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INTRODUCTION

Anyone having frequent recourse to the Stuve,
Neuhoff or Rossby diagrams must soon realize the tedious-
ness of the operations involved in calculating repeatedly
such quantities as w eEand altitude. There are two dis-
tinct objections to these types of diagrams: The first
is the complexity of nets or grids (systems of lines for
arbitrary constant values of variables). ©Not only is
time wasted in following a given line to its coordinate
or value, but the process is physically detrimental to
the eyes and is a frequent source of error. The second
objection is the small number of soundings for which one
sheet may be used, if w or altitude must be found. The
following treatise is an attempt to replace tnese diagrams
within a limited scope by other means: one nomographical,
and one mechanical., The scope covered by these means 1is
confined to the calculation of thermodynamical quantities,
and cannot present a graphic picture of a RAOB or APOB
sounding, nor is it applicable at present where the concept
of work is involved, as in fog formation and dissipation,
or in the probability and characteristic levels of a
thunderstorm.

Since at the present time RAOB and APOB teletype

reports include altitude, pressure, temperature, relative



humidity and mixing ratio, the only essential thermodynamic
guantity each office must calculate itself is OE , the
equivalent potential temperature, The computation of this
guantity is easily accomplished either by a nomogram or

a slide rule. However, both these instruments may be
employed further, particularly the nomogram. With the
latter will be developed methods for obtaining w, 6, 8, ,

z and necessary associated quantités, of use both at the
sounding station and at the transmitting center, where
these guantities must at present be conmputed.

An examination of the following charts will in-
dicate their simplicity of construction and of operation
as compared to the diagrams now in use, The slide rule
has one added advantage, namely 1ts compact size, but has
not been considered as thoroughly as the nomogram, because
of the possibility of adding numerous other diagrams upon

the latter without being cramped for space.



Chapter 1

An Outline of General Nomography.

Before any charts are to be developed it would
be well to consider briefly the construction of nomograms
in general, and the properties of the types herein employed.
Unfortunately the nomogram is known too little in proportion
to its usefulness in the repeated solution of a formula or
equation containing three or more variables., 1In any Cartesian
graph this involves a set of lines in addition to, and in-
tersecting, the lines parallel to the values of ordinates
and abscissae, Thus the general eguation

f(x)+£f(y)+ £(z)=0

when plotted upon Cartesian principles would appear as in
Fig I. If now a fourth variable appears in our ecquation,
still another net, forming a grid with the former net, is

added, as shown in Fig ITI: w 222
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There is but a single nomogram--termed a third
order nomogram from the number of its variables--correspond-
ing to Fig I, but there are a number of alignments or
nomograms corresponding to Fig II, as we shall see later,
Thé general third order nomogram will consist merely of
three lines, as shown in Fig III. Each of these lines

is graduated according to definite functions of the type4

X, = 8(x) Yo = h(x)

Xé g(y) Yo = h(y) etc.,

where X, and y, are the corresponding Cartesian grid
supports, and are never shown upon the nomogram in practice,
but only considered in choosing suitable scale factors

and graduating the necessary lines. These supports may be
of the simple type indicated in Fig IV, or of the more
genefal type shown in Fig.V, involving oblique Cartesian

coordinates, so that the range of values to be considered

will be .included upon a reasonably sized sheet.
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The procedure of solving for a dependent third
variable can most readily be seen from Fig III. A straight

line or edge--sometimes referred to as the index--will be
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laid from A to B in such a manner as to intersect the
given variables at y,,and zsgfor instance. Then the
value of x uniquely corresponding to the index would
be Xen .

For a rigorous proof of the validity of these
operations one should refer to a standard treatise on
Nomography, several of which are listed in the Biblio-
graphy. Here but a general idea of the development of
this chart will be sketched., From Cartesian geometry
it will be recalled that the general condition that three
points of P, (%, ¥, ), P, (X, ¥5 )» Py (x5 y5 ) lie upon

a straight line is given by

X, oo 1
(1) X9 ¥p 1| =0
Xz ¥s 1

A relation must then be found between P, , P, , and P; ,
and the position of three corresponding variable points
so that for every given set of values of Py 3 P2 s and Py
there will correspond three collinear points. This is
accomplished by considering the parametric form of the
equations for each P, The parametric forms corresponding

to equation (1) above may be written

X, = x, = f(x) Yo= v = g(x)
%= S Ty) Yo= ¥2= 8(¥)
X = X,= £(z) yo= y3= g(z),

and if maintained in this order x,and y, may be considered
the Cartesian grid support upon which the loci of the

curves for X, ¥, and z may be constructed.
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Quite frequently the set of values interested
in, result in scales of widely differing size. In some
cases it is possible to introduce arbitrary constants,
termed scale factors, so distorting the scales as to
even up their extreme values, Thus if we have the
equation

f(t)+ £(w)+£f(z) =0
and arbitrarily let
x =4f(t)
and y =A4f(w)
we will have three equations in x and y:

0

1°x+ 0y —mf(t)

Oex+1¢y =4 (w) =0
kx+ay+ f(z) =0
The condition that any three points as loci correspond

to given values of t, w, and z gives us the determinant

(2) 1 0 - f£(t)
0 1 - f(w)|= 0.
=, /J‘ZJ i(z)

The latter will be termed the primary constructional form,

as contrasted to the primary basic form

£(t) 0 1
f(w) 1 of= 0.
£(zy 1 1

There are no set rules for the method of filling in the
various rows and columns of the latter; ana experience
and trial and error are of prime necessity. Nevertheless,

in the forms to be developed hereafter, as close to an
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inductive reasoning as possible will be presented, rather
than merely the final or reduced form.

To obtain the reduced form, from which the
nomograpnical functions may be constructed, one must
realize first of all the form towards which he is striving.
For a third order determinant an examination of equation I
will show that no row may contain more than one variable.
Hence even in the primary form the terms must be so arrang-
ed that no two variables appear in a single row. Further,
one column must consist of unit values only. Hence we
shall manipulate the determinant by columns, never by rows,
so as to obtain unit values in one column.

It would be appropriate to mention here the
properties of determinants which we shall use:

1) If all the terms in a row or
column are multiplied or divided
by the same number, the value of
the determinant will be multiplied
or divided by that number.

It follows a zero-valued determinant
may have a column multiplied or
divided by a number without change
in value.

2) If the terms of two columns are
identical or any single column
elements all consist of zeros,
the value of the determinant is
zero,

3) The value of any determinant re-
mains unchanged if to the elements
of one column are added a constant

times the corresponding elements of
any other column.

4) The sum of two determinants, two of
whose columns are identical, is a
determinant consisting of these
columns and a column whose elements
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are the respective sums of
corresponding elements of the
dissimilar columns.,

In the 1light of the above we would add the
second and third columns of eguation & and divide the
third row by 2 obtaining

£f(t) 0o 1 £f(t) o 1 £(t)
(4) f(w) 1 of=|f(w) 1 1 £ (w)

= O

1
1|z o
-f(z) 1 1 I-f(z) 1 2 ksf(z) 1

W=

The nomogram corresponding to the reduced form is thus
seen to consist of three straight lines, with f(z) equidis-
tant between f(t) and f(w).

A similar manipulation of the constructional

determinant gives us:

1 0 -£(t) |1 0 £(t)| 1 o £(t)

) ozlo 1 -f@={1 1 @ |=|1 1 £
! L M

g 0(2) | |tk £ 11 5%, 2 ()

Comparison of (5) with (4) shows that a certain latitude
of scale scale factors has been introduced into the con-
Sﬁructional determinant, which may permit of a better
distribution of curves.

There are a number of methods of forming nomo-
grams of the fourth order and higher, One is to resort
to grids. ©Since this is what we are secking to avoid,
we will merely mention it in paessing by indicating the
general solution of

(6) f(w)+E(z)+L(L)+£(v) = 0O

is possible with a net as shown in Fig VI:



f(v) F(w)

[ Ty @

Fig VI | Fig VII

Another method is often possible when the
functions are capable of being separated into two separate
parts, of two variables each, neither of which appears in
the other, Thus if in (6) we let

£(u) £(w) = Q= £(t) £(z),

we may form two separate nomograms, as shown in Fig VII,
with the Q function identical for both alignments, and
hence unnecessary to scale or graduate, This type will
be used frequently, and will be termed a double-set nomo-
gram.

A third method, termed the set-square, will
also be fregquently employed. BEssentially it consists
of two nomograms, as does the double-set, but with the
supporting Cartesian grid of one rotated through 209, so
that the two indices are at right angles. By this device
a formula involving four variables may be solved by a
single setting. Without going through the projective
transformations and rotations necessary to develop this

type, it will merely be stated here that if a determinant



of the form |
[f(u) g(w) 1 1
£(v)  g(v) 1 1|
Pw) g 1 of -
£(t) g() 1 o0

may be found, the four necessary functions will be
constructed as shown in Fig VIII for ordinary rectilinear

Cartesian supporting grids or axes, and as in Fig IX for

oblique axes,

4

4

Fig VIII Fig IX
The most complex type we shall wish to solve
will be of the form
flu)rg()f(v)+f(w)+£(t) = 0,
or of such a nature as to be reducible to the above form.
'The solution of such forms as
f(u)+g(u,w)f (v)+£(w)= 0
will not be attempted because of the excessive number

of settings required.



