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SUMMARY

When a rocket is launched, there is a short initial period of ac-
celeration during which the rocket is unstable. As the flight velocity
increases, the aerodynamic forces acting on the fins and stabilizers
"become large enough to give stability. Various methods have been em-
ployed to stabilize the rocket during this launching period. Guide rails,
"zero length' launchers, booster rockets which produce high initial ac-
celeration, and auto-pilot controlled nozzles are typical devices that
have been used.

This is an investigation of the requirements of a nozzle control
which would stabilize the rocket during the launching period. The con-
figuration investigated is unique in that the nozzle of the rocket is
mounted as a compound pendulum, and the movement of the pendulum
is utilized to furnish the signal for the nozzle control servo-mechan-
ism, thereby eliminating the need for gyroscopic elements in the con-
trol system. The pendulum motion of the nozzle caused by a change in
flight attitude of the rocket is introduced into a computer which pro-
duces an output signal proportional to the attitude of the rocket. This
attitude signal is fed back to the nozzle control, which positions the
nozzle.

The results of the analysis showed that the rocket was unstable
during the take-off period when the nozzle control acted on the rocket
attitude signal alone. Stability over a narrow range of feedback gains
was indicated for the system using a simple lead circuit as a nozzle

control, or in other words, when the nozzle control acted on both the
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attitude signal and the rate of change of attitude of the rocket. The
damping characteristics of this system were poor. By changing the
nozzle control function to include a response to the acceleration of the
rocket attitude, the damping characteristics were improved and the

range of feedback gains was widened.
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TABLE OF SYMBOLS

q_.L generalizmed coordinate
&L generalized force
Ql Laplace transformed coordinate
/Qi_ generalized length
T kinetic energy
M,mass of the rocket independent of the mass of the motor
and nozsle
M, mass of the motor and nozzle
Lmoment of inertia of the rocket about its center of gravity
1,moment of inertia of the motor about its center of gravity
F rocket thrust
D jet damping force
ISFspecific impulse of the rocket
4k radius of gyration

9 acceleration of gravity



I, INTRODUCTION

The rocket stability problem has existed for many centuries.
Historians record that rockets were first used in battle by the Chinese
in 1232 A.D. By 1400, rockets were in widespread use as major wea-
pons by the warring nations of Europe. The poor stability of the rocket
in flight was responsible for its gradual replacement by the cannon
which gave more accurate trajectories. In the late 1700's, India em-
ployed rockets with improved stability characteristics against the
British. When British soldiers attempted to defeat the forces of Hydar
Ali, Prince of Mysore, a trained corps of rocket bombardiers launched
rocket missiles at the charging British cavalry, inflicting many casual-
ties. The Indian rockets were made of iron cylinders about eight inches
long and two inches in diameter, with a bamboo shaft about ten feet long
attached to give stability.

An English military officer, Colonel William Congreve, became
interested in the Indian advances in rocket development, and worked
to further improve the rocket for British use. Congreve devised a
launching system consisting of a tube mounted at an angle on a tripod
base, similar to the mortar. Long shafts were attached to the rockets
to keep them flying in a straight line. The British employed rockets
against Napoleon at Boulogne, and in other bombardments with great
success.

During the War of 1812, Americans were first introduced to
rocket warfare when the British bombarded Bladenburg, Maryland, and

subsequently Ft. McHenry at Baltimore. An American by the name of



William Hale improved the stability of the Congreve rocket by replac-
ing the wooden shaft with three curved fins on the rear part of the
rocket body. The exhaust gases were deflected by the fins, causing
the rocket to spin in flight. These rockets were used in the war with
Mexico, and were found to have superior trajectories to the stick sta-
bilized types. Again the rocket declined in popularity partly because
of its inferior trajectory compared to that of the gun. No othcr out-
standing developments in rocket stabilization were made following
Hale's work until early in this century.

With the advent of the airplane, and an increase in knowledge in
the field of aerodynamics, the stability problem of the rocket in flight
became defined more clearly. The use of tail fins, or tail fins with a
shroud ring as on the Bazooka, and later, the use of controlled airfoils
solved the in-flight stability problem to a great extent.

In the first part of the rocket's flight path there is a destabilizing
effect from the change in mass of the rocket as fuel is burned. The
aerodynamic forces must counter this tendency in order to stabilize
the rocket. During the launching period, the aerodynamic forces are
too small to counteract the effect of the change in mass, and the rocket
is unstable or at best neutrally stable. Consequently, stability during
the critical take-off period must be attained by some means other than
the use of aerodynamic surfaces.

Various means have been employed to stabilize the rocket during
the launching period. Guide rails to hold the rocket to a straight flight
path until it has gained sufficient speed to become aerodynamically

stable have been used successfully. The length of the guide rail has



been reduced to a minimum in some applications by firing the rocket
with a very high initial acceleration. The German V-2 rocket was
stabilized during the launch by an automatic pilot which controlled
four carbon vanes in the jet stream behind the nozzle. The American
"Viking' and the German "Enzian' employed a controllable nozzle
positioned by an automatic pilot.

A unique means of launching a large rocket with a booster rocket
mounted free to swing as a compound pendulum was investigated by
J. C. Norris in 1951 following a proposal by H. S. Tsien of Cal Tech.
(Ref. 1). For the system investigated, the booster rocket was mounted
below the main rocket on gimbals off the center of gravity of the
booster as shown in Fig. 1. A deviation of the main rocket from its
course would cause motion of the booster relative to the main rocket
causing a change in the direction of the thrust axis. It was hoped that
a practical configuration could be devised to give launching stability.
The results of the investigation were somewhat discouraging in that
for a typical vehicle-booster combination for which stability was indi-
cated, the required length of the tail boom was too great to be prac-
tical.

Since the basic idea of the pendulum mounted thrust unit appears
sound, the possibility of utilizing the pendulum in conjunction with a
servo-control is suggested.

