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ABSTRACT 

The hindered rotational diffusion of biopolymers in porous or fibrous media 

plays a significant role in many industrial and natural processes. Nuclear magnetic 

relaxation experiments can be used to investigate how the gel matrix impedes the 

tumbling of molecules trapped in its pores. Indeed, molecular motions influence 

the relaxation rate by causing fluctuations of the local magnetic field experienced 

by the nuclear spins. Hence a measurement of relaxation times allows one to mon­

itor the rotational diffusion of rigid molecules in gels and to detect matrix-induced 

anisotropic behavior. Experiments examining the 31P relaxation of cGMP trapped 

in polyacrylamide gels showed more than a threefold decrease in the rotational dif­

fusion coefficient when the gel concentration was brought from zero to 30%. Similar 

experiments in agarose gels prove that nuclear magnetic relaxation measurements 

can effectively be used to extract valuable information about rotational diffusion 

inside gels. 

A Stokesian dynamics simulation of molecular diffusion in fibrous environments 

will complement the experimental studies. The mobility interactions between pro­

late spheroids in low Reynolds number linear flows have been derived. The expres­

sions are exact at the level of forces, torques and stresslets, and the results are cast 

in a form suitable for numerical calculations. This extension of Stokesian dynam­

ics to non-spherical particles forms the groundwork for computationally efficient, 

hydrodynamically accurate simulations of suspensions of rodlike particles. 
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1. Introduction 

The rotational diffusion of a molecule trapped in a gel is of considerable impor­

tance in a great variety of processes. It determines the rate at which a rodlike 

polymer can reorient itself to squeeze through a maze of fibers, as in electrophoresis 

or size-exclusion chromatography. The rotational diffusion coefficient can also in­

fluence the overall kinetics of many biochemical reactions, since the presence of an 

active site makes the speed of conversion dependent on molecular orientation. This 

can reduce the effective turnover rate of an enzyme by several orders of magnitude 

if the diffusive approach of the reactants forms the limiting step in the reaction 

sequence. 1 Therefore, an understanding of molecular rotations in fibrous environ­

ments is essential for evaluating the overall kinetics of enzymatic reactions and for 

modelmg processes such as affinity chromatography and some immobilization tech­

niques. The gel-like structure of many organs also suggests biomedical applications, 

such as drug delivery in the eye or in connective tissue. 

Unfortunately, the rotational diffusion coefficient cannot be measured by tech­

niques commonly used to evaluate translational diffusion. Spectroscopy, however, 

can probe the microscopic details of molecular reorientation. In a shear fl.ow, the 

dynamic balance between the hydrodynamic torque acting on a particle and its 

rotational Brownian motions results in an anisotropic distribution of molecular ori­

entations. Linear dichroism and linear birefringence can detect this anisotropy. The 

former technique is based on the difference in extinction coefficients for polarized 

light along different molecular axes ; the latter exploits the orientation dependence 

of the refractive index. When the shear flow is suddenly stopped, rotary diffusion 

randomizes the orientations of the molecules. The rate at which the linear dichroism 

or the birefringence decay can then be related to the rotational diffusion coefficient. 2 
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Laser light scattering experiments measure rotational diffusion in solution with­

out perturbing the equilibrium distribution of orientations. Molecular motions mod­

ulate the fluctuations in the polarizability of the scattering medium, and hence in­

fluence the spectrum of the scattered light. 3 The contributions of the translational 

motion to the spectral width can be separated from the rotational effects by ob­

serving both the depolarized and the polarized components of the scattered light. 3 

Neutron scattering samples motional fluctuations of much smaller amplitude (with 

a magnitude comparable to the wavelength of the irradiating beam, of the order of 

angstroms). These motions, however, are usually too rapid to be described by a 

diffusion equation. 3 

The infrared and Raman spectra of liquid methane, carbon monoxide and 

other small molecules have been interpreted in terms of molecular reorientations,4 •5 

but their application to the study of macromolecular rotational diffusion is limited 

by the dominant contribution of vibrational modes and internal motion in larger 

molecules. 4 Fluorescence depolarization on the other hand is a very powerful tool. 

Following a pulse of plane polarized light, the fluorescence anisotropy decays as a 

result of rotative Brownian motions , which randomize the orientation of the ex­

cited chromophores. Evidently, information about the rotational diffusion can be 

extracted from such time resolved experiments. However, if the chromophore is 

flexibly bonded to the molecule of interest , or if there are several chromophores 

attached with different orientations to the same macromolecule, fluorescence depo­

larization will determine only a lower bound to the macromolecular reorientation 

times.6 

The line shapes in electron paramagnetic resonance (EPR) provide detailed 

information about molecular rotational diffusion too, 7 but these analyses are re­

stricted to free radicals or to molecules which can be appropriately spin-labeled. 

Last but not least, nuclear magnetic relaxation experiments have successfully been 

used to study molecular motions in solution and in solids. 8•9 These measurements 

are sensitive to both the rate and the geometry of the motions. 10•11 Moreover, since 
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the excitation frequency lies in the radiofrequency range, nuclear magnetic reso­

nance (NMR) can be used to examine the rotational diffusion of molecules trapped 

in optically opaque gels, which are inaccessible to many other spectroscopic tech­

niques such as fluorescence depolarization. 

When a molecule undergoing Brownian motion is trapped inside a gel, its dy­

namics are affected in two ways (fig.1). First, the viscous interactions between the 

fibers and the molecule, transmitted through the solvent, will increase the friction 

factor of the particle. The link between the diffusion coefficient and the hydrody­

namic properties of a small suspended object was first recognized by Einstein in 

his classic treatise on Brownian motion. 12 In 1906, he proposed that D = kT /6, 

where Dis the translational diffusion coefficient, k represents Boltzmann's constant, 

Tis the absolute temperature and 6 is the friction factor. (B = 6-rrµa for spherical 

particles according to Stokes' formula. µ stands for the viscosity of the fluid and a 

is the particle radius.) This relation was later verified experimentally by Perrin, 13 

who extended it to include rotational motion and non-spherical molecules. In gen­

eral then, for a particle of arbitrary shape, the diffusion tensor D is proportional 

to the mobility tensor M of the body. 14 This assumes that the particle Reynolds 

number is small. Hence viscous forces, rather than inertial effects, dominate the 

behavior of the solvent. Most molecules are small enough to satisfy this criterion, 

and many are large enough to legitimate the use of a continuum description for 

the solvent. From the Stokes-Einstein relation, or its generalization D = kT M, 

it is apparent that an increase in the hydrodynamic resistance of the molecule due 

to entrapment will decrease the diffusion coefficient. Because of the long-ranged 

character of hydrodynamic effects at low Reynolds numbers, 15 this viscous effect 

will be experienced even if the molecule is much smaller than typical pores in the 

gel. H the particle has dimensions comparable to the mean void space in the gel 

matrix, the diffusion tensor will be affected in an additional, more qualitative man­

ner (fig.le). The network of polymer chains will hinder some modes of motion more 

than others, causing anisotropic diffusive behavior. For example, in the case of a 
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prolate molecule, spinning around the azimuthal axis will be slowed, but rotation 

around the minor axis will become virtually impossible ; thus, entrapment in a 

gel amplifies the anisotropy of the molecular shape. Because of the dependence of 

nuclear magnetic relaxation on the rate and the geometry of motions, both effects 

can be investigated by fairly conventional NMR experiments. 

