FEEDBACK SERVO-STABILIZATION OF A ROCKET
DURING TAKE-OFF

Thesis by
Lt. John Solon Saxon, U.S. Navy

In Partial Fulfillment of the Requirements
For the Degree of
Aeronautical Engineer

California Institute of Technology
Pasadena, California
1953
ACKNOWLEDGMENTS

The author wishes to express his sincere gratitude to Dr. Frank E. Marble for his instructive guidance throughout this investigation; to Mrs. Homer J. Stewart, Donald F. Hudson, and Charles H. Wilts for their helpful suggestions; and to Mrs. Beverley Cottingham for an excellent and timely job of typing the manuscript.
SUMMARY

When a rocket is launched, there is a short initial period of acceleration during which the rocket is unstable. As the flight velocity increases, the aerodynamic forces acting on the fins and stabilizers become large enough to give stability. Various methods have been employed to stabilize the rocket during this launching period. Guide rails, "zero length" launchers, booster rockets which produce high initial acceleration, and auto-pilot controlled nozzles are typical devices that have been used.

This is an investigation of the requirements of a nozzle control which would stabilize the rocket during the launching period. The configuration investigated is unique in that the nozzle of the rocket is mounted as a compound pendulum, and the movement of the pendulum is utilized to furnish the signal for the nozzle control servo-mechanism, thereby eliminating the need for gyroscopic elements in the control system. The pendulum motion of the nozzle caused by a change in flight attitude of the rocket is introduced into a computer which produces an output signal proportional to the attitude of the rocket. This attitude signal is fed back to the nozzle control, which positions the nozzle.

The results of the analysis showed that the rocket was unstable during the take-off period when the nozzle control acted on the rocket attitude signal alone. Stability over a narrow range of feedback gains was indicated for the system using a simple lead circuit as a nozzle control, or in other words, when the nozzle control acted on both the
attitude signal and the rate of change of attitude of the rocket. The damping characteristics of this system were poor. By changing the nozzle control function to include a response to the acceleration of the rocket attitude, the damping characteristics were improved and the range of feedback gains was widened.
TABLE OF CONTENTS

Acknowledgments

Summary

Table of Contents

List of Figures

Table of Symbols

I. Introduction

II. Analysis

III. Equations of Motion

IV. Computation of System Component Transfer Functions

V. Synthesis of the Nozzle Control Function and Stability Investigation

VI. Concluding Remarks

Appendix

References
LIST OF FIGURES

1. Compound Pendulum Booster Rocket Suspension 4
2. Modified Pendulum Suspension with Feedback Control 4
3. Block Diagram of a Feedback Control System 7
4. Block Diagram of a Feedback Control System Employing a Compound Pendulum Nozzle 8
5. Sketch Showing External Forces on Main Rocket Body and on Motor 12
6. Schematic Diagram of Coordinate System and Dimensions 13
7. Sketch Showing the Relation Between the Centers of Mass, \(M_1 \) and \(M_2 \), and the Center of Gravity of the System 14
8. Geometry of the Configuration 15
9. Nyquist Plot of Unstable Configuration 53
10. Sketch of Nyquist Diagram of Stable Configuration 54
11. Scale Plot of Nyquist Diagram 55
12. Detail of Nyquist Plot at Low Frequencies 56
13. Detail of Nyquist Diagram for Very Low Frequencies 57
14. Root Locus Plot of Function 58
15. Detail of Locus of Root \(S_2 \) at Low Gains 59
16. Detail of Locus of Root \(S_1 \) at Low Gains 59
17. Root Locus Plot of Function 60
TABLE OF SYMBOLS

q_i: generalized coordinate
\mathcal{Z}_i: generalized force
\mathcal{Q}_i: Laplace transformed coordinate
λ_i: generalized length
T: kinetic energy
M_1: mass of the rocket independent of the mass of the motor and nozzle
M_2: mass of the motor and nozzle
I_i: moment of inertia of the rocket about its center of gravity
I_2: moment of inertia of the motor about its center of gravity
F: rocket thrust
D: jet damping force
I_{sp}: specific impulse of the rocket
κ: radius of gyration
g: acceleration of gravity
1. INTRODUCTION

The rocket stability problem has existed for many centuries. Historians record that rockets were first used in battle by the Chinese in 1232 A.D. By 1400, rockets were in widespread use as major weapons by the warring nations of Europe. The poor stability of the rocket in flight was responsible for its gradual replacement by the cannon which gave more accurate trajectories. In the late 1700's, India employed rockets with improved stability characteristics against the British. When British soldiers attempted to defeat the forces of Hydar Ali, Prince of Mysore, a trained corps of rocket bombardiers launched rocket missiles at the charging British cavalry, inflicting many casualties. The Indian rockets were made of iron cylinders about eight inches long and two inches in diameter, with a bamboo shaft about ten feet long attached to give stability.

An English military officer, Colonel William Congreve, became interested in the Indian advances in rocket development, and worked to further improve the rocket for British use. Congreve devised a launching system consisting of a tube mounted at an angle on a tripod base, similar to the mortar. Long shafts were attached to the rockets to keep them flying in a straight line. The British employed rockets against Napoleon at Boulogne, and in other bombardments with great success.

During the War of 1812, Americans were first introduced to rocket warfare when the British bombarded Bladenburg, Maryland, and subsequently Ft. McHenry at Baltimore. An American by the name of
William Hale improved the stability of the Congreve rocket by replacing the wooden shaft with three curved fins on the rear part of the rocket body. The exhaust gases were deflected by the fins, causing the rocket to spin in flight. These rockets were used in the war with Mexico, and were found to have superior trajectories to the stick stabilized types. Again the rocket declined in popularity partly because of its inferior trajectory compared to that of the gun. No other outstanding developments in rocket stabilization were made following Hale's work until early in this century.

With the advent of the airplane, and an increase in knowledge in the field of aerodynamics, the stability problem of the rocket in flight became defined more clearly. The use of tail fins, or tail fins with a shroud ring as on the Bazooka, and later, the use of controlled airfoils solved the in-flight stability problem to a great extent.

In the first part of the rocket's flight path there is a destabilizing effect from the change in mass of the rocket as fuel is burned. The aerodynamic forces must counter this tendency in order to stabilize the rocket. During the launching period, the aerodynamic forces are too small to counteract the effect of the change in mass, and the rocket is unstable or at best neutrally stable. Consequently, stability during the critical take-off period must be attained by some means other than the use of aerodynamic surfaces.

Various means have been employed to stabilize the rocket during the launching period. Guide rails to hold the rocket to a straight flight path until it has gained sufficient speed to become aerodynamically stable have been used successfully. The length of the guide rail has
been reduced to a minimum in some applications by firing the rocket with a very high initial acceleration. The German V-2 rocket was stabilized during the launch by an automatic pilot which controlled four carbon vanes in the jet stream behind the nozzle. The American "Viking" and the German "Enzian" employed a controllable nozzle positioned by an automatic pilot.

A unique means of launching a large rocket with a booster rocket mounted free to swing as a compound pendulum was investigated by J. C. Norris in 1951 following a proposal by H. S. Tsien of Cal Tech. (Ref. 1). For the system investigated, the booster rocket was mounted below the main rocket on gimbals off the center of gravity of the booster as shown in Fig. 1. A deviation of the main rocket from its course would cause motion of the booster relative to the main rocket causing a change in the direction of the thrust axis. It was hoped that a practical configuration could be devised to give launching stability. The results of the investigation were somewhat discouraging in that for a typical vehicle-booster combination for which stability was indicated, the required length of the tail boom was too great to be practical.

Since the basic idea of the pendulum mounted thrust unit appears sound, the possibility of utilizing the pendulum in conjunction with a servo-control is suggested.

In this thesis, the requirements of such a servo-control system which would stabilize the rocket during the launching period are investigated. The rocket has a controllable nozzle mounted as a compound pendulum; conceivably, the motor and nozzle of a liquid propellant
Fig 1 Compound Pendulum Boss/ Rocket Suspension

Fig 2 Modified Pendulum Suspension with Feedback Control
rocket could be mounted as a unit as shown in Fig. 2. The motion of
the pendulum with respect to the rocket is fed to a computer which cal-
culates the attitude of the rocket. The attitude signal from the com-
puter is fed to a nozzle control. The aim of this investigation is to
determine the requirements of the nozzle control such that it will sta-
bilize the rocket during the launching period.

The equations of motion of the configuration were first derived,
assuming all aerodynamic forces to be negligibly small during the
launching period. Motion in one plane only was considered. External
forces considered were the rocket thrust, assumed to be constant, the
jet damping force arising from rotation of the jet stream; and the gra-
vity force. The effect of the change in mass of the rocket resulting
from the burning of fuel was considered. The displacements of the
rocket and nozzle about the initial condition were assumed to be small
quantities for the period of the stability investigation.

Following the derivation, the equations involving the pitching
motion of the rocket and the motion of the nozzle were transformed to
simple algebraic equations by use of the Laplace Transform. From
the transformed equations, it was possible to solve for the transfer
functions of all of the components of the control system, as shown in
Fig. 4, except that of the nozzle control. The form of the nozzle con-
trol transfer function was estimated, and the stability of the resulting
system was investigated by use of the Nyquist Stability Criterion. The
Evans Root Locus plot was used to find the damping coefficients of the
modes of oscillation of the system. Successive estimates of the form
of the nozzle control function were made in order to improve the
stability of the system.

It was found that for a nozzle control function employing feedback of the rocket attitude signal only, the system was unstable. For a control function employing feedback of both the rocket attitude and rate of change of attitude, it was determined that a stable range existed between upper and lower limits of feedback gain; the limits depending on the constants of the control function. The damping of the system was poor.

The nozzle control function was revised by introducing additional lead circuits, or sensitivity to the accelerative change of attitude of the rocket. The damping was improved by this change, and the range of gains was widened.
II. ANALYSIS

A typical feedback control system which might be employed to guide a rocket of the controllable nozzle type is shown in Fig. 3 above. The attitude of the rocket, as indicated by the angle θ_3 which the rocket makes with the vertical, is measured by an attitude gyro. The gyro signal is matched with the desired rocket attitude signal and the error, or difference, is fed to a nozzle control. The nozzle control applies a moment M to the nozzle which results in a relative angular displacement $\theta_4 - \theta_3$ of the nozzle with respect to the rocket. The thrust axis rotates with the nozzle, causing a change in the rocket attitude.

Now consider the case of a rocket with the motor and nozzle mounted as a compound pendulum as shown in Figs. 1 and 2. With any change in rocket attitude, the pendulum moves in a calculable manner. From a knowledge of the system dynamics and a time history of the
pendulum motion, the attitude of the rocket may be computed. Suppose, then, that the angular displacement of the nozzle from the center line of the rocket, $q_4 - q_3$, is measured and fed as an electrical or mechanical signal into a computer with an output representing the attitude of the rocket q_3. The gyroscopic element is thereby eliminated from the circuit.

![Block Diagram of a Feedback Control System](image)

Fig. 4. Block Diagram of a Feedback Control System

Employing a Compound Pendulum Nozzle

The block diagram of the proposed feedback control circuit as shown in Fig. 4 above may be interpreted as follows.