In this thesis, the requirements of such a servo-control system
which would stabilize the rocket during the launching period are inves-
tigated. The rocket has a controllable nozzle mounted as a compound

pendulum; conceivably, the motor and nozzle of a liquid propellant
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rocket could be mounted as a unit as shown in Fig. 2. The motion of
the pendulum with respect to the rocket is fed to a computer which cal-
culates the attitude of the rocket. The attitude signal from the com-
puter is fed to a nozzle control. The aim of this investigation is to
determine the requirements of the nozzle control such that it will sta-
bilize the rocket during the launching period.

'The equations of motion of the configuration were first derived,
assuming all aerodynamic forces to be negligibly small during the
launching period. Motion in one plane only was considered. External
forces considered were the rocket thrust, assumed to be constant; the
jet damping force arising from rotation of the jet stream; and the gra-
vity force. The effect of the change in mass of the rocket resulting
from the burning of fuel was considered. The displacements of the
rocket and nozzle about the initial condition were assumed to be small
quantities for the period of the stability investigation.

Following the derivation, the equations involving the pitching
motion of the rocket and the motion of the nozzle were transformed to
simple algebraic equations by use of the Laplace Transform. From
the transformed equations, it was possible to solve for the transfer
functions of all of the components of the control system, as shown in
Fig. 4, except that of the nozzle control. The form of the nozzle con-
trol transfer function was estimated, and thc stability of the resulting
system was investigated by use of the Nyquist Stability Criterion. The
Evans Root Locus plot was used to find the damping coefficients of the
modes of oscillation of the system. Successive estimates of the form

of the nozzle control function were made in order to improve the



stability of the system.

It was found that for a nozzle control function employing feedback
of the rocket attitude signal only, the system was unstable. F¥For a con-
trol function employing feedback of both the rocket attitude and rate of
change of attitude, it was determined that a stable range existed be-
tween upper and lower limits of feedback gain; the limits depending on
the constants of the control function. The damping of the system was
poor.

The nozzle control function was revised by introducing additional
lead circuits, or sensitivity to the accelerative change of attitude of
the rocket. The damping was improved by this change, and the range

of gains was widened.
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II. ANALYSIS
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A typical feedback control system which might be employed to
guide a rocket of the controllable nozzle type is shown in Fig. 3 above.
The attitude of the rocket, as indicated by the angle 23 which the
rocket makes with the vertical, is measured by an attitude gyro. The
gyro signal is matched with the desired rocket attitude signal and the
error, or difference, is fed to a nozzle control. The nozzle control

"

applies a moment /IV to the nozzle which results in a relative angular
displacement ”24/~g3” of the nozzle with respect to the rocket. The
thrust axis rotates with the nozzle, causing a change in the rocket
attitude.

Now consider the case of a rocket with the motor and nozzle
mounted as a compound pendulum as shown in Figs. 1 and 2. With any

change in rocket attitude, the pendulum moves in a calculable manncr.

From a knowledge of the system dynamics and a time history of the
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pendulum motion, the attitude of the rocket may be computed. Suppose,
then, that the angular displacement of the nozzle from the center line
of the rocket, gy = 95 is measured and fed as an electrical or me-~

chanical signal into a computer with an output representing the attitude

of the rocket gz - The gyroscopic element is thereby eliminated

from the circuit.
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'y o/n/au/ér Qy 63

A

Fig. 4. Block Diagram of a Feedback Control System

Employing a Compound Pendulum Nozzle

The block diagram of the proposed feedback control circuit as
shown in Fig. 4 above may be interpreted as follows.

The desired input of the coordinate 11?3 ) , or angle which the
rocket makes with the vertical, is matched with a feedback signal rep-
resenting the actual angle at any given time. The difference between
the desired angle (in this case it is desired that g5 = ¢ for vertical
takeoff) and the computed angle is fed into the nozzle control mechan-
ism as an error signal, ”23(&/ - Q3“ . The error signal initiates the

application of a moment 777 to the nozzle gimbals. The moment



contributes to the nozzle dynamics to yield a certain position of the
nozzle relative to the rocket, which is represented ‘byHCL4 - ch”_ The
thrust line is rotated off the center line of the rocket by movement of
the nozzle; this contributes a moment and side force to the overall
rocket dynamics, resulting in a final rocket position.
The functions F, , FS , and F4 appearing in the block diagram

of F'ig. 4 are transfer functions derived from the equations of motion
of the configuration which have been transformed by the use of the

L.aplace Transformation. The transfer functions are linear operators

and can be defined by inspection of the block diagram of the system

. Qs — Q - - Q
(1.8., FZ: JM-_—E > F.B-.F‘}'“ Q‘}—'}&S )'

fer function [, is the unknown quantity which is the subject of this in-

The nozzle control trans-

vestigation.
The equation relating the output of the system to the input may
be derived as follows:

Following the circuit from Q3 w to Q3 ouT

Qs OUT: [QJ IN - Q3J FIF;. F:g

Around the loop

Q;s = [Q3:N~ Qz]F» FLE}

Q. - F\F. F4 Qs
3 7 | + F.F, Fq

Substituting for Q3 in the first equation

FRFs
| + F.F Fy

Q3ov‘r - Outpu’t = I _ Fle F4 FIFLFS -
Q3 N Ihpui- I+FIF:.F3
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The System Transfer Function therefore becomes:

QuTPUT _ FiFe Fs
INPUT 7 |+ F R Py

K. G, =

The stability analysis thus involves 1) derivation of the equations
of motion for the rocket and movable nozzle configuration, 2) conver-
sion of these equations by the Laplace Transform to solve for the trans-
fer functions F, ., F, . and ﬁ , and finally, 3) synthesis of a nozzle
control function Fi , and investigation of the complete system trans-
fer function Ks Gs for its stability characteristics.

The Nyquist Stability Criterion and the Evans Root Locus Method
are applied in the stability investigation. Refs. (2) and (3) contain ex-
planations of the use of these and other methods of analysis applicable

in the field of stability and control.
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III. EQUATIONS OF MOTION

The assumed rocket configuration with all external forces to be
considered is shown in Fig. 5. A schematic diagram of the coordinate
system and dimensions of the configuration are shown in Fig. 6.

