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ABSTRACT

As deep neural networks (DNNs) continue to power advancements in fields like
computer vision and natural language processing, their growing complexity has led
to significant challenges in training efficiency, particularly in large language models
(LLMs). These challenges include memory limitations, energy consumption, and
bandwidth constraints during training.

In this thesis, I will address these challenges by understanding the training dynamics
of DNNs and proposing hardware-efficient learning algorithms to improve training
efficiency. I will begin by mitigating memory limitations in LLM training. Training
large models like LLMs requires substantial memory not only for the parameters but
also for gradients and optimizer states, which can exceed the capacity of standard
hardware. To address this issue, I propose GaLore, a memory-efficient training
algorithm that reduces the memory footprint of training LLMs by up to 65.5% while
maintaining performance. In addition, I will introduce InRank, an incremental
low-rank learning algorithm that further reduces memory usage by incrementally
augmenting matrix rank.

Next, I will focus on reducing energy consumption during training. Training large
models like LLMs requires significant energy, which can have a significant envi-
ronmental impact. To address this issue, I propose LNS-Madam, a low-precision
training algorithm that uses the logarithmic number system (LNS) to reduce the
energy consumption of training without sacrificing accuracy. LNS-Madam can
achieve up to 90% energy savings compared to a baseline model trained with full
precision.

Finally, I will address bandwidth limitations in distributed training. Training large
models like LLMs often requires distributed training across multiple devices to re-
duce training time. However, distributed training can be limited by the bandwidth
of the network connecting the devices, which can lead to communication bottle-
necks that slow down training. To address this issue, I will introduce signSGD
with Majority Vote, a communication-efficient training algorithm that reduces the
communication overhead of distributed training.
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1

C h a p t e r 1

INTRODUCTION

1.1 The Efficiency Issue in Training of Deep Neural Networks
Deep Neural Networks have been widely used in various applications, such as
computer vision and natural language processing. Especially, large language models
(LLMs) have achieved remarkable performance in multiple disciplines, including
conversational AI and language translation.

However, as these models become larger and more complex, the computational
and energy costs associated with their training have escalated significantly. In this
thesis, we focus on studying the efficiency issue in training deep neural networks
from various methods and perspectives.

Memory Limitation. Training neural networks such as pre-training and fine-
tuning LLMs require a large amount of memory. The memory requirements include
not only billions of trainable parameters, but also their gradients and optimizer
states (e.g., gradient momentum and variance in Adam) that can be larger than
parameter storage themselves (Raffel et al., 2020). This brings the need of design-
ing memory-efficient training algorithms that can reduce the memory footprint of
training, without sacrificing the model performance.

Energy Consumption. The energy consumption of training deep learning models
is becoming an increasingly critical concern, particularly given the significant en-
vironmental impact associated with large-scale training (Patterson et al., 2021). To
address these challenges, researchers have focused on developing energy-efficient
training techniques. One promising approach is low-precision arithmetic, where
the bitwidth of computations is reduced to decrease the energy required for each
operation. However, low-precision training can lead to a significant loss in model
performance, which motivates the need for new training algorithms that can maintain
model accuracy while reducing energy consumption.

Bandwidth Limitation. Training large-scale deep learning models often requires
distributed training across multiple devices to reduce training time. However, dis-
tributed training can be limited by the bandwidth of the network connecting the
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devices, which can lead to communication bottlenecks that slow down training.
This motivates the need for new training algorithms that can reduce the communi-
cation overhead of distributed training.

1.2 Components of Deep Learning towards Efficient Training
In this section, we introduce the components of deep learning that are essential for
understanding and improving the efficiency of training deep neural networks.

Initialization. The initialization of neural networks plays a crucial role in training,
as it determines the starting point of the optimization process. Proper initialization
can help accelerate convergence and improve the final performance of the model. In
this thesis, we propose a novel initialization method called ZerO Initialization, which
initializes neural networks with only zeros and ones to improve training efficiency.

Optimization in Deep Learning. Optimization algorithms are used to update the
parameters of neural networks during training. Traditional optimization algorithms
such as Stochastic Gradient Descent (SGD) and its variants such as Adam have
been widely used in deep learning. However, these algorithms can be inefficient for
training large-scale models due to their memory and computational requirements. In
this thesis, we propose a few optimization algorithms that are specifically designed
for efficient training of deep neural networks under different training and hardware
scenarios.

Large Language Models (LLMs). Large language models (LLMs) have achieved
remarkable performance in language tasks, such as conversational AI and lan-
guage translation. These models are typically equipped with Multilayer perceptrons
(MLPs) and self-attention mechanisms, which require large memory and compu-
tational resources for training and inference. In this thesis, we propose memory-
efficient training algorithms for LLMs that can reduce the memory footprint of
training without sacrificing model performance.

1.3 Thesis Structure and Contributions
Chapter 2 and Chapter 3 - Memory-Efficient Training of LLMs. Chapters 2
and 3 are dedicated to improving the memory efficiency of training large language
models (LLMs). In Chapter 2, we propose GaLore, Gradient Low-Rank Projection,
a novel memory-efficient training algorithm. For the first time, demonstrate that it
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is possible to train LLaMA 7B from scratch on a single GPU with 24GB memory
(e.g., on NVIDIA RTX 4090), without any costly memory offloading techniques.

Chapter 3 introduces InRank, an incremental low-rank learning algorithm that fur-
ther reduces memory usage by incrementally augmenting matrix rank. In addition,
InRank is capable of identifying intrinsic rank of networks during training.

Chapter 4 - Efficient Initialization of Neural Networks. Chapter 4 introduces
ZerO Initialization, a novel initialization method that initializes neural networks
with only zeros and ones. We observe that ZerO-initialized networks exhibit low-
rank learning trajectories, and converge to sparse and low-rank solutions. Since
ZerO does not require any random perturbations, it improves training stability and
reproducibility.

Chapter 5 - Low-Precision Training in Logarithmic Number System. Chapter
5 introduces LNS-Madam, a co-designed low-precision training framework, which
adopts the logarithmic number system (LNS) and apply multiplicative weight update
to train neural networks with reduced precision. In this chapter, we also discuss
why considering learning algorithms and number systems together is crucial for
achieving effective low-precision training. LNS-Madam can achieve up to 90%
energy savings compared to a baseline model trained with full precision.
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C h a p t e r 2

GALORE: MEMORY-EFFICIENT LLM TRAINING BY
GRADIENT LOW-RANK PROJECTION

2.1 Introduction
Large Language Models (LLMs) have shown impressive performance across mul-
tiple disciplines, including conversational AI and language translation. However,
pre-training and fine-tuning LLMs require not only a huge amount of computation
but is also memory intensive. The memory requirements include not only billions of
trainable parameters, but also their gradients and optimizer states (e.g., gradient mo-
mentum and variance in Adam) that can be larger than parameter storage themselves
(Raffel et al., 2020; Touvron et al., 2023; Chowdhery et al., 2023). For example,
pre-training a LLaMA 7B model from scratch with a single batch size requires at
least 58 GB memory (14GB for trainable parameters, 42GB for Adam optimizer
states and weight gradients, and 2GB for activations). This makes the training not
feasible on consumer-level GPUs such as NVIDIA RTX 4090 with 24GB memory.

In addition to engineering and system efforts, such as gradient checkpointing T.
Chen et al., 2016, memory offloading Rajbhandari et al., 2020, etc., to achieve faster
and more efficient distributed training, researchers also seek to develop various
optimization techniques to reduce the memory usage during pre-training and fine-
tuning.

Parameter-efficient fine-tuning (PEFT) techniques allow for the efficient adaptation
of pre-trained language models (PLMs) to different downstream applications without
the need to fine-tune all of the model’s parameters (Ding et al., 2022). Among them,
the popular Low-Rank Adaptation (LoRA Hu et al. (2022)) reparameterizes weight
matrix 𝑊 ∈ R𝑚×𝑛 into 𝑊 = 𝑊0 + 𝐵𝐴, where 𝑊0 is a frozen full-rank matrix and
𝐵 ∈ R𝑚×𝑟 , 𝐴 ∈ R𝑟×𝑛 are additive low-rank adaptors to be learned. Since the rank
𝑟 ≪ min(𝑚, 𝑛), 𝐴 and 𝐵 contain fewer number of trainable parameters and thus
smaller optimizer states. LoRA has been used extensively to reduce memory usage
for fine-tuning in which 𝑊0 is the frozen pre-trained weight. Its variant ReLoRA
is also used in pre-training, by periodically updating 𝑊0 using previously learned
low-rank adaptors (Lialin et al., 2024).

However, many recent works demonstrate the limitation of such a low-rank reparam-
eterization. For fine-tuning, LoRA is not shown to reach a comparable performance
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Figure 2.1: Estimated memory consumption of pre-training a LLaMA 7B model with a
token batch size of 256 on a single device, without activation checkpointing and memory
offloading. Details refer to Section 2.5.

as full-rank fine-tuning Xia, Qin, and Hazan, 2024. For pre-training from scratch,
it is shown to require a full-rank model training as a warmup (Lialin et al., 2024),
before optimizing in the low-rank subspace. There are two possible reasons: (1)
the optimal weight matrices may not be low-rank, and (2) the reparameterization
changes the gradient training dynamics.

To address the above challenge, we propose Gradient Low-Rank Projection (GaLore),
a training strategy that allows full-parameter learning but is more memory-efficient
than common low-rank adaptation methods, such as LoRA. Our key idea is to lever-
age the slow-changing low-rank structure of the gradient 𝐺 ∈ R𝑚×𝑛 of the weight
matrix𝑊 , rather than trying to approximate the weight matrix itself as low rank.

We first show theoretically that the gradient matrix 𝐺 becomes low-rank during
training. Then, we propose GaLore that computes two projection matrices 𝑃 ∈ R𝑚×𝑟

and 𝑄 ∈ R𝑛×𝑟 to project the gradient matrix 𝐺 into a low-rank form 𝑃⊤𝐺𝑄. In this
case, the memory cost of optimizer states, which rely on component-wise gradient
statistics, can be substantially reduced. Occasional updates of 𝑃 and 𝑄 (e.g., every
200 iterations) incur minimal amortized additional computational cost. In practice,
this yields up to 30% memory reduction compared to LoRA during pre-training.

We demonstrate that GaLore works well in both LLM pre-training and fine-tuning.
When pre-training LLaMA 7B on C4 dataset, 8-bit GaLore, combined with 8-bit
optimizers and layer-wise weight updates techniques, achieves comparable perfor-
mance to its full-rank counterpart, with less than 10% memory cost of optimizer
states.

Notably, for pre-training, GaLore keeps low memory throughout the entire training,
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without requiring full-rank training warmup like ReLoRA. Thanks to GaLore’s
memory efficiency, it is possible to train LLaMA 7B from scratch on a single GPU
with 24GB memory (e.g., on NVIDIA RTX 4090), without any costly memory
offloading techniques (Fig. 2.1).

GaLore is also used to fine-tune pre-trained LLMs on GLUE benchmarks with
comparable or better results than existing low-rank methods. When fine-tuning
RoBERTa-Base on GLUE tasks with a rank of 4, GaLore achieves an average score
of 85.89, outperforming LoRA, which achieves a score of 85.61.

2.2 Related Works
Low-rank adaptation. Hu et al. (2022) proposed Low-Rank Adaptation (LoRA)
to fine-tune pre-trained models with low-rank adaptors. This method reduces the
memory footprint by maintaining a low-rank weight adaptor for each layer. There are
a few variants of LoRA proposed to enhance its performance (Renduchintala, Konuk,
and Kuchaiev, 2023; Sheng et al., 2023; L. Zhang et al., 2023; Xia, Qin, and Hazan,
2024), supporting multi-task learning (Yiming Wang et al., 2023), and further
reducing the memory footprint (Dettmers, Pagnoni, et al., 2024). Lialin et al. (2024)
proposed ReLoRA, a variant of LoRA designed for pre-training, but requires a full-
rank training warmup to achieve comparable performance as the standard baseline.
Inspired by LoRA, Hao, Cao, and Mou (2024) also suggested that gradients can be
compressed in a low-rank subspace, and they proposed to use random projections
to compress the gradients. There have also been approaches that propose training
networks with low-rank factorized weights from scratch (Kamalakara et al., 2022;
H. Wang, Agarwal, et al., 2023; Zhao, Y. Zhang, et al., 2023).

Subspace learning. Recent studies have demonstrated that the learning primarily
occurs within a significantly low-dimensional parameter subspace (Gur-Ari, D. A.
Roberts, and Dyer, 2018; Larsen et al., 2022). These findings promote a special
type of learning called subspace learning, where the model weights are optimized
within a low-rank subspace. This notion has been widely used in different domains
of machine learning, including meta-learning and continual learning (Lee and Choi,
2018; Chaudhry et al., 2020).

Projected gradient descent. GaLore is closely related to the traditional topic
of projected gradient descent (PGD) (Y. Chen and Wainwright, 2015; H. Chen,
Raskutti, and Yuan, 2019). A key difference is that GaLore considers the specific



7

gradient form that naturally appears in training multi-layer neural networks (e.g., it is
a matrix with specific structures), proving many of its properties (e.g., Lemma 2.3.3,
Theorem 2.3.2, and Theorem 2.3.7). In contrast, traditional PGD mostly treats the
objective as a general blackbox nonlinear function, and studies the gradients in the
vector space only.

Low-rank gradient. Gradient is naturally low-rank during training of neural net-
works, and this property have been studied in both theory and practice (Zhao,
Schaefer, and Anandkumar, 2022; Cosson et al., 2023; G. Yang, Simon, and Bern-
stein, 2023). It has been applied to reduce communication cost (H. Wang, Sievert,
et al., 2018; Vogels, Karimireddy, and Jaggi, 2020), and memory footprint during
training (Gooneratne et al., 2020; Huang et al., 2023; Modoranu et al., 2023).

Memory-efficient optimization. There have been some works trying to reduce the
memory cost of gradient statistics for adaptive optimization algorithms (Shazeer and
Stern, 2018; Anil et al., 2019; Dettmers, Lewis, et al., 2022). Quantization is widely
used to reduce the memory cost of optimizer states (Dettmers, Lewis, et al., 2022;
Li, J. Chen, and Zhu, 2024). Recent works have also proposed to reduce weight
gradient memory by fusing the backward operation with the optimizer update (Lv,
Yan, et al., 2023; Lv, Y. Yang, et al., 2023).

2.3 GaLore: Gradient Low-Rank Projection
Background
Regular full-rank training. At time step 𝑡, 𝐺 𝑡 = −∇𝑊𝜑𝑡 (𝑊𝑡) ∈ R𝑚×𝑛 is the
backpropagated (negative) gradient matrix. Then the regular pre-training weight
update can be written down as follows (𝜂 is the learning rate):

𝑊𝑇 = 𝑊0 + 𝜂
𝑇−1∑︁
𝑡=0

𝐺̃ 𝑡 = 𝑊0 + 𝜂
𝑇−1∑︁
𝑡=0

𝜌𝑡 (𝐺 𝑡), (2.1)

where 𝐺̃ 𝑡 is the final processed gradient to be added to the weight matrix and 𝜌𝑡
is an entry-wise stateful gradient regularizer (e.g., Adam). The state of 𝜌𝑡 can be
memory-intensive. For example, for Adam, we need 𝑀,𝑉 ∈ R𝑚×𝑛 to regularize the
gradient 𝐺 𝑡 into 𝐺̃ 𝑡 :

𝑀𝑡 = 𝛽1𝑀𝑡−1 + (1 − 𝛽1)𝐺 𝑡 , (2.2)

𝑉𝑡 = 𝛽2𝑉𝑡−1 + (1 − 𝛽2)𝐺2
𝑡 , (2.3)

𝐺̃ 𝑡 = 𝑀𝑡/
√︁
𝑉𝑡 + 𝜖, (2.4)
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Here 𝐺2
𝑡 and 𝑀𝑡/

√
𝑉𝑡 + 𝜖 means element-wise multiplication and division. 𝜂 is the

learning rate. Together with𝑊 ∈ R𝑚×𝑛, this takes 3𝑚𝑛 memory.

Low-rank updates. For a linear layer𝑊 ∈ R𝑚×𝑛, LoRA and its variants utilize the
low-rank structure of the update matrix by introducing a low-rank adaptor 𝐴𝐵:

𝑊𝑇 = 𝑊0 + 𝐵𝑇 𝐴𝑇 , (2.5)

where 𝐵 ∈ R𝑚×𝑟 and 𝐴 ∈ R𝑟×𝑛, and 𝑟 ≪ min(𝑚, 𝑛). 𝐴 and 𝐵 are the learnable
low-rank adaptors and𝑊0 is a fixed weight matrix (e.g., pre-trained weight).

Low-Rank Property of Weight Gradient
While low-rank updates are proposed to reduce memory usage, it remains an open
question whether the weight matrix should be parameterized as low-rank. In many
situations, this may not be true. For example, in linear regression 𝒚 = 𝑊𝒙, if the
optimal𝑊∗ is high-rank, then imposing a low-rank assumption on𝑊 never leads to
the optimal solution, regardless of what optimizers are used.

Surprisingly, while the weight matrices are not necessarily low-rank, the gradient in-
deed becomes low-rank during the training for certain gradient forms and associated
network architectures.

Reversible networks. Obviously, for a general loss function, its gradient can be
arbitrary and is not necessarily low rank. Here we study the gradient structure
for a general family of nonlinear networks known as “reversible networks” Tian,
Yu, et al., 2020, which includes not only simple linear networks but also deep
ReLU/polynomial networks:

Definition 2.3.1 (Reversiblity Tian, Yu, et al., 2020) A networkN that maps input
𝒙 to output 𝒚 = N(𝒙) is reversible, if there exists 𝐿 (𝒙;𝑊) so that 𝒚 = 𝐿 (𝒙;𝑊)𝒙,
and the backpropagated gradient 𝒈𝒙 satisfies 𝒈𝒙 = 𝐿⊤(𝒙;𝑊)𝒈𝒚, where 𝒈𝒚 is the
backpropagated gradient at the output 𝒚. Here 𝐿 (𝒙;𝑊) depends on the input 𝒙 and
weight𝑊 in the network N .

Theorem 2.3.2 (Gradient Form of reversible models) Consider a chained reversible
neural network N(𝒙) := N𝐿 (N𝐿−1(. . .N1(𝒙))) and define 𝐽𝑙 := Jacobian(N𝐿) . . .
Jacobian(N𝑙+1) and 𝒇𝑙 := N𝑙 (. . .N1(𝒙)). Then the weight matrix 𝑊𝑙 at layer 𝑙 has
gradient 𝐺 𝑙 in the following form for batch size 1:
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(a) For ℓ2-objective 𝜑 := 1
2 ∥𝒚 − 𝒇𝐿 ∥22:

𝐺 𝑙 =
(
𝐽⊤𝑙 𝒚 − 𝐽

⊤
𝑙 𝐽𝑙𝑊𝑙 𝒇𝑙−1

)
𝒇⊤𝑙−1, (2.6)

(b) Left 𝑃⊥1 := 𝐼 − 1
𝐾

11⊤ be the zero-mean PSD projection matrix. For 𝐾-way
logsoftmax loss 𝜑(𝒚; 𝒇𝐿) := − log

(
exp(𝒚⊤ 𝒇𝐿)
1⊤ exp( 𝒇𝐿)

)
with small logits ∥𝑃⊥1 𝒇𝐿 ∥∞ ≪

√
𝐾:

𝐺 𝑙 =

(
𝐽𝑙𝑃
⊥
1 𝒚 − 𝛾𝐾

−1𝐽⊤𝑙 𝑃
⊥
1 𝐽𝑙𝑊𝑙 𝒇𝑙−1

)
𝒇⊤𝑙−1, (2.7)

where 𝛾 ≈ 1 and 𝒚 is a data label with 𝒚⊤1 = 1.

From the theoretical analysis above, we can see that for batch size 𝑁 , the gradient
𝐺 has certain structures: 𝐺 = 1

𝑁

∑𝑁
𝑖=1(𝐴𝑖 − 𝐵𝑖𝑊𝐶𝑖) for input-dependent matrix 𝐴𝑖,

Positive Semi-definite (PSD) matrices 𝐵𝑖 and 𝐶𝑖. In the following, we prove that
such a gradient will become low-rank during training in certain conditions:

Lemma 2.3.3 (Gradient becomes low-rank during training) Suppose the gradi-
ent follows the parametric form:

𝐺 𝑡 =
1
𝑁

𝑁∑︁
𝑖=1
(𝐴𝑖 − 𝐵𝑖𝑊𝑡𝐶𝑖) (2.8)

with constant 𝐴𝑖, PSD matrices 𝐵𝑖 and𝐶𝑖 after 𝑡 ≥ 𝑡0. We study vanilla SGD weight
update: 𝑊𝑡 = 𝑊𝑡−1 + 𝜂𝐺 𝑡−1. Let 𝑆 := 1

𝑁

∑𝑁
𝑖=1𝐶𝑖 ⊗ 𝐵𝑖 and 𝜆1 < 𝜆2 its two smallest

distinct eigenvalues. Then the stable rank sr(𝐺 𝑡) satisfies:

sr(𝐺 𝑡) ≤ sr(𝐺 ∥𝑡0)+
(
1−𝜂𝜆2
1−𝜂𝜆1

)2(𝑡−𝑡0) ∥𝐺0−𝐺 ∥𝑡0 ∥
2
𝐹

∥𝐺 ∥𝑡0 ∥
2
2

, (2.9)

where𝐺 ∥𝑡0 is the projection of𝐺 𝑡0 onto the minimal eigenspaceV1 of 𝑆 corresponding
to 𝜆1.

In practice, the constant assumption can approximately hold for some time, in which
the second term in Eq. 2.9 goes to zero exponentially and the stable rank of 𝐺 𝑡 goes
down, yielding low-rank gradient𝐺 𝑡 . The final stable rank is determined by sr(𝐺 ∥𝑡0),
which is estimated to be low-rank by the following: Remarks. The gradient form
is justified by Theorem 2.3.2. Intuitively, when 𝑁′ is small, 𝐺 𝑡 is a summation of
𝑁′ rank-1 update and is naturally low rank; on the other hand, when 𝑁′ becomes
larger and closer to 𝑛, then the training dynamics has smaller null spaceV1, which
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also makes 𝐺 𝑡 low-rank. The full-rank assumption of {𝐵𝑖} is reasonable, e.g., in
LLMs, the output dimensions of the networks (i.e., the vocabulary size) is often
huge compared to matrix dimensions.

In general if the batch size 𝑁 is large, then it becomes a bit tricky to characterize
the minimal eigenspace V1 of 𝑆. On the other hand, if V1 has nice structure, then
sr(𝐺 𝑡) can be bounded even further:

Corollary 2.3.4 (Low-rank 𝐺 𝑡 with special structure ofV1) IfV1(𝑆) is 1-dim with
decomposable eigenvector 𝒗 = 𝒚 ⊗ 𝒛, then sr(𝐺 ∥𝑡0) = 1 and thus 𝐺 𝑡 becomes rank-1.

One rare failure case of Lemma 2.3.3 is when𝐺 ∥𝑡0 is precisely zero, in which sr(𝐺 ∥𝑡0)
becomes undefined. This happens to be true if 𝑡0 = 0, i.e., 𝐴𝑖, 𝐵𝑖 and𝐶𝑖 are constant
throughout the entire training process. Fortunately, for practical training, this does
not happen.

Transformers. For Transformers, we can also separately prove that the weight
gradient of the lower layer (i.e., project-up) weight of feed forward network (FFN)
becomes low rank over time, using the JoMA framework Tian, Yiping Wang, et al.,
2024.

Gradient Low-rank Projection (GaLore)
Since the gradient 𝐺 may have a low-rank structure, if we can keep the gradient
statistics of a small “core” of gradient𝐺 in optimizer states, rather than𝐺 itself, then
the memory consumption can be reduced substantially. This leads to our proposed
GaLore strategy:

Definition 2.3.5 (Gradient Low-rank Projection (GaLore)) Gradient low-rank pro-
jection (GaLore) denotes the following gradient update rules (𝜂 is the learning rate):

𝑊𝑇 = 𝑊0 + 𝜂
𝑇−1∑︁
𝑡=0

𝐺̃ 𝑡 , 𝐺̃ 𝑡 = 𝑃𝑡𝜌𝑡 (𝑃⊤𝑡 𝐺 𝑡𝑄𝑡)𝑄⊤𝑡 , (2.10)

where 𝑃𝑡 ∈ R𝑚×𝑟 and 𝑄𝑡 ∈ R𝑛×𝑟 are projection matrices.

Different from LoRA, GaLore explicitly utilizes the low-rank updates instead of
introducing additional low-rank adaptors and hence does not alter the training dy-
namics.
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In the following, we show that GaLore converges under a similar (but more general)
form of gradient update rule. This form corresponds to Eqn. 2.6 but with a larger
batch size.

Definition 2.3.6 (𝐿-continuity) A function 𝒉(𝑊) has (Lipschitz) 𝐿-continuity, if
for any𝑊1 and𝑊2, ∥𝒉(𝑊1) − 𝒉(𝑊2)∥𝐹 ≤ 𝐿∥𝑊1 −𝑊2∥𝐹 .

Theorem 2.3.7 (Convergence of GaLore with fixed projections) Suppose the gra-
dient has the form of Eqn. 2.8 and 𝐴𝑖, 𝐵𝑖 and 𝐶𝑖 have 𝐿𝐴, 𝐿𝐵 and 𝐿𝐶 continuity
with respect to 𝑊 and ∥𝑊𝑡 ∥ ≤ 𝐷. Let 𝑅𝑡 := 𝑃⊤𝑡 𝐺 𝑡𝑄𝑡 , 𝐵̂𝑖𝑡 := 𝑃⊤𝑡 𝐵𝑖 (𝑊𝑡)𝑃𝑡 ,
𝐶̂𝑖𝑡 := 𝑄⊤𝑡 𝐶𝑖 (𝑊𝑡)𝑄𝑡 and 𝜅𝑡 := 1

𝑁

∑
𝑖 𝜆min(𝐵̂𝑖𝑡)𝜆min(𝐶̂𝑖𝑡). If we choose constant

𝑃𝑡 = 𝑃 and 𝑄𝑡 = 𝑄, then GaLore with 𝜌𝑡 ≡ 1 satisfies:

∥𝑅𝑡 ∥𝐹 ≤
[
1−𝜂(𝜅𝑡−1−𝐿𝐴−𝐿𝐵𝐿𝐶𝐷2)

]
∥𝑅𝑡−1∥𝐹 . (2.11)

As a result, if min𝑡 𝜅𝑡 > 𝐿𝐴 + 𝐿𝐵𝐿𝐶𝐷2, 𝑅𝑡 → 0 and thus GaLore converges with
fixed 𝑃𝑡 and 𝑄𝑡 .

Setting 𝑃 and 𝑄. The theorem tells that 𝑃 and 𝑄 should project into the subspaces
corresponding to the first few largest eigenvectors of 𝐵̂𝑖𝑡 and 𝐶̂𝑖𝑡 for faster convergence
(large 𝜅𝑡). While all eigenvalues of the positive semidefinite (PSD) matrix 𝐵 and
𝐶 are non-negative, some of them can be very small and hinder convergence (i.e.,
it takes a long time for 𝐺 𝑡 to become 0). With the projection 𝑃 and 𝑄, 𝑃⊤𝐵𝑖𝑡𝑃
and 𝑄⊤𝐶𝑖𝑡𝑄 only contain the largest eigen subspaces of 𝐵 and 𝐶, improving the
convergence of 𝑅𝑡 and at the same time, reducing the memory usage.

While it is tricky to obtain the eigenstructure of 𝐵̂𝑖𝑡 and 𝐶̂𝑖𝑡 (they are parts of Jaco-
bian), one way is to instead use the spectrum of𝐺 𝑡 via Singular Value Decomposition
(SVD):

𝐺 𝑡 = 𝑈𝑆𝑉
⊤ ≈

𝑟∑︁
𝑖=1

𝑠𝑖𝑢𝑖𝑣
⊤
𝑖 , (2.12)

𝑃𝑡 = [𝑢1, 𝑢2, ..., 𝑢𝑟], 𝑄𝑡 = [𝑣1, 𝑣2, ..., 𝑣𝑟] . (2.13)

Difference between GaLore and LoRA. While both GaLore and LoRA have “low-
rank” in their names, they follow very different training trajectories. For example,
when 𝑟 = min(𝑚, 𝑛), GaLore with 𝜌𝑡 ≡ 1 follows the exact training trajectory of the
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𝑾𝟎

𝑾𝟎 + ∆𝑾𝑻𝟏

𝑾𝟎 + ∆𝑾𝑻𝟏 + ∆𝑾𝑻𝟐

!𝑮𝒕𝟏 !𝑮𝒕𝟐

Figure 2.2: Learning through low-rank subspaces Δ𝑊𝑇1 and Δ𝑊𝑇2 using GaLore. For
𝑡1 ∈ [0, 𝑇1 − 1], 𝑊 are updated by projected gradients 𝐺̃𝑡1 in a subspace determined by
fixed 𝑃𝑡1 and 𝑄𝑡1 . After 𝑇1 steps, the subspace is changed by recomputing 𝑃𝑡2 and 𝑄𝑡2 for
𝑡2 ∈ [𝑇1, 𝑇2 − 1], and the process repeats until convergence.

original model, as 𝐺̃ 𝑡 = 𝑃𝑡𝑃
⊤
𝑡 𝐺 𝑡𝑄𝑡𝑄

⊤
𝑡 = 𝐺 𝑡 . On the other hand, when 𝐵𝐴 reaches

full rank (i.e., 𝐵 ∈ R𝑚×𝑚 and 𝐴 ∈ R𝑚×𝑛), optimizing 𝐵 and 𝐴 simultaneously follows
a very different training trajectory compared to the original model.

