement follows from Theorem 4.9, the fact that a 

block of defect 2 contains no characters of positive height [7-Thcorem 2], 

2 and the fact that a p-block of defect 2 contains at most p irreducible 

characters [7-Theorem 1*]. 

Let Bo(3) be the principal 3-block of G, where G is a group of 

2 order 3 t, (3,t) = 1. We mu.st prove that k(Bo(3)) f 3. Assume the 

contrary. If Bo(3) contains only one modular irreducible character, 

namely the identity character, then a theorem of Brauer [4,I-Cor. 3] 

shows that G has a normal 3-complement H. H = o
3

,(G); hence G/0
3

,(G) 

is a group of order 9. G/0
3

,(G) has 9 characters in its principal 

3-block. Since the principal 3-blocks of G and G/0
3

,(G) are identical 

[4,I-p.156], Bo(-3) must contain 9 characters, contrary to assumption. 

We conclude that Bo(3) contains 2 modular characters. 

By [3, II-7D] and [ 4, I - Th. 3], k(Bo(3)) = ~ ~(Bo(3,C(g))), where g 
g 
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ranges over the identity and a set of representatives of the conjugacy 

classes of 3-elements. The term on the left is 3, and the term on the 

right corresponding tog= 1 is 2. We conclude that there is only one 

conjugacy class of 3-elements and that, if g is in this class, 

-l(Bo(3,C(g))) ==1. 
:J 

Hence C(g) has a normal 3-complement [4,I-Cor. 3]. 

If His any group, define A(H,x) = ~ lx(x)l
2

. By [4,II-Page 310], 
Bo (p, H) 

A(G,g) == A(C(g),1) = A(C(g)/0
3

,(c(g)),1) = 9; the last equality follows 

because C(g)/0
3

,(c(g)) is a group of order 9. All the 3-elements of G 

are conjugate; hence every character of G is rational on g. It follows 

that the fragment of the character table of G corresponding to Bo(3) 

and the 3-singular elements has the form: 

1 g 

±2 

±2 

The block-section orthogonality relations [3,II-7C] imply 

1 ~ 2f2 ~ 2f
3 

== O. This contradiction completes the proof. 

Theorem 4.11 Let G be a group of order 32t, (3,t) = 1, not containing 

a normal subgroup of index 3. If the principal 3-block of G contains 

exactly 2 modular irreducible characters, then it contains exactly 6 

ordinary irreducible characters. 

Proof In view of Theorem 4.10, it suffices to show that Bo(3) does not 

contain 9 ordinary irreducible characters. Assume the contrary. Let D 

be the 9 X 2 decomposition matrix of Bo (3). The rows and columns may be 
I 
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arraneed so that the first row corresponds to the identity character 

and the first column to the identity modular character. We shall use 

the results of Brauer and Feit [7] on the matrix A, defined earlier. 

If j :::_ 2, then dj 2 > o, for suppose dj 2 were O; then xj(x) == dj 1 for 

all 3-regular elements x; the kernel K of x. would contain all 3-regular 
J 

elements of G; hence G/K would have order 3 or 9, and in either case G 

would contain a normal subgroup of index 3, contrary to assumption. 

___.9__ 9 2 
By Lemma 4.7, a 11 == det(C) j:

2 
dj 2 • Det(C) is either 9 or 27 

according as to whether the smaller elementary divisor of C is 1 or 3 

[3,I-6C]. 0 <a .. < 9 by [7-page 363]. [7-Equation 7] yields, for the 
J.J. -

case p == 3, a .. =a .. f O (mod 3) for all i and j. It follows that 
J.J. JJ 9 

a 11 E {1, 2, 4, 5, 7, 8} and ~ dJ. 2
2 

E {1,2,4,5,7,8,3,6,12,15,21,211-l. 
j==2 

It is straightforward to check that, among the numbers in the last set, 

only 8 and 24 are sums of exactly 8 nonzero squares. Hence 

9 2 
~ dj 2 == 8 or 24; in either case a

11 
== 8. Since Bo(3) has 2 modular 

j=2 

irreducibles, tr(A) = 9·2 == 18 (This follows from [5,II-5C] upon 

noting that A is pd times the matrix M( 1) of [5]). From the 

condition aii = a 11 = 2 (mod 3), we obtain aii ~ 2 for all i. 

It follows that tr(A) =~a .. > 8 + 8·2 = 24, contrary to tr(A) == 18. 
J.J. -

Hence the theorem holds. 

As an application of Theorem 4.11, we shall obtain the principal 

3-block of a group of order 32t in which the centralizer of a Sylow 

3-group has index 2 in the normalizer. 
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a normal subgroup of index 3. Let P denote a Sylow 3-subgroup. Assume 

that Pis elementary abelian and jN(P):C(P)j = 2. Then there exists a 

sign e (e = _!1) and an integer f such that f = 7e (mod 9) and the 

principal 3-block of G has the following form: 

1 S(g1) S(g3) S(g4) 

X1 1 1 1 1 

X2 f € e -2€ 

X3 f € e -2e € 

X4 f € -2€ e € 

X5 f -2€ e e 

x6 f+e -e -e -e 

Here g1, g2, g
3 

and g4 denote representatives of the four classes of 

3-elements, and S(g.) denotes the 3-section of g .. The characters 
l l 

x2, x3, X4, and x
5 

agree on 3-regular elements. 

Proof By Theorem 4. 10, Bc(3) contains 6 or 9 ordinary irreducible 

characters. Assume the latter alternative 

and [ 4, I- Th. 3], k(Bo (3)) = t(Bo (3)) + 

occurs. By [3,II-7D] 
4 
~ t(Bo(3,C(g.))). 

i=1 l 

t(B
0

(3)) f 1 since the hypotheses imply that G does not have a normal 

3-complement [4,I-Corollary 3]. t(Bo(3)) f 2 by Theorem 4.11. It 
4 

follows that t(B 0 (3)) ~ 3 and ~ t(Bo(3,C(gi))) ~ 6. Hence there are 
i=1 

at least two dist"inct classes of 3-elements for which the cent:r,:alizcr 

has a single modular character in its principal 3-block and hence has 

a normal 3-complement; let g and g' be representatives of two such 
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classes. C(g)/0
3

,(c(g)) and C(g' )/0
3

,(c(g' )) are groups of order 9. 

Defining the function A as in [4,II-Section 3], we obtain 

A(G,g) = A(C(g)) = A(C(g)/0
3

,(c(g))) = 9. 

Thus ~ jx(g)j 2 = 9. By Corollary 4.3, x(g) is rational for 
X E Bo (3) 

all characters x; hence x(g) is integral. Hence for each character X 

in Bo(3), there is a sign e such that x(g) = e • Similarly, there 
X X 

is a sign ex' such that x(g') =ex'. By Corollary 4.4, 

x(g) = x(1) = x(g') (mod 3); it follows that ex= ex'. Block-

section orthogonality [3,II-7C] gives: 

Since each term in the sum is 1, this is a contradiction. 

We have shovm that Bo(3) must contain 6 ordinary irreducible 
4 

characters. As before, k(Bo(3)) = t(Bo(3)) + ~ t(Bo(3,C(g.))). 
i=1 1 

It follows that t(B 0 (3)) = 2 and t(Bo(3,C(g.))) = 1 for i = 1, 2, 3, 4. 
1 

C(g.) has a normal 3-complement and, as above, ~ Jx(g.)\ 2 = 9. 
1 X E Bo(3) 1 

For each i, there must be one character X in Bo(3) for which 

!x(gi)I = 2; for the remaining characters, !x(gi)j = 1. The columns 

of the character table corresponding to g1, g
2
, g

3
, and g4 must fit 

together in such a way as to satisfy the block-section orthogonality 

relations [3,II-7C] and the condition x(g.) = X(g.) (i,j = 1,2,3,4); 
1 J 

apart from a pernrutation of the rows, this can occur only in the way 

given in the statement of the theorem. The column corresponding to 1 

must have the form given in order to be orthogonal to the columns of 

g1, g2' g3, and g4. 

from Corollary 4.6. 

The condition f = 7e (mod 9) follows immediately 

Since C(g.) has a normal 3-complement, 
1 
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[4,I-Corollary 5] implies that each character in Bo(3) is constant 

on the 3-section of g .. Finally, if xis any 3-regular element, 
1 

orthogonality between the column of x and those of the g. shows that 
1 
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CHAPTER V. SlliPLE GROUPS OF ORDER 2aqb32 : OBTAINING THE DEGREE EQUATION 

Let G denote a simple group of order 2aqb32. In this chapter, we 

shall determine all possibilities for the fragment of the character 

table of G corresponding to the principal 3-block and the 3-singular 

elements. A number of alternatives will arise, corresponding to 

different fusion patterns (Theorem 4.1) and different structures for 

N0)) (Theorem 3.7). For each alternative, the block-section orthog­

onality relations will yield diophantine equations for ' the degrees of 

the principal 3-block characters; equations obtained in this manner 

will be referred to as degree equations. 

1. Preliminary results 

Lerrrrna 5. 1 If G is a simple group of order 2aqb32 not isomorphic to 

PSL2(17), then q is 5 or 7. 

I 

Proof We remarked earlier that Thompson's classification of minimal 

simple groups [28] implies that q E {5, 7, 13, 17\. If q were 13, G 

would involve the minimal simple group PSL
3

(3), a contradiction since 

33 divides !PSL
3

(3)j. If q is 17, G involves the minimal simple group 

PSL2(17). PSL2(17) has cyclic Sylow 3-groups of order 9 [21-8.10]; 

hence G has cyclic Sylow 3-groups, and Theorem 3.1 implies that 

Theorem 3.1 also tells us that, if G is not isomorphic to PSL
2

(8) 

or PSL2(17), the Sylow 3-subgroups are elementary abelian. 
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Tne final step in many subsequent arguments will be application of 

the followin8 lemma . 

Lemma 5.2 Let G be a simple group of order 2aqb32. Suppose the 

principal 3-block contains two irreducible characters whose degrees 

are consecutive integers. Then G is isomorphic to PSL
2

(8) or PSL
2

(17). 

Proof If q is 17, then Lemma 5.1 tells us that G is isomorphic to 

PSL
2

(17). The principal 3-block of PSL
2

(17) does in fact contain two 

consecutive degrees, namely, 16 and 17. 

Assume q is 5 or 7. Let the consecutive degrees be 2x and qY. 

Then 2x - qy = ~1. For low values of q, the solutions to this equa­

tion are well-known (The methods of Chapter VI, developed to solve a 

nru.ch more general type of equation, are applicable in this case). For 

q = 5, (2x,qy) is (2,1) or (4,5); for q = 7, (2x,qy) is (2,1) or (8,7). 

Thus G must have an irreducible representation of degree 2, 4, or 7. 

All such simple groups are known [13-Section 8.5]; the only one whose 

order bas the form 2aqb32 is PSL
2

(8), which has an irreducible represen­

tation of degree 7. In fact, this representation is in the principal 

3-block, and the principal 3-block also contains a representation of 

degree 8. 

By Theorem 4.1, a simple group of order 2aqb32 has 1, 2, 3, or 4 

conjugacy classes of 3-elements. The difficulty of the classification 

problem will vary inversely with the number of classes; if the number 

is 4, the following theorem provides a complete classification. 
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of 3-elements is isomorphic to PSL
2

(8) or PSL2(17). 

Proof By Theorem 4.12, the principal 3-block of the group must contain 

two characters of consecutive degrees. Hence Lemma 5.2 gives the 

desired conclusion. 

2. Applying the exceptional character theory 

In this section, we shall apply the exceptional character theory 

outlined in Chapter III, Section 4 to a group of order 2aqb32. As in 

Chapter III, N(DY and c[DY will denote respectively N(D)/o31 (N(D)) and 

C(D)/o31 (N(D)). More generally, if Sis any subset of N(D), Swill 

denote the image of Sunder the natural mapping from N(D) to N[D')". 

Dis isomorphic to D; hence the two groups will be identified. 

Theorem 5.4 ab 2 Let G be a group of order 2 q 3, q equal 5 or 7, with 

elementary abelian Sylow 3-subgroups. Assume G does not contain a 

normal subgroup of index 3. If D = (g) is a subgroup of order 3, then 

one of the following alternatives occurs for cCnJ. and N(DJ: 

c[DT N(Dj 

i. D X A
3 

s
3 

X A
3 

or D,s
3 

ii. DX s
3 

s
3 

X s3 

iii. DX A
5 

s
3 

X A
5 

or D•S 
5 

iv. D X s5 s
3 

x s
5 

v. D X PSL2(7) s
3 

X PSL2(7) or D·PGL2(7) 

vi. D X PGL2(7) s
3 

X PGL2(7) 
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Here D,H denotes a semidirect product of D by H which is not direct; for 

the cases arising here, it is uniquely determined, 

Proof The alternatives for 'c(n; follow :ilmnediately from Theorem 3.7. 

The alternatives listed for N{D; are those obtained from Theorem 3.7 for 

which N(DY does not centralize D. Let D = (g). By Corollary 4.2, there 

exists x E N(D) such that gx 

N[D)" does not centralize D. 

-1 = g -x --1 g C: g g has- order 3; hence 

Appendix II contains fragments of the character tables of the 

various alternatives for N{D;, except s
3 

x A
3 

and n.s
3 

(Tables for these 

two groups will not be needed). The fragments are those correcpon<ling 

to the principal 3-blocks. Each fragment may also be considere~ us~ 

fragment of the character table of N(D) corresponding to the principal 

3-block, provided each column represents a set of conjugacy classes of 

N(D) mapped to a single class of N{D;. We shall denote such a set by 

brackets; specifically, [x] will denote {y E N(D)I y is conjugate to x 
in N(D)}. Using the results of Wong [32], summarized in Chapter III, 

Section 4, we obtain: 

Theorem 5.5 2 Let G be a group of order 3 t, (3,t) = 1, for which the 

conclusion of Theorem 5.4 holds. Then there are seven possible cases 

for the fragment of the character table of G corresponding to the 

principal 3-block and the 3-section of a 3-element g; the cnses nre 

given on the next two pages, Cases i and i' correspond to alternative i 

of Theorem 5.4; cases ii, iii, iv, v, and vi correspond to alternatives 

ii, iii, iv, v, and vi of Theorem 5.4 respectively. ei denotes a sign. 
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Case i [ g] Case i' [g] 

X1 X1 

X2 f2 E: 2 X2 f2 E:2 

X3 f 
3 E:3 • X3 f3 e3 

X4 
... 

E:4 X4 f4 E:4 .1.4 

X5 f5 e5 X5 f5 E:5 

x6 f6 E:6 x6 f6 2e6 
X7 f7 E:7 

X3 f8 €8 

X9 f9 E:9 

Case ii 1 [g] [gv J 

X1 

X2 f2 E:2 E:2 

X3 f3 €3 €3 

X4 f4 -E:4 E:4 vis an element of order 2 

X5 
... -E: E:5 

in s
3 

. v is in c(D';'. J..5 5 
x6 . f6 -E:6 €6 

X7 f7 2e
7 

0 

X8 r8 2e8 0 

X9 f9 2E:9 0 

Case iii [g] [gv J 2 [gv J [gw] 

X1 1 1 

X2 f2 E:2 E: 2 E: 2 E:2 

x3 f3 E: E: E: E: 
3 3 3 3 

X4 f4 -4E:4 E:4 64 0 v' and ware elements 
of A

5 X5 r 5 -4e
5 E: 5 €5 0 - (12345) x6 f6 -4€6 E: 6 s6 0 v= 

X7 r · 5E:7 0 0 e7 
w = (12)(34) 

. 7 
X8 f8 5€8 0 0 ea 
X9 f9 5e

9 
0 0 €9 



Case iv 

Case v 

Case vi 
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[ g] [gv] [gw] [gx] [gy J 

f2 E:2 

f3 E:3 
r4 -4e 4 
f5 -l+e5 
r6 -4e6 
f7 5E:7 
rs 5es 

f9 5E:9 

1 

f2 E:2 

f3 E:3 
f4 -7E:4 

f5 -7E:5 

f6 -7E:6 
r

7 
8e

7 
fs 8e8 
r
9 

8e
9 

E: 2 

E: 3 
2E:4 

2E:5 
2E:6 

-E:7 
-E: 8 

-E:9 

1 [g] [gv] [gx] [gy] [gu] (gw] [gz] 

1 

:f2 E:2 E:2 E:2 

f3 E:3 E:3 E:3 
f4 - 7e4 E:4 E:4 

f5 - 7€5 E:5 E:5 
f6 -7e6 E:6 E:6 
.f Se o o 

7 7 
r8 8e8 O o 
:r9 8e

9 
0 O 

62 62 

63 63 

6 4 6 4 
E:5 E:5 

E:6 E:6 
0 0 

0 0 

0 0 

v, w, x, and y 
are elements of 

s5 

V = ( 1231+5) 

w = ( 12)(34) 

X = (1234) 

y = (12) 

v and ware 
element::; of 
PSL

2
(7) 

v has order 4 
w has order 7 

v, x, y, z, 
w, anu u arc 
clements of 
PGL

2 
(7) 

-:;;;1 = 1 
-8 -2 
V = Z = 
...::x -3 
V = V 

- • -7 
X = V 

-2 
y = V 

- _4 
U = V 



Proof Assume first that alternative ii, iii, iv, v, or vi of 

Theorem 5.4 holds. We shall use the notation introduced in Chapter III, 

Section 4. The set S of special classes will be {x E N(D) I xi= g for 

some il. In each case, S has a basis {~ 1,~2 l, where 

The matrix A is as follows: 

-1 
A = -1 

-1 -1 

0 0 

1 O 

0 1 

0 

1 

The matrix C is an integral matrix satisfying the equation AAT = CCT. 