2. Experimental Section 

2.1 Principles of Nuclear Magnetic Relaxation 

The concept that links nuclear spin relaxation to molecular dynamics is straight­

forward. When a molecule is placed in a magnetic field, the spontaneous alignment 

of the nuclear spins parallel or anti parallel to the applied field results in a net macro­

scopic magnetization. At equilibrium, the distribution of the spins among these two 

energy levels follows the Boltzmann law. In an inversion recovery experiment, the 

magnetic moment induced in the sample is inverted by a radiofrequency pulse and 

its return to equilibrium is monitored (fig.2). In most cases, the magnetization 

approaches its asymptotic value exponentially, with a time constant T1. 

This relaxation behavior reflects the motion of the molecule, and it is this rela­

tion that allows the investigation of molecular dynamics by NMR. The key concept 

is that the magnetic field experienced by a nuclear spin depends on its local envi­

ronment, which changes as the molecule tumbles. For example, the electron cloud 

surrounding the nucleus effectively forms a shield against electromagnetic radiation. 

Since the electronic distribution in a molecule is non-uniform, this screening effect 

depends on the orientation of the molecule in the applied magnetic field (fig.3a). 

This is known as chemical shift anisotropy in the NMR literature. As a result of the 

anisotropic screening, rotational Brownian motion will modulate the effective field 

experienced by the nucleus. If these fluctuations match the Bohr relation, tl.E = hv, 

they can induce transitions between the energy levels and lead to relaxation, i.e. a 

return to the equilibrium distribution. tl.E is the energy difference between the spin 

states, h is Planck's constant and v is the frequency of the magnetic fluctuation. 

Hence a relaxation experiment actually samples the component of the molecular 
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motion at the Bohr frequency. 

Other interactions can contribute to variations of the local magnetic field with 

orientation. A very important relaxation mechanism is the magnetic dipole-dipole 

interaction between nuclei (fig.3b). Each spin acts as a tiny dipole and generates 

its own lines of induction. Again the field experienced at one site depends on the 

position of the interacting spin, and hence on the orientation of the molecule relative 

to the applied magnetic field. 

Quantitative expressions for the relaxation rates due to these mechanisms have 

been derived from time-dependent perturbation theory. In this treatment, the rele­

vant interaction is treated as a small perturbation of the Hamiltonian describing the 

evolution of the spin system. The problem can then be handled using the formalism 

developed in Abragam's classic work on nuclear magnetism. 16 The relaxation time 

can be deduced ; for chemical shift anisotropy the formula reads : 

where "I I is the gyromagnetic ratio of spin I, 

Bo is the applied magnetic field strength, 

6.u and r, characterize the chemical shift anisotropy, 

w 1 is the transition frequency for spin I, 

and J(w) is the spectral density for the motion (see below). 

For dipole-dipole interaction between the spins I and S, the expression is : 

(1) 

(2) 

where n is Planck's constant divided by 21r, and S is the spin quantum number of 

nucleus S. Besides the molecular geometry and the magnetic characteristics of the 

spin system, these expressions involve the "spectral density" Jri(w). This function 

forms the link between molecular motions and the magnetic relaxation. Jf (w) 

is the Fourier transform of an autocorrelation function for the orientation of the 
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molecule. By definition, 

(3) 

where Y2m is a generalized spherical harmonic and O(t) represents the set of angles 

needed to characterize the position of the molecule at time t. The angular brackets 

denote an ensemble average. The orientation O(t) is obtained from the initial set of 

angles 0(0) by solving the appropriate model for molecular reorientation. In most 

cases, diffusive behavior may be assumed, and the equations derived by Favro for 

rotational Brownian motion apply. 17118 The problem of coupled translational and 

rotational motions is examined by Brenner. 14 In the case of isotropic rotational 

diffusion (characterized by a single coefficient), i.e. when the molecular shape is 

adequately approximated as a sphere, the correlation function decays exponentially 

and the spectral density takes the form : 

(4) 

where Dr is the rotational diffusion coefficient. In the more general case where 

different coefficients characterize the diffusion about each of the principle axes, 

the autocorrelation function (Y2-m(n(o))Y2m(n(t))) consists of five exponentials. 19 

The Fourier transformation then yields a sum of Lorentzians which depend on the 

eigenvalues Dz, D 11 and Dz of the diffusion tensor. For symmetric tops, only three 

terms involving D11 and D 1. are retained. 20 

Typically, the relaxation time T1 varies with the diffusion coefficient of the 

tumbling molecule as shown in fig.4 . The distinction between oblate and prolate 

bodies in this figure results from the dependence of the spectral density on D11 

and D 1. and explains how anisotropic diffusion can be studied by NMR. For small 

molecules in solution, the rotational diffusion coefficient normally falls in the range 

108 s- 1 to 1011 s- 1. At the magnetic field strengths usually accessible, this mo­

tion is sufficiently rapid compared to the transition frequency to observe a direct 

proportionality between the relaxation time and the diffusion coefficient. Indeed, 
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in the extreme narrowing limit, i.e. for 6Dr >> wr, Jf(wr) reduces to (6Dr)- 1 

(generally known as the rotational correlation time re)· In the presence of a fibrous 

matrix, molecular tumbling will be slowed, decreasing the rotational diffusion coef­

ficient, and thus affecting the relaxation time. Both macroscopic quantities reflect 

the same microscopic phenomenon : rotational Brownian motion. 

2.2 Materials and Methods 

All samples were prepared using 50 mM solutions of cyclic guanosine monophos­

phate (cGMP ; Mw = 344) buffered at pH= 7.5. Either NN'methylene bisacry­

lamide (Bis) or NN'bisacryloylcystam.ine (BAC) was added as a crosslinker in poly­

acrylamide at a concentration of 4% (relative to the total acrylamide content). 