2.4 GaLore for Memory-Efficient Training
For a complex optimization problem such as LLM pre-training, it may be difficult to
capture the entire gradient trajectory with a single low-rank subspace. One reason
is that the principal subspaces of 𝐵𝑡 and 𝐶𝑡 (and thus 𝐺 𝑡) may change over time.
In fact, if we keep the same projection 𝑃 and 𝑄, then the learned weights will only
grow along these subspaces, which is no longer full-parameter training. Fortunately,
for this, GaLore can switch subspaces during training and learn full-rank weights
without increasing the memory footprint.

Composition of Low-Rank Subspaces
We allow GaLore to switch across low-rank subspaces:

𝑊𝑡 = 𝑊0 + Δ𝑊𝑇1 + Δ𝑊𝑇2 + . . . + Δ𝑊𝑇𝑛 , (2.14)

where 𝑡 ∈
[∑𝑛−1

𝑖=1 𝑇𝑖,
∑𝑛
𝑖=1 𝑇𝑖

]
and Δ𝑊𝑇𝑖 = 𝜂

∑𝑇𝑖−1
𝑡=0 𝐺̃ 𝑡 is the summation of all 𝑇𝑖

updates within the 𝑖-th subspace. When switching to 𝑖-th subspace at step 𝑡 = 𝑇𝑖, we
re-initialize the projector 𝑃𝑡 and 𝑄𝑡 by performing SVD on the current gradient 𝐺 𝑡

by Equation 2.12. We illustrate how the trajectory of 𝐺̃ 𝑡 traverses through multiple
low-rank subspaces in Fig. 2.2. In the experiment section, we show that allowing
multiple low-rank subspaces is the key to achieving the successful pre-training of
LLMs.
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Following the above procedure, the switching frequency 𝑇 becomes a hyperparam-
eter. The ablation study (Fig. 2.5) shows a sweet spot exists. A very frequent
subspace change increases the overhead (since new 𝑃𝑡 and𝑄𝑡 need to be computed)
and breaks the condition of constant projection in Theorem 2.3.7. In practice, it
may also impact the fidelity of the optimizer states, which accumulate over multiple
training steps. On the other hand, a less frequent change may make the algorithm
stuck in a region that is no longer important to optimize (the convergence proof in
Theorem 2.3.7 only means good progress in the designated subspace, but does not
mean good overall performance). While optimal 𝑇 depends on the total training
iterations and task complexity, we find that a value between 𝑇 = 50 to 𝑇 = 1000
makes not much difference. Thus, the total computational overhead induced by
SVD is negligible (< 10%) compared to other memory-efficient training techniques
such as memory offloading (Rajbhandari et al., 2020).

Memory-Efficient Optimization
Reducing memory footprint of gradient statistics. GaLore significantly reduces
the memory cost of optimizer that heavily relies on component-wise gradient statis-
tics, such as Adam (Kingma and Ba, 2015). When 𝜌𝑡 ≡ Adam, by projecting 𝐺 𝑡

into its low-rank form 𝑅𝑡 , Adam’s gradient regularizer 𝜌𝑡 (𝑅𝑡) only needs to track
low-rank gradient statistics. where 𝑀𝑡 and 𝑉𝑡 are the first-order and second-order
momentum, respectively. GaLore computes the low-rank normalized gradient 𝑁𝑡 as
follows:

𝑁𝑡 = 𝜌𝑡 (𝑅𝑡) = 𝑀𝑡/(
√︁
𝑉𝑡 + 𝜖). (2.15)

GaLore can also apply to other optimizers (e.g., Adafactor) that have similar update
rules and require a large amount of memory to store gradient statistics.

Reducing memory usage of projection matrices. To achieve the best memory-
performance trade-off, we only use one project matrix 𝑃 or𝑄, projecting the gradient
𝐺 into 𝑃⊤𝐺 if𝑚 ≤ 𝑛 and𝐺𝑄 otherwise. We present the algorithm applying GaLore
to Adam in Algorithm 1.

With this setting, GaLore requires less memory than LoRA during training. As
GaLore can always merge Δ𝑊𝑡 to 𝑊0 during weight updates, it does not need to
store a separate low-rank factorization 𝐵𝐴. In total, GaLore requires (𝑚𝑛+𝑚𝑟+2𝑛𝑟)
memory, while LoRA requires (𝑚𝑛 + 3𝑚𝑟 + 3𝑛𝑟) memory.

As Theorem 2.3.7 does not require the projection matrix to be carefully calibrated,
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Algorithm 1 Adam with GaLore
Input: A layer weight matrix𝑊 ∈ R𝑚×𝑛 with 𝑚 ≤ 𝑛. Step size 𝜂, scale factor 𝛼,
decay rates 𝛽1, 𝛽2, rank 𝑟, subspace change frequency 𝑇 .
Initialize first-order moment 𝑀0 ∈ R𝑛×𝑟 ← 0
Initialize second-order moment 𝑉0 ∈ R𝑛×𝑟 ← 0
Initialize step 𝑡 ← 0
repeat
𝐺 𝑡 ∈ R𝑚×𝑛 ← −∇𝑊𝜑𝑡 (𝑊𝑡)
if 𝑡 mod 𝑇 = 0 then
𝑈, 𝑆,𝑉 ← SVD(𝐺 𝑡)
𝑃𝑡 ← 𝑈 [:, : 𝑟] {Initialize left projector as 𝑚 ≤ 𝑛}

else
𝑃𝑡 ← 𝑃𝑡−1 {Reuse the previous projector}

end if
𝑅𝑡 ← 𝑃⊤𝑡 𝐺 𝑡 {Project gradient into compact space}

update(𝑅𝑡) by Adam
𝑀𝑡 ← 𝛽1 · 𝑀𝑡−1 + (1 − 𝛽1) · 𝑅𝑡
𝑉𝑡 ← 𝛽2 · 𝑉𝑡−1 + (1 − 𝛽2) · 𝑅2

𝑡

𝑀𝑡 ← 𝑀𝑡/(1 − 𝛽𝑡1)
𝑉𝑡 ← 𝑉𝑡/(1 − 𝛽𝑡2)
𝑁𝑡 ← 𝑀𝑡/(

√
𝑉𝑡 + 𝜖)

𝐺̃ 𝑡 ← 𝛼 · 𝑃𝑁𝑡 {Project back to original space}
𝑊𝑡 ← 𝑊𝑡−1 + 𝜂 · 𝐺̃ 𝑡

𝑡 ← 𝑡 + 1
until convergence criteria met
return 𝑊𝑡

we can further reduce the memory cost of projection matrices by quantization and
efficient parameterization, which we leave for future work.

Combining with Existing Techniques
GaLore is compatible with existing memory-efficient optimization techniques. In
our work, we mainly consider applying GaLore with 8-bit optimizers and per-layer
weight updates.

8-bit optimizers. Dettmers, Lewis, et al. (2022) proposed 8-bit Adam optimizer
that maintains 32-bit optimizer performance at a fraction of the memory footprint.
We apply GaLore directly to the existing implementation of 8-bit Adam.
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Table 2.1: Comparison with low-rank algorithms on pre-training various sizes of LLaMA
models on C4 dataset. Validation perplexity is reported, along with a memory estimate of
the total of parameters and optimizer states based on BF16 format. The actual memory
footprint of GaLore is reported in Fig. 2.4.

60M 130M 350M 1B
Full-Rank 34.06 (0.36G) 25.08 (0.76G) 18.80 (2.06G) 15.56 (7.80G)

GaLore 34.88 (0.24G) 25.36 (0.52G) 18.95 (1.22G) 15.64 (4.38G)
Low-Rank 78.18 (0.26G) 45.51 (0.54G) 37.41 (1.08G) 142.53 (3.57G)
LoRA 34.99 (0.36G) 33.92 (0.80G) 25.58 (1.76G) 19.21 (6.17G)
ReLoRA 37.04 (0.36G) 29.37 (0.80G) 29.08 (1.76G) 18.33 (6.17G)
𝑟/𝑑𝑚𝑜𝑑𝑒𝑙 128 / 256 256 / 768 256 / 1024 512 / 2048
Training Tokens 1.1B 2.2B 6.4B 13.1B

Per-layer weight updates. In practice, the optimizer typically performs a single
weight update for all layers after backpropagation. This is done by storing the
entire weight gradients in memory. To further reduce the memory footprint during
training, we adopt per-layer weight updates to GaLore, which performs the weight
updates during backpropagation. This is the same technique proposed in recent
works to reduce memory requirement (Lv, Yan, et al., 2023; Lv, Y. Yang, et al.,
2023).

Hyperparameters of GaLore
In addition to Adam’s original hyperparameters, GaLore only introduces very few
additional hyperparameters: the rank 𝑟 which is also present in LoRA, the subspace
change frequency 𝑇 (see Sec. 2.4), and the scale factor 𝛼.

Scale factor 𝛼 controls the strength of the low-rank update, which is similar to the
scale factor 𝛼/𝑟 appended to the low-rank adaptor in Hu et al. (2022). We note
that the 𝛼 does not depend on the rank 𝑟 in our case. This is because, when 𝑟
is small during pre-training, 𝛼/𝑟 significantly affects the convergence rate, unlike
fine-tuning.

2.5 Experiments
We evaluate GaLore on both pre-training and fine-tuning of LLMs. All experiments
run on NVIDIA A100 GPUs.

Pre-training on C4. To evaluate its performance, we apply GaLore to train
LLaMA-based large language models on the C4 dataset. C4 dataset is a colossal,
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Table 2.2: Pre-training LLaMA 7B on C4 dataset for 150K steps. Validation perplexity
and memory estimate are reported.

Mem 40K 80K 120K 150K
8-bit GaLore 18G 17.94 15.39 14.95 14.65
8-bit Adam 26G 18.09 15.47 14.83 14.61

Tokens (B) 5.2 10.5 15.7 19.7

AdamW 8-Bit Adam Adafactor

Figure 2.3: Applying GaLore to different optimizers for pre-training LLaMA 1B on C4
dataset for 10K steps. Validation perplexity over training steps is reported. We apply GaLore
to each optimizer with the rank of 512 and 1024, where the 1B model dimension is 2048.

cleaned version of Common Crawl’s web crawl corpus, which is mainly intended
to pre-train language models and word representations (Raffel et al., 2020). To best
simulate the practical pre-training scenario, we train without data repetition over
a sufficiently large amount of data, across a range of model sizes up to 7 Billion
parameters.

Architecture and hyperparameters. We follow the experiment setup from Lialin
et al. (2024), which adopts a LLaMA-based3 architecture with RMSNorm and
SwiGLU activations (B. Zhang and Sennrich, 2019; Shazeer, 2020; Touvron et
al., 2023). For each model size, we use the same set of hyperparameters across
methods, except the learning rate. We run all experiments with BF16 format to
reduce memory usage, and we tune the learning rate for each method under the
same amount of computational budget and report the best performance. The details
of our task setups and hyperparameters are provided in the appendix.

Fine-tuning on GLUE tasks. GLUE is a benchmark for evaluating the perfor-
mance of NLP models on a variety of tasks, including sentiment analysis, question

3LLaMA materials in our paper are subject to LLaMA community license.
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answering, and textual entailment (A. Wang et al., 2019). We use GLUE tasks to
benchmark GaLore against LoRA for memory-efficient fine-tuning.

Comparison with Existing Low-Rank Methods
We first compare GaLore with existing low-rank methods using Adam optimizer
across a range of model sizes.

Full-Rank Our baseline method that applies Adam optimizer with full-rank weights
and optimizer states.

Low-Rank We also evaluate a traditional low-rank approach that represents the
weights by learnable low-rank factorization: 𝑊 = 𝐵𝐴 (Kamalakara et al., 2022).

LoRA Hu et al. (2022) proposed LoRA to fine-tune pre-trained models with low-
rank adaptors: 𝑊 = 𝑊0+𝐵𝐴, where𝑊0 is fixed initial weights and 𝐵𝐴 is a learnable
low-rank adaptor. In the case of pre-training,𝑊0 is the full-rank initialization matrix.
We set LoRA alpha to 32 and LoRA dropout to 0.05 as their default settings.

ReLoRA Lialin et al. (2024) proposed ReLoRA, a variant of LoRA designed for
pre-training, which periodically merges 𝐵𝐴 into 𝑊 , and initializes new 𝐵𝐴 with
a reset on optimizer states and learning rate. ReLoRA requires careful tuning of
merging frequency, learning rate reset, and optimizer states reset. We evaluate
ReLoRA without a full-rank training warmup for a fair comparison.

For GaLore, we set subspace frequency 𝑇 to 200 and scale factor 𝛼 to 0.25 across
all model sizes in Table 2.1. For each model size, we pick the same rank 𝑟 for
all low-rank methods, and we apply them to all multi-head attention layers and
feed-forward layers in the models. We train all models using Adam optimizer with
the default hyperparameters (e.g., 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 10−8). We also
estimate the memory usage based on BF16 format, including the memory for weight
parameters and optimizer states. As shown in Table 2.1, GaLore outperforms other
low-rank methods and achieves comparable performance to full-rank training. We
note that for 1B model size, GaLore even outperforms full-rank baseline when
𝑟 = 1024 instead of 𝑟 = 512. Compared to LoRA and ReLoRA, GaLore requires
less memory for storing model parameters and optimizer states. A detailed training
setting of each model and memory estimation for each method are in the appendix.
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GaLore with Memory-Efficient Optimizers
We demonstrate that GaLore can be applied to various learning algorithms, es-
pecially memory-efficient optimizers, to further reduce the memory footprint. We
apply GaLore to AdamW, 8-bit Adam, and Adafactor optimizers (Shazeer and Stern,
2018; Loshchilov and Hutter, 2019; Dettmers, Lewis, et al., 2022). We consider
Adafactor with first-order statistics to avoid performance degradation.

We evaluate them on LLaMA 1B architecture with 10K training steps, and we tune
the learning rate for each setting and report the best performance. As shown in
Fig. 2.3, applying GaLore does not significantly affect their convergence. By using
GaLore with a rank of 512, the memory footprint is reduced by up to 62.5%, on top
of the memory savings from using 8-bit Adam or Adafactor optimizer. Since 8-bit
Adam requires less memory than others, we denote 8-bit GaLore as GaLore with
8-bit Adam, and use it as the default method for the following experiments on 7B
model pre-training and memory measurement.

Scaling up to LLaMA 7B Architecture
Scaling ability to 7B models is a key factor for demonstrating if GaLore is effective
for practical LLM pre-training scenarios. We evaluate GaLore on an LLaMA 7B
architecture with an embedding size of 4096 and total layers of 32. We train the
model for 150K steps with 19.7B tokens, using 8-node training in parallel with a
total of 64 A100 GPUs. Due to computational constraints, we compare 8-bit GaLore
(𝑟 = 1024) with 8-bit Adam with a single trial without tuning the hyperparameters.
As shown in Table 2.2, after 150K steps, 8-bit GaLore achieves a perplexity of
14.65, comparable to 8-bit Adam with a perplexity of 14.61.

Memory-Efficient Fine-Tuning
GaLore not only achieves memory-efficient pre-training but also can be used for
memory-efficient fine-tuning. We fine-tune pre-trained RoBERTa models on GLUE
tasks using GaLore and compare its performance with a full fine-tuning baseline
and LoRA. We use hyperparameters from Hu et al. (2022) for LoRA and tune the
learning rate and scale factor for GaLore. This demonstrates that GaLore can serve
as a full-stack memory-efficient training strategy for both LLM pre-training and
fine-tuning.
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Figure 2.4: Memory usage for different methods at various model sizes, evaluated with a
token batch size of 256. 8-bit GaLore (retaining grad) disables per-layer weight updates but
stores weight gradients during training.

Measurement of Memory and Throughput
While Table 2.1 gives the theoretical benefit of GaLore compared to other methods
in terms of memory usage, we also measure the actual memory footprint of training
LLaMA models by various methods, with a token batch size of 256. The training
is conducted on a single device setup without activation checkpointing, memory
offloading, and optimizer states partitioning (Rajbhandari et al., 2020).

Training 7B models on consumer GPUs with 24G memory. As shown in Fig. 2.4,
8-bit GaLore requires significantly less memory than BF16 baseline and 8-bit Adam,
and only requires 22.0G memory to pre-train LLaMA 7B with a small per-GPU
token batch size (up to 500 tokens). This memory footprint is within 24GB VRAM
capacity of a single GPU such as NVIDIA RTX 4090. In addition, when activation
checkpointing is enabled, per-GPU token batch size can be increased up to 4096.
While the batch size is small per GPU, it can be scaled up with data parallelism,
which requires much lower bandwidth for inter-GPU communication, compared to
model parallelism. Therefore, it is possible that GaLore can be used for elastic
training Lin et al., 2019 7B models on consumer GPUs such as RTX 4090s.

Specifically, we present the memory breakdown in Fig. 2.1. It shows that 8-bit
GaLore reduces 37.92G (63.3%) and 24.5G (52.3%) total memory compared to
BF16 Adam baseline and 8-bit Adam, respectively. Compared to 8-bit Adam, 8-bit
GaLore mainly reduces the memory in two parts: (1) low-rank gradient projection
reduces 9.6G (65.5%) memory of storing optimizer states, and (2) using per-layer
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Figure 2.5: Ablation study of GaLore on 130M models. Left: varying subspace update
frequency 𝑇 . Right: varying subspace rank and training iterations.

weight updates reduces 13.5G memory of storing weight gradients.

Throughput overhead of GaLore. We also measure the throughput of the pre-
training LLaMA 1B model with 8-bit GaLore and other methods, where the results
can be found in the appendix. Particularly, the current implementation of 8-bit
GaLore achieves 1019.63 tokens/second, which induces 17% overhead compared to
8-bit Adam implementation. Disabling per-layer weight updates for GaLore achieves
1109.38 tokens/second, improving the throughput by 8.8%. We note that our results
do not require offloading strategies or checkpointing, which can significantly impact
training throughput. We leave optimizing the efficiency of GaLore implementation
for future work.

2.6 Ablation Study
How many subspaces are needed during pre-training? We observe that both
too frequent and too slow changes of subspaces hurt the convergence, as shown in
Fig. 2.5 (left). The reason has been discussed in Sec. 2.4. In general, for small 𝑟,
the subspace switching should happen more to avoid wasting optimization steps in
the wrong subspace, while for large 𝑟 the gradient updates cover more subspaces,
providing more cushion.

How does the rank of subspace affect the convergence? Within a certain range
of rank values, decreasing the rank only slightly affects the convergence rate, causing
a slowdown with a nearly linear trend. As shown in Fig. 2.5 (right), training with
a rank of 128 using 80K steps achieves a lower loss than training with a rank of
512 using 20K steps. This shows that GaLore can be used to trade-off between
memory and computational cost. In a memory-constrained scenario, reducing the
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rank allows us to stay within the memory budget while training for more steps to
preserve the performance.

2.7 Conclusion
We propose GaLore, a memory-efficient pre-training and fine-tuning strategy for
large language models. GaLore significantly reduces memory usage by up to 65.5%
in optimizer states while maintaining both efficiency and performance for large-scale
LLM pre-training and fine-tuning.

We identify several open problems for GaLore, which include (1) applying GaLore
on training of various models such as vision transformers (Dosovitskiy et al., 2021)
and diffusion models (Ho, Jain, and Abbeel, 2020), (2) further enhancing memory
efficiency by employing low-memory projection matrices, and (3) exploring the
feasibility of elastic data distributed training on low-bandwidth consumer-grade
hardware.

We hope that our work will inspire future research on memory-efficient training
from the perspective of gradient low-rank projection. We believe that GaLore will
be a valuable tool for the community, enabling the training of large-scale models on
consumer-grade hardware with limited resources.
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C h a p t e r 3

INRANK: INCREMENTAL LOW-RANK LEARNING

3.1 Introduction
The generalization ability of deep neural networks continues to intrigue researchers
since the classical theory is not applicable in the over-parameterized regime, where
there are more learnable parameters than training samples. Instead, efforts to
understand this puzzle are based on the belief that first-order learning algorithms
(e.g., stochastic gradient descent) implicitly bias the neural networks toward simple
solutions.

For instance, it has been shown that stochastic gradient descent implicitly minimizes
the rank of solutions during training (Arora et al., 2019). Recent theoretical studies
have further demonstrated one of its training characterizations - Greedy Low-Rank
Learning (GLRL) (Z. Li, Luo, and Lyu, 2021; Jacot et al., 2022). GLRL character-
izes the trajectory of stochastic gradient descent, which performs a rank-constrained
optimization and greedily increases the rank whenever it fails to reach a global
minimizer.

However, one major drawback is that the GLRL theory requires the assumption
of infinitesimal initialization, which is impractical as gradient descent cannot ef-
fortlessly escape from the saddle point at zero, unless the noise is large enough.
Therefore, a generalized notion of GLRL under practical initialization is needed to
bridge the gap between theory and practice.

In this work, we generalize the theory of GLRL by removing the requirement of
infinitesimal initialization. To do this, we focus on characterizing the trajectories
of a new set of quantities, cumulative weight updates, instead of weight matrices.
Cumulative weight updates do not include the initialization values, and only incor-
porate the rest of the updates of the weight matrices during training. This allows us
to remove the requirement of infinitesimal initialization in GLRL.

We establish incremental rank augmentation of cumulative weight updates during
training under arbitrary orthogonal initialization of the weights. This new formula-
tion proves that low-rank learning can be extended to non-zero initialization, where
the singular vector with a larger value in the associated target matrix is learned
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exponentially faster. We prove this relationship by following the work of Saxe,
McClelland, and Ganguli (2014) to analyze the evolution of each mode (singular
vector) independently, which can be achieved by ensuring orthogonality over the
weights matrices and inputs in a three-layer linear network.

Empirically, we further demonstrate that standard networks (e.g., transformers) and
training algorithms (e.g., SGD, Adam) follow low-rank learning trajectories on the
cumulative weight updates, under standard weight initialization. However, current
algorithms can not exploit the low-rank property to improve computational efficiency
as the networks are not parameterized in low-rank.

To address this, we propose Incremental Low-Rank Learning (InRank), which pa-
rameterizes the cumulative weight updates in low-rank while incrementally aug-
menting its rank during training, as illustrated in Figure 3.1. InRank adds a new
batch of modes whenever a certain quantity, known as the explained ratio, exceeds
a certain threshold. The explained ratio represents the amount of information in
the underlying spectrum that the current rank can explain. A low explained ratio
indicates that the current rank is inadequate to represent the spectrum, necessitating
the addition of more modes.

InRank is capable of identifying intrinsic rank of networks during training. The
intrinsic rank of a neural network is defined as the minimum sufficient rank that
trains the network from scratch without sacrificing performance. The capability
of finding the intrinsic rank addresses the challenge of pre-defining the fixed ranks
in training low-rank neural networks, which requires expensive hyperparameter
tuning. An inappropriate selection of rank may either limit model capacity, hinder
the learning process, or result in excessive memory usage and computation, thereby
negating the benefits of low-rank factorization. We further improve computational
efficiency by applying InRank only in the initial phase of training. This approach
mitigates the computational cost induced by expensive SVD operations in InRank,
while maintaining comparable accuracy as the full-rank models.

3.2 Related Work
Implicit regularization has been well studied to explain excellent generalization
in neural networks (Gunasekar et al., 2018; Rahaman et al., 2019). Implicit rank
regularization stands out among the diverse aspects of implicit regularization, which
demonstrates that a neural network minimizes its rank implicitly during training
(Arora et al., 2019; Gissin, Shalev-Shwartz, and Daniely, 2019). Further research
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Figure 3.1: Incremental Low-Rank Learning from iteration 𝑡1 to 𝑡2. 𝑈 and 𝑉
represent any factorized layer. Density plots indicate the strength of each singular
vector (normalized by the total strengths). Solid areas represent how much informa-
tion in the spectrum is explained by the current rank 𝑟𝑡 at iteration 𝑡. From iteration
𝑡1 to 𝑡2, InRank adds 𝑟2 − 𝑟1 additional ranks to ensure the ratio of the explained
information is greater than a certain threshold 𝛼.

has corroborated that neural networks pursue a greedy low-rank learning strategy
under infinitesimal initialization (Razin, Maman, and Cohen, 2021; Jacot et al.,
2022; Z. Li, Luo, and Lyu, 2021). However, the practical advantages of such an
approach remain unexplored, predominantly due to the challenges of deviating from
the infinitesimal initialization assumption.

Low-rank training and other structured pruning methods aim to promote structured
sparsity within neural networks (NNs) throughout the training process, enabling
substantial computational acceleration (You et al., 2022; Dao et al., 2022). The low-
rank training technique has proven effective for training low-rank neural networks
from scratch (Ioannou et al., 2016; Yang et al., 2020; Schotthöfer et al., 2022).
Nonetheless, this method often necessitates extra hyperparameters, such as the rank
of the factorization, which can be challenging to determine accurately, and thus it
requires careful tuning.

Idelbayev and Carreira-Perpinan (2020) propose the LC compression method that
explicitly integrates the learning of low-rank factors into the training process, de-
spite its computational intensity. More recently, Wang, Agarwal, U-chupala, et al.
(2023) introduce Cuttlefish, a low-rank training method capable of automatically
determining the factorization rank in the early stages of training. However, Cuttle-
fish requires a pre-set full-rank initialization and lacks a theoretical comprehension
of its low-rank behavior, unlike our proposed InRank.

Moreover, low-rank training has been employed for fine-tuning large-scale pre-
trained models (Hu et al., 2021), and for reducing communication overhead in
distributed training (Vogels, Karimireddy, and Jaggi, 2019; Wang, Agarwal, and
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Papailiopoulos, n.d.). C. Li et al. (2018) adopt the low-rankness in cumulative
weight updates to measure the intrinsic dimension of objective landscapes. The
concept of incremental learning has been examined within the context of learning
partial differential equations using neural networks, such as parameter expansion in
the frequency domain (Zhao, George, et al., 2022), and increasing the complexity
of the underlying PDE problem (Huang and Alkhalifah, 2021).

Algorithm 2 Greedy Low-Rank Learning (GLRL)
Input: Convex cost𝐶, product matrix 𝐴𝜃 = 𝑊1 · · ·𝑊 𝐿 , tolerance 𝜖 , learning rate
𝜂, training steps 𝑇
Compute the first singular vector of ∇𝐶 (0): 𝑢, 𝑠, 𝑣 ← SVD1(∇𝐶 (0))
Initialize parameters and network width: 𝜃 ← (−𝜖𝑣𝑇 , 𝜖 , . . . , 𝜖𝑢), 𝑤 ← 1
repeat

Train width-𝑤 deep linear network for 𝑇 steps using SGD with learning rate 𝜂
Compute the first singular vectors of ∇𝐶 (𝐴𝜃): 𝑢, 𝑠, 𝑣 ← SVD1(∇𝐶 (𝐴𝜃))
Expand network width: 𝑤 ← 𝑤 + 1
Initialize additional parameters:

𝜃 ←
( (

𝑊1

−𝜖𝑣𝑇
)
,

(
𝑊2 0
0 𝜖

)
, . . . ,

(
𝑊 𝐿 𝜖𝑢

) )
until 𝐶 (𝐴𝜃) ≥ 𝐶𝑚𝑖𝑛 + 𝜖

3.3 Greedy Low-Rank Learning
In this section, we first introduce greedy low-rank learning (GLRL) and its practical
limitations. We wish to train the functionF (𝑥) to learn a particular input-output map
given a set of 𝑃 training samples (𝑥𝜇, 𝑦𝜇) ∈ R𝑁𝑥×𝑁𝑦 , where 𝜇 = 1, ..., 𝑃. Training
is accomplished by minimizing the squared error L = 1

2
∑𝑃
𝜇=1 ∥𝑦𝜇 − F (𝑥𝜇)∥22 using

gradient descent with a step size 𝜂.

We first model F (𝑥) to be a deep linear network: F (𝑥) = 𝑊 𝐿 ...𝑊1 𝑥, where
𝑊 𝑙 ∈ R𝑁ℎ×𝑁ℎ for 𝑙 ∈ 1, ..., 𝐿. We let 𝐴𝜃 = 𝑊 𝐿 ...𝑊1 denote the product matrix of
the network, and 𝜃 denote the whole parameter vector. Thus, we also denote the
training error as 𝐶 (𝐴𝜃) where 𝐶 is a convex error (e.g., the squared error).

The following theorem characterizes the implicit rank regularization behavior of
gradient descent under infinitesimal initialization.

Theorem 3.3.1 (Greedy Low-Rank Learning, informal) If we initialize𝑊1, ...,𝑊 𝐿

to be infinitesimal, then the product matrix 𝐴𝜃 follows a greedy low-rank learning
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trajectory, such that the gradient descent first searches over a rank-1 subspace of
𝐴𝜃 , and then greedily increases the rank by one whenever it fails to reach a local
minimizer.

Theorem 3.3.1 characterizes the trajectory of gradient descent, which performs a
rank-constrained optimization and greedily relaxes the rank restriction until it finds
a local minimizer.