Each entry in the first column of C is 1, for x
1 and 111 

are the identity 

G and N(D) respectively; 
G 

= ( ~ i' 111) = characters of hence ci1 
= < ~ i , x1 > 

By Theorem 4.1 O, Bo(3) contains 6 or 9 irreducible characters; hence 

has 6 or 9 columns. Suppose Chas a column consisting entirely of 

zeroes. Let X be an integral matrix such that AX= C. If column j 

C 

of C contains only zeros, we may replace column j of X by a column of 

zeroes and still maintain the equality. Then x.(g) = ~ x .. 11.(g) = O. 
J i lJ l 

By Corollary 4.3, · xj(1) = O (mod 3), contrary to Xj being in a 

principal 3-block of defect 2. We conclude that no column of C consists 

entirely of zeroes. Apart from a permutation of the rows and columns, 

the only possibility for the matrix C is the following: 

C = 

Thee. are signs (i.e. e. = !1). A matrix X satisfying the equation 
l l 

AX= C is the following: 

1 . 



39 

E:2 E: 3 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 -e4 -e5 -e6 0 0 0 

X = 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 e7 e8 e9 
0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 

Ifs is in a special class, X. (s) can be computed from the forlln.lla: 
J. 

x.(s) = ~ x .. T).(s). We obtain the fragments of the character table of 
1 j J1 J 

G given in the statement of the theorem. 

Now assume that alternative i of Theorem 5.4 holds. In this case, 

the desired conclusion can be obtained without using exceptional 

characters. As in [4,II-Section III], let the function A be defined on 

G by A(G,x) = ~ jx(x)j
2

. c(D"'Y is a group of order 9; hence, 
X E Bo(3) 

using the results of [4,II], we obtain 

By Theorem 4.10, Bo(3) contains 6 or 9 characters. Corollary 4.3 

implies that x(g) is rational. It follows easily that one of the 

two alternatives in the statement of the theorem holds. 

Definition 5.6 The alternatives of Theorem. 5,5 will be referred to as 

the "cases for g" or "cases for the class of g." For example, we will 

say that case i' occurs for g if C(g)/0
3

,(c(g)) = (g) X A
3 

and if 

the fragment of the character table of G corresponding to Bo(3) nnd 

the 3-section of g is that of case i' of Theorem 5.5. 
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3. ~ single conjugacy clas s of 3-elements 

For a simple group of order 2aqb32 with a sinele conjugacy class 

of 3-elements, Theorem 5.5 gives the fragment of the character table 

corresponding to the principal 3-block and the 3-singular clements. 

The block-section orthogonality relations and the congruences ~eveloped 

in Chapter IT, Section 2 yield the following equations for the degrees 

in Bo (3). 

Theorem 5.7 L t G b • 1 f d 2a b32 t • • e ea s:unp e group o or er q con aining a 

single conjugacy class of 3-elements. Depending on which case occurs 

in Theorem 5.5, the degrees f. of the irreducible characters in the 
l 

principal 3-block of G satisfy one of the following sets of equations: 

Case i: 

Case i' : 

Case ii: 

Case iii 
and 

Case iv: 

9 
1 + I: 

i=2 

5 
1 + I: 

i=2 

6 
1 + I: 

i=2 

3 

€: .f. = 0 
l l 

€: . f. + 2E:6f6 
J. l 

€: . f. = 0 
l l 

9 

f. ·= €:. (mod 9) for i = 
l J. 

2,3, .•. ,9 

f. = €: . (mod 9) for 
0 

J. l 
i = 2,3,4,5 = 

f6 = 2€:6 (mod 9) 

fi - €: . (mod 9) for 
l 

i = 2,3 
f. 8€: . (mod 9) for -

l l i = 4,5,6 
-f. 2€: . (mod 9) for 1 I: €: . f. I: €: . f. + + = 0 l l 

i = 7,8,9 i=2 l l 
i=7 

l l 

6 
(mod 9) 1 + I: €: . f . . 0 f. - €: . for = J. l 

i=2 l l i = 2, 3 
f. - 5€: . (mod 9) for 

l l 
i = 4,5,G 3 9 

1 + I: €: . f. + I: €: . f. 0 f. - '.5€:. (mod 9) for = l l 

i=2 l l 
i=7 l l i :: 7,8,9 
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6 f. := €. (mod 9) for 
Case }: 

l l i=2,3 V 1 + € . f. = 0 
and i=2 1 l :f. := 2€. (mocl 9) for 

l l i=l.~ 5 6 Case vi: ' ' 
3 7 f. - 8e: . (mod 9) for 

1 }: €. f. 0 
l l i 7,8,9. + €. f. + }: = = 

1 l l l 
i=2 i=7 

X. y. 
In each case, e:. = + 1 and f. = 2 1 q 1 for some integers x. and y .. 

l l l l 

Proof PSL
2

(8) and PSL
2

(17) have more than one conjugacy class of 

3-elements. Hence Theorem 3,1 and Lemma 5.1 imply that q is 5 or 7 and 

that G has elementary abelian Sylow 3-subgroups. Theorem 5.5 gives 

fragments of the character table of G. }: x( 1) x(h) = 0 for 
X E Bo(3) 

all 3-singular elements h [3,II-7C]. Setting h = e, we obtain the 

equations for cases i and • I 
l • With h = gv, we obtain the first 

equation for cases ii, iii, iv, v, and vi; with h = gw, we get the 

second equation for cases iii, iv, v, and vi. To derive the second 

equation for case ii, we add the equations obtained with h = g and 

h = gv and divide the sum by 2. 

The congruences follow immediately from Corollary 4.6. 

4. More than~ conjugacy class of 3-elements 

ab 2 Let G be a simple group of order 2 q 3. Assume that G is not 

isomorphic to PSL
2 

( 8) or PSL2 (1'7); then Theorem 5. 5 is applicable. If 

G has more than one class of 3-elements, we must consider how the 

fragments of the character table corresponding to the different classes 

fit together. First we make the following definition. 
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Definition 5. 8 Let x
1
, x2, ... , xn be the irreducible characterc in 

the principal 3-block of G. For h E G, Y(h) will uenotc the 

n-dimensional column vector with entries x1 (h), x2(h), • • a J X (h). n 

Lemma 5.9 Let G be a simple group of order 2aqb32 not isomorphic to 

PSL
2

(8) or PSL
2

(17). Assume G has more than one conjugacy class of 

3-elements; let g1 and g2 be representatives of two such classcc. Then: 

1) If case i' occurs for g
1
, case i' must also occur for _13

2
. 

2) If case iii or case iv occurs for g
1
, case v or case vi 

cannot occur of g
2

. 

3) Y(h1 )·Y(h2 ) = 0 (i.e. Y(h1) and Y(h2 ) are orthogonal) 

whenever h
1 

is in the 3-section of g
1 

and h2 is in the 

3-section of g2. 

4) x(g
1

) = x(g2 ) (mod 3). Hence, if x(g
1

) = m
1
e1 and 

X(g2 ) = m2e2, then e 2 = e1 provided m
2 

= m
1 

(mod 3) and 

e 2 = -e 
1 

provided m2 = 2m
1 

(mod 3). 

Proof If case i' occurs for g
1
, then B0 (3) contains 6 irreducible 

characters; it follows from Theorem 5.5 that case i' must also occur for 

If case iii or case iv occurs for g
1
, then jGj = 2a5b32 since A

5 

is involved in G. Case v or case vi cannot occur for g
2
, since in these 

I I ab 2 
cases, G = 2 7 3 . 

(3) follows immediately from the block-section orthogonality 

equation ~ x(h1) x(h2) = o [3,II-7C]. 
X E Bo(3) 

By Corollary 4.4, x(g.) = x(1) (mod 3) for i = 1, 2. Hence 
J.. 

(4) holds. 
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Lemma 5.10 Let G be a simple group of order 2aqb32. Then case i 

occurs for at most one class of 3-elements. 

Proof Suppose case i occurs for g
1 

and g
2
, where g

1 
and g2 are 

non-conjugate 3-elements. Theorem 5.5 gives fragments of the character 

table. For i = 2, 3, ... , 9, there exist signs e. and e.' such that 
1 1 

that e. = e.' for all i. 
1 1 

Lemma 5.9, Part 3. 

It follows from Lemma 5.9, Part 4 
9 

+ ~ e.e ' = 9 contrary to 2 l. i , 

If fragments corresponding to different classes of 3-elements do 

fit together in such a way that the conditions of Lemma 5.9 are 

satisfied, we may obtain diophantine equations for the degrees f. in 
1 

Bo(3) by setting Y(1 )·[~a.Y(h.)] = 0 for any real numbers a. and 
il. l. l. 

3-singular elements h. (not necessarily in different 3-sections). Also, 
1 

congruences may be obtained from Corollary 4.6. 

In each of cases iii, iv,' v, and vi, the character table has a 

fragment of the form 

g gv gw 

X1 1 

X2 e2 €2 €2 

X3 € €3 € 
3 3 I 

X4 -$€4 e4 0 

X5 -~€5 €5 0 

x6 -~€6 €6 0 

X7 (i3+1)e
7 

0 €7 

X3 (i3+1 )s8 0 SB 

X9 (~+1)e9 
0 €9 
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with~= 4 in cases iii and iv and~= 7 in cases v and vi. In case ii, 

the character table almost has a fragment of this form with~= 1; only 

the column of gw is missing. We may obtain a column vector identical 

to the column of gw by taking one half the swn of the colwnns of g and 

of gv; this column is orthogonal to any column of another 3-section. 

Hence we shall asswne that, in case ii, there is a fragment of the form 

just given with ~ = 1; the "colwnn of gw" will be used only in 

orthogonality relations. 

In considering how fragments corresponding to different classes 

of 3-elements can fit together, we need to consider the various fusion 

patterns (Theorem 4.1) and, for a given fusion pattern, the various 

cases (Theorem 5.5) which occur for each class of 3-elements. The 

following notation will be useful. 

Definition 5.11 Let 

for j = 1, 2, ... , n. 

z E \a,b,c,d} and let x. E \i,i',ii,iii,iv,v,vi} 
J 

A simple group of order 2aqb32, not isomorphic 

to PSL2(8) or PSL2(17), will be said to be of type z-x
1
,x2, ... ,xn 

provided that fusion pattern z (Theorem 4.1) occurs and that cases 

x
1
, x2, ... , and xn respectively occur for then conjugacy classes of 

3-elements (n must be 1, 2, 3, or 4 according as to whether z is a, b 

c, or d). 

For example, G is of type b-i,iv if alternative b of Theorem 4.1 

occurs and if case i occurs for one class of 3-clements and case iv 

for the other. 
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5. Two conjugacy classes of 3-elements 

Throughout this section, G will denote a simple group of order 

2aqb32 with exactly two conjugacy classes of 3-elements. Representa­

tives of the two classes will be denoted by g and g•. A "prime" 

following a symbol will indicate that the object is associated with the 

second class; for example, if case iii occurs for the second class, 

the elements v and w of Theorem 5.5 will be written v• and w•. 

We shall treat separately the following three alternatives: 

1) Case i' occurs for both classes, that is, G is of 
type b-i 1 ,i 1

• 

2) Case i occurs for one class , and case ii, iii, iv, v, or vi 
occurs for the other. 

3) A case numbered ii or higher occurs for each class. 

Theorem 5.12 Let G be a simple group of order 2aqb32 with two classes 

of 3-elements. If case i 1 occurs for both classes, the character table 

has the following fragment: 

1 g g• 

X1 1 1 

X2 f2 €2 €2 

X3 f3 €3 €3 

X4 f4 €4 E:4 

X5 f5 -€ 
5 2E:5 

x6 f5 2€5 -E: 
5 

The degrees in Bo(3) satisfy the conditions: 

1 + E:2f2 + €3f3 + €4f4 + €5f5 = 0 

f. = e. (mod 9) for i = 2,3,4, f5 - 5e
5 

(mod 9). 
l. l. 
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Proof Using Lemma 5.9, Parts 3 and 4, we obtain easily that there 

is a fragment of the type: 

g1 g2 

X1 1 

X2 f2 €2 €2 

X3 f3 €3 €3 

X4 f4 €4 €4 

X5 f5 -€ 
5 2€5 

x6 f6 2€6 -€6 

hence Since f
5 

and r6 are 

positive, e
5 

and e
6 

are both positive or both negative; hence e
5 

= €6 . 

It follows that f
5 

= f 6, and the character table has a fragment of the 

type in the statement of the theorem. 

Y(1 )·[Y(g
1

)+Y(g2 )] = O; hence we obtain the equation in the theorem. 

The congruences follow immediately from Corollary 4.6. 

Theorem 5.13 There are no simple groups of order 2aqb32 with two 

classes of 3-elements, in which case i occurs for one class and 

case ii, iii, iv, v, or vi occurs for the other class. 

Proof Assume that G is a group of this type. We may assume that 

case i occurs for the second class. It follows from Lemma 5.9, 

Part 4 that the character table has a fragment: 



g 

X1 1 1 

X2 f2 €2 

X3 f3 €3 

X4 f4 -St:4 

X5 fr:: 
) -St:5 

x6 f6 -Se6 

X7 f7 (s+1)e7 

X3 f3 (s+1)e8 

X9 f9 (S+1 )e
9 
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gv 

1 

€2 

€3 . 

€4 

€5 

€6 
0 

0 

0 

gw g' 

€2 

€3 

-€4 

-€5 

-€6 

-€7 

-E:8 

-E:9 

Here Sis 1 if case ii occurs for g, 4 if case iii or case iv occurs 

for g, and 7 if case v or case vi occurs for g. 1 + e
2

f 2 + e
3
r
3 

= 0 

since Y(1 )•[Y(gv)+Y(gw)+Y(g')] = O. On the other hand, Corollary 4.6 

implies fi = ei (mod 9) for i = 2, 3; hence 1 + e2f 2 + e
3

f
3 

= 3 (mod 9). 

Theorem 5.14 Let G be a simple group of order 2aQb3
2 

with two conjugacy 

classes of 3-elements. Suppose that a case numbered ii or higher occurs 

for each class. Then the character table of G has a fragment: 

1 g gv gw g' g'v' g'w' 

X1 1 1 1 1 1 1 1 

X2 f2 E:2 €2 E:2 S'e 2 -E:2 0 

X3 f3. E:3 E:3 E:3 -(t,'+1)€3 0 

X4 f4 -St:4 € J, 0 .... 

~ "'5 €5 0 

l'.6 -6 1-'"'6 E: 6 0 (S'+1)e6 0 E: 6 

X7 f7 (t,+1)€7 0 E:7 -€7 -E:7 -E:7 . 

X3 f3 (s+1)e8 0 E: 8 -s'es E: 8 0 

X9 f9 (t,+1 )e
9 

• 0 E:9 (s'+1)e9 0 E:9 
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Here~ is 1 if case ii occurs for the first class, 4 if case iii or 

case iv occurs, and 7 if case v or case vi occurs; ~1 depends in the 

same way on which case occurs for the second class. The following 

equations and congruences hold: 

+ E:2f2 + E:6f6 + E:9f9 = 0 f2 := 5 ( 1 +f3 I )t: 
2 

f = 4~ 1 € 

1 E:4 f4 + E:3f3 + E:9f9 = 0 3 3 
f 4 = 4 ( 1 +~ ) e 4 

+ e5f5 + E:6f6 E:7f7 0 
f := 4(~+~ I )t: 

= 5 5 
f 6 = 5 ( 1 - ~ +~ ' ) e 6 

1 + E:3f3 + E:5f5 + E:3f3 = 0 f7 - 5~E:7 
f - 5 ( 1 +~-~' ) 8 
f9 - 5(2+f3+~' ). 

Proof x
1
, x

2
, ... , x

9 
are the characters in Bo(3). By convention, 

x
1 

is always the identity character. l1,2,3,4,5,6,7,8,9\ may be 

partitioned into three sets x
1
, x

2
, and x

3 
as follows: 

x1 = i: lx/g) I = 1, X is constant on the 3-section of B l 

x2 = i: lxi(g)I = f3' X is not constant on the 3-section of g 

x3 = i: lx/g) I = f3 + 1 l. 

l1,2,3,4,5,6,7,8,9\ may also be partitioned into sets x
1 
', X2 ', and x

3
1

, 

defined as above except with f3' and g' replacing f3 and g. 

I~ I = !Xk' I = 3 for k = 1, 2, 3. Let u.k = 1x. n XI I for j,k = 1,2,3. 
J J k 

The matrix U = (ujk) is a 3 x 3 matrix of nonnegative integers in which 

each row sum and each column sum is 3; also u 11 > o. The key observa­

tion is the following: The matrix U completely determines how the 

fragments corresponding to the sections of g and g' fit together, that 

is, the matrix U determines, apart from the order of the rows and from 



signs €
2
, ... , €

9
, the fragment of the character table corresponding to 

Bo(3) and the 3-singular elements. In particular, given U, we can 

compute Y(h)•Y(h') whenever his in the 3-section of g and h' is in the 

3-section of g'. The only matrix U for which all these inner products 

vanish is the matrix in which each entry is 1. In this case, we may 

assume the sets are: 

x1 = !1,2,3} x2 = l4,5,6} x3 = l1,s,9} 

X' = \1,4,1! X2' = \2,5,8} X' = \3,6,9}. 2 3 

We obtain the fragment given in the statement of the theorem. The 

four equations follow respectively from: 

Y(1)·[Y(gv)+Y(gw)-Y( g 'v' )+2Y(g'w' )] = 0 

Y(1)·[-Y( gv)+2Y(gw)+Y(g'v' )+Y(g'w' )] = 0 

Y(1)·[2Y(gv)-Y(gw)+Y(g'v' )+Y(g'w' )] = 0 

Y(1)·[Y(gv)+Y(gw)+2Y(g'v' )-Y(g'w' )] = O. 