Frictional and aerodynamic forces are neglected. The change of
mass of the main rocket body with burning of fuel is considered. Mo-
tion in one plane only is considered.

It is convenient to employ coordinates Qh throu‘gh qre in the
derivation, but of these, only four coordinates, 9, through C1,4 , are
independent. The coordinates ‘}I and ‘}Z measure the horizontal and
vertical distances respectively to the center of gravity of the entire
configuration, and have the dimensions of length. Coordinates 3’3 and

Ch_ measure the angular displacement of the main rocket center line
and the nozzle line respectively from the vertical, and have the dimen-
sions of the radian.

The equations of motion in the four degrees of freedom, namely
in the directions of coordinates %I , ‘}Z s % , and %4 are derived
using the generalized l.agrangian momentum equation:

) - A =2,
dt BCH ach L

Elimination of Extraneous Coordinates

By taking moments about the center of gravity of the system as
shown schematically in Fig. 7, the relation between the system center
of gravity and the centers of gravity of the main rocket body and the

nozzle may be found:
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Ze

Fig. 7. Sketch Showing the Relation Between the Genters

of Mass, Mj and M), and the Center of Gravity of the System

ZMC&-: M.S (C"s‘ C’,‘) - MZS (1‘-‘12): 0]

M (q-9,) = M, (9,-9,) (2)

From the geometry of the system as shown in Fig. 8 the follow-

ing relations can be obtained:
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7 I

Fig. 8. Geometry of the Configuration

Equating the vertical distances between mass centers:

Yo~ % = A, cos (ch—— 8)

/Q4 - 9.~ %s (3)

cos(9,- §)

Equating the horizontal distances between mass centers:

I

L, sin (9.~ §)

_ %5 %
SO “

s~ 9,

By considering similar triangles in Fig. 8 it follows that:

q(@“'q’a _ q«z"q—e

—

s - % I
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Ml(qro,' C"z) - M?. (qu‘ Ci-g>
Mi(9s = %) Ma(9,-93)

(5)
Substituting Eq. (2) into (5), the result is

Mi(4,-9) = Ma(9.- %) (6)
Egs. (2), (3), (4), and (6) are four linear expressions containing
the four extraneous coordinates ﬂ,s s Y 9, 7’8 and the principal
coordinates 9, , 9, , ‘:},3 and C[,+ . The former may be expressed
in terms of the principal coordinates as follows:

From Eq. (3)

4.7 Aacos (3,-8) + 9g (7)
From Eq. (4)
01'7: Ci*s ~X¢'.Sih(‘j,3—5) (8)
Substituting (8) into (2)
M. . . _
Ts= 30 T M.*szq' sin (9, g> (9)
Substituting (7) into (6) ‘
o= %o ™ M.+M,_’Q‘* cos(3,-§) (10)
Substituting (9) into (8)
_ M - _
Y= 0% M.+ N\,_X‘* st (% é> (1
Substituting (10) into (7)
M
9. = q’z'km.wzmx’«"‘ cos (45-8) (12)

It will be noted that the above equations contain the variables

y‘}, and S from Fig. 7 which must be expressed in terms of the
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principal coordinates.

In Fig. 8 by the law of cosines

= \//(\Z'f/QZ“Z’Q\’QZ C'OE‘CO"‘Q_:L:S\/ (13)

and by the law of sines

£, _ KXa
S & 5""*(01,‘4"‘}3)

§ = smq [é‘—: s‘m(%q—%z)]

) /Q’L
%3- S = 0\,3 — Sin [7; s\h(%p‘is)] (14)
To simplify Eqs. (13) and (14) consider the following approximations:
ﬂ,CESan % Cos qh._.-": l
Then from Eq. (13)
2. 0% o~
,04 :\//Q\ +/Q-L-2.«Q|/Ql — /Q| "Xa

From Eq. (14)

g

ﬂ'é: %3"”'2“(14“%3)
— +«Qa ,Qz
ﬂ’ ..é %3 4 M—j; O‘f*

and since

A,

A £ |
I é",Q -4, CL3 gjz Ye = SM(G"5—§>

The approximations then are
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L A -
Sin (s §)T7TE, s "oz, e
Cos (g,-8) = | > (15)
L, = A& -4

Substituting (15) into (9), (12), (11), and (10) yields the following re-

lations between the extraneous and the principal coordinates:

9, = %, e, (AL g,) (16)

9, + M+M (L /Qz_> (17)
9= % - M*ML(Q 3,- 429, ) (18)
Yo = Y- (b (19)

The Kinetic Energy Term

The kinetic energy T appearing in the L.agrangian equation of
motion may be derived as the sum of kinetic energies of translation

and rotation by referring to Fig. 6:

T=314, +414, +m (i a) i ma (4 +3)  wo

Derivation of the Equation of Motion for the Coordinate ‘1,

The first term of the Lagrangian equation may be obtained by

first taking the derivative of Eq. (20) with respect to ﬂ,'

;5___-‘:* - 36!*5 M . BQ‘YY
Bq‘(..- M\%Sai( -+ 2%7(\)%‘
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The extraneous coordinates ‘1,5 and Cy_? appearing in the above expres-
sion may be eliminated by differentiating Eqgs. (16) and (18) and substi-

tuting the results. Thus we obtain:

3T _ s MM,
Sp= (mrme)§ - Gl (L fagy)

The above expression may be differentiated with respect to time to
yield:
2
M1 Mn

) ORI VN AP
%(—%—}E/ z (MH'ML)%«‘ 1 M, ﬂ', - M.+ M, (ﬂl%;‘?z‘h) —ém)z(»& 13—1917/4) (21)

The second term of the Lagrangian equation may be obtained by differ-

entiating Eq. (20) with respect to

%’I = 0 (22)
+H
The generalized force Q L can be computed by considering the

work done by the external forces as the coordinate Cy is varied, all
L

other coordinates remaining fixed.