Inspired by this implicit low-rank trajectory, the greedy low-rank learning (GLRL)
algorithm is proposed to capture this implicit behavior explicitly (Z. Li, Luo, and
Lyu, 2021). As shown in Algorithm 2, GLRL incrementally increases the rank of
the weight matrices in a deep linear network and initializes the additional rows and
columns based on the top singular vector of the current matrix derivative.

Although the GLRL algorithm provides a theoretical understanding of implicit
rank regularization, it has some practical drawbacks. One notable limitation is the
infinitesimally small initialization, which leads to slow convergence and makes it
difficult to apply the algorithm in large-scale settings. In addition, GLRL is only
applicable to linear networks as it highly relies on the product matrix 𝐴𝜃 . This makes
it inapplicable to practical neural networks with non-linear activation functions.

3.4 Cumulative Weight Updates follow Low-Rank Learning Trajectory
In order to generalize GLRL beyond infinitesimal initialization, we focus on cumu-
lative weight updates that characterize GLRL for any regular initializations. We
define the cumulative weight updates as follows:

Definition 3.4.1 (Cumulative Weight Updates) The cumulative weight updates 𝑑𝑡
at iteration 𝑡 is defined as the difference between the current parameterization 𝑤𝑡
and initialization 𝑤0 in the parameter space, such that

𝑑𝑡 = 𝑤𝑡 − 𝑤0 =

𝑡∑︁
𝑖=1

Δ𝑤𝑖 . (3.1)

The cumulative weight updates 𝑑𝑡 have been widely studied in the literature, espe-
cially in the field of distributed training (Vogels, Karimireddy, and Jaggi, 2019), as
it is known to exhibit low-rank properties.

This is attributed to the fact that 𝑑𝑡 is a summation of updates to the weights Δ𝑤𝑖,
with each update being determined by the learning algorithm and current gradient 𝑔𝑡 .
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Gradient 𝑔𝑡 has been shown to possess low-rank properties, which has been exploited
to reduce communication costs in distributed training through low-rank compression
(Vogels, Karimireddy, and Jaggi, 2019; Wang, Agarwal, and Papailiopoulos, n.d.).

We theoretically prove that the cumulative weight updates 𝑑𝑡 follow a low-rank
learning trajectory, even when the initialization is not infinitesimal. We continue
to focus on a linear network and analyze the difference of the product matrix
𝐷𝑡 = 𝐴𝑡 − 𝐴0 (which can be viewed as the cumulative weight updates of the product
matrix). Our goal is to demonstrate that 𝐷𝑡 exhibits an exponential rank increase
even when the initial weights are not close to zero. Our analysis builds upon the
work of Saxe, McClelland, and Ganguli (2014), which studies training dynamics
under orthogonal inputs.

Assumption 3.4.2 (Orthogonal Inputs) We assume the inputs are orthogonal, i.e.,
𝑥𝑇
𝑖
𝑥 𝑗 = 0 for 𝑖 ≠ 𝑗 .

Consider the input-output correlation matrix:

Σ𝑦𝑥 =

𝑃∑︁
𝜇=1

𝑦𝜇𝑥
𝑇
𝜇 = 𝑈𝑦𝑦𝑆𝑦𝑥𝑉𝑥𝑥 =

𝑁𝑥∑︁
𝛼=1

𝑠𝛼𝑢𝛼𝑣
𝑇
𝛼, (3.2)

where 𝑈𝑦𝑦 and 𝑉𝑥𝑥 represent the left and right singular vectors of Σ𝑦𝑥 , and 𝑆𝑦𝑥

denotes its singular value matrix. The singular values are ordered such that 𝑠1 ≥
𝑠2 ≥ · · · ≥ 𝑠𝑁𝑥

.

We analyze a 3-layer linear network where 𝑦 = 𝑊2𝑊1𝑥, 𝑊1 ∈ R𝑁ℎ×𝑁𝑥 and 𝑊2 ∈
R𝑁𝑦×𝑁ℎ are the weight matrices of the first and second layers, respectively, and
𝑁ℎ < 𝑁𝑥 , 𝑁𝑦. After training, the converged network should satisfy:

𝑊2𝑊1 =

𝑁ℎ∑︁
𝛼=1

𝑠𝛼𝑢𝛼𝑣
𝑇
𝛼, (3.3)

which is the closest rank-𝑁ℎ approximation to Σ𝑦𝑥 . To further analyze its trajectory,
we assume that the weights are initialized as 𝑊2

0 = 𝑈𝑦𝑦𝑀2𝑂𝑇 ,𝑊1
0 = 𝑂𝑀1𝑉𝑥𝑥

𝑇 ,
where 𝑀2, 𝑀1 are diagonal matrices, and 𝑂 is an arbitrary orthogonal matrix. We
have the following theorem for the training evolution of 𝐷𝑡 :

Theorem 3.4.3 For any orthogonal matrix𝑂 and scaled diagonal matrices 𝑀2 and
𝑀1, each singular value 𝑢 𝑓 (𝑡) in 𝐷𝑡 at iteration 𝑡 follows the trajectory:

𝑢 𝑓 (𝑡) =
𝑠𝑒2𝑠𝑡/𝜏

𝑒2𝑠𝑡/𝜏 − 1 + 𝑠/𝑢0
− 𝑢0, (3.4)
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Figure 3.2: 𝑢 𝑓 (𝑡) follows low-rank learning trajectory regardless of 𝑠 and 𝑢0. We
generate a set of 𝑠 given 𝑠𝑖 = 𝑎 × 𝑖, 𝑖 = 1, ..., 10 while varying 𝑎 from 0.1 to 1.0.
We also generate a set of 𝑢0 given 𝑢0 ∼ N(0, 𝑏2). Darker colors indicate singular
vectors with higher strengths.

where 𝑠 is the target singular value in Σ𝑦𝑥 , 𝑢0 is the initial value determined by 𝑀2

and 𝑀1, and 𝜏 is a constant.

𝑊2
0𝑊

1
0 ensures that each mode 𝛼 is learned independently right from the beginning

of training, enabling us to analyze the learning trajectory of each mode separately.
The diagonal matrices 𝑀2 and 𝑀1 control the scale of the initial weights, i.e.,
the initial value 𝑢0 of each mode 𝛼. Consequently, a larger 𝑢0 that is closer to 𝑠
accelerates the learning speed. We provide comprehensive proof of the theorem in
the appendix for further clarity.

The sigmoid function in Theorem 3.4.3 exhibits a sharp transition from a state of no
learning to full learning, with the transition point determined by the initial value 𝑢0

and 𝑠. This indicates that if the target singular values 𝑠 are distinct enough (given
𝑠 >> 𝑢0), each 𝑢 𝑓 (𝑡) will follow an independent sigmoid trajectory, permitting
ranks to be learned sequentially and independently.

To validate this, we carry out an empirical simulation using different sets of 𝑢0 and
𝑠. As illustrated in Figure 3.2, under various scales of initialization, the evolution
of 𝑢 𝑓 (𝑡) consistently adheres to the low-rank learning trajectory. We note that
analyzing weights 𝑊2𝑊1 directly under infinitesimal initialization in Z. Li, Luo,
and Lyu (2021) can be viewed as a special case of analyzing 𝐷𝑡 here.

Shifting our focus to practical non-linear networks, we analyze the difference of
layer-wise weight matrix 𝐷𝑡 = 𝑊 𝑙

𝑡 − 𝑊 𝑙
0 for 𝑙 = 1, ..., 𝐿 instead of the product

matrix 𝐷𝑡 = 𝑊
𝐿
𝑡 ...𝑊

1
𝑡 −𝑊 𝐿

0 ...𝑊
1
0 . We also extend our evaluation to more practical

cases with modern weight initialization methods. As shown in Figure 3.3, cumu-
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lative weight updates 𝐷𝑡 follow the greedy low-rank learning trajectory even under
regular initializations, including Orthogonal, ZerO, and Kaiming methods (Saxe,
McClelland, and Ganguli, 2014; He et al., 2015; Zhao, Schäfer, and Anandkumar,
2021).

We further verify our theory on a broad range of neural networks (e.g., transformers)
and standard training algorithms (e.g., SGD, Adam), as shown in the appendix. This
observation motivates us to design an efficient incremental learning algorithm that
leverages the properties of cumulative weight updates.

0 500 1000 1500 2000 2500
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

St
re

ng
th

Infinitesimal Init

0 500 1000 1500 2000 2500
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0
ZerO Init

0 500 1000 1500 2000 2500
Iterations

0.0

0.5

1.0

1.5

2.0

2.5
Orthogonal Init

0 500 1000 1500 2000 2500
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

Kaiming Init

Figure 3.3: The evolutions of top 20 singular vectors of cumulative weight updates
𝐷𝑡 over training under different initializations. They are evaluated on the training
of a 3-layer perceptron on Fashion MNIST. Darker colors indicate singular vectors
with higher strengths.

3.5 Incremental Learning
Motivated by the previous findings, we propose an incremental low-rank learning
algorithm that leverages the implicit low-rank learning trajectory in practice. To
explicitly represent the cumulative weight updates, we parametrize the weight matrix
𝑊 𝑙 at any layer 𝑙 as follows:

𝑊 𝑙 = 𝑊 𝑙
0 + 𝐷

𝑙 , (3.5)

where𝑊 𝑙
0 is the initial matrix and 𝐷 𝑙 is the summation of weight updates. Since 𝐷 𝑙

exhibits low-rank properties, we can factorize it as 𝐷 𝑙 = 𝑈𝑙𝑉 𝑙 , resulting in:

𝑊 𝑙 = 𝑊 𝑙
0 +𝑈

𝑙𝑉 𝑙 , (3.6)

where 𝑈𝑙 ∈ R𝑝𝑙×𝑟𝑙 and 𝑉 𝑙 ∈ R𝑟𝑙×𝑞𝑙 are the factorized matrices, and 𝑟 𝑙 is the rank of
𝐷 𝑙 .

To emulate the implicit low-rank learning, we train factorized matrices 𝑈𝑙𝑉 𝑙 with
an initially small rank 𝑟 𝑙 , subsequently increasing the rank (i.e., the matrix size)
throughout the training process.
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Algorithm 3 Incremental Low-Rank Learning (InRank)
Input: Cost function 𝐿 (𝑊𝑡) for total weights 𝑊 = (𝑊1, ...,𝑊 𝐿) at iteration 𝑡,
where𝑊 𝑙

𝑡 = 𝑊
𝑙
0+𝑈

𝑙
𝑡𝑉

𝑙
𝑡 for each layer 𝑙 (with𝑊 𝑙

0 being non-trainable). Parameters:
rank increment 𝑟, buffer 𝑏, explained variance threshold 𝛼, initialization scale 𝜖 ,
learning rate 𝜂, and number of iterations 𝑇
Initialize𝑊 𝑙

0 using standard initialization, and set𝑈𝑙
0, 𝑉

𝑙
0 ← 0

Compute the top (1 + 𝑏) singular vectors: 𝑢𝑙 , 𝑠𝑙 , 𝑣𝑙 ← SVD(1+𝑏)
(
𝜕𝐿 (𝑊0)
𝜕𝑊 𝑙

0

)
Initialize factorized weights with small 𝜖 : 𝑈𝑙

0 ← −𝜖𝑣
𝑙 , 𝑉 𝑙0 ← 𝜖𝑢𝑙 , and set initial

rank 𝑟 𝑙0 ← 1
for 𝑡 = 1 to 𝑇 do

Train low-rank network and update𝑈𝑙
𝑡𝑉

𝑙
𝑡 using SGD with learning rate 𝜂

Compute the top (𝑟 𝑙 + 𝑏) singular vectors: 𝑢𝑙 , 𝑠𝑙 , 𝑣𝑙 ← SVD(𝑟𝑙+𝑏) (𝑈𝑙
𝑡𝑉

𝑙
𝑡 )

Increment rank 𝑟 𝑙𝑡 to 𝑟 𝑙
𝑡+1 until the explained variance ratio 𝑔(𝑈𝑙

𝑡𝑉
𝑙
𝑡 , 𝑟

𝑙
𝑡+1, 𝑏) ≥ 𝛼

Initialize additional parameters:

𝑈𝑙
𝑡+1 ←

[
𝑈𝑙
𝑡 𝑈∗

]
, 𝑉 𝑙𝑡+1 ←

[
𝑉 𝑙𝑡 𝑉∗

]
{Where𝑈∗ ∈ R𝑝𝑙×(𝑟𝑙𝑡+1−𝑟𝑙𝑡 ) and 𝑉∗ ∈ R(𝑟𝑙𝑡+1−𝑟𝑙𝑡 )×𝑞𝑙 are randomly initialized with

small values}
end for

A crucial challenge lies in determining how to increase the rank 𝑟 𝑙 during training.
An inappropriate choice of rank may either lead to insufficient model capacity,
hinder the learning process, or result in excessive memory usage and computation,
negating the benefits of low-rank factorization.

To address this, we propose a novel method for dynamically identifying when a rank
increase is necessary, based on measuring the representability of the current rank
𝑟 𝑙 . Inspired by Zhao, George, et al. (2022), we define explained ratio:

𝑔(𝑀, 𝑟 𝑙 , 𝑏) =
∑𝑟𝑙

𝑖=1 𝑠
𝑙
𝑖∑𝑟𝑙+𝑏

𝑖=1 𝑠𝑙
𝑖

, (3.7)

where 𝑠𝑙
𝑖

is the 𝑖-th singular value of a matrix 𝑀 , and 𝑏 is a buffer size used to
encompass a broader spectrum for determination. The explained ratio 𝑔 quantifies
the representability of the current rank 𝑟 𝑙 in the truncated spectrum (of size (𝑟 𝑙 + 𝑏))
of 𝑀 . A low explained ratio 𝑔 indicates that the existing rank 𝑟 𝑙 cannot sufficiently
represent the truncated spectrum, necessitating an increase in 𝑟 𝑙 to incorporate more
useful modes.
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We let 𝑀 = 𝑈𝑙𝑉 𝑙 for each layer 𝑙 and compute the explained ratio 𝑔(𝑈𝑙𝑉 𝑙 , 𝑟 𝑙 , 𝑏)
at each iteration (can be relaxed each 𝑘 iterations in practice). By predefining
an appropriate threshold 𝛼 and ensuring that 𝑔(𝑈𝑙𝑉 𝑙 , 𝑟 𝑙 , 𝑏) remains larger than 𝛼
during training, the rank 𝑟 𝑙 can automatically increase when needed. This process
is illustrated in Figure 3.1.

It is worth noting that 𝑏 buffer ranks serve to provide a wider spectrum range, but
their corresponding singular vectors may be less useful. These buffer ranks can be
discarded by fine-tuning in the post-training stage. The full algorithm is detailed in
Algorithm 3.

3.6 Evaluation
In this section, we conduct a comprehensive evaluation of our proposed InRank
algorithm on GPT-2.

Our method particularly focuses on the fully-connected layers in the models, where
we substitute the conventional weight parameterization with our relative parameter-
ization as described in Equation 3.6. This operation involves applying InRank to
the resulting low-rank factorized matrices. Notably, our approach is not exclusively
limited to fully-connected layers. It bears the flexibility to be extended to various
types of layers, including convolution and self-attention layers. However, to main-
tain the focus on our current research, we leave this promising exploration for future
work.

We benchmark the effectiveness of our method mainly on Generative Pre-trained
Transformer 2 (GPT-2), a model widely used in language tasks. In our experiment,
we apply InRank to all the MLP layers in GPT-2 and assess the training of GPT-2
from scratch on the WikiText-103 dataset.

We fix the hyperparameters of InRank across all experiments and different models,
including an initial rank of 𝑟0 = 1, a buffer size of 𝑏 = 100, and a threshold of
𝛼 = 0.9. We find both values 𝑟0 and 𝑏 are insensitive to the performance of InRank,
and we will discuss the selection of the threshold 𝛼 in the following section.

Automatic Rank Determination
A key finding from our evaluation is that InRank can automatically find the intrinsic
rank of the model during training, facilitated by the automatic rank determination
feature in cumulative weight updates. Figure 3.4 demonstrates that the rank identi-
fied by InRank aligns with the intrinsic rank discovered by costly sweeping across
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a wide range of ranks. This capability could potentially eliminate the need for the
laborious and time-intensive process of tuning the rank hyperparameters for training
low-rank networks.
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Figure 3.4: Identifying intrinsic rank in GPT-small on WikiText-103. The cross
marker signifies the rank determined by InRank. The rank varies from 10 to 400.

InRank-Efficient
We aim to improve the efficiency of InRank. We find the rank increment mostly
occurs during the early stages of training, remaining relatively stable thereafter. This
observation suggests that the initial training phase can sufficiently infer the intrinsic
rank of the model, corroborating the findings of previous work Wang, Agarwal,
U-chupala, et al., 2023.

This motivates us to apply InRank only in the early stage to determine an appropriate
rank for low-rank training, fixing its rank afterward. We denote this variant as
InRank-Efficient. The conventional InRank is computationally expensive due to the
𝑂 (𝑛3) cost of the SVD operation for a matrix of size 𝑛 × 𝑛. On the other hand,
InRank-Efficient reduces the computational burden by only applying InRank during
the initial training stage. In the remaining evaluation on GPT-2, InRank-Efficient is
only applied for the first epoch.

In the InRank-Efficient approach, once we determine the optimal rank 𝑟∗ for 𝑈𝑉
using InRank, we parameterize𝑊 as a rank-𝑟∗ factorization of𝑈𝑉 only, eliminating
the need for representing a separated 𝑊0. By removing 𝑊0, we can reduce both
memory usage and computational costs as it avoids additional matrix multiplication.
Moreover, we can enhance efficiency by discarding the buffer size 𝑏 once the optimal
rank has been determined. We provide further details of InRank-Efficient in the
appendix.
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Comparison
We compare InRank and InRank-Efficient with a full-rank baseline using different
sizes of GPT models on the WikiText-103 dataset. All methods are trained with the
same hyperparameters, including the learning rate, weight decay, and the number of
epochs. We use the Adam optimizer to train for 100 epochs with an initial learning
rate of 0.001. All experiments are run using the same computational setting with 8
NVIDIA® Tesla® V100 GPUs.

As shown in Table 3.1, both InRank and InRank-Efficient achieve validation per-
plexity comparable to the full-rank baseline while requiring at most 33% of the total
rank. The rank is calculated as the average rank across all weight matrices in the
model. We observed that InRank outperforms InRank-Efficient, even though they
find the same rank. This can be attributed to the fact that InRank-Efficient discards
the parameterization of𝑊0 during the training process.

We also measure several efficiency metrics to compare the computational efficiency
of different methods. Specifically, we measure the total training time, memory
usage, number of parameters, and the number of floating point operations (FLOPs)
required for training.

Notably, InRank-Efficient significantly reduces both computational cost and memory
usage. For instance, when compared to the baseline on GPT-medium, InRank-
Efficient reduces the total training time by 20% and memory usage by 37%. On
the other hand, throughout the entire training process, InRank-Efficient requires a
maximum of 63% memory usage, enabling the training of large language models
from scratch on memory-constrained devices.

Moreover, InRank-Efficient demonstrates even greater efficiency benefits with larger
models. In the case of GPT-large, InRank-Efficient reduces 75% of the total rank,
resulting in a reduction of 30% in training time and 42% in memory usage when
measured over a single epoch. Unfortunately, due to our limited computational re-
sources, we were unable to report its performance over a full training run. Additional
results and discussions are provided in the appendix for further reference.

Selection of Threshold 𝛼
To determine the optimal configuration for InRank, we conduct evaluations using
various values of threshold 𝛼. Table 3.2 demonstrates that the performance of each
threshold value is consistent across different model sizes. Taking both prediction
performance and efficiency into consideration, we have selected 𝛼 = 0.9 as the
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Table 3.1: Performance comparison of different methods.

Model Method PPL Rank Memory Params
GPT-small Baseline 18.5 768 248Mb 124M

InRank 18.6 254 295Mb 147.7M
InRank-Efficient 18.9 254 182Mb 91.2M

GPT-medium Baseline 19.5 1024 709Mb 355M
InRank 19.6 286 850Mb 424M
InRank-Efficient 19.9 286 447Mb 223M

Table 3.2: Varying threshold 𝛼 in InRank-Efficient.

Threshold 𝛼 GPT-small
PPL Rank Runtime Memory Parameters FLOPs

Baseline 18.5 768 24.5h 248Mb 124M 292G
0.8 19.4 152 20.2h 163Mb 81.8M 156G
0.85 19.1 193 21.9h 171Mb 85.6M 165G
0.9 18.9 254 22.2h 182Mb 91.2M 178G

Threshold 𝛼 GPT-medium
PPL Rank Runtime Memory Parameters FLOPs

Baseline 19.5 1024 60.5h 709Mb 355M 828G
0.8 20.6 168 45.9h 389Mb 194M 363G
0.85 20.2 213 48.1h 411Mb 205M 389G
0.9 19.9 286 48.6h 447Mb 223M 428G

default value for all experiments. The stable choice of 𝛼 ensures that InRank can
automatically identify the optimal rank for new tasks and models without the need
for extensive tuning, thereby minimizing the associated costs.

3.7 Conclusion
In this work, we generalize the Greedy Low-Rank Learning (GLRL) to arbitrary
orthogonal initialization, leading to the development of Incremental Low-Rank
Learning (InRank). Our method is capable of discovering the intrinsic rank of
networks and has demonstrated comparable performance to full-rank counterparts
on training GPT-2, while utilizing a maximum of 33% of total ranks throughout
training. The efficient variant of InRank also achieves a significant reduction of
20% in total training time and 37% in memory usage when training GPT-medium
on WikiText-103.
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We believe our work offers a novel approach to training low-rank networks through
automatic rank determination. In the future, we aim to expand our method to
encompass various network architectures and datasets. Additionally, we intend
to optimize our algorithm implementation to further improve its computational
efficiency.
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C h a p t e r 4

ZERO INITIALIZATION: INITIALIZING NEURAL NETWORKS
WITH ONLY ZEROS AND ONES

4.1 Introduction
An important question in training deep neural networks is how to initialize the
weights. Currently, random weight initialization is the de-facto practice across
all architectures and tasks. However, choosing the variance of the initial weight
distribution is a delicate balance when training deep neural networks. If the variance
is too large, it can lead to an excessive amplification of the activations propagating
through the network during training, resulting in exploding gradients. On the other
hand, if the weights are initialized too small, the activations may not propagate at
all, resulting in vanishing gradients. These issues become more challenging as the
number of layers in the network grows.

The above challenges can be avoided if identity initialization is used instead. It
initializes each layer in the network as an identity mapping, such that the input data
can be identically propagated to the network output. In this case, there is no need
to introduce any randomness or consider its variance. Identity initialization is well
studied theoretically from an optimization perspective. Hardt and Ma (2017) prove
the existence of a global minimum close to the identity parameterization in a deep
residual network. Bartlett, Helmbold, and Long (2019) further prove the rate of
convergence of gradient-based optimization under identity initialization.

However, prior theoretical works on identity initialization assume that all layers had
the same dimensionality, which does not hold for practical networks. Typically,
practical networks have varying dimensionality across layers, such as the variations
of spatial and channel dimensions in ResNet architectures (He et al., 2016). Directly
applying identity initialization to these networks leads to a problem of training
degeneracy, as our theoretical study will demonstrate later.

To avoid the training degeneracy, previous works employ identity initialization with
random perturbations to facilitate escapes from a saddle point or to break feature
symmetry (Blumenfeld, Gilboa, and Soudry, 2020). Broadly, these approaches
satisfy the property of dynamical isometry, to preserve the signal propagation and
ensure well-behaved gradients at initialization (Saxe, McClelland, and Ganguli,
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2014). Despite the efficacy of random perturbations, they inevitably introduce addi-
tional tuning of variances, which can result in gradient explosion in deep networks
without careful tuning.

We propose ZerO initialization that removes all randomness in the weight initial-
ization. As illustrated in Figure 4.1, ZerO initializes networks with Hadamard and
identity transforms, which assigns all the weights to only zeros and ones.
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Figure 4.1: Illustrating ZerO in a 3-layer network with input dimension 𝑛𝑥 , hidden dimen-
sion 𝑛ℎ, and output dimension 𝑛𝑦 , where 𝑛ℎ > 𝑛𝑥 , 𝑛𝑦 . 𝑯 and 𝑰 are 𝑛ℎ × 𝑛ℎ Hadamard and
identity matrix, respectively. The dimension-increasing layer is initialized by columns of
the Hadamard matrix. The rest layers are initialized by identity matrix or rows of it.

ZerO is not affected by the problem of training degeneracy or accuracy loss. Com-
pared to random initialization, ZerO provides state-of-the-art performance over
various image classification tasks, including ImageNet. We further discover many
unique properties and benefits of ZerO:

Stable training without batch normalization. ZerO ensures well-behaved signal
propagation, which provides stable training without batch normalization. Testing
ResNet with over 500 layers, we find ZerO converges faster than carefully designed
random methods, such as Fixup and ReZero (Zhang, Dauphin, and Ma, 2019;
Bachlechner et al., 2021).

Low-rank learning trajectory. We find that ZerO exhibits a low-rank learning
trajectory, where the rank of each matrix gradually increases during training. We
believe this is the first time that the greedy low-rank learning (GLRL) trajectory,
a theoretical characterization of gradient descent, has been observed in large-scale
deep learning applications. GLRL is a consequence of implicit rank regularization
by gradient descent under infinitesimal initialization (Li, Luo, and Lyu, 2021; Razin,
Maman, and Cohen, 2021). It can be viewed as performing a rank-constrained opti-
mization and greedily relaxing the rank restriction by one whenever it fails to reach
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a global minimizer. GLRL has been used to explain the excellent generalization in
gradient-based deep learning, as it converges to a global (or local) minima with the
minimum rank. However, the GLRL trajectory has never been observed in practice
due to its impractical requirement of infinitesimal initialization.

Sparse and low-rank solutions. We observe that ZerO-initialized networks con-
verge to sparse and low-rank solutions. Compared to randomly initialized networks,
the sub-networks obtained in trained ZerO-initialized networks achieve 30% lower
(matrix or tensor) rank or 25% higher sparsity without sacrificing accuracy.

Better training reproducibility. Since ZerO does not require any random per-
turbations, it is a fully deterministic initialization scheme. Unlike determinism in
random initialization, which needs fixing pseudorandom number generators in hard-
ware, the weights initialized by ZerO are fixed regardless of how the random seed
varies or which hardware is used. ZerO significantly reduces the training variation
and thus achieves better training reproducibility (the remaining randomness is only
due to batch selection). Compared to random initialization, ZerO produces 20%-
40% lower standard deviation of the final accuracy over repeated experiments with
different random seeds.

Theoretical analysis of ZerO. Theoretically, we demonstrate that ZerO breaks
a training degeneracy that arises when applying identity initialization to networks
with varying dimensionality across layers. We prove that the training degeneracy
necessarily occurs in standard identity initialization because the rank of any 𝑛ℎ × 𝑛ℎ
matrix in the network is upper bounded by the input and output dimensions 𝑛𝑥 and
𝑛𝑦 throughout the entire training, no matter how large the size of 𝑛ℎ is. This limits
the expressivity of each matrix, resulting in the degeneracy of training.

Our contributions are summarized as follows:

1. We design ZerO initialization, the first fully deterministic initialization that
achieves state-of-the-art performance in practice.

2. ZerO is backed with theoretical understanding. As shown in Theorem 4.3.3,
we prove how ZerO breaks the training degeneracy by applying Hadamard
transforms.
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3. ZerO has many benefits, such as training ultra deep networks (without batch-
normalization), exhibiting low-rank learning trajectory, converging to sparse
and low-rank solutions, and improving training reproducibility.

4.2 Related Works
To ensure stable training with random weight initialization, previous works such as
Glorot and Bengio (n.d.) and He et al. (2015) study the propagation of variance in
the forward and backward pass under different activations. Several studies provide
a more detailed characterization of the signal propagation with dynamical isometry
(Saxe, McClelland, and Ganguli, 2014; Pennington, Schoenholz, and Ganguli, 2017;
Xiao et al., 2018).

Inspired by the dynamical isometry property, various initialization methods are
proposed to increase the convergence speed and stabilize the signal propagation,
including Saxe, McClelland, and Ganguli (2014), Bachlechner et al. (2021), Gehring
et al. (2017), and Balduzzi et al. (2017). De and Smith (2020) and Hoffer et al. (2019)
study the reason behind the success of batch normalization (Ioffe and Szegedy, 2015)
, and Zhang, Dauphin, and Ma (2019) and De and Smith (2020) propose initialization
methods to train residual networks without batch normalization.

Many of the previous methods can be categorized as identity initialization with ran-
dom perturbations. However, ZerO eliminates all the randomness using Hadamard
and identity transforms. In another related work, Blumenfeld, Gilboa, and Soudry
(2020) discusses whether random initialization is needed from the perspective of
feature diversity. They propose networks with identical features at initialization,
which still require random perturbations to avoid the symmetric problem and im-
prove performance.