The desired input of the coordinate q_3, or angle which the rocket makes with the vertical, is matched with a feedback signal representing the actual angle at any given time. The difference between the desired angle (in this case it is desired that $q_3 = 0$ for vertical takeoff) and the computed angle is fed into the nozzle control mechanism as an error signal, $q_3_{des} - q_3$. The error signal initiates the application of a moment \mathcal{M} to the nozzle gimbals. The moment
contributes to the nozzle dynamics to yield a certain position of the nozzle relative to the rocket, which is represented by \(q_{4} - q_{3} \). The thrust line is rotated off the center line of the rocket by movement of the nozzle; this contributes a moment and side force to the overall rocket dynamics, resulting in a final rocket position.

The functions \(F_{2}, F_{3}, \) and \(F_{4} \) appearing in the block diagram of Fig. 4 are transfer functions derived from the equations of motion of the configuration which have been transformed by the use of the Laplace Transformation. The transfer functions are linear operators and can be defined by inspection of the block diagram of the system (i.e., \(F_{2} = \frac{Q_{4} - Q_{3}}{M}, F_{3} = F_{4} = \frac{Q_{3}}{Q_{4} - Q_{3}} \)). The nozzle control transfer function \(F_{1} \) is the unknown quantity which is the subject of this investigation.

The equation relating the output of the system to the input may be derived as follows:

Following the circuit from \(Q_{3 \text{ in}} \) to \(Q_{3 \text{ out}} \)

\[
Q_{3 \text{ out}} = \left[Q_{3 \text{ in}} - Q_{3} \right] F_{1} F_{2} F_{3}
\]

Around the loop

\[
Q_{3} = \frac{Q_{3 \text{ in}} - Q_{3} F_{1} F_{2} F_{4}}{1 + F_{1} F_{2} F_{4}}
\]

Substituting for \(Q_{3} \) in the first equation

\[
\frac{Q_{3 \text{ out}}}{Q_{3 \text{ in}}} = \left[1 - \frac{F_{1} F_{2} F_{4}}{1 + F_{1} F_{2} F_{4}} \right] F_{1} F_{2} F_{3} = \frac{F_{1} F_{2} F_{3}}{1 + F_{1} F_{2} F_{4}}
\]
The System Transfer Function therefore becomes:

\[K_s \cdot G_s = \frac{\text{OUTPUT}}{\text{INPUT}} = \frac{F_1 \cdot F_2 \cdot F_3}{1 + F_1 \cdot r_2 \cdot r_4} \]

The stability analysis thus involves 1) derivation of the equations of motion for the rocket and movable nozzle configuration, 2) conversion of these equations by the Laplace Transform to solve for the transfer functions \(F_1 \), \(F_2 \), and \(F_4 \), and finally, 3) synthesis of a nozzle control function \(F_1 \), and investigation of the complete system transfer function \(K_s \cdot G_s \) for its stability characteristics.

The Nyquist Stability Criterion and the Evans Root Locus Method are applied in the stability investigation. Refs. (2) and (3) contain explanations of the use of these and other methods of analysis applicable in the field of stability and control.
III. EQUATIONS OF MOTION

The assumed rocket configuration with all external forces to be considered is shown in Fig. 5. A schematic diagram of the coordinate system and dimensions of the configuration are shown in Fig. 6.

Frictional and aerodynamic forces are neglected. The change of mass of the main rocket body with burning of fuel is considered. Motion in one plane only is considered.

It is convenient to employ coordinates φ_1 through φ_8 in the derivation, but of these, only four coordinates, φ_1 through φ_4, are independent. The coordinates φ_1 and φ_2 measure the horizontal and vertical distances respectively to the center of gravity of the entire configuration, and have the dimensions of length. Coordinates φ_3 and φ_4 measure the angular displacement of the main rocket center line and the nozzle line respectively from the vertical, and have the dimensions of the radian.

The equations of motion in the four degrees of freedom, namely in the directions of coordinates φ_1, φ_2, φ_3, and φ_4 are derived using the generalized Lagrangian momentum equation:

$$\frac{d}{dt}\left(\frac{\partial T}{\partial \dot{\varphi}_i}\right) - \frac{\partial T}{\partial \varphi_i} = \mathcal{L}_i$$

(1)

Elimination of Extraneous Coordinates

By taking moments about the center of gravity of the system as shown schematically in Fig. 7, the relation between the system center of gravity and the centers of gravity of the main rocket body and the nozzle may be found:
Fig. 5 Sketch Showing External Forces on Main Rocket Body and on Motor.
Fig. 6 Schematic Diagram of Coordinate System and Dimensions
Fig. 7. Sketch Showing the Relation Between the Centers of Mass, M_1 and M_2, and the Center of Gravity of the System

\[\Sigma M_{c.g.} = M_1 g (q_5 - q_1) - M_2 g (q_1 - q_2) = 0 \]

\[M_1 (q_5 - q_1) = M_2 (q_1 - q_7) \]

(2)

From the geometry of the system as shown in Fig. 8 the following relations can be obtained:
Fig. 8. Geometry of the Configuration

Equating the vertical distances between mass centers:

\[q_6 - q_8 = l_4 \cos (q_3 - \delta) \]
\[l_4 = \frac{q_6 - q_8}{\cos(q_3 - \delta)} \] (3)

Equating the horizontal distances between mass centers:

\[q_5 - q_7 = l_4 \sin (q_3 - \delta) \]
\[l_4 = \frac{q_5 - q_7}{\sin(q_3 - \delta)} \] (4)

By considering similar triangles in Fig. 8 it follows that:

\[\frac{q_6 - q_2}{q_5 - q_1} = \frac{q_2 - q_8}{q_1 - q_7} \]
\[
\frac{M_1 (q_6 - q_2)}{M_1 (\gamma_5 - \gamma_1)} = \frac{M_2 (q_2 - q_8)}{M_2 (\gamma_1 - \gamma_7)}
\] \hspace{1cm} (5)

Substituting Eq. (2) into (5), the result is

\[
M_1 (q_6 - q_2) = M_2 (q_2 - q_8)
\] \hspace{1cm} (6)

Eqs. (2), (3), (4), and (6) are four linear expressions containing the four extraneous coordinates \(q_5\), \(q_6\), \(q_7\), \(q_8\) and the principal coordinates \(q_1\), \(q_2\), \(q_3\) and \(q_4\). The former may be expressed in terms of the principal coordinates as follows:

From Eq. (3)

\[
q_6 = \lambda_4 \cos (q_3 - \delta) + q_8
\] \hspace{1cm} (7)

From Eq. (4)

\[
q_7 = q_5 - \lambda_4 \sin (q_3 - \delta)
\] \hspace{1cm} (8)

Substituting (8) into (2)

\[
q_5 = q_1 + \frac{M_1}{M_1 + M_2} \lambda_4 \sin (q_3 - \delta)
\] \hspace{1cm} (9)

Substituting (7) into (6)

\[
q_8 = q_2 - \frac{M_1}{M_1 + M_2} \lambda_4 \cos (q_3 - \delta)
\] \hspace{1cm} (10)

Substituting (9) into (8)

\[
q_7 = q_1 - \frac{M_1}{M_1 + M_2} \lambda_4 \sin (q_3 - \delta)
\] \hspace{1cm} (11)

Substituting (10) into (7)

\[
q_6 = q_2 + \frac{M_2}{M_1 + M_2} \lambda_4 \cos (q_3 - \delta)
\] \hspace{1cm} (12)

It will be noted that the above equations contain the variables \(\lambda_4\), and \(\delta\) from Fig. 7 which must be expressed in terms of the
principal coordinates.

In Fig. 8 by the law of cosines

\[l_4 = \sqrt{l_1^2 + l_2^2 - 2l_1 l_2 \cos (q_{r_4} - q_{r_3})} \]

(13)

and by the law of sines

\[\frac{l_2}{\sin \delta} = \frac{l_4}{\sin (q_{r_4} - q_{r_3})} \]

\[\delta = \sin^{-1} \left[\frac{l_2}{l_4} \sin (q_{r_4} - q_{r_3}) \right] \]

\[q_{r_3} - \delta = q_{r_3} - \sin^{-1} \left[\frac{l_2}{l_4} \sin (q_{r_4} - q_{r_3}) \right] \]

(14)

To simplify Eqs. (13) and (14) consider the following approximations:

\[q_{r_i} \approx \sin q_{r_i} \quad \cos q_{r_i} \approx 1 \]

Then from Eq. (13)

\[l_4 \approx \sqrt{l_1^2 + l_2^2 - 2l_1 l_2} \approx l_1 - l_2 \]

From Eq. (14)

\[q_{r_3} - \delta \approx q_{r_3} - \frac{l_2}{l_4} (q_{r_4} - q_{r_3}) \]

\[q_{r_3} - \delta \approx q_{r_3} \frac{l_4 + l_2}{l_4} - \frac{l_2}{l_4} q_{r_4} \]

and since

\[l_4 \approx l_1 - l_2 \]

\[q_{r_3} - \delta = \frac{l_1}{l_1 - l_2} q_{r_3} - \frac{l_2}{l_1 - l_2} q_{r_4} \approx \sin (q_{r_3} - \delta) \]

The approximations then are
\[
\sin(q_3 - \delta) = \frac{\lambda_1}{\lambda_1 - \lambda_2} q_{r3} - \frac{\lambda_2}{\lambda_1 - \lambda_2} q_4 \\
\cos(q_3 - \delta) = 1 \\
\lambda_4 = \lambda_1 - \lambda_2
\]
(15)

Substituting (15) into (9), (12), (11), and (10) yields the following relations between the extraneous and the principal coordinates:

\[
q_5 = q_1 + \frac{M_2}{M_1 + M_2} (\lambda_1 q_3 - \lambda_2 q_4) \\
(16)
\]

\[
q_6 = q_2 + \frac{M_2}{M_1 + M_2} (\lambda_1 - \lambda_2) \\
(17)
\]

\[
q_7 = q_1 - \frac{M_1}{M_1 + M_2} (\lambda_1 q_3 - \lambda_2 q_4) \\
(18)
\]

\[
q_8 = q_2 - \frac{M_1}{M_1 + M_2} (\lambda_1 - \lambda_2) \\
(19)
\]

The Kinetic Energy Term

The kinetic energy \(\mathcal{T} \) appearing in the Lagrangian equation of motion may be derived as the sum of kinetic energies of translation and rotation by referring to Fig. 6:

\[
\mathcal{T} = \frac{1}{2} I_1 \dot{q}_3^2 + \frac{1}{2} I_2 \dot{q}_4^2 + \frac{1}{2} M_1 (\dot{q}_5^2 + \dot{q}_6^2) + \frac{1}{2} M_2 (\dot{q}_7^2 + \dot{q}_8^2) \\
(20)
\]

Derivation of the Equation of Motion for the Coordinate \(\dot{q}_{r1} \)

The first term of the Lagrangian equation may be obtained by first taking the derivative of Eq. (20) with respect to \(\dot{q}_{r1} \):

\[
\frac{\partial \mathcal{T}}{\partial \dot{q}_{r1}} = M_1 \dot{q}_5 \frac{\partial \dot{q}_5}{\partial \dot{q}_{r1}} + M_2 \dot{q}_7 \frac{\partial \dot{q}_7}{\partial \dot{q}_{r1}}
\]
The extraneous coordinates \(q_6 \) and \(q_7 \) appearing in the above expression may be eliminated by differentiating Eqs. (16) and (18) and substituting the results. Thus we obtain:

\[
\frac{\partial T}{\partial q_{\hat{i}}} = (M_i + M_2) \ddot{q}_{\hat{i}} - \frac{M_i M_l}{M_i + M_l} (l_1 q_3 - l_2 q_4)
\]

The above expression may be differentiated with respect to time to yield:

\[
\frac{d}{dt}\left(\frac{\partial T}{\partial q_{\hat{i}}}
ight) = (M_i + M_2) \ddot{q}_{\hat{i}} + M_i \dot{q}_{\hat{i}} - \frac{M_i M_l}{M_i + M_l} (l_1 \dot{q}_3 - l_2 \dot{q}_4) + \frac{M_i M_l^2}{(M_i + M_l)^2} (l_1 q_3 - l_2 q_4)
\]

(21)

The second term of the Lagrangian equation may be obtained by differentiating Eq. (20) with respect to

\[
\frac{\partial T}{\partial q_{\hat{i}}} = 0
\]

(22)

The generalized force \(\mathfrak{A}_i \) can be computed by considering the work done by the external forces as the coordinate \(q_{\hat{i}} \) is varied, all other coordinates remaining fixed.