Finally, the congruences are a direct consequence of Corollary 4.6. 

The four equations of 1'heorem 5. 14 contain all the information 

obtainable from the orthogonality relations; any degrees satisfying the 

four equations will satisfy all the orthogonality relations. 



50 

6. Three conjugacy classes of 3-elements 

Theorem 5.15 There are no simple groups of order 2aqb32 containing 

exactly 3 conjugacy classes of 3-elements 

Proof In view of Lemmas 5,9 and 5.10, it suffices to consider the 

following cases: 

1) Case i' occurs for each class. 

2) Case i occurs for one class and cases ii, iii, iv, v 
or vi occur for the other classes. 

3) Cases ii, iii, iv, v, or vi occur for each class. 

Assume case i' occurs for each class. By Lemma 5.9, parts 3 and 4, 

the character table has a fragment: 

1 g g' g" 

X1 

X2 f2 E:2 E:2 E: 2 

X3 f3 E: 3 €3 €3 

X4 f4 €4 E:4 -2€4 

X5 f5 €5 -2€5 €5 

x6 f6 -2€6 €6 €6 

Y(1)·[Y(g)+Y(g' )+Y(g")] = O; hence 1 + e: 2f 2 

hand, Corollary 4. 6 implies f. = e:. (mod 9) 
J.. J.. 

On the other 

for i = 2, 3; hence 

Assume that a case numbered ii or higher occurs for the first and 

second classes and that case i occurs for the third class. The 

fragments for the second and third classes must fit together as in 

Theorem 5. 13 (The assumption that G had only two conjugacy classes of 
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3-elements was not used in deriving the fragment given in Theorem 5.13, 

although it was needed to obtain the congruences). As in the proof 

of Theorem 5.13, block-section orthogonality yields the equation: 

Finally, assume that a case numbered ii or higher occurs for each 

of the 3 classes. The fragments corresponding to any two of the classes 

nrust fit together as in Theorem 5.14. As in the proof of Theorem 5.14, 

we define the sets x
1
, x2, x

3
, the sets x

1 
', x2

1
, x

3
1

, and the sets 

X II X II X 11 (primed objects are associated with the second class and 
1 ' 2 ' 3 

d.ouble-primed objects with the third class). As in Theorem 5. 1 l~, no 

generality is lost in assuming: 

x
1 

= (1,2,3} 

= (1,4,7} X ·' 1 

x2 = {4,5,6} 

x
2 

I = { 2, 5 J 8} 

x
3 

= { 7, 8, 9} 

x
3 

I = { 3 J 6 J 9 }. 

For i = 1, 2, 3, the set X/ must be such that \ X." n X . j = 1 and 
J. J 

\X/ n Xj' j = 1 (j = 1, 2, 3). Also, 1 EX/. There are four 

alternatives for the sets X" X" X" namely: 
1' 2' 3' 

Alternative 

1 

2 

3 
4 

X" 
1 

{1,5,9} 
{1,5,9} 

{1,6,8} 

!1,6,8} 

XII 

2 

{2,6,7} 

{3,4,8} 

{2,4,9} 
{3, 5, 7} 

X " i. 
{3,4,8} 

{2,6,7} 

{3,5,7} 

{2,4,9} 

For each alternative, we obtain a fragment of the character table of 

the group corresponding to Bo(3) and the 3-singular elements. For 

alternative 1, the fragment is: 
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1 g gv gw g' g'v' g'w' g" c;"v" g" " w 

X1 1 1 1 

X2 f2 e2 e2 e2 13 ' € 2 -€ 
2 0 13"e: 2 -€ 2 0 

X3 f3 €3 e3 €3 -(l3'+1 )e:3 0 -e -(13"+1)e 
3 3 

0 -e 
3 

X4 f4 -13€4 E:4 0 -E:4 -€4 -E:4 (13"+1 )t::4 0 €4 

X5 f5 -l3E: 5 €5 0 -13' E: 
5 E:5 0 -E:5 -E:5 -€ 

5 
x6 f6 -13€6 €6 0 (13'+1)€6 0 E: 6 -l3"e:6 E:6 0 

X7 f7 (13+1)e:7 0 E:7 -E: -€ -€ -13" € E:7 0 
7 7 7 7 

X3 f3 (13+1)e:3 0 €8 -l3'€3 €8 0 (13"+1 )e: 0 €8 8 

X9 f9 (13+1 )e:9 0 €9 (13'+1)e:9 0 €9 -€ 
9 

-€ 
9. 

-€ 
9 

Here l3 is 1 if case ii occurs for the first class, 4 if case iii or case 

iv occurs, and 7 if case v or case vi occurs. 13' and 13" depend 

similarly on which case occurs for the second and third classes. 

The orthogonality relation Y(1)-[Y(gw)+Y(g'v')+Y(g"w")J = 0 yielcls 

1 + e8f 8 = O; hence f8 = 1, contrary to the assumption that the group ic 

simple. 

The other alternatives are handled similarly. For alternative 2, 

the orthogonality relation Y(1)·[Y(gv)+Y(g'w')+Y(g"w")] = 0 yields 

the equation 1 + t:: 6f 6 = O. For alternative 3, the relation 

Y(1)·[Y(gv)+Y(g'v')+Y(g"w")] = 0 implies that 1 + e:
5

f
5 

== O. For 

alternative 4, Y(1)•[Y(gw)+Y(g'w')+Y(g"w")] == 0 implies 1 + e
9
r
9 

== O. 
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7. Summary of the degree equations 

Th f ha that • 1 f d 2a b - 2 t us ar, we ve proven a sllTlp c group o or er q 3, no 

isomorphic to PSL2(8) or PSL2(17), has one or two conjugacy classes of 

3-elements. Theorems 5.7, 5.12, and 5.14 give the degree equn.tion8; a 

summary of the equations follows. 

9 
Type a-i: 1 + I: 

i==2 
e .f. == 0 

1 1 
f. - e . (mod 9) 

1 1 

Type a-i': 

Types a-ii, 
a-iii, a-iv, 
a-v, and a-vi: 

Type b-i', i' : 

f. = e. (mod 9) for i == 2, 3, 4, 5 
1 1 

f 6 = 2e6 (mod 9) 

f. = e. (mod 9) for i == 2, 3 
1 1 

f. = ne. (mod 9) for i == 4, 5, 6 
1 1 

f. = n'e. (mod 9) for i = 7, 8, 9 
1 1 

n is 8 for a-ii, 5 for a-iii and a-iv, and 
2 for a-v and a-vi 

n' is 2 for a-ii, 5 for a-iii and a-iv, and 
8 for a-v and a-vi 

f. = e. (mod 9) for i = 2, 3, 4, 5 
1 1 

f 6 = 5e 6 (mod 9) 



Types b-ii, ii; 
b-ii,iii; b-ii,iv; 
b-ii,v; b-ii,vi; 
b-iii,iii; b-iii,iv; 
b-iv, iv; b-v, v; 
b-v,vi; and b-vi,vi: 

f. 
l 

f. 
l 

n. 
l 

b-ii, ii 

n2 1 

n3 4 

n4 

n5 8 

nl'.'. 
0 

5 

n7 4 

ns 5 

n9 2 

54 

+ €2f2 + €6f6 + €9f9 = 0 

+ (-€4)f4 + €8f8 + €9f9 = 0 

+ €5f5 + €6f6 + (-€7)f7 = o 

+ €3f3 + €5f5 + €8f8 = o 

= n . €. (mod 9) for i = 2, 3, 5, 6, 
l l 

= n.(-€.) 
l l 

(mod 9) for i = 4, 7 

as given in the table below 

b-ii, iii b-ii,v b-iii,iii 

b-ii, iv b-ii, vi b-iii, iv 
b-iv,iv 

7 4 7 

7 1 7 

1 7 
2 5 5 
2 8 5 
4 4 7 
8 2 5 
8 5 5 

8, 9 

b-v,v 
b-v,vi 
b-vi, vi 

11-

1 

4 

2 

5 

5 

8 
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CHAPTER VI. Sil✓lPLE GROUPS OF ORDER 2aqb32 : SOLVING THE DEGREE EQUATIONS 

In this chapter, we shall develop methods for solving the degree 

equations obtained in Chapter V. It will turn out that many, if not 

all, of the equations have an "essentially" finite number of solutions. 

1. The equations 

Let IT be a fixed, finite set of primes. A IT-number will be a 

nonzero integer each of whose prime factors lies in IT. Let 

m
2

, m
3

, ... , ~ be fixed nonzero integers. We shall consider the equa­

tion: 

1) 1 + m2f 2 + ~f
3 

+ ... + ~fk = 0 

f 2, f
3

, ... , fk unknown IT-numbers. 

In addition to equation (1), we may have congruences for the unknowns: 

2) f. = c. (mod z) for i = 2, 3, ... , k. 
1 1 

Here z, c2, ... , ck are fixed integers. In fact, we may assume that we 

always have the congruences (2), for they hold trivially with z = 1, 

C = 2 =ck= O. 

The methods to be developed are applicable for any finite set IT of 

primes; however, for simplicity, we shall assume Irr!= 2 and denote the 

primes in IT by p and q. 
x . y. 

The f. of equation (1) can be written asp 1 q 1
; 

1 

the unknowns become x2, ... , ~, Y2, ... , Yk· 

Each of the degree equations in Chapter V, Section 7 breaks up into 

a finite nwnber of equations of the f orm ( 1); one equation of this type 

is obta ined for each fixed choice of the signs e:i. We also have congru­

ences of the f orm (2) with z = 9. 
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Eq_uation (1) a.ncl the congruences (2) mn.y have an infinite number 

of solutions. Suppose that (f2,r3
, ... ,fk) is any solution for which 

there exists a proper subset S of {2, 3, ... , k} such that 

1 + r; m.f. = o. 
1 1 

Let Sc denote the complement of Sin {2, 3, ... , k}. 
i E S 

Then 1 + r; 
i E S 

m.f. + 
1 1 

r: m. ( yf . ) = 0 
i E Sc i i 

for any integer y. Thus we 

obtain a solution to equation (1) for each integer y of the form pxqy; 

if y = 1 (mod z), the congruences (2) also hold. 

The author conjectures that this is the only way in which the 

number of solutions may be infinite. To make this statement more 

precise, we define a solution (f2,f3, ... ,fk) to equation (1) to be 

basic if, for each proper subset S of {2, 3, ... , k}, 1 + ~ . m.f. f O. 
i ES 1 1 

The conjecture then becomes: Equation (1) has only a finite number of 

basic solutions. 

We shall show that the conjecture is valid for a number of 

specific choices of the constants p, q_, k, m
2

, ... , 1\-.· Also, in 

Section 3, it will be proven that equation (1) has only a finite 

number of basic solutions for which x. < M for all i, M being any fixed 
J. -

integer. 

In many cases, the congruences (2) imply that every solution of (1) 
9 

is basic. For example, in the eq_uation 1 + ~ e.f. = 0 with the 
2 J. J. 

congruences f. = e. (mod 9), every solution is basic; for if Sis a 
J. J. 

proper subset of { 2, 3, ... , 9}, 1 + ~ e.f. = Isl + 1 (mod 9). s J. J. 
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2. The method of congruences 

In this cection, we shall present a method of determining all 

solutions of equation (1) and the congruences (2). 
x2 Y2 x3 Y3 xk yk 

The quant ity 1 + m;iP q + 7 p q + ... + V q will be 

denoted by(* ) . The key to applying congruences is the following 

elementary observation: If pt = qt' = 1 (mod r), then (-l<·) can be 

computed modulo r from the values of x2, x
3

, ... , ~ modulo t and of 

y2, y
3

, ... , yk modulo t'. 

There are two stages to the procedure. In the first stage, we 

determine all possibilities for the exponents x2, x
3

, ... , xk modulo N 

and the exponents y2, y
3

, ... , yk modulo N', where N and N' are 

appropriately chosen integers; in the second, we determine the exponents 

absolutely. 

For the first stage, we need three sequences as follows: 

i) A sequence 
n 

{ui}i=O of positive integers such that u0 = 1, 

u = N 
n . ' and ui lui+1 

for all i. 

ii) A sequence 
n 

{vi}i=O of positive integers such that v
0 = 1, 

V = N' n , and vilvi+1 for all i. 

iii) A sequence 
n 

{gi} i=1' where g_ 
J. 

is a set of primes with 
ui v. 

the property that p - q J. = 1 (mod r) for all r E g . . 
J. 

The process is inductive. Let 1 < J < n. Assume that, after step J-1, 

we know all possibilities for the xi modulo uJ_
1 

o.nd the y1 mouulo 

vJ_ 1 -- that is, assume that we have determined an integer LJ_ 1 and 



~ set l(x2s,x38 , .•. ,¾
8
,y2s,y3s,···,Yks)I s = 1,2, ... ,LJ_ 1} such that, 

if (x2, ... ,xk,y2, ... ,yk) is any solution of (1), there exists 

an integers such that x. = x. (mod uJ 1) and y. = y. (mod vJ 1). 
1 1S - 1 1S -

We shall say that we have LJ_
1 

cases for the exponents, each case 

corresponding to a value of s. In step J, each case is divided into 

subcases according to the values of the x. modulo uJ and they. modulo 
1 1 

• ( / )k-1 ( / )k-1 vJ. Each case divides into uJ uJ_ 1 vJ vJ_ 1 subcases as xi 

ranges over the values xis' xis+ uJ_ 1, ••• ,xis+ (uJ/uJ_ 1 - 1)uJ_ 1 

and yi over the values yis' yis + vJ_ 1, ••• , yis + (vJ/vJ_ 1 - 1)vJ_ 1. 

For each subcase, (*) is computed modulo each prime in -G'J; if a nonzero 

quantity is obtained for any one of the primes, the subcase is discarded, 

T'nis completes step J; the subcases which remain form the set of cases 

with which we begin step J+1 unless J = n, in which case the remaining 

subcases give all possibilities for the exponents x. modulo N and the 
1 

exponents y. modulo N'. 
1 

Of course, some of the cases may not correspond to actual solutions. 

To obtain meaningful results, it is necessary to produce enough primes 

in the sets t?. so that all or nearly all of the extraneous cases are 
J 

eliminated. 

In the second stage, congruences modulo powers of p and q are 

used to determine some or all of the exponents absolutely. We sball 

describe a check modulo qS. Assume that stage 1 bas been performed 

for integers N and N' such that pN = 1 (mod qS) and N' ~ s. We have 

a set {(x2s, .. ·,~s'y2s,• .. ,Yks)I s = 1,2, ... ,Ln} such tbat, if 

(x2, ... ,~,Y2, ... ,yk) is any solution of (1) and (2), there exists 

s such that x. = x. (mod N) and y. = y. (mod N') for i = 2, 3, ... , k. 
1 1S J. J.S 
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any solution. For some s, we may 

write y. = y. + t. N' for i = 2, 3, 
). 1:::; ). 

xi 
. . . , n. p may be computed 

0 X. x. 
0 

modulo q~ ; in fact, p 1 =pis (mod q~) . qyi = qYis (mod qS) if t. = 0 
). 

Y· o 
and q 1 = 0 (mod q~) if t . > O. 

). 
Thus, for a given case (i.e. for a 

• l f ) th t t 2k- 1 "b"l"t· f (-l<) d 1 given va. ue o s , ere are a mos possi J.. 1 ies .:or • mo u o 

l, depending on which of the integers t 2, _t
3
, ... , tk are zero . If 

none of the alternatives for( * ) is zero, the case is discarded. If 

a zero value for( * ) is obtained only for alternatives in which t. = o, 
J.. 

we have shown that yi = yis' that is, we have determined the exponent xi 

absolutely (for the case numbered s) . Frequently, a check modulo qS 

for sufficiently high S suff ices to determine y 2, y
3
, ... , y k absolutely. 

To determine they. absolutely in cases, it is necessary that S be 
J.. 

greater than the maxirrru.m of the integers 

y2s, y38, ... , yk
8

; further discussion of this point appears is 

[ 22-Section 3]. 

Similarly, a check modulo py may be used to determine some or all 

of the exponents x
2

, x
3
, ... , xk absolutely. If y 2, y 

3
, ... , y k are 

Yi 
already known absolutely, q may be computed absolutely for i = 2, 3, 

... , k. Hence we may use any y for which N ~ y. 

Having outlined the method of congruences, we now present some 

modifications. The congruences (2) may be used to eliminate cases in 

the first stage of the procedure. Let e and e be the exponents of p q 

p and q modulo z respectively. Let J be the smallest subscript such 

that epluJ and eqlvJ. Then, in step J, we may check the conditions 
x. Y· 

p 1 q 1 = ci (mod z) for i = 2, 3, ... , k und discard any subcase for 

which one or more of the congruences fails. 
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In equation (1), the first term is 1; it follows that there mu8t 

be another term relatively prime top and another term reln.tively 

prime to q. Thus there exist J' and j' such that x. - y - O· J - j' - ' 

this reduces the number of subcases into which each case is divided in 

to reduce the number of cases further. 