Gradient descent biasing models towards low-rank solutions has been well studied
in matrix factorization (Arora et al., 2019). Recent works also demonstrate the ex-
istence of greedy low-rank learning trajectory induced by gradient descent (Li, Luo,
and Lyu, 2021; Razin, Maman, and Cohen, 2021; Jacot et al., 2022). However, no
prior work demonstrates the greedy low-rank learning trajectory in large-scale appli-
cations of deep learning, as most only consider the problems of matrix factorization
or applications of shallow neural networks.
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4.3 Is Randomness Necessary in Identity Initialization?
Background
We wish to train a function F (𝒙) to learn a particular input-output map given a set of
𝑃 training samples (𝒙𝜇, 𝒚𝜇) ∈ R𝑛𝑥×𝑛𝑦 , where 𝜇 = 1, ..., 𝑃. Training is accomplished
by minimizing the squared errorL = 1

2
∑𝑃
𝜇=1 ∥𝒚𝜇 − F (𝒙𝜇)∥22 using gradient descent

with a step size 𝜂.

We model F (𝒙) to be a multilayer perceptron with 𝐿 > 2 hidden layers, such that:

𝒙𝑙 = 𝑾𝑙 𝒛𝑙−1 𝒛𝑙 = 𝜑(𝒙𝑙),

with 𝑙 ∈ 1, ..., 𝐿. Let 𝒛0 = 𝒙 and F (𝒙) = 𝒛𝐿 . 𝜑 is an element-wise nonlinearity.
We assume that F has uniform hidden dimension 𝑛ℎ, with 𝑾𝑙 ∈ R𝑛ℎ×𝑛ℎ for 𝑙 ∈
2, ..., 𝐿 − 1, 𝑾1 ∈ R𝑛ℎ×𝑛𝑥 , and 𝑾𝐿 ∈ R𝑛𝑦×𝑛ℎ .

The input-output Jacobian is a well-studied proxy for estimating the stability of
signal propagation at initialization, which is defined as: 𝑱𝑖𝑜 =

𝜕𝒛𝐿
𝜕𝒛0
. Proposed by

(Saxe, McClelland, and Ganguli, 2014), dynamical isometry is a condition where
all singular values of the Jacobian 𝑱𝑖𝑜 concentrate near 1. If 𝑱𝑖𝑜 is well-conditioned,
the backpropagation error 𝜕L

𝜕𝒛𝑙
at any layer 𝑙 will be well-conditioned as well. This

ensures stable signal propagation and well-behaved gradients at initialization.

Consider the case of 𝑛𝑥 = 𝑛𝑦 = 𝑛ℎ. Identity initialization is defined as initializing
each matrix to be an identity matrix: 𝑾𝑙 = 𝑰. In this case, the dynamical isometry
property for a linear F can be easily verified as 𝑱𝑖𝑜 = 𝑰. It also holds for certain
nonlinearities when applying the identity initialization on residual networks: 𝒛𝑙 =

𝜑(𝒙𝑙) + 𝒙𝑙−1 where 𝑾𝑙 = 0, such that no signal is passed through the residual
branches at initialization.

From an optimization perspective, Hardt and Ma (2017) suggest that F has a global
minimum very close to its identity initialization, such that max1≤𝑙≤𝐿



𝑾′
𝑙



 ≤ 𝑂 (1/𝐿)
for large 𝐿, where 𝑾′ = 𝑾 − 𝑰. Bartlett, Helmbold, and Long (2019) also proves
that under the identity initialization, gradient descent learns an 𝜖-approximation of
F within iterations polynomial in 𝑙𝑜𝑔(1/𝜖).

Extending to Large Hidden Dimension
So far, we have discussed identity initialization in the special case of fixed dimen-
sionality. Now we extend our discussion to a more practical setting where F is
equipped with a large hidden dimension, such that 𝑛ℎ >> 𝑛𝑥 , 𝑛𝑦. We also focus on
the specific case where 𝜑 is a Relu nonlinearity.
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Figure 4.2: A 3-layer network F (𝑛ℎ > 𝑛𝑥 = 𝑛𝑦) where 𝑾1,𝑾3 = 𝑰∗ and 𝑾2 = 𝑰 at
initialization.

A straightforward approach to identity initialization in this case is to initialize 𝑾1

such that it projects the input into a 𝑛𝑥-dimensional subspace of the 𝑛ℎ-dimensional
hidden space. This can be achieved by initializing 𝑾1 with a partial identity matrix:

Definition 4.3.1 (Partial Identity Matrix) Let 𝑰∗ ∈ R𝑙×𝑟 , the partial identity ma-
trix 𝑰∗ is defined as follows:

𝑰∗ =


(𝑰, 0) where 𝑰 ∈ R𝑙,𝑙 and 0 ∈ R𝑙,𝑟−𝑙 if 𝑙 < 𝑟,

𝑰 where 𝑰 ∈ R𝑙,𝑙 if 𝑙 = 𝑟,

(𝑰, 0)⊤ where 𝑰 ∈ R𝑟,𝑟 and 0 ∈ R𝑟,𝑙−𝑟 otherwise.

For a vector 𝒂 ∈ R𝑟 , if 𝑙 < 𝑟, then 𝑰∗(𝒂) clips the last few dimension such that
𝑰∗(𝒂) = (𝑎1, 𝑎2, ..., 𝑎𝑙)⊤. If 𝑙 > 𝑟, then 𝑰∗ pads 𝑙 − 𝑟 additional dimensions with
zero, such that (𝑎1, 𝑎2, ..., 𝑎𝑟 , 0...0)⊤. This is also known as a zero-padding operator,
such as used in channel-expanding layers in ResNet (He et al., 2016). In the network
F , 𝑰∗ only needs to be applied in the dimension-varying matrices 𝑾1 and 𝑾𝐿 , while
leaving the remaining 𝑛ℎ × 𝑛ℎ matrices to be identity matrix 𝑰.

We visualize this process in Figure 4.2. This may seem like a natural extension
of identity initialization to a large width setting, but we will show in Section 4.3 it
suffers from a problem we call “training degeneracy”. To avoid the problem, we use
the Hadamard matrix 𝑯 to initialize the dimension-increasing matrices, such that
𝑾1 = 𝑯𝑰∗. A Hadamard matrix is defined as follows:

Definition 4.3.2 (Hadamard matrix) For any Hadamard matrix 𝑯 = 𝑯𝑚 ∈ R2𝑚×2𝑚

where 𝑚 is a positive integer, we define 𝑯0 = 1 by the identity, and the matrix with
large 𝑚 is defined recursively:

𝑯𝑚 =

(
𝑯𝑚−1 𝑯𝑚−1

𝑯𝑚−1 −𝑯𝑚−1

)
=

©­­­­«
1 1 1 1 . . .

1 −1 1 −1 . . .

1 1 −1 −1 . . .

1 −1 −1 1 . . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .

ª®®®®¬
∈ R2𝑚×2𝑚 .



47

The linear transformation described by the Hadamard matrix, called the Hadamard
transform, rotates the coordinate axes to be equally weakly aligned with the standard
basis. For example, in a two-dimensional plane, the Hadamard transform rotates
the standard basis by an exact angle of 45 degree. This turns out to be an important
property for breaking the training degeneracy.

Identity Initialization limits Network Expressivity
We now present our main result differentiating the training behavior of different
initialization methods and describing the problem of training degeneracy.

Theorem 4.3.3 Let F be a neural network with 𝐿 matrices, where 𝑾𝑙 ∈ R𝑛ℎ×𝑛ℎ for
𝑙 ∈ 2, ..., 𝐿−1, 𝑾1 ∈ R𝑛ℎ×𝑛𝑥 , and 𝑾𝐿 ∈ R𝑛𝑦×𝑛ℎ . F has a uniform hidden dimension
𝑛ℎ, input dimension 𝑛𝑥 , and output dimension 𝑛𝑦, where 𝑛ℎ ≥ 𝑛𝑥 , 𝑛𝑦. Define residual
component 𝑊′

𝑙
= 𝑊𝑙 − 𝑰. Let 𝒛𝑙 (𝒙) to be the activation in the 𝑙-th layer under the

input 𝒙. Then we have the following results for different initializations:

1. Consider a random perturbation 𝜇 ∈ R𝑛ℎ×𝑛ℎ where each element is sampled
from a Gaussian distribution: 𝜇𝑖 𝑗 ∼ N(0, 𝜎2). It is well-known that the
randomly perturbed matrices 𝑾𝑙 = 𝑰 + 𝜇𝑙 (for 𝑙 ≠ 1, 𝐿) are full-rank almost
surely:

𝑃𝑟𝑜𝑏(rank(𝑾′𝑙 ) = 𝑛ℎ) = 1 for 𝑙 ∈ 2, ..., 𝐿 − 1. (4.1)

2. When initializing 𝑾1,𝑾𝐿 = 𝑰∗ and the remaining matrices as 𝑾𝑙 = 𝑰 (for
𝑙 ≠ 1, 𝐿), for any 𝒙 ∈ R𝑛𝑥 , the linear dimension of the set of all possible
activations is bounded throughout training as

dim (span ({𝒛𝑙 (𝒙) |𝒙 ∈ R𝑛𝑥 })) ≤ 𝑛𝑥 for 𝑙 ∈ 2, ..., 𝐿 − 1. (4.2)

As a result, the ranks of the weight matrices remain bounded throughout
training as

rank(𝑾′𝑙 ) ≤ 𝑛𝑥 for 𝑙 ∈ 2, ..., 𝐿 − 1. (4.3)

3. When initializing 𝑾1 = 𝑯𝑰∗, 𝑾𝐿 = 𝑰∗, and the remaining matrices as 𝑾𝑙 = 𝑰

(for 𝑙 ≠ 1, 𝐿) it is possible for the activations at an intermediate layer to attain

dim (span ({𝒛𝑙 (𝒙) |𝒙 ∈ R𝑛𝑥 })) > 𝑛𝑥 , (4.4)

breaking the constraint on the linear dimension described in Equation 4.2.
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Remark 1 The constraints on linear dimensions and matrix ranks in Equation 4.2
and 4.3 suggest that no matter how large hidden dimension 𝑛ℎ is, the network F is
only optimized within a low-dimensional subspace (depending on input dimension
𝑛𝑥) of the full parameter space. This restricts the maximum network expressivity of
F , and thus the training may only converge to an underfitting regime, leading to
training degeneracy.

Remark 2 Under the assumptions of 3, the breaking of training degeneracy de-
scribed in Equation 4.4 appears to be the generic case. As verified empirically in
Figure 4.3, applying the Hadamard transform in 2 also breaks the rank constraint
in Equation 4.3.

Remark 3 1 and 3 avoid the training degeneracy from different directions. Unlike
1, the proposed 3 doesn’t introduce any randomness with the help of the Hadamard
transform.

Almost all existing works use random weight initialization, which largely affects the
rank of each matrix as shown in 1. 1 can be proved by showing any column (or row)
in a random matrix is linearly independent to the other columns (or rows), almost
surely. A detailed proof can be found in the appendix.

Consider identity initialization without any randomness. In 2, 𝑾1 identically maps
the input 𝒙 into a subspace of the hidden layer 𝒛1, such that 𝒛1 = (𝒙⊤, 0, ..., 0)⊤.
Thus, the linear dimension on 𝒛𝑙 (i.e., the linear dimension on activations 𝒛1

𝑙
, ..., 𝒛𝑃

𝑙
)

is equivalent to the linear dimension on 𝒙, which is upper bounded by 𝑛𝑥 . This result
is held for every layer 𝒛𝑙 (where 𝑙 ≠ 1, 𝐿).

To show the rank constraint in Equation 4.3, we track a single derivative of the
residual component at layer 𝑙:

𝜕L
𝜕𝑾′

𝑙

=

𝑃∑︁
𝜇=1

𝜕L
𝜕𝒙𝜇

𝑙

⊗ 𝒛𝜇
𝑙−1, (4.5)

where ⊗ denotes the outer product. We use the following well-known fact:

Lemma 4.3.4 Consider a matrix 𝑴 to be a sum of vector outer products:𝑴 =∑𝑄

𝜇=1 𝒂
𝜇 ⊗ 𝒃𝜇, where 𝒂𝜇 ∈ R𝑛𝑎 and 𝒃𝜇 ∈ R𝑛𝑏 for 𝜇 ∈ 1, ..., 𝑄. Let 𝑄 > 𝑛𝑎, 𝑛𝑏.
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Figure 4.3: Verify Theorem 4.3.3 in practice. We train a network F with 𝐿 = 3 on MNIST,
and visualize rank(𝑊2) over the training. The red dash line denotes the rank constraint
on 𝑊2 predicted by the theorem, which is 𝑛𝑥 = 784. Left: we verify 2 in the theorem by
varying 𝑛ℎ. No matter how large 𝑛ℎ is, rank(𝑊2) follows the rank constraint through the
entire training. Right: we verify 3 where applying Hadamard transform breaks the rank
constraint introduced in 2 , given 𝑛ℎ = 2048. We denote the initializations in 2 and 3 as
standard and Hadamard-based GI-Init, respectively. As predicted in 1, random initialization
achieves its maximum rank immediately after the initialization.

If linear dimensions dim(span(𝒂1, ..., 𝒂𝑄)) ≤ 𝑈 and dim(span(𝒃1, ..., 𝒃𝑄)) ≤ 𝑉 ,
where𝑈 ≤ 𝑛𝑎 and 𝑉 ≤ 𝑛𝑏, then:

rank(𝑾) ≤ min(𝑈,𝑉).

By Lemma 4.3.4, at initialization, the upper bound 𝑛𝑥 on the linear dimension on
𝒛𝑙−1 results in a rank constraint on rank(𝑾′

𝑙
). The rank constraint holds during the

entire training as 𝜕L
𝜕𝑾′

𝑙

has a zero-valued 𝑛𝑦 × (𝑛ℎ − 𝑛𝑥) sub-matrix at every iteration

(as shown in the appendix). Since 𝑊′
𝑙
=

∑𝑇
𝑡=1 −𝜂 𝜕L

𝜕𝑾′
𝑙

���
𝑡

after 𝑇 weight updates (by
gradient descent with a step size 𝜂), rank(𝑊′

𝑙
) is bounded by 𝑛𝑥 no matter what 𝑇

is. This results in the training degeneracy as described in Remark 1. We also verify
it empirically in Figure 4.3.

To avoid the training degeneracy, we need to overcome limitations on the linear
dimension of the set of possible activations. This is indeed possible when using the
Hadamard matrix as 𝑾1 = 𝑯𝑰∗, as we will illustrate it by means of an example.

Lemma 4.3.5 Assume 𝑛ℎ = 4 and 𝑛𝑥 = 3. For any vector 𝒙 ∈ span(𝒆2, 𝒆3) where
𝒆2 and 𝒆3 are coordinate vectors (0, 1, 0)⊤ and (0, 0, 1)⊤, it holds that:

span ({𝒛1(𝒙) |𝒙 ∈ R𝑛𝑥 }) = span(Relu(𝑯𝑰∗𝒆2),Relu(−𝑯𝑰∗𝒆2),Relu(𝑯𝑰∗𝒆3),Relu(−𝑯𝑰∗𝒆3)),
(4.6)
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where Relu(𝑯𝑰∗𝒆2), Relu(−𝑯𝑰∗𝒆2), Relu(𝑯𝑰∗𝒆3), and Relu(−𝑯𝑰∗𝒆3) are linearly
independent. This indicates that:

dim (span ({𝒛1(𝒙) |𝒙 ∈ R𝑛𝑥 })) = 4 = 𝑛ℎ > 𝑛𝑥 = 3.

When using Hadamard matrix as𝑾1 = 𝑯𝑰∗, the breaking of the training degeneracy
described in Lemma 4.3.5 appears to be the generic case. As verified empirically in
Figure 4.3, this also breaks the rank constraint in Equation 4.3.

We point out that the increase of the linear dimension of the set of possible 𝒛𝑙 is
only possible due to the nonlinearity. If F is a linear network, the linear dimension
on every 𝒛𝑙 is at most 𝑛𝑥 , no matter how the weights are initialized.

Nevertheless, the nonlinearity can not increase the linear dimensionality if we
initialize the network with a partial identity matrix. This is because when 𝑾1 = 𝑰∗,
span ({𝒛𝑙 (𝒙) |𝒙 ∈ R𝑛𝑥 }) is aligned with the standard basis, i.e., each vector in the
span at least has 𝑛ℎ − 𝑛𝑥 zero coefficients when expressed in the standard basis.
Thus, an element-wise nonlinearity can not increase the linear dimension of its
input beyond 𝑛𝑥 .

To break the alignment span ({𝒛𝑙 (𝒙) |𝒙 ∈ R𝑛𝑥 }) with the standard basis, we use the
Hadamard transform. This is because it transforms the subspace such that the new
basis is equally weakly aligned with the standard basis. We note that other linear
transforms may also detach the subspace from the standard basis, but the Hadamard
transform is the most natural choice.

4.4 ZerO Initialization
The initialization analyzed in 3 of Theorem 4.3.3 is based on a network condition
in which all hidden spaces 𝒛1, ..., 𝒛𝐿−1 have the same dimension 𝑛ℎ. Motivated
by our theoretical understanding, we propose ZerO initialization, which initializes
the weights of any network with arbitrary hidden dimensions. As described in
Algorithm 4, ZerO only initializes dimensional-increasing layers with Hadamard
matrices to avoid the training degeneracy. Other layers are simply initialized by
(partial) identity matrices. We also rescale Hadamard matrices by a normalization
factor 2−(𝑚−1)/2, resulting in an orthonormal Hadamard transform.

We also apply ZerO to the well-developed ResNet architectures in He et al. (2016).
As shown in Algorithm 5, we apply ZerO to convolution in a similar way by consid-
ering the variation in channel dimensions. When 𝑲 is a 1x1 convolution, 𝑲 also can
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Algorithm 4 ZerO Initialization
Input: A neural network F with 𝐿 matrices 𝑾𝑙 ∈ R𝑃𝑙×𝑄𝑙 for 𝑙 in 1, ..., 𝐿. 𝑰∗ is
the partial identity matrix (see Definition 4.3.1). 𝑯𝑚 is the Hadamard matrix (see
Definition 4.3.2).
for 𝑙 = 1 to 𝐿 do

if 𝑃𝑙 = 𝑄𝑙 then
𝑾𝑙 ← 𝑰 {Identity mapping}

else if 𝑃𝑙 < 𝑄𝑙 then
𝑾𝑙 ← 𝑰∗ {Propagate the first 𝑃𝑙 dimensions}

else if 𝑃𝑙 > 𝑄𝑙 then
𝑚 ← ⌈log2(𝑃𝑙)⌉
𝑐 ← 2−(𝑚−1)/2

𝑾𝑙 ← 𝑐 𝑰∗𝑯𝑚 𝑰
∗ {Apply Hadamard matrix}

end if
end for

Algorithm 5 ZerO Initialization on Convolution
Input: Number of input channels 𝑐𝑖𝑛, number of output channels 𝑐𝑜𝑢𝑡 , odd kernel
size 𝑘
Output: A 𝑐𝑜𝑢𝑡 × 𝑐𝑖𝑛 × 𝑘 × 𝑘 convolutional kernel 𝑲
Initialize: 𝑛← ⌊𝑘/2⌋
if 𝑐𝑜𝑢𝑡 = 𝑐𝑖𝑛 then

𝑲 [:, :, 𝑛, 𝑛] ← 𝑰 {Identity mapping}
else if 𝑐𝑜𝑢𝑡 < 𝑐𝑖𝑛 then

𝑲 [:, :, 𝑛, 𝑛] ← 𝑰∗ {Propagate the first 𝑐𝑜𝑢𝑡 channels}
else if 𝑐𝑜𝑢𝑡 > 𝑐𝑖𝑛 then
𝑚 ← ⌈log2(𝑐𝑜𝑢𝑡)⌉
𝑐 ← 2−(𝑚−1)/2

𝑲 [:, :, 𝑛, 𝑛] ← 𝑐 𝑰∗𝑯𝑚 𝑰
∗ {Apply Hadamard matrix}

end if

be viewed a 𝑐𝑜𝑢𝑡 × 𝑐𝑖𝑛 matrix, which matches the initialization in Algorithm 4. We
note that Algorithm 5 can be applied to every convolution in ResNet, including the
first 3x3 convolution, 1x1 convolutions in spatial-downsampling skip connections,
and convolutions in basic block and bottleneck block.

To achieve dynamical isometry at initialization, we apply a common technique that
initializes the last convolution in each residual block as zero. This helps suppress
the signals from residual branches to stabilize signal propagations, as studied in
Zhang, Dauphin, and Ma (2019) and Bachlechner et al. (2021).

We also apply ZerO to networks with or without batch normalization. For ResNet
with batch normalization, we follow the standard practice to initialize the scale and
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Dataset Model Initialization Test Error (mean ± std)

CIFAR-10 ResNet-18 ZerO Init 5.13 ± 0.08
Kaiming Init 5.15 ± 0.13
Xavier Init 5.23 ± 0.16

ImageNet ResNet-50 ZerO Init 23.43 ± 0.04
Kaiming Init 23.46 ± 0.07
Xavier Init 23.65 ± 0.11

Table 4.1: Benchmarking ZerO on CIFAR-10 and ImageNet. We repeat each run
10 times with different random seeds.

bias in batch normalization as one and zero, respectively. For training without batch
normalization, we adopt a technique proposed by Zhang, Dauphin, and Ma (2019),
where the batch normalization is replaced by learnable scalar multipliers and biases.

4.5 Experiments
In this section, we empirically benchmark ZerO on CIFAR-10 and ImageNet
datasets, where we evaluate ResNet-18 on CIFAR-10 and ResNet-50 on ImageNet
(Krizhevsky, 2009; Deng et al., 2009). Both ResNet structures follow the design
from He et al. (2016), which includes batch normalization by default.

Hyperparameter settings. We find that ZerO can fully utilize the default hyper-
parameters, which include a learning rate of 0.1, a momentum of 0.9, and a weight
decay of 0.0001. In addition, we observe the learning rate warmup is essential for
ZerO to achieve a large maximal learning rate, as most of the weights start from the
exact zero. We warm up the learning rate with 5 and 10 epochs for ImageNet and
CIFAR-10, respectively.

We present our main results that compare different initialization schemes. For each
dataset, all experiments use the same hyperparameter settings by default. Each
experiment is repeated for ten runs with different random seeds. As shown in Table
4.1, ZerO achieves state-of-the-art accuracy on both datasets compared to other
random methods.

In addition, we compare ZerO with a broad range of related works on CIFAR-
10 using ResNet-18 and ResNet-50, including ReZerO (Bachlechner et al., 2021),
Fixup (Zhang, Dauphin, and Ma, 2019), SkipInit (De and Smith, 2020) and ConstNet
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(Blumenfeld, Gilboa, and Soudry, 2020). As shown in Table 4.2, ZerO consistently
achieves top performance compared to other methods.

We note that the ConstNet proposed by Blumenfeld, Gilboa, and Soudry (2020) is
also a deterministic initialization. However, unlike ZerO which preserves feature
diversity, ConstNet is designed to eliminate the diversity by averaging the features
through layers. The feature symmetric problem in ConstNet causes significant
degradation, and additional random noise (e.g., non-deterministic GPU operation
and dropout) is needed to break the symmetry.

Method ZerO ReZero Fixup SkipInit ConstNet ConstNet*

ResNet-18 5.13 5.20 5.17 5.26 72.39 5.41
ResNet-50 4.53 4.72 4.51 4.63 71.58 4.88

Table 4.2: Compare ZerO with other initialization methods on CIFAR-10. Const-
Net* denotes ConstNet with non-deterministic GPU operations discussed in Blu-
menfeld, Gilboa, and Soudry (2020). Top-1 test error is reported.

Training ultra deep network without batch normalization Although there are
methods attempting to train networks without batch normalization (by achieving
dynamical isometry), they inevitably introduce random perturbations at initializa-
tion, affecting the training stability when the network is sufficiently deep (Zhang,
Dauphin, and Ma, 2019; De and Smith, 2020). We benchmark ZerO with state-of-
the-art methods on training without batch normalization. As shown in Figure 4.4
(left), compared to other methods, ZerO achieves the best training stability for
networks with even around 500 layers. It also matches the baseline where batch
normalization is enabled.

Improved reproducibility. In addition, as shown in Table 4.1, ZerO achieves the
lowest standard deviation over the repeated runs. On ImageNet, the gap between
ZerO and other methods is even more than 40%. Thus, removing the randomness
in the weight initialization improves reproducibility, with possible implications for
topics such as trustworthy machine learning and network interpretation.

ZerO on Transformer
We also apply ZerO to Transformer and evaluate it on WikiText-2 dataset (Vaswani
et al., 2017). In each Transformer layer, we use ZerO to initialize both multi-head
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Figure 4.4: Training extreme deep ResNet on CIFAR-10 over 15 epochs.

attention and feed-forward layers. Because the embedding size is fixed in the multi-
head attention, we initialize the projection matrix of queries 𝑾𝑄 as identity and the
projection matrices of keys and values 𝑾𝐾 ,𝑾𝑉 at zero. For the feed-forward layers,
we initialize the connection matrices according to their hidden dimensions using
Algorithm 4.

We train the Transformer models for 20 epochs with a single learning rate decay
at epoch 10 1. We also vary the number of layers in the model from 2 to 20. As
shown in Table 4.3, ZerO achieves similar performance compared to the standard
initialization. In addition, it has better training stability over deeper Transformer
models, which is consistent with our previous results on ResNet.

Number of layers 2 4 6 8 10 20

Standard 200.44 168.69 154.67 146.43 diverged diverged
ZerO 192.34 169.73 151.91 149.27 145.62 141.81

Table 4.3: Evaluate Transformer on WikiText-2. We vary the number of layers in
Transformer, where each layer consists of a multi-head attention and a feed-forward
layer. Test perplexity is reported (lower is better).

4.6 Low-Rank Learning Trajectory
Although ZerO and random initialization achieve similar test accuracies, their train-
ing trajectories differ significantly. In contrast to random initialization, which begins
optimization from a complex network (i.e., full-rank weight matrices, as shown in

1We use a transformer architecture (provided by the link here) that was smaller than the trans-
formers typically used for this task, explaining the general degradation of the results.

https://github.com/pytorch/examples/tree/main/word_language_model
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Figure 4.5: Low-rank training trajectories in ResNet-18 on CIFAR-10 (top row) and ResNet-
50 on ImageNet (bottom row). We visualize trajectories of the first convolutions in second,
third, and fourth groups of residual blocks in ResNet.

Figure 4.3), ZerO starts the training from a "simple" network and gradually increases
its complexity.

To show the difference in practice, we track the ranks of convolutional kernels in
ResNets during training, where the rank of each kernel can reflect its complexity.
We measure the stable rank, which is defined as

∥𝑾∥2𝐹 /∥𝑾∥22 =

𝑘∑︁
𝑖=1

𝜎2
𝑖 (𝑾)/𝜎2

𝑚𝑎𝑥 (𝑾),

for any matrix 𝑾 with k singular values 𝜎𝑖. The stable rank is a soft version of
the operator rank, and unlike the operator rank, it is insensitive to small singular
values. We compare the stable ranks of various kernels between ZerO and random
initialization during training. As shown in Figure 4.5, in contrast to random methods
that begin with extremely high stable ranks, ZerO starts with low stable ranks and
gradually increases them during training.

We believe ZerO’s learning trajectory is the first demonstration of greedy low-rank
learning (GLRL) in large-scale deep learning applications. GLRL is a theoretical
characterization of gradient descent, such that: when matrices are initialized with
infinitesimal values, gradient descent performs a rank-constrained optimization and
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greedily relaxes the rank restriction by one whenever it fails to reach a minimizer
(Li, Luo, and Lyu, 2021; Razin, Maman, and Cohen, 2021).

For example, when a matrix is initialized sufficiently small (where its rank is approx-
imately zero), gradient descent first searches the solution over all rank-one matrices.
If it fails to find a minimizer, it will relax the rank constraint by one and search again
over all rank-two matrices. The search is stopped at rank-𝑛 if it finds a minimizer
among all rank-𝑛 matrices.

GLRL suggests that gradient descent implicitly biases the model towards simple
solutions by searching through the solution space in an incremental order of the
matrix rank. This helps to explain the excellent generalization in gradient-based
deep learning, as it converges to a global (or local) minima with the minimum rank.

Although the previous works have proved the existence of GLRL trajectory, it has
never been observed in practice due to its impractical requirement of infinitesimal
initialization. ZerO’s learning trajectory we observed suggests that GLRL not
only exists under infinitesimal initialization, but also under initialization around the
identity. If a matrix 𝑾 is initialized as 𝑰, the low-rank structure is actually inside its
residual component: 𝑾′

𝑙
= 𝑾𝑙 − 𝑰. To be noted, every convolutional kernel conv(𝑥)

we measured in Figure 4.5 can be viewed as the residual component of conv(𝑥) + 𝑰,
where the skip connection is included.

Figure 4.5 also suggests that the kernels never reach their maximal stable ranks
during training under ZerO initialization. This implies that the searching over the
space of full-rank weight matrices may be unnecessary, suggesting new avenues
towards improved computational efficiency. We hope to explore this direction in
future work.

We also observe that ZerO-based networks converge to low-complexity solutions.
As shown in both Figure 4.5 and 4.6 (left), the convolutional kernels trained by
ZerO usually have lower ranks than the kernels trained by random initialization.
We further measure model complexity through both network pruning and low-rank
approximation.