The samples were degassed under vacuum and polymerization occurred at room 

temperature 21 upon addition of 1 µl/ml of a freshly made 40% ammoniumpersulfate 

solution and 0.3 µl/ml of N,N,N',N' tetramethylethylenediamine (TEMED) under 

N 2 atmosphere. The longitudinal relaxation time T1 of the single phosphorus atom 

in cGMP was measured by the inversion recovery technique at a Larmor frequency 

of 81 MHz ( 200 MHz proton frequency). 

2.3 Experimental Results and Discussion 

We performed several experiments monitoring the phosphorus relaxation of cGMP 

trapped in various types of gels. The results for several concentrations of poly­

acrylamide are shown in fig.5. As expected, the relaxation time decreases with 

increasing gel concentration. Assuming extreme narrowing, the relaxation time is 

a direct measure of the effective rotational diffusion coefficient. Hence we observed 

more than a threefold decrease in the diffusion of cGMP when the gel concentra­

tion was brought from zero to 28% by weight. The gel composition at 40% and 

50% polyacrylamide was not homogeneous (the gel was not translucent). These 

results should therefore be considered with caution, since they reflect a different gel 

structure. Nonetheless, the data obtained seem consistent with the general trend. 

The crosslinker used (Bis or BAC) did not affect the measured relaxation times. 
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In order to maximize the homogeneity of the gel structure, BAC was preferred for 

the densest gels. 22 At concentrations of more than 40% polyacrylamide, however, 

all the samples became turbid after a few days. Note that the initial drop in T1 

is steeper than the decrease observed at higher fiber densities. This indicates that 

even fairly porous gels will hinder the tumbling of relatively small molecules con­

siderably. It also reflects the fact that the effective pore size dav does not decrease 

linearly with increasing gel concentration : as the gel gets denser, additional fibers 

have less effect. 

A series of similar experiments was performed using agarose in concentrations 

up to 10%. The results reproduced in fig.5 show less dramatic changes in the 

relaxation time. This agrees with previous observations that the pores in agarose 

are larger than in polyacrylamide. 

Measurements of transverse relaxation times T2 were in qualitative agreement 

with the data for T1 . The apparent values of T2 obtained in the Carr-Purcell­

Meiboom-Gill spin-echo experiment, 23•24 however, were found to depend on the 

delay between refocusing pulses. This indicates a direct contribution of chemical 

exchange to the transverse relaxation time. 25 This additional dephasing mechanism 

made a direct comparison between T1 and T2 difficult, but the data seemed con­

sistent if a systematic error of about 0.5 s due to chemical exchange was assumed. 

Either the observed scalar coupling between the phosphorus and a hydrogen atom 

on the sugar ring, or the coexistence of two conformations for the spin site, could 

give rise to this effect. 

These experiments can be used to deduce valuable information about the gel 

structure. On the one hand, it is clear that the average pore size must be at lea.st 

twice as large as the longest axis of a cGMP molecule, since no manifestation of 

extremely anisotropic motion was observed, even at the highest gel concentrations. 

Hence, as a rough estimate, one can evaluate dav > 16 A. An upper bound for the 

characteristic separation between the fibers is hard to deduce for this type of gel, 

since the translational diffusion of the molecule is rapid enough for the cGMP to pass 
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through many pores before the relaxation is complete. The near-encounters with 

polymer chains along its path account in part for the drop in rotational diffusion 

coefficient, in addition to the effect of the surrounding static matrix. It is interesting 

to note, however, that in a matrix with closed pores, each molecule would sample 

only one pore size ; it is then expected that relaxation measurements will provide 

very useful information not only about the average pore size, but also about the 

pore size distribution. 

Since T1 is proportional to kT /B, the contribution of the fibers to the effective 

friction factor of the trapped molecule can be evaluated from 1/T1 - 1/T{01
. Here, 

T{01 denotes the measured relaxation time in the absence of gel. A double loga­

rithmic plot of this difference in relaxation rates versus gel concentration yields a 

slope very near unity for both polyacrylamide and agarose (fig.6). This indicates 

that the same mechanisms account for the slowing of the molecule, even though 

the gel structures are known to be very different. Agarose helices aggregate in 

bundles, leaving wide gaps between the fibers. 26•27 Polyacrylamide, on the other 

hand, forms a random network of polymer chains if the amount of crosslinking is 

less than five percent. 28 The experiments with agarose, where the pores are much 

wider than the molecular size of cGMP, suggest that the main interaction is due to 

the occasional encounters with the fibers, which couple the translational motion of 

the molecule to its rotation. More experimental data and a rigorous treatment of 

the hydrodynamics involved, however, will be needed to verify this conclusion. 

3. Numerical Simulation 

3.1 Fundamentals of Stokesian Dynamics 

A more rigorous treatment of the hydrodynamics determining molecular diffusion 

in fibrous environments can be attempted by numerical simulation. This approach 

should aid in the interpretation of the experimental results, and will provide a the­

oretical background for cases which cannot adequately be described by macroscopic 

diffusion equations. The length scales involved in the process suggest that Stokesian 

dynamics 29 provides an adequate level of description. The small size of the solvent 
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molecules, as compared to the diffusing macromolecule, legitimates a continuum de­

scription of the solvent phase. The proteins, or other polymers of interest, can then 

be viewed as particles dispersed in a Newtonian fluid with the properties of water. 

The gel can be modeled as a network of solid rods, representing a single fiber or 

a bundle of polymer chains depending on the microstructure of the gel considered. 

Since the particle Reynolds number for the diffusing molecule is always much less 

than one, the inertial terms can be neglected in the Navier-Stokes equations for the 

solvent. The resulting quasi-stationary Stokes equation, 

(5) 

balances pressure gradients Vp in the fluid by viscous forces µV 2u. Of course, 

the solvent also satisfies the continuity equation, which takes the form V • u = 0 

for incompressible fluids. The motion of the N particles is described by a coupled 

N-body Langevin equation30 

(6) 

Here, mis a 6N x 6N generalized mass/moment of inertia matrix and U is the par­

ticle translational/rotational velocity vector of dimension 6N. Owing to the linearity 

of the Stokes equations, the hydrodynamic force F H exerted by the particles is di­

rectly related to their relative velocity in the fluid and to the bulk shear stress E 00 

through resistance matrices which only depend on the instanteneous configuration 

of the system. In general, 

(7) 

The selfterms or diagonal elements of the resistance matrices RFu and RFE repre­

sent the drag on the particles. The off-diagonal coefficients ( or crossterms) reflect 

viscous interactions between particles, and will bring into account the hydrody­

namic effects of the static fibrous matrix on the Brownian particles. The vector 

FP represents deterministic interparticle or external forces. Finally, the stochastic 

force FB that gives rise to Brownian motion is characterized by 

and (8) 



Angular brackets denote an ensemble average. The magnitude of the autocorrelation 

function for the Brownian forces results from the fluctuation dissipation theorem 

and the equipartition principle for the thermal energy. 