The method of congruences is easily progranuned on a computer. The 

steps are represented by nested "do" loops. The number of terms in the 

equation must be reasonably small -- no greater tmn six or seven 

in order for the program to run in a matter of minutes. Also, in order 

to determine all solutions absolutely, the number of solutions nrust in 

fact be finite; in particular, there Im.1st be no non-basic solutions. 

2, ~ second method for solving the degree e~uations 

In this section, we shall present a method for determining all 

basic solutions of equation (1) and the congruences (2) for which 

x. < M, M being some fixed integer, and y, is arbitrary (i = 2,3, ... ,k). 
1 - 1 

This method will be used in cases in which the method of congruences 

breaks down . 

Lemma 6.1 Let M be a nonnegative integer. The equation 

has only a finite number of basic solutions for which x. < M for all i. 
i-

Proof If j is a nonzero integer, let p(j) denote the power to which 

p occurs in the prime factorization of j and let a(j) denote the power 



to which q occurs . For i = 2, 3, . .. ) 

y are nonnegative integersl. Let S be the union of s
2

, s
3
, ... , and Sk. 

Rearranging the terms, we may write the equation as: 

i) 

ii) 

iii) 

iv) 

1 + w 
2 

+ w 
3 

+ . . . + wk = 0, 

w. ES for all i 
J. 

cr(w2 );:: cr(w3);:: ... ::::, cr(wk) 

1 + I: w .. f O if T¢{2, .. ,kl 
i ET ::i. 

There is a permutation~ of {2, 3, ... , k} 

such that wi E S~(i) for each i. 

We shall show that the number of solutions is finite even without 

the last condition. 

The elements of Smay be arranged in a sequence {sil:=1 such that 

cr(s
1

) 2 cr(s2) 2 cr(s
3

) S ... , for there are only a finite number of 

elements of S for which cr takes on values less than any f:bced integer. 

Define a function hon the nonnegative integers by setting h(j) equal 

to the largest integer i for which cr(s.) < j. 
J. -

Let I:i = { (1,w2, ... ,wi) \ there exist wi+1, ... ,wk such that 

w2,w3, ... ,wk satisfies i, ii, and iii above}; Li is defined for 

i = 1, 2, ... , k. Clearly L
1 

is finite; our objective is to show that 

~ is finite. Assume by induction that L. is finite. 
J. 

Suppose 

(1,w2, ... ,wi,wi+1) E I:i+1. Then (1,w2, ... ,wi) E Li. Let 

v = 1 + w2 + + wi. v f Oby condition (i) above. If (w2, ... ,wk) 

satisfies i, ii, and iii above, then cr(wi+1 + ... +wk)= cr(-v) = cr(v); 

by condition (iii), cr(wi+1);:: cr(v); hence wi+1 = sj for some j such 

that j 2 h(cr(v)). Thus there are only a finite number of possibilities 

for an element (1,w2, ... ,wi+1) in Li+1 for which (1,w2, ... ,wi) is a 

given element of Li. Since Li is finite, so is Li+1. By induction 
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~k is finite. 

The proof of Lemma 6.1 gives a constructive method for obtaining 

the solutions. In place of the infinite sequence !sil;=1, we use a 

sufficiently long finite sequence. The sets~- are constructed by 
1 

setting ~j+1 = !(1,w2, ... ,wj,wj+1 )1 (1,w2, ... ,wj) E i":j and wj+1 = sn for 

some n with r < n < h(~(1+w2+ ... +w.)), where r is the integer such that 
- - J 

wj = sr}. Finally, we obtain the solutions by selecting those elements 

of~ for which 1 + w2 + ... +wk= O. 

The method outlined above is easily programmed for a computer and 

turns out to be very efficient. Even if a bound for the exponents yi 

is given, considerable computer time can be saved by ordering the possi­

ble values for the unknowns as in Lemma 6. 1. • 

4. The solutions 

In this section, solutions are given for degree equations obtained 

in Chapter V for simple groups of order 2aqb32 with two classes of 

3-elements. When the method of congruences is used, the sequences 

!uil, {vil, {0il are given, as are the powers of 2 and q used at the 

final stage to determine the exponents absolutely. For the case of 

a single class of 3-elements, solutions will be given in Chapter VII. 

For future reference, the equations which follow will be labeled A, .B, 

C, D, E, F, and G. 



ill 

i -
0 

1 

2 

3 
4 

5 
6 

7 
8 

u. 
J.. 

1 

6 

12 

36 

72 

144 

288 

288 

288 

x. y. 
f. = 2 1 q 1 with q = 5 or 7 

J.. 

f. = e. (mod 9) for i = 2,3,4 
J.. 1 

v. t?i J.. 

1 

6 7 (if q=5) 
(Check congruences 
between f. and e.) 

12 13, 5 (if q=7) J.. J.. 

36 19., 37 
144 17., 73 
288 97 

576 577, 193 
1152 1153 

2304 257 

10 • 5 Check sUJn modulo 2 and then modulo q 

Solutions to ill .!£:£ g_ = 5 

1 ) 1 + 1 + 1 + 1 - 4 = 0 8 ) 1 - 8 - 8 + 10 + 5 = O 

2) 1 + 1 + 1 - 8 + 5 = O 9) 1 + 10 + 64 - 80 + 5 = O 

3) 1 + 1 - 8 + 10 - 4 = 0 10) 1 - 8 + 100 - 125 + 32 = O 

4) 1 + 1 + 10 - 512 + 500 = O 11 ) 1 + 10 + 64 - 125 + 50 = O 

5) 1 + 1 - 800 - 1250 + 2048 = 0 12) 1 - 8 - 8 + 640 - 625 = o 
6) 1 + 64 + 64 - 125 - 4 = o 13) 1 + 64 + 100 - 125 - 40 = O 

7) 1 - 125 - 512 + 640 - 4 = O 14) 1 + 64 - 80 + 640 - 625 = O 

Solutions to ill for g_ = 7 

1) 1 + 1 + 1 + 1 - 4 = 0 4) 1 - 8 - 8 + 64 - 49 = o 
2) 1 + 1 - 8 - 8 + 14 = o 5) 1 - 224 - 512 + 784 - 49 = O 

3) 1 - 8 + 28 + 28 - 49 = o 
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--

Note For solution (5) to eq_untion (A) for q_ = 5, checkiniz the :~um 

10 5 modulo 2 and 5 is not sufficient to determine all the exponentc 

absolutely; however, it does show that x
2 

= y
2 

= 0 and consequently 

f
2 

= 1; hence the solution cannot occur for a simple group. Further 

steps are req_uired to determine all the exponents absolutely. 

ill 

i 

0 
1 
2 

3 

4 

5 
6 

f = e (mod 9) a a 

u. 
1 

1 
6 

12 
36 
72 

144 
288 

v. 
1 

1 
6 

12 
36 

144 
288 

576 

X. y. 
f 2

1 q 1 f. b . = or 1 = a, ,c, 
J. 

q = 5 or 7 

f = 5e (mod 9) 
C C 

(J. 
J. 

(Check congruences 
between f. and e.) 

1 J. 

13, 5 (if q=7), 7 (if q_ = 5) 

19, 37 
17, 73 

97 
193, 577 

8 4 Check sum modulo 2 and then modulo q_ 

Solutions to ill for g_ = 5 

1 ) 1 + 1 + 2 - 4 = o 5) 1 - 8 - 25 + 32 = O 

2) 1 - 8 + 2 + 5 = O 6) 1 + 640 - 16 - 625 = 0 
3) 1 - 125 + 128 - 4 = o 7) 1 + 64 - 25 - 4o = o 
4) 1 + 10 - 16 + 5 = 0 

Solutions to ill for g_ = 7 

1) 1+1+2-4=0 4) 1 - 8 + 56 - 49 = o 
2) 1 + 1 - 16 + 14 = O 5 ) 1 + 64 - 16 - 49 = O 

3) 1 - 8 - 7 + 14 = O 



fil 
x. y. 

1 + f + 1~ + f 0 f = 2 1 5 1 for • b E: E:b b E: = , . 1 = a, , c a a c c 1 

f = 4e (mod 9) 
C C 

The method of solution is exactly the same as that for (B) 

Solutions to fil 
1) 1 + 2 + 2 - 5 = 0 

2) 1 + 20 - 25 + 4 = 0 

ill 

f = 5e (mod 9) a a 

i u. v. 
1 1 

0 1 1 
1 6 6 
2 12 12 

3 36 36 
4 72 144 

5 144 288 
6 288 576 
7 32·9·7 64·9·7 
8 32·9·7 256·9·7 

9 128.9.7 256.9.7 
10 257.9.7 512.9.7 

Check sum modulo 2 11 

3) 1 - 16 + 20 - 5 = 0 
4) 1 - 16 - 25 + 40 = 0 

x. y. 
f . = 2 

1 5 1 for i = a,b,c 
1 

f = 7e (mod 9 ) 
C C 

tfi 

(Check congruences 
between f. and e.) 

7, 13 1 1 

19, 37 
17, 73 

97 
193, 577 

29, 43, 113, 127 
257, 1153 

769 
10753 

and then modulo 55 
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Sol utions ~ ill 
1) 1 - 4 + 5 - 2 = 0 3) 1 - 400 - 625 + 1024 = o 
2) 1 + 5 - 256 + 250 == 0 

X. y. 
fE 1 1 +sf +sf +sf - 0 f. = 2 

1 5 1 for i - ab C 
.;:,,;;;_j_ aa bb cc-' 1 - ' ' 

f = 4s (mod 9) 
C C 

The method of Section 3 was used to find solutions with 

y. < 7 for all i 
1-

Solutions to ill with y i ,::: 7 for all 1. 

1) 1 - 1 + t - t == 0 (any appropriate value oft) 

2) 1 + 8 - 4 - 5 = O 

3) 1 - 10 + 5 + 4 = 0 

ill 
x. y. 

1 f f f O f. -- 2 1 5 1 f • b + s + sb b + s == , or 1 = a, , c a a c c 1 

f = 8s (mod 9) a a f = 8e (mod 9) 
C C 

The method of Section 3 was used to find solutions with 

y . < 4 for all i 
1-

Solutions to ill with yi,::: 4 !£E. ~ 1. 

1) 1 - 1 + t - t = 0 (any appropriate value oft) 

2) 1 + 8 + 1 - 10 = O 



ill 
X. y. 

+ f + f + f O f = 2 1 7 1 f • b s sb b s = , . or J. = a, , c aa cc 1. 

f = 8s (mod 9) 
a a 

f = 4s (mod 9) 
C C 

The method of Section 3 was used to find solutions with 

y. < 2 for all i 
J. -

1) 1 - 1 + t - t = 0 (any appropriate value oft) 

2) 1 - 64 + 14 + 49 = o 
3) 1 - 64 - 49 + 112 = O 
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CHAPTER VII. SIMPLE GROUPS OF ORDER 2aqb32 : ANALYSING THE SOLUTIONS 

In this chapter, we shall attempt to determine whether the 

solutions obtained in Chapter VI actually occur as the degrees of the 

principal 3-block characters of a simple group. The most important 

technique will be restriction of the characters to 3-local subgroups. 

In the first few sections, we shall derive some properties of these 

subgroups and some congruences for the characters. 

1, Fixed-point-free automorphisms of order} 

Lennna 7. 1 Let P be a p-group, If cr is a fixed-point-free automorphism 

of P of order 3, then: 

Proof 

1) If p = 2 (mod 3), cr leaves invariant an elementary 
2 abelian subgroup of order p. 

2) If p = 1 (mod 3), cr leaves invariant an elementary 

abelian subgroup of order p or p3 . 

Let g be an element of order p, 2 Let K = (g,gcr,gcr ). K is 

invariant under cr since cr permutes the elements of {g, gcr, gcr2}. By 

2 [15-Theorem 10.1.5], the elements g, gcr, and gcr co:rmrrute; it follows 

that K is an elementary abelian p-group of order at most p3 , 

Suppose p = 2 (mod 3). cr permutes the nonidentity elements of K 

in orbits of length 3; hence !Kl = 1 (mod 3), It follows that !Kl= p2 , 

Suppose p = 1 (mod 3) and jKj 2 
= p K contains p+1 subgroups of 

order p; cr pernru.tes these in orbits of length 3 or 1. Since 

p+1 f O (mod 3), cr leaves invariant a subgroup of order p. 



2. CongrQences for the characters 

Lemma 7.2 2 Let P be an elementary abelian p-graup of order p. Let 

x be a rational (possibly reducible) character of P. If g1, ... , ~+1 

are generators of the p+1 subgroups of order p, then: 

p+1 
(p + 1) x(1) ·= ~ x(gi) 

i=1 

Proof Restatement of Theorem 4.5. 

2 (mod p ). 

Lerrrrr..a 7.3 Let P be a cyclic group of order pn. Let X be a rational 

(possibly reducible) character of P. If g E P, gP = 1, then: 

n-1 
Proof Leth be a generator of P such that hp = g. Lets be a 

primitive pn'th root of unity. Let~ be the character of P defined by 

~(hi)= Si· Ilk will denote {i I si is a primitive pk'th root of unity, 

0 Si< pn}. If i,j E Ilk, then x(hi) = x(hj) since xis rational. 

pn (x,~> = ~ x(u) ~(u) 
u E P 

n 
= ~ ~ X(hj) ~(hj) 

i=O j E Tii 

n n-i 
= ~ X(hp ) 

i=O 

= x(1) - x(g) . 

i The last equality follows from the fact that the sum of the p 'th roots 

of unity is -1 if i = 1 and O if i > 1. Since (x,~> is an integer, the 
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assertion of the lermna follows. 

If !Pl = 2, the congruence of Lemma 7.3 can be strengthened. The 

following lemma was suggested to the author by Prof. Marshall Hall, Jr. 

Lemma 7.4 If Xis a character of a simple group G and if tis an 

involution of G, then x(1) = x(t) (mod 4). 

Proof Let X be the character of the representation p. Let p(t) have 

a eigenvalues +1 and b eigenvalues -1. Then x(1) =a+ band 

x(t) = a - b, so x(1) - x(t) = 2b. It suffices to prove that bis even. 

Suppose bis odd. Then det(p(t)) = -1. Let N = fg E GI det(p(g)) 

= 1}. N is a proper, normal subgroup of G. G/N is isomorphic to 

a multiplicative group of roots of unity and hence is abelian. This 

contradicts the simplicity of G; for if N = (1), G is abelian, and if 

N f (1), G contains a nontrivial, proper, normal subgroup. 

The next sequence of lermnas will deal with chD.racters of a group 

of order 32t which are constant on an appropriate set of 3-singular 

elements. 

Lemma 7.5 
2 • 

Suppose G is a group of order 3 t, (3,t) = 1, with a Sylow 

3-subgroup P. Suppose u is an element of prime order r (r f 3) in 

C(P). If Xis a (possibly reducible) character of G-which is rational 

on u and is constant on the 3-singular elements of PX (u), then 

x(1) = x(u) (mod 9r). 

If, in addition, G is simple and r = 2, x(1) ~ x(u) (mod 36). 
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Proof Lets be a primitive r'th root of unity, and let T] be the 

chn.ro.cter of P x (u) defined. by T](i:sui) = si for g E P. By hypothesis, 

x(gui) = x(g) for all i and all GE P")(-, Also, since xis rational, 

x(ui) = x(u) for 1 < i < r-1. Hence: 

9r (x, 11> = I: 
g E P 

r-1 . . 
L X(gul) T](gul) 

i=O 

r-1 
= x(1) + I: x(ui) T](ui) + 

i=1 
I: 

r-1 
I: x(gui) T](gui) 

r-1 
= x(1) + x(u) L si + 

i=1 

= x(1) - x(u). 

g E P")(- i=O 

r-1 
L x(g) L ~i 

g E P")(- i=O 

Since (x,Tl> is an integer, the assertion x(1) = x(u) (mod 9r) holds. 

If, in addition, G is sirrrple and r = 2, the second assertion follows 

immediately from Lemma 7.4 and the first part of Lemma 7.5. 

Lemma 7.6 Suppose G is a group of order 32t. Suppose g is an element 
I 

of order 3 and u is an element of prime order r such that u E C(g). 

If xis a (possibly reducible) character of G which is 1rational on u 

and is constant on the 3-singular elements of (g) x (u), then 

x(1) = x(u) (mod 3r). 

If, in addition, G is simple and r = 2, x(1) = x(u) (mod 12). 

Proof The proof is analogous to that of Lemma 7.5; the group Pis 

replaced by the group (g). 
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Lemma 7.7 Let G be a group of order 32t, (3,t) = 1, and let g be an 

element of order 3 contained in a Sylow 3-subgroup P. Suppose that 

5 divides !o
3

,(c(g))! and that 5 does not divide jc(P)I. Then C(g) 

contains a subgroup (g) x V, where Vis an elementary abelian group of 

order 25 contained in o
3

,(c(g)) and normalized by P. V contains elements 

u and v of order 5 such that, if xis any character of G rational on V 

and constant of the 3-singular elements of (g) x V, then 

2 X ( 1 ) == X ( u) + X ( v) ( mod 75). 

x takes on the value x(u) on 12 elements of V and the value x(w) on 12 

elements of V. 