For network pruning, we use a standard magnitude-based pruning that prunes a
portion of weights with the lowest magnitudes in each layer (Frankle and Carbin,
2019). For low-rank approximation, we apply Tucker-2 decomposition over channel
dimensions in convolutions to select the most significant components (Kim et al.,
2016).
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As shown in Figure 4.6, compared to randomly initialized networks, the sub-
networks obtained in trained ZerO-initialized networks achieve 25% higher sparsity
or 30% lower (matrix or tensor) rank without sacrificing accuracy. This suggests
ZerO encourages the networks to converge to low-complexity solutions, which im-
proves the computational efficiency for inference.
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Figure 4.6: Left: comparing kernel rank in ResNet-18 trained by ZerO and Kaiming
methods. Middle: a magnitude-based network pruning on ResNet-18. Right: a Tucker-2
decomposition for a particular convolution with 512 channels in ResNet-18.

4.7 Conclusion
In this work, we propose a simple and fully deterministic initialization called ZerO.
Extensive experiments demonstrate that ZerO achieves state-of-the-art performance,
suggesting that random weight initialization may not be necessary for initializing
deep neural networks. ZerO has many benefits, such as training ultra deep networks
(without batch-normalization), exhibiting low-rank learning trajectories that result
in low-rank and sparse solutions, and improving training reproducibility.

We believe that ZerO opens up many new possibilities given its various benefits. It
can be applied to networks and tasks sensitive to the variances in weight initializa-
tion. Its low-rank learning trajectories enable the development of rank-constrained
training methods that improve computational efficiency. Finally, the improved train-
ing reproducibility can aid model interpretability. We hope our results will inspire
other researchers to consider deterministic initialization schemes and to rethink the
role of weight initialization in training deep neural networks.
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C h a p t e r 5

LNS-MADAM: LOW-PRECISION TRAINING IN
LOGARITHMIC NUMBER SYSTEM USING MULTIPLICATIVE

WEIGHT UPDATE

5.1 Introduction
Deep neural networks (DNNs) have shown impressive performance in many appli-
cations, including image classification and language processing. However, training
and deploying DNNs typically incurs significant computation and energy costs.
Traditionally, values in neural networks are represented using floating-point (32-bit)
numbers, which incur a large arithmetic and memory footprint, and hence significant
energy consumption. However, recent studies suggest that high-precision number
formats are redundant, and models can be quantized in low-precision with little loss
in accuracy (Gupta et al., 2015; N. Wang et al., 2018). Low-precision numbers only
require low-bitwidth computational units, leading to better computational efficiency
and less required memory bandwidth and capacity.

While low-precision training methods generally reduce computational costs, energy
efficiency can be further improved by choosing a logarithmic number system (LNS)
for representing numbers. LNS achieves a higher computational efficiency by trans-
forming expensive multiplication operations in the network layers to inexpensive
additions in their logarithmic representations. In addition, it attains a wide dynamic
range and can provide a good approximation of the non-uniform weight distribution
in neural networks. Thus LNS is an excellent candidate for training DNNs in low-
precision (Frankle and Carbin, 2019; Bartol et al., 2015; Miyashita, Edward H. Lee,
and Murmann, 2016).

Although previous studies demonstrate that it is feasible to train networks in low-
precision using LNS, these approaches have not yet shown promising results on
larger datasets and state-of-the-art models (Miyashita, Edward H. Lee, and Mur-
mann, 2016; Sun, N. Wang, et al., 2020). Standard LNS fixes the base of the
logarithm, termed log-base, to be precisely two. However, a more flexible log-base
is needed since the numbers in DNNs require different quantization gaps during
training (Vogel et al., 2018). A flexible log-base can introduce additional hardware
overhead due to expensive conversion operations between the logarithmic and inte-
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Figure 5.1: Illustration for updating weights using Gradient Descent (GD) and
Madam under logarithmic representation. Each coordinate represents a number
stored in LNS. Assume the weights at two circles receive the same gradient. The
updates generated from GD are disregarded as the weights move larger, whereas the
updates generated by Madam are adjusted with the weights.

ger (linear) formats. This motivates us to design a LNS that has a flexible choice of
the log-base while maximizing the efficiency of LNS-to-integer conversions.

Conventional low-precision training methods typically require high-precision copies
of weights and gradients during weight update to maintain optimization stability. In
fact, most recent studies even use a full-precision (FP32) copy of weights (Miyashita,
Edward H. Lee, and Murmann, 2016; Sun, N. Wang, et al., 2020). This introduces
additional energy costs and expensive FP32 arithmetic, which becomes prohibitive
especially in energy-constrained edge devices.

The high-precision requirement for weight updates is due to complex interactions
between learning algorithms and number systems, which has usually been ignored
in previous studies. For example, as illustrated in Fig. 5.1, updates generated by
stochastic gradient descent (SGD) are disregarded more frequently by LNS when the
weights become larger. This is because the quantization gap grows exponentially
as the weights become larger in LNS, which suggests that conventional learning
algorithms may not be suitable for LNS. Hence, in previous studies, high-precision
weight copies are required to avoid numerical instabilities (Miyashita, Edward H.
Lee, and Murmann, 2016; Vogel et al., 2018).

To directly update the weights in low-precision, we employ a learning algorithm
tailored to LNS. Recently, Bernstein et al. (Bernstein, J. Zhao, Meister, et al., 2020)
proposed the Madam optimizer based on multiplicative updates, which is equivalent
to updating weights additively in the logarithmic space. As illustrated in Fig. 5.1,
Madam generates larger magnitudes of the updates when the weights become larger,
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making it more suitable for a logarithmic weight representation. However, Bernstein
et al. (Bernstein, J. Zhao, Meister, et al., 2020) still employ full-precision training
with Madam without considering low-precision LNS.

In this work, we propose a co-designed low-precision training framework called
LNS-Madam in which we adopt LNS (with a more flexible log-base) for representing
DNNs and apply a modified Madam (tailored to LNS) to train these networks.
LNS-Madam reduces the precision requirements for all components of the training,
including forward and backward propagation, as well as weight updates.

Our contributions are summarized as follows:

1. We design a multi-base LNS where the log-base can be fractional powers of
two. The multi-base LNS accommodates the precision and range require-
ments of the training dynamics while being hardware-friendly. In addition,
we propose an approximation for the addition arithmetic in LNS to further
improve its energy efficiency.

2. We propose an efficient hardware implementation of LNS-Madam that ad-
dresses challenges in designing an efficient datapath for LNS computations,
including accumulation and conversion between logarithmic and integer for-
mats. We leverage this implementation to study the energy benefits of training
in LNS.

3. To achieve low-precision weight updates in LNS, we replace standard SGD
or Adam optimizers with our proposed optimizer based on Madam, which
directly updates the weights in the LNS. Through theoretical analysis and
empirical evaluations, we show that the proposed Madam optimizer achieves
significantly lower quantization error in LNS.

4. In our experiments, LNS-Madam achieves full-precision accuracy with 8 bit
representations on popular computer vision and natural language tasks while
reducing energy consumption by over 90%. The energy efficiency results for
training different models with various number formats are summarized in Fig.
5.2.
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Figure 5.2: Energy efficiency for training different models with various number
formats. The per-iteration energy consumption (mJ) is listed.

5.2 Related Works
Low-precision training
To achieve good accuracy at reduced precision, quantization-aware training (QAT)
is commonly applied to directly train the quantized model using straight-through
estimators (Bengio, Léonard, and Courville, 2013; S. Zhou et al., 2016; Rastegari
et al., 2016; A. Zhou et al., 2017; Jacob et al., 2018). To accelerate the training
phase, several studies suggest quantizing the gradients during backward propagation
(Banner et al., 2018; Sun, N. Wang, et al., 2020; N. Wang et al., 2018). To maintain
the fidelity of the gradient accumulation, some low-precision training methods
assume a full-precision copy for weights during the weight update (Banner et al.,
2018; Chen et al., 2020). Other studies reduce the precision for the weight update by
using high-precision gradient accumulator (Sakr and Shanbhag, 2019), stochastic
rounding (S. Wu et al., 2018; N. Wang et al., 2018) or additionally quantizing the
residual part of weights (Sun, Choi, et al., 2019; Sa et al., 2018). Cambricon-
Q accelerates the weight update from a hardware perspective by avoiding costly
data transferring in weight update (Y. Zhao et al., 2021). However, they mostly
apply SGD or Adam during the weight update without considering the relationship
between the precision of the weights and the underlying learning algorithms.

Logarithmic number system
Previous works demonstrate the effectiveness of using logarithmic representation
for DNNs (Miyashita, Edward H. Lee, and Murmann, 2016; E. H. Lee et al., 2017;
Jeff Johnson, 2018; J. Johnson, 2020). Furthermore, some studies suggest using
multiple levels of log-base to reduce the quantization error (Miyashita, Edward H.
Lee, and Murmann, 2016; Vogel et al., 2018). However, few of them address
the additional computational cost induced by this multi-base design nor scale the
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system to state-of-the-art neural networks for both training and inference. From the
perspective of hardware design, a few studies focus on improving the efficiency of
LNS by utilizing the significant cost reduction of multiplications (Saadat, Bokhari,
and Parameswaran, 2018; Saadat, Javaid, and Parameswaran, 2019; Saadat, Javaid,
Ignjatovic, et al., 2020; Jeff Johnson, 2018; J. Johnson, 2020).

Multiplicative weight update
Multiplicative algorithms, such as exponentiated gradient algorithm and Hedge al-
gorithm in AdaBoost framework (Kivinen and Warmuth, 1997; Freund and Schapire,
1997), have been well studied in the field of machine learning. In general, multi-
plicative updates are applied to problems where the optimization domain’s geometry
is described by relative entropy, such as probability distribution (Kivinen and War-
muth, 1997). Recently, (Bernstein, J. Zhao, Meister, et al., 2020) proposes an
optimizer Madam that focuses on optimization domains described by any relative
distance measure instead of only relative entropy. Madam shows great performance
in training large-scale neural networks. However, Madam requires full-precision
training without considering its connection to LNS-based low-precision training.

5.3 Hardware-friendly Multi-Base Logarithmic Number System
In this section, we introduce our multi-base logarithmic number system (LNS),
including the corresponding number representation and arithmetic operations.

We start with the mathematical formulation that we will use throughout this paper.
We assume that the DNN 𝐹 (·,𝑊) is composed of 𝐿 layers with learnable weights
𝑊 and input activations 𝑋 across the layers. L(𝑊) denotes the training loss. The
forward propagation is defined as: 𝑋𝑙 = 𝑓𝑙 (𝑋𝑙−1,𝑊𝑙), where 𝑙 ∈ [1, 𝐿] denotes layer
𝑙. ∇𝑋𝑙 =

𝜕L(𝑊)
𝜕𝑋𝑙

and ∇𝑊𝑙
=

𝜕L(𝑊)
𝜕𝑊𝑙

denote gradients with respect to input activations
and weights, respectively, at layer 𝑙. For a number system, we define B as the
bitwidth, 𝑥 as a number, and 𝑥𝑞 as the number in quantized format.

Multi-base Logarithmic Representation
Unlike prior work that uses exactly 2 as the base of the logarithmic representation,
we propose a multi-base logarithmic representation that allows the base to be two
with a fractional exponent, such that:

𝑥 = sign×2𝑥/𝛾 𝑥 = 0, 1, 2, ..., 2B−1 − 1,

where 𝑥 is an integer and 𝛾 is the base factor that controls the fractional exponent of
the base. 𝛾 controls the quantization gap, which is the distance between successive
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representable values within the number system. Previous work has already demon-
strated that logarithmic quantized neural networks achieve better performance when
relaxing 𝛾 from 1 to 2 (Miyashita, Edward H. Lee, and Murmann, 2016). We find
that further relaxation can help adapt to different models and datasets. Therefore
we generalize the base factor setting, enabling more flexibility in controlling the
quantization gap in order to more accurately approximate the training dynamics.
In addition, we specially restrict 𝛾 to be powers of 2 for hardware efficiency, as
described later.

Arithmetic Operations in LNS
One of the benefits of using LNS stems from the low computational cost of its
arithmetic operations. We use dot product operations as an example since they
are prevalent during training. Consider two vectors 𝒂 ∈ R𝑛 and 𝒃 ∈ R𝑛 that are
represented by their integer exponents 𝒂̃ and 𝒃̃ in LNS. A dot product operation
between them can be represented as follows:

𝒂𝑇 𝒃 =

𝑛∑︁
𝑖=1

sign𝑖 ×2𝒂𝑖/𝛾 × 2𝒃𝑖/𝛾

=

𝑛∑︁
𝑖=1

sign𝑖 ×2(𝒂𝑖+𝒃𝑖)/𝛾

=

𝑛∑︁
𝑖=1

sign𝑖 ×2𝑝𝑖/𝛾,

(5.1)

where sign𝑖 = 𝑠𝑖𝑔𝑛(𝒂𝑖) ⊕ 𝑠𝑖𝑔𝑛(𝒃𝑖). In this dot product operation, each element-wise
multiplication is computed as an addition between integer exponents, which signif-
icantly reduces the computational cost by requiring adders instead of multipliers.

While the multiplications are easy to compute in LNS, the accumulation is difficult
to compute efficiently as it requires first converting from logarithmic to integer
format and then performing the addition operation. The conversion between these
formats is generally expensive as it requires computing 2𝑝𝑖/𝛾 using polynomial
expansion. To overcome this challenge, we decompose the exponent 2𝑝𝑖/𝛾 into a
quotient component 𝑝𝑖𝑞 and and a remainder component 𝑝𝑖𝑟 as follows:

2𝑝𝑖/𝛾 = 2𝑝𝑖𝑞+𝑝𝑖𝑟/𝛾 = 2𝑝𝑖𝑞 · 2𝑝𝑖𝑟/𝛾 . (5.2)

With this decomposition, converting from LNS to integer requires only a table
lookup for 2𝑝𝑖𝑟/𝛾 followed by a shift for 2𝑝𝑖𝑞 . For the table lookup, we simply
maintain 𝛾 constants 2𝑖/𝛾 ∀𝑖 ∈ {0, 1, ..., 𝛾 − 1} and select the constant based on the
remainder 𝑝𝑖𝑟 . Note that because 𝛾 is restricted to be power of 2, the remainder can
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Figure 5.3: Illustration of LNS-Madam. Quantized training includes quantizing
weights𝑊 and activations 𝑋 in forward propagation, and weight gradients ∇𝑊 and
activation gradients ∇𝑋 in backward propagation. 𝑔𝑋 and 𝑔𝑊 denote the functions
to compute gradients. Quantized weight update applies a quantization function 𝑄𝑈
over weights after any learning algorithm 𝑈 updates them. The quantized weights
𝑊𝑈 are the actual numbers stored in the system.

be efficiently extracted from the least-significant bits (LSB) of the exponent while
the quotient can be extracted from the most-significant bits (MSB). Typically the
lookup table (LUT) requires 2B entries for storing all possible values.

Conversion Approximation
In addition to the exact conversion technique discussed above, we can further reduce
the cost of the LNS-to-integer conversion using a hybrid approximation method.
Our method is based on Mitchell approximation (Mitchell, 1962): 2𝑥/𝛾 ≈ (1+ 𝑥/𝛾),
where the logarithmic format can be efficiently approximated to the integer format
when 𝑥/𝛾 is small. Specifically, we further split the remainder into a LSB and a MSB
component. The value of the LSB is approximated using Mitchell approximation,
and the value of the MSB is performed with table lookup. This helps reduce the size
of the LUT. We present a detailed description of our approximation method in the
appendix. In addition, since the approximation serves as an additional non-linear
operation in neural networks, we find the approximated training does not damage
accuracy in practice.

5.4 Quantized Forward and Backward Propagation on LNS
In this section, we introduce how to apply multi-base LNS to quantized training, as
illustrated in Fig. 5.3.

To realize reduced precision for values and arithmetic during training, we define
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a logarithmic quantization function LogQuant : R → R, which quantizes a real
number into a sign and an integer exponent using a limited number of bits. LogQuant
is defined as follows:

LogQuant(𝑥) = 𝑠𝑖𝑔𝑛(𝑥) × 𝑠 × 2(𝑥/𝛾) , (5.3)

where 𝑥 = 𝑐𝑙𝑎𝑚𝑝( 𝑟𝑜𝑢𝑛𝑑 ( log2( |𝑥 |/𝑠) × 𝛾), 0, 2B−1 − 1), and 𝑠 ∈ R denotes a scale
factor. LogQuant first brings scaled numbers |𝑥 |/𝑠 into their logarithmic space,
magnifies them by the base factor 𝛾 and then performs rounding and clamping
functions to convert them into desired integer exponents 𝑥. The scale factor 𝑠
usually is shared within a group of numbers, and its value is assigned to match the
maximum number within the group.

We apply quantization-aware training (QAT) for quantizing weights and activations
during forward propagation. Each quantizer is associated with a STE to allow the
gradients to directly flow through the non-differentiable quantizer during backward
pass (Bengio, Léonard, and Courville, 2013). Because QAT views each quantiza-
tion function as an additional non-linear operation in the networks, the deterministic
quantization error introduced by any quantizer in the forward pass is implicitly
reduced through training. We define weight quantization function as QW and acti-
vation quantization function as QA for each layer during forward propagation, where
𝑊
𝑞

𝑙
= QW (𝑊𝑙) and 𝑋𝑞

𝑙
= QA

(
𝑓𝑙

(
𝑋
𝑞

𝑙−1,𝑊
𝑞

𝑙

))
.

In order to accelerate training in addition to inference, gradients also need to be
quantized into low-precision numbers. As shown by recent studies, the distribution
of gradients resembles a Gaussian or Log-Normal distribution (Chmiel et al., 2021;
Bernstein, J. Zhao, Azizzadenesheli, et al., 2019). This suggests that logarithmic
representation may be more suitable than fixed-point representations when quan-
tizing gradients to attain hardware efficiency. We quantize the activation gradients
using quantization function QE: ∇𝑞

𝑋𝑙
= QE

(
∇𝑋𝑙

)
. We also quantize the weight

gradients using quantization function QG: ∇𝑞
𝑊𝑙

= QG
(
∇𝑊𝑙

)
. In this work, we aim to

reduce the precision requirement for both weight gradients and activation gradients
in the backward pass.

5.5 Multiplicative Weight Update Algorithm for LNS
Although logarithmic quantized training significantly improves training efficiency,
its overall efficiency continues to be hampered by the high precision requirement
of weight updates. We note that quantized weight update is orthogonal to quan-
tized training due to the difference in their objectives. Quantized training tries to



69

maintain the fidelity of weight gradients while accelerating forward and backward
propagation. This provides accurate gradient information for the weight update.
On the other hand, after receiving quantized weight gradients, quantized weight
update aims to reduce gaps between updated weights and their (rounded) quantized
counterparts. Fig. 5.3 distinguishes the two parts by different colors.

Previous works generally assume that the weight update is computed over a full-
precision weight space. In other words, a full-precision copy of weights is main-
tained (Miyashita, Edward H. Lee, and Murmann, 2016; Vogel et al., 2018) and very
little rounding follows weight update. However, this offsets the efficiency benefits
of quantized training and requires expensive floating-point arithmetic not available
especially in cheap energy-constrained edge devices. Therefore, in this work, we
consider quantized weight update in LNS, where the weights are updated over a
discrete logarithmic space instead of a full-precision one. We aim to minimize the
rounding error given that weights are represented in LNS.

Quantized Weight Update
To better understand this problem, we first define a generalized form of a weight
update as: 𝑊𝑡+1 = 𝑈

(
𝑊𝑡 ,∇𝑊𝑡

)
, where 𝑈 represents any learning algorithm. For

example, gradient descent (GD) algorithm takes 𝑈𝐺𝐷 = 𝑊𝑡 − 𝜂 ∇𝑊𝑡
, where 𝜂 is

learning rate.

Because the weights need to be represented in a quantized format in LNS, it is
necessary to consider the effect of logarithmic quantization during weight update.
We define logarithmic quantized weight update as follows:

𝑊𝑈
𝑡+1 = LogQuant

(
𝑈

(
𝑊𝑡 ,∇𝑊𝑡

) )
. (5.4)

In this case, 𝑊𝑈
𝑡+1 can be directly stored in a logarithmic format without using

floating-point data type. For simplicity, we assume weight gradients ∇𝑊𝑡
are exact

as quantized training is orthogonal to this problem. Switching to the approximated
gradient estimates will not affect our theoretical results.

Quantization Error Analysis
Because the logarithmic quantization requires representing values in a discrete log-
arithmic scale, quantized weight update inevitably introduces a mismatch between
the quantized weights and their full-precision counterparts. To preserve the reliabil-
ity of the optimization, we aim to reduce the quantization error (i.e., the mismatch).
For the following, we take a theoretical perspective to discuss how different learning
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Figure 5.4: Quantization error from different learning algorithms on ImageNet.
The errors are averaged over all iterations in the first epoch. The results suggest
that multiplicative algorithms introduce significantly lower errors compared to the
gradient descent, which are also in line with our theoretical results.

algorithms affect the quantization error under LNS.

Due to the logarithmic structure, we focus on minimizing a quantizaion error 𝑟𝑡 =
∥log2 |𝑊𝑈

𝑡+1 | − log2 |𝑊𝑡+1 |∥2, which measures the L2 norm of the difference between
the weights and their quantized counterparts in logarithmic space. Because 𝑟𝑡
quantify the relative difference between |𝑊𝑈

𝑡+1 | and |𝑊𝑡+1 |, minimizing 𝑟𝑡 is largely
similar to minimizing the relative quantization error ∥(𝑊𝑡+1 −𝑊𝑈

𝑡+1)/𝑊𝑡+1∥2.

We assume a simplified logarithmic quantization where the scale factor and the
clamping function are ignored. This ensures our focus is on the effect of the
quantization gap determined by 𝛾 instead of the dynamic range. We also replace the
deterministic rounding with a stochastic counterpart 𝑆𝑅 where ESR(𝑥) = 𝑥 for any
real number. Although 𝑆𝑅 helps us establish the theoretical results, in practice 𝑆𝑅
requires random generators that induce additional costs, and thus are not suitable
for energy-efficient training.

Given everything we need, we use gradient descent as an example to discuss why tra-
ditional learning algorithms are not suited for LNS-based quantized weight updates.
The theorem is stated as follows:

Theorem 5.5.1 The quantization error 𝑟𝑡,𝐺𝐷 introduced by logarithmic quantized
gradient descent at iteration 𝑡 can be bounded in expectation, as:

E 𝑟𝑡,𝐺𝐷 ≤
√
𝑑

𝛾
∥log2

(
|𝑊𝑡 | − 𝜂1∇𝑊𝑡

)
∥, (5.5)

where d is the dimension of𝑊 and 𝜂1 is the learning rate of𝑈𝐺𝐷 .

Theorem 5.5.1 suggests that 𝑟𝑡,𝐺𝐷 is magnified when the magnitudes of weights
become larger. This is because the updates 𝜂1∇𝑊𝑡

generated by GD are not pro-
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portional to the magnitudes of weights. 𝜂1∇𝑊𝑡
can be orders of magnitude smaller

than the quantization gaps as weights become larger, and thus these updates often
are disregarded by quantization function LogQuant. We intuitively illustrate this
problem in Fig. 5.1.

To ensure the updates are proportional to the weights, a straightforward way is to
update the weights multiplicatively. Because the weights are represented in LNS, we
further consider a special multiplicative learning algorithm tailored to LNS, which
updates the weights directly over their logarithmic space:

𝑈𝑀𝑈𝐿 = 𝑠𝑖𝑔𝑛(𝑊𝑡) ⊙ 2𝑊̃𝑡−𝜂 ∇𝑊𝑡 ⊙𝑠𝑖𝑔𝑛(𝑊𝑡 ) (5.6)

where 𝑊̃𝑡 = log2 |𝑊𝑡 | are the exponents of the magnitude of weights, and ⊙ denotes
element-wise multiplication. 𝑈𝑀𝑈𝐿 makes sure the magnitude of each element
𝑊𝑡 (𝑘) of the weights decreases when the sign 𝑠𝑖𝑔𝑛(𝑊𝑡 (𝑘)) and ∇𝑊𝑡 (𝑘) agree and
increases otherwise. The quantization error with regards to 𝑈𝑀𝑈𝐿 is stated as
follows:

Theorem 5.5.2 The quantization error 𝑟𝑡,𝑀𝑈𝐿 introduced by logarithmic quantized
multiplicative weight update at iteration 𝑡 can be bounded in expectation, as:

E 𝑟𝑡,𝑀𝑈𝐿 ≤
√
𝑑 𝜂2
𝛾
∥∇𝑊𝑡

∥, (5.7)

where d is the dimension of𝑊 and 𝜂2 is the learning rate of𝑈𝑀𝑈𝐿 .

Theorem 5.5.2 indicates that 𝑟𝑡,𝑀𝑈𝐿 does not depend on the magnitudes of weights,
and thus the quantization error is not magnified when the weights become larger.
This is in stark contrast to the quantization error from gradient descent shown in
Equation 5.5. The comparison is illustrated in Fig. 5.1.

Interestingly, we find that the quantization error 𝑟𝑡,𝑀𝑈𝐿 can be further simplified by
regularizing the information of gradients for the learning algorithm𝑈𝑀𝑈𝐿:

Lemma 5.5.3 Assume the multiplicative learning algorithm 𝑈𝑀𝑈𝐿 only receives
the sign information of gradients where 𝑈𝑀𝑈𝐿 = 𝑊̃𝑡 − 𝜂2 𝑠𝑖𝑔𝑛(∇𝑊𝑡

) ⊙ 𝑠𝑖𝑔𝑛(𝑊𝑡).
The upper bound on quantization error 𝑟𝑡,𝑀𝑈𝐿 becomes:

E 𝑟𝑡,𝑀𝑈𝐿 ≤
𝑑 𝜂2
𝛾
. (5.8)

The result in Lemma 5.5.3 suggests that 𝑟𝑡,𝑀𝑈𝐿 can be independent of both weights
and gradients when only taking sign information of gradients during weight update.
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We denote this special learning algorithm as𝑈𝑠𝑖𝑔𝑛𝑀𝑈𝐿 . 𝑈𝑠𝑖𝑔𝑛𝑀𝑈𝐿 is a multiplicative
version of signSGD, which has been studied widely (Bernstein, J. Zhao, Azizzade-
nesheli, et al., 2019; Bernstein, Y.-X. Wang, et al., 2018).

To verify our theoretical results, we empirically measure the quantization errors
for the three aforementioned learning algorithms over a range of 𝜂 and 𝛾. As
shown in Fig. 5.4, the empirical findings are in line with our theoretical results.
Although all learning algorithms introduce less errors when 𝜂 and 𝛾 become smaller,
the multiplicative algorithms introduce significantly lower errors compared to the
gradient descent.

In addition to reducing the quantization error in the quantized weight update,
𝑈𝑠𝑖𝑔𝑛𝑀𝑈𝐿 must also have the ability to minimize the loss function L(𝑊). Inter-
estingly, we notice that𝑈𝑠𝑖𝑔𝑛𝑀𝑈𝐿 resembles a recently proposed learning algorithm
Madam, where Bernstein et al. (Bernstein, J. Zhao, Meister, et al., 2020) proves that
Madam optimizes the weights in a descent direction. Madam updates the weights
multiplicatively using normalized gradients:

𝑈Madam = 𝑊𝑡 ⊙ 𝑒−𝜂 𝑠𝑖𝑔𝑛(𝑊𝑡 )⊙ 𝑔∗𝑡

𝑔∗𝑡 = 𝑔𝑡/
√
𝑔2𝑡 ,

(5.9)

where 𝑔𝑡 represents the gradient vector ∇𝑊𝑡
, and 𝑔∗𝑡 denote a normalized gradient,

which is the fraction between 𝑔𝑡 and the square root of its second moment estimate
√
𝑔2𝑡 . Bernstein et al. (Bernstein, J. Zhao, Meister, et al., 2020) demonstrates that

Madam achieves state-of-the-art accuracy over multiple tasks with a relatively fixed
learning rate 𝜂. They also theoretically prove the descent property of Madam that
ensures its convergence. Although Bernstein et al. (Bernstein, J. Zhao, Meister,
et al., 2020) further shows the possibility of applying Madam over a discrete loga-
rithmic weight space, they still employ full-precision training without considering
low-precision LNS.

To ensure low-precision weight updates in LNS, we apply a modified version of
the Madam optimizer to enable fast convergence while preserving low quantization
error. The modified Madam directly optimizes the weights over their base-2 loga-
rithmic space using the gradient normalization technique described in Equation 5.9.
Details of our optimizer are shown in Algorithm 6. Because our Madam optimizer
directly updates base-2 exponents of weights in LNS, there is no need for integer-to-
LNS conversion during weight update when the weights are already in LNS, further
reducing the energy cost.
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Algorithm 6 Madam optimizer on LNS
Require: Base-2 weight exponents 𝑊̃ , where 𝑊̃ = log2(𝑊), learning rate 𝜂,
momentum 𝛽

Initialize 𝑔2 ← 0
repeat
𝑔 ← StochasticGradient()
𝑔2 ← (1 − 𝛽)𝑔2 + 𝛽𝑔2
𝑔∗ ← 𝑔/√𝑔2
𝑊̃ ← 𝑊̃ − 𝜂 𝑔∗ ⊙ 𝑠𝑖𝑔𝑛(𝑊)

until converged

5.6 Hardware Implementation
We extend a previously optimized DNN accelerator (Venkatesan et al., 2019) to
support LNS-based DNN computations. Fig. 5.5 shows the micro-architecture of
the PE which performs dot-product operations. Each PE consists of set of vector
MAC units fed by the buffers that store weights, input activations, and output
gradients. Additionally, the accumulation collectors store and accumulate partial
sums which are passed to the PPU for post-processing (e.g., quantization scaling,
non-linear activation functions) if necessary.