Chapter II

THE CALCULATION OF w

The mixing ratio, w, for air is given by the expression

(1) W = ch/—g%, 2

*
where e is the saturation vapor pressure
r is the relative humidity, in %
and p 1is the total pressure of the air,
To conform to general practice, we shall express p and e
in millibars. The factor .622 1s merely the ratio of
the gas constants for dry air and water vapor, and is
used in the definition of w to simplify other thermodynamical
expressions. For the purposes of nomography it is best
that each variable be iIn a separate term; hence we shall
take the logarithm of both sides of (1), obtaining:
(2) log w - log .822 - log r+1log (p-er) = 0.
It ndw we assume the product er small in comparison to p,
we obtain the approximation
(3) log w - log .622e¢ - log r+ log p = O.
With this relationship between our variables, we shall

cordstruct a double-set and a set-square nowmogram,

% Brunt, pp. 99, Equation 7
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A: DOUBLE-SET NOMOGRAM

Equation (3) mayv be rearranged so that
(4) log w - log r = log .822e - log p.
The reason for this particular grouping will become
apparent later in our choice of scale factors. To
arrive at a constructional determinant, let
X = _Mlog w
y = MHlog r
in the left hand part of equation (4). We may then form
the three equations:
lex 4+ Qey -uv log w = O
(5) Oex+ ley- . logr =0
;«“lx—j@y-qv = O.
The condition for consistency of this set in x and y is

1 0 - log w
() . |0 1 - log r|= 0.
4 .
l"/“z"Q

Upon changing the signs of the third column, adding the
first and the second columns, dividing the third row by

A2z, and rearranging the order of the columns, we obtain

/""//(/lz

1 1 log w log w 1

(7) 0 1 log r|= |logr 0O 1|= 0.
A _A
Pa, Za g Q eq = 1
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In the same manner we may construct from the

right hand part of (4), the following determinants:

1 0 -/log .622e nlog .GZ2e 1 il
(8) 0 1 -=«log p =lulog p 0O 1|= 0.
e s e M5 4y W
e B = A

If r is to vary from .10 to 1.00, w from 0.5 x 1U to 20 x 10,

p from 100 to 1000 mb., and e as a function of T, the

absolute temperature of the air, is to vary from 2 to

approximately 150 mb., the apparent spreads in the various

functions will be given roughly by:

log .10 to log 1.00 - , or -1.00"
log .0005 to log .02 , Or =3.,3
log 100 to log 1000 5 OF 20

log .622 x 2 to log .622x150, or 15
Appropriate scale factors would then be:
S =M= 0,50
My =M= 1,00,
As in many cases to follow, the absolute limit

mone variables will not be considered, because

to
to
to

to

of
of

0.00 (for
-1.7 (for
5,0 (for
2.0 (for
one or

the ten-

dency for the function to go rapidly towards infinity, as

would the functions log p and log r above. Nevertheless,

we may choose as end values such limits as are not usually

exceeded in practice., As for the lower limit on e, this

will depend upon whether the vapor pressure is taken over

super-cooled water or over ice, and the dilemma 1s avoided

here because of the infrequent use of w at low temperatures.

Our constructional determinants mway now be

written as

r)
W)
p)
e)
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(9) 0.5 log w 1 1 0.5 log.62%e 1 1
log r 0 1] = llog p o 1| = 0.
Q 2 1 Q 2 1

It must be borne in mind that Q will necessarily have the
same value (be coincident) in both of the third order nomo-

grams, whose scales, grid supports, and values are sketch-

ed below in Fig I and Fig II: y e AX
|
I
-53.0 /4',
- / .
Pr ]
L | /
+/
[ i /
[ S L2.2
! ! ‘
j I Q
: ‘ /
|
120 {--2.-20 : //
r jad @ I/
L
\
Fig I Fig II

The nomogram, in Chart I, is then constructed
from the values tabulated in Table I. A 10 scale (i.e. 12
units per foot) was chosen, with each unit considered one
tenth its assigned size in the y direction; and because
the second column may be multiplied by any satisfactory
scale factor, the scales are merely separated horizontally
by equal distances of 3.5 on the ten scale.

It will be noted that the scales of p and r
are coﬁstructed to the same logarithmic scale factor, and
hence may serve as the A and B or C and D scales of a

slide rule if necessary,
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Since these scales coincide, one of them must
be reproduced upon a different line, oreierably that of
Q. Values are then multiplyable provided that the index
line remains parallel for the two settings. If values
of e are graduated upon the T scale, then values of e, ,
the actual vapor pressure may readily be computed if

desired.
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B: SET-SQUARE NOMOGRAM

Equation (3) may again be regrouped as:
(10) %(log e—logzgg-log w]+]%(log-e-logz%9+log r] =0
It will be noted that two of the variables are split and
hence appear identically in the two groups. The reason
for this will become apparent below when it will be de-
sired to combine two third-order determinants into a
single fourtn-order determinant. We may now write each
bracketed group, expressed as a determinant, so that
+ log e 0 1 3 log e o 1
(11) log w 1 O]+ |-logr 1 0of= o.
$log-f; -1 1l ls1leg; -1 1
Equation (11) may now be expressed as a single determinant,

because we have two rows identical. We obtain:

-log r 1 0 1

log w 1 0 -1
(12) , =0

% log € 0O 1 o0

$log, -1 1 0O

Upon shifting the minus sign of the fourth column into
the first row and changing the sign of the latter, and
then adding the fourth column to the third column, we
obtain: log r -1 0 1| |log r -1 1

log w 1 0 log w 1

(18)

i

oo L

1 1
z loge O 1 0|l |z1loge 0 1
0 1

3 log-5, -1

622
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It will be seen that the above form is that
of a fourth-order nomogram employing a set-sguare index,
as mentioned in Chapter I, with all four variables being
straight line functions, due to the absence of functions
involving variables in the second column. Although a
constructional determinant could be developed, the con-
sideration of the end values of the various functions
precludes the necessity of proceeding beyond the basic,

for the apparent spreads will be given roughly by:

-1.00 to 0.00 (for log r)
-3,3 to -1.8 (for log w)
0.20 to 1.1 (for £ log e)
1.10 to 1.60 (for » logtm)

The scales, values, and grid supports may then

be diagrammatically sketched as in Fig III: A X
*Y. /1/.
P o=
< ]
/’) +€
7~
. L e — Jay
S X I
l\.l 1 4 } AY
e =f(7) 15\
[
1+ N\
1+ \
fh P .
P 3 30 3.3
Fig III "

The values of major points are calculated in
Table II, and plotted upon a 20 scale, whose unit values
may be considered to be divided by 10. The ratio of
2.4

obliquity of the axes,éﬁ was taken as3or 77, and it

will be noted that this ratio must be applied to both
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grid supports.

As in the case of Chart I, two of the scales
constitute an ordinary slide rule; these scales in this
case are the r and w scales, Hence the quantity e, may
be calculated by a single operation upon these scales,

If greater accuracy is desired, a constructional
determinant may be used, but the basic is deemed satis-

factory, the maximum scale-spread ratio being only 2.
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Chapter III

THe CALCULATION OF e

The potential temperature, &, is defined as
. R 288
1) =T (F), ¥
where T is the absolute temperature

p is the pressure of the parcel
of air

and p, 1is the standard-level pressure
of the air

Since p, is usually taken as 1000 mb, p must also be ex-

pressed in mb, The quantity .288 1s the numerical value

of};j Oréé}for air. If instead of p we use By s the

partial pressure of dry air, we obtain &, , the partial
potential temperature., If now we arrange (1) in loga-
rithmic form, we obtain

(8) -log @+log T+ .288 1oglg?= 0

or log T 0 1

.288 log";,”l 0= 0.
log © 1 1
Upon adding the second and third columns of the latter,

and dividing the third row by 2, this becomes

log T 0 1
.288 1og£gf 1 1= 0.
zlog © % 1

If we allow T and & to vary from 240 to 340 C,
and p from 1000 to £00, the ratio of spreads does not

oo o o D O D P S T SD Y ST T S BT D s e T O Gy . >

% Brunt, pp. 38, Equation (34)
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exceed 2, so that a basic determinant will suffice for
illustrative purposes. An obligue system of grid
supports must be introduced, such that the ratio%?’g{g =19.67.

The diagrammatic sketch of the chart thus obtained, re-

produced as Chart II, is shown below in Fig I,

Y p e P .
255% 2 ’
Tk

T
. 1E _ ~X
296 4. €0 60,
e
| L P ’
! A
| o
-
| o
|
v
Fig 1

A1l values of y have been arbitrarily multiplied by a
scale factor of 100, and the chart is laid off on a 20
scale,

In practice the gquantity © is not usually de-
sired; instead §; 1s sought. Rossby¥* has prepared a
table of corrections to be applied to 8 to obtain ed.
However the computer in practice is more bothered than
helped by the necessity of using another table, so we
should develop either a chart giving us ed directly,
or else obtain it as a special case from a e chart,
considering w=0. Both these methods will now be

developed.,
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Chapter IV
THE CALCULATION OF 84
A: DOUBLE-SET NOWMOGHAM

Wnile the quantity 64 1is not employed suff-
iciently in practice in an accurate fashion to justify
its inclusion as a separate series of scales upon a
master nomogram, when 6 or 8y may be obtained as a
special case of 6 , it will nevertheless be instructive
to construct such a chart.

The exact definition of 64 occurs in:
e B05

)00

(1) = T2

While in the form above any nomogram is difficult to

construct, if we substitute the variable w for r, where
(2) w = 6225 47= .622 ,
we have approximately:

= m/°°° 288
% TF T
e T(—f;—@” ) ’

t o= T Y
where w b=grr o

The latter is separable into two distinct equations,

such that

A 5047 _./ oo
4 A7 = =%,
|

where (%) has been raised to the exponent ;. Upon
taking logs of (4), we obtain

(5) log Q log + log w'=log Q+3.47log T-3.471log © =0
If we let

X =4 1og Q
¥ =/‘f;l°g wt,
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the three equations obtained are:
(6) l*x+ 0*y —=4log Q = 0O
Oex + 1*y —/%log w'= 0
!

g
=X+ T4+ log-—cm Dy

The consistency of (6) requires that
1 0 log Q
(7) 0 1 _AMzlog w'|= O,

4L P
Ju, g —log 7o

Upon adding columns one and twe, and dividing the third
row bycéfffg we obtain
) 1 0 _4log Q
(8) 1 1 _Alog w! O.
| ;ﬁ%g,}%ﬁ?og ?
Similarly, for the second part of (5), if we

let
X =Mlog Q
¥y = 5.4Zﬁlog T,
we find that
1 0 log Q
(9) 1 1 %.47 log T|= 0.
e i TNy

AQ+ A A b Ay
A consideration of the spreads desired in our

variables leads to the choices:

A= 667 A= 667

43= 20,0 Ay = 2,0,
so that the scale factor for Q is the same in both nomo-
grams, and there 1s a great magnification in the w scale.