Proof Choose 

defined by XO' 

h E P, h ¢ (g) . ' Let CJ be the inner automorphism of C(g) 

h = x. cr leaves invariant the characteristic subgroup 

o
3

,(c(g)). Hence CJ permutes the Sylow 5-subgroups of o
3

,(c(g)) in orbits 

of length 3 or 1. The number of subgroups divides !o
3

,(c(g))! and hence 

is prime to 3; it follows that cr leaves invariant a Sylow 5-subgroup of 

o
3

, (C(g) ). CJ acts fixed-point-free on this subgroup since the hypotheses 

imply that no element of the subgroup centralizes P. By Lemma 7.1, a 

leaves invariant an elementary abelian group V of order 25 contained in 

the Sylow 5-subgroup. Clearly Vis normalized by P. 

V contains 6 subgroups of order 5. a pernnltes these groups in two 

orbits of length 3. Choose u and v such that (u) and (v) are in 

different orbits. Since Xis rational, it is constant on the 12 

nonidentity elements of the 3-subgroups in the orbit of (u); a similar 

statement holds for (v). Let ~
1 

be the cha~acter of (g) x V defined by 
.. k . 

~1(g1uJv) = SJ, wheres is a primitive 5'th root of unity. Define ~2 by 
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•• k k 
~

2
(g1uJv) = s . Computing (x,~

1
) and (x,~2) as in the proof of 

Lemma 7.5, we obtain: 

Tl:ru.s all the assertions of the lemma hold. 

Lemma 7.8 Let G be a group of order 32t, (3,t) = 1, and let g be an 

element of order 3 conta ined in a Sylow 3-subgroup P. Suppose that 

2 divides Jo
3

,(c(g ))I and that 2 does not divide IC(P)I, Then C(g) 

contai ns a subgroup ( g) x V, where Vis a four-group in o
3

,(C( g )) 

normalized by P. If Xis any character of G constant on the 3-singulur 

elements of (g) xv, then x(1) = x(u) (mod 12) for each nonidentity 

element u of V. 

Proof Analogous to the proof of Lemma 7.7. 

3, Miscellaneous . lemmas on characters 

Lemma 7,9 If Xis a character of a group G which is rational on an 

element x of prime order r, then x(x) ~ ~~ 1 X(1). 

Proof Lets be a primitive r'th root of unity. Lets have multiplicity 

bas an eigenvalue of p(x), where pis a representation having X as its 

character. Since X(x) is rational, si also has multiplicity b whenever 

(i,r) = 1. Let 1 have multiplicity c as an eigenvalue of p(x) . Then 

x(1) = c + (r-1 )b and x(x) ::: c - b. Hence x(1) > (r-1 )b _::: -{r-1 )x(x). 
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Lemm.a '7. 1 0 If the character x of the group G is rational on g, then 

x(1) divides !G:C(g)jx(g). 

Proof [G:C(g)jx(g)/x(1) is an algebraic integer [17-Theorem 16.8.3] 

anda rational number; hence it is a rational integer. 

The next lemma gives a variation of a well-known formula, proven 

in [20-Section 2]. 

Lemma 7 .11 
ab 2 Let G be a simple group of order 2 q_ 3 . Assume that,· for 

some 3-element g, C(g) has a normal 3-complement. Let u and v be 

arbitrary elements of G. Then 

Proof The proof which follows is essentially identical to the 

derivation of [20-Eq_uation 2.1], except that we shall use only the 

characters of Bo(3) rather than all irreducible characters. 

Let U and V be the class sums (in the complex group algebra) of the 

classes of u and v respectively, Let c1, c2, ... , Cs' ... , Cr be the 

complete set of class sums, 

to classes in the 3-section 

c
1
, c2, ... , Cs being the sums corresponding 

r 
of g. We may write UV = ~ k. C., where k. 

1 1 1. 1. 

is the number of ways that an element in the class corresponding to C. 
1. 

can be written as the product of a conjugate of u and a conjugate of v. 

Let ci denote an element in the class corresponding to Ci. If' X io an 

irreducible character of G, then Ci ➔ lc1 1x(ci)/x(1) is a homomorphism 

from the center of the complex group algebra to the complex numbers. 
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r 
Hence !UI !VI x(u) x(v) = x(1) r.: 1c . I x(c.) k . . Multiplying by 

1 J. J. J. 

x('g)°/x(1) and summing over all characters in Bo(3), we obtain: 

r 
r lul jvjx(u)x(v)x[i)"/x(1) = i:: !c. lk. [ i:: x(c. )x(g)" ]. 

Bo(3) i=1 1 1 Bo(3) 1 

The block-section orthogonality relations [3,II-7C] imply that the 

quantity in brackets is zero unless c. is in the 3-section of g, that is, 
J. 

unless i < s. Since C(g) has a normal 3-complement, case i or case i' 

(of Theorem 5.5) occurs for g, and it follows from Theorem 5.5 that 

each principal 3-block character is constant on the section of g and 

that i:: lx(g)j 2 = 9. It follows that: 
Bo(3) 

s 

r: x(u)x(v)x(g)/x(1) = r: 9jc . lk . / !UI !vi . 
Bo(3) i=1 1 1 

r s 
Since IUI Iv! = r: jc. lk., 

i=1 1 1 
o S r: !C. !k. / !UI jv! < 1. Hence the 

i=1 1 1 

assertion of the theorem holds. 

Lemma 7.12 (Block separation) Let G be a simple group of order 2aqb32 

not containing elements of order 3q. Let 1 + r; m.e.f. = 0 be a 
iES iii 

degree equation for G, obtained in Chapter V (All the degree equations 

are of this form; in fact, except in the equation for type a-i', each 
X• Y· 

• 1) Write f. = 2 J.q i. Let T = 1i ES j x. > o, y. < b-1\. Let mi J.S • J. l J. J. 

T 2 denote the power set of T. Then there exists U E 2T such that 

- b 1 + r: m. e . f. =0 (modq ). 
iEU J. ii 

Proof r: x(1) x(h) = o (mod qb) whenever h 
Bo(3) n Bo(q) 

By [9-Lemma 3], 

is a 3-singular element. In Definition 5.8, we defined the column 



vector Y(h) to be t he vector whose components are the values of the 

principal 3-block characters on h. Let Z(h) be the column vector 

obtained from Y(h) by deleting entries corresponding to characters not 

in B0 (q). The degree equations were obtained from othogonality rela­

tions of the form Y(1)•[a
1
Y(h

1
)+ ... +akY(1\_)] = o, where each hi is 

3-singular. These relations remain valid if Y is replaced by z, pro­

vided that the equality is replaced by a congruence modulo qb. It 

follows that 1 + ~ m.e.f. = 0 (mod qb), where U denotes 
i E u i i i 

{i\ x. E Bo(3) n Bo(q)}. (To obtain the congruence from the orthogo-
1 

nality relation, it is neces sary to divide by some integer n; however, 

in all cases, n is relatively prime to q). Now U ~ T since Bo(q) 

contains no characters of degree a power of q [9-Lemma 2] and no 

characters of degree divisible by qb- 1 [1-Theorem 3]. 

4. Two classes of 3-elements 

This section will deal with simple groups of order 2aqb32 

containing exactly two conjugacy classes of 3-elements. The possibil­

ities for the principal 3-block will be determined explicitly. One 

such group is known, namely A6. 

Theorems 5.12 and 5.14 give fragments for the character table. 

The equations and congruences for the principal 3-block characters 

are summarized in Chapter V, Section 7. Solutions are given in 

Chapter VI, Section 4. 

An algebraic conjugate of a character.in B0 (3) is in Bo(3) 

[4,I-Lemma. 2]. Hence, if Xis the only character of a given degree in 
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B0 (3), then Xis rational. More generally, if XE Bo(3) and if, for 

any other character X' in Bo(3), there is an element g (depending on 

x') such that x(g) and X'(g) are distinct rational numbers, then x 

is a rational character. Using the fragment given in 1'heorem 5.14, we 

obtain that, if G is of type b-x,y with x,y _:: ii, all characters in 

B (3) t • 1 G ·11 d t • 1 f d 2a b32 o are ra iona . _ ~ eno e a· simp e_ group .£._ or er q_ . 

Lenrrna 7 . 1 3 G is not of type b-ii,ii. 

Proof If G were of type b-ii,ii, equation (B) of Chapter VI, Section 4 

would hold for f 2, f
9

, and f 6 (i.e. 1 + e2f 2 + 

(mod 9), f
9 

= 2e
9 

(mod 9), f 6 = 5.:6 (mod 9)). 

e9f9 + e6f6 = o, f2 = e2 

If q = 5, Bo(3) contains 

a character of degree at most 25; if q = 7, it contains a character of 

degree at most 16. By the remark above, these characters are rational. 

A theorem of Schur [25] shows, in the former case, that 

b < [25/4] + [25/20] = 7, and, in the latter case, that b < [16/6] = 2. 

If q = 5, then f
5

, f 6, and f
7 

satisfy equation (E) and yi ~ 7 for 

all i. Hence Bo(3) contains a nonidentity character of degree at most 

5, contrary to known results [13-Section 8.5]. 

If q = 7, then f
5

, f 6, and f
7 

satisfy equation (G) and yi ~ 2 

for all i. Only solutions (2) and (3) are possible. In either case, 

Bo(3) contains an irreducible character X of degree 49 and lx(g)I = 1 or 

2 if g is a 3-element. By Lenrrna 7.10, 49 divides \G:C(g)\ for all 

3-elements g; hence G contains no element of order 21. Both nolu-t.ion:.; 

fail to satisfy the 7-block separation criteria (Lemma 7.12). 

Lemma 7.14 G is not of type b-ii,iii or type b-ii,iv. 
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Proof Assume the contrary. !GI= 2a5b32. Equation (C) holds 

for f
5

, f 6, and fT Hence G has a rational character of clcgree at mo::;t 

16, and the theorem of Schur shows that b ~ [16/4] = 4. Then fg, f 4, 

and f
9 

satisfy equation (F) and y. < 4 for all i. It follows that G 
1-

has a nonidentity character of degree 1, contrary to the simplicity of G. 

Lemma 7.15 G is not of type b-ii,v or type b-ii,vi. 

Proof Assume the contrary. \GI= 2a7b32. Equation (B) holds for 

r4, f 8, and r
9

. G has a rational character of degree at most 16 and 

consequently b ~ [16/6] = 2. Since G has no character of degree less 

than 7, solution (4) or (5) of equation (B) must occur. In either case, 

r
9 

= 49. Let g be an element of order 3 such C(g)/0
3

, (C(g)) is 

(g) X PSL2 (7) or (g) X PGL2(7). By Theorem 5.14, ~(g) = :!!3. Lemma 7.10 

implies that 49 divides \G:C(g)\. Since 7 divides \C(g)\, this contra­

dicts b < 2. 

Lemma 7.16 G is not of type b-v,v, type b-v,vi, or type b-vi,vi. 

Proof Assume the contrary. \G\ = 2a7b32. f
3

, f
5

, and f 8 satisfy 

equation (B). As in the proof of Lemma 7.15, b ~ 2 and f 8 = 49. 

By Theorem 5. 14, x8 ( g) = :lJ3 for the elements g in one of the cln.ss cs of 

elements of order 3. Then 49 divides \G:C(g)j and 7 divides jc(g)\, 

contrary to b ~ 2. 

Lemma 7.17 Supp.ose G is of type b-iii, iii, type b-iii, iv, or type 

b-iv,iv. Then the degrees f 2, f
3
, ... , f

9 
are either 1024, 1024, 1024, 

400, 625, 1024, 625, 400 respectively or else the same except with 400 
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and 625 interchanged, 

Proof Equation (D) holds for f
6

, f
9

, and r2; for r
8

, f
9

, and r
4

; 

for f
5
, f 6, and f

7
; and for f

5
, r8, and f

3
. Since G does not have 

a representation of degree 5 or less, only solution (3) of equation (D) 

can occur, We obtain the two alternatives given in the lemma, 

The two alternatives of Lemma 7,17 are not symmetric, since~ is 

the only character in Bo(3) which takes on the value !5 on each element 

of order 3 (Theorem 5.14). 

Lemma 7.18 If G is of type b-i',i', then one of the following holds: 

1 ) G = A6. 

2) q = 5, and the degree equation is 1 + 64 - 80 + 640 - 625 = o. 

3) q = 7, and the degree equation is 1 - 224 - 512 + 784 - 49 = O. 

Proof Assume first that q = 5. The degree equation is equation (A) 

of Chapter VI, Section 4. Solution (8) occurs if G =A6; otherwise 

solutions (1) through (9) cannot occur since G has no representation of 

degree 5 or less. If solution (10) or (11) occured, G would have a 

rational character of degree at most 10, implying that b ~ [10/4] = 2; 

this contradicts the fact that, in either case, G has an irreducible 

character of degree 53 . 

Suppose that solution (12) occurs. B0 (3) contains two characters 

of degree 8, nam~ly x2 and x
3

. Let x = x
2 

+ x3; Xis a rational 

character of degree 16. It follows that b ~ [ 16/4 J = l~. x5 has degree 

54 and x5(g) = 1 or -2 if g is a 3-element. By Lemma 7.10, 54 divides 
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jG:C(g)l if g is a 3-element. Hence G contains no elements of order 

15. Let P denote a Sylow 3-group containing the element g of order 3. 

Suppose tis an element of order 2 in C(P). By Lemma. 7.5, 

x2(t) = 8 (mod 36); hence x2(t) S -28, a contradiction. Thus C(P) = P. 

Suppose 2 divides !o
3

,(c(g))J. By Lemma 7.8, o
3

,(c(g)) contains a 

four-group V, and if vis a nonidentity element of V, x2(v) = 8 

(mod 12); hence x2(v) = -4. Let~ be the identity character of V. 

Then (x
2

lv,~> = ,d-(8-4-4-4) = -1, a contradiction. We conclude that 

o
3

,(c(g)) = 1. Since case i' occurs for g, C(g) = P. Thus Pis 

strongly self-centralizing, contrary to Theorem 3.2. 

Suppose that solution (13) occurs. Let g and g' be representatives 

of the two classes of elements of order 3. Lett E G. By Lemma 7.11, 

o < r x(t~~
1
)(g) s 9 and o s r( ) x(~t~)x(g') :::_ 9. Taking one-

- Bo(3) Bo 3 

half the sum of these ineQualities and substituting the values of 

x(g), x(g' ), and x(1) given in Theorem 5.12, we obtain: 

5 e.x.(t)2 

0 < 1 + r lf~ ~ 9. 
i=2 l 

Let g and g' be contained in a Sylow 3-subgroup P. Suppose that 

tis an element of order 5 in C(P). From Lemmas 7.5 and 7.9, 

x.(t) = f. (mod 45) and -f./4 < x.(t) < f. for i = 2, 3, 4, 5. 
l l l - l l 

The block-section orthogonality relations imply that 

1 + e2x2(t) + e
3

x
3
(t) + e4x4(t) + e

5
x

5
(t) = O. There a.re only two 

vectors (x/t),x
3
(t),x1/t),x

5
(t)) which satisfy the criteria. g:iven in 

the last two sentences, namely (19,55,80,-5) and (19, 10,35,-5). li'or 

2 
eixi(t) 

f. these two alternatives, is respectively -14.93 and 
l 



-2.78. In either case, the inequality obtained from Lemma 7.11 is 

violated. We conclude that 5 does not divide jc(P)j. Suppose 

5 divides jo
3

, (C(g))j. Lemma 7.7 is applicable. Let V, u, and v be 

as in Lemma 7.7. We assert that the integers x.(u) and x.(v) 
1 1 

(i = 2,3,4,5) satisfy the following conditions: 

a) -f./4 < x. (u) < f., -f
1
./4 :'.: x,;(v) < fol 

1 - 1 1 ... ... 

b) X. ( u) = X. ( v) = f. (mod 15) 
1 1 1 

c) x. ( u) + x. ( v) = 2f. (mod 75) 
1 1 1 , 

5 5 
d) 1 + I: t:.x.(u) = o, 1 + I: e.x.(v) = o 

i=2 1 1 i=2 1 1 

e) 

f) 

g) 

h) 

f. + 12x. (u) + 12x. (v) > o 
1 1 1 -

f. + 2X . ( U) - 3X . ( V) > 0 
1 1 1 -

f. - 3X . ( U ) + 2x . ( V) > 0 
1 1 1 -

t:.x.(u)2 
l l < 9 f. - , 

1 

O < 1 + I: 
Bo(3) 

(a), (b), (c), and (d) follow respectively from Lemma 7.9, Lemma 7.6, 

Lemma. 7.7, and the block-section orthogonality relations. (h) was 

proven on the last page. Let ~
1 

be the identity character of V, ~ 

the character defined by ~
2

(uk.)) = sj, wheres is a primitive 5'th 

root of unity, and ~
3 

the character defined by ~
3

(ukvj) = Sk• Then 

(e), (f), and (g) follow from the fact that (xi!V,~
1
), (xilv,~), and 

(xilv,~
3

) are nonnegative. 
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Now a compter was used to determine all integers -Xi(u) and Xi(v) 

(i = 2,3,4,5) which satisfy (a), (b), (c), and (d). For each 

alternative, conditions (e), (f), (g), and (h) were checked; in every 

case, at least one of these conditions failed. Hence 5 does not 

divide 10
3

, (C(g))!. Similarly, 5 does not divide !o
3

,(c(g' ))!. Since 

C(g) and C(g') have normal 3-complements, this implies that G contains 

no elements of order 15. Then 5-block separation (Lermna 7.12) provides 

a contradiction. 