In general,

\[
\text{Work}_i = \mathfrak{A}_i \Delta q_{\hat{i}} \quad \text{or} \quad \mathfrak{A}_i = \frac{\text{Work}_i}{\Delta q_{\hat{i}}}
\]

In particular, for coordinate \(q_4 \), the force \(\mathfrak{A}_1 \) becomes, referring to Fig. 6:

\[
\mathfrak{A}_1 = \frac{\text{Work}_1}{\Delta q_4} = \frac{(F \sin q_4 + D \cos q_4) \Delta q_4}{\Delta q_4}
\]

With the approximations of Eq. (15), the above expression becomes

\[
\mathfrak{A}_1 \approx F q_4 + D
\]

(23)
Substituting Eqs. (21), (22), and (23) into Eq. (1), the equation of motion in the \(q_1 \) direction becomes, finally:

\[
(M_1 + M_2) \ddot{q}_1 + M_1 \dot{q}_1 + \frac{M_2 M_1}{M_1 + M_2} (l_1 \dot{q}_2 - l_2 \dot{q}_4) + \frac{M_1 M_2}{(M_1 + M_2)^2} (l_1 \dot{q}_3 - l_2 \dot{q}_4) = F_{q_4} + D
\]

(24)

Derivation of the Equation of Motion for the Coordinate \(q_2 \)

In a similar manner, differentiating Eq. (20):

\[
\frac{\partial T}{\partial \dot{q}_2} = M_1 \dot{q}_1 \frac{\partial \dot{q}_1}{\partial \dot{q}_2} + M_2 \dot{q}_2 \frac{\partial \dot{q}_2}{\partial \dot{q}_2}
\]

and, differentiating Eq. (17):

\[
\dot{q}_6 = \dot{q}_2 - \frac{M_2 M_1}{(M_1 + M_2)^2} (l_1 - l_2)
\]

\[
\frac{\partial \dot{q}_6}{\partial \dot{q}_2} = 1
\]

Similarly, differentiating Eq. (19):

\[
\dot{q}_8 = \dot{q}_2 - \frac{M_2 M_1}{(M_1 + M_2)} (l_1 - l_2)
\]

\[
\frac{\partial \dot{q}_8}{\partial \dot{q}_2} = 1
\]

Combining the above results:

\[
\frac{\partial T}{\partial \dot{q}_2} = (M_1 + M_2) \dot{q}_2 + \frac{M_1 M_2}{M_1 + M_2} (l_1 - l_2)
\]

By differentiating this expression with respect to time the first term of the Lagrangian equation becomes:
\[
\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_2} \right) = (M_1 + M_2) \ddot{q}_2 + M_1 \dddot{q}_2 + \frac{M_1 \dot{M}_1}{(M_1 + M_2)^2} (\dot{q}_1 - \dot{q}_2) \tag{25}
\]

The second term of the Lagrangian equation is:

\[
\frac{\partial T}{\partial q_2} = 0 \tag{26}
\]

The generalized force \(\mathfrak{q}_2 \), referring to Fig. 5, may be expressed as:

\[
\mathfrak{q}_2 = \frac{\text{Work}_2}{\Delta q_2} = \frac{\left[-(M_1 + M_2) q + F \cos q_4 - D \sin q_4 \right] \Delta q_2}{\Delta q_2} \tag{27}
\]

With the approximations of Eq. (15)

\[
\mathfrak{q}_2 \approx -(M_1 + M_2) q + F - D q_4 \tag{27}
\]

Substituting Eqs. (25), (26), and (27) into (1), the equation of motion in the \(q_2 \) direction becomes:

\[
(M_1 + M_2) \ddot{q}_2 + M_1 \dot{q}_1 + \frac{M_2 \dot{M}_1}{(M_1 + M_2)^2} (\dot{q}_1 - \dot{q}_2) = F - q (M_1 + M_2) - D q_4 \tag{28}
\]

Derivation of the Equation of Motion for the Coordinate "\(q_3 \)"

The first term of the Lagrangian equation is obtained in an identical manner to that employed for coordinates \(q_1 \) and \(q_2 \):

Differentiating Eq. (20):

\[
\frac{\partial T}{\partial \dot{q}_3} = I_1 \ddot{q}_3 + M_1 \dot{q}_5 \frac{\partial \dot{q}_5}{\partial \dot{q}_3} + M_2 \dot{q}_7 \frac{\partial \dot{q}_7}{\partial \dot{q}_3} \tag{29}
\]

and, differentiating Eq. (16):

\[
\dot{q}_5 = \dot{q}_1 + \frac{M_2}{M_1 + M_2} (l_1 \dot{q}_3 - \dot{q}_4) - \frac{M_2 \dot{M}_1}{(M_1 + M_2)^2} (l_1 q_3 - l_2 q_4)
\]

\[
\frac{\partial \dot{q}_5}{\partial \dot{q}_3} = \frac{M_2}{M_1 + M_2} \frac{l_1}{l_1}
\]
also, by differentiating Eq. (18):

\[
\dot{q}_7 = \dot{q}_1 - \frac{M_1}{M_1 + M_2} (l_1 \ddot{q}_3 - l_2 \ddot{q}_4) - \frac{M_2 \dot{M}_1}{(M_1 + M_2)^2} (l_1 q_3 - l_2 q_4)
\]

\[
\frac{\partial \dot{q}_7}{\partial q_3} = - \frac{M_1 l_1}{M_1 + M_2}
\]

Substituting into (29)

\[
\frac{\partial T}{\partial q_3} = \left[I_1 + \frac{M_1 M_2 l_1^2}{M_1 + M_2} \right] \ddot{q}_3 - \frac{M_1 M_2 l_1 l_2}{M_1 + M_2} \ddot{q}_4
\]

Differentiating the above expression with respect to time, the first term of the Lagrangian equation becomes:

\[
\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_3} \right) = I_1 \dddot{q}_3 + \dddot{q}_3 \dddot{q}_3 + \frac{M_1 M_2 l_1}{M_1 + M_2} (l_1 \dddot{q}_3 - l_2 \dddot{q}_4)
\]

\[
+ \frac{M_2^2 \dot{M}_1}{(M_1 + M_2)^2} (l_1 \dddot{q}_3 - l_2 \dddot{q}_4)
\]

(30)

From Eq. (20)

\[
\frac{\partial T}{\partial q_3} = M_1 \left(\ddot{q}_5 \frac{\partial \dot{q}_5}{\partial q_3} + \ddot{q}_6 \frac{\partial \dot{q}_6}{\partial q_3} \right) + M_2 \left(\ddot{q}_7 \frac{\partial \dot{q}_7}{\partial q_3} + \dddot{q}_5 \frac{\partial \dot{q}_5}{\partial q_3} \right)
\]

(31)

By differentiating Eq. (16):

\[
\dot{q}_5 = \dot{q}_1 + \frac{M_2}{M_1 + M_2} (l_1 \dot{q}_3 - l_2 \dot{q}_4) - \frac{M_2 \dot{M}_1}{(M_1 + M_2)^2} (l_1 q_3 - l_2 q_4)
\]

\[
\frac{\partial \dot{q}_5}{\partial q_3} = - \frac{M_2 \dot{M}_1 l_1}{(M_1 + M_2)^2}
\]

(32)

By differentiating Eq. (18):

\[
\dot{q}_7 = \dot{q}_1 - \frac{M_1}{M_1 + M_2} (l_1 \dot{q}_3 - l_2 \dot{q}_4) - \frac{M_2 \dot{M}_1}{(M_1 + M_2)^2} (l_1 q_3 - l_2 q_4)
\]

\[
\frac{\partial \dot{q}_7}{\partial q_3} = - \frac{M_2 \dot{M}_1 l_1}{(M_1 + M_2)^2}
\]

(33)

\[\text{The term} \ \dddot{q}_3 \ \text{which accounts for the propellant mass transfer out of the rocket is not correct, inasmuch as this moment should be calculated from the velocity with which the propellant leaves the transfer tubes and enters the motor. Corresponding errors appear in subsequent equations. The numerical effect of the resulting terms is negligible.}\]
In order to obtain \(\frac{\partial \dot{q}_6}{\partial q_3} \) and \(\frac{\partial \dot{q}_8}{\partial q_3} \), it becomes necessary to differentiate the exact expressions for \(q_6 \) and \(q_8 \), since the \(q_3 \) term has vanished in the linearization of the exact expressions. Eqs. (10) and (12) will be differentiated and the results then linearized.