A glance at the diagrammatic sketch Fig I and Fig IT will
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indicate that this magnification is accomplished at
the expense of a tendency for coincidence in the Q and
p scales; since the p scale is used in conjunction with
the w scale, no loss in accuracy results, as long as w

is not the variable sought,

tY X
g /ﬂ Y T
p / f
s Fa!
/ _ t9d (720
/ i b
/] 6| e 1
i / B
L/
1/ i ] s
LesH Y t | -2 J
/ 45 _ 430 .--Q/J-_‘{_ 33.75 | ;.65
= o ke, l
\\+\
Fig I Fig 1T =>4

Chart IV has been constructed upon a 60 scale,

from values tabulated in Table
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Chapter IV

B: SET-5QUARE NOMOGRAM

While a satisfactory double-set chart may be
constructed, it has not been possible to construct a
set-square diagram with scales more evenly distributed
than that developed by Millar, The reason for this will
become apparent when we find that the constructional
determinant employs the same scale factor for tne two
variables with ranges most dissimilar,
Equation (&) may be written:
(10) [;(5-log p-log w!')+53.47log T+ [s(5-log p-Logi!)-. 47108 FO.
If we let
(11) Q = 2(&-logp-logw!')+5.471logT = -3 (3-logp-logw' }+5.471logd,,
two separate determinants may be formed. To obtain the
constructional forms, let
X =4(3 - log p)
vy = 4, (log w');

if we include the Q term in the T and 0 <functions, we

have:
(12) |1 1 >4(3-log p) 1 0 -4(3-log p)
0 1 sAlog w! = 1  -A4log w!' =0
/ ‘ I ~ i
iy , 6.94 log T =2Q .ﬁé =, -6.94 log 6p=Q

Each of (12) may be considered as composed of two sepa-

rate determinants,
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1 0 -=4(3-1log p) 1 0 O
(13) [0 1 -4log w! -0 1 0 |=0,
L L g
4 6.94 log T :%é ;g; 2Q
and
1 0 -=4(3-log p) 1 0 O
(14) |0 1 -slog w! -0 1 o0 |=o0.
I A4
by w6494 log o L & -2Q

Expansion of the right-hand members of (13) and (14)
shows us that these determinants have the values 2Q

and -2Q respectively. We may then add the left-hand

members:
1 0 - (3logp)l L 0 -=4(3-log p)
(15) |10 1 - log w! +/0 1 -=4log w! = 0,

or, upon combining into a fourth-order determinant:

1 0 -«(3-log p) o

0O 1 -4log w! 0
(18) ) = 0.
<+ j% $5.47 log T -1

2 =3.47 log 9, 1

2. Ay

We shall clear the first two columns of fractions and

subtract one from the other, change the sign of the
third row, add timesthe final column to the first, and
divide the rows so that the first column contains only

1lgs

A 0 - (5-log» O 10  (3-log p)
Ay Ay = log Wt 0 La _ 1og wi

0
0
0 -1 6.941ogT 1/ | 41 6,94 log T 1
1

-6.94 9
o 1 log &1 A1 6.94 log ¢



or,

1
1
(17)
1
1

24

0
i

-1

1

(3-1og p)
log w!
6,94 log T
6.94 log 6y

0
0
1

1

We see that the same factor multiplies both

the p function, and w,.

Since the spread in log w!' is

very much less than that in log p, no satisfactory chart

has been found. It is possible that other solutions

exist, but, there being no inductive method of obtaining

such, we must be satisfied with (17) or its equivalent,

developed by Millar.
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Chapter V
THE CALCULATIOK OF 6,
A: DOUBLE-SET NOWOGRAM

The defining equation for 6., the equivalent
potential temperature, will be taken as
Lw

(l) GE . Qdecf’r,*

or upon taking logs:
1ng, = 1n@,+ 7.

Substituting the value previously given for 8, , we obtain

(2) cpldg T—ARlneéﬂ%¥~cplnq;= 0
We shall regroup (2) so that
() AR log p +(c (106, -ARInp, )-Q = O

Lw -

cplnT+E:% -Q@ = G,
where the arbitrary function Q has been introduced so

that each equation contain only three variables. The

second of (3) suggests the following constructional sub-

stitutions:
X izﬁARlnp
v =MQ ’
or
x+0¢y -4,ARInp = O
O'Xfy‘;u¢Q4'0 =0
X -y +C,1ne -p = O
dhere” T o7 Fre ?

P = ARInp, .

The consistency of this set of equations requires that:

% Brunt, pp. 97, equation 55
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(4) 1 0 _4ARInp
0 1 A Q = 0.
I - -
Ay :‘{'—q- CP ]'ngE+PI ‘

Upon adding the first and second columns, and dividing

the third row by , and rearranging, we obtain
A, AR1np 0 &
(®) | 49 1 1|=o.
%(P—Cplne,s) e, 1

The first of equations (3) may most easily be put into

a basic determinant:

Lw -1 0
- L& -
(6) qunl - 1 O
Q 0 1

In the above form the variation of L with T has been
neglected; in some forms this would not be advisable,

but we shall see that the scale of T chosen will be too
small to be affected by this simplification. If desired,
the variation may be easily included. Upon adding the

second and third columns of (6), dividing the second row
[+ T

by , and changing the sign of the first row, there
results:
- LW 1 1
2
(7) CoTAnT i LI= B,
L[ #+T) T
?/2 . 4

As we shall see, the scale of w and T are so
dissimilar that a constructional determinant is required,
This may be derived if the variables of (3) are rechosen

as separable terms involving non-separable functions of
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several variables., Without developing this form in
detail, we may immediately form the constructional
determinant corresponding to (7) by analogy to one of

the basic types listed in Allcock and Jones*, as

g J_)
8 acp T T 0 (e 1lz o
8 W+mse(FT D 20 ()45 :

where au =M - 4.

If we clear the denominator of the second row, we have:
b

__4:9-5_“—' 1 1
' T / -
o [ =l
®/2. 0 L

where T'= A4+ A4 (L+T) =4 +4T
Equation (2) will be reversed with respect to its grid
supports by subtracting the third column from the second:
- S W 0 i
/

2 4
(10)/';2___55?“{_,.__/'"7‘ ,4{; 1= o.

9/n i 1

Close comparison of (10) and (5) leads us to

the conclusion that the most practical position of scales
is such that the @ scale is approximately in the center,
with the T and w scales slightly smaller than those of
por 6 . The value of Q will then be centered somewhere
near the center of' the diagram, and no solution of &,
will then occur beyond the chart, even with maximum

magnification of the scales, This may be accomplisned

#pAllcoek and Jones:
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if we impose the conditions that 4, and_ 4, are negative,
while 4; and 4 are positive,
Consideration must now be given the spreads
of the basic functions:
8 from 250 to 360 , or c,lng -P from .85 to .94
p from 100 to 1000, or ARInp from .32 to .48
T from 250 to 300 , or 545427—and 1- %uvariable
w from O to 20 or _%fi from 0,00 to 5.9
Whatever oblique system we adopt, changing Q and the
spread of T with reference to the grid supports, but not
in mathematical value, we must still impose the condition
A42) A4y 5 in order that the spread upon the w scale be re-
duced to comparable size with other scales.
We may now construct diagrammatic skétches of

the two nomograms sought:

9

P @ & b
: T . T
A S ! -- /I(
4 . T i o+ { :

|

S f l . P!
\\ | l | 1

~ L
~ ' ~ |
\\ | \\\ : : I
~ | ~ [
Ty S

F:g I Fig Ir

The nomograms of Fig I and Fig II will be
employed later in the master nomogram, For the purposes
of simplified induction we shall here employ a set of
positive scale factors, whose values may be determined
more easily. In this case the Q scale will be an end

scale in the w-T nomogram, leading to a smaller spread
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upon the T scale. The sketches for this case are shown

below in Figs III and IV:

Y
+Y Q QE Q -:: 2
| i 2
-+ &3 4 i
Wl Figxm TI e L P
i
I | -
:_:\\ \‘EIQJ ]
L O~ Y o dos__bs_£_]
i gt , t -
~/48 '\l'\l ' [
! R ! s g I
L__ _lo ——-ié_-l ; //

The values chosen Wé?;/ﬁ,z R00, 4= 5y = 1, 4= 5o
It will be noted that the latter values of 4, and,/@are
those reducing (5) to a basic form., The values have been
calculated and listed in Table V , and plotted upon Chart
v , using a 20 scale, It will be noted that the extreme
obliquity of coordinates in Fig III further contracts

that T scale spread, decreasing accuracy somewhat,



30

B: SET-SQUARE NOMOGRAM

From equation (2) we saw that

(2) cplnT - ArlnPﬁi -c,log & = O,

F
This may be separated in such a way that two of the
variables are repeated:

(11) EAnT-ARInpr) - (-grlnm@[,lneg -ARlog p, -9 = O.
For the sake of brevity let

(12) B

The constant D, has been included with the term involving

AR
- -C—F—lnpo

qi'merely to maintain positive logarithmic values, and
could be employed with any of the other functions. If,
now, we assign the value Q to each of the quantities in

parentheses, we find:

W -1 0 W 1 0

_— L
(13)[%1lnT & 1= Q F@MnT)(-F) = 1
AR1np 0 1 P (1n9E -PZ) 0 1

Since these determinants are not zero-valued, we must
carry along upon both sides any operation we perform;
however, it will be found that these operational factors
finally cancel out, Upon changing the sign of the first
row of the first of (13), adding its latter columns, and

dividing its middle row to obtain unity there results:

-W 1 1l
T AT L Litle
(14) e o YTl Ea.