Thus far we have proven that, if q = 5, alternative (1) or (2) of 

Le..,"'lllla 7. 18 holds. 

Assume now that q = 7. Solutions (1) and (2) of equation (A) 

cannot occur since G does not have a nonidentity linear character. 

If solution (3) occured, G would have a rational character of degree 8, 

implying that b < [8/6] = 1, contrary to known results [29]. Suppose 

that solution (4) occurs. The argument is similar to that for solution 

(12) with q = 5. G has a rational character of degree 16. Hence 

b :::_ [16/6] = 2. The existence of an irreducible character of degree 49 

implies, using Lemma 7.10, that G has no elements of order 21. 

If G contained elements of order 6, we would obtain a contradiction 

exactly as in the case of solution (12) for q = 5. Hence the Sylow 

3-groups of Gare strongly self-centralizing, . contrary to Theorem 3,2 . 

. We conclude that only solution (5) can occur, that is, alternative (3) 

of Lemma. 7.18 must hold. 

The results derived in this section are sunn:narized in the following 

two theorems. As in Chapter v, [x] denotes {y E N((g)) I y is conjugate 



toxin N((g))}. Here a bar over a symbol denotes the image modulo 

Theorem 7.19 Let G be a simple group such that : 

1) IG I 2
a b

3
2 . = q , q prl.1lle. 

2) G has two conjugacy classes of 3-elements. 

3) All 3-local subgroups of Gare solvable. 

Let g and g' be nonconjugate elements of order 3. 

Then C(g) and C(g') have normal 3-complements, and one of the 

following holds: 

a) G is isomorphic to A6 . 

b) q_ = 5, and the principal 3-block of G has the following form: 

1 [g] [g' J 

X1 1 1 1 

X2 64 1 ·1 

X3 80 -1 -1 

X4 640 1 1 

X5 625 1 -2 

x6 625 -2 1 

c) q = 7, and the principal 3-block of G has the following form: 

1 [g] [g' J 

X1 1 1 1 

X2 224 -1 -1 

X3 512 -1 -1 

X4 784 1 1 

X5 49 1 -2 

~ 49 -2 1 
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Theorem 7, 20 Let G be a simple group such that:. 

1
) lGl 2

a b

3
2 . 

= q , q pr:une. 

2) G has two conjugacy classes of 3-elements. 

3) Some 3-local subgroup of G is nonsolvable. 

Let g and g' be nonconjugate elements of order 3. 

Then C(g)/0
3

,(c(g)) °" (g) X A
5 

or (g) X s
5

, and C(g')/0
3

,(C(g')) °" 

(g') x A
5 

or (g') x s
5

. In particular, q = 5. The principal 3-block of 

G either has the form 

1 [g] [gv] [gw] [gx] [gy] [g'] [g'v'] [g'w'] [g'x'] [g'y'] 

1 

1024 

1024 

1024 

400 

625 

1024 

625 

400 

1 1 

1 1 

1 1 
4· -1 

4 -1 

4 -1 

-5 O 

-5 O 

-5 O 

1 

1 1 1 

1 1 
0 0 -2 

0 0 -2 

0 0 -2 

-1 -1 1 

-1 -1 1 

-1 -1 1 

1 

4 

-5 
1 

4 

-5 
1 

4 

-5 

1 

-1 

0 

1 

-1 

0 

1 

-1 

0 

1 

0 

-1 

1 

0 

-1 

1 

0 

-1 

1 

0 

-1 

1 

0 

-1 

1 

0 

-1 

-2 

1 

1 

-2 

1 

1 

-2 

1 

or else has the same form with 400 and 625 interchanged. v, w, x, and 

y are elements of s
5

, defined in Theorem 5.5, case iv. If 

C(g)/0
3

,(c(g)) = A
5

, the columns of [gx] and [gy] are absent, and the 

column of [gv] splits into two identical columns; a similar statement 

holds with g replaced by g'. 

The methods developed in this chapter may be used to investigate 

whether the fragments given by Theorems 7. 19 and 7. 29 actually occur in 

the character table of a simple group of the appropriate type. A 
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considerable arnaw1t of information can be obtained; however, the author 

has not been able to reach a contradiction in any of the cases. 

5. A character of degree 8 

Theorem 7.21 If G is a simple group of order 2a4b32 with an irreducible 

character X of degree 8 in its principal 3-block, then G is isomorphic to 

Proof Assume that G is not isomorphic to A6 or PS½(8). In view of 

Theorems 5.3, 5.15, 7.19, and 7.20, we may assume that G has a single 

class of elements of order 3. Let g have order 3. CoroD..ary. 4.6 shows 

that x(g) = -1. From the fragments given in Theorem 5.5, we see that 

either 

1) Xis constant on 3-singular elements 

or 2) Case ii occurs for g, and Xis x4, x
5
, or x6. 

Suppose that alternative (2) occurs. Let P be a Sylow 3-group contain­

ing g. If tis a 3'-element of C(P), then tis a 3'-element of C(P). 

Pis the Sylow 3-group of (g) x s
3

; hence t = 1 and t E o
3

,(c(g)). 

Since XE Bo(3), Theorem 5.5 shows that Xis constant on the 3-singular 

elements of P x (t). 

Assume first that 4 = 5. Lets be a primitive 5'th root of unity, 

and let a be an automorphism of the field of IGl'th roots of unity such 
2 2 3 

that cr(s) = S. Let X' = X + Xcr + Xcr + Xcr. X' is rational on elements 

of order 5. 

Suppose that t and u are elements of C(P) of orders 2 and 5 

respectively. By Lemma 7.5, x(t) = 8 (mod 36) and X'(u) = 32 (mod 45). 
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Hence x(t),::: -28 and x'(u):::_-13, both contrary to Lennna. 7.9. It 

follows that C(P) = 1. 

Suppose 2 divides jo
3

,(c(g))j. Lemma 7.8 is applicable. o
3

,(C(g)) 

contains a four-group V. If u is a nonidentity element of v, x(u) = 8 

(mod 12); hence x(u) = -4. Let~ be the identity character of V. 

(xiv,~)= i(8-4-4-4) = -1. This contradiction shows that o
3

,(c(g)) 

has odd order. 

Suppose 5 divides jo
3

,(c(g))j. Lemmas 7.6 and 7.7 are applicable. 

Let v, u, and v be as in Lemma 7.7. x'(u) + x'(v) = 64 (mod 75). We 

may assume x' (u),::: x' (v). x' (u) + x' (v):::, -11; hence x' (u),::: -6. By 

Lemma 7.6, x'(u) = 32 (mod 15); hence x'(u),::: -13. This contradicts 

Lennna. 7.9, We conclude that o
3

,(c(g)) = 1. 

If case iii or case iv occurs for g, then C(g) ::w (g) x A
5 

or 

(g) x s
5

, In either case, C(g) contains a four-group V, Lennna 7,6 

shows that x(u) = -4 if u is a nonidentity element of V, As above, 

(xiv,~>= -1. If case i or case i' occurs for g, then C(g) = P and 

hence Pis strongly self-centralizing, contrary to Theorem 3~2. If 

case ii occurs for g, then C(g) ::w (g) x s
3

. C(g) contains a single 

Sylow 3-group; hence any two SylOW' 3-groups of G intersect in the iden-

tity only, contrary to Theorem 3.2. 

lemma if g_ = 5. 

I I ab 2 Now assume that G = 2 7 3. 

This completes the proof of the 

Some unpublished work of 

J. H. Lindsay on representations of degree 8 shows that b ~ 1; applying 

the results of [29] completes the proof of the lemma, Alternatively, 

a direct proof can be given, similar to that for the case q g 5, 

However, it is somewhat more difficult to show that 7 does not divide 



\o
3
,(c(g))\; an analogue of Lemrra 7.1 for elementary abelian groups of 

order p3 is needed. 

6. a 2 2 
Simple groups of order 2 q 3 

In this section, we shall show that there are no simple groups of 

a 2 2 order 2 q 3. Apparently this resu~t was proven previously by Richard 

Brauer but was not published. It serves to show the nonexistence of 

a simple group for a number of orders less than one million which were 

previ'?"lsly unresolved. 

Theorem 7.22 There are no simple groups of order 2aq232, q prime. 

Proof Assume that G is a counterexample. Suppose that the principal 

3-block of G has the form given in alternative (c) of Theorem 7.19. 

Application of Lemma 7.10 to x5•shows that 49 divides \G:C(g)\ 

and 49 divides \G:C(g')I; hence G contains no elements of order 21. 

7-block separation (Lemma 7.12) yields a contradiction. Hence, in view 

of Theorems 5.3, 5.15, 7.19, and 7.20, we rmy assume that G bas a 

single class of 3~elements. 

The degree equations are given in Chapter 5, Section 7. In each 

equation, the first term is 1 and the sum of the terms on the left is O; 

it follows that at 

equation, there is 

least one additional term is odd. 
y. 

an i such that f. = q 1
; moreover, 

1 

Hence, .in each 

in the equation for 

case i', we may assume that i f 6. y. > 1 since the simple groups with 
1 

a character of degree q (q = 5 or 7) are known [13-Section 8.5], and none 

a 2 2 
has order 2 q 3. It follows that y. = 2. 

1 

Chapter 5, Section 7 also gives congruences modulo 9 relating 
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the integers f. and e .. 
J. J. 

For every possible value of i and e. in each 
J. 

degree equation (except for f 6 in the equation for case i' ), the 

2 congruence fails to hold when f. = q for the appropriate value(s) of q. 
J. 

H th • 1 of order 2ar, 232. ence ere are no s:unp e groups ~ 

7. a 3 2 Simple groups£!. order 2 q 3 

In this section, we shall detennine explicitly the solutions to 

th d t • h" h uld i :!.m 1 f order 2a_ q332. e egree equa ions w ic co occur n as p e group o 

No such simple group is known. 

Lemma 7.23 Suppose that G is a simple group of order 2aq332 and that 

alternative (c) of Theorem 7.19 does not hold for G. Then G has one 

cl.ass of 3-elements, G contains no elements of order 3q, and case i, 

case i', or case ii occurs for the 3-elements. 

Proof If alternative (b) of Theorem 7.19 held for G, or if the 

conclusion of Theorem 7.20 held for G, G would have a character of 

4 degree 5, a contradiction. Hence Theorems 5.3, 5.15, 7.19, and 7.20 

show that G contains a single cl.ass of 3-elements. 

The degree equations for Gare given in Chapter V, Section 7. 

In proving Lemma 7.22, we remarked that each degree equation must have 
y. 

a tenn fi which is a power of q, say q 1
, and that if 6 if case i' 

occurs for the cl.ass of 3-elements. As in Lemma. 7.22, we obtain a 

contradiction if y. < 2. Hence y. = 3. 
J. - J. 

Let g be an element of order 3. 

character such that fi = xi(1) = q3 . 

Let X· be a principal 3-block 
J. 

If case iii or case iv occurs 

for g, choose xi such that fi appears in the first degree equation; if 



case v or case vi occurs, choose x. such that f. appears in the second 
1 1 

degree equation. From the fragments given in Theorem 5.5, we obtain 

that (xi(g),q) ~ 1. Lemma 7,10 shows that q3 divides \G:C(g)I. Hence 

G contains no elements of order 3q. 

Cases iii, iv, v, and vi are excluded immediately, since in each 

of these cases, \C(g)\ must be divisible by q. 

The method described in Chapter VI, Section 3 was used to solve 

each of the degree equations for a s:iJnple group G of order 2aq332 with 

a single class of 3-elements, In view of Theorem 7.21, the computer 

was progra.nmi.ed to find only those solutions in which the degree of each 

nonidentity character was greater than 8. For each solution, the 

computer checked the q-block separation criteria given in Lemma. 7.12; 

if a contradiction was obtained, the solution was discarded. A 

relatively small number of solutions remained; these were examined by 

band. 

Using the remark in the third paragraph of Section 4 of this 

Cbapter, we see that, if any degree equation contains a single char­

acter of some given degree, then that character is rational. In 

particular, any solution to a degree equation in which a single term 

is 10 or 14 can be excluded, since a theorem of Schur [25J implies 

that the exponent b of q in \GI is at most 2. 

In cases ii, iii, iv, v, and vi, there are two degree equations. 

The solutions to the two equations must fit together properly -- that 

is, if (f2
1 ,f

3
1 ,f4

1 ,f
5

1 ,f6
1

) is a solution to the first equation and 
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( f II f II f II f II f I) 

2'3' 7'8'9 
is a solution to the second equation, then 

{f2',f3'} = {f/,f3"}. 

The solutions not eliminated by any of these means are presented 

in the theorem which follows. 

Theorem 7.24 Let G be a simple group of order 2aq332, q prime. Then 

G has no elements of order 3q (unless 7,19(c) holds), every 3-local 

subgroup of G is solvable, and the alternatives for the type of G (Defi­

nition 5.11) and for the degree equation(s) (Chapter V, Section 7) are: 

5 a-i 
II II 

II II 

II II 

II II 

II 11 

II II 

" " 
II II 

II II 

5 a-i' 
II II 

5 a-ii 

7 a-i 
II II 

11 II 

II II 

II II 

Degree equation(s) 

1 - 125 125 - 125 - 125 - 125 - 80 + 64 + 640 = O 

1 - 125 + 10 + 10 + 10 + 10 + 10 + 10 + 64 = 0 

1 - 125 + 10 + 10 + 1000 + 64 + 64 - 512 - 512 = 0 

1 - 125 + 10 + 10 + 1000 + 64 + 64 - 5120 + 4096 = o 
1 - 125 + 10 + 10 + 1000 + 640 - 512 - 512 - 512 = 0 

1 - 125 + 10 + 10 + 1000 + 640 - 512 - 5120 + 4096 = 0 

1 - 125 + 1 O + 1 O + 1000 + 640 + 64000 - 32768 - 32768 = O 

1 - 125 + 10 + 10 + 1000 + 640 + 64000 - 327680 + 262144 = O 

1 - 125 + 100 + 100 + 100 - 80 - 800 + 64 + 640 = O 

1 - 125 + 100 + 1000 - 80 - 800 - 800 + 64 + 640 = O 

1 - 125 + 100 + 1000 - 80 + 64 - 8000 + 640 + 6400 = O 

1 - 125 + 10 + 10 + 64 + 2•20 = 0 

1 - 125 - 80 + 64 + 640 - 2•250 = O 

1 - 1 25 + 64 - 1 0 - 1 0 + 80 = O, 1 - 125 + 64 + 20 + 20 + 20 = O 

1 + 343 + 28 + 28 + 28 + 28 + 28 + 28 - 512 ~ O 

1 + 343 2744 224 - 224 - 224 + 1792 + 1792 - 512 = O 

1 + 343 2744 224 - 224 - 224 - 512 - 512 + 4096 = O 
' 

1 + 343 2744 224 + 64 + 1792 + 1792 - 512 - 512 = O 

1 + 343 2744 - 224 + 64 - 512 - 512 - 512 + 4096 = O 
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7 a-i' 1 + 343 + 28 + 28 - 512 - 2•250 = 0 

7 a-ii 1 +343 -512 - 28 - 28 +224 = o, 1 +343- 512 +56 +56 +56 = O 

7 b-i',i' 1 - 224 - 512 + 784 - 49 = 0. 

Corollary 7.25 A simple group of order 2a5332 has a rational character 

of degree 20 or 64. 
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CHAPTER VIII. SIMPLE GROOPS OF ORDER LESS THAN ONE MILLION 

In this chapter, we shall prove that there are no unknown simple 

groups of order less than one million in which the group order has the 

ab 2 form 2 q 3 . 

Several years ago, Marshall Hall, Jr. initiated a project to deter­

mine all simple groups with order less than one million. The techniqueG 

are described in [18]; when that article was written, approximately 100 

orders remained for which the existence of a simple group was unresolved. 

Subsequent work reduced the number of unresolved orders to 28. Of these 

ab 2 orders, six have the form 2 q 3, namely: 

2
6

533
2 = 72000 

275332 = 144000 

2
8

5332 
= 288000 

29533
2 = 576000 

2
6

5
4
32 = 360000 

275
4

3
2 = 720000. 

6 2 2 2 
A seventh order, 2 3 5 7 = 705600, can be handled by techniques 

similar to those used in this thesis. 

Let G be a simple group of one of the six orders listed above. 

!GI> ~ x(1) 2. It follows that alternative (b) of Theorem 7.19 
- Bo(3) 

can not hold for G and that the conclusion of Theorem 7.20 can not hold 

for G. Theorems 5.3. 5.15, 7.19, and 7.20 show that G must haven 

single class of 3-elements, 
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Le:mIJ1.a 8 . 1 Let G be a ~imple group of order 2aqb32 with a single class 

of 3-elements. If g is an element of order 3, then !G:C(g)I = 8 (mod 9). 

Proof We shall apply Lemma 3.3. Adopting the notation used in Lemma 

3.3, we haver= 3, m' = 1, k
1 

= 4 since an elementary abelian group of 

order 9 has four subgroups of order 3, and !G:C(g)I = 2!G:H
1 

I since g 

is conjugate to its inverse . 

Part (b) of Lemma. 3.3 shows that 4b
1 

= s
3 

(mod 3); it follows that 

n
3 

= + 3s
3 

= 1 + 3(4b
1

) = 1 + 3b 1 (mod 9). Applying part (a), we 

obtain jG :C(g)I = 2!G : H1 I= 2•4•n
3
/(1+3b 1) = 2•4•1 = 8 (mod 9). 