From Eq. (12)

\[
\dot{q}_6 = \dot{q}_2 + \frac{m_2}{M_1 + M_2} \cdot l_4 \cos \theta \quad ; \quad (\theta = q_3 - \delta)
\]

\[
\frac{\partial \dot{q}_6}{\partial q_3} = -\frac{m_2}{M_1 + M_2} \cdot \frac{\partial l_4}{\partial q_3} \sin \theta - \frac{m_2 M_1}{(M_1 + M_2)^2} \cdot l_4 \cos \theta + \frac{m_2}{M_1 + M_2} \cdot \dot{l}_4 \cos \theta
\]

\[
-\frac{\partial \dot{q}_6}{\partial q_3} = -\frac{m_2 M_1}{(M_1 + M_2)^2} \cdot \frac{\partial l_4}{\partial q_3} \cos \theta - \frac{m_2 M_1}{(M_1 + M_2)^2} \cdot l_4 \frac{\partial \cos \theta}{\partial q_3} + \frac{m_2}{M_1 + M_2} \cdot \frac{\partial \dot{l}_4}{\partial q_3}
\]

\[
\frac{\partial \cdot \frac{\partial \cos \theta}{\partial q_3}}{\partial q_3}
\]

From Eq. (13):

\[
l_4 = \sqrt{l_1^2 + l_2^2 - 2 l_1 l_2 \cos (q_4 - q_3)}
\]

By differentiation:

\[
\frac{\partial l_4}{\partial q_3} = -\frac{l_1 l_2 \sin (q_4 - q_3)}{l_4}
\]

\[
\frac{\partial l_4}{\partial \dot{q}_4} = \dot{l}_4 = \frac{l_1 l_2 [\sin (q_4 - q_3)] [\dot{q}_4 - \dot{q}_3]}{l_4}
\]

\[
\frac{\partial l_4}{\partial \dot{q}_3} = -\frac{l_1 l_2 (\dot{q}_4 - \dot{q}_3) \cos (q_4 - q_3)}{l_4} - (2nd \text{ order term})
\]

\[
\frac{\partial l_4}{\partial q_3} = -\frac{l_1 l_2}{l_4} (\dot{q}_4 - \dot{q}_3)
\]
From Eq. (14):

\[
\theta = \varphi_3 + \sin^{-1} \left[\frac{\ell_2}{\ell_4} \sin (\varphi_4 - \varphi_3) \right]
\]

By differentiation:

\[
\dot{\theta} = \ddot{\varphi}_3 - \frac{\ell_2}{\ell_4} \cos (\varphi_4 - \varphi_3) \left(\dot{\varphi}_4 - \dot{\varphi}_3 \right)
\]

(38)

\[
\frac{\partial \dot{\theta}}{\partial \varphi_3} = - \frac{\ell_2}{\ell_4} \left(\dot{\varphi}_4 \dot{\varphi}_3 - \dot{\varphi}_3 \dot{\varphi}_4 \right)
\]

(39)

\[
\frac{\partial \theta}{\partial \varphi_3} = \frac{\ell_2}{\sqrt{1 - \frac{\ell_2^2 \sin^2 (\varphi_4 - \varphi_3)^2}{\ell_4^2}}} \cdot \frac{\ell_4 \cos (\varphi_4 - \varphi_3)}{\ell_4} \cdot \frac{\sin (\varphi_4 - \varphi_3)}{\ell_4}
\]

(40)

Also:

\[
\frac{\partial \sin \theta}{\partial \varphi_3} = \cos \theta \frac{\partial \theta}{\partial \varphi_3} \approx \frac{\ell_1}{\ell_4}
\]

(41)

\[
\frac{\partial \cos \theta}{\partial \varphi_3} = - \sin \theta \frac{\partial \theta}{\partial \varphi_3} \approx \frac{\ell_1}{\ell_4} \left(\ell_1 \varphi_3 - \ell_2 \varphi_4 \right)
\]

(42)

By substituting Eqs. (35) through (42) into (34) and ignoring terms of second order or higher in the small quantities:

\[
\frac{\partial \dot{\varphi}_3}{\partial \varphi_3} \approx - \frac{M_1}{M_1 + M_2} \ell_1 \dot{\varphi}_3 + \frac{M_1 M_2}{(M_1 + M_2)^2} \ell_1 \varphi_3
\]

(43)

In a similar manner, from Eq. (10):

\[
\dot{\varphi}_8 = \dot{\varphi}_2 + \frac{M_1}{M_1 M_2} \ell_4 \sin \theta \dot{\varphi}_3 - \frac{M_1}{M_1 + M_2} \cos \theta \frac{\partial \theta}{\partial \varphi_3} - \frac{M_1}{M_1 + M_2} \ell_4 \cos \theta - \frac{M_1 M_2}{(M_1 + M_2)^2} \ell_4 \cos \theta
\]

By differentiating this expression:
\[
\frac{\partial \dot{q}_8}{\partial q_3} = \frac{M_1}{M_1 + M_2} \left[l_4 \sin \theta \frac{\partial \dot{q}_8}{\partial q_3} + l_4 \dot{q}_3 \frac{\partial \sin \theta}{\partial q_3} + \sin \theta \frac{\partial l_4}{\partial q_3} \right] \\
- \frac{M_1}{M_1 + M_2} \left[\cos \theta \frac{\partial l_4}{\partial q_3} - l_4 \sin \theta \frac{\partial \theta}{\partial q_3} \right] - \frac{M_1}{M_1 + M_2} \left[\frac{\partial l_4}{\partial q_3} \cos \theta - \sin \theta l_4 \frac{\partial \theta}{\partial q_3} \right] \\
+ \frac{M_1 m_1}{(M_1 + M_2)^2} \left[\frac{\partial \dot{q}_8}{\partial q_3} \cos \theta - \sin \theta l_4 \frac{\partial \theta}{\partial q_3} \right]
\]

(44)

Again substituting Eqs. (35) through (42):

\[
\frac{\partial \dot{q}_8}{\partial q_3} = \frac{M_1}{M_1 + M_2} l_1 \dot{q}_3 + \frac{M_1 M_1}{(M_1 + M_2)^2} l_1 q_3
\]

(45)

Having evaluated \(\frac{\partial \dot{q}_6}{\partial q_3} \) and \(\frac{\partial \dot{q}_8}{\partial q_3} \) from the exact expressions, \(\frac{\partial T}{\partial q_3} \) can now be obtained by substituting these values in Eq. (31).

\[
\frac{\partial T}{\partial q_3} = - \frac{M_1 M_1}{M_1 + M_2} l_1 \dot{q}_1 + \frac{M_1 M_1}{(M_1 + M_2)^3} (l_1 \dot{q}_3 - l_2 \dot{q}_4) \\
- \frac{M_1 M_1}{(M_1 + M_2)^3} l_1 (l_1 - l_2) \dot{q}_3 + \frac{M_1 M_1 l_1}{M_1 + M_2} q_3 \dot{q}_2
\]

(46)

The generalized force

\[
\mathcal{L}_3 = \frac{\text{Work}}{\Delta q_3}
\]

Then, referring to Fig. 6

\[
\mathcal{L}_3 = - M_1 q_6 \frac{\partial q_6}{\partial q_3} - M_2 q_6 \frac{\partial q_6}{\partial q_3} + F \sin q_4 \frac{\partial}{\partial q_3} \left[q_7 - (l_2 + l_3) \sin q_4 \right] \\
+ F \cos q_4 \frac{\partial}{\partial q_3} \left[q_6 - (l_2 + l_3) \cos q_4 \right] + D \cos q_4 \frac{\partial}{\partial q_3} \left[q_7 - (l_2 + l_3) \sin q_4 \right] \\
- D \sin q_4 \frac{\partial}{\partial q_3} \left[q_6 - (l_2 + l_3) \cos q_4 \right]
\]
Substituting in values of q_4 and q_5 from Eqs. (11) and (10)

\[\mathcal{Q}_3 = \left[F \sin q_4 + D \cos q_4 \right] \frac{\partial}{\partial q_3} \left[q_4, - \frac{M_1}{M_1 + M_2} l_4 \sin \theta \left(l_4 + l_3 \right) \sin q_3 \right] \\
+ \left[F \cos q_4 - D \sin q_4 \right] \frac{\partial}{\partial q_3} \left[q_4, - \frac{M_1}{M_1 + M_2} l_4 \cos \theta \left(l_4 + l_3 \right) \cos q_3 \right] \]

Performing the differentiation indicated:

\[\mathcal{Q}_3 = \left[F \sin q_4 + D \cos q_4 \right] \left[- \frac{M_1}{M_1 + M_2} l_4 \frac{\partial \sin \theta}{\partial q_3} \sin q_3 + \sin \theta \frac{\partial l_4}{\partial q_3} \right] \\
+ \left[F \cos q_4 - D \sin q_4 \right] \left[- \frac{M_1}{M_1 + M_2} l_4 \frac{\partial \cos \theta}{\partial q_3} \cos q_3 + \cos \theta \frac{\partial l_4}{\partial q_3} \right] \]

Now, substituting Eqs. (35), (41), and (42):

\[\mathcal{Q}_3 = (F q_4 + D) \left\{ - \frac{M_1}{M_1 + M_2} \left[l_1 + \left(\frac{\partial l_4}{\partial q_3} \right) - l_1 l_2 (q_4 - q_3) \right] \right\} \\
+ (F - D q_4) \left\{ - \frac{M_1}{M_1 + M_2} \left[- l_1 (l_4 q_3 - l_2 q_4) - l_1 l_2 (q_4 - q_3) \right] \right\} \]

Finally, retaining only first order terms, the expression reduces to:

\[\mathcal{Q}_3 = - \frac{M_1 l_1}{M_1 + M_2} \left[F (q_4 - q_3) + D \right] \] (47)

The equation of motion for the coordinate q_3 can then be obtained by substituting Eqs. (30), (46), and (47) into Eq. (1).

\[\mathcal{I}_1 \ddot{q}_3 + \frac{M_1 M_2}{M_1 + M_2} \left(l_1 \ddot{q}_3 - l_2 \ddot{q}_4 \right) + \frac{M_2 M_1 l_1}{(M_1 + M_2)^2} \left(l_1 \ddot{q}_3 - l_2 \ddot{q}_4 \right) \]

\[+ \mathcal{I}_1 \ddot{q}_3 + \frac{M_2 M_1 l_1}{M_1 + M_2} q_3 - \frac{M_2 M_1 l_1}{M_1 + M_2} q_3 q_5 - \frac{M_2 M_1 l_1}{(M_1 + M_2)^3} \left(l_4 q_3 - l_2 q_4 \right) \]

\[+ \frac{M_2 M_1 l_1}{(M_1 + M_2)^3} q_3 = - \frac{M_1 l_1}{M_1 + M_2} \left[F (q_4 - q_3) + D \right] \] (48)
Derivation of the Equation of Motion for the Coordinate q_4

By differentiating Eq. (20) with respect to \dot{q}_4:

$$
\frac{\partial T}{\partial \dot{q}_4} = I_2 \ddot{q}_4 + M_1 \dot{q}_5 \frac{\partial \dot{q}_5}{\partial \dot{q}_4} + M_2 \dot{q}_7 \frac{\partial \dot{q}_7}{\partial \dot{q}_4} \tag{49}
$$

From Eq. (16):

$$
\dot{q}_5 = \dot{q}_1 + \frac{M_2}{M_1 + M_2} \left(\dot{q}_1 \dot{q}_3 - \ddot{q}_4 \right) - \frac{M_2 M_1}{(M_1 + M_2)^2} \left(\ddot{q}_1 \dot{q}_3 - \ddot{q}_4 \right)
$$

Differentiating:

$$
\frac{\partial \dot{q}_5}{\partial \dot{q}_4} = - \frac{M_2 \ddot{q}_4}{M_1 + M_2}
$$

From Eq. (18):

$$
\dot{q}_7 = \dot{q}_1 - \frac{M_1}{M_1 + M_2} \left(\dot{q}_1 \dot{q}_3 - \ddot{q}_4 \right) - \frac{M_1 M_2}{(M_1 + M_2)^2} \left(\ddot{q}_1 \dot{q}_3 - \ddot{q}_4 \right)
$$

Differentiating:

$$
\frac{\partial \dot{q}_7}{\partial \dot{q}_4} = \frac{M_1 \ddot{q}_4}{M_1 + M_2}
$$

Substituting these quantities into Eq. (49):

$$
\frac{\partial T}{\partial \dot{q}_4} = I_2 \ddot{q}_4 - \frac{M_1 M_2 \ddot{q}_4}{M_1 + M_2} \left(\dot{q}_1 \dot{q}_3 - \ddot{q}_4 \right)
$$