ARlnp 0 ;1
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Once again the derivation of a constructional form
corresponding to (14) involves the formation of a new
set of variables; rather than develop this, we shall

take the general analogous form listed in Allcock and

Jones, obtaining:

(15) - <tw 1 1
STk _ L =
,L.j’j*-« = 1 ( 7 ) Q .

ARlnp 0 1

Similar operations upon the second of (13) gives us

—tifw 4 2.
/30 T ./4’1" +2T~ -
(16) _———ngédf = 1|¢) =g,
cP(ln%;%)" 0 1
where T' = L4~ apA L+RT)
= L4+4T.

Subtracting the last two determinants, we have

l; w 1

(17) 2 CoT AT ke
F T

ARlnp 0

or upon combining into a single determinant:

cp(lng~p) 0 1 1
ARlnp 5 1 =4
(18) _ = 0.
/‘fyczl/gnT /’__ﬁff_é'_ 1 0
7! et
Ly 1 1 0
‘/((I " -

If we change the sign of the second row, add the fourth

colum to the second, and divide the third column byZs,

we find



c,(ngp) 1 1 1
. ~ARLnp 1 -1 1
U9 Nt 1 T o O
e S
o W

A cénsideration of the desired spread of
variables leads to the choice
Ms = 2eBy=
actually these scale factors are not separate; rather

the ratig/@ is the single arbitrary quantity, for

T __/U//.v" f(_a_;__, 1+ A —/3T.

/éé, =l 2

The diagrammatic sketch resulting from (19)
is shown below in Fig V and Fig VI, with the values taken
from Table VI ,
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Fig Vv Ny Fig VI

The angle « has the assigned value

M o 2T .
/-Zgé/‘ /53_‘2 b -109.

From these figures Chart VI has been constructed, using
a 20 scale. Approximately the greatest magnification
possible has been utilized, but the w scale is still

smaller than desirable; while this scale may be increased
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very simply by increasing the ratiofé%, it will be found
that the distance between the T and w scales increases
rapidly., The possibility of a negative ratio has also
been investigated; it is found that the spread in the
T scale decreases too rapidly because of the extremely

small « necessary.
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Chapter VI
THE CALCULATION OF ALTITUDE
A: DOUBLE-SET NOwOGRAM

From a consideration of the hydrastatic pressure
of a colum of air, Equation (1) may be deduced:
(1) P=R 5H
where P is the pressure at the altitude z,
P, is the pressure at altitude z = 0

T is the temperature of the column
of air between z = 0 and z = z.

g 1is the value of gravity

and R is the gas constant for air
Equation (1) is strictly valid only for an isothermal
column, but little error is introduced if the mean temper-
ature of the column is employed, as is the case with the
Stuve diagram, Also variations in g with height and
locality will be neglected, and the standard value of
the acceleration of gravity employed. Extracting the
natural logs of (1) we have:

(2)  1n PE+ &%= ox,

where 4Z is the difference in elevation
between the pressure levels p and p, ,

and T the mean temperature between p and P,
If now we let
X =,A,ln-%%

()

- — —— —— — T > Dy S e e o M

Brunt, Pp. 954, Equation 14
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the following set of equations is obtained:
(4) Hx +hdy+ 0=0
X + O'y—/«.&%: 0
O°X +y =tpgsz = 0.
The condition that these be consistent in x and y is:
%, sEe 0
(5) 1 0 —«une= 0.
0 1 -4 g4z
Upon changing the sign of the third column, adding the

first to the second, and dividing the first row by

we have:
Zar A O ||t EEar O
(6) 1 0 amlE|l 0 _atbE 0.
o 1 4927 |1 1 92
The conditions we shall impose upon end values
are:

gsz, 0 to 5 x 107, cm®: sed?

RT , 5 x 10°x 2 x 10°t0 & x 3 x 10°
Bé s Bei0 to 1,00,
Since the diagrammatic sketch of Fig I shows us that
and 2z are graduated in opposite directions, necessitating
an oblique system of grid supports, appropriate values
for the scale factors would be:
A= 0,0
(7) |
A= 0,0 x 10

The constructional determinant then becomes:

11.51og 0 1
4.9x10a4z 1 1| = 0

0 e ¥
5+.0143T
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The values according to which the scales of Chart VII
have been graduated are listed in Table VII, which also
contains the scalings for Fig II. A larger scale for

T and Az could be used, but was not deemed justified by
experimental data. Since in practice the ratio P/Z is
not known, while p and p, are, a nomogram solving this
ratio must be included, with the same P/B scale, Since
we want

Q = P/

(23 log @ - log p+1log p,= O,
where the Q scale is the same as the P/p, scale in the
altitude nomogram, the determinant resulting will be:
log @ 0 1| [log Q o 1

(@) log p, 1 0/=flogp, 1 1/=0.

logp 1 1] |glogp 3 1
The second determinant results from adding the second

and third columns of the first, and then dividing the
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third row by 2. A diagrammatic sketch of the resulting
nomogram is shown in Fig II, It will be noted that the
direction of the y grid support has.been chosen positive
downwards; this leads to a pressure scale with decreas-
ing pressures upwards, to which the computer is accustom-
ed upon adiabatic charts, and which will enable this
scale to be used with but a change in scale factor upon
the composite master nomogram later to be developed.

There is one undesirable feature of this
choice of variables: Az is calculated rather than z,
and any mistake in a previous calculation will enter
into all succeeding calculations of that particular
sounding, and is not readily detected. Personal errors

in setting, of course, will tend to cancel out, however,
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B: SET-SQUARE NOWOGRAM

The differential altitude may also be found
in a single setting by a set-square nomogram. We may
split " (2) into two parts such that

(10) lnp+?2§‘$= g = lng, =12

XRT®
If now we let

x =4, (1np-Q), and x = (1np, -Q)

Y S48 22 Y =ugaz

we obtain the sets of equations:

x+0*y —-4((lnp - Q) = O
(11) OeX +Y =44 842 =0
2 x ﬁj;yz%;4-o =0
and
X+ 0ey —4i,(Inp, - Q) = 0O
(12) OX +Y =482 =0
;X ‘;éyzé? +0 = 0.
The conditions that these be consistent in x and y is
that
1 0 ou(Inp-Q)| |1 0 —(lnp -Q
. 0 1 —“UBAZ =0 i - 842 0.
(1) ot 4. ’ . 7
4 @‘?p{; 0 /:_ QR}T/W 0

Equations (13) may be expanded in the third columns so

that
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1 0 _ulop| |1 0 -uQ
(15) 0 1 ugaz|+|0 1 0 |[= 0,
S g =
2 T 8 £ :Zl;rr;a‘# 0

An expansion of the right hand members of (14) and (15)
will show that these determinants have the value -Q.

We can then subtract the two left hand components,
obtaining

1 0 u«lnp) <1 0O 4lnp,

"
o

(16) 0 1 ,g4z|-|0 1 gaz

AL i -
F 2%Tus O e Iy O

If we now impose the condition
(A7) ATty M= =ty
and change the signs of the third column and first row
of the right hand determinant, we may combine the two
determinants into the single fourth-order determinant
-1 0 u#lnp, 1

1 0 ulnp

(18) = 0.

Lo
Jet, ZRTy,

Upon multiplying the fourth row by ZR@¢@, and adding the

) §
0 1 dgaz 0
0

second and fourth columns, we obtain

“l G //%lnpo 1 -1 1 «lnp, 1
4 0 4lnp 1 1 1 ulnp 1
= = 0.
0. 1 M84Z 0 1 gaz O
2 K7,
—%~ 1 o o Ffe, o 0

A suitable scale factor for both z and T is
not immediately apparent, but if we multiply the second

column byk and add it to k times the first column, we
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will have a suitable form:

,log p, /{i' k ;2 1

U, log p A=k 1 1
(20) = 0.

A, BAZ IN : 4 0

0 A-ZRTfk 1 0

Assuming the same end values of our functions as for
the double-set nomogram, appropriate values of our
arbitrary constants will be:
k = 4,50 , A= 10,00
A= 8,00 , M= 2 x 107
The diagrammatic sketch according to which Chart VIII will

then be constructed is shown in Fig III:

% 5 2z | Txl
| 3.0 - 3.0 i
I 0.0
o F R T
II 2.0 | 20 /2.0
.I.._f'i AN ﬁf_;l_ =X,
Fig IIL

The second grid support is so placed that the T scale
is placed upon the same line as p,, eliminating the con-
struction of an extra line., It will be found advisable
upon the master nomogram to reverse the coordinate
systems, so that p and p,decrease upwards; Chart VIII is
reversed because of the easy transition from the grids
of the 6 _chart to those of this one. The values accord-
ing to which 1t has been graduated are shown in Table VI,
While a setting is eliminated in the set-square
diagram, as compared toc the double-set, the same difiiculty
remains, in that any initial error in z carries over into

succeeding calculations,
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Chapter VII
A CRITERION OF STABILITY

One of the maih disadvantages of a nomographic
substitute for such charts as the Stuve is the inability
to determine the degree of stability of a given sounding
directly. Of course, we could proceed to calculate ég?,
leading to a simple three scale nomogram scaled loga-
rithmically; however, it 1is sometimes desirable to have
an idea of stability without first calculating 6_,. In
practice, once 9, 1s known, the computer can estimate
for the purposes he requires without computation. A
method of determining stability, without knowing O, ,
will now be developed,

W £ o=-ez,
where o is tne density of the air;
while the adiabatic decrease of temperature with neight
is given by:
) 5 =-4.