In general,
WorK |
A%

In particular, for coordinate OLI , the force Q‘ becomes, referring

Work*L = 29, ) o 2,‘_ =

to Fig. 6:

2 _ Werk | (F sin a(4+Dcosqr4>A5w
[ A - A
qfl Cir‘;

With the approximations of Eq. (15), the above expression becomes

2= F3,+D (23)
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Substituting Eqs. (21), (22), and (23) into Eq. (1), the equation

of motion in the oh direction becomes, finally:

e ¢ * Mlt\;\\ I AR ).,Ml :
(M M B T M = S (g - e dy) ¢ S (Dg gy

= Fg,+D (24)

t

W
Derivation of the Equation of Mation for the Coordinate 61'1

In a similar manner, differentiating Eq. (20):

T _ : .5_32‘3 M, 9 345
a‘i_z -— Mt q‘cp a‘i‘a + 2 %g

04

2z

and, differentiating Eq. (17):

Go= 9, - (M1Ml (4.~ £2)

Mot M2)?
d %,
2 9,

—
—

Similarly, differentiating Eq. (19)

q:e: (‘1'1 Ml&\mal"'Qt>

- (M\ + M’L)

09,
Combining the above results:

aT — ‘L' __ML‘\./\! “'QZ.
E_(MWM\%Z M.+M1M‘ )

By differentiating this expression with respect to time the first term

of the Liagrangian equation becomes:
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d (eT) . T N
'5'% (3 “r?_) B <M‘+ML> cl’z-k[\/\‘ci’z. +(M‘+M1_)z (/pl «Qa) (25)

The second term of the Lagrangian equation is:

o T
Bo‘,z

The generalized force ;22_ , referring to Fig. 5, may be ex-

= 0 (26)

pressed as:

Werk,  [-(M+Mg +Fcosq, - Dsing,]ag,

Q,=— % =
aq, a9,

With the approximations of Eq. (15)
2, = -(MtM)g + F-Dgq, (27)
Substituting Egs. (25), (26), and (27) into (1), the equation of motion

in the q,?_ direction becomes:

v 2
M, M.
Mot M)

M+M) g, + Mg, +( (/Q\'QJ = F -3(MtM,) - D%} (28)

X}

A\
Derivation of the Equation of Motion for the Coordinate %3

The first term of the Lagrangian equation is obtained in an iden-
tical manner to that employed for coordinates 4., and 9, :

Differentiating Eq. (20):

8T . 34, - 39
— =1 My 2 4 M — (29)
TV S T T

and, differentiating Eq. (16):

. ' o . . My M,
Fs= Wt NT‘%M,,, (4 ¥y e c“ﬁ) “(Mdqu u"is'QlT‘t)
B ) 5 - Mq_ /Q!

Bc‘;, M+ My

(v
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also, by differentiating Eq. (18):

OF?: i MW\L(Jz %“ Q?_%) "(mi?bﬂ'%"ﬂz %>

5% L M, 4,
6?3 N M\+Ml

Substituting into (29)
- +._..._._*M-Ma'9f} G- MM o
2q, ~ I Mo 3 M+ M, 4

Differentiating the above expression with respect to time, the first

term of the Liagrangian equation becomes:

.. T M(MQ_Q' . .
jt(s;yr):.f'%”f bt s (V- %)

ML M,
(M ™, )" ( cl’s L, 7“+> (30)#<
From Eq. (20)
- © 99 : 3 Y4, ¢ °F
waar = M.(‘ggf + 9. %) ML(CL 2% 4 q 5’) (31).
q’jg Y3 :
By differentiating Eq. (16):

61’5 - cir M+ML(’Q 61’3 b 3’4> MIM: (Q(c}b_ﬁ26}4>
3G My, 4 (32)

——

BOVB h ({\A\+M,,>2‘

By differentiating Eq. (18):
- M, M, B}
Y= % Mw (/Q 4y " L%) -(MﬁML)L(Q‘% 929,)
'Bﬁ"? . My Mi 'Q' (33)
39, (M+ M)

The term T C[f " which accounts for the propellent mass transfer out
of the rocket is not correct, inasmuch as this moment should be calcu-
lated from the velocity with which the propellent leaves the transfer
tubes and enters the motor. Corresponding errors appear in subse-
guent equations. The numerical effect of the resulting terms is negli-
gible.
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: Q

In order to obtain 2 e and e , it becomes neces-
S %y a%’s

sary to differentiate the exact expressions for

‘LG and %4, , since the
51,3 terin has vanished in the linearization of the exact expressions.
Egs. (10) and (12) will be differentiated and the results then linearized
From Eq. (12)

M —

%o= ﬂq'fﬁﬁﬁlx*c°se 3 (e"%g‘é) (12)

' - g Ma ML"‘A' + 0

o T % T M.+qu°‘ SN S Taen pAacess +MK+M:.’Q4 cos €

; Mo oy - . M ,Q ASine » _ Ma .
Bajr’: T T MM Ogy R M*M;J‘N °33.