Theorem 8.2 There are no simple groups of order 720001 144000, 288000, 

576000, 360000, or 720000. 

Proof Assume that G is a simple group of one of the orders listed 

above. Let g denote an element of order 3. Case i, case i', case ii, 

case iii, or case iv I!lllst occur for g since !GI= 2a5b32. By Theorem 

7.24, cases iii and iv can occur only if b > 4, that is, if G has order 

360000 or 720000. 

The degree equations are given in Chapter V, Section 7. The proof 
Y· 

of Theorem 7.22 shows that each degree equation contains a term f. = 5 1 

1 

with yi ~ 3; if case i' occurs, we may assume that if 6. f. must 
1 

satisfy a congruence of the form fi = !ni (mod 9); this determines the 

exponent y. modulo 3. Similarly, each degree equation contains a term 
1 

x. 
f. = 2 J, and the congruence f. = +n. (mod 9) determines xj modulo 3. 

J J - J 

In view of Theorem 7.21, x. > 4. Using these facts, we obtain the 
J -

following: 



1 ) 

2) 

3) 

If case i occurs for g, there are characters x. and 
). 

and x. such that f. = 125, f. = 64 or 512, x.(g) = -1, 
J ). J ). 

and X . ( g ) = +1 . 
J -

If case i' occurs for g, there are characters X• and 
). 

X· such that f . = 125, f. = 16, 64, 128, or 512, 
J ). J 

x.(g)= - 1, and x. (g) = +1 or +2; the values +2 occur 
). J - - -

only if f. is 16 or 128. 
J 

If case ii occurs for g, the first degree equation 

contains terms f. and f. such that f. = 125 and 
). J ). 

fj = 64 or 512. xi(g) = _:1 and xj(g) = !1. 

4) If case iii or case iv occurs for g, the first degree 

equation contains a term f. = 125 or 625 such that 
). 

(x.(g),5) = 1. The second degree equation contains a 
). 

term f. = 32 or 64 such that (X.(g),2) = 1. 
J J 

Suppose case i' occurs for g. Theorem 7.24 shows that the 

alternative f. = 16 does not occur if !GI= 2a5332. For a group of 
J 

a 4 2 
order 2 5 3, a S 7, the degree equation of case i' was solved 

completely; no 9olution has a term equal to 16 and all terms greater 

than 8. 

Lennna 7.10 shows that 2553 divides !G:C(g) ! . jG:C(g) I must divide 

2953 or 275
4

. Also, Lermna. 8.1 states that !G:C(g)! = 8 (mod 9). The 

only possibilities for !G:C(g )l are 2653 and 2754. If !G:C(g)l = 2754, 

!GI= 275
4

3
2 

and jG:C(g)I = 9; hence a Sylow 3-subgroup of G is strongly 

self-centralizing, contrary to Theorem 3.2. We conclude that 

IG:C(g)I = 2653. 

Suppose !GJ is 2
6

533
2

, 27533
2

, 2
6

5
4

3
2

, or 275
4

3
2

. 'l'hen IC(g)l is 

is 9, 18, 45, or 90, and C(g) has a single Sylow 3- subgroup [17-J'heorcm 

9.3.1, Part 4]. Hence any two Sylow 3-subgroupa of G intersect in the 
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identity only, contrary to Theorem 3.2. We conclude that 

\Gj = 28
533

2 
or 29533

2
, 

Theorem 7,24 implies that case i, case i', or case ii occurs for g. 
·-

If case i or case i' occurs, Lermna. 7.10 shows that no character in the 

principal 3-block has degree divisible by 27 . It follows from Theorem 

7.24 that the degree e~uation is one of the following: 

Case for g 

i 1. - 125 + 64 + 10 + 10 + 10 + 10 + 10 + 10 = 0 

i' 1 - 125 + 64 + 10 + 10 + 2•20 = 0 

ii 1 - 125 + 64 - 1 O - 1 O + 80 = 0, 1 - 125 +64 + 20 + 20 + 20 = O. 

G has a character X of degree 10. Let P be a Sylow 3-group 

containing g, Suppose tis an involution in C(P). It follows easily 

that t E o
3

,(c(g)); hence xis constant on the 3-singular elements of 

P x (t). Then Lemma 7.5 yields a contradiction. We conclude that 

C(P) = P. 

Suppose that \G\ = 28
5332, Then \c(g)j = 36. Lemma 7.8 shows that 

o
3

,(c(g)) contains an elementary abelian subgroup V of order 4. In fact, 

o
3

,(c(g)) = V, \C(g)/0
3

,(c(g))! = 9, and case i or case i' occurs for g. 

It is straightforward to show t hat C(g) is isomorphic to (g) x A4 and 

that N((g)) is isomorphic to s
3 

x A4 or (g)•s4 ((g),s4 denotes the semi­

direct product of (g) by s
4 

which is not direct). \N(P)/C(P)j has order 

8 or 16 (Theorem 4.1). In the latter case, \G:N(P)\ = 24
53, contrary to 

the Sylow Theorems . Hence \N(P)/C(P)I = 8 and N(P)/C(P) is isomorphic to 

Q8 or z8; in particular, N(P)/C(P) acts as a fixed-point-free group of 

automorphisms of P. This implies that N((g)) is not isomorphic to 



s
3 

x A4, for if it were, an involution win s
3 

would induce a nontrivial 

automorphism of P fixing the elements of a subgroup of order 3. We 

conclude that N((g)) ~ (g)•s4. 

Next suppose that !GI= 295332. !C(g)I = 72. C(P) = P; it follows 

that, if h E P - (g), the mapping x ➔ xh is a fixed-point-free automor­

phism of o
3

,(c(g)). Since a group of order 8 cannot have a fixed-point­

free automorphism of order 3, o
3

,(c(g)) is elementary abelian of order 4, 

and C(g)/0
3

,(c(g)) has order 18; consequently case ii occurs for G. 

It is straightforward to show that C(g)""" (g) X s4 and N((g)) """s
3 

X s4. 

We shall denote the groups (g)•s4 and s
3 

X s4 by N
1 

and N2 

respectively. The character tables appear on the following page. N1 

has two classes of 3-singular elements; g and gt are class representa­

tives. N
2 

has three classes of 3-singular elements; g, gt, and gv are 

representatives. gt is conjugate tog in N((g)); neither element is 

conjugate to gv. We note that tis one of the three conjugate involu_. 

tions of the four-group o
3

,(N((g))). 

As in [2G-Section 2], #(a·b·=c) will denote the number of ways 

that c can be written as the product of a conjugate of a and a conjugate 

of b. If a, b, and care contained in a subgroup H, #H(a·b·=c) will 

denote the number of ways that c can be written as the product of a 

conjugate under Hof a and a conjugate under Hof b. We shall be 

interested in #(t·t·=g) and #(t·t·=gt). 

If txty = g, then (g,tx,ty) is a dihedral group of order 6 [20-

Tbeorem 2]; it follows that tx and tY are involutions of N((g)) - C(g) 

a.nd are conjugate in N((g)). It txty = gt, then (gt,tx,ty) is a dihedral 
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TABLE 2 

Character tables of N
1 

and N2 

N1 h(x) 2 8 8 8 3 6 18 18 
C (x) 72 36 9 9 9 24 12 4 4 N = (g)•Si 

X 1 h gh g¾ t gt V 
1 ~ g u N2 = s

3 
X s4 

111 1 1 1 1 1 1 1 1 3 2 
112 1 1 1 1 1 1 -1 -1 S3: g = w = 1 

w -1 
113 2 2 -1 -1 -1 2 2 0 0 

g = g 

114 2 -1 -1 -1 2 2 -1 0 0 S4: h = ( 123) 

115 2 -1 -1 2 -1 2 -1 0 0 t = ( 12)(34) 

116 2 -1 2 -1 -1 2 -1 0 0 V = ( 12) 

117 3 3 0 0 0 -1 -1 -1 u = ( 1234) 

113 3 3 0 0 0 -1 -1 -1 

¾ 6 -3 0 0 0 -2 1 0 0 

N2 h(x) 1 2 3 3 6 9 8 16 24 6 12 18 6 12 18 
c(x) 144 72 48 48 24 16 18 9 6 24 12 8 24 12 8 

X 1 g w t gt wt h gh wh u gu WU y gv WV 

111 1 1 1 1 1 1 1 1 1 1 1 1 1 

112 1 .1 -1 1 . 1 -1 1 1 -1 1 1 -1 1 1 -1 

113 2 -1 0 2 -1 0 2 -1 0 2 -1 0 2 -1 0 

114 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 

15 1 1 -1 1 -1 1 1 -1 -1 -1 1 -1 -1 1 

% 2 -1 0 2 -1 0 2 -1 0 -2 1 0 -2 1 0 

117 2 2 2 2 2 2 -1 -1 -1 0 0 0 0 0 0 

113 2 2 -2 2 2 -2 -1 -1 1 0 0 0 0 0 0 

'fl; 4 -2 0 4 -2 . 0 -2 1 0 0 0 0 0 0 0 

1110 3 3 3 -1 -1 -1 0 0 0 1 1 1 -1 -1 -1 

1111 3 3 -3 -1 -1 0 0 0 1 1 -1 -1 -1 1 

1112 6 -3 0 -2 1 0 0 0 0 2 -1 0 -2 1 0 

1113 3 3 3 -1 -1 -1 0 0 0 -1 -1 -1 1 1 1 

1114 3 3 -3 -1 -1 1 0 0 0 -1 -1 1 1 1 -1 
1115 6 -3 0 -2 1 0 0 0 0 -2 1 0 2 -1 0 



group of order 12, and tx and ty are involutions of N((g)) -C(g). 

Hence # (t·t·=g) and # (t·t·=gt) are determined completely by the struc­

ture of N(( g)) and the manner in which involutions of N((g)) -C(g) 

fuse with tin the group G; specifically, #(t·t•=g) =: #N((g))(z·z•=g) 
z 

and #(t•t·=gt) = z~s #N((g))(z •s · =gt), where z ands range over 

' 
representatives of the classes of involutions of N((g)) not contained 

in C(g) and conjugate under G tot. 

N
1 

contains a single class of involutions not centralizing g; a 

class representative is v. N2 contains three classes of involutions not 

centralizing g; representatives are w, wt and wv. We assert that the 

elements t, w, and wt are not all conjugate in G. Assume the contrary. 

Bo(3) contains an irreducible character x of degree 10. By Lenuna 7.6, 

x(t) = -2. Let U = o3,(N((g))) x (w). U is an elementary abelian group 

of order 8; if z is a nonidentity element of u, z is conjugate tot in G 

and hence x(z) = -2. It follows that (x!u,~> =-½,where,~ is the 

identity character of U. This contradiction establishes the assertion. 

We have the following alternatives for fusion and for #(t·t•=g) 

and #(t·t·=gt): 

N(( g)) 

II 

II 

II 

II 

II 

Elts. conj. tot 

V 

w 

wt 

WV 

w,wv 

wt,wv 

#(t·t·=g) #(t't'=gt) 

0 0 

18 6 

0 0 

3 0 

9 6 

18 6 

21 6 

27 12 
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Assume that jGj = 285332 ; then N((g)) = N
1

. Let S denote 

L x(t)
2
x( g ) The integers x(g) and x(1) depend only on which 

xEBo(3) x( 1) 

of the two possible solutions to the degree equation occurs. We assert 

that the integers x(t) satisfy: 

1) -ix(1)sx(t)<x(1) 

2) x(t) = x( 1) (mod 12) 

3) L x(t) x(g) = o 

4) 

5) 

Bo(3) 

o S S < 9 

2 2+v2(x
3
(t)) v5(x

2
(t)) 

r x(t) s 2 •3·5 
Bo (3) 

Here v2(n) denotes the largest integer k such that 2k divides n; v
5 

is 

defined analogously. xis constant on the three conjugate nonidentity 

elements of the four-group o
3

,(c(g)); the first inequality in (1) 

follows from the fact that the inner product of x!
03

,(C(g)) anu the 

identity character of o
3

, (C_(g)) is nonnegative. (2) follows from 

Lemma 7.6 and (3) from the block-section orthogonality relations. 

Lemma 7.11 shows that OS S S 9. Let T be the class sum (in the com­

plex group algebra) of the class oft, and let r, s, C., and k. be 
1 1 

as in the proof of Lemma 7 .11. T = C for some m > s. 
m 

U = V =Tin the proof of Lemma 7.11, we obtain: 

Letting 

r s s 
!Tl 2 

= L jc. jk . .::: r jc. lk. + le lk > L jc
1
. lk

1
. . 1 1 1 . 

1 
1 1 m m . 1 1= 1= 1= 

The last inequality is strict because k > 0 since t = txty, where 
m 

t, tx, and tY are the distinct involutions of the four-group o
3

,(C(g)). 

The proof of Lemma 7.11 then shows that S < 9. 
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Pis not centralized by t; hence 3 divides !G:C(t)I . In either 

solution to the degree equation, x
3

(1) = 26 ; Lemma 7.10 zhows that 

6-v2(x
3
(t)) 3-v

5
(x2(t)) 

2 divides jG:C(t) ! . S:i.m.ilarly, 5 divides 

!G:C(t)j. Since jGj = 285332, jc(t)I nrust divide the right 

side of (5). This establishes (5) . Hence all the assertions hold. 

All integers x(t) (XE Bo(3)) satisfying (1 ), (2), and (3) were 

found; solutions for which (4) or (5) failed were then discarded. Two 

solutions remained, corresponding to the following fragments: 

1 g gt t 1 g gt t 

X1 1 1 1 ' X1 1 1 1 1 

X2 125 -1 -1 5 X2 125 -1 -1 5 

X3 64 1 1 16 ~3 64 1 1 16 

X4 10 1 1 -2 X4 10 1 1 -2 

X5 10 1 1 -2 X5 10 1 -2 

x6 10 1 1 -2 ~ 20 2 2 -4 

X7 10 1 -2 

X3 10 1 1 -2 

½ 10 ' 1 1 -2 
2 

For each of the above fragments, we may compute S = t: x(t) x~s;) 
Bo (3) X ( 1 • 

In each case, S = 36/5. Setting U = V =Tin the proof of Lemma 7.11, 
' s 

IT\2. we obtain: s = 9 t: \Ci \ki / In the present case, s = 2; g and 
i=1 

gt are representatives of the two classes of 3-singular elements . Hence: 

36 = 9 #(t·t·=g) jG:C(g) I + #(t·t·=gt) !G:C(gt) I 
5 IG:C(t) 12 • 

\G:C(g)j = 2
6

53 .and \G:C(gt)j = 26533. The two possibilities for 

#(t•t·=g) and #(t·t·=gt) were given earlier. If tis not conjugate to 
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v, the right hand side of the e~ua.tion is o, a contradiction. If t 

is conjugate to v, we compute that !G:C(t)! = 600 and IC(t)\ = 480. 

Let n
3 

denote the number of Sylow 3-subgroups of C(t). Any 

involution centralizing a group of order 3 is conjugate tot. We count 

incidences of an involution in the centralizer of a group of order 3. 

t has 600 conjugates, each of which centralizes n
3 

groups of order 3. 

Every group of order 3 is conjugate to (g); hence there are 

8 3 2 2 5 3 /72 = 4000 subgroups of order 3, each of which is centralized by 

three involutions. Hence 6oon
3 

= 4000•3, and n
3 

= 20. This contradicts 

the Third Sylow Tneorem. It follows that there is no simple group of' 

8 3 2 
order 2 5 3. 

Next assume !GI= 295332; then N((g)) = N2. As before, let 

s = ~ x(t)
2 

x(g) Let S' = ~ x(t)
2 

x(gy) Conditions (1) and 
Bo(3) x( 1 ) Bo(3) x(1) 

(2) remain valid; we assert that (3), (4) and (5) may be replaced by: 

3') ~ x(g)x(t) = o, ~ x(gv)x(t) = 0 
Bo(3) Bo(3) 

41) 0 ~ S ~ 18, 0 < S' < 6 

2 3+v2 (x
3
(t)) v

5
(x

2
(t)) 

5') ~ x(t) ~ 2 ·3·5 
Bo(3) 

(3') follows from the block-section orthogonality relations. The proof 

of (4 1) is identical to that of Lemma 7,11 except for the evaluation 

of ~ x(c.)x@; from the fragment in case ii of Theorem 5.5, we 
Bo(3) 1 

obtain that ~ x(c.)x(g"}" is 18 if c. is conjugate tog or gt and 
Bo(3) 1 1 

0 if c. is conjugate to gv; of course, the sum is 0 if c. is 3-regular. 
l l 

It follows that 0 < S < 18. If replace g by gv in the proof of Lemma 

7.11 and use the fact that ~ x(c.)x(gv) is 6 if c. is conjugate to 
Bo(3) 

1 1 
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gv and O otherwise, we obtain O < S' < 6. Hence (4') holds. The 

proof of (5') is completely analogous to that of (5). 

A computer was used to determine all integers x(t) satisfying (1), 

(2) and (3'); for each solution, conditions (4 1
) and (5') were checked. 

Two alternatives for the x(t) remained: 

1 g gt gv t (alt. i) t (alt. ii) 

X1 1 1 1 1 1 

X2 125 -1 -1 -1 5 5 

X3 64 1 1 1 4 -8 

X4 10 1 1 -1 -2 -2 

X5 10 1 1 -1 -2 -2 

x6 80 -1 -1 -4 8 

X7 20 2 2 0 8 8 

X8 20 2 2 0 -4 8 

X9 20 2 2 0 -4 -4 

For the two alternatives above, S is respectively 45/4 and 81/5. 