P
We may divide these equations, obtaining

A 27 _ ART -
) —_— === .
() °b P <

The quantity §é,is, then, the adiabatic increase of temp-
erature with respect to hydrostatic pressure, and hence
is analogous in use to the quantity ¥y, the dry adiabatic
lapse rate, Any 6 we should obtain by estimation from
the given increments of temperature and pressure, if less

than the 6dfor the mean temperature and pressure of the
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incremental column, will indicate a stable layer, while
a 6 longer than &, will indicate an unstable layer,
Taking the logs of (%), we have
(4) log p-+log§ﬁ?—log T = O,

A constructional determinant may be formed by letting

X = log p

y f/glog i
or

lex + 0y =«,log p =0
(5)  0°x+1ley —4,log T =0

#%- 24y +log Ezfd

Equations (5) require that
1 0 log p!
(6) 0 1 log T = 0,
s P B all
, log/_]%
or, upon adding the first and second columns, and divid-

/

ing the third row by As4:
yﬂ/t’ﬁfa
1 0 log p

(7) 1 1 log T = 0,
1 =% Mulogedd

/{/{'3;“' /“3/-“1 AR
From previous knowledge of the spread in the

p and T functions, we will choose
=1
Ay = =B,
obtaining the constructional determinant
-log p 0 1
(8) 5 log T 1 1{=0.
“Zloga&gd % 1
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The scale factors were chosen of opposite sign in order
that p would be upon an outer scale, to fit into the
master nomogram, The diagrammatic sketch resulting
from (8) is shown below in Fig I, A 10 scale has been

used to graduate the values, upon Chart IX , listed in

Table IX .
NS
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MASTER NOMOGRAMS

A: DOUBLE-SET NOMOGRAM

The double-set charts previously developed
will now be combined into a single chart, with as much
duplication of lines as practical, so that the fewest
possible number of lines will remain. A comparison of
the various determinants shows us that all the p func-
tions may be made to coincide, but that the T scales
can not, If the chart is to be approximately 11" x 16",
the @, chart, previously plotted upon a 20 scale, may
readily be plotted upon a 10 scale. The values used in

plotting this_grg indicated in Fig I and Fig II.

P A
S|ﬂ/| /f/,x
A e e 5
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; // I : | s I | |
4 | !
:' / [ -|[31.4 ‘[5’4 J[ 50.4
| ¢7 P r ot i
by 9 i 1 L
! L Ly 17o P
V' me1 i Fig II

It will be noted that the y axes have been inverted,

and the x axes then reversed, in order that the p
function be graduated with lowest pressures at the top,
corresponding to the direction of pressures upon other
charts. We will not be able to graduate all T functions

in the same direction, however, and the computer will
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have become accustomed to each scale individually. It
is recommended, of course, that the T scales be graduated
in degrees Centlgrade, while 6. be in degrees absolute.

The pressure-altitude chart is now constructed,
with 1ts p scale superimposed upon that already graduat-
ed, This necessitates multiplying the y coordinates of
the p scale by 1,58, the spread on the former p scale,
and dividing by 1l.15, the scale factor formerly employed
upon the p function. As shown in Fig III and IV, the
x axes have been reversed, allowing the maximum horizontal

distance between scales,
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; AN | T
P bazo |
Fig III |, Fig v 7

The p!' or p scale has been graduated upon the @ scale
of Fig I and Fig II, and the =z function upon the w
line, thus eliminating the addition of two lines.

The w chart must also have its y coordinates
multiplied before the p scale coincides with that of o,
and z. In this case the factor is 1.58. A further
simplification has been effected by bringing the r and

w scales into coincidence., The values with which this
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has been accomplished are indicated in Figs V and VI.
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The use of another @ scale has been eliminated by
using the teuwperature scale of the 6. chart.
Finally, a stability chart has been added,
The y coordinates of this chart must also be multiplied
by 1.58 to achieve coincidence upon the p scales, Other-
wise no alteration has been found necessary from the
type of Chart IX. It was found useful to graduate the
T scale upon the dummy line of the w chart,

Because a number of lines are found upon the
master chart, some of them for the same quantity, the
cases where these may be confused have been distinguished
by adding a subscript to the variable, indicating the
calculation with which the scale is to be used. A brief
summary is also printed upon the chart, indicating the
combinations one uses in solving the various problems,

L subsciipt n placed before the varizble indicatesthat
this variable is to be used as a dummy index only, about
which the alignment index rotates, and the value graduat-

ed is not the true value,
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B: OSET-SQUARE NOMOGRAM

The various separate set-square charts are
combined in the most advantageous manner feasible in
Chart XI., Unlike Chart X, several scales have been used
to graduate its functions,

This chart is best begun by considering the

‘best possible axes and scale factors for the 6, diagram,
In Chart VI the spreads in variables require a nearly
square chart; hence a new set of oblique axes have been
developed for a 16" x 11" sheet, The new angle between
axes has a tangent equal to 0,07683, considerably less
than that of Chart VI. This increased obliquity does
not decrease the spread of the temperature scale notice-

ably, as a check thru Figs I and II will indicate:
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Fig I =~ “x - Fig II

With the values indicated a 10 scale fills the chart
very well.
In superimposing the altitude diagram a

reversal of axes is first required, in order that p may
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decrease upwards., Because the cycle of the p scale
differs from that in the 6, diagram, an adjustment
must be made, Two possibilities exist; one is merely
to multiply the column of the constructional determinant
by the suitable quantity, and the other is to change the
scale factor in Equation (17) of Chapter VI. Closer
scrutiny revexals that any decrease in &, --as would be
necessary--increases the spread of the T scale. Since
the latter is already calibrated for points beyond the
spread in p, a decrease in the spread of the former is
more desirable, This is effected by a decrease in k;
it is still possible to decrease ¢, but a larger decrease
in the spread in k is then necessitated, with consequent
rapid convergence in the p and p scales, Hence the
former alternative is elected, with a multiplying factor
of 2= 0,859, and a new k = 3,60 is also selected. The

spreads in the variables thus resulting is indicated in

Figs III and 1IV:
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A consideration of the variablss occuring in

the w diagram might lead one to believe that its pressure
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scale could also be made to coincide with the other
pressure scales; however, the remaining scales have
larger spreads than that of p, and we have made the
pressure scale the largest one in the other diagrams,
It is possible to develop a constructional determinant
and satisfactorily warp the scales; however, tiis has
not been done in Chart XI because it would either lead
to confusing double graduations upon a single side of
a line or to additional lines, The lines already re-
sulting from the 6. and az diagrams may be employed

in limited ranges that coincide with the spreads of
Chart VI, so that no alteration from the latter other
than a small compression of the x axes has been made.
The actual spreads are shown below in Figs V and VI,
which, unlike the other diagrams, is laid off still

upon a 20 scale.
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While accuracy is lessened by this arrangement, it's
justified not only by the elimination of extra lines,
but because of the less frequent use of this diagram,

compared to that of 6..
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Finally a stability chart has been added,
with its p scale superimposed upon that of the 6, and
Az diagrams, and its temperatures graduated upon the
same line as w (labeled w') upon the w diagram. The
same scale factors are employed in this as in the
double-set chart, but the slope of the axes has been
altered and the horizontal distances between lines
changed to allow T upon w', The diagrammatic sketch

of its construction is indicated below in Fig VII:
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A short note has been added to the chart

to indicate which scales are used in conjunction,
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Chapter VIIL
THE CALCULATION OF w AND e

Millar, in the Bulletin of the American Mete-
orological Society*, outlines a satisfactory method of
obtaining w and © upon an ordinary slide rule, A new

scale must be graduated upon the slide rule for each

quantity.
We have seen that w is defined from
(1) w = bcz%

Hence if e, the existing vapor pressure, and p,, the
partial pressure of the dry air, are known, and set upon
the A and B or C and D scales, w is readily obtained.
Ordinarily, however, e, is not known, but T and r, the
relative humidity are, The relationship between these
guantities is

(2) e, =re = ri(T),
where e is a function of T only, and may be obtained
from the Smithsonian Tables. We may use the B scale
for r, and the A scale for e, and e; since, however, e
is not given, we must graduate corresponding values
of T above the values graduated upon the A scale.

The procedure in calculating w is then to
set the B scale index line (1 or 100) opposite the
given value of T, and read the value of e upon A
opposite r upon B, Scale B is then reset with the

value of p, under the value of e,, and w obtained upon

o — — " ——— — — q— (o S 2. T S S e . o o e

';:‘I’a{illar, F- G. Bull A. N[. S. ()Ct 55 }Jage 2?9
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A opposite 6Z.2 upon B.

Since o is obtained by mentally deducting e
from p, which 1s given, a slight mental effort is required.
However, p may be used in place of joF if accuracy is not
paramount; since, however, no aduitional calculations are
necessary to obtain e _, it will not be found difficult
to employ D, .

Another scale must be constructed to obtain 8

or ed. We have seen that

( _ 000 . 28%
3) o = T¢F)
or upon taking logs
(4) log 8 = log T + 285 log/ﬁf—a.