Fig. 5.6 shows the LNS-based datapath inside the LNS-Madam Vector MAC Unit.
Here we model exact LNS-to-integer conversion without any approximation. With
a vector size of 32 and input bitwidths of 8, the datapath processes 32 7-bit exponent
values at each of its exponent inputs (𝑒𝑎 and 𝑒𝑏) and 32 1-bit sign values (𝑠𝑎 and 𝑠𝑏)
at each of its sign inputs to produce a 24-bit partial sum. First, the LNS datapath
performs the dot-product multiplication by adding the exponents and XOR-ing the
sign bits. The output of the product computation requires an additional bit to account
for the carry-out of the adder. At this point, each exponent is split into a quotient
component (𝑒𝑞) and a remainder component (𝑒𝑟) based on the LSB/MSB property
mentioned in Section 5.3. Second, the datapath performs shifting by the quotient
to implement the quotient component in Equation 5.2. Depending on the sign bit,
the corresponding signed shifted value is selected and passed to the corresponding
adder tree based on the remainder select signal. Third, the result of shifted values
are reduced through the set of adder trees and registered. At last, the results of
the adder trees are multiplied with corresponding remainder constants (described in
Section 5.3) from a LUT and accumulated into the final partial sum, represented in
integer (linear) format. This partial sum needs to be converted back into logarithmic
format and written back to the global buffer for subsequent LNS-based computations.
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Figure 5.5: LNS-Madam processing element (PE).

Additional microarchitectural details of the PE are listed in Table 5.6. Notably, our
accelerator uses a multi-level dataflow called output-stationary local-A-stationary(Venkatesan
et al., 2019) to optimize reuse across different operands. Inputs from buffer A are
read out once every 16 cycles and stored in a register for temporal reuse. Inputs from
buffer B are read once every cycle and reused across the 32 lanes spatially. Partial
sums are temporally accumulated in a 16-entry latch array collector before sending
the completed sum to the post-processing unit. The two buffers in the PE store
different data depending on whether output activation, input gradient, or weight
gradient is being computed. For example, weights and input activations are stored
in BufferA and BufferB respectively during forward propagation to compute the
output activations. On the other hand, input activations and output gradients are
stored in the respective buffers during backward propagation to compute the weight
gradient. Table 5.2 outlines how we map various tensors in DNN computation
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of input values; B refers to base factor and number of remainder bins.

to buffers in our hardware during different computation passes. Note that weight
updates are performed outside of the PEs through the global buffer.

Table 5.1: Microarchitectural details of LNS-Madam PE

Dataflow Multi-level
Vector size / # Vector lanes 32
Weight/activation precision 8-bit

Gradient precision 8-bit
# Remainder Bins 8

Accumulation precision 24-bit
Accumulation collector size 1.5 KB

BufferA size 128 KB
BufferB size 8 KB

5.7 Experiments
In this section, we evaluate both the accuracy and energy efficiency of using LNS-
Madam to train state-of-the-art models on large-scale datasets.

Model Accuracy
To evaluate accuracy, we simulate LNS-Madam using a PyTorch-based neural net-
work quantization library that implements a set of common neural network layers
(e.g., convolution, fully-connected) for training and inference in both full and quan-
tized modes (H. Wu et al., 2020). The baseline library supports integer quantization
in a fixed-point number system, and we further extend it to support LNS. The li-
brary also provides utilities for scaling values to the representable integer range of
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Table 5.2: Mapping of tensors to buffers in PE during dif-
ferent computation passes1

Pass BufferA BufferB
Forward Weight Input Activation

Backward (Input) Weight Output Gradient
Backward (Weight) Input Activation Output Gradient

1 Backward pass consists of backward computation for input
gradient, denoted Backward(Input), and backward com-
putation for weight gradient, denoted Backward(Weight).

Table 5.3: Base Factor Selection on ImageNet1,2

𝛾 Dynamic Range Forward Backward
1 (0,127) NaN NaN
2 (0,63.5) 75.81 75.79
4 (0,31.8) 75.96 76.07
8 (0,15.9) 75.88 76.23

16 (0,7.9) 76.32 63.67
32 (0,4.0) 68.15 20.71

1 Bitwidth is 8-bit across settings. Quant Forward or Quant
Backward denotes the settings where either forward propa-
gation or backward propagation is quantized while leaving
the rest of computation in full-precision.
2 The results of test accuracy (%) are listed.

the specific number format. With this library, a typical quantized layer consists of
a conventional layer implemented in floating-point preceded by a weight quantizer
and an input quantizer that converts the weights and inputs of the layer to the desired
quantized format. For the backward pass, after the gradients pass through the STE
in each quantizer, they will be quantized by their quantizers as well.

We benchmark LNS-Madam on various tasks including ResNet models on CIFAR-
10 and ImageNet, and BERT-base and BERT-large language models on SQuAD
and GLUE. Specifically, we train ResNet models from scratch on CIFAR-10 and
ImageNet, and fine-tune pre-trained BERT models on SQuAD and GLUE. Detailed
descriptions of datasets and models can be found in the appendix.
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Parameter Settings

We fix the bitwidth to be 8-bit for both forward and backward propagation, which
includes the bitwidth for weights, activations, activation gradients, and weight gra-
dients. We note that 8-bit weight gradients are lower than previous studies that
use 16-bit or even 32-bit weight gradients (Sun, N. Wang, et al., 2020; Miyashita,
Edward H. Lee, and Murmann, 2016).

To find an appropriate base factor 𝛾 under the 8-bit setting, we vary 𝛾 to find the
appropriate dynamic ranges for forward and backward qantization. The dynamic
range in LNS is (0, (2B−1 − 1)/𝛾), which is controlled by both bitwidth and base
factor.

As shown in Table 5.3, we fix the bitwidth as 8-bit and vary the base factor 𝛾 to find
the appropriate dynamic ranges for forward and backward quantization. According
to the results, we find the base factor of 8 with the dynamic range (0, 15.9) that
uniformly works across QW,QA,QE, and QG.

In order to maintain optimization stability, the bitwidth of the weight updates require
to be larger than the bitwidth of the weights. When the bitwidth of QU is larger than
8-bit, we increase its base factor to match the desired dynamic range (0, 15.9).

We empirically search the best learning rate 𝜂 for our Madam optimizer from 2−4

to 2−10, and we find 𝜂 = 2−7 works best uniformly across tasks, which suggests the
learning rate for Madam is robust.

16 15 14 13 12 11 10

Bitwidth B
90

92

94

96

T
es

t
A

cc
ur

ac
y

(%
)

CIFAR-10

16 15 14 13 12 11

Bitwidth B
50

60

70

80

T
es

t
A

cc
ur

ac
y

(%
)

ImageNet

16 15 14 13 12 11 10

Bitwidth B
60

70

80

90

T
es

t
F

1
S

co
re

(%
)

SQuAD

16 15 14 13 12 11 10

Bitwidth B
75

80

85

90

T
es

t
F

1
S

co
re

(%
)

GLUE

Madam

AdamW

SGD

Figure 5.7: Comparing Madam with SGD and Adam optimizers under the logarith-
mic quantized weight update (defined in Equation 5.4). The bitwidth of the weight
update 𝑄𝑈 is varied from 16-bit to 10-bit.

Comparisons

Given the settings above, we compare LNS-Madam with FP8 and FP32. For FP8
and FP32, the standard optimizers are applied for tasks by default. We use a tuned
SGD optimizer for CIFAR-10 and ImageNet datasets, and a tuned AdamW optimizer
for SQuAD and GLUE datasets. For all settings, we use per-channel scaling for
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Table 5.4: Benchmarking LNS-Madam on various datasets
and models1

Dataset Model LNS-Madam2 FP82 FP32
CIFAR-10 ResNet-18 93.41 93.12 93.51
ImageNet ResNet-50 76.14 75.83 76.38
SQuAD BERT-base 88.13 88.07 88.36
SQuAD BERT-large 90.75 90.54 90.80
GLUE BERT-base 88.89 88.73 88.92
GLUE BERT-large 89.24 88.91 89.35

1 The results of test accuracy (%) are listed.
2 Forward and backward propagation are in 8-bit, and the
weight update is in 16-bit.

Table 5.5: Comparing LNS-Madam with recent low-precision train-
ing methods on 8-bit training1

Data format 16-bit 32-bit
LNS-Madam LNS 76.14 76.23

BHQ Chen et al., 2020 INT 74.89 76.35
Unified INT8 Zhu et al., 2020 INT 74.73 76.27

FP8 N. Wang et al., 2018 FP 71.46 71.53
1 Evaluate ResNet-50 on ImageNet. Forward and backward prop-
agation are in 8-bit. Test accuracy (%) evaluated under 32-bit and
16-bit weight update are presented.

Table 5.6: Comparing LNS-Madam and BHQ over a range of
bitwidth1

4-bit 5-bit 6-bit 7-bit 8-bit
LNS-Madam 74.23 75.89 74.41 76.16 76.23

BHQ Chen et al., 2020 74.04 75.70 76.21 76.14 76.35
1 Bitwidth of activation gradients varies from 4-bit to 8-bit. The
results of test accuracy (%) are listed.

ResNet and per-feature scaling for BERT, both of which are commonly used scaling
techniques. The clamping function is performed by matching the largest value
within each group of numbers.
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To demonstrate LNS-Madam is better than popular number systems, we compare it
with both FP8 and FP32, where our FP8 contains 4-bit exponent and 3-bit mantissa.
As shown in Table 5.4, LNS-Madam yields better performance than FP8, and it even
achieves performance comparable to the full-precision counterpart.

In addition, we compare LNS-Madam with recent methods on low-precision train-
ing. For all methods, we fix forward and backward propagation in 8-bit while
varying the weight update precision from 32-bit to 16-bit. As shown in Table 5.5,
LNS-Madam achieves the best accuracy under 16-bit weight update, which demon-
strates its effectiveness under the quantized setting. FP8 (N. Wang et al., 2018) also
achieves negligible degradation after switching to 16-bit, as it applies stochastic
rounding over weight update process. Since BHQ (Chen et al., 2020) achieves the
best accuracy under 32-bit, we also compare it with LNS-Madam over a range of
bitwidth settings in Table 5.6.

We also compare Madam with the default optimizers SGD and AdamW under
logarithmic quantized weight update, as defined in Equation 5.4. All optimizers use
the same learning rates as above.

As shown in Fig. 5.7, we vary the bitwidth of the quantized weight update 𝑄𝑈
from 16-bit to 10-bit to test their performance over a wide range. The results
suggest compared to other optimizers, Madam always maintains higher accuracy
when precision is severely limited. Notably, for BERT model on SQuAD and GLUE
benchmarks, Madam is 20% better than Adam with respect to F-1 score, when the
weight update is in 10-bit. We observe large degradation for both Madam and SGD
on ImageNet training, and we believe this is because the weights in some layers
inevitably require higher precision settings. We leave it as future work to explore
LNS-Madam under a customized precision setting.

Table 5.7: Design tools used for LNS-Madam hardware experiments

HLS Compiler Mentor Graphics Catapult HLS
Verilog simulator Synopsys VCS
Logic synthesis Synopsys Design Compiler
Place-and-route Synopsys ICC2
Power Analysis Synopsys PT-PX
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Energy Efficiency
We leverage the hardware implementation described in Section 5.6 to evaluate the
energy efficiency of LNS-Madam. We code the hardware model in C++ and Verilog
and synthesize it to a combined cycle-accurate RTL using a commercial high-
level synthesis tool (McFarland, Parker, and Camposano, 1990). Once the RTL is
generated, a standard logic synthesis flow is used to obtain the gate-level netlist that is
then simulated with representative inputs. To extract energy consumption, we supply
the gate-level simulation results from post-synthesis to a standard power analysis
tool. We then use an analytical model to compute the total energy consumption for
different workloads. We perform our analysis in a sub-16nm state-of-the-art process
technology at 0.6V targeting a frequency of 1.05 GHz. Table 5.7 summarizes the
design tools used in the evaluation.

Table 5.8: Energy efficiency for different models and num-
ber formats1

Model LNS FP8 FP16 FP32
ResNet-18 0.54 1.22 2.50 5.99
ResNet-50 0.99 2.25 4.59 11.03
BERT-Base 7.99 18.23 37.21 89.35
BERT-Large 27.85 63.58 129.74 311.58

1 The per-iteration energy consumption in mJ are listed.
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Figure 5.10: Energy efficiency over a range of GPT models from 1 billion to 1 trillion
parameters. The models are scaled by a throughput efficient method proposed by
Narayanan et al. Narayanan et al., 2021.

In our experiment, the LNS-Madam hardware is designed with bitwidth B = 8
and base factor 𝛾 = 8 for both forward and backward computations. In addition
to experimenting with the LNS-based datapath shown in Fig. 5.6, we also consider
FP8, FP16, and FP32 datapath baselines for comparison.

Table 5.8 presents the energy efficiency per iteration of one forward pass and one
backward pass of training. Because different number systems share the same training
iterations, per-iteration energy results imply the energy comparison over the entire
training. We also present the energy breakdown of the whole PE in Figure 5.8.
As shown in the figure, FP arithmetic is extremely expensive, contributing a large
fraction to the total energy consumption of PEs. The proposed LNS datapath offers
significant reduction in the logic complexity, leading to 2.2X, 4.6X, and 11X energy
efficiency improvements over FP8, FP16, and FP32 implementations, respectively.
We also provide a detailed energy breakdown showing different components of the
LNS PE in Fig. 5.9. In addition, Fig. 5.10 shows the energy efficiency over a range
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of GPT models from 1 billion to 1 trillion parameters.

5.8 Conclusions
In this work, we propose a co-designed low-precision training framework LNS-
Madam that jointly considers the logarithmic number system and the multiplicative
weight update algorithm. Experimental results show that LNS-Madam achieves
comparable accuracy to full-precision counterparts even when forward and back-
ward propagation, and weight updates are all in low-precision. To support the
training framework in practice, we design a hardware implementation of LNS-
Madam to efficiently perform the necessary LNS computations for DNN training.
Based on our energy analysis, LNS-Madam reduces energy consumption by over
90% compared to a floating-point baseline.

An important application of our low-precision training framework is learning neural
networks over energy-constrained edge devices. This is fundamental for intelli-
gent edge devices to easily adapt to changing and non-stationary environments by
learning on-device and on-the-fly. By enabling highly energy-efficient training, our
work carries the promising opportunity for using LNS-based hardware to conduct
environmental-friendly deep learning research in the near future.
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A p p e n d i x A

APPENDIX - CHAPTER 2

A.1 Additional Related Works
Adafactor (Shazeer and Stern, 2018) achieves sub-linear memory cost by factorizing
the second-order statistics by a row-column outer product. GaLore shares similar-
ities with Adafactor in terms of utilizing low-rank factorization to reduce memory
cost, but GaLore focuses on the low-rank structure of the gradients, while Adafactor
focuses on the low-rank structure of the second-order statistics.

GaLore can reduce the memory cost for both first-order and second-order statistics,
and can be combined with Adafactor to achieve further memory reduction. In
contrast to the previous memory-efficient optimization methods, GaLore operates
independently as the optimizers directly receive the low-rank gradients without
knowing their full-rank counterparts.

The fused backward operation proposed by LOMO (Lv, Yang, et al., 2023) mitigates
the memory cost of storing weight gradients during training. Integrated with the
standard SGD optimizer, LOMO achieves zero optimizer and gradient memory
cost during training. AdaLOMO (Lv, Yan, et al., 2023) enhances this approach
by combining the fused backward operation with adaptive learning rate for each
parameter, similarly achieving minimal optimizer memory cost.

While LOMO and AdaLOMO represent significant advancements in memory-
efficient optimization for fine-tuning or continual pre-training, they might not be
directly applicable to pre-training from scratch at larger scales. For example, the
vanilla Adafactor, adopted by AdaLOMO, has been demonstrated to lead to in-
creased training instabilities at larger scales (Rae et al., 2021; Chowdhery et al.,
2023; Wortsman et al., 2023; Zhai et al., 2022). We believe integrating GaLore
with the fused backward operation may offer a promising avenue for achieving
memory-efficient large-scale pre-training from scratch.

A.2 Proofs
Reversibility
Definition A.2.1 (Reversiblity Tian, Yu, et al., 2020) A network N that maps in-
put 𝒙 to output 𝒚 = N(𝒙) is reversible, if there exists 𝐿 (𝒙;𝑊) so that 𝒚 = 𝐿 (𝒙;𝑊)𝒙,
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and the backpropagated gradient 𝒈𝒙 satisfies 𝒈𝒙 = 𝐿⊤(𝒙;𝑊)𝒈𝒚, where 𝒈𝒚 is the
backpropagated gradient at the output 𝒚. Here 𝐿 (𝒙;𝑊) depends on the input 𝒙 and
weight𝑊 in the network N .

Note that many layers are reversible, including linear layer (without bias), reversible
activations (e.g., ReLU, leaky ReLU, polynomials, etc). Furthermore, they can be
combined to construct more complicated architectures:

Property 1 If N1 and N2 are reversible networks, then (Parallel) 𝒚 = 𝛼1N1(𝒙) +
𝛼2N2(𝒙) is reversible for constants 𝛼1 and 𝛼2, and (Composition) 𝒚 = N2(N1(𝒙))
is reversible.

From this property, it is clear that ResNet architecture 𝒙 + N(𝒙) is reversible, if N
contains bias-free linear layers and reversible activations, which is often the case
in practice. For a detailed analysis, please check Appendix A in Tian, Yu, et al.,
2020. For architectures like self-attention, one possibility is to leverage JoMA Tian,
Wang, et al., 2024 to analyze, and we leave for future work.

The gradient of chained reversible networks has the following structure:

Theorem 2.3.2 (Gradient Form of reversible models) Consider a chained reversible
neural network N(𝒙) := N𝐿 (N𝐿−1(. . .N1(𝒙))) and define 𝐽𝑙 := Jacobian(N𝐿) . . .
Jacobian(N𝑙+1) and 𝒇𝑙 := N𝑙 (. . .N1(𝒙)). Then the weight matrix 𝑊𝑙 at layer 𝑙 has
gradient 𝐺 𝑙 in the following form for batch size 1:

(a) For ℓ2-objective 𝜑 := 1
2 ∥𝒚 − 𝒇𝐿 ∥22:

𝐺 𝑙 =
(
𝐽⊤𝑙 𝒚 − 𝐽

⊤
𝑙 𝐽𝑙𝑊𝑙 𝒇𝑙−1

)
𝒇⊤𝑙−1, (2.6)

(b) Left 𝑃⊥1 := 𝐼 − 1
𝐾

11⊤ be the zero-mean PSD projection matrix. For 𝐾-way
logsoftmax loss 𝜑(𝒚; 𝒇𝐿) := − log

(
exp(𝒚⊤ 𝒇𝐿)
1⊤ exp( 𝒇𝐿)

)
with small logits ∥𝑃⊥1 𝒇𝐿 ∥∞ ≪

√
𝐾:

𝐺 𝑙 =

(
𝐽𝑙𝑃
⊥
1 𝒚 − 𝛾𝐾

−1𝐽⊤𝑙 𝑃
⊥
1 𝐽𝑙𝑊𝑙 𝒇𝑙−1

)
𝒇⊤𝑙−1, (2.7)

where 𝛾 ≈ 1 and 𝒚 is a data label with 𝒚⊤1 = 1.

Proof A.2.1.1 Note that for layered reversible network, we have

N(𝒙) = N𝐿 (N𝐿−1(...N1(𝒙))) = 𝐾𝐿 (𝒙)𝐾𝐿−1(𝒙) . . . 𝐾1(𝒙)𝒙 (A.1)
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Let 𝒇𝑙 := N𝑙 (N𝑙−1(. . .N1(𝒙))) and 𝐽𝑙 := 𝐾𝐿 (𝒙) . . . 𝐾𝑙+1(𝒙), and for linear layer 𝑙,
we can write N(𝒙) = 𝐽𝑙𝑊𝑙 𝒇𝑙−1. Therefore, for the linear layer 𝑙 with weight matrix
𝑊𝑙 , we have:

d𝜑 = (𝒚 − N(𝒙))⊤dN(𝒙) (A.2)

= (𝒚 − N(𝒙))⊤𝐾𝐿 (𝒙) . . . 𝐾𝑙+1(𝒙)d𝑊𝑙 𝒇𝑙−1 + terms not related to d𝑊𝑙(A.3)

= (𝒚 − 𝐽𝑙𝑊𝑙 𝒇𝑙−1)⊤𝐽𝑙d𝑊𝑙 𝒇𝑙−1 (A.4)

= tr(d𝑊⊤𝑙 𝐽
⊤
𝑙 (𝒚 − 𝐽𝑙𝑊𝑙 𝒇𝑙−1) 𝒇⊤𝑙−1) (A.5)

This gives the gradient of𝑊𝑙:

𝐺 𝑙 = 𝐽
⊤
𝑙 𝒚 𝒇

⊤
𝑙−1 − 𝐽

⊤
𝑙 𝐽𝑙𝑊𝑙 𝒇𝑙−1 𝒇

⊤
𝑙−1 (A.6)

Softmax Case. Note that for softmax objective with small logits, we can also prove
a similar structure of backpropagated gradient, and thus Theorem 2.3.2 can also
apply.

Lemma A.2.2 (Gradient structure of softmax loss) For 𝐾-way logsoftmax loss
𝜑(𝒚; 𝒇 ) := − log

(
exp(𝒚⊤ 𝒇 )
1⊤ exp( 𝒇 )

)
, let 𝒇 = 𝑃⊥1 𝒇 be the zero-mean version of network

output 𝒇 , where 𝑃⊥1 := 𝐼 − 1
𝐾

11⊤, then we have:

−d𝜑 = 𝒚⊤d 𝒇 − 𝛾 𝒇⊤d 𝒇 /𝐾 +𝑂 ( 𝒇 2/𝐾)d 𝒇 (A.7)

where 𝛾(𝒚, 𝒇 ) ≈ 1 and 𝒚 is a data label with 𝒚⊤1 = 1.

Proof A.2.2.1 Let 𝒇 := 𝑃⊥1 𝒇 be the zero-mean version of network output 𝒇 . Then
we have 1⊤ 𝒇 = 0 and 𝒇 = 𝒇 + 𝑐1. Therefore, we have:

−𝜑 = log

(
exp(𝑐) exp(𝒚⊤ 𝒇 )
exp(𝑐)1⊤ exp( 𝒇 )

)
= 𝒚⊤ 𝒇 − log(1⊤ exp( 𝒇 )) (A.8)

Using the Taylor expansion exp(𝑥) = 1 + 𝑥 + 𝑥2

2 + 𝑜(𝑥
2), we have:

1⊤ exp( 𝒇 ) = 1⊤(1 + 𝒇 + 1
2
𝒇 2) + 𝑜( 𝒇 2) = 𝐾 (1 + 𝒇⊤ 𝒇 /2𝐾 + 𝑜( 𝒇 2/𝐾)) (A.9)

So
−𝜑 = 𝒚⊤ 𝒇 − log(1 + 𝒇⊤ 𝒇 /2𝐾 + 𝑜( 𝒇 2/𝐾)) − log𝐾 (A.10)

Therefore

−d𝜑 = 𝒚⊤d 𝒇 − 𝛾
𝐾

𝒇⊤d 𝒇 +𝑂
(
𝒇 2

𝐾

)
d 𝒇 (A.11)

where 𝛾 := (1 + 𝒇⊤ 𝒇 /2𝐾 + 𝑜( 𝒇 2/𝐾))−1 ≈ 1.
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Remarks. With this lemma, it is clear that for a reversible network 𝒇 := N(𝒙) =
𝐽𝑙 (𝒙)𝑊𝑙 𝒇𝑙−1(𝒙), the gradient 𝐺 𝑙 of𝑊𝑙 has the following form:

𝐺 𝑙 = 𝐽𝑙𝑃
⊥
1 𝒚 𝒇𝑙−1︸      ︷︷      ︸
𝐴

− 𝛾𝐽⊤𝑙 𝑃
⊥
1 𝐽𝑙︸    ︷︷    ︸

𝐵

𝑊𝑙 𝒇𝑙−1 𝒇
⊤
𝑙−1/𝐾︸       ︷︷       ︸
𝐶

(A.12)

Gradient becomes low-rank

Lemma A.2.3 (Gradient becomes low-rank during training) Suppose the gradi-
ent follows the parametric form:

𝐺 𝑡 =
1
𝑁

𝑁∑︁
𝑖=1
(𝐴𝑖 − 𝐵𝑖𝑊𝑡𝐶𝑖) (2.8)

with constant 𝐴𝑖, PSD matrices 𝐵𝑖 and𝐶𝑖 after 𝑡 ≥ 𝑡0. We study vanilla SGD weight
update: 𝑊𝑡 = 𝑊𝑡−1 + 𝜂𝐺 𝑡−1. Let 𝑆 := 1

𝑁

∑𝑁
𝑖=1𝐶𝑖 ⊗ 𝐵𝑖 and 𝜆1 < 𝜆2 its two smallest

distinct eigenvalues. Then the stable rank sr(𝐺 𝑡) satisfies:

sr(𝐺 𝑡) ≤ sr(𝐺 ∥𝑡0)+
(
1−𝜂𝜆2
1−𝜂𝜆1

)2(𝑡−𝑡0) ∥𝐺0−𝐺 ∥𝑡0 ∥
2
𝐹

∥𝐺 ∥𝑡0 ∥
2
2

, (2.9)

where𝐺 ∥𝑡0 is the projection of𝐺 𝑡0 onto the minimal eigenspaceV1 of 𝑆 corresponding
to 𝜆1.

Proof A.2.3.1 We have

𝐺 𝑡 =
1
𝑁

𝑁∑︁
𝑖=1
(𝐴𝑖−𝐵𝑖𝑊𝑡𝐶𝑖) =

1
𝑁

𝑁∑︁
𝑖=1

𝐴𝑖−𝐵𝑖 (𝑊𝑡−1+𝜂𝐺 𝑡−1)𝐶𝑖 = 𝐺 𝑡−1−
𝜂

𝑁

𝑁∑︁
𝑖=1

𝐵𝑖𝐺 𝑡−1𝐶𝑖

(A.13)
Let 𝑆 := 1

𝑁

∑𝑁
𝑖=1𝐶𝑖 ⊗ 𝐵𝑖, and 𝑔𝑡 := vec(𝐺 𝑡) ∈ r𝑚𝑛 be a vectorized version of the

gradient 𝐺 𝑡 ∈ r𝑚×𝑛. Using vec(𝐵𝑊𝐶) = (𝐶⊤ ⊗ 𝐵)vec(𝑊), we have:

𝑔𝑡 = (𝐼 − 𝜂𝑆)𝑔𝑡−1 (A.14)

Now let’s bound the stable rank of 𝐺 𝑡:

stable-rank(𝐺 𝑡) :=
∥𝐺 𝑡 ∥2𝐹
∥𝐺 𝑡 ∥22

(A.15)

Now 𝜆1 < 𝜆2 are the smallest two distinct eigenvectors of 𝑆. The smallest eigenvalue
𝜆1 has multiplicity 𝜅1. We can decompose 𝑔0 into two components, 𝑔0 = 𝑔

∥
0 + 𝑔

⊥
0 , in

which 𝑔∥0 lies in the 𝜅1-dimensional eigenspaceV1 that corresponds to the minimal
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eigenvalue 𝜆1, and 𝑔⊥0 is its residue. ThenV1 ⊂ r𝑚𝑛 and its orthogonal complements
are invariant subspaces under 𝑆 and thus:

∥𝐺 𝑡 ∥2𝐹 = ∥𝑔𝑡 ∥22 = ∥(𝐼 − 𝜂𝑆)𝑡𝑔0∥22 = ∥(𝐼 − 𝜂𝑆)𝑡𝑔∥0∥
2
2 + ∥(𝐼 − 𝜂𝑆)

𝑡𝑔⊥0 ∥
2
2(A.16)

≤ (1 − 𝜂𝜆2)2𝑡 ∥𝑔⊥0 ∥
2
2 + (1 − 𝜂𝜆1)2𝑡 ∥𝑔∥0∥

2
2 (A.17)

On the other hand, by our assumption,𝐺 ∥0 is rank 𝐿 and thus has SVD decomposition:

𝐺
∥
0 =

𝐿∑︁
𝑙=1

𝑐𝑙 𝒛𝑙 𝒚
⊤
𝑙 (A.18)

with orthonormal unit vectors {𝒛𝑙}𝐿𝑙=1 and {𝒚𝑙}𝐿𝑙=1 and singular values {𝑐𝑙}𝐿𝑙=11. This
means that

𝑔
∥
0 = vec(𝐺 ∥0) =

𝐿∑︁
𝑙=1

𝑐𝑙 (𝒚𝑙 ⊗ 𝒛𝑙) =:
𝐿∑︁
𝑙=1

𝑐𝑙𝒗𝑙 (A.19)

with unit vector 𝒗𝑙 := 𝒚𝑙 ⊗ 𝒛𝑙 ∈ V1. It is clear that

𝒗⊤𝑙 𝒗𝑙′ = (𝒚
⊤
𝑙 ⊗ 𝒛⊤𝑙 ) (𝒚𝑙′ ⊗ 𝒛𝑙′) = (𝒚⊤𝑙 𝒚𝑙′) (𝒛

⊤
𝑙 𝒛𝑙′) = I(𝑙 = 𝑙′) (A.20)

Therefore, by the definition of spectral norm (or matrix 2-norm), we know it corre-
sponds to the largest singular value, which means:

∥𝐺 𝑡 ∥2 = max
∥𝒚′∥2=1,∥𝒛′∥2=1

𝒛
′⊤𝐺 𝑡 𝒚

′ (A.21)

≥ max
𝑙

𝒛⊤𝑙 𝐺 𝑡 𝒚𝑙 = max
𝑙
(𝒚𝑙 ⊗ 𝒛𝑙)⊤𝑔𝑡 (A.22)

= max
𝑙

𝒗⊤𝑙 (1 − 𝜂𝑆)
𝑡𝑔0 = (1 − 𝜂𝜆1)𝑡 max

𝑙
𝒗⊤𝑙 𝑔0 (A.23)

Note that the last equation is because any 𝒗 ∈ V1 is an eigenvector of 𝑆 with
eigenvalue of 𝜆1.