M2 My &cose - 1M, 1143C°59 M ?_:gi cos ©
() 39 (oM TB5 T T 3,
M~ i d ces ©
+ Myt Mo BQ"?} (34)
From Eq. (13):
/Q‘}- by \//Q‘l—f/qc' '“Z,Q|/Q1 cﬁs(aq’c}})ﬂ
By differentiation:

B«Qz; X /Q'L Siw (Aﬂ"f‘ﬁfla)

89, (35)

% I

é/Q " /Q‘,Q Sin(e, - Y - d

S-—-Eg - /Q..q = = [ g 1'3).] [ c}‘? ‘1'3] (36)

A4
}«Q' -4 K (ﬁ; ~4.)cos (9, -9 )
S‘Et: - q/Q 3) c‘"’ CLE : - (eht‘ OV‘JG"T@TM}
4
A/Q.‘l* P /Qo /QZ. ’ .
e, = T (hh)

(37)
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From Eq. (14):
N IS PR
8 = (13“ Sin [7;- Sin (Ch-qn)J

By differentiation:

é _ q’ _ f(?f tos (%,“’lra\) (‘5«"‘3’5\/ - (ZMJ ardoe te,m>
i ’ \/ |~ (2*"“J avderTe rwa) N
N~ ) — L2 g
26 _ Ak o
39, T 4 (%4 93)(%4- %) 20)
a =] B _ /Q?—- ‘/g‘f Cob(?‘q_,.?’a) - [S;h(ﬁ,q_ci’b)}[_ﬂ%;;maﬂ
9, - [2TGE ™
30~ ’Qa ~ /Q|
9.5 1t 4 o
Also /Q
-——-—‘—-————~é in — _'_a_.,_e_. P ___’__
3;36 = c_oseaqlz5 = T @)
dcoso - waeé—e— ~ L ('Q.\‘}{chh) w2
° C}/E aﬁf;b 241

By substituting Eqs. (35) through (42) into (34) and ignoring terms of

second order or higher in the small quantities:

a Li’b _~ _—.M:‘.—— /Q! . ""‘ML'M"‘I ’Q
Sea. MM, Ty (A & “3)
T3
In a similar manner, from Eq. (10):
: : Ml o b M B‘Q‘f s\;\ \ M “‘Al
- + Aysiwe s - Cos 6 ~ M fhcose 4 Q4cose
WS CZ‘E— M\'\'ML 4 Mty At M+ My > (N\r"M;,)z4 o2

By differentiating this expression:
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0% *-M—‘—«[ﬁz; St’weg—e:_ +Q4éé~?—e —fsiv\eésﬂ‘*}

29, ~ Mt Y T3 39,
- M C B‘Q 36 "}\4 3124
Ml+M1[ oseaqr «Qq sine 28 5% | " 83,5 cos 8 — Smeﬁqr
MMy [ a8k
|22 cose - sinely "
(M) [% %J (44)

Again substituting Eqs. (35) through (42):

B ﬂ‘»a M' /Q . M MI |
—rg = + I ¢ 45
B%S M|+M1 ‘ (1,3 (M"*M;:)l ! WS ( )
Having evaluated 9 Fe and ——B_&i from the exact expressions,
BCF3 BC,’B

_B_T, can now he obtained by substituting these values in Eqg. (31).
313

BT Ma Nt /Q * M:. M'

= - fig. -Ls

313 M h (M+M)3( Rel 7"‘>

MG g  MamiR .
(M*V‘) Q(I )1“3 ! Ml'\‘MLl 7’3 i’

(46)

T

The generalized force
ﬂ — War K 2
3 2% 3

Then, referring to Fig. 6

B © * .
By = -Magge-MegZte wPshg g |y Lok sieg,]
9 0 L0
+ Fcos 14'-5%’3;[%8—0(““%3)&514} +Dcasqm——~~ [ﬁ, ((JQ;)SM chJ

- D S n Fu ‘%?‘;3 [a‘a a (’Q"*’Q?’) cos 1‘4}
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Substituting in values of 7’7 and a,s from Eqgs. (11) and (10)

ﬁji [F S'mﬂ,,} + Deces G],_J -—g—;};s[%t— M /0451»“9 —é@_w‘ﬂ):mc;,]

MM

+ [Fees g, = D sin T4 %3 hz i Aacose (rk >C”1J

Performing the differentiation indicated:

_ . My Jsine v );’Q"L
2, = [Fomqe +Deos ] |55 e 5557 e a%}

: M . dcese 304
')’[F@sj,‘f“ Dsin CP‘%] [ M14ML/Q4~——_~BQ}’S +cos e 5{3}

Now, substituting Eqgs. (35), (41), and (42):

= (Fagr ), [ (e ) Do %))U

T (F~D%>{ M*M;{ = (f;y: Lo Q(Q}(ZLF%)R

Finally, retaining only first order terms, the expression reduces to:

|j2.‘
Ly = T ::,\ml [”%“%)*D} (47)

The equation of motion for the coordinate %3 can then be ob-

tained by substituting Eqs. (30), (46), and (47) into Eq. (1).

YRV} S T 8 -

L8, * e b)) + Gy (904 4)
. Mam, & . ML;\A,«Q. : M‘if‘.’\'&l ,

T I\ Cl‘g, + M+ My C}l B m ﬂ’s c)/l-LM,—-}M,_P (’Q\ﬁ/3~/91ﬁ“}>

:T“’\?’Q (Q ’?) M, L,
T (W ﬁ’s - T MM, LF(%W 3\)+Djl (48)
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Derivation of the Equation of Motion for the Coordinate %4

Vo,

By differentiating Eq. (20) with respect to: 9,
24
99,

ov 7, 2 G, Mg, 9%s +Mléy_, (49)

B&M ag
From Eq. (16):

Ci'f: a.\’l~t~ M*M ('Q c}“s L. 7’4) (M::h)z (’Q"}'s‘ QI?@)

Differentiating:

0%s — - Ma L2

3%4 - M|'+ML
From Eq. (18):

< ™M .__Q->~M1M g, 4

Y = o, (Fds ™ T (M#MY< %)
Differentiating:

¥4, . Mt

3 - M\+M

%4 v

Substituting these quantities into Eq. (49)

BT - N — Ml MIQL ’“’Ql
Yl S vl G v4)

The first term of the Lagrange equation is obtained by differentiation

of the above expression:

BT — b — MlMxQ’L oo . M;_Ml Qz
‘%"<%_;;> =L T4 Myt My (/q‘c"s Qlcl/ff> ([VHM) (9'73 2%) (50)

From Eq. (20)

T . ] :1‘
£ = M‘(%Ms %%%i) (%;%*% ) (51)

%4
By differentiating Eq. (16):