ID
Inspection of (4) will show two alternatives are possible;

one is to construct a scale for T and 8, and the other,
to construct one for p., Since the exponent ,288 compresses
the scale, accuracy will be greater if the entire scale
is raised exponentially:

(5) 3447 log 6 = .47 log T-+log4%?,
and the p function is graduated along the D scale. Now
-upon most slide rules the lenght of the cycle for the C
and D scales 1s 22.50 upon a 30 engineering scale. Hence
we must wultiply (5) by this quantity in order that p
pay be used upon the D scale:

(8) 102.,4 log 6 = 102.4 log T+ 28.5 logé%g.
The same scale will be used for T and @, then, and
graduated according to the equation

(7) y = 102.4 log T = 102.4 log o.

The values to be used in this graduation are
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tabulated in Table « The position of the point y = O
is quite arbitrary, but should be sufficiently far off
the left end of the slide rule that the usual range of
T and 6 be included within the cycle of C and D.

The quantity O, may be obtained il instead of
p we use p,; in general, however, this results in extra
computation and is not done. An empirical method of
correction will later be given, or else Rossby's correction
table may be employed.

It will be noted that the above method of
obtaining O reqguires but a single setting: the index
point of the C scale is set opposite T upon the new scale,
and 6 found opposite p upon the C scale, All other slide
rule calculations to be outlined will recuire at least
two settings., This fact is intimatety correlated with
the necessity of using fourth-order nomograms in all
cases except for €, since a slide rule is but a special
type of second order nomogram: one in whicix the aligning

index shrinks to a point, along with the third scale,
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Chapter IX
THE CALCULATION OF ¢,
A: FROW 64

From the previous chapter we saw that an
ordinary slide rule could be used to calculate g di-'
rectly, providing a special scale was constructed for
8, We shall now show that this same scale may be used
as a scale for 6,; however, a linear scale will have to
be added.

We have defined ¢, as

/
w

(1) o= 0485 = ge
where w’'= éﬁi
The above may be written as
(2) 1ne,= 1ng +w.
Since the C and D-scales gre constructed upon a 10 log
base, we shall rewrite (2) as
(3) log 6,= log Q,M,fa%-
The constructive scale of ©; was taken previously as
y = 102.4 log 94;
hence we will multiply (3) by a factor of 102.4:
(4) 102.4 log 6.= 102.4 log g, +w”
where w”=%w'= 109.8 =
Equation (4) shows that the 8, scale will also
be the 6, scale. However, we must construct a new scale,
linear inqg, according to the scale

(5) vy = 109.8 ¥,
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These values have been tabulated in Table . The zero
value of y may be placed at any convenient point along
the scale. Since the zero value of must be placed
opposite the given value of ed s 1t is recommended that
the point y = 0 be chosen to coincide with the left end
of the C scale, and that the scale be graduated above
the C scale, or above the CI scale, if the slide rule
has the latter, It will be noted that the cheaper slide
rules, with but A, B, C, and D scales on the face are
ideal for this purpose, but that space is lacking on
better rules,

The procedure, then, is to obtain the ratL:%%
first., The computer will probably find it best to run
through a whole sounding, jotting down these ratios be-
fore finding GE. With the scale factor chosen above w
will be expressed as grams per kilogram, or 10 times
its assigned value. The computer will also find that
less sliding need be done if T is set upon the D scale
and w upon the C, and the ratio read upon the C scale
opposite either end of the D scale., Having obtained
the ratio%?, the y = O or index point for this scale
is set opposite the given value of 6,, and the value of
@, found opposite the calculated value of Z.

Since the station is not particularly interest-
ed in 6,, and the latter must first be xnown, in order

to obtain €6, in this manner a direct method of obtaining

6_ will now be developed.
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B: FROM p, T, AND w DIRECTLY

As before let

eE= ede L
But we saw from Equation (1), Chapter s that
_ 1000 \ 297
ecl_ T( Pd) °
Hence we may write
. 28% j
(6) o= T(F) e”.

Upon taking logs to the base 10 equation (6) becomes

7) log 6,= log T - .288 log [L .2,
It will be noted that the pressure ratio has been in-
verted, in order to obtain a minus sigh in front of the
term, We are thus able to consider the pressure scale
as an~inverted scale and add the magnitude of the func-
tion to the value of log T by merely placing the value
of p opposite the value of T, thus eliminating an or-
dinary setting.

There are now two main possibilities in the
choice of scale for T and 6, . One is to construct
another scale, similar to the C or D scale, but ranging
in value only from 20U to 560--the usual range of T and
8, ——, thus obtaining an accurate setting, or else it is
possible to employ the D scale (or the C scale, for that
matter) for T and 6, , and merely construct one composite
scale of p and ¥, For the sake of simplicity we shall

choose the latter alternative, e have seen that



57
(8) y = 29.5 log T
would be the equation of graduating T upon the C scale,
using the &0 engineering scale, nerefore we shall re-
write (7) as
(9) 29.5 log 6, = 29,5 log T-8.50 log/,foi0+51.6~“’~

Here again w 1s expressed in grams per kilogram, The

equations of graduation for p and w will then be:

= d
y 8.00 10g7—§0—(-7
- w
y b 61.6 ':,_——“ ®

The point y = O may be arbitrarily placed for graduating

P,s but the point y 0 must coincide with p = 1000 for
theﬂ$:scale. Since p does not greatly exceed 1000, the
few graduations of p, above this value might conveniently
be placed above or below the line of graduation, which
could then be used for Y%,

Once again the procedure requires the calcula-
tion of the ratio ¥, though we shall indicate a method
of obtaining an approximate solution below, that dis-
penses with this calculation., Having obtained%g, the
value of pd is set opposite the value of T upon the C
scale, and O, obtained upon the C scale opposite the
value of %,

Where the calculation is wanted rapidly, a
rough value of 6, may be obtained by considering T con-
stant in the expression é#ﬁ. This assumption leads
only to a second order error, because of the small

fluctuation in T compared to that in w, and because the

total term is small compared to other terms, Such an

T °
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assumption has been used to plot the Rossby diagram,
Here, however, it would be best to assume two mean
values, One could be T = 250, and the other T = 295,
Two scales could then be constructed for w, one in
black and one in red, say, and the proper graduation
for ??estimated according to the temperature prevailing.

Another simplification may be used, in that
p may be substituted for py. The error arising from
this approximation may be compensated for by adding
increments according to the Rossby table.®* For the sake
of rapidity however, the author has formulated the em-
pirical rule that there should be no adoition until
w = 4, that 1 should be added until w = 10, that 2 should
be added from w = 11 to w = 17, and that & should be
added if w = 18 or more, This rule will give 8, upon

the border of experimental and calculating error for

the case of the approximate w graduations.

#Rossby's correction table : see bibliography
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Conclusions

Two similar charts have been developed, both
of which will compute RAOB data with greater rapidity
than the old type charts. WMoreover, one of these, the
set-square, actually affords greater accuracy than the
old charts of similar size, For the solution of
thermodynamical problems such as fog dissipation, how-
ever, the old type charts still must be used, a nomo-
gram being unable to express a relation betwecn empiri-
cal data and a fixed relationship.

For the restricted purpose of merely comput-
ing 6, , an even faster and more compact method of com-
putation has been devised; since a slide rule is an in-
strument of almost universal usage, the beginner will
not find it difficult of use, and since every office has
need of this quantity vefore all others, the slide rule
solution is of prime importance,

It is hoped that enougn latitude for revision
has been indicated, that each individual office may alter
the general types herein developed, so that maximum use

may be obtained,



Table I

wx10° D _1og W T log 1 D log »
B ~1.65050 .00 - 100 2.,0000
N -1.61090 .10 -1,0000 150 2.1761
ol -1 « BB .15 -0,8269 200 2.5010
.8 -1.54845 <20 -0.6990 250 2.,3979
9 -1.52290 .26 -0,6021 300 24771
1.0 -1.50000 + 80 ~0.5229 550 2.5441
1.25 -1.45155 B8 -0.4559 400 2.6021
1,50 -1.41195 <40 -0.3979 450 2.6532
1.75 ~1.87860 A5 -0,3468 500 2.6990
2,00 -1.534950 <50 -0,3010 550 2.7404
8.8 -1.30105 55 -0.2596 600 2.7782
5.0 -1.26145 .60 -0.2218 650 2.8129
4,0 ~-1.19895 .65 -0,1871 700 2.8451
5.0 -1.15050 .70 -0,1549 750 2.8751
6.0 -1.11090 15 -0.1249 800 2.9031
7.0 -1.07745 .80 -0,0969 850 2.9294
8.0 -1.04845 .85 -0,0706 900 2.9542
9.0 -1.02280 .90 -0,0458 950 2.9777
10,0 -1.00000 <95 <0, Dg235 1000 3,0000
11.0 -0,97930 1.00 -0,0000 1030 3.0128
12,0 -0.96040
13,0 -0.94305
14,0 -0.92695
15.0 -0,91185
16.0 -0,89795
17.0 -0.88480
18,0 -0,87235
19.0 -0,.86060
20,0 -0.84950
T e 5log,622e
260 225 . 0750
269 8. 5B 1594
=70 4,89 .2416
RS 7.06 .3213
=80 10.02 . 3973
285 14.02 <4702
290 19.38 . 5405
295 26 .44 .6080
500 85,65 .6229
805 47.55 « 7354
510 62,76 7957
315 82.00 .8538
520 106,10 <097



Table

wx10° log w T
oD -5,6010 .10
8 -5.2218 a ki
ol -3,1549 «20
8 -35,09692 iy
o -3,0458 50
1.0 -5,0000 w0
1025 "2;90’61 04'0
1.50 -2,8239 45
.75 -2,7570 s 13
2.00 -2,6990 153
2D -2,6021 .60
5.0 -2.,0229 65
4,0 ~-2,6979 70
0.0 ~2.5010 75
6.0 -2.2218 .80
70 -2,1549 «85
8,0 -2.,0969 «20
9.0 -2.0458 «95
10.0 -2,0000 1.00
11,0 -1.,9586
12,0 -1.9208
15.0 -1.8861
14,0 -1,8539
15.0 -1.8239
16,0 -1.785¢
170 -1,7696
160 ~-1,7447
18,0 -1.7212
20,0 -1.6990
T e 3 log e
260 & pn «1761
265 G055 0 RBRD
270 4,89 e 0447
275 7,06 4244
280 10,02 .0002
285 14.02 «O754
290 19.38 « 8457
295 26,44 A
500 59,65 T80
505 47,55 . 8586
510 62,76 . 8988
515 82,00 « 9569
520 106,10 1.01286