The first term of the Lagrange equation is obtained by differentiation of the above expression:

$$
\frac{d}{dt} \left(\frac{\partial T}{\partial \dot{q}_4} \right) = I_2 \dddot{q}_4 - \frac{M_1 M_2 \dddot{q}_4}{M_1 + M_2} \left(\dot{q}_1 \dot{q}_3 - \dddot{q}_4 \right) - \frac{M_2 M_1 \dddot{q}_4}{(M_1 + M_2)^2} \left(\dddot{q}_1 \dot{q}_3 - \dddot{q}_4 \right) \tag{50}
$$

From Eq. (20)

$$
\frac{\partial T}{\partial \dot{q}_4} = M_1 \left(\dot{q}_5 \frac{\partial \dot{q}_5}{\partial \dot{q}_4} + \dot{q}_6 \frac{\partial \dot{q}_6}{\partial \dot{q}_4} \right) + M_2 \left(\dot{q}_7 \frac{\partial \dot{q}_7}{\partial \dot{q}_4} + \dot{q}_8 \frac{\partial \dot{q}_8}{\partial \dot{q}_4} \right) \tag{51}
$$

By differentiating Eq. (16):

$$
\dot{q}_5 = \dot{q}_1 + \frac{M_2}{M_1 + M_2} \left(\dot{q}_1 \dot{q}_3 - \ddot{q}_4 \right) - \frac{M_2 M_1}{(M_1 + M_2)^2} \left(\ddot{q}_1 \dot{q}_3 - \ddot{q}_4 \right)
$$
\[\frac{\partial \dot{q}_5}{\partial q_4} = \frac{M_1 \dot{M}_1 l_2}{(M_1 + M_2)^2} \]

And by differentiating Eq. (18):

\[\frac{\partial \dot{q}_7}{\partial q_4} = \dot{q}_1 + \frac{M_2}{M_1 + M_2} (l_1 \dot{q}_3 - \dot{q}_2 \dot{q}_4) - \frac{M_2 \dot{M}_1}{(M_1 + M_2)^2} (l_1 \dot{q}_3 - \dot{q}_2 \dot{q}_4) \]

\[\frac{\partial \dot{q}_7}{\partial q_4} = \frac{M_2 \dot{M}_1 l_2}{(M_1 + M_2)^2} \]

In order to evaluate \(\frac{\partial \dot{q}_6}{\partial q_4} \) and \(\frac{\partial \dot{q}_8}{\partial q_4} \), it is necessary, as in the case of the \(q_3 \) coordinate, to differentiate the exact expressions, and then make simplifying approximations:

From Eq. (12):

\[\dot{q}_6 = \dot{q}_z - \frac{M_2}{M_1 + M_2} l_4 \sin \theta \dot{\theta} - \frac{M_2 \dot{M}_1}{(M_1 + M_2)^2} l_4 \cos \theta + \frac{M_2}{M_1 + M_2} \dot{l}_4 \cos \theta \]

Differentiating:

\[\frac{\partial \dot{q}_6}{\partial q_4} = -\frac{M_2}{M_1 + M_2} \frac{\partial l_4}{\partial q_4} \sin \theta \dot{\theta} - \frac{M_2 \dot{M}_1}{(M_1 + M_2)^2} l_4 \frac{\partial \sin \theta}{\partial q_4} \dot{\theta} - \frac{M_2}{M_1 + M_2} \dot{l}_4 \sin \theta \frac{\partial \dot{\theta}}{\partial q_4} \]

\[-\frac{M_2 \dot{M}_1}{(M_1 + M_2)^2} \frac{\partial \cos \theta}{\partial q_4} - \frac{M_2 \dot{M}_1}{(M_1 + M_2)^2} l_4 \frac{\partial \cos \theta}{\partial q_4} + \frac{M_2}{M_1 + M_2} \frac{\partial l_4}{\partial q_4} \cos \theta \]

\[+ \frac{M_2}{M_1 + M_2} \dot{l}_4 \frac{\partial \cos \theta}{\partial q_4} \]

(52)

By differentiating Eq. (13):

\[\frac{\partial l_4}{\partial q_4} = \frac{l_1 l_2 (q_4 - q_3)}{l_4} \]

Also by differentiating Eq. (36):

\[\frac{\partial \dot{l}_4}{\partial q_4} = \frac{l_1 l_2 (q_4 - q_3)}{l_4} \]
By differentiating Eq. (14):

\[\frac{\partial \hat{e}}{\partial \gamma_4} = - \frac{l_2}{l_4} \]

And by differentiating Eq. (38):

\[\frac{\partial \dot{\gamma}}{\partial \gamma_4} = \frac{l_1 \dot{l}_2 (\gamma_4 - \gamma_3)(\dot{\gamma}_4 - \dot{\gamma}_3)}{l_4^3} \]

Then \[\frac{\partial \dot{\gamma}_4}{\partial \gamma_4} \] may be evaluated by the substitution of the above expressions and Eqs. (35) through (42) into Eq. (52):

\[\frac{\partial \dot{\gamma}_4}{\partial \gamma_4} = \frac{M_2}{M_1 + M_2} \dot{l}_2 \dot{\gamma}_4 - \frac{M_1 M_2 l_2}{(M_1 + M_2)^2} \gamma_4 \quad \text{(53)} \]

From Eq. (10):

\[\dot{\gamma}_4 = \hat{\gamma}_4 + \frac{M_1}{M_1 + M_2} \dot{l}_4 \sin \theta \hat{\theta} - \frac{M_1}{M_1 + M_2} \cos \theta \frac{\partial l_4}{\partial \gamma_4} - \frac{M_1 M_2 \dot{\gamma}_4}{(M_1 + M_2)^2} \dot{l}_4 \cos \theta \]

Differentiating:

\[\frac{\partial \dot{\gamma}_4}{\partial \gamma_4} = \frac{M_1}{M_1 + M_2} \left\{ \dot{l}_4 \sin \theta \frac{\partial \hat{\theta}}{\partial \gamma_4} + \dot{l}_4 \hat{\theta} \frac{\partial \sin \theta}{\partial \gamma_4} + \sin \theta \hat{\theta} \frac{\partial l_4}{\partial \gamma_4} - \dot{l}_4 \cos \theta \frac{\partial \cos \theta}{\partial \gamma_4} \right\} - \frac{M_1 M_2}{(M_1 + M_2)^2} \left\{ l_4 \frac{\partial \cos \theta}{\partial \gamma_4} + \cos \theta \frac{\partial l_4}{\partial \gamma_4} \right\} \quad \text{(54)} \]

Then \[\frac{\partial \dot{\gamma}_4}{\partial \gamma_4} \] may be evaluated in a similar manner to \[\frac{\partial \dot{\gamma}_4}{\partial \gamma_4} \] by substituting for the extraneous terms in Eq. (54):

\[\frac{\partial \dot{\gamma}_4}{\partial \gamma_4} = - \frac{M_1 l_2}{M_1 + M_2} \dot{\gamma}_4 - \frac{M_1 M_2 l_2}{(M_1 + M_2)^2} \gamma_4 \quad \text{(55)} \]

The second term of the Lagrangian equation may be evaluated by substituting the derivatives obtained in the foregoing steps into Eq. (51):
\[
\frac{d^2 T}{dq_4} = \frac{M_1 M_2 l_z}{M_1 + M_2} \ddot{q}_1 - \frac{M_1 M_2 l_z}{M_1 + M_2} \ddot{q}_2 \\
- \frac{M_2 M_1 l_z}{(M_1 + M_2)^3} (l_1 q_3 - l_2 q_4) + \frac{M_2 M_1 l_z}{(M_1 + M_2)^3} (l_1 - l_2) q_4
\] (56)

The generalized force

\[
\mathcal{L}_4 = \frac{\text{Work}_4}{dq_4}
\]

By reference to Fig. 6, it is evident that:

\[
\mathcal{L}_4 = (F \sin q_4 + D \cos q_4) \frac{d}{dq_4} \left[q_7 - (l_1 + l_3) \sin q_4 \right] \\
- (F \cos q_4 - D \sin q_4) \frac{d}{dq_4} \left[q_8 - (l_1 + l_3) \cos q_4 \right] \\
- M_2 g \frac{d^2 q_8}{dq_4^2} - M_1 g \frac{d^2 q_4}{dq_4^2}
\]

Substituting for the extraneous coordinates and simplifying, as in the derivation of Eq. (47):

\[
\mathcal{L}_4 = -D \left(\frac{M_1 l_z}{M_1 + M_2} + l_3 \right)
\] (57)

Introducing Eqs. (50), (51), and (57) into Eq. (1), the equation of motion for coordinate \(q_4\) becomes, finally:

\[
I_2 \ddot{q}_4 - \frac{M_1 M_2 l_z}{M_1 + M_2} (l_1 \ddot{q}_3 - l_2 \ddot{q}_4) - \frac{M_2 M_1 l_z}{(M_1 + M_2)^3} (l_1 q_3 - l_2 q_4) \\
- \frac{M_1 M_2 l_z}{M_1 + M_2} \ddot{q}_1 + \frac{M_2 M_1 l_z}{M_1 + M_2} q_4 \ddot{q}_2 + \frac{M_2 M_1 l_z}{(M_1 + M_2)^3} (l_1 q_3 - l_2 q_4) \\
- \frac{M_2 M_1 l_z}{(M_1 + M_2)^3} (l_1 - l_2) q_4 = -D \left(\frac{M_2 l_z}{M_1 + M_2} + l_3 \right)
\] (58)
IV. COMPUTATION OF SYSTEM COMPONENT TRANSFER FUNCTIONS

Only the two equations involving the rotation of the rocket (coordinate γ_3) and the motion of the nozzle (coordinate γ_4) are considered since the stability investigation is made for rotation only. First, the thrust, jet damping, and moment of inertia terms are substituted in terms of the equation variables and constants.

Rocket thrust:

$$ F = - M_i \dot{\gamma}_3 \bar{I}_{5p} $$

Jet damping force:

$$ D = - \dot{M}_i \cdot \bar{J}_5 \hat{\gamma}_4 $$

(The negative sign is necessary in order to make the term positive, since \dot{M}_i is a negative quantity.)