It should be noted that the validity of the Langevin equation rests on the as­

sumption that all relaxation times associated with the fluids are short compared to 

those of the particles. This requires that the mass of the particles largely exceeds 

that of a solvent molecule. 31 •32 Secondly, the configuration of the system should not 

change significantly during the time scale of Brownian motion33 T = m/61rµa, which 

is the time required for the particle's momentum to relax after a Brownian impulse. 

Scaling arguments and rough estimates can be used to prove that this criterion is 

satisfied for typical particles ( 1 nm < a < 1 µm) in water at room temperature. 33 Fi­

nally, the vorticity of the fluid must diffuse faster than the particles lose inertia, i.e. 

a2 /v << r. This implies that the particles must be much denser than the fluid. 34 

In cases where this condition is not satisfied, inertia must be taken explicitly into 

account. For a neutrally buoyant particle, the resulting velocity autocorrelation 

function W(t) = (U(t0)U(t0 + t)) decays as35 t-½ at times long compared to r. 

This should be contrasted with the exponential behavior34 obtained by integrat­

ing (6) with (7) and (8). In the course of a simulation, however, the particle will ex­

perience many uncorrelated Brownian impacts from the solvent molecules, and the 

long-time tail of the velocity autocorrelation function W(t) becomes irrelevant. 33 

Indeed, at times larger than T, only the low frequency components of the Fourier 

transform W(w) of W(t) dominate the diffusion process because they provide the 

largest net displacements. Since these components represent almost steady motion, 

the steady hydrodynamic resistance functions RFu and RFE can be used in (7), 

and the omission of inertia is inconsequential. 

Under these conditions, the Langevin equation can be integrated twice over a 

time step flt chosen such that the configuration of the particles does not change 

much. The resulting displacements Ax in the 6N-dimensional position/orientation 
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space for the particles is given in non-dimensional form by36 : 

6.x =Pe{V 00 + (RFu)- 1 • [RFE: E 00 
- (i*)- 1FPJ}6.t 

+ {v' • (RFu )- 16.t + X(6.t)}. (9) 

Here, x has been non-dimensionalized by the characteristic particle size a. The 

time is set by the diffusive time scale a 2 /Do, where Do ( = kT / 61r µa) is the diffusion 

coefficient of an isolated spherical particle of radius a. The shear forces are scaled 

by 61rµa 2i, with ')' = IE00
1 the magnitude of the shear rate, and the interparticle 

forces by jFPj. The Peclet number Pe= .:Ya2 / Do measures the relative importance 

of the shear and Brownian forces, and ')' * = 61r µa 2i / IF PI is a non-dimensional shear 

rate. For a Brownnian suspension, in the limit of Pe -+ 0, the change 6.x in the 

configuration of the particles consists of two terms : a random displacement X, the 

stochastics of which are described by 

(X)=O and (10) 

and a displacement due to the configuration space divergence of the N-particle 

mobility matrix, v' • (RFu)- 16.t. 

Obviously, the mobility tensor M = RF~ plays a central role in the dynam­

ics of the particulate system. Due to the complexity of many-body hydrodynamic 

interactions, a pairwise additivity scheme must be adopted in constructing an ap­

proximation for M. The velocity disturbance of one body caused by an external 

force applied to another, "senses" third body effects at O(r-4 ), where r is a char­

acteristic particle separation. 37 In the resistance matrix, however, the presence of 

the third particle appears at O(r-2).33 Thus it seems that pairwise additivity of 

velocities (the so-called mobility formulation) is more accurate than the resistance 

formulation for systems of widely spaced particles. However, lubrication forces will 

only be preserved by including them directly in the resistance matrix. Durlofsky 

et al. therefore proposed an algorithm which combines both methods. 38 It yields a 

resistance matrix which accurately represents the lubrication forces, and which even 

includes some many-body resistance interactions. This is accomplished by inverting 

12 



the N-body mobility matrix constructed by assuming a pairwise additivity of veloc­

ities. Lubrication effects are then added directly to this far-field approximation of 

the resistance matrix, using the exact two-body resistance functions 39 . Since some 

two-body interactions were already included in the invert of the mobility tensor, 

a corrective step ensures that these contributions are not counted twice. This for­

malism yields an accurate approximation for the N-body resistance matrix at all 

particle separations. 

3.2 Prediction of Diffusivities from Stokesian Dynamics 

The generalized Stokes-Einstein equation relates the diffusion tensor of an arbi­

trary body to its hydrodynamic resistance tensor. As shown by Brenner, 14 D = 
kTR Fh = kTM. The short-time self-diffusivity D 0 is found by taking the trace 

over all particles of the selfterms in the diffusion tensor, and averaging over all 

configurations : 

(11) 

It measures the body's instanteneous mobility. The long time self-diffusivity D~, 

on the other hand, characterizes a particle's tendency to wander far from its initial 

position in configuration space and is given by30
: 

D~ = lim ~dd (trp(x- (x)) (x - (x))). 
t--+oo 2 t 

(12) 

A Stokesian dynamics simulation of molecular diffusion in fibrous media comple­

ments the experimental nuclear magnetic relaxation studies very nicely since the 

orientational autocorrelation function (Y2-m(O(O))Yr(n(t))) which determines the 

spectral density J;'(w) in (3), follows in a straightforward fashion from the calcu­

lated particle trajectories in configuration space. In order to focus on the influence 

of the gel matrix on molecular diffusion, infinitely dilute suspensions can be consid­

ered. In this limit, one follows the path of a single test particle caught in a network 

of stiff rods with which it interacts hydrodynamically. The fibers being fixed in 

space, the Langevin equation only needs to be solved for the six components of the 

particle's velocity, even though the full N-body mobility matrix needs to be inverted 
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to preserve many-body effects. Since only N of the N(N -1) interactions between 

particles evolve in time, these simulations should be much less computer intensive 

than the numerical solution of many other many-body problems. 