IT

log r
-1.0000
- <8239
- 6890
- <OR29
- 28979
~ 25468
- 4010
- ,2596
- 1249
- .0869
S 00706
- 04058
- 0228
- 0000

100
150
200
250
500
550
400
450
500
050
600
650
700
750
€00
850
900
950
1000

1.30206
1.54166
1.47514
1.4.0410
1.42969

45257
1.47327
1.49217
1.50956
1.52557
1.54067
1.55462
1.56772
1.58023
1.59196
1.60310



Table III

T Log T P Log p . 864~ 0 zLlog ©
2288 logp

240 25802 1030 65,0128 -0,005 240 1.1901
245 2.3892 1000 38,0000 0.000 250 1.1989
250 0 3979 950 29777 0,008 260 1.2075
255 4065 200 29542 0,013 270 1.2157
260 «4150 850 2.9294 +020 280 1.8286
265 04233 800 29031 s U2y 290 1.2812
270 4314 750 2.8751 . 036 300 1.2385
275 <4393 700 2¢8451 .045 310 1.2457
280 4472 650 2.8129 « 054 320 12526
285 4548 600 BT8R . 064 580 125898
290 « 40824 550 207404 .075 340 1.8657
295 4698 500 2.6990 + 087 350 1.8720
300 JATTL 450 26532 » 100 560 12781
305 0 4845 400 2,6021 114

310 04914 375 2.0740 « 122

315 <4983 350 2044l <131

320 «5052 325 2.5119 o141

325 «D119 300 2.4771 + 151

330 «5185 215 L e4393 <108

535 « 9250 250 23979 o175

340 « 5815 285 2.5522 s 187

345 . D378 200 25010 « 202

350 .D441

355 0002

360 «D563

365 « D623



Table IV

20 log(1-%) wx10% T 6.0410g T 1.745loghd P__.645log ‘5
0.0000 0 250 16.642 4,1604 100  ,6450
- ,0140 1 2bb 16,701 4,1753 150 D814
- 0278 2 260 16,760 4,1900 200 .4508
- 0418 3 265 16,817 4,2043 250 3884
- .0560 4 270 16,874 4,2184 - 300  ,ZE72
- L0700 5 275 16,829 4,2382 550 0 2940
- 0842 6 280 16,983 4,2458 = 400  .2566
- ,0984 7 285 17,036 4,2521 450 L2236
- o1124 8 280 17,089 4,2782 500 e 1841
~ 1266 9 295 17,140 4.,2851 550 . 1874
- .1408 10 300 17.191 4,2978 600 o 1431
- 1550 11 305 17.241 4.,3103 620 <1206
- ,1692 12 310 17.290 4,%225 700  ,0998
- .1834 15 315 17,558 4,3346 750  ,0805
- 1976 14 320 17,586 4 ,5464 800 - 0625
- .2118 15 325 17,432 4.5581 850  ,0454
- .Rcb4 16 8560 17.478 4 ,5696 200 +0295
~ +BDBe 17 385 17.524 4.,5809 950 L0142
- .2696 18 340 17.568 4,5921 1000  ,0000
- ,RBS58 19 345 17,612 44,4031 1050 =,0137
- 42982 20 350 17.656 4.,4140
- ,35128 21
- ¢BRTR 22
— 3418 25

- ,5562



Table V

e 5521026, —,474 P ,158 log P W 295w
250 8496 100 . 5160 0.0  0,00000
255 8544 125 .33153 0.5 0.00369
260 8591 150 .3438 1.0 0.00737
265 8636 175 .3544 1.5 0.01106
270 8681 200 . 5636 2.0 0.01474
275 8725 250 .5789 2.5 0.01843
280 8768 300 .3914 3.0 0.02211
285 8811 350 .4020 4,0 0.02948
290 8852 400 L4111 5.0 0.03685
295 8893 450 .4192 6.0 0.04422
300 8934 500 4264 7.0 0.05159
305 8973 550 . 4330 8.0 0.05896
310 9012 600 . 4390 9,0 0,06633
315 9015 650 4444 10.0  0.07370
320 2088 700 L4405 11.0  0.08107
325 9126 750 .4543 12.0 0.08844
330 9162 800 . 4587 1.0  0.09581
235 9198 850 .4628 14.0  0,10318
340 9234 900 .4668 15,0  0.11055
245 9269 950 -4705 16.0 0.11792
350 9303 1000 - 4740 17.0  0.12529
355 9337 1050 LAT73 18.0  0.13266
360 9371

L0

T T 5 (220 o
250 1450 .56970 .1280
260 1500 .57685 . 1553
270 1550 .58%65 .1290
280 1600 .59015 .1250
290 1650 - 59640 .1230
300 1700 .60234 .1176



Table VI

O .5221086e=.474 P L1588 log P wxld 2.5 w

250 « 84906 100 « 3160 1 . 0025
255 « 8544 125 e JB1LS 2 .0050
260 8591 150 e 3438 S +0075
265 . 8636 175 o 0044 4 . 0100
270 . 8681 200 e D056 5 .0125
275 . 8725 250 « 5789 8. .0150
280 . 3768 300 02914 7 0175
285 . 8811 350 «4020 8 . 0200
2320 8852 400 « 4111 9 . 0225
295 . 3895 450 <4192 10 «0250
300 .8954 500 42064 11 +0875
305 «8973 550 4380 12 0300
510 . 3012 600 « 4390 13 . 0825
315 . 92051 650 4444 14 « 0350
520 2088 700 0« 4495 15 L0875
325 . 9126 750 « 4543 16 0400
330 . 2162 800 . 4587 17 . 0425
335 .2198 850 40628 18 . 0450
340 « 92384 900 4668 19 0475
345 . 9269 950 « 4705

350 0 2308 1000 <4740

355 e 2887 1050 ATTS

360 « 9371

T’

T 200254 T Jog T T T1 L
250 1,402 250 1840 3,118
265 1.435 255 1865 3,161
260 1.469 260 1880 5,208
265 1.502 265 1915 3,245
270 1.555 270 1940 5,288
275 1.569 275 1965 3330
280 1,605 280 19980 BaOT8
285 1.836 285 2015 3,415
290 1.670 290 2040 56457
295 1.704 295 2065 S+H00

300 1.758 500 2080 0042



Table VII

) )
7 =0 11,5 log 2. P 11,5x31og P
1.000 0,0000 100 11,51£8

.900 0.5273 | 200 %.2455
.800 1.1156 300 14,2592
.700 1.7833 400 14,9787
.600 92,5536 500 15,5365
.500 3,4654 600 15,9924
.400 4,5810 700 16,3775
. 300 6.,0201 800 16,7114
.200 8,0475 900 17.0058
.100 11.5129 1000 17.2692

S S
sz 4,905x10 P S+.0M35T
5 2,4525 250 .5822

1.0 4,9050 260 . 5727
1.5 7.3575 270 .5634
2,0 9,8100 280 .5544
3.0 14,7150 290 .5458
4,0 19.6200 300 5373

5,0 24,5250 310 .5292



Table VIII

_ pTp 18,40 log p 4z(x10) 1,964z T 6,4575 x10°T

1050 55.5900 5 .980 200 12,9150
1000 55.200 O 1.0 1.960 210 15,5608
950 54,7897 1.5 2,940 220 14,2065
900 54,3575 2,0 %.920 230 4.8523
850 53,9010 3,0 5.880 240 15.4980
800 - 53,4170 4.0 7.840 250 16.1438
750 52,9018 5,0 9,800 260 16.7895
700 52,3498 270 17.435%
650 51.7574 280 18,0810
600 51.1189 290 18,7268
550 50,4234 300 19.3725
500 49.6616 310 20.0183
450" 48,8189

400 47,8786

350 46,8114

300 45,5786

250 44,1214

200 42,3384

175 41,2722

150 40,0040

125 33,5830

100 46,8000



Table IX

P Log P T log T b4 %1025,4934 &4

100 2.,0000 200 11,505 .00 -

125 92,0969 205 11.559 .05 -.63149
150 2,1761 210 11.611 .06 -.56551
175 2,2430 215 11.662 .07 -.50971
200 2,3010 220 11,712 .08 - 46139
225 2,3522 225 11,761 .09 -.41876
250 2,%979 230 11.809 .10 -.38062
o275 2,439% 235 11,856 .125 —.29970
300 2.,4771 240 11.901 .150 ~.23388
350 2.5441 245 11.946 .175 -.17809
400 2,6021 250 11,990 .20 -.12977
450 2,6532 255 12,033 .25 -.04902
500 2,6990 260 12.075 .30 . 01697
550 92,7404 265 12,117 .35 07277
600 2.,7782 270 12,157 .40 12111
650 2,8129 o275 12,197 .45 .16371
700 2,8451 280 12,236 .50 .20185
750 92,8751 285 12.274 .55 .23616
800 2,9031 290 12,312 .60 .26782
850 2,9294 295 12,349 .65 .29680
900 2,9542 300 12,386 70 . 32562
950 2,9777 305 12.422

1000 3.0000 310 12.457

1050 6,0212



Table XII

P 8,50 108 Dlwco __Oe 102.4_1log O w/T ¥ x31.6
1050 18012 <60 247,298 0 0
1000 » 00000 265 248,141 . 005 «158