Moment of Inertia derivative:

$$ \dot{I}_1 = M_i \ddot{\gamma}_3 $$

$$ \ddot{I}_1 = \dot{M}_i \dot{\gamma}_3 + 2 \dot{\gamma}_3 \dot{\gamma}_4 $$

$$ \ddot{I}_1 \approx \dot{M}_i \dot{\gamma}_3 $$

(since $\dot{\gamma}_3$ will be small for most configurations)

Substituting the above terms in Eq. (48):

$$ I_1 \ddot{\gamma}_3 + M_i \ddot{\gamma}_3 \dot{\gamma}_2 + \frac{M_i M_2 \dot{\gamma}_4}{M_i + M_2} \left(l_1 \ddot{\gamma}_3 - l_2 \ddot{\gamma}_4 \right) + \frac{\dot{M}_i \dot{\gamma}_3}{(M_i + M_2)^3} \left(l_1 \dot{\gamma}_3 - l_2 \dot{\gamma}_4 \right) $$

$$ - \frac{\dot{M}_i \dot{\gamma}_3}{(M_i + M_2)^3} \left(l_1 \dot{\gamma}_3 - l_2 \dot{\gamma}_4 \right) + \frac{M_i \dot{\gamma}_3}{(M_i + M_2)^3} \left(l_1 \dot{\gamma}_3 - l_2 \dot{\gamma}_4 \right) \dot{\gamma}_3 - \frac{\dot{M}_i \dot{\gamma}_3}{M_i + M_2} \dot{\gamma}_3 $$

$$ - \frac{M_i \dot{\gamma}_3}{M_i + M_2} \dot{\gamma}_3 = - \frac{M_i \dot{\gamma}_3}{M_i + M_2} \left[- \dot{M}_i \bar{J}_{5p} (\dot{\gamma}_4 - \ddot{\gamma}_3) - \dot{M}_i \bar{J}_5 \dot{\gamma}_4 \right]$$

(59)
Again, substituting for F, D, and I_i, and introducing the applied moment \mathcal{M}_r into Eq. (58):

$$
I_2 \ddot{q}_4 + \frac{M_i \dot{M}_i l^2}{(M_1 + M_2)^2} \left(l_1 \dot{q}_3 - l_2 \dot{q}_4 \right) = \frac{M_i \dot{M}_i l^2}{(M_1 + M_2)^2} \left(l_1 \ddot{q}_3 - l_2 \ddot{q}_4 \right)
$$

$$
- \frac{M_i \dot{M}_i l^2}{(M_1 + M_2)^2} \left(l_1 \dot{q}_3 - l_2 \dot{q}_4 \right) - \frac{M_i \dot{M}_i l^2}{(M_1 + M_2)^2} \left(l_3 - l_2 \right) \dot{q}_4 = \frac{M_i \dot{M}_i l^2}{M_1 + M_2} \ddot{q}_3
$$

$$
+ \frac{M_i \dot{M}_i l^2}{M_1 + M_2} \dot{q}_3 \ddot{q}_4 = \frac{M_i \dot{M}_i l^2}{M_1 + M_2} \ddot{q}_4 \left(l_3 + \frac{M_i \dot{M}_i l^2}{M_1 + M_2} \right) - \mathcal{M}_r
$$

(60)

The Laplace Transformation is applied to the equations prior to the stability analysis. Ref. (2) explains in detail the use of this transformation in such analyses. In essence, the transformation converts the differential equations to simple algebraic equations.

Since the vertical and horizontal velocities \dot{q}_2 and \dot{q}_1 are quite small during the launch, the terms involving \dot{q}_2 and $\dot{q}_3 \ddot{q}_1$ are neglected in the equations.

Application of the Laplace Transformation to Eq. (59) yields:

$$
Q_3 \left\{ \left[I_1 + \frac{M_i M_2 l^2}{M_1 + M_2} \right] S^2 + \left[\dot{M}_i l^2 + \frac{M_i \dot{M}_i l^2}{(M_1 + M_2)^2} \right] S + \left[\frac{M_i \dot{M}_i l^2}{M_1 + M_2} - \frac{M_i \dot{M}_i l^2}{(M_1 + M_2)^2} \right] \right\}
$$

$$
= Q_4 \left\{ \left[\frac{M_i M_2 l^2}{M_1 + M_2} \right] S^2 + \left[\frac{M_i \dot{M}_i l^2}{(M_1 + M_2)^2} \right] S + \left[\frac{M_i \dot{M}_i l^2}{M_1 + M_2} \right] \right\}
$$

$$
+ \left[\frac{M_i \dot{M}_i l^2}{M_1 + M_2} - \frac{M_i \dot{M}_i l^2}{(M_1 + M_2)^2} \right] \right\}
$$

(61)

where Q_4 represents the transformed coordinate q_f, and S is the complex variable. Similarly, transforming Eq. (60):

*The effect of the control moment \mathcal{M}_r on the main rocket is neglected in Eq. (59). For a system in which the nozzle is of comparable size and weight to the main rocket, the term should be included.
\[Q_3 \left[\left(\frac{M_i M_2 l^2}{M_i + M_2} \right) S^2 + \left(\frac{M_i^2 M_2 l^2}{(M_i + M_2)^3} \right) S - \left(\frac{M_i M_2 l^2}{(M_i + M_2)^3} \right) \right] = M(s) \]

\[Q_4 \left[\left(I_z + \frac{M_i M_2 l}{M_i + M_2} \right) S^2 + \left(\frac{M_i^2 M_2 l}{(M_i + M_2)^3} - \frac{M_i M_2 l}{M_i + M_2} \right) S \right] = \left(\frac{M_i^2 M_2 l}{(M_i + M_2)^3} \right) \]

(62)

where \(M \) represents the transformed moment \(\mathcal{M} \).

In order to solve for the transfer functions \(F_2 \) and \(F_3 \), it is necessary to rearrange the equations slightly; Eq. (61) becomes

\[Q_3 \left[\left(I_z + \frac{M_i M_2 l (l_2 - l)}{M_i + M_2} \right) S^2 + \left(\frac{M_i^2 M_2 l}{(M_i + M_2)^3} + \frac{M_i M_2 l}{M_i + M_2} \right) S \right] = \left(\frac{M_i^2 M_2 l}{(M_i + M_2)^3} \right) \]

(63)

Similarly, Eq. (62) becomes:

\[Q_4 \left[\left(I_z + \frac{M_i M_2 l^2}{M_i + M_2} \right) S^2 + \left(\frac{M_i M_2 l}{(M_i + M_2)^3} - \frac{M_i M_2 l}{M_i + M_2} \right) S \right] = \left(\frac{M_i M_2 l}{(M_i + M_2)^3} \right) \]

(64)

Then the transfer function \(F_3 \) from Eq. (63) becomes

\[F_3 = \frac{Q_3}{Q_4 - Q_3} = \frac{\left(\frac{M_i M_2 l}{M_i + M_2} \right) S^2 + \left(\frac{M_i^2 M_2 l^2}{(M_i + M_2)^3} + \frac{M_i M_2 l}{M_i + M_2} \right) S + \left(\frac{M_i M_2 l}{M_i + M_2} \right) S}{\left(I_z + \frac{M_i M_2 l (l_2 - l)}{M_i + M_2} \right) S^2 + \left(\frac{M_i M_2 l}{M_i + M_2} \right) S + \left(\frac{M_i M_2 l}{M_i + M_2} \right) S} \]

(65)

By substituting Eq. (63) into (64), the function \(F_2 \) may be written as
As an aid in the numerical computations for the stability analysis, the transfer functions are symbolized as follows:

\[F_3 = \frac{Q_3}{Q_4 - Q_3} = \frac{X}{Y} \] \hspace{2cm} (67)

\[F_2 = \frac{Q_4 - Q_5}{M} = \frac{1}{\left(\frac{X}{Y}\right)Z - W} \] \hspace{2cm} (68)

where:

\[X = \left\{ \frac{M_1M_2l_b^2}{M_1 + M_2} \right\} S^2 + \left\{ \frac{\tilde{M}_1M_2l_b^2}{(M_1 + M_2)^2} + \frac{M_1M_2l_b^2l_b}{M_1 + M_2} \right\} S + \left\{ \frac{M_1M_2l_b^2 + M_3}{M_1 + M_2} - \frac{M_3M_2l_b^2}{(M_1 + M_2)^2} \right\} \]

\[Y = \left\{ \left[I_1 + \frac{M_1M_2l_b^2}{M_1 + M_2} \right] S^2 + \left[\frac{\tilde{M}_1M_2l_b^2}{(M_1 + M_2)^2} + \frac{M_1M_2l_b^2l_b}{M_1 + M_2} \right] S \right\} \]

\[Z = \left\{ \frac{M_1M_2l_b^2}{M_1 + M_2} - I_2 \right\} S^2 + \left[\frac{M_1M_2l_b^2}{(M_1 + M_2)^2} - \frac{M_3}{M_1 + M_2} \right] S \]

\[W = \left\{ \left[I_2 + \frac{M_1M_2l_b^2}{M_1 + M_2} \right] S^2 + \left[\frac{M_1M_2l_b^2}{(M_1 + M_2)^2} - \frac{M_3}{M_1 + M_2} \right] S \right\} \]
V. SYNTHESIS OF THE NOZZLE CONTROL TRANSFER FUNCTION "F₁", AND STABILITY INVESTIGATION

To illustrate the determination of the nozzle control transfer function, a specific numerical example will be worked out using the German V-2 as a typical vehicle.

As indicated in the Analysis, the system transfer function may be written as

\[K_5 G_5 = \frac{F_1 F_2 F_3}{1 + F_1 F_2 F_3} \] \hspace{1cm} (69)

Also, the computer synthesizes the dynamics of the rocket to give

\[F_3 = F_4 \] \hspace{1cm} (70)

Substituting Eq. (70) into (69)

\[K_5 G_3 = \frac{F_1 F_2 F_3}{1 + F_1 F_2 F_3} \] \hspace{1cm} (71)

Let

\[KG = F_1 F_2 F_3 \] \hspace{1cm} (72)

Substituting for \(F_2 \) and \(F_3 \) from Eqs. (67) and (68):

\[KG = F_1 \left(\frac{\chi}{YZ - YW} \right) \] \hspace{1cm} (73)

As a numerical example, consider the V-2 rocket with pivoted rocket motor and nozzle. The parameters \(\chi, Y, Z, \) and \(W \) have the following values as calculated in the Appendix:
The problem now is to determine a function \(F_i \) which will give the system suitable stability characteristics during the launch. The procedure will be to:

1. Assume a function \(F_i \).

2. Check the system for stability by the Nyquist criterion.

3. Having established a stable system, determine the roots of the system transfer function by means of the Evans Root Locus Method.

4. Knowing the roots, at a typical operating gain of the feedback system, investigate the damping of the system.

5. If the resulting motion is unsatisfactory, improve the choice of \(F_i \) and repeat the process.

In explanation of the methods to be used to investigate the stability of the feedback control system, it will be noted that the equations of motion are linear differential equations with constant coefficients. The solution for the particular coordinate in question can then be represented in the general form

\[q_i = C_1 e^{s_1 t} + C_2 e^{s_2 t} + \ldots \]
where s is a simple root of the equation. In order to have a damped motion which will subside with time, it is obvious that the complex roots α must all have negative real parts. Another way of stating this requirement of a stable system is that all the roots α of the system must appear in the left or negative half of the complex plane.

The Nyquist Criterion

The Nyquist Criterion is an application to the simple feedback network of the Cauchy Theorem in the theory of complex variables. This theorem may be employed to show that if $G(s)$ is the vector representing the function of a complex variable s, the function having m poles and n zeros within a closed contour C in the s plane, that as the point s moves around the contour once in a clockwise direction, the vector $G(s)$ carries out $n - m$ clockwise revolutions about the origin. If the contour C is chosen to include the entire right half plane, and the function in question is plotted as the complex variable encircles the right half plane, the difference between the number of zeros and poles of the function that exist in the right half plane will be indicated by the number of encirclements of the origin. Either the number of zeros, or poles existing within the contour must be known previously.

In applying the theorem to the feedback network, the function in question is usually expressed as

$$\frac{\gamma \Delta G}{s} = \frac{\gamma G(s)}{1 + \gamma G(s)}$$

where the function $\gamma G(s)$ can be factored; thereby determining the zeros of the function $\gamma G(s)$. The denominator "" in general cannot be factored so readily, but application of the Cauchy Theorem
will show the number of roots of the denominator existing in the contour chosen, or the right half plane.