%5 - c‘w ‘*Ml('Ql1«3£1°i'4> (:1’:‘)2@‘%“} 1’+)



-28-

‘.?'5 - Mz.l:’\lez
Bﬁh - (MF"M:L)l

(v g

And by differentiating Eq. (18):

Ma M,
Y= T 7 d‘f‘;\q (195 - “7"*> M*M)"(Q' - %4)

BG‘}.T _ ML M‘ jL
aﬂ,4 B (M,"’M-L)l
, é A
In order to evaluate aj‘?’ and S e it is necessary, as
2% 4 ° Y4

in the case of the ‘1,3 coordinate, to differentiate the exact expressions,

and then make simplifying approximations:

From Eq. (12):

- ¢ — M2 94 sé - Mo M aQ Cos © +’-‘—‘“ /Q Cos &
%6 — 12‘. M\-fMl/Q 4‘ Al (M ?f“\;)l M "’M; 4

Differentiating:

B O ItV PRLTE

MM, 33, MM, %4
My 4
9% s P
MLM‘ —%-g:! C05 e _ MLMI ,Q 15,356 ML }_:Q_i Cos5 8
(MM 24 (MAv)™ " 39, T MAM 39y

ML SZ‘ dcose
-+ — 4
ML (52)

By differentiating Eq. (13):

é_&_‘}_ — /Q\Qx. ("P‘}‘:";)
}c\m B Raq

Also by differentiating Eq. (36):

2o o ke (Y4 Hs)
2% A 4



-29.

By differentiating Eq. (14):

’a_e_ . /Q?_
% A

And by differentiating Eq. (38):

_Q_é _ /Q.Qi (CM 7’3) 6}33

g2 o
Then aﬂ"" may be evaluated by the substitution of the above ex-
294
pressions and Egs. (35) through (42) into Eq. (52):
0%, Ma [ M. M, L,
0%, T e (MtMe)™ T a (53)
From Eq. {10):
. . M M BM M2 My
= - cos e
t}g c"z_ M M\*M Bt (I\/\\+MDZ Q4 ®
Differentiating:
dqp - M %,Q sine 28 4 0, & 34 3 Jeose
g - 4 $iw + 9% 4 sime 62
gy | T S RO 34 Ot 3%a
K3 5 Q
_ C.DSS’B Q‘( - M;_M\ 524%_3_53 + COSG%‘*:L
3Lty ) (Marm)? Ya Y4 (54)
34
Then Ye may be evaluated in a similar manner to O%Fe by
SGV‘\ ° 9y
substituting for the extraneous terms in Eq. (54):
Bci, My Q. My MR
8 - o ———— - . —
. MaMs P4 T (e T4 (53)

The second term of the Lagrangian equation may be evaluated
by substituting the derivatives obtained in the foregoing steps into

Eq. (51):
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3T - M’L Ml/Q.i 5 o Ml h;\th}_ .
39, 7 At VT mam re
_ M:Mu;_@ 4 M; Muﬁx(/q 9
(Mo s (1 Fs7 2 T (M NV Y4 (56)

The generalized force

WorK 4
da = 2% 4

By reference to Fig. 6, it is evident that:

ﬁ4 - (F S q,+ Decos %4-) -g;m [0"7——(01*‘9—5) Sl'ncpq}

(Fr,oschw DSM3.4> [Ct,g-(ﬁ ‘er3>Cos 1,‘*]

- %5 96
Midse. T M-a%;

Substituting for the extraneous coordinates and simplifying, as in the

derivation of Eq. (47):
— Mok
Q"r — D (M“*Mz T (57)
Introducing Egs. (50), (51), and (57} into Eq. (1), the equation of mo-

tion for coordinate C],‘,[ becomes, finally:
v MM [y _ M: ({/\l .Q). . .
I;_ C"“ ML .*:v\ (Q ﬂ"s ‘Q’LC}Q> (M\+ M‘)‘ ('Q\q’?:ﬁ)clcl"}\)

L T Y EE X

- M.+ Mo { M, 1M, 7’4 (1’2 (M\*Mz.):s
uQ _ MLQl
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IV. COMPUTATION OF SYSTEM COMPONENT

TRANSFER FUNCTIONS

Only the two equations involving the rotation of the rocket (co-
ordinate ‘}3 ) and the motion of the nozzle (coordinatc 5’,4 } are con-
sidered since the stability investigation is made for rotation only.
First, the thrust, jet damping, and moment of inertia terms are sub-
stituted in terms of Lhe equation variables and constants.

Rocket thrust:
F= - M\j 1 sSp
Jet damping force:

D=z — T"/\./Qs ‘5‘.4

(The negative sign is necessary in order to make the term
g g Yy
positive, since M, is a negative quantity.)

Moment of Inertia derivative:

PR
I, = M, /ﬂq‘ (& = radius of gyration)
. . 2 *
I,= Mk, + 2k Mk,
\] [ ) 2 )
I‘ = MR, (since ,&, will be small for

most configurations)

Substituting the above terms in Eq. (48):

Ve ¢ . M)M‘L&\ M;M»Ql
T T Mk Gy MAML (’Q R +(M+M)"(ﬁ'3'3’@ ‘h)
M—L M’-M’ei Mle'Q\ °

MLMJ’Q' ! M ’Q ) 3
- M+ My 13 G}’z = ..M-{-M [ ij’?(ﬂ’ﬁ 3) - M'/Qsj«}} (59)
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Again, substituting for F , D , and I, , and introducing the applied

moment*"m, into Eq. (58):

. ﬁz M:T‘"’lngz 4 8
IZ %4 (M _qu'_g( 7’3—’?"7’+> = (m (*()‘1/5— j"ﬁ"&)

___M'{.MI,Q /Q __/Q - M:_M,L/p-,_ jl~/?1 M MI .
Mot Fhs (M )3 (L), M b
MM, ' :
+ M—:\:/\ljl 0}/4 ﬂ/z M, ’QS 1/4 <»03 MTMLQ > (60)

The Laplace Transformation is applied to the equations prior to
the stability analysis. Ref. (2) explains in detail the use of this trans-
formation in such analyses. In essence, the transformation converts
the differential equations to simple algebraic equations.