3.3 Hydrodynamic Interactions between Prolate Spheroids in the 

Mobility Formulation 

Considering the central role played by the resistance tensor RFu in the evolution of 

the system, it is mandatory to reproduce hydrodynamic interactions as accurately 

as possible. Even though remarkably good agreement with slender body theory has 

been obtained in a previous series of Stokesian dynamics experiments38 by approx­

imating prolate spheroids as a string of touching spheres, a more direct approach 

must incorporate hydrodynamic interactions between spheroids directly. By consid­

ering each particle as an entity, rather than a composite body, the accuracy of the 

method should improve significantly. The accompanying reduction in the number 

of degrees of freedom should also markedly increase the efficiency of the numerical 

simulations. Clearly, a gel matrix is also more satisfactorily, and more economically, 

modeled as a network of long, slender rods than as chains of closely spaced spheres. 

Similarly, the ellipsoidal shape of many biopolymers, such as chymotrypsin 2 and 

lysozyme,40 will be closely fitted by a prolate spheroid. 

Following the algorithm proposed by Durlofsky et al., 38 the first step in the 

construction of the resistance matrix is the inversion of a mobility tensor obtained 

by pairwise additivity of velocities. Hence the extension of Stokesian dynamics to 

suspensions of prolate spheroids requires a knowledge of the mobility interactions 

between such bodies. 

The velocity disturbance caused by a prolate spheroid in a uniform stream 

U 00
, a constant vorticity field 0 00 and a rate-of-strain field E 00 can be generated 

by an equivalent distribution of singularities along the line joining the foci of the 

ellipsoid. 41 •42 The velocity at any point in the fluid can therefore be evaluated by 

a line integral (see appendix A). A theorem due to Kim43 , which is essentially an 

extension of the reciprocal theorem of Lorentz 44 , then predicts that the Faxen laws 
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for the force, torque and stresslet exerted by a prolate spheroid in an arbitrary 

ambient flow u 00 can be written as line integrals of u 00 over the particle axis43 

(appendix A). By combining these expressions with the results of Chwang and 

Wu,41 •42 the velocity disturbance in the applied flow due to the presence of a prolate 

spheroid, can be related to the generalized force (F, T, S) experienced by the fluid. 

Secondly, the Faxen laws derived by Kim43 can be inverted to yield the imposed 

linear shear field E 00 and the relative velocity (U - U 00
, w - 0 00

) of the particle 

in terms of its generalized force and the local deviations u'00 from the applied flow 

(appendix A). In the case of non-spherical objects, this operation is complicated by 

the coupling of the angular velocity w to the rate of strain E 00
• 

By realizing that the ambient flow experienced by a given body is simply the 

velocity disturbance due to the presence of all other particles, the hydrodynamic in­

teractions between pairs of prolate spheroids can now be determined in the mobility 

formulation (appendix A). The resulting mobility tensor can be shown to satisfy all 

the symmetry requirements set by the reciprocal theorem of Lorentz. 44 Although it 

is usually applied to the selfterms of the mobility matrix, 46 •46 the reciprocal theorem 

also predicts useful relations between crossterms (see appendix D). 

3.4 Numerical Aspects 

In constructing the mobility matrix for a given configuration of the particulate 

system, a double integration over the particle axes must be carried out for each 

pair of interacting spheroids. The orientations d 1 and d 2 of the ellipsoids, and 

their separation, is arbitrary. Using cylindrical coordinates centered at the origin of 

spheroid "2" with the azimuthal axis along d2 (fig.7), the first integration in (A.18) 

can be carried out analytically. The result is most conveniently expressed in terms 

of the coefficients Bm,n(x) introduced by Chwang and Wu42 as 

(13) 

A recurrence relation for Bm,n(x) makes this formulation especially suited for com-
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puter programming. It is easily shown using integration by parts that 

(14) 

for n 2: 2, where x, R 1 and R 2 are defined in fig. 7. 

Taking advantage of identities relating the derivatives of Bm,n(x) (appendix B), 

and after a formidable amount of tedious but straightforward algebra, all the mo­

bility coefficients involving particles "l" and "2" can be written in the form 

(15) 

where f({Bm,n}) is a linear function of the set of Bm,n(x). Twenty-four different 

combinations of m and n appear in the expressions for f({Bm ,n}). The index 

m can take on any odd integer value between 1 and 9, and n varies from O to 

min{5,m}. All these coefficients are known in closed form. However, at large 

separations (x/c2 > 6 or r/c2 > 8), the analytical formulae become numerically 

unstable. (They involve the difference between the endpoint-values of the integral, 

which becomes increasingly small as the distance between the foci, 2c2 , decreases 

relative to (x 2 + r 2) ½ .) Fortunately, the Bm,n(x) can accurately be calculated by 

numerical integration techniques, and Simpson's method was found to converge 

rapidly when (x 2 + r 2) ½ > > c2 . A more serious drawback of the exact expressions 

for Bm,n(x) is their inadequate form when r--+ 0. Indeed, form # 1, 

For r / c2 < 10-2 , a Taylor series expansion about r = 0 is used to overcome this 

problem. The series is truncated so that the mobility coefficients would be accurate 

to O((r/c2)6) at least. 

Once the Bm,n(ei) are known, the function f ({Bm,n}) in (15) is integrated 

numerically. At each point along the discretization axis, this requires converting 

the local cylindrical coordinate system used for the first integration ( at fixed e 1), 
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back to the cartesian "laboratory frame of reference". A flowchart for constructing 

the crossterms in the mobility matrix is given in fig.8 . 

At this point, the theory of pairwise interactions between prolate spheroids in 

low Reynolds number linear flows is complete at the level of forces, torques and 

stresslets. The invert of this approximate mobility matrix yields a far-field estimate 

of the resistance tensor. Note also that the formulae allow for a distribution of aspect 

ratios, since it is never assumed in the discussion above that the interacting particles 

have the same eccentricity e. In particular, mobility interactions between spheres 

(e ---+- 0), rods (e ---+- 1) and other prolate spheroids are adequately represented by 

equations like (A.18). Due to computational limitations, the range of aspect ratios 

acceptable in the current version of the code is large, but finite. A glance at the 

expressions in Appendix C will indicate some of the difficulties encountered in both 

limits e ---+- 0 and e ---+- 1. 

4. Conclusions 

Considerable progress has been made towards the extension of Stokesian dynamics 

to prolate spheroids. The mobility matrix can be constructed exactly at the level of 

forces, torques and stresslets. This represents an important step towards the devel­

opment of a new version of Stokesian dynamics specific for suspensions of prolate 

spheroids, which will allow computer-efficient numerical simulations of molecular 

diffusion in fibrous environments to be performed. 