950 -,19448 270 248,971 .010 « 516

200 -, 58896 275 249,787 015 o474

8350 -.59995 =280 250,589 . 020 052

800 -.82374 285 251.876 .025 « 790

750 -1.06199 290 252,150 . 080 . 948

700 -1.51665 295 252,910 . 085 1.106

650 -1.59027 500 255,657 040 1.264

600 -1.8857% 605 254,392 « 045 1.422

550 -2.,20694 610 295,115 050 1.580

500 -2.55876 819 200,827 055 1.738

450 -2.94772 520 256,527 .060 1.896

400 ~-3.58249 325 257,217

350 -3,87541 580 257,895

300 -4 ,44448 5895 ROBe 064

275 -4,76570 540 259,224

250 -5.11751 545 259,878

225 -5.50647 550 260,515

200 -5.924125 555 261,144

175 -6,43416 560 261.765

150 -7.00524

125 ~7.67627

100 -8.50000



BIBLIOGRAFHY

Brunt : ‘Yrhysical and Dynamiceal Meteorology, Cam-
bridge University Press 1939

Rossby's Correction Table : Elements of Weather
Prediction : Krick " mimeographed lab
notes", Ch. VI Fage 19

Allcock and Jones : The Nomogrem : the theorv and
practical construction of computation
charts, London Pitman, 1932

Hewes and Seward : Design of Diagrams for Engineer-
ing Formulas, McGraw H1ll, 1923

Millar, F. G. : Bull. 4. M. S., Oct. 35, Page 229

Smithsonian Meteorological Tables : Fifth Revision
Wash., 1939



The author wishes to express his
sincere appreciation for the invaluable
assistance of Jack Guérin in preparing the
tables and drafting the charts and Charles
Hight, and also to acknowledge the valuable
suggestions of Dr. H. J. Stewart, particularly
in the development of the inverted §, slide

rule,



I

W 3u¥nSsS3I¥Y

-
' d
<
T
o
uW H
Y
A ul
< B ow
T mm
Q £ 5
X O
Q 0O
©
a.
o
< O11lvy 9INIXIN
0 o
O ¥ ¥ O © © wn < " N i =2 S
| | | | | | _ | | | | |
| _ _ _ | [ |
o o) o @) Q Q Q
- Q (@) QO ™~
% ™ o N ol W\ %_
'V'D 930 IU0LVHIdWIL
AINIDHTH  ALIGINNH  FAILVI3Y
o o o) o Q
o & N ) TS 3 ™ < o
| | _ | _ | | _ | |
_ _ _ n_u | _ I I |
o e) o O o o o o
o o O ) Q Q
o % 0 ~ O rw w L2/ N



rrrrrerr ottt 0 17 | | | | | I [ | T 1 1T 1 | |
JROTYWVT O N =T Q2 O DV N~ O In < o 8 NOR OB 3 S ®” XV N~ v )
M, OILYY INIXIN
— 001
M — 0S1
< s
I — 002
O % —052 Q.
s mﬁ — 00g uE
2 g r o9 Coor &
) M oSy 0
l— 00 ()
W.._ - I S92 lmmm %
)] — 009
m W 00z O-
£V oz L 009
x - 006
o A — 000!
(14 — 5.2 O
o
o V)
< loowmuc
lth"T
H
—062 M
D
—s62
@
—oog W
2
—S0E )
—
—Oolg
—g)e IN3D ¥3d ,Jd, ALIGIWN] 3AILYIIY
- ~oe 8RB IRFS3B 8¢ ¢ 8 3 & e s




o ™ o w»w S w 9o w o9 s o © O o © © © 9 9 o %@
O N 0 Q Q n O  In w o b o QM
5 oy EW.333N4 < n W @ YW N N ® ®© o @ S°
_ | [ R | | | | [ R R N N N
- ‘g IUNSS3IY
=
O
w
1 4
po ]
H <
&
&
£ s
AF_
T
< &
T
z ¥ '93Q IUNLVHIAW3I| IVILNILOY
[
Py o © O © © © o o©o Q © 9
a S8 3§ 5 85 2 8 2
M ® M mom® e & oA NN AN
[ I I I A R I I
V') 93Q 3UNLVAIIWG |
Q w w o wu 0 o
%%%wﬁwﬁoso OrorOuﬁS4w.
M M M ®m ™M ™ oM o o Al 0 N NN N N
[ N S Y O I | [ N S N

— 365

— 360

— 355

— 350

— 345

— 340

d ® W ~ 9~
o N o N o
I N R N




150

200

250

300

350

450

500 -

550

600
650

700
750

800
850
900

950
1000

1050

PRESSURE P~ mB

—- 350
— 345
— 340
- 335
- 330
- 325
- 320
- 315
- 310
- 305
- 300
- 295
- 290
- 285
- 280
- 275
- 270
- 265
- 260
L. 255

- 250

Dee CA.

©4

6, CHART

DousLe SeT
CHART I

Dee CA.

TEMPERATURE

3
+ |
)
300 %
x
L)
Z
x
295 | 2
w
L.
290 4
2
3
4
285 —
L 5
L. &
L. 7
280 8
- 9
—10
— ) !
275 12
3
—14
|5
17
8
—19
265 <) wa
—21
|22
—23
25
255 —
250




18

§c

20

w

M

Mixine RaTIO

— 360
- 350

- 340
- 335
— 330
~ 325
320
315
310
- 305
— 300
— 295
L 290
- 285
- 280
— 275
- 270
- 265
- 260
- 255
- 250

!

— 355 =

EquivaLenT PoTENTIAL TEMPERATURE 6f

- 345

CHART Y

O CHART
DouBLE SET

«

P wms

Pressure

1050
000

950
S00
850
800

750
700
650
600

550

500

450

400

350

300

250

200

175

150

)25

100




O CHART — SET SQUARE
CHART VI
&
v——lSO eF_

360

175 350 =

340 —

— 200 -

330

v 320 -

— 250 =]

310 —

P |

300 300 —

290 —

— 350 B

280

— 400 =

270 =

— 450 _

— 500 260 —

— 550 250 —
- 600
- 650
— 700
— 750
- 800
— 850
— 900
— S50
— 1000

— 1050 W 0o o ¢+ 0 o 2o % 9d

I Y O

— 20



CHART YII

ALTITUDE CHART
DouBLE SET

Fo
200




|
— (050 —I1050
(BB ALTITUDE CHART L1000
950 CHART VIO 950
—900 —900
1 —850 | | l T T T —850
O Q
w800 < b 5 i i 3 —800
750 AZ 750
—700 700
650 L 650
—600 L 600
—550 550
—500 —500
450 450
400 400
350 o 35
5
300 300
250 250
—200 L 200
T
175 o00_t175
210
150 i | 150
230
—125 240125
250
260 —
100 L 100
270
280
290—
300—




— 100

—125

- 150

— 175

- 200

- 225

— 250

—275

— 300

— 350

- 400

— 450

—500

— 550

—600

650
—700
—750
— 800
— 850
— 900
- 950

—1000
—1050

— 60

45

— 35

— 175

— 150

— 125

CHART IX
StaeiLiTy CHART

310 —

305 _|

300

295

290 —

285 -

280 —

275

270 4

265 —

260

255

250 —

245 —

240 4

235

230 -

225

220

215 4

210 4

205 —

200 -




/'5—‘.— ‘70

20
"$10

A =

3.0 —~

- 2.0

0 ~

M asf‘er A/ﬂmajram

Double-53
ety e =S RE

Comb rmations
1) 6 p = P

J) Azt_/véz_f’/?/
3'> e ,751;0 ’,,75- - PTW,

‘7[‘> 54 PTs

L1418

750

- 175

200

- 500

B '70

- 05

L, g5

-, 50

-,30

:'-.Zé

:H- 10

Vh 02 112 AN o i Sty 43

HY
t
£
&
&
3
4
H
&
{
i
:

e
~
S

e e

T
200

Jes -

270 -~

275 -

270

300 '_/{

9%

20

300~

305 4

T
-
o\

2,0

=30

-/00

L 200

L300

- 00

— 500

_¢00

- 700

L 200

L 760

20 1 /000

3/0 -

300 -

299 ~

280 ~

/4

270 -

260 -

240

230 -

RAY

200 =

L 290

2557
2¢0+
246
270
295
2804

2854

295 =

300 -

A}

30{-—_

30—
2415 -—
320-—%
330~
335~

s 40~

350~
3532

360~

N



2 (VA divdGC AN N Ad
240} MASTE KX N |
75 SET S QUARE
z7oJ C [L/ A RTE-
54 Comé;‘wuam; o,
260 —
! - . JO /.) 6;_ P ,-7;W
2) AZT,— pp’
,.)BQ —-250 p : - f’;
Z) wir- Pulw
$, T
., O %) d F $
"“2000
“
b
"-'35
.30
| ’
T o W & 300
l . /&
| /
P T F
/2 ;4
-, 20 ol
2
|
e %—-400
€ -
5
-, /5 :
e 2 4 4
Q
70":.-5'006 2 :I 2 2 g . L oo
N\ T o o~ S _
&r‘ ? |\ L ‘1 q ’ i > _
r7a—
GO =4
e 20—~ COO
# Lo y
M—a— 700 L 700
/la el
20— 500 \3 ‘;ryao
Seie83 3 8 ® . L
&a:a@\»}«? c;z SR b a o x "
- S S Vldg ) 1 \ h ] ARy v
L 1 ‘ l .4——_T—
- o0 Y [\ k" N S % 90 0
" | ) ¥ “z ) A o,a'-li
|
10 1020 ,;_/040

‘2'2&

300 —=

Al =

S

287

—340

15‘0»‘

—~330

“3d
240 — "0

- 30

2 32 T 200

— ago

220 —

&
I I

250