Since 𝒗⊤
𝑙
𝑔0 = 𝒗⊤

𝑙
(𝑔⊥0 + 𝑔

∥
0) = 𝑐𝑙 , max𝑙 𝑐𝑙 = ∥𝐺 ∥0∥2 and ∥𝑔∥0∥

2
2 = ∥𝐺 ∥0∥

2
𝐹
, we have:

stable-rank(𝐺 𝑡) :=
∥𝐺 𝑡 ∥2𝐹
∥𝐺 𝑡 ∥22

≤ stable-rank(𝐺 ∥0) +
(
1 − 𝜂𝜆2
1 − 𝜂𝜆1

)2𝑡 ∥𝐺⊥0 ∥
2
𝐹

∥𝐺 ∥0∥
2
2

(A.24)

Corollary A.2.4 (Low-rank 𝐺 𝑡 with special structure ofV1) If V1(𝑆) is 1-dim
with decomposable eigenvector 𝒗 = 𝒚 ⊗ 𝒛, then sr(𝐺 ∥𝑡0) = 1 and thus 𝐺 𝑡 becomes
rank-1.

Proof A.2.4.1 In this case, we have 𝑔∥0 = 𝒗𝒗⊤𝑔0 ∝ 𝒗. Since 𝒗 = 𝒚 ⊗ 𝒛, the resulting
𝐺
∥
0 is a rank-1 matrix and thus sr(𝐺 ∥𝑡0) = 1.
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Gradient Low-rank property for Transformers
Note that Transformers do not belong to the family of reversible networks. However,
we can still show that the gradient of the lower layer (i.e., project-up) weight
𝑊 ∈ r𝑚×𝑛 of feed forward network (FFN) becomes low rank over time, using the
JoMA framework Tian, Wang, et al., 2024. Here 𝑚 is the embedding dimension,
and 𝑛 is the number of hidden nodes in FFNs.

Lemma A.2.5 (Gradient of Project-up in Transformer FFNs) Suppose the em-
bedding matrix𝑈 ∈ r𝑚×𝑀 is fixed and column-orthonormal (𝑀 is vocabulary size),
the activation functions are linear and the backpropagated gradient are station-
ary Tian, Wang, et al., 2024, then the training dynamics of transformed project-up
matrix 𝑉 := 𝑈⊤𝑊 ∈ r𝑀×𝑛 satisfies the following:

¤𝑉 =
1
𝐴

diag
(
exp

(
𝑉 ◦𝑉

2

)
1
)
Δ (A.25)

where 𝐴 is the normalization factor of softmax, ◦ is the Hadamard (element-wise)
product and Δ is defined in the proof. As a result, the gradient of𝑉 is “exponentially
more low-rank” than 𝑉 itself.

Proof A.2.5.1 Let Δ := [𝚫1, . . . ,𝚫𝑛] ∈ r𝑀×𝑛, where 𝚫 𝑗 := E𝑞 [𝑔 𝑗𝒙] ∈ r𝑀 . Here
𝑔 𝑗 is the backpropagated gradient of hidden node 𝑗 in FFN layer, E𝑞 [·] is the
conditional expectation given the query is token 𝑞, and 𝒙 is the representation of
token distribution in the previous layer of Transformer. Specifically, for intermediate
layer, 𝒙 represents the activation output of the previous project-up layer; for the
first layer, 𝒙 represents the frequency count of the input tokens. Then following the
derivation of Theorem 2 Tian, Wang, et al., 2024, we have for each hidden node
𝑗 and its weight 𝒘 𝑗 , the transformed weight 𝒗 𝑗 := 𝑈⊤𝒘 𝑗 satisfies the following
dynamics:

¤𝒗 𝑗 =
1
𝐴
𝚫 𝑗 ◦ exp(𝒗2

𝑗/2) (A.26)

where 𝒗2
𝑗

:= 𝒗 𝑗 ◦ 𝒗 𝑗 is the element-wise square of a vector and ◦ is the Hadamard
(element-wise) product. Since 𝑉 := [𝒗1, . . . , 𝒗𝑛], Eqn. A.25 follows.

Note that the dynamics of 𝒗 𝑗 shows that the direction of 𝒗 𝑗 will change over time
(because of exp(𝒗2

𝑗
/2)), and it is not clear how such dynamics leads to low-rank 𝑉
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and even more low-rank ¤𝑉 . For this, we per-row decompose the matrix 𝑉:

𝑉 :=


𝒖⊤1
𝒖⊤2
. . .

𝒖⊤
𝑀


(A.27)

where 𝒖𝑙 ∈ r𝑛. We can also do the same for Δ:

Δ :=


𝝁⊤1
𝝁⊤2
. . .

𝝁⊤
𝑀


(A.28)

where 𝝁𝑙 ∈ r𝑛. Then Eqn. A.25 can be decomposed along each row:

¤𝒖𝑙 =
1
𝐴
(𝑒𝒖2

𝑙 · 1)𝝁𝑙 (A.29)

Then it is clear that 𝒖𝑙 is always along the direction of 𝝁𝑙 , which is a fixed quality
since the backpropagated gradient 𝑔 𝑗 and input 𝒙 are assumed to be stationary (and
thus 𝚫 𝑗 := E𝑞 [𝑔 𝑗𝒙] is a constant).

Therefore, let 𝒖𝑙 (𝑡) = 𝛼𝑙 (𝑡)𝝁𝑙 with initial condition of the magnitude 𝛼𝑙 (0) = 0, and
we have:

¤𝛼𝑙 =
1
𝐴
𝑒𝛼

2
𝑙
𝝁2
𝑙 · 1 =

1
𝐴

𝑛∑︁
𝑗=1
𝑒
𝛼2
𝑙
𝜇2
𝑙 𝑗 (A.30)

where 1 ≤ 𝑙 ≤ 𝑀 is the token index. In the following we will show that for different
𝑙, the growth of 𝛼𝑙 can be very different. This leads to very different row norms of 𝑉
and ¤𝑉 over time, leading to their low-rank structures. Note that Eqn. A.30 does not
have a close form solution, instead we could estimate its growth:

1
𝐴
𝑒𝛼

2
𝑙
𝜇̄2
𝑙 ≤ ¤𝛼𝑙 ≤

𝑛

𝐴
𝑒𝛼

2
𝑙
𝜇̄2
𝑙 (A.31)

where 𝜇̄2
𝑙

:= max 𝑗 𝜇2
𝑙 𝑗

.

Note that both sides have analytic solutions using Gaussian error functions erf (𝑥) =
2√
𝜋

∫ 𝑥

0 𝑒−𝑡
2d𝑡 ∈ [−1, 1]. Specifically, for dynamic system like ¤𝑥 = 𝐶𝑒𝛽2𝑥2 , we have

𝑒−𝛽
2𝑥2

d𝑥 = 𝐶d𝑡 (A.32)

which gives: √
𝜋

2𝛽
erf (𝛽𝑥(𝑡)) =

∫ 𝑥(𝑡)

0
𝑒−𝛽

2𝑦2
d𝑦 = 𝐶𝑡 (A.33)
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or
𝑥(𝑡) = 1

𝛽
erf−1

(
2𝛽𝐶
√
𝜋
𝑡

)
(A.34)

For inequality like ¤𝑥 ≥ 𝐶𝑒𝛽2𝑥2 or ¤𝑥 ≤ 𝐶𝑒𝛽2𝑥2 , similar equation can be derived. Plug
that in, we have:

1
𝜇̄𝑙

erf−1
(

2𝜇̄𝑙
𝐴
√
𝜋
𝑡

)
≤ 𝛼𝑙 (𝑡) ≤

1
𝜇̄𝑙

erf−1
(

2𝑛𝜇̄𝑙
𝐴
√
𝜋
𝑡

)
(A.35)

Let
ℎ(𝑡; 𝑎) :=

1
𝑎

erf−1
(

2
√
𝜋

𝑎

𝐴
𝑡

)
(A.36)

then lim𝑡→𝐴
√
𝜋/2𝑎 ℎ(𝑡; 𝑎) = +∞, and ℎ(𝑡; 𝜇̄𝑙) ≤ 𝛼𝑙 (𝑡) ≤ 𝑛ℎ(𝑡; 𝑛𝜇̄𝑙).

Let 𝑙∗ = arg max𝑙 𝜇̄∗𝑙 be the row with the largest entry of 𝜇, then if 𝜇̄∗
𝑙
> 𝑛𝜇̄𝑙 for all

𝑙 ≠ 𝑙∗, then when 𝑡 → 𝑡∗ := 𝐴
√
𝜋

2𝜇̄∗
𝑙

, the magnitude 𝛼𝑙∗ (𝑡) ≥ ℎ(𝑡; 𝜇̄𝑙∗) → +∞, while

𝛼𝑙 (𝑡) ≤ 𝑛ℎ(𝑡; 𝑛𝜇̄𝑙) still stay finite, since its critical time 𝑡′ := 𝐴
√
𝜋

2𝑛𝜇̄𝑙 > 𝑡
∗. Since 𝛼𝑙 (𝑡)

controls the magnitude of each row of 𝑉 , This means that 𝑉 eventually becomes
rank-1 and so does𝑊 .

Finally, ¤𝑉 is even more low rank than 𝑉 , since ¤𝛼𝑙 has 𝛼𝑙 in its exponents.

Convergence of GaLore

Theorem 2.3.7 (Convergence of GaLore with fixed projections) Suppose the gra-
dient has the form of Eqn. 2.8 and 𝐴𝑖, 𝐵𝑖 and 𝐶𝑖 have 𝐿𝐴, 𝐿𝐵 and 𝐿𝐶 continuity
with respect to 𝑊 and ∥𝑊𝑡 ∥ ≤ 𝐷. Let 𝑅𝑡 := 𝑃⊤𝑡 𝐺 𝑡𝑄𝑡 , 𝐵̂𝑖𝑡 := 𝑃⊤𝑡 𝐵𝑖 (𝑊𝑡)𝑃𝑡 ,
𝐶̂𝑖𝑡 := 𝑄⊤𝑡 𝐶𝑖 (𝑊𝑡)𝑄𝑡 and 𝜅𝑡 := 1

𝑁

∑
𝑖 𝜆min(𝐵̂𝑖𝑡)𝜆min(𝐶̂𝑖𝑡). If we choose constant

𝑃𝑡 = 𝑃 and 𝑄𝑡 = 𝑄, then GaLore with 𝜌𝑡 ≡ 1 satisfies:

∥𝑅𝑡 ∥𝐹 ≤
[
1−𝜂(𝜅𝑡−1−𝐿𝐴−𝐿𝐵𝐿𝐶𝐷2)

]
∥𝑅𝑡−1∥𝐹 . (2.11)

As a result, if min𝑡 𝜅𝑡 > 𝐿𝐴 + 𝐿𝐵𝐿𝐶𝐷2, 𝑅𝑡 → 0 and thus GaLore converges with
fixed 𝑃𝑡 and 𝑄𝑡 .

Proof A.2.5.1 Using vec(𝐴𝑋𝐵) = (𝐵⊤ ⊗ 𝐴)vec(𝑋) where ⊗ is the Kronecker
product, the gradient assumption can be written as the following:

𝑔𝑡 = 𝑎𝑡 − 𝑆𝑡𝑤𝑡 (A.37)

where 𝑔𝑡 := vec(𝐺 𝑡) ∈ r𝑚𝑛, 𝑤𝑡 := vec(𝑊𝑡) ∈ r𝑚𝑛 be the vectorized versions of 𝐺 𝑡

and𝑊𝑡 , 𝑎𝑡 := 1
𝑁

∑
𝑖 vec(𝐴𝑖𝑡) and 𝑆𝑡 = 1

𝑁

∑
𝑖 𝐶𝑖𝑡 ⊗ 𝐵𝑖𝑡 are 𝑚𝑛-by-𝑚𝑛 PSD matrix.
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Using the same notation, it is clear to show that:

(𝑄 ⊗ 𝑃)⊤𝑔𝑡 = (𝑄⊤ ⊗ 𝑃⊤)vec(𝐺 𝑡) = vec(𝑃⊤𝐺 𝑡𝑄) = vec(𝑅𝑡) =: 𝑟𝑡(A.38)

𝑔̃𝑡 := vec(𝐺̃ 𝑡) = vec(𝑃𝑃⊤𝐺 𝑡𝑄𝑄
⊤) = (𝑄 ⊗ 𝑃)vec(𝑅𝑡) = (𝑄 ⊗ 𝑃)𝑟𝑡 (A.39)

Then we derive the recursive update rule for 𝑔𝑡:

𝑔𝑡 = 𝑎𝑡 − 𝑆𝑡𝑤𝑡 (A.40)

= (𝑎𝑡 − 𝑎𝑡−1) + (𝑆𝑡−1 − 𝑆𝑡)𝑤𝑡 + 𝑎𝑡−1 − 𝑆𝑡−1𝑤𝑡 (A.41)

= 𝑒𝑡 + 𝑎𝑡−1 − 𝑆𝑡−1(𝑤𝑡−1 + 𝜂𝑔̃𝑡−1) (A.42)

= 𝑒𝑡 + 𝑔𝑡−1 − 𝜂𝑆𝑡−1𝑔̃𝑡−1 (A.43)

where 𝑒𝑡 := (𝑎𝑡 − 𝑎𝑡−1) + (𝑆𝑡−1 − 𝑆𝑡)𝑤𝑡 . Left multiplying by (𝑄 ⊗ 𝑃)⊤, we have:

𝑟𝑡 = (𝑄 ⊗ 𝑃)⊤𝑒𝑡 + 𝑟𝑡−1 − 𝜂(𝑄 ⊗ 𝑃)⊤𝑆𝑡−1(𝑄 ⊗ 𝑃)𝑟𝑡−1 (A.44)

Let

𝑆𝑡 := (𝑄⊗𝑃)⊤𝑆𝑡 (𝑄⊗𝑃) =
1
𝑁

∑︁
𝑖

(𝑄⊗𝑃)⊤(𝐶𝑖𝑡⊗𝐵𝑖𝑡) (𝑄⊗𝑃) =
1
𝑁

∑︁
𝑖

(𝑄⊤𝐶𝑖𝑡𝑄)⊗(𝑃⊤𝐵𝑖𝑡𝑃)

(A.45)
Then we have:

𝑟𝑡 = (𝐼 − 𝜂𝑆𝑡−1)𝑟𝑡−1 + (𝑄 ⊗ 𝑃)⊤𝑒𝑡 (A.46)

Now we bound the norm. Note that since 𝑃 and 𝑄 are projection matrices with
𝑃⊤𝑃 = 𝐼 and 𝑄⊤𝑄 = 𝐼, we have:

∥(𝑄 ⊗ 𝑃)⊤𝑒𝑡 ∥2 = ∥vec(𝑃⊤𝐸𝑡𝑄)∥2 = ∥𝑃⊤𝐸𝑡𝑄∥𝐹 ≤ ∥𝐸𝑡 ∥𝐹 (A.47)

where 𝐸𝑡 := 1
𝑁

∑
𝑖 (𝐴𝑖𝑡 − 𝐴𝑖,𝑡−1) + 1

𝑁

∑
𝑖 (𝐵𝑖,𝑡−1𝑊𝑡𝐶𝑖,𝑡−1 − 𝐵𝑖𝑡𝑊𝑡𝐶𝑖𝑡). So we only need

to bound ∥𝐸𝑡 ∥𝐹 . Note that:

∥𝐴𝑡 − 𝐴𝑡−1∥𝐹 ≤ 𝐿𝐴∥𝑊𝑡 −𝑊𝑡−1∥𝐹 = 𝜂𝐿𝐴∥𝐺̃ 𝑡−1∥𝐹 ≤ 𝜂𝐿𝐴∥𝑅𝑡−1∥𝐹(A.48)

∥(𝐵𝑡 − 𝐵𝑡−1)𝑊𝑡𝐶𝑡−1∥𝐹 ≤ 𝐿𝐵∥𝑊𝑡 −𝑊𝑡−1∥𝐹 ∥𝑊𝑡 ∥𝐹 ∥𝐶𝑡−1∥𝐹 = 𝜂𝐿𝐵𝐿𝐶𝐷
2∥𝑅𝑡−1∥𝐹(A.49)

∥𝐵𝑡𝑊𝑡 (𝐶𝑡−1 − 𝐶𝑡)∥𝐹 ≤ 𝐿𝐶 ∥𝐵𝑡 ∥𝐹 ∥𝑊𝑡 ∥𝐹 ∥𝑊𝑡−1 −𝑊𝑡 ∥𝐹 = 𝜂𝐿𝐵𝐿𝐶𝐷
2∥𝑅𝑡−1∥𝐹(A.50)

Now we estimate the minimal eigenvalue of 𝑆𝑡−1. Let 𝜆
𝑖𝑡

:= 𝜆min(𝑃⊤𝐵𝑖𝑡𝑃) and
𝜈
𝑖𝑡

:= 𝜆min(𝑄⊤𝐶𝑖𝑡𝑄), then 𝜆min((𝑃⊤𝐵𝑖𝑡𝑃) ⊗ (𝑄⊤𝐶𝑖𝑡𝑄)) = 𝜆
𝑖𝑡
𝜈
𝑖𝑡

and for any unit
vector 𝒗:

𝒗⊤𝑆𝑡𝒗 =
1
𝑁

∑︁
𝑖

𝒗⊤
[
(𝑃⊤𝐵𝑖𝑡𝑃) ⊗ (𝑄⊤𝐶𝑖𝑡𝑄)

]
𝒗 ≥ 1

𝑁

∑︁
𝑖

𝜆
𝑖𝑡
𝜈
𝑖𝑡

(A.51)
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And thus 𝜆min(𝑆𝑡) ≥ 1
𝑁

∑
𝑖 𝜆𝑖𝑡𝜈𝑖𝑡 . Therefore, 𝜆max(𝐼 − 𝜂𝑆𝑡−1) ≤ 1− 𝜂

𝑁

∑
𝑖 𝜆𝑖,𝑡−1𝜈𝑖,𝑡−1.

Therefore, let 𝜅𝑡 := 1
𝑁

∑
𝑖 𝜆𝑖𝑡𝜈𝑖𝑡 and using the fact that ∥𝑟𝑡 ∥2 = ∥𝑅𝑡 ∥𝐹 , we have:

∥𝑅𝑡 ∥𝐹 ≤
[
1 − 𝜂(𝜅𝑡−1 − 𝐿𝐴 − 2𝐿𝐵𝐿𝐶𝐷2)

]
∥𝑅𝑡−1∥𝐹 (A.52)

and the conclusion follows.

A.3 Details of Pre-Training Experiment
Architecture and Hyperparameters
We introduce details of the LLaMA architecture and hyperparameters used for pre-
training. Table A.1 shows the most hyperparameters of LLaMA models across
model sizes. We use a max sequence length of 256 for all models, with a batch size
of 131K tokens. For all experiments, we adopt learning rate warmup for the first
10% of the training steps, and use cosine annealing for the learning rate schedule,
decaying to 10% of the initial learning rate.

Table A.1: Hyperparameters of LLaMA models for evaluation. Data amount are
specified in tokens.

Params Hidden Intermediate Heads Layers Steps Data amount

60M 512 1376 8 8 10K 1.3 B
130M 768 2048 12 12 20K 2.6 B
350M 1024 2736 16 24 60K 7.8 B
1 B 2048 5461 24 32 100K 13.1 B
7 B 4096 11008 32 32 150K 19.7 B

For all methods on each size of models (from 60M to 1B), we tune their favorite
learning rate from a set of {0.01, 0.005, 0.001, 0.0005, 0.0001}, and the best learning
rate is chosen based on the validation perplexity. We find GaLore is insensitive to
hyperparameters and tends to be stable with the same learning rate across different
model sizes. For all models, GaLore use the same hyperparameters, including the
learning rate of 0.01, scale factor 𝛼 of 0.25, and the subspace change frequency of
𝑇 of 200. We note that since 𝛼 can be viewed as a fractional learning rate, most of
the modules (e.g., multi-head attention and feed-forward layers) in LLaMA models
have the actual learning rate of 0.0025. This is, still, a relatively large stable learning
rate compared to the full-rank baseline, which usually uses a learning rate ≤ 0.001
to avoid spikes in the training loss.
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Memory Estimates
As the GPU memory usage for a specific component is hard to measure directly, we
estimate the memory usage of the weight parameters and optimizer states for each
method on different model sizes. The estimation is based on the number of original
parameters and the number of low-rank parameters, trained by BF16 format. For
example, for a 60M model, LoRA (𝑟 = 128) requires 42.7M parameters on low-rank
adaptors and 60𝑀 parameters on the original weights, resulting in a memory cost
of 0.20G for weight parameters and 0.17G for optimizer states.

Training Progression
We show the training progression of 130M, 350M, 1B and 7B models in Figure A.1.
Compared to LoRA, GaLore closely matches the training trajectory of the full-rank
baseline, and it even converges slightly faster at the beginning of the training.
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Figure A.1: Training progression for pre-training LLaMA models on C4 dataset.

A.4 Fine-Tuning Experiments
Details of Fine-Tuning on GLUE
We fine-tune the pre-trained RoBERTa-Base model on the GLUE benchmark using
the model provided by the Hugging Face1. We trained the model for 30 epochs
with a batch size of 16 for all tasks except for CoLA, which uses a batch size of

1https://huggingface.co/transformers/model_doc/roberta.html

https://huggingface.co/transformers/model_doc/roberta.html
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32. We tune the learning rate and scale factor for GaLore. Table A.3 shows the
hyperparameters used for fine-tuning RoBERTa-Base for GaLore.

Table A.2: Hyperparameters of fine-tuning RoBERTa base for GaLore.

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 16 16 16 32 16 16 16 16
# Epochs 30 30 30 30 30 30 30 30

Learning Rate 1E-05 1E-05 3E-05 3E-05 1E-05 1E-05 1E-05 1E-05
Rank Config. 𝑟 = 4

GaLore 𝛼 4
Max Seq. Len. 512

MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B

Batch Size 16 16 16 32 16 16 16 16
# Epochs 30 30 30 30 30 30 30 30

Learning Rate 1E-05 2E-05 2E-05 1E-05 1E-05 2E-05 2E-05 3E-05
Rank Config. 𝑟 = 8

GaLore 𝛼 2
Max Seq. Len. 512

Table A.3: Hyperparameters of fine-tuning RoBERTa base for GaLore.

MNLI SST-2 MRPC RTE STS-B

Batch Size 16 16 16 16 16
# Epochs 30 30 30 30 30

Learning Rate 1E-05 1E-05 3E-05 1E-05 1E-05

MNLI SST-2 MRPC RTE STS-B

Batch Size 16 16 16 16 16
# Epochs 30 30 30 30 30

Learning Rate 1E-05 2E-05 2E-05 2E-05 3E-05

Fine-Tuning on SQuAD dataset
We evaluate GaLore on the SQuAD dataset (Rajpurkar et al., 2016) using the pre-
trained BERT-Base model. We use rank 16 for both GaLore and LoRA. GaLore
outperforms LoRA in both Exact Match and F1 scores.

Fine-Tuning on OpenAssistant Conversations Dataset
We apply GaLore on fine-tuning experiments on the OpenAssistant Conversations
dataset (Köpf et al., 2024), using the pre-trained models, including Gemma-2b,
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Table A.4: Evaluating GaLore on SQuAD dataset. Both Exact Match and F1 scores
are reported.

Exact Match F1
Baseline 80.83 88.41

GaLore 80.52 88.29
LoRA 77.99 86.11

Phi-2, and LLaMA-7B (Touvron et al., 2023; Team et al., 2024). We use rank of
128 for both GaLore and LoRA. The results are shown in Table A.5.

Table A.5: Evaluating GaLore on OpenAssistant Conversations dataset. Testing
perplexity is reported.

Gemma-2b Phi-2 LLaMA-7B
Baseline 4.53 3.81 2.98

GaLore 4.51 3.83 2.95
LoRA 4.56 4.24 2.94

Fine-Tuning on Belle-1M Dataset
We also apply GaLore on fine-tuning experiments on the Belle-1M dataset (BEL-
LEGroup, 2023), using the pre-trained models, including Gemma-2b, Phi-2, and
LLaMA-7B. We use rank of 128 for both GaLore and LoRA. The results are shown
in Table A.6.

Table A.6: Evaluating GaLore on Belle-1M dataset. Testing perplexity is reported.

Gemma-2b Phi-2 LLaMA-7B
Baseline 5.44 2.66 2.27

GaLore 5.35 2.62 2.28
LoRA 5.37 2.75 2.30
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A p p e n d i x B

APPENDIX - CHAPTER 3

B.1 Proof
In this section, we present the proof of our main analysis, as shown in Theorem 3.4.3.

As introduced in the main text, we analyze the learning trajectory of a 3-layer linear
network where 𝑦 = 𝑊2𝑊1𝑥,𝑊1 ∈ R𝑁ℎ×𝑁𝑥 and𝑊2 ∈ R𝑁𝑦×𝑁ℎ are the weight matrices
of the first and second layers, respectively, and 𝑁ℎ < 𝑁𝑥 , 𝑁𝑦.

We assume the inputs are orthogonal, i.e., 𝑥𝑇
𝑖
𝑥 𝑗 = 0 for 𝑖 ≠ 𝑗 . In this case, the

continuous gradient flow follows the following differential equations:

𝜕

𝜕𝑡
𝑊1 = 𝑊2𝑇

(
Σ𝑦𝑥 −𝑊2𝑊1Σ𝑥𝑥

)
,

𝜕

𝜕𝑡
𝑊2 =

(
Σ𝑦𝑥 −𝑊2𝑊1Σ𝑥𝑥

)
𝑊21𝑇 . (B.1)

Since the inputs are orthogonal Σ𝑥𝑥 = 𝐼, the input-output correlation matrix Σ𝑦𝑥

contains all information we need to learn the network. We decompose Σ𝑦𝑥 using
SVD as follows:

Σ𝑦𝑥 = 𝑈𝑦𝑦𝑆𝑦𝑥𝑉𝑥𝑥
𝑇

=

𝑁𝑥∑︁
𝛼=1

𝑠𝛼𝑢𝛼𝑣
𝑇
𝛼 . (B.2)

Learning the direction and strength of each mode 𝛼 is crucial to interpolate the
input-output correlation matrix Σ𝑦𝑥 .

To analyze the evolution of each mode independently, we let 𝑎𝛼 be the 𝛼th column
of 𝑊̄1, and let 𝑏𝛼𝑇 be the 𝛼th row of 𝑊̄2, where𝑊1 = 𝑊̄1𝑉𝑥𝑥

𝑇

,𝑊2 = 𝑈𝑦𝑦𝑊̄2. Based
on Equation B.1 we can characterize the evolution of each mode using 𝑎𝛼 and 𝑏𝛼:

𝜕

𝜕𝑡
𝑎𝛼 = (𝑠𝛼 − 𝑎𝛼 · 𝑏𝛼) 𝑏𝛼−

∑︁
𝛾≠𝛼

𝑏𝛾 (𝑎𝛼 · 𝑏𝛾) , 𝜕

𝜕𝑡
𝑏𝛼 = (𝑠𝛼 − 𝑎𝛼 · 𝑏𝛼) 𝑎𝛼−

∑︁
𝛾≠𝛼

𝑎𝛾 (𝑏𝛼 · 𝑎𝛾) .

(B.3)
For both 𝜕

𝜕𝑡
𝑎𝛼 and 𝜕

𝜕𝑡
𝑏𝛼, the first term characterizes the cooperative learning of the

strength 𝑠𝛼 using the 𝑎𝛼 and 𝑏𝛼. The second term characterizes the competitive
learning of the direction 𝑎𝛼 and 𝑏𝛼 given the distraction from other directions 𝑎𝛾

and 𝑏𝛾.