Since the vertical and horizontal velocities C‘;'a. and c.h are
quite small during the launch, the terms involving 3}1 and Yy ‘1,.[ are

neglected in the equations.

Application of the Laplace Transformation to Eq. (59) yields:
MMy &, ] o2 MM A Mg Tl Ms NI,
S+ -+ M /9( 2 + ﬂ r -
LI Tt My J > [ (M *MQ > MotMe (M3
— Q [M|Mz'0|£1 51 -+ MY M\ﬁ.ﬂl + MleQ\QS g
- 4 Mt My (Mt MO? M+ My

+ [M\M\Q\ﬁzi?w M M 44
Mt Mo (M‘—}Mmh)s

(61)

where QL represents the transformed coordinate ﬂ,‘: , and § is the

complex variable. Similarly, transforming Eq. (60):

The effect of the control moment 91 on the main rocket is neglected
in Eq. (569). For a system in which the nozzle is of comparable size
and weight to the main rocket, the term should be included.
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T, &da] 2 Tve ) o 'M:g,\fﬁ.ﬁ,_] 3 N
Qs{\“‘“‘“‘”m.w;k* [(M'“.;‘"’“szs [Wss— = Mg |

) R N
M I\ 11 M:MI Q'L. Q Ml. 91) - Mﬂ-
Q‘l HI ! M. :A; }S + LM.+ ) " s(Q +MW\ 3 (M, +M,)3 (62)
where M represents the transformed moment m.

In order to solve for the transfer functions F, and F3 itis

necessary to rearrange the equations slightly; Eq. (61) becomes

{[I Mmlmlm}s [M‘/&?+M?9\9.(ﬂ.~ﬁx3__ M(r:\.QJs:] 5}

MM (M.*Mz)z M+ Mo

. M,M;«Q‘Qz * M{l:'hﬂ.ﬁ.. M‘M,Q.fs MlMtD;gIJP M:N]‘_Q\Qz
= [@,,—GJ{[M-—W]s M (CEE Tl B e (M.ws) (63)

Similarly, Eq. (62) becomes:

B ) [R5l 22

Mt Mo (M‘ M:_)l

= [oc o) (o mE] o+ (R et

Mi‘:All‘Q\’Ql
— [_&MJ -+ M D (64)

(M, +™M)*

Then the transfer function F3 from Eq. (63) becomes

Mle_Q‘Qg Sl"" [M1M14Q|91 + MKFA|Q“QS}5+[MIM\SQJSP - M:P)\TQnoa.}

Q M4 My (MAmMd T M [T ] MM (e 3
Fi= 3 b@ = 3 (65)
¢ V3 M M8, (‘Ql M\_M Q(Q N M.f\’\ ,Q Q
[I' Mt My J5 +[ ot (MitMy)2 M+ M S

By substituting Eq. (63) into (64), the function FZ may be written as
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e GG l
2= B IYRNTEN PR | 0

" F3'{‘SAMBT+M1 -1 }3 +[bj(°§M|’.ﬁ,’\:ﬁ M ds(h o L)]S}-:r

xr —-_— - = - — - — = — = -~ — = = =7

*{ + M M"Q1 [MLM\‘QL _N M, ds (32 + Made g - M:‘WML (66)
Mt ML (MtMg® Mt M. (Mot )3
As an aid in the numerical computations for the stabilily analy-

sis, the transfer functions are symbolized as follows:

Qs A
ot = 67

Fo = 9._?.‘3\_%‘3 = (—X_—)ETW (68)

i bl ] ety _ MTMH

M;sz\f\. S‘L
S+
Mt M, MAM)Y T MM, M4 My (M4 M3

_ (- 4a) M (6-8) s
Y - {I‘L" M%TJ 5 + [M ’?( ! N(\MM*MQL MMN.‘+§Af } 5}

V\MpQ (9| '!:) T M:'M.X:,(Q.“*QLX ' Mle
™Mt a] > F [ (Mt M) * M'QS( ‘*J'Mn'MJ 5

AN
i

L MMy

kN

Mt b Vi VI A Myl A
_'_[1+ ] g + {m"— M‘Qs( 3+M.1M;>_] S [W

MﬁM
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V. SYNTHESIS OF THE NOZZLE CONTROL TRANSFER

FUNCTION "Fi", AND STABILITY INVESTIGATION

To illustrate the determination of the nozzle control transfer
function, a specific numerical example will be worked out using the
German V-2 as a typical vehicle.

As indicated in the Analysis, the system transfer function may

be written as

hGs = L1205 (69)
I F Fe fy

Also, the computer synthesizes the dynamics of the rocket to give
@ = F‘V (70)

Substituting Eq. (70) into (69)

1 Fa F.
It FeFs
Let
K67 £, A
(72)
Substituting for /":2 and 5 from Eqs. (67) and (68):
G = F / it / (73)
T ¥Z-rw
As a numerical example, consider the V-2 rocket with pivoted
rocket motor and nozzle. The parameters X , ¥V , Z , and w

have the following values as calculated in the Appendix:



X= 2675 52 — 76/5 — 60474}000
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(74)

The problem now is to determine a function f:; which will give

the system suitable stability characteristics during the launch. The

procedure will be to:

1.

2.

Assume a function E .

Check the system for stability by the Nyquist criterion.
Having established a stable system, determine the roots of
the system transfer function by means of the Evans Root
Liocus Method.

Knowing the roots, at a typical operating gain of the feedback
system, investigate the damping of the system.

If the resulting motion is unsatisfactory, improve the choice

of f, and repeat the process.

In explanation of the methods to be used to investigate the sta-

bility of the feedback control system, it will be noted that the equations

of motion are linear differential equations with constant coefficients.