In order to obtain a plot independent of the gain \(\mathcal{K}^a \), the inverse of the function may be considered.

\[
\frac{1}{\mathcal{K}_s G_s} = \frac{1}{\mathcal{K} G} + \frac{1}{l}
\]

Then if the vector \(\frac{1}{\mathcal{K}_s G_s} \) encircles the origin, the vector \(\frac{1}{\mathcal{K} G} \) will encircle the point "\(-l \)", as the variable "\(s \)" moves around the contour of the right half plane. Or similarly the vector \(\frac{s}{\mathcal{K}_s} \) will encircle the point "\(-\mathcal{K} \)". The function \(\frac{1}{\mathcal{K} s} \) is then plotted as "\(s \)" encircles the right half plane. By application of this Nyquist Criterion, the stability or instability of the system can readily be determined.

If the nozzle control transfer function \(\mathcal{F}_i \) is first assumed to be equal to a constant \((\mathcal{F}_i = \mathcal{K}_i) \) the system transfer function takes the form

\[
\mathcal{K}_s G_s = \frac{\mathcal{K} G}{1 + \mathcal{K} G} = \frac{\mathcal{K} \left[\frac{X}{X \mathcal{I} - \mathcal{Y} \mathcal{I}} \right]}{1 + \mathcal{K} \left[\frac{X}{X \mathcal{I} - \mathcal{Y} \mathcal{I}} \right]} \tag{75}
\]

For the Nyquist diagram, the inverse of "\(G \)" is plotted as the vector "\(S \)" encircles the right half of the "\(S \)" plane. The function to be plotted then is

\[
\frac{1}{G(s)} = \frac{X \mathcal{I} - \mathcal{Y} \mathcal{I}}{\mathcal{I}} \tag{76}
\]

In order to use the Nyquist stability criterion it is necessary to know whether the function "\(\mathcal{K} G \)" has any zeros in the right half plane. By factoring Eq. (73) the following expression is obtained:
\[k_{G(5)} = K \left[-49.2 \times 10^{-6} \right] \left\{ \frac{[s+19.79][s-19.61]}{s[5-0.012][s-(-0.0204+i6.25)][s-(-0.0204-i6.25)]} \right\} \]

(77)

Since the function "\(K \) G" has one zero in the positive real half of the plane, the Nyquist Criterion requires that the plot of \(\frac{1}{G_{(s)}} \) must encircle the point \(-1\) once in a counter-clockwise direction as the \(S \) vector circles the right half of the \(S \) plane once in a clockwise direction.

Fig. 9 is the Nyquist diagram of Eq. (76). As the frequency increases from zero to positive infinity, thence to negative infinity and back to zero, there is one clockwise encirclement of all gains from \(0 \) to \(\infty \). The net encirclement may be considered to be two clockwise rotations, indicating two roots of the system transfer function existing in the right half plane. The system is unstable for all gains.

Next, assume the nozzle control transfer function to be of the form \(F = K_j (1+TS) \); then

\[K_5 G_5 = \frac{K_j (1+TS)}{1 + K_j (1+TS)} \]

(78)

The Nyquist diagram for the above equation is shown in Figs. 10 and 11. Again the number of zeros of "\(K \) G" existing in the right half plane determines the Nyquist criterion. The factored equation now becomes

\[k_{G(5)} = TK \left[-49.2 \times 10^{-6} \right] \left\{ \frac{[s-(-4)][s+19.79][s-19.61]}{s[5-0.006][s-(-0.0204+i6.25)][s-(-0.0204-i6.25)]} \right\} \]

(79)

Since there is one zero in the right half plane, again it is desired to have one counter-clockwise encirclement of the gain "\(K \)" as an indication of stability.
It was found necessary to plot the Nyquist diagram to several scales to indicate clearly the crossing points of the negative real axis.
The enlarged portions were plotted for the case when $T = 1$, and appear as Figs. 12 and 13. From these plots it is clear that there is one counter-clockwise encirclement of all gains from $K = 0$ to $K = 12^-$. The configuration is stable for gains in this range.

The Evans Root Locus Method

This method is a graphical solution for the variation of the roots of the feedback system transfer function $K G_S$ as the gain K is varied from zero to infinity, where

$$K G_S = \frac{K G(s)}{1 + K G(s)} = \frac{N(s)}{D(s)}$$

The plot is constructed by observing the following rules (Ref. 2):

1. For $K = 0$, the poles of $K G_S$ are the poles of $G(s)$.
2. For $K \to \infty$, the poles of $K G_S$ are the zeros of $G(s)$, with any missing poles taken at $s = \infty$.
3. The product of the distances from a root to the poles of $K G$ divided by the product of the distances from the root to the zeros of $K G$ is equal to the gain K.
4. The sum of the angles from the zeros of $K G$ to a root, less the sum of the angles from the poles of $K G$ to the root must equal π, or π plus an integer multiplied by 2π.

The locus of the roots of $K G_S$ can be determined graphically by trial and error, observing the above rules. The gain scale can be plotted along the path of the roots, and for a chosen operating gain,
the roots can be determined by inspection.

The root locus plot of Eq. (18) for the case when \(T = 1 \) is shown in Fig. 14. The roots emerge from the poles of \(K \) \(G \) at zero gain and proceed along the loci indicated to the zeros of \(K \) \(G \) at a gain of infinity. Gains at intermediate points can be approximated by dividing the product of the distances to the poles of \(K \) \(G \) by the product of the distances to the zeros, and by the constant gain factor in the equation (49.2 \(\times 10^{-6} \)). It is apparent from the root locus plot that the range for a stable configuration is from the gain where the roots \(S_{1,3} \) cross into the stable half plane to the gain where the roots \(S_{2,4} \) cross into the unstable half plane, referring to Fig. 14. The loci in this range are plotted to an enlarged scale and appear in Figs. 15 and 16. As an example of the computation, approximate expressions for the gain along the loci in this range are:

For root

\[
K(S) = \frac{(6.25 - \omega)(6.25 + \omega)}{(49.2 \times 10^{-6})(19.79)(19.61)(1 + \omega^2)} \approx 2050^2 \quad \text{for } \omega \text{ small}
\]

For root

\[
K(S) \approx \frac{(4 + 0.0204)(6.25)(1.25)(6.25)}{(19.11)(19.11 + 39.1)(19.11 + 39.1)} \approx 49.2 \times 10^{-6} \quad \text{for } \lambda \text{ small}
\]

\[
K(S) \approx 3670 (4 + 0.0204)
\]

It will be noted that the gains at the limits of the stable range check within limits of accuracy of the scale used on the graph as shown in the table below for the Nyquist and the Evans Root Locus plots.
<table>
<thead>
<tr>
<th>Method</th>
<th>Upper Limit of K</th>
<th>Lower Limit of K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nyquist plot</td>
<td>75.0</td>
<td>12.0</td>
</tr>
<tr>
<td>Evans Root Locus</td>
<td>74.80</td>
<td>11.85</td>
</tr>
</tbody>
</table>

Having established the gain scale along the root loci in the range of positive stability, referring to Figs. 15 and 16, it is possible to choose an operating gain and determine the values of the roots S_{3} and S_{4} at that gain. Some possible operating points have been tabulated below:

<table>
<thead>
<tr>
<th>Roots</th>
<th>$K = 50$</th>
<th>$K = 60$</th>
<th>$K = 70$</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_1</td>
<td>$-0.0031 + i \cdot 0.156$</td>
<td>$-0.00325 + i \cdot 0.171$</td>
<td>$-0.0033 + i \cdot 0.185$</td>
</tr>
<tr>
<td>S_2</td>
<td>$-0.0068 + i \cdot 6.25$</td>
<td>$-0.004 + i \cdot 6.25$</td>
<td>$-0.003 + i \cdot 6.25$</td>
</tr>
<tr>
<td>S_3</td>
<td>$-0.0068 - i \cdot 6.25$</td>
<td>$-0.004 - i \cdot 6.25$</td>
<td>$-0.003 - i \cdot 6.25$</td>
</tr>
</tbody>
</table>

The low frequency roots S_{3} are associated with the motion of the main rocket, whereas the high frequency roots S_{4} are associated with the motion of the nozzle. The time to damp to half amplitude and the period may be computed for the modes quite simply; the results of such a computation for a gain of $K = 60$ are tabulated below.
<table>
<thead>
<tr>
<th>K = 60</th>
<th>Rocket Oscillation</th>
<th>Nozzle Oscillation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to damp to half amplitude</td>
<td>210 seconds</td>
<td>171 seconds</td>
</tr>
<tr>
<td>Period of one cycle</td>
<td>36.8 seconds</td>
<td>1 second</td>
</tr>
<tr>
<td>Number of cycles to half amplitude</td>
<td>5.7 cycles</td>
<td>171 cycles</td>
</tr>
</tbody>
</table>

It is apparent that the damping is quite poor, and an improvement is desirable. The acceleration of the V-2 at take-off is roughly equal to 30 ft./sec.². If it is assumed that at a velocity of 200 ft./sec. the aerodynamic forces stabilize the rocket, the period of take-off instability is approximately 7 seconds long. For the foregoing example, the rocket conceivably could complete only one-fifth of a cycle of slightly damped motion in the take-off period as a result of a unit disturbance at the instant of firing. The nozzle oscillations are so rapid as to conceivably cause overloading of the control device.

In order to improve the damping characteristics of the system, referring to the root locus plot, Fig. 14, the addition of one or more zeros along the negative real axis would serve to pull the roots S_1 and S_3 into the negative half plane more quickly, since zeros attract the roots much as lines of force are drawn to magnetic poles. This should increase the magnitude of the negative real part of the roots at a given gain. Also, the angle of departure of the root S_2 would be increased counter-clockwise as a result of the angle condition of the
root locus plot. The root would then be forced to travel a longer path before passing into the unstable half plane.

The addition of zeros in the left half plane involves adding additional lead networks, which in real components have transfer functions of the type \(\frac{(1 + TS)}{(1 + CE)} \) where \(E \approx \frac{1}{10} \approx \frac{1}{20} \).

Assuming a new nozzle control transfer function to be of the form

\[
F_1 = \frac{K(1 + TS)(1 + TS)}{(1 + \frac{I}{20} \cdot \frac{T}{s})(1 + \frac{I}{20} \cdot \frac{T}{s})}
\]

where \(T = 1 \), the factored expression for \(KG \) is now

\[
KG = -0.968 \frac{(S+1)(S+1)(S+1)(S-19.79)(S+19.61)}{(S+0.06)(S+20)(S+20)(S-s(0.0204+i6.25))(s+0.0204-i6.25)}
\] (83)

The root locus plot of Eq. (83) is shown in Fig. 17. The range of gain for stability is now from \(K = 4 \) to \(K = 918 \).

By approximating the loci of the roots in the stable range by straight lines, the roots associated with various gains can be estimated conservatively. Some representative values are tabulated below.

<table>
<thead>
<tr>
<th>Root</th>
<th>(K = 600)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₁</td>
<td>(-0.0446 + i.541)</td>
</tr>
<tr>
<td>S₃</td>
<td>(-0.0446 - i.541)</td>
</tr>
<tr>
<td>S₂</td>
<td>(-0.02 + i15.25)</td>
</tr>
<tr>
<td>S₄</td>
<td>(-0.02 - i15.25)</td>
</tr>
</tbody>
</table>

If the damping time and period are computed for the latter
system, the following results are obtained.