It is difficult to solve Equation B.3 given arbitrary weight initialization due to
complex competitive interaction between modes. Therefore, we assume the weight
initialization follows𝑊2

0 = 𝑈𝑦𝑦𝑀2𝑂𝑇 ,𝑊1
0 = 𝑂𝑀1𝑉𝑥𝑥

𝑇 , where 𝑀2, 𝑀1 are diagonal
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matrices, and 𝑂 is an arbitrary orthogonal matrix. 𝑊2
0𝑊

1
0 ensures that each mode

𝛼 is learned independently right from the beginning of training, enabling us to
analyze the learning trajectory of each mode separately. 𝑎𝛼 and 𝑏𝛼 will remain
parallel to a certain direction 𝑟𝛼 throughout the learning process, and we can rewrite
Equation B.3 as follows:

𝜕

𝜕𝑡
𝑎 = 𝑏(𝑠 − 𝑎𝑏), 𝜕

𝜕𝑡
𝑏 = 𝑎(𝑠 − 𝑎𝑏), (B.4)

where we let 𝑎 = 𝑎𝛼 · 𝑟𝛼, 𝑏 = 𝑏𝛼 · 𝑟𝛼, and 𝑠 = 𝑠𝛼. By further assuming 𝑎 = 𝑏 and
𝑢 = 𝑎𝑏, we obtain:

𝜕

𝜕𝑡
𝑢 = 2𝑢(𝑠 − 𝑢). (B.5)

Integrate the above equation to obtain:

𝑡 = 𝜏

∫ 𝑢 𝑓

𝑢0

𝑑𝑢

2𝑢(𝑠 − 𝑢) =
𝜏

2𝑠
ln
𝑢 𝑓 (𝑠 − 𝑢0)
𝑢0

(
𝑠 − 𝑢 𝑓

) , (B.6)

where 𝑢0 is the initial value determined by 𝑀2 and 𝑀1, 𝑢 𝑓 is the target value of
strength, and 𝜏 is a constant. 𝑡 is the time it takes for 𝑢 to travel from 𝑢0 to 𝑢 𝑓 .

As we analyze the difference of the product matrix 𝐷𝑡 = 𝐴𝑡 − 𝐴0, it is equivalent
to analyzing the residual of each mode: 𝑢𝑡 − 𝑢0. To analyze the entire evolution
(𝑢 𝑓 ≈ 𝑠) of 𝑢 over time, we yield the following equation:

𝑢 𝑓 (𝑡) =
𝑠𝑒2𝑠𝑡/𝜏

𝑒2𝑠𝑡/𝜏 − 1 + 𝑠/𝑢0
− 𝑢0. (B.7)

B.2 Clarification on Greedy Low-Rank Learning
In this section, we additional clarification on the greedy low-rank learning hypoth-
esis, which is presented in Theorem 3.3.1.

Several works have demonstrated the greedy low-rank learning behavior under
various settings and assumptions. Li, Luo, and Lyu (2021) prove it under matrix
factorization setting for deep linear network by analyzing the asymptotic behavior of
gradient flow under infinitesimal initialization. Jacot et al. (2022) also demonstrate
the saddle-to-saddle learning behavior for deep linear networks, although they prove
the rank-one case only. Razin, Maman, and Cohen (2021) further extend the
discussion to the setting of tensor factorization.

A formal description of Theorem 3.3.1 is given below:

Theorem B.2.1 Let 𝑊̃𝑟 be the 𝑟-th critical point of a rank-𝑟 subspace of𝑊 , and let
𝑊̃0 = 0 be the saddle point at zero. From an infinitesimal initialization (𝑊0 ≈ 𝑊̃0),
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the gradient flow 𝐺 (𝑊) first visits the critical point 𝑊̃1. If 𝑊̃1 is not a minimizer,
𝐺 (𝑊) will expand the searching space to a rank-2 subspace and converge to the
critical point 𝑊̃2. If 𝑊̃2 is also not a minimizer, this process continues until 𝐺 (𝑊)
reaches 𝑊̃𝑟∗ in a rank-𝑟∗ subspace that minimizes the objective function, provided
that 𝑟∗ < rank(𝑊).

The theorem implies the greedy low-rank learning trajectory, such that the gradient
descent first searches over a rank-1 subspace of 𝐴𝜃 , and then greedily increases the
rank by one whenever it fails to reach the minimizer.

Proving this requires the analysis of the limiting flow 𝐺𝑟→𝑟+1(𝑊), which is the
gradient flow between two critical points 𝑊̃𝑟 and 𝑊̃𝑟+1. Theorem B.2.1 holds
by showing that the flows 𝐺0→1(𝑊), 𝐺1→2(𝑊), ..., 𝐺𝑟∗−1→𝑟∗ (𝑊) all exist during
learning, which is a general proving direction adopted by recent works. The details
of the proof can be found in Li, Luo, and Lyu (2021) and Jacot et al. (2022).
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B.3 Low-Rank Learning in Practice
In this section, we provide additional results demonstrating that the cumulative
weight updates follow the low-rank learning trajectory over a broad range of network
architectures and learning algorithms.

Low-Rank learning under different architectures
LSTM
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Figure B.1: The evolutions of all singular vectors of cumulative weight updates 𝐷𝑡

over the training of LSTM. The top row shows the input-to-hidden weight matrix
𝑊𝑖ℎ, and the bottom row shows the hidden-to-hidden weight matrix 𝑊ℎℎ. Darker
colors indicate singular vectors with higher strengths.

Transformer
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Figure B.2: The evolutions of all singular vectors of cumulative weight updates 𝐷𝑡

over the training of Transformer. In a single layer, we visualize two weight matrices
in MLP and two K matrices in self-attention. Darker colors indicate singular vectors
with higher strengths.

Low-Rank learning under different learning algorithms
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Figure B.3: The evolutions of all singular vectors of cumulative weight updates 𝐷𝑡

over the training of MLP using SGD and Adam optimizers. Darker colors indicate
singular vectors with higher strengths.

B.4 Rank Evolution during Training
We present the rank evolution in various MLP layers when applying InRank on
GPT-small model. As shown in Figure B.4, we visualize the rank evolution over the
first 5% of the total training iterations. The figure indicates that the increment of
rank mostly happens in the early stage of training.

B.5 Repeated Experiment on different GPT models
We report the evaluation results of InRank and InRank-Efficient on different sizes
of GPT models in Table B.1. All experiments are repeated 3 times. We also report
testing perplexity instead of validation perplexity.
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Figure B.4: The rank evolution in various MLP layers when applying InRank on
GPT-small model.

Table B.1: Evaluating InRank across different sizes of GPT models. All experiments
are repeated 3 times.

Model Method Test Perplexity
GPT-small InRank 19.96 ± 0.10

InRank-Efficient 20.07 ± 0.14
GPT-medium InRank 22.14 ± 0.07

InRank-Efficient 21.23 ± 0.05
GPT-large InRank 22.63 ± 0.09

InRank-Efficient 21.49 ± 0.07

References

Jacot, Arthur et al. (Jan. 2022). “Saddle-to-Saddle Dynamics in Deep Linear Net-
works: Small Initialization Training, Symmetry, and Sparsity”. en. In: arXiv:2106.15933
[cs, stat]. arXiv: 2106.15933. url: http://arxiv.org/abs/2106.15933 (vis-
ited on 02/21/2022).

Li, Zhiyuan, Yuping Luo, and Kaifeng Lyu (Apr. 2021). “Towards Resolving the
Implicit Bias of Gradient Descent for Matrix Factorization: Greedy Low-Rank
Learning”. In: arXiv:2012.09839 [cs, stat]. arXiv: 2012.09839. url: http://
arxiv.org/abs/2012.09839 (visited on 02/25/2022).

Razin, Noam, Asaf Maman, and Nadav Cohen (June 2021). “Implicit Regularization
in Tensor Factorization”. In: arXiv:2102.09972 [cs, stat]. arXiv: 2102.09972. url:
http://arxiv.org/abs/2102.09972 (visited on 04/12/2022).

http://arxiv.org/abs/2106.15933
http://arxiv.org/abs/2012.09839
http://arxiv.org/abs/2012.09839
http://arxiv.org/abs/2102.09972


107

A p p e n d i x C

APPENDIX - CHAPTER 5

C.1 Quantization Error Analysis
Here we present proofs of theorems and lemmas presented in the main paper, as
well as some additional details of the empirical evaluations.

Proofs
Before presenting the proofs, we want to clarify the error definition and assump-
tions introduced in the main paper. Previously, we claim that minimizing 𝑟𝑡 =

∥log2 |𝑊𝑈
𝑡+1 | − log2 |𝑊𝑡+1 |∥2 is equivalent to minimizing relative quantization error

∥(𝑊𝑡+1 −𝑊𝑈
𝑡+1)/𝑊𝑡+1∥2. To better understand it, we transform the form of relative

quantization error as follows:

∥(𝑊𝑡+1 −𝑊𝑈
𝑡+1)/𝑊𝑡+1∥2

= ∥(𝐼 −𝑊𝑈
𝑡+1)/𝑊𝑡+1∥2

= ∥(𝐼 − |𝑊𝑈
𝑡+1) |/|𝑊𝑡+1 |∥2

(𝑠𝑖𝑔𝑛(𝑊𝑈
𝑡+1) = 𝑠𝑖𝑔𝑛(𝑊𝑡+1))

= ∥(𝐼 − 2log2 |𝑊𝑈
𝑡+1 |−log2 |𝑊𝑡+1 | ∥2

(transfer to base-2 logarithmic space)

This relaxation suggests that minimizing 𝑟𝑡 is equivalent to minimizing the relative
quantization error.

We start to introduce the simplified logarithmic quantization we used for the analysis.
The stochastic rounding (SR) is defined as follows:

SR(𝑥) =
{
⌊𝑥⌋ + 1 for 𝑝 ≤ 𝑥 − ⌊𝑥⌋,
⌊𝑥⌋ otherwise,

(C.1)

where 𝑝 ∈ [0, 1] is generated by a uniform random number generator. SR makes
sure the rounded number is an unbiased estimate of its full-precision counterpart:
ESR(𝑥) = 𝑥, which is an important property for the analysis.

Equipped with SR, we define the simplified logarithmic quantization function:

LogQuant(𝑥) = 𝑠𝑖𝑔𝑛(𝑥) × 2𝑥/𝛾, (C.2)
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where 𝑥 = SR( log2 |𝑥 | × 𝛾). We ignore the scale factor and the clamping function
to ensure our focus is on the effect of the quantization gap instead of the dynamic
range.

Before proving our main results, we want to introduce an important proposition that
describes the error introduced by stochastic rounding.

Proposition C.1.1 For any vector 𝑥, the quantization error introduced by stochastic
rounding 𝑟 = SR(𝑥) − 𝑥 can be bounded in expectation, as:

E ∥𝑟 ∥2 ≤
√
𝑑 ∥𝑥∥, (C.3)

where d is the dimension of 𝑥.

Proof C.1.1.1 Let 𝑟𝑖 denotes the 𝑖𝑡ℎ element of 𝑟 and let 𝑞𝑖 = 𝑥𝑖 − ⌊𝑥𝑖⌋. 𝑟𝑖 can be
represented as follows:

𝑟𝑖 =

{
⌊𝑥𝑖⌋ + 1 − 𝑥𝑖 for 𝑝 ≤ 𝑥𝑖 − ⌊𝑥𝑖⌋,
⌊𝑥𝑖⌋ − 𝑥𝑖 otherwise,

=

{
−𝑞𝑖 + 1 for 𝑝 ≤ 𝑞𝑖,
−𝑞𝑖 otherwise.

𝑟𝑖 can be bounded by expectation, as:

E 𝑟2
𝑖 ≤ (−𝑞𝑖 + 1)2𝑞𝑖 + (−𝑞𝑖)2(1 − 𝑞𝑖)
= 𝑞𝑖 (1 − 𝑞𝑖)
≤ min{𝑞𝑖, 1 − 𝑞𝑖}
= min{𝑥𝑖 − ⌊𝑥𝑖⌋, 1 − 𝑥𝑖 + ⌊𝑥𝑖⌋}
≤ |𝑥𝑖 |.

Therefore, by summing over index 𝑖, we can get:

E ∥𝑟 ∥2 ≤ ∥𝑥∥1
≤
√
𝑑 ∥𝑥∥.

Now we start to prove Theorem 5.5.1 given𝑈𝐺𝐷 = 𝑊 − 𝜂 ∇𝑊 .

Theorem 5.5.1 The quantization error 𝑟𝑡,𝐺𝐷 introduced by logarithmic quantized
gradient descent at iteration 𝑡 can be bounded in expectation, as:

E 𝑟𝑡,𝐺𝐷 ≤
√
𝑑

𝛾
∥log2

(
|𝑊𝑡 | − 𝜂1∇𝑊𝑡

)
∥, (5.5)

where d is the dimension of𝑊 and 𝜂1 is the learning rate of𝑈𝐺𝐷 .
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Proof C.1.1.1 We know that:

E 𝑟𝑡,𝐺𝐷 = ∥ log2 |LogQuant(𝑊𝑡 − 𝜂1 ∇𝑊𝑡
) |

− log2 |𝑊𝑡 − 𝜂1 ∇𝑊𝑡
|∥2.

By replacing LogQuant with Equation C.2, we can get:

log2 |LogQuant(𝑊𝑡 − 𝜂1 ∇𝑊𝑡
) | =

1
𝛾

SR(𝛾 log2 |𝑊𝑡 − 𝜂1 ∇𝑊𝑡
|).

Plug it back to E 𝑟𝑡,𝐺𝐷 , we get:

E 𝑟𝑡,𝐺𝐷 =
1
𝛾2 ∥ SR(𝛾 log2 |𝑊𝑡 − 𝜂1 ∇𝑊𝑡

|)

− 𝛾 log2 |𝑊𝑡 − 𝜂1 ∇𝑊𝑡
|∥2.

Given Proposition C.1.1, we can upper bound the quantization error introduced by
stochastic rounding:

∥SR(𝛾 log2 |𝑊𝑡 − 𝜂1 ∇𝑊𝑡
|) − 𝛾 log2 |𝑊𝑡 − 𝜂1 ∇𝑊𝑡

|∥2

≤
√
𝑑 ∥𝛾 log2 |𝑊𝑡 − 𝜂1 ∇𝑊𝑡

|∥.

Therefore, we can get:

E 𝑟𝑡,𝐺𝐷 ≤
√
𝑑

𝛾2 ∥𝛾 log2 |𝑊𝑡 − 𝜂1 ∇𝑊𝑡
|∥

≤
√
𝑑

𝛾
∥log2 |𝑊𝑡 − 𝜂1 ∇𝑊𝑡

|∥.

Given 𝑈𝑀𝑈𝐿 = 𝑠𝑖𝑔𝑛(𝑊) ⊙ 2𝑊̃−𝜂 ∇𝑊⊙𝑠𝑖𝑔𝑛(𝑊) , Theorem 5.5.2 follows a similar proof
as Theorem 5.5.1.

Theorem 5.5.2 The quantization error 𝑟𝑡,𝑀𝑈𝐿 introduced by logarithmic quantized
multiplicative weight update at iteration 𝑡 can be bounded in expectation, as:

E 𝑟𝑡,𝑀𝑈𝐿 ≤
√
𝑑 𝜂2
𝛾
∥∇𝑊𝑡

∥, (5.7)

where d is the dimension of𝑊 and 𝜂2 is the learning rate of𝑈𝑀𝑈𝐿 .
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Proof C.1.1.1

E 𝑟𝑡,𝑀𝑈𝐿 = ∥ log2 |LogQuant(2𝑊̃𝑡−𝜂2 ∇𝑊𝑡 ⊙𝑠𝑖𝑔𝑛(𝑊𝑡 )) |
− log2 |2𝑊̃𝑡−𝜂2 ∇𝑊𝑡 ⊙𝑠𝑖𝑔𝑛(𝑊𝑡 ) |∥2. (C.4)

By replacing LogQuant with Equation C.2, we can get:

log2 |LogQuant(2𝑊̃𝑡−𝜂2 ∇𝑊𝑡 ⊙𝑠𝑖𝑔𝑛(𝑊𝑡 )) |

=
1
𝛾

SR(𝛾 (𝑊̃𝑡 − 𝜂2 ∇𝑊𝑡
⊙ 𝑠𝑖𝑔𝑛(𝑊𝑡))).

Plug it back to Equation C.4:

E 𝑟𝑡,𝑀𝑈𝐿 =
1
𝛾2 ∥ SR(𝛾 (𝑊̃𝑡 − 𝜂2 ∇𝑊𝑡

⊙ 𝑠𝑖𝑔𝑛(𝑊𝑡)))

− 𝛾 (𝑊̃𝑡 − 𝜂2 ∇𝑊𝑡
⊙ 𝑠𝑖𝑔𝑛(𝑊𝑡))∥2.

Because 𝑊̃𝑡 is already an integer, SR(𝛾 𝑊̃𝑡) − 𝛾 𝑊̃𝑡 = 0, and thus we can eliminate
𝑊̃𝑡 in the equation:

E 𝑟𝑡,𝑀𝑈𝐿 =
1
𝛾2 ∥ SR(−𝛾 𝜂2 ∇𝑊𝑡

⊙ 𝑠𝑖𝑔𝑛(𝑊𝑡))

+ 𝛾 𝜂2 ∇𝑊𝑡
⊙ 𝑠𝑖𝑔𝑛(𝑊𝑡)∥2.

Similar to the proof of Theorem 5.5.1, we can upper bound it using Proposition
C.1.1, and get:

E 𝑟𝑡,𝑀𝑈𝐿 ≤
√
𝑑

𝛾2 ∥𝛾 𝜂2 ∇𝑊𝑡
⊙ 𝑠𝑖𝑔𝑛(𝑊𝑡)∥

≤
√
𝑑 𝜂2
𝛾
∥∇𝑊𝑡

∥.

Lemma C.1.2 Assume the multiplicative learning algorithm 𝑈𝑀𝑈𝐿 only receives
the sign information of gradients where 𝑈𝑀𝑈𝐿 = 𝑊̃𝑡 − 𝜂2 𝑠𝑖𝑔𝑛(∇𝑊𝑡

) ⊙ 𝑠𝑖𝑔𝑛(𝑊𝑡).
The upper bound on quantization error 𝑟𝑡,𝑀𝑈𝐿 becomes:

E 𝑟𝑡,𝑀𝑈𝐿 ≤
𝑑 𝜂2
𝛾
. (5.8)

Proof C.1.2.1 We can simply replace ∇𝑊𝑡
with 𝑠𝑖𝑔𝑛(∇𝑊𝑡

) in the result of Theorem
5.5.2, and show:

√
𝑑 𝜂2
𝛾
∥𝑠𝑖𝑔𝑛(∇𝑊𝑡

)∥ ≤ 𝑑 𝜂2
𝛾
.
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Evaluations
As shown in Figure 5.3, we evaluate empirical quantization errors from different
learning algorithms when training ResNet-50 on ImageNet. The quantization error is
computed at each iteration by ∥log2 |𝑊𝑈

𝑡+1 | − log2 |𝑊𝑡+1 |∥2. We run each experiment
with a full epoch and average the quantization error over iterations. When varying
learning rate 𝜂, we fix the base factor 𝛾 as 210. We also fix 𝜂 as 2−6 when varying 𝛾.

C.2 Multi-Base LNS
Conversion Approximation
We first recap the dot product operation we defined before.

𝒂𝑇 𝒃 =

𝑛∑︁
𝑖=1

sign𝑖 ×2𝒂𝑖/𝛾 × 2𝒃𝑖/𝛾,

=

𝑛∑︁
𝑖=1

sign𝑖 ×2(𝒂𝑖+𝒃𝑖)/𝛾,

=

𝑛∑︁
𝑖=1

sign𝑖 ×2𝑝𝑖/𝛾,

(C.5)

where sign𝑖 = 𝑠𝑖𝑔𝑛(𝒂𝑖) ⊕ 𝑠𝑖𝑔𝑛(𝒃𝑖).

To understand how we approximate the conversion, we first introduce how ordinary
conversion is computed in LNS. Let 𝑝𝑖𝑞 and 𝑝𝑖𝑟 be positive integers representing
quotient and remainder of the intermediate result 𝑝𝑖/𝛾 in Equation C.5, and let
𝑣𝑟 = 2 ˜𝑝𝑖𝑟/𝛾. Therefore,

2𝑝𝑖/𝛾 = 2𝑝𝑖/𝛾 = 2 ˜𝑝𝑖𝑞+ ˜𝑝𝑖𝑟/𝛾 = 2 ˜𝑝𝑖𝑞 × 2 ˜𝑝𝑖𝑟/𝛾

= (𝑣𝑟 << 𝑝𝑖𝑞),
(C.6)

where << is left bit-shifting. This transformation enables fast conversion by ap-
plying efficient bit-shifting over 𝑣𝑟 whose value is bounded by the remainder. The
different constant values of 𝑣𝑟 = 2 ˜𝑝𝑖𝑟/𝛾 can be pre-computed and stored in a hard-
ware look-up table (LUT), where the remainder 𝑝𝑖𝑟 is used to select the constant for
𝑣𝑟 . The quotient 𝑝𝑖𝑞 then determines how far to shift the constant. Furthermore,
because 𝛾 = 2𝑏, the least significant bits (LSB) of the exponent are the remainder
and the most significant bits (MSB) are the quotient. As the size of the LUT grows,
the computational overhead from conversion increases significantly. Typically, the
LUT is required to contain 2𝑏 entries for storing all possible values of 𝑣𝑟 , which can
be a large overhead for large values of 𝑏.
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A straightforward solution for reducing the size of LUT is utilizing Mitchell ap-
proximation Mitchell, 1962: 𝑣𝑟 = 2 ˜𝑝𝑖𝑟/2𝑏 = (1 + 𝑝𝑖𝑟/2𝑏). However, if 𝑣𝑟 is far
away from zero or one, the approximation error induced by Mitchell approximation
will be significant. To alleviate this error, we propose a hybrid approximation that
trades off efficiency and approximation error. Specifically, we split 𝑝𝑖𝑟 into 𝑝𝑖𝑟𝑀

and 𝑝𝑖𝑟𝐿 to represent the MSB and LSB of the remainder, respectively. LSB values
2 ˜𝑝𝑖𝑟𝐿 are approximated using Mitchell approximation, and MSB values 2 ˜𝑝𝑖𝑟𝑀 are
pre-computed and stored using LUT, such that:

𝑣𝑟 = 2 ˜𝑝𝑖𝑟/2𝑏 = 2 ˜𝑝𝑖𝑟𝑀/2𝑏 × 2 ˜𝑝𝑖𝑟𝐿/2𝑏

= (1 + ˜𝑝𝑖𝑟𝐿/2𝑏) × 2 ˜𝑝𝑖𝑟𝑀/2𝑏 ,
(C.7)

where 𝑝𝑖𝑟𝑀 and 𝑝𝑖𝑟𝐿 represent 𝑏𝑚 MSB and 𝑏𝑙 LSB bits of 𝑝𝑖𝑟 . This reduces the size
of LUT to 2𝑏𝑚 entries. For efficient hardware implementation, we use 2𝑏𝑚 registers
to accumulate different partial sum values and then multiply with constants from
the LUT.
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A p p e n d i x D

APPENDIX - CHAPTER 4

D.1 Additional Proofs in Theorem 4.3.3
Proof of 1
We want to show that for any matrix 𝑾 ∈ R𝑀×𝑁 , if each entry is sampled from
a Gaussian distribution N(𝜇, 𝜎2), then 𝑾 will achieve full-rank (i.e., rank(𝑾) =
min(𝑀, 𝑁)) with probability of one.

Assume𝑀 ≥ 𝑁 without losing generality. We want to prove the following statement:

𝑃𝑟𝑜𝑏(rank(𝑾) < 𝑁) = 0.

Let {𝒗𝑖} be columns of 𝑾, where 𝒗𝑖 ∈ R𝑀 for 𝑖 ∈ {1, ..., 𝑁}. We denote 𝑃𝑖 as the
probability of the event where a column 𝒗𝑖 is linearly dependent on the rest of the
columns {𝒗 𝑗 }, for 𝑗 ≠ 𝑖. If 𝑾 does not reach the full-rank, then there exsists at least
a column that is linearly dependent on the rest of the columns. Thus, by the union
bound, we know that:

𝑃𝑟𝑜𝑏(rank(𝑾) < 𝑁) ≤
𝑁∑︁
𝑖=1

𝑃𝑖 .

For each 𝑃𝑖, it is equivalent to the probability of the event where 𝒗𝑖 ∈ S =

span(𝒗1, ..., 𝒗 𝑗 ), for 𝑗 ≠ 𝑖. Since S at most has 𝑁 − 1 dimension, it is a subspace
of R𝑀 . Because each entry of 𝒗𝑖 ∈ R𝑀 is sampled from a continuous Gaussian
distribution, the probability that 𝒗𝑖 fails into a low-dimensional subspace S is zero.
Thus, 𝑃𝑖 = 0 for any 𝑖 ∈ {1, ..., 𝑁}, and 𝑃𝑟𝑜𝑏(rank(𝑾) < 𝑁) = 0. We can conclude
that 𝑾 reaches the full-rank almost surely.

Additional Proofs of 2
Here we prove that the rank constraint in 2 is persistent through the entire train-
ing. Assume we perform gradient descent during training. The initial derivatives
become:

𝜕L
𝜕𝑾′1

=

(
Λ

0

)
∈ R𝑛ℎ×𝑛𝑥 , 𝜕L

𝜕𝑾′
𝑙

=

(
Λ 0
0 0

)
∈ R𝑛ℎ×𝑛ℎ , 𝜕L

𝜕𝑾′
𝐿

=

(
Λ 0

)
∈ R𝑛𝑦×𝑛ℎ ,
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where Λ =
∑𝑃
𝜇=1 Relu′(𝒛𝜇) ⊙ (𝒛𝜇 − 𝒚𝜇)𝒙𝜇𝑇 ∈ R𝑛𝑦×𝑛𝑥 , and 𝒛𝜇 = 𝑰𝐿 ◦Relu ◦𝑰1𝒙

𝜇 and
𝑙 ∈ 2, ..., 𝐿 − 1. 0 is a zero vector or a zero matrix depending on the dimensionality.
⊙ represents an element-wise multiplication.

As shown above, in the initial derivative of each matrix, the elements are zero
except for a sub-matrix determined by Λ. Because the parameters with zero initial
derivatives stall at zero during the entire training, the rank of each derivative in
𝜕L
𝜕𝑾′2

, ..., 𝜕L
𝜕𝑾′

𝐿−1
is upper bounded by 𝑛𝑥 . Thus, the rank constraint in 2 is satisfied

during the entire training.

Proof of Lemma 4.3.4
We know that:

𝑴 =

𝑄∑︁
𝜇=1

𝒂𝜇 ⊗ 𝒃𝜇 = 𝑨𝑩⊤,

where we define 𝑨 = (𝒂1, ..., 𝒂𝑄) and 𝑩 = (𝒃1, ..., 𝒃𝑄). Since dim(span(𝒂1, ..., 𝒂𝑄)) ≤
𝑈, there are at most𝑈 independent columns in 𝑨., and thus rank(𝑨) ≤ 𝑈. Similarly,
we can prove that rank(𝑩) ≤ 𝑉 . By the linear algebra, we can show that:

rank(𝑴) = rank(𝑨𝑩⊤) ≤ min(rank(𝑨), rank(𝑩⊤)) = min(𝑈,𝑉)

.

Proof of Lemma 4.3.5
Let 𝒙 = 𝛼 · 𝒆2 + 𝛽 · 𝒆3 where 𝛼 and 𝛽 are scalars. Then we have:

Relu 𝑯𝑰∗𝒙 =



𝛼Relu(𝑯𝑰∗𝒆2) + 𝛽Relu(𝑯𝑰∗𝒆3) for 𝛼 > 0 and 𝛽 > 0,

𝛼Relu(−𝑯𝑰∗𝒆2) + 𝛽Relu(𝑯𝑰∗𝒆3) for 𝛼 < 0 and 𝛽 > 0,

𝛼Relu(𝑯𝑰∗𝒆2) + 𝛽Relu(−𝑯𝑰∗𝒆3) for 𝛼 > 0 and 𝛽 < 0,

𝛼Relu(−𝑯𝑰∗𝒆2) + 𝛽Relu(−𝑯𝑰∗𝒆3) for 𝛼 < 0 and 𝛽 < 0.

Thus, it holds that:

span ({Relu 𝑯𝑰∗𝒙 |𝒙 ∈ R𝑛𝑥 }) = span(Relu(𝑯𝑰∗𝒆2),Relu(−𝑯𝑰∗𝒆2),Relu(𝑯𝑰∗𝒆3),Relu(−𝑯𝑰∗𝒆3)).
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After a simple computation, we also know that:

𝑯𝑰∗𝒆2 =

©­­­­­«
1
0
1
0

ª®®®®®¬
− 𝑯𝑰∗𝒆2 =

©­­­­­«
0
1
0
1

ª®®®®®¬
𝑯𝑰∗𝒆3 =

©­­­­­«
1
1
0
0

ª®®®®®¬
− 𝑯𝑰∗𝒆3 =

©­­­­­«
0
0
1
1

ª®®®®®¬
.

Therefore, the four vectors are linearly independent, and thus:

dim (span ({Relu 𝑯𝑰∗𝒙 |𝒙 ∈ R𝑛𝑥 })) = 4.
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D.2 Details of the experiments on MNIST
We train a network F defined in Theorem 4.3.3 with depth 𝐿 = 3 on MNIST, where
𝑾1 ∈ R2048×784, 𝑾2 ∈ R2048×2048, and 𝑾3 ∈ R10×2048. We initialize 𝑾1 = 𝑯𝑰∗,
𝑾2 = 𝑰, and 𝑾3 = 𝑰∗. The network is trained for 14 epochs using SGD with a
learning rate of 0.1. We compare ZerO with Kaiming and Xavier initialization under
the same setting. All candidates achieve test accuracy above 98% after the training.
Figure D.1 shows the weight distributions at different training iterations.
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Figure D.1: Weight distributions at different training iterations.
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CONSENT FORM
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