The application of nuclear magnetic relaxation measurements to study rota­

tional motions in opaque gels looks promising. The type of motions that can be 

monitored spans an impressive range, covering rapid tumbling in non-viscous fluids, 

with characteristic correlation times of the order of picoseconds, as well as much 

slower, hindered motions that can occur in porous media. The spectrum of frequen­

cies to which the technique is sensitive can be enlarged even further by observing 

different nuclei (any spin other than hydrogen will do), by varying the magnetic 

field, or by a clever selection of the experiments : the transverse relaxation time 

T2 and the spin-lattice relaxation in the rotating frame for example, reveal the low 

17 



frequency components of the motions. Finally, the dependence of NMR on both the 

rate and the geometry of the molecular tumbling make relaxation measurements a 

very powerful and attractive tool to study matrix-induced anisotropic diffusion. 
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APPENDIX A 

Outline of the Calculation of Hydrodynamic Interactions 

between Prolate Spheroids in the Mobility Formulation 

Starting from the fundamental solution of the Stokes equations, Chwang & Wu41 •42 

constructed exact solutions for several low Reynolds number problems involving 

rigid boundaries. In particular, they showed that the velocity disturbance caused 

by a prolate spheroid in a uniform stream U 00
, a constant vorticity field 0 00 and 

a rate-of-strain field E 00
, is reproduced by a uniform, parabolic, or biquadratic 

distribution of singularities along the particle's major axis. The velocity u(x) at 

any point in the fluid can then be evaluated by a line integral43 : 

u(x) =U00 
- U 00 

• {a1dd + a2(cS - dd)}· 

. Jc { 1 + (c 2 - e2) (l - ;2) v' 2 }1(x - e) de, (A.1) 
-c 4e 

1 Jc u(x) =0 00 
/\ x + -0 00 

• { ,dd + ,'(6 - dd)} • (c2 - e2)V /\ I(x - e) de+ 
2 -c 

+ a 1 Jc (c 2 - e2) { 1 + (c 2 - e2) (l - ;2) v' 2 } K(x - e) : (0 00 
/\ d)d de, (A.2) 

-c Se 

and 

a* 
+ 4 (d;8kmd1 + d;8k1dm + 8;mdkd1 + 8;1dkdm - 4d;dkd1dm) 

a4 ( + -(8;18km + 8;m8k1 - 8;k8lm + d;dk8lm + 8;kd1dm A.3) 
2 

- d;8kmd1 - 8;mdkd1 - d;8k1dm - 8;1dkdm + d;dkd1dm) }· 

• J_cc (c2 
- e2) { 1 + (c 2 

- e2) (l ~;2) v' 2 }Ii;,k(x - e) de 

- E1md;8kmd1a1 J_cc (c 2 
- e2) ~ { li;,k(x - e) - lik,;(x - e)} de. 

Here, d is the unit vector along the spheroidal axis, and I is the Oseen tensor, 

(A.4) 
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Iif,k = (VI)kif and Kif k = ½ (Iif,k + Iik ,f). All the remaining parameters depend 

only on the geometry of the prolate body : c is the center-to-focus distance and 

e = c/ a, where 2a is the length of the major axis. The quantities a and "f are 

functions of e, given in appendix C. In a short and elegant proof, Kim shows that 

the Faxen law for the force F on an immobile slip-free rigid particle in an arbitrary 

ambient velocity field u 00 has the same functional form as the singularity solution 

for the velocity disturbance u' in a uniform stream U 00 past the same stationary 

body43 : 

if (A.5) 

where Le is a linear functional, then 

F = - Le { u 00 

( e) } . (A.6) 

Here e denotes the distribution of singularities. Based on this theorem and the 

results of Chwang and Wu,41 •42 Kim derives the Faxen laws for a prolate spheroid 

moving at U +w l\x (x measured from the geometrical center of the particle). The 

force F, the torque T and the stresslet S exerted by the body on the fluid can be 

written ast 

F =l61rµc{a 1dd + a2(6 - dd)} • U (A.7) 

- 81rµ{a1dd + a2(6 - dd)} • f c {1 + (c2 - e2) (l - ;2) v7 2 }u00 (e) de, 
-c 4e 

32 
T =3 1rµc 3{,dd + '"'!'(6 - dd)} • w 

- 41rµ{-ydd + '"'1'(6 - dd)} • J_cc (c2 - e2)V A u 00 (e) de (A.8) 

- 81rµa1d I\ f c (c2 - e2) { 1 + (c2 - e2) (l - ;2) v7 2 }d • e00 (e) de 
-c 8e 

t In the special case of one spheroid moving at a velocity (U, w) in a stream 

characterized by U 00

, 0 00 and E 00

, these expressions can be shown to include the 

results obtained previously by Brenner.47 The comparison is quite laborious due to 

a different choice of variables and a different grouping of the tensor components in 

both papers . 
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and 

a• 
+ 4 ( di8;kd1 + di8;1dk + 8i1d;dk + Oikd;d1 - 4didjdkd1) 

a4 
+ 2(8ik8;1 + 8i18jk - OijOkl + didj8k1 + Oijdkdl (A.9) 

- di8;1dk - 8ikd;d1 - di8;kd1 - 8i1d;dk + did;dkd1) }· 

• J_cc (c 2 
- €2) { 1 + (c2 

- €2) (l ~;2) V 2 }e%1(e) dE 

- 21rµa1(difjkld1 + dj£.ik1d1) J_c}c2 
- e2){V /\ u 00 (e) - 2w} k dE. 

These integral expressions are easier to handle in numerical simulations than the 

infinite series of operators obtained by Brenner,45 who expanded the ambient field 

in a Taylor series at the particle center. 

The mobility functions can be obtained by inverting the Faxen laws (A.7)-(A.9) . 

It is readily found that : 

(A.10) 

but the expressions for w and E 00 are coupled. In a uniform purely straining flow 

E 00 = ½ (Vu 00 + (Vu 00
) T) = Vu 00

, the two contributions to the stress let reflect 

this coupling : one term arises directly from the rate-of-strain field, the other is due 

to the induced rotation of the particle. The result can be cast in the general form 

S = R' SE : E 00 + R' Sw • W. (A.11) 

Equation (A.8) is easily rearranged to give w as a function of T, V /\ u 00 and e00
• 

For a torque-free spheroid in a flow of constant vorticity 0 00 and uniform rate of 
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strain E 00
, the expression reduces to t 

(A.12) 

Inserting this relation, with 0 00 = 0 in (A.11), a linear relation between the stresslet 

and the rate of strain can be derived for a torque-free prolate spheroid in a uniform 

irrotational straining flow : 

(A.13) 

By exploiting the symmetry of E 00 and expanding Rs E in a set of orthogonal fourth 

order tensors, the inverse relation was obtained in explicit form, i.e. E 00 = MEs : S. 

The elimination of w from (A.8) and (A.9), yields S as a function of e 00 and T. 