Proceeding as in the proof of Lemma 7.11, we obtain: 

s = 18 #(t·t·=g) IG:C(g) j + #(t·t·=gt) jG:C(gt) I . 

IG:C(t) 12 

jG:C(g) I = 2653 and !G:C(gt) I = 26523. There are two alternatives for S; 

the six alternatives for #(t·t·=g) and #(t·t·=gt) were listed earlier. 

2 Using the above fornrula, we obtain 12 alternatives for !G:C(t)I ; however, 

only one of the twelve is a perfect square; specifically, if S = 45/4 and 

tis conjugate to wv but not to wor wt, then IG:C(t)1
2 = 57600 and 

!G:C(t)j = 240. Lemma 7.10 applied to x2 shows that 5
2 

divides jG:C(t)j. 

This contradiction shows that there is no simple group of order 29533
2

. 
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CHAPTER D::. SUWARY OF RESULTS 

This chapter contains a summary of the principal results on simple 

ab 2 
groups of order 2 q 3. These results appear in Theorems 5.3, 5.15, 

7.19, 7.20, 7.21, 7.22, 7.24, and 8.2. 

Main Theorem, Part 1 Let G be a s:iJnple group such that: 

2) G has at least three conjugacy classes of 3-elements. 

Then G is isomorphic to PSL2 (8) or PSL2(17). 

Main Theorem, Part 2 Let G be a simple group such that: 

1 ) 
a b 

!GI= 9·2 •q, q pr:iJne. 

2) G has two conjugacy classes of 3-elements. 

3) All 3-local subgroups of Gare solvable. 

Let g and g' be nonconjugate elements of order 3. 

Then C(g) and C(g') have normal 3-compl~ments, and one of the 

following holds : 

a) G is isomorphic to A6 . 

b) q = 5, and the principal 3-block of G has the following form: 

1 [g] [g'] 

X1 1 1 1 

X2 64 1 

X3 80 -1 -1 

X4 640 1 1 

X5 625 -2 

x6 625 -2 1 
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c) q_ ::: 7, and the principal 3-block of G has the following form: 

[g] [g'] 

X1 1 1 1 

X2 224 -1 -1 

X3 512 -1 -1 

X4 784 1 1 

X5 49 1 -2 

x6 49 -2 1 

Main Theorem, Part 3 Let G be a simple group such that: 

1) !GI ::: 9· 2a •q_\ q_ prime. 

2) G has two conjugacy classes of 3-elements. 

3) Some 3-local subgroup of G is nonsolvable. 

Let g and g' be nonconjugate 3-elements. 

Then q_::: 5, C(g)/0
3

, (C(g)) """(g) x A
5 

or (g) x s
5
, and 

C(g')/0
3
,(c(g')) """(g') x A

5 
or (g') x s

5
. The principal 3-block of G 

bas either the form 

1 [g] [gv] [gw] [gx] [gy] [g'] [g'v'] [g'w'] [g'x'] [g'y'] 

1 1 1 1 1 

1024 1 1 1 1 1 4 
1024 1 1 1 1 1 -5 
1024 4 -1 0 0 -2 1 

400 4 -1 0 0 -2 4 
625 4 -1 0 0 -2 -5 

1024 -5 0 -1 -1 1 1 

625 -5 0 -1 -1 1 4 
400 -5 0 -1 -1 1 -5 

1 

-1 

0 

1 

-1 

0 

1 

-1 

0 

0 

-1 

1 

0 

-1 

1 

0 

-1 

1 

0 

-1 

1 

0 

-1 

1 

0 

-1 

1 

-2 

1 

1 

-2 

1 

1 

-2 

1 

or else the same form with 400 and 625 interchanged. v, w, x, y, v', w', 
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x' , and y' denote elements of s
5

: V = (12345), W = (12)(34), X = (1234), 

y = (12); v', w', x', and y' are defined analogously. If 

C(g)/0
3

,(c(g)) = (g) x A
5

, the columns of [gx] and [gy] are not present, 

and the column of [gv] splits into two identical columns; an analogous 

statement holds with g replaced by g'. 

:Main Theorem, Part 4 Let G be a simple group such that: 

1 ) 

2) 

a b \GI= 9•2 ·q, q prime. 

G has one conjugacy class of 3-elements. 

Then q = 5 or q = 7. The principal 3-block of G does not contain a 

character of degree 8. b ~ 3; if b = 3, G has no elements of order 3q, 

every 3-local subgroup of G is solvable, and there are 21 possibilities 

for the degrees of the principal 3-block characters (listed in 

Theorem 7.24). Finally, \G\ > 106. 
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APPE:NDIX I. NOTATION 

Groups, subgroups, elements: G and H denote groups, Kand L denote 
subgroups of G, and g, g 1, g2, g3, ... , gk 
denote elements of G 

(g1,g2'. 0 .,gk) 

!GI 
\G:HI 
g g 

1 

g1 ~ g2 

c1(K) 

N
1

(K) 

CL(g) 

C(K), N(K), C(g) 

Z(G) 

G' 

Aut(G) 

G X H 

G* 

Identity element of G, or subgroup of G con­
taining the identity only 

Subgroup of G generated by g
1
, g2, ... , gk 

Order of G 

Index in G of H 

-1 
g g1g 

g
1 

conjugate to g
2 

G isomorphic to H 

Centralizer in L of K 

Normalizer in L of K 

CL ( (g)) 

CG(K), NG(K), CG(g) 

Center of G 

Commutator subgroup of G 

Largest normal subgroup of G of order relatively 
prime to r 

Automorphism group of G 

Direct product of G and H 

A semidirect product of G by H (G is normal in 
G•H, and His homomorphic to a subgroup of 
Aut(G)) 

G - { 1 } 

Transfer of G into 'K 



L 

Special groups 

z. 
J. 

s 
n 

A 
n 

GL ( q) 
n 

SL (q) 
n 

PGL (q) 
n 

PSL (q) 
n 

u (q) 
n 

Characters and blocks: 

(J 

X 
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The image of g1 under the natural homomorphism 
of N(< g) ) onto N(<g))/0, (N(<g))). Definition r 
requires that r be a prime, g be an r-element, 
and g

1 
be an element of N((g)). 

{x I x E 1} 

{ x E N ( < g) ) I x ~ 81 in N ( ( g) ) } 

Cyclic group of order i 

Quaternion group of order i 

Dihedral group of order i 

Symmetric group on n letters 

Alternating group on n letters 

General linear group of degree n over GF(q) 

Special linear group of degree n over GF(q) 

Projective general linear group of degree n 
over GF(q) 

Projective special linear group of degree n 
over GF(q) 

Projective special unitary group of degree n 
over GF(ci2) 

X and x' denote characters of a group G, and~ 
denotes a character of a subgroup H 

Character of G defined by xcr(g) = cr(x(g)) 
(cr a field automorphism) 

Restriction of x to H 

Induced character 



(x, X') 

< x, T]) 

Bo (p,H) 

Bo (p) 

Bo(p)* 

k(B) 

t(B) 

Number theory 

(m,n) 

[s] 

P, q, r 

m\n 

V (n) 
p 
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Inner product of X and X' = "TiT ~ x(g)x' (g) 
I'"' I g E G 

Principal p-block of H 

Principal p-block of G 

Set of nonidentity characters of Bo(p) 

Module of generalized characters of H vanishing 
off the set S 

Submodule of ~(S) consisting of linear combin­
ations of characters in the block b of H _ 

Number of ordinary irreducible characters in 
the block B 

Number of modular irreducible characters in 
the b lock B 

Height of the character X (defined in [7]) 

I: \x(g) 12 
X E Bo(p) 

(pa given prime) 

r.(G,1) 

Greatest common divisor of m and n 

Largest integer less than or equal to s 

Prime numbers 

m divides n 

Congruence 

Greatest integer k such that pk divides n 

+1 

Absolute value of s 
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APPENDIX II. CHARAC'.I'ER TABLES 

This section contains partial character tables of groups arising 

as alternatives for N(D'Y in Theorem 5.4. Only the principal 3-block 

characters are given. Also, the tables for the groups in alternative i 

of the theorem are omitted. 

The number of conjugates of an element tis denoted by h(t). In 

each case, g is a generator of the group D. The special classes are 

underlined; here a class is special if, for each element x in the class, 

some power of x equals g. 

s
3 

x s
3 S3: g3 2 

1, 
s -1 

= s = g = g 

S3: h3 2 
1, hv = h-1 = V = 

h(t) 1 2 3 2 4 6 3 6 9 

t 1 g s h gh sh V gv sv 

111 1 1 1 1 1 1 1 1 1 

112 1 1 -1 1 1 -1 1 1 -1 

113 2 -1 0 2 -1 0 2 -1 0 

114 1 1 1 1 1 1 -1 -1 -1 

115 1 1 -1 1 1 -1 -1 - 1 1 

116 2 -1 0 2 -1 0 -2 1 0 

117 2 2 2 -1 -1 -1 0 0 0 

11s 2 2 -2 -1 -1 1 0 0 0 

~ 4 -2 0 -2 1 0 0 0 0 



11 0 

s
3 

X A
5 

(principal 3-block) S3: g3 = s 2 = 1, s -1 g = g 

A5: h = ( 123), V = (12345), W = (12)(34) 

h(t) 1 2 3 20 40 60 12 24 36 12 24 36 15 30 45 

t 1 h gh sh 2 2 2 g s V gv sv V gv sv w gw SW - - - -
111 1 1 1 1 1 1 1 1 1 1 1 1 1 

112 1 1 -1 1 1 -1 1 1 -1 1 1 -1 1 1 -1 

113 2 -1 0 2 -1 0 2 -1 0 2 -1 0 2 -1 0 

114 4 4 4 1 1 1 -1 -1 -1 -1 -1 -1 0 o . 0 

115 4 4 -4 1 1 -1 -1 -1 1 -1 -1 1 0 0 0 

% 8 -4 0 2 -1 0 -2 1 0 -2 1 0 0 0 0 

117 5 5 5 -1 -1 -1 0 0 0 0 0 0 1 1 1 

11s 5 5 -5 -1 -1 1 0 0 0 0 0 0 1 1 -1 

~ 10 -5 0 -2 1 0 0 0 0 0 0 0 2 -1 0 

D0 S
5 

(principal 3-block) D: g3 = 1 

S5: h = (123), V = (12345), W = (12)(34), 

X = (45), y = (1234), k = bx 

t -1 
if t E s

5
, t ~ A5 

g = g 

h(t) 1 2 20 4o 24 24 24 15 30 30 90 60 

t 1 h gh 2 
k g V gv ~ w gw X y -

111 1 1 1 1 1 1 1 1 1 1 1 

112 1 1 1 1 1 1 1 1 1 -1 -1 -1 

113 2 -1 2 -1 2 -1 -1 2 -1 0 0 0 

114 4 4 1 1 -1 -1 -1 0 0 -2 0 

115 4 4 1 1 -1 -1 -1 0 0 2 0 -1 

116 8 -4 2 -1 -2 1 1 0 0 0 0 0 

~ 5 5 -1 -1 0 0 0 1 1 1 -1 1 

11s 5 5 -1 -1 0 0 0 1 1 -1 1 -1 

~ 10 -5 -2 1 0 0 0 2 -1 0 0 0 
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s
3 

x s
5 

(principal 3-block) 3 2 s -1 g = s = 1, g = g 

h( t) 

t 

Tl1 

Tl2 

Tl3 

Tl4 

Tl5 
1)6 

Tl7 

Tl3 

~ 

s
5

: h = (345), v = (12345), W = (12)(34), 

x = (1234), y = (12), k = hy 

1 2 3 20 4o 60 24 48 72 15 30 45 30 60 90 10 20 30 20 40 60 

1 g s h gh sh V gv SV W fE::! SW X gx SX y ~ sy k gk sk - -
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 -1 1 1 -1 1 1 -1 1 1 -1 1 1 -1 1 1 -1 1 1 -1 
2 -1 0 2 -1 0 2 -1 0 2 -1 0 2 -1 0 2 -1 0 2 -1 0 
4 4 4 1 1 1 -1 -1 -1 0 0 0 0 0 0 -2 -2 -2 1 -1 1 
4 4 -4 1 -1 -1 -1 1 0 0 0 0 0 0 -2 -2 2 1 -1 
8 -4 0 2 -1 0 -2 1 0 0 0 0 0 0 o -4 2 0 2 -1 0 

5 5 5 -1 -1 -1 0 0 0 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 

5 5 -5 -1 -1 1 0 0 0 1 -1 1 1 -1 -1 -1 1 -1 -1 1 

10 -5 0 -2 1 0 0 0 0 2 -1 0 2 -1 0 -2 1 0 -2 1 0 

s3 X PSL2(7) (principal 3-block) 3 2 s -1 g = s = 1, g = g 

h(t) 1 2 3 56 112 168 

t 1 g s h gh sh -
Tl1 1 1 1 1 1 1 

112 1 1 -1 1 1 -1 

Tl3 2 -1 0 2 -1 0 

Tl4 7 7 7 1 1 1 

Tl5 7 7 -7 1 1 -1 

116 14 -7 0 2 -1 0 

~ 8 8 8 -1 -1 -1 

118 8 8 -8 -1 -1 1 

'\; 16 -8 0 -2 1 0 

PSL2(7): h, v, and ware elements 

order 3, 4, and 7 respectively 

42 84 126 21 42 63 24 48 72 24 48 72 
2 2 2 6 6 6 

V gv- SV V gv sv W 2;: SW w gw SW - -
1 1 1 1 1 1 1 1 1 1 1 1 

1 1 -1 1 1 -1 1 1 -1 1 1 -1 

2 -1 0 2 -1 0 2 -1 0 2 -1 0 

-1 -1 -1 -1 -1 -1 0 0 0 0 0 0 

-1 -1 1 -1 -1 1 0 0 0 0 0 0 

-2 1 0 -2 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 1 1 1 1 

0 0 0 0 0 0 1 1 -1 1 1 -1 
0 0 0 0 0 0 2 -1 0 2 -1 0 
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D·PGL2(7) (principal 3-block) D: 3 1 g ::: 

PGL2(7): h, w, r, and z are elements 

of order 3, 7, 8, and 2 res_pectively, 
with rz = r3. 2 Let v = r. 

h(t) 1 2 56 112 42 84 21 42 48 48 48 168 84 126 126 

2 2 6 hz r7 t 1 g h gh V gv V gv w gw gw z r --
111 1 1 1 1 1 1 1 1 1 1 1 1 

112 1 1 1 1 1 1 1 1 1 1 1 -1 -1 -1 -1 

113 2 -1 2 -1 2 -1 2 -1 2 -1 -1 0 0 0 0 

114 7 7 1 1 -1 -1 -1 -1 0 0 0 1 1 -1 -1 

115 7 7 1 -1 -1 -1 -1 0 0 0 -1 -1 1 1 

176 14 -7 2 -1 -2 1 -2 1 0 0 0 0 0 0 0 

'7 8 8 -1 -1 0 0 0 0 1 1 1 -1 2 0 0 

113 8 8 -1 -1 0 0 0 0 ·1 1 1 1 -2 0 0 

~ 16 -8 -2 1 0 0 0 0 2 -1 -1 0 0 0 0 

s
3 

X PGL2(7) (prin. 3-block) S3: g3 = s 2 1, 
s -1 ::: g = g 

3 w7 = 1 v8 2 PGL2(7): h = 1, = z = 1, , 
vz = v3 

h(t) 2 3 56 112 168 42 84 126 42 84 126 

t 1 g s h gh sh V gv sv v7 gv7 sv7 
-

111 1 1 1 1 1 1 1 1 1 1 1 1 

112 1 1 -1 1 1 -1 1 1 -1 1 1 -1 

113 2 -1 0 2 -1 0 2 -1 0 2 -1 0 

114 7 7 7 1 1 1 -1 -1 -1 -1 -1 -1 continued 

~ 7 7 -7 1 1 -1 -1 -1 1 -1 -1 1 on next 
page 

% 14 -7 . 0 2 -1 0 -2 1 0 -2 1 0 

'7 8 8 8 -1 -1 -1 0 0 0 0 0 0 

113 8 8 -8 -1 -1 1 0 0 0 0 0 0 

~ 16 -8 0 -2 1 0 0 0 0 0 0 0 
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s
3 

X PGL2(7) (continued) 

42 84 126 28 56 81+ 48 96 144 21 42 63 56 112 168 
2 2 2 4 4 4 

hz ghz shz V gv sv z gz sz w gw SW V gv sv 

1 1 1 1 1 1 1 1 1 1 1 

1 1 -1 1 1 -1 1 1 -1 1 1 -1 1 1 -1 
2 -1 0 2 -1 0 2 -1 0 2 -1 0 2 -1 0 

-1 -1 -1 1 1 0 0 0 -1 -1 -1 1 1 1 
-1 -1 1 1 - 1 0 0 0 -1 -1 1 1 1 -1 
-2 0 2 -1 0 0 0 0 -2 0 2 -1 0 

0 0 0 2 2 2 1 1 1' 0 0 0 -1 -1 -1 
0 0 0 2 2 -2 1 1 -1 0 0 0 -1 -1 1 
0 0 0 4 -2 0 2 -1 0 0 0 0 - 2 1 0 
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