<table>
<thead>
<tr>
<th>K - 600</th>
<th>Rocket Oscillation</th>
<th>Nozzle Oscillation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to damp to</td>
<td>15.3 seconds</td>
<td>34.2 seconds</td>
</tr>
<tr>
<td>half amplitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Period of one</td>
<td>11.6 seconds</td>
<td>.412 seconds</td>
</tr>
<tr>
<td>cycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of cycles</td>
<td>1.3 cycles</td>
<td>83 cycles</td>
</tr>
<tr>
<td>to half amplitude</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interpreting the results as before, the rocket now completes approximately two thirds of a cycle of oscillation during the launching period, but the effect of a unit disturbance is damped to a much greater extent. The nozzle oscillations occur at a higher frequency but the damping has been improved considerably.
VI. CONCLUDING REMARKS

The analysis shows the feasibility of stabilizing a rocket during the launching period by utilizing the motion of a compound pendulum suspended nozzle as the input to a feedback servo-control system. It was determined that the nozzle control for such a system must include response to both the attitude and the rate of change of attitude of the rocket, as computed from the pendulum motion, in order to obtain stability. It was further determined that changing the nozzle control to include response to accelerative motions of the rocket improved the damping characteristics of the system.
APPENDIX

The V-2 Rocket

```
980 Kg
EXPLOSIVE

500 Kg
AUXILIARIES

3500 Kg
ALCOHOL

5250 Kg
OXYGEN

450Kg, 530 Kg
PUMPS

MOTOR

CG

7.42'

14.0'

20.23'

37.5'

30.2'

41.7'

OVERALL HEIGHT 50'
```

Weight and Balance Table

<table>
<thead>
<tr>
<th></th>
<th>Wt. in Kg.</th>
<th>Wt. in Lbs.</th>
<th>Moment Arm, ft.</th>
<th>Moment lb. ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Explosive</td>
<td>980</td>
<td>2160</td>
<td>7.42</td>
</tr>
<tr>
<td>2.</td>
<td>Fuselage</td>
<td>1750</td>
<td>3860</td>
<td>26.65</td>
</tr>
<tr>
<td>3.</td>
<td>Pump</td>
<td>450</td>
<td>993</td>
<td>37.5</td>
</tr>
<tr>
<td>4.</td>
<td>Motor</td>
<td>550</td>
<td>1214</td>
<td>41.7</td>
</tr>
<tr>
<td>5.</td>
<td>Auxiliaries</td>
<td>300</td>
<td>662</td>
<td>14.0</td>
</tr>
<tr>
<td>6.</td>
<td>Alcohol</td>
<td>3500</td>
<td>7720</td>
<td>20.83</td>
</tr>
<tr>
<td>7.</td>
<td>Oxygen</td>
<td>5250</td>
<td>11600</td>
<td>30.2</td>
</tr>
<tr>
<td></td>
<td>Totals</td>
<td>12,980</td>
<td>28,620</td>
<td></td>
</tr>
</tbody>
</table>

Moment arm of C.G. = \(\frac{727,100}{28,620} \) = 25.4 ft.

Note: Data was obtained from Ref. (4) and is only approximately correct.
Calculation of the Moment of Inertia

Assume the rocket is a solid cylinder as shown in the above sketch.

Radius of gyration of a solid cylinder about its C.G. is

\[\kappa_g = \sqrt{\frac{3r^2 + h^2}{12}} \]

\[\kappa_1 = \sqrt{\frac{(3)(2.96^2 + (33.35)^2}{12}} = \sqrt{94.74^2} = 9.72 \text{ ft.} \]

Additional Data from Ref. (4)

\[F = \text{Total Thrust} = 27.2 \text{ tons} = 54,400 \text{ lbs.} \]

\[W = \text{Total Weight} = 12,980 \text{ Kg.} = 28,620 \text{ lbs.} \]

\[M_1 = \text{Mass Flow} = \frac{19,320 \text{ lbs}}{100 \text{ sec.}} = 193.2 \text{ lb./sec.} = 6 \text{ lb./sec./ft.} \]

\[I_{sp} = \text{Specific Impulse} = \frac{F}{M_1 g} = \frac{54,400}{193.2} = 282 \text{ sec.} \]
Calculations for the Constants of Section III

\[M_1 = 27,406 \text{ lbs} = 851 \frac{\text{lb} \text{ sec}^2}{\text{ft}} \]

\[M_2 = 1,214 \text{ lbs} = 37.7 \frac{\text{lb} \text{ sec}^2}{\text{ft}} \]

\[\dot{M}_1 = -193.2 \frac{\text{lb sec}}{\text{ft}} - 6 \frac{\text{lb sec}}{\text{ft}} \]

\[k_1 = 9.7 \text{ ft} \]

\[k_2 \simeq 2 \text{ ft} \text{ (radius of gyration of motor)} \]

\[l_1 = 2.0 \text{ ft} \]

\[l_2 = 3.7 \text{ ft} \]

\[l_3 = 0.3 \text{ ft} \]

\[l_4 = 4.0 \text{ ft} \]

\[I_1 = M_1 k_1^2 = 80,600 \text{ lb ft sec}^2 \]

\[I_2 = M_2 k_2^2 = 151 \text{ lb ft sec}^2 \]

\[I_{sp} = 282 \text{ sec} \]

\[M_1 + M_2 = 888.7 \frac{\text{lb sec}^2}{\text{ft}} \]

\[X_1 = \frac{M_1 l_1^2 h_1^2}{M_1 + M_2} S^2 + \left(\frac{M_1 l_1^2 h_1^2}{(M_1 + M_2)} + \frac{M_2 h_1^2 l_2}{M_1 + M_2} \right) S + \left(\frac{t_1 t_2 l_2 y_{sp}}{M_1 + M_2} - \frac{t_1^2 l_1 h_1 h_2}{(M_1 + M_2)^3} \right) \]
\[X = \left[\frac{(27.906 \text{ lbs})(37.7 \text{ lb sec})^2}{28.620 \text{ lbs}} \right] S^2 + \left[\left(\frac{37.7 \text{ lb sec}}{ft} \right)^2 \left(-6.0 \frac{\text{ lb sec}}{ft} \right) (20 \text{ ft})(3.7 \text{ ft}) \right] S + \left[\left(\frac{851 \text{ lb sec}}{ft} \right)^2 \left(-6.0 \frac{\text{ lb sec}}{ft} \right) (20 \text{ ft})(4.0 \text{ ft}) \right] \frac{888.7 \text{ lb sec}}{ft} \]

\[X = \left[(2675 S^2 - 4615 - 1.044 \times 10^6) \right] (16 \text{ ft}) \]

\[Y = \left[(I_x + \frac{M_1 M_3 \ell_2 (\ell_2 - \ell_3)}{M_1 + M_3}) \right] S^2 + \left[M_1 K_1^2 + \frac{M_2 M_3 \ell_2 (\ell_2 - \ell_3)}{(M_1 + M_3)^2} - \frac{M_1 \ell_1 \ell_3}{M_1 + M_3} \right] S \]

\[Y = \left[\left(80,600 \text{ lb ft sec}^2 \right) + \left(\frac{851 \text{ lb sec}}{ft} \right)^2 \left(\frac{37.7 \text{ lb sec}}{ft} \right)(20 \text{ ft})(20 - 3.7) \text{ ft} \right] S^2 + \left[(6.0 \frac{\text{ lb sec}}{ft}) (9.7 \text{ ft})^2 + \left(\frac{37.7 \text{ lb sec}}{ft} \right)^2 (6.0 \frac{\text{ lb sec}}{ft})(20 \text{ ft})(20 - 3.7) \text{ ft} \right] \frac{888.7 \text{ lb sec}}{ft} \]

\[Y = \left[92,380 S^2 - 110 S \right] \]

\[Z = \left[\left(\frac{M_1 M_3 \ell_2 (\ell_2 - \ell_3)}{M_1 + M_3} - I_x \right) \right] S^2 + \left(\frac{M_2 M_3 \ell_2 (\ell_2 - \ell_3)}{(M_1 + M_3)^2} + M_1 \ell_1 (\ell_3 + \frac{M_2}{M_1 + M_3} \ell_3) \right) S \]
$$Z = \left[\frac{(351)(37.7)(3.7)(20-3.7)}{888.7} - 15.1 \right] s^2 + \left(\frac{(37.7)^2(-6)(3.7)(20-3.7)}{888.7} \right) s$$

$$Z = \left[(2101-121) s^2 + (-.052 - 11) \right] 10 + 1$$

$$\overline{Z} = \left[2030 \ s^2 - 11.65 \ s \right]$$

$$W = \left[\left(\frac{M_1 M_2 l_2^2}{M_1 + M_2} \right) s^2 + \left(\frac{M_1^2 M_2 l_2^2}{(M_1 + M_2)^2} - M_1 M_2 (l_2 + \frac{M_2}{M_1 + M_2} l_1) \right) s - \frac{M_2 M_1 l_1 l_2}{(M_1 + M_2)^3} \right]$$

$$W = \left[(151 + \frac{(351)(37.7)(3.7)}{888.7}) s^2 + \left(\frac{(37.7)^2(-6)(3.7)}{888.7} - (-6)(4) \left(3 + \frac{37.7}{888.7} \right) \right) s - \frac{(37.7)^2(-6)^2(20)(3.7)}{888.7^3} \right]$$

$$W = (151 + 495) s^2 + (-.15 + 11) s - .0054$$

$$\overline{W} = \left[646 \ s^2 + 10.85 \ s \right]$$
REFERENCES

Fig. 9. Nyquist Plot of Unstable Configuration

\[\frac{1}{f_{L}} = \frac{5(s+0.001)}{(s+0.201)(s^2+0.314s+0.25)(s+0.204)(s+2.25)} \]
Fig. (10) Sketch of Nyquist diagram of stable configuration; not to scale.
Fig. 11 Scale Plot of Nyquist Diagram
Fig. 13. Detail of Nyquist Diagram for Very Low Frequencies.
Zeros of $G_K = \beta_i$

Poles of $G_K = \gamma_i$

\[
K_5 G_5 = \frac{A_G}{1 + A_K}
\]

\[
A_G = \frac{(s + 1)(s - 19.19)(s + 19.6)(-4.92 \times 10^6)}{(s)(s + 0.006)(s + (6.204 + 6.25i))(s - (6.0204 - 16.25i))}
\]

Fig. 14 Root Locus Plot of Function (not to scale)
\[S_2 \approx 3670 (x - 0.0204) \]

Fig. 15: Detail of Root \(S_2 \) at Low Gains

\[\tau \approx 2050 \ m^2 \]

Fig. 16: Detail of Locus of \(\text{Root}(S_3) \) at Low Gains
$K_S = -0.11968 \left\{ \frac{(s+0.1)(s+1)(s-19.79)(s+196.1)}{s(s-0.06)(s+20)(s+20)(s-(0.0204+6.25))(s-(0.0204-6.25))} \right\}$

Fig. 17 Root Locus Plot of Function (not to scale)