It is interesting to note that two terms involving V /\ u 00 cancel each other during 

this manipulation. Limiting our discussion to imposed linear flow fields, + it is then 

possible to separate e00 into a uniform applied shear field E00 and a disturbance on 

the main straining flow e'00
. A double-dot left-multiplication by MEs on both sides 

of the equation, followed by some simplifications, then yields a mobility expression 

for the ambient rate of strain E 00 in terms of S, T and e'00
. Plugging this expression 

into (A.8) to eliminate E 00
, we obtain the following Faxen formulae for the mobility 

t An equivalent formulation, in terms of the aspect ratio rp of the particle, reads: 

. r; - 1 
d = w I\ d + --(d. E 00 

- d. E 00
• dd) 

r 2 + 1 p 

+ It is not meaningful to consider imposed quadratic velocity fields because the 

boundaries creating such flows contribute to the motion of the particle to the same 

order as the curvature of the flow. 38 
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of prolate spheroids : 

and 

3 1 
- ---,-----~(d /\ S · d -d ·SA d) 

321rµc 3 ( 2-e
2 a• + a ) 

e2 1 

3 Jc + - (c 2 
- e2)V /\ u'00 (e) d€ 

8c3 -c 

- EfJ = 32:µc3 { 2:s (did; - ½oi;)(dkdl - ½okz) 

1 

1 
+ -

2 
(6ik6;z + 6iz6;k - 6i;6kz + did;6kz + 6i;dkdz 

a4 

- di6;zdk - Oikd;d1 - diOjkdl - Oizd;dk + didjdkd1) }skl 

+ ~ 1 C (c2 - e2) {1 + (c2 - €2) (1 - e2) v2 }e~~(e) d€ 
4c3 -c 8e2 '1 

3 1 
3 ( 2 2 )(ddAT-T/\dd)i; 

321rµc ~a•+ a 1 e 

(A.14) 

(A.15) 

These relations determine the motion of a particle immersed in a flow field given 

by U 00 + w00 
/\ x + e00 

• x + u'00 (x). Note that e'00 = ½(Vu'+ (Vu'V). The 

mobility representation of the hydrodynamic interactions will be complete when 

the disturbance velocity field u'00 caused by all other particles is expressed as a 

function of the generalized force (F, T, S) exerted by these bodies. From the 

linearity of the creeping flow equations, it follows that the velocity at any point in 

the fluid is a linear superposition of the contributions of F, T and S exerted by 

each particle separately. By combining (A.1)-(A.3) and (A.7)-(A.9), the velocity 

disturbance caused by a particle exerting a force F, a torque T and a stresslet S 
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on the fluid is found to be : 

(A.16) 

: s. 

In the limit of e --+ 0 at finite a, the irreducible moments expansion for the velocity 

disturbance created by a sphere immersed in a linear fl.ow field can be recovered : 

1 a2 

u'(x) =-{ (1 + -v'2)I(x) • F + R(x) • T 
81rµ 6 

a2 
+ (1 + 

10 
V2)K(x): s} (A.17) 

where38 R(x) = ½(V /\ I(x))T. By summing (A.16) over all particles interacting 

with particle "1", inserting the result into the mobility functions (A.10) ,(A.14) and 

(A.15) of spheroid "1", and repeating this for all particles, the mobility matrix for 

a system of N prolate spheroids can be constructed at the level of forces, torques 

and stresslets. For example, the contribution of a force F 2 on particle "2" to the 

translational velocity U 1 of a first body is given by : 

The resulting mobility tensor can then be inverted to yield a far-field approximation 

of the resistance tensor. 
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APPENDIX B 

Chwang & Wu's Bm,n(x)coefficients 

The coefficients Bm,n(x) are defined as (see also fig.7) 

with n = 0, 1, 2, ... and m = 1, 3, 5, ... 

Defining 

and (B.2) 

the recurrence formula (14) can be proved by integrating Bm,n(x) by parts. The 

initial values Bm,o(x) are given by (16) for m-/= 0 and by 

B ( ) l R2 - (x - c) l R1 + (x + c) 
1•0 x = og-R-1---(x_+_c_) = og-R-2-+-(x ___ c_) (B.3) 

if m = 0. The recurrence formula (14) also applies for n = 1 if the second term is 

set to zero. For example, 

(B.4) 

Some useful identities involving the derivatives of Bm,n(x) are : 

a a 
r-

8 
Bm n = -

8 
(xBm n - Bm n+1) (B.5) 

X ' r ' ' 

a a a 
x-

8 
Bm n - -

8 
Bm n+1 + r-

8 
Bm n = -mBm n (B.5) 

X ' X ' r ' ' 

a2 a2 1 a 
v" 2Bm n = a 2Bm n + a 2Bm n + --

8 
Bm n = m(m - l)Bm+2 n (B.6) 

' x ' r ' r r ' ' 

8 2 8 2 m 8 
-
8 2 Bm,n + a 2 Bm,n + --

8 
Bm,n = 0 (B.7) 

x r r r 
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APPENDIX C 

Functions a and 1 

Following the notation of Kim43 

a1 =•'{-2, + (1+ e2
) log G = :) r (C.1) 

a, =2e
2 

{ 2e + (3e
2 

- 1) log G = :) r (C.2) 

-y=(l - ,'i{i• + (1- e
2

) log G = :) r (C3) 

--y' =(2 - e2) {-2, + (1+ e2) log G = :) }-l (C.4) 

--y\ = {-2, + (1+ e
2

) log G = : ) r ( C.5) 

a' =e
2

--y\ { 2e(2e
2 

- 1) + (1 - e
2

) log G =:) }· 

• { 2e(2e
2 

- 3) + 3(1- e2)log G =:) r (C.6) 

a, =•' { 6e - (3 - e
2
)log G =:) r (C.7) 

a 4 =2e2 (1 - e2
) { 2e(3 - 5e2

) - 3(1- e2
)

2 log G =:) }-
1 

(C.8) 

The results for spherical particles can be recovered by noting that 

1• 1· 3 -1 Im a:1 = Im a:2 = -e 
e--o e--o 8 

lim 1 = lim ,' = ~e-3 

e--o e--o 4 

1. 5 -3 1· 15 -3 Im a:4 = - -e Im a:5 = --e 
e--o 8 e--o 8 

. • 5 -3 hma: = --e 
e--o 4 
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APPENDIX D 

Implications of Lorentz' Reciprocal Theorem 

Let u' be the velocity field and Il' = -Ip'+µ ('vu'+ ('vu') T) be the pressure field 

corresponding to any flow satisfying the Stokes equations 

and 'v. u = o, (D .1) 

and let ( u", Il") characterize any other fluid motion conforming to (D .1). Then 44 

f ds • n' . u" = f dS • n" . u' (D.2) 
s s 

in which S is any closed suface drawn in the fluid. 

This theorem, originally due to Lorentz, defines the symmetry of the resistance 

tensor of an arbitrary particle. 44 - 4a It can also be used to determine symmetry 

requirements for the N-body resistance tensor in systems of particles. Consider 

for example the two flow cases depicted in fig.9. The velocity field u' and the 

associated pressure field TI' arise from the motion of a particle "1" with velocity 

U 1, keeping particle "2" stationary. The fields u" and II" are caused by spinning 

particle "2" at an angular velocity W2, fixing particle "1". Let the surface S consist 

of the particle surfaces, and of a shell u of very large radius Ru chosen so that u 

surrounds both bodies. When applying the reciprocal theorem, the contribution 

of the outer sphere u vanishes, since Il' • u" and Il" • u' are at most O(R;3) as 

Ru -+ oo, while the surface is O(R;). 44 Using the no-slip boundary condition at 

the particles' surface, we obtain the relation 

j dS • IT'•w2 /\ r = / dS •II"• U 1 (D.3) 

S2 S1 

which can be rearranged as 

W2 • I r /\ n' · dS = U 1 • / dS • II" (D.4) 

S2 S1 

27 



The integral on the left hand side is the hydrodynamic torque experienced by par­

ticle "2" under action of the translating particle "1". It depends linearly on U 1 in 

the limit Re - 0, when the equations (D.1) apply. Hence 

/ r /\ IT'· dS = R~1u • U 1 

s'J 

(D.5) 

where R}1u is a crossterm of the resistance matrix for this two-body system. Simi­

larly, 

! dS • IT" = R ~2
w • W2 (D .6) 

S1 

is the force experienced by particle "1" due to the rotation of its companion "2" . 

The reciprocal theorem predicts that 

R 21 U _ U Rl2 W2 • TU • 1 - 1 • Fw. W2. (D.7) 

Since w2 and U 1 are arbitrary, this implies that 

R21 _ (R 12 )T 
TU - Fw • (D.8) 

A series of similar expressions can be derived to show that the N-body resistance 

tensor is symmetric. As mentioned, its invert, the N-body mobility tensor obtained 

by using the disturbance velocity field (A.16) in the formulae (A.10), (A.14) and 

(A.15), satisfies this symmetry requirement. This can be recognized by noting that 

I(x) is symmetric and that the nabla operator V commutes with integrations. 
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a 

b 

C 

Figure 1 : Effect of entrapment on molecular motion. 
a) A particle in an unbounded fluid undergoes translational and rotational Brow­

nian motion. 
b) Viscous interactions with the fibers slow the tumbling of the trapped molecule. 
c) At high gel concentrations, the anisotropy of the diffusion tensor is amplified 

because the gel matrix hinders some modes of motion more than others. 



7 sec 

0 sec 

Figure 2 : 31 P spin inversion recovery experiment for cyclic guanosine monophos­
phate in a 50% polyacrylarnide gel at a Larmor frequency of 81 MHz. The spectra 
in this stacked plot were taken at 0.05, 0.1, 0.2, 0.3, 0.45, 0.6, 0.8, 1., 1.25, 1.5, 1.8, 
2.2, 2.8, 3.6, 4.6, 5.8, 7., 8.5 seconds after the inverting radiofrequency pulse. 
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Figure 3 : Influence of molecular orientation on the local magnetic field experienced 
by the nuclear spins. 

a) Illustration of chemical shift anisotropy. 
b) Dipole-dipole interaction between nuclear spins. 
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Figure 4 : Double-logarithmic plot of the relaxation time T1 as a function of the 
rotational diffusion coefficient D,. = ½ (D11 + 2 D .1). The data are for 31 P relaxation 
at 200 MHz 1 H frequency due to dipole-dipole interaction with a proton 2A away. 
The internuclear vector makes an angle of 30° with the major molecular axis (which 
defines D 11 ). The solid line was drawn assuming isotropic di ff us ion ; the dashed line 
(--) holds for D 11 = 10 D .1 (a prolate body), and the dotted line ( ... ) is for an 
oblate particle with D11 = 0.1 D .l• 



-C.) 
Q) 
00 __, 
..-1 

~ 
Q) 

E ..... ..... 
= 0 ..... ..... 
~ 
>< 
~ 

a) 
~ 

6.0 
I ' 

5.5 

5.0 
,· .. 

'1, 5 • :·b 
\ -..___ agarose 
' •. 

'1. 0 \\ o. . ·. 

3.5 

3.0 

,._ ·····a . ·. ' ·•. 

\ll\ ... ·-••• Il 

.. 
·~ .. 

2.5 

2.0 

1.5 

1.0 

.5 

• ........ 
.. .... A.. .. .. ...... 

····a 

/CH 

j 
·o-P--o 

II 
0 

cGMP 

I 
OH 

•.. _6, 

·······ts··---------~--------------
polyacry1amide 

O OLL.i..J....1..5l....L..;...J...J..l.l.O..L..L......J.lJ.5J..J.J..J.2...10...J...J...J...Ju25LI..JW-1...31...o L....J....~3L.SJ....J...J....J...4 ...... 0~ ........... 4...._5 ........ ~50 

Gel concentration (%) 

Figure 5 : Experimental results for the 31 P relaxation of cGMP in polyacrylamide 
and agarose gels. The experiments were carried out at room temperature at a 
Larmor frequency of 80 MHz. 
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Figure 6 : Double logarithmic diagram of the difference in relaxation rates inside a 
gel (Ti) and in solution (T!01

) versus the gel concentration. The data for both gels 
lie on lines with a slope very close to unity. 



Figure 7 : Local cylindrical coordinates 



FLOWCHART FOR CONSTRUCTING THE MOBILITY TENSOR 

1. Take particle i l(l)N-1. 

2. Take particle j i+l(l)N. 

3. Choose discretization point k . e 1 is fixed by k. 

4. • Calculate { Bm,n(e1) }. 

s.• Calculate the integrand f({Bm,n(e1)}). 

6. Transform to laboratory frame of reference. 

7. • Integrate numerically using k discretization points. 

8. Perform an integral convergence test. If it is not fulfilled, 

increment k and return to 3. 

9. Insert coefficient in mobility matrix. 

10. Repeat for next j, starting at 2. 

11. Repeat for next i, starting at 1. 

The steps marked by an asterisk have been encoded in FORTRAN. 

Figure 8: Flowchart for constructing the mobility tensor 
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Figure 9 : Flows considered in appendix D 