The solution for the particular coordinate in question can then be rep-

resented in the general form

s.t

5,t
%L: C,e'+CZe + - - -~
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where §  is a simple root of the equation. In order to have a damped

motion which will subside with time, it is obvious that the complex

+

roots S( "must all have negative real parts. Another way of stating

this requirement of a stable system is that all the roots 'Sl' “of the sys-
tem must appear in the left or negative half of the complex plane.

The Nyquist Criterion

The Nyquist Criterion is an application to the simple feedback
network of the Cauchy Theorem in the theory of complex variables.
This theorem may be employed to show that if ”G(s) " is the vector rep-
resenting the function of a complex variable “s", the function having
“n" poles and 77" zeros within a closed contour “C" in the “s" plane, that.
as the point s" moves around the contour once in a clockwise direction,
the vector ”G(SJ” carries out /7-77" clockwise revolutions about the ori-
gin. If the contour If/C "is chosen to include the entire right half plane,
and the function in question is plotted as the complex variable encircles
the right half plane, the difference between the number of zeros and
poles of the function that exist in the right half plane will be indicated
by the number of encirclements of the origin. Either the number of
zeros, or poles existing within the contour must be known previously.

In applying the theorem to the feedback network, the function in

question is usually expressed as

,{/6‘___ A G (s
> /ka/s)

4 W
where the function &G can be factored; thereby determining the
s/ Yy g
zeros of the function ”/5/5 Gs“ . The denominator '/# 46" in general

cannot be factored so readily, but application of the Cauchy Theorem
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will show the number of roots of the denominator existing in the con-
tour chosen, or the right half plane.

7, \
In order to obtain a plot independent of the gain A, the inverse

of the function may be considered.

/ /

== =/
As 6 A6
/ /
Then if the vector As Go encircles the origin, the vector g

. . . % " . 1"
will encircle the point ~/, as the variable “s" moves around the con-

tour of the right half plane. Or similarly the vector & will en-
circle the point “4". The function ”—G/“ " is then plotted as s "en-
circles the right half plane. By application of this Nyquist Criterion,
the stability or instability of the system can readily be determined.

If the nozzle control transfer function F/ " is first assumed to be

equal to a constant/#, = A, ) the system transfer function takes the

form

X
K. G = A6 377
STST k6 T X

A br=

(75)

For the Nyquist diagram, the inverse nf“G s plotted as the vec-
tor & encircles the right half of the s’ plane. The function to be

plotted then is

/ - XZ—tuww
G( s) X

(76)

In order to use the Nyquist stability criterion it is necessary to know
whether the function /{/6" has any zeros in the right half plane. By

factoring Eq. (73) the following expression is obtained:



-39.

- /9.7 - L&/
o fov22100) { Lo 0075127 .

K6,
Y S[S“ . 004;7[5 -~ 0207‘/('6.25_75—(7, o2 oY 4'4,.2:?]

Since the function 4G has one zero in the positive real half of the
plane, the Nyquist Criterion requires that the plot of 5(;)- must
encircle the point —4" once in a counter-clockwise direction as the

§ vector circles the right half of the s plane once in a clockwise
direction.

Fig. 9 is the Nyquist diagram of Eq. (76). As the frequency
increases from zero to positive infinity, thence to negative infinity and
back to zero, there is one clockwise encirclement of all gains from

O to oo . The net encirclement may be considered to be two clock-
wise rotations, indicating two roots of the system transfer function
existing in the right half plane. The system is unstable for all gains.

Next, assume the nozzle control transfer function to be of the

form /-;zlﬂf/f TS) ; then

k) (1+75) (xz55m)

Ks G = y
I+ & C/r g)[m]

(78)

The Nyquist diagram for the above equation is shown in Figs. 10 and

11. Again the number of zeros of “/(é’ ’ existing in the right half plane

determines the Nyquist criterion. The factored equation now becomes
. .
o Sy ﬁ~/7-)ﬂsy/z7qj/s_/?,4/
Ay = 74/,%% 2*/(/ / /
/ 5[9 -, oogjﬁ - 0,20(/%6.2&//5{: 02 06’46.2527

Since there is one zero in the right half plane, again it is desired to

" o
have one counter-clockwise encirclement of the gain as an indica-

tion of stability.



w4 Q-

It was found necessary to plot the Nyquist diagram to several
scales to indicate clearly the crossing points of the negative real axis.
The enlarged portions were plotted for the case when 7=/ , and ap-
pear as Figs. 12 and 13. From these plots it is clear that there is
one counter-clockwise encirclement of all gains from A=/2 to

A= 75 . The configuration is stable for gains in this range.

The Evans Root Locus Method

This method is a graphical solution for the variation of the roots
L4 N ’” t

of the feedback system transfer function £ Gs as the gain 4 is
varied from zero to infinity, where

fo = T - Ky
S TS
/f/fé’@ &/5)

The plot is constructed by observing the following rules (Ref. 2):

"

I
1. For #=( , the poles of £ Gs are the poles of G(sj

,2

2. For f~» oy, , the poles of /{3 @5" are the zeros of @t/jj ,
with any missing poles taken at lél‘ = 00”.

3. The product of the distances from a root to the poles of ;;/G !
divided by the product of the distances from the root to the
zeros of '/’4/6 ”is equal to the gain s

4. The sum of the angles from the zeros of £& "to a root, less

the sum of the angles from the poles of 4% to the root must

L3 “

equal 7 , or ’77‘ plus an integer multiplied by 2.7,
The locus of the roots of /fg 6'5 can be determined graphically
by trial and error, observing the above rules. The gain scale can be

plotted along the path of the roots, and for a chosen operating gain,
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the roots can be determined by inspection.

The root locus plot of Eq. (18) for the case when /=/ is shown
in Fig. 14. The roots emerge from the poles of 46 at zero gain and
proceed along the loci indicated to the zeros of & at a gain of infin-
ity. Gains at intermediate points can be approximated by dividing the
product of the distances to the poles of AE by the product of the dis-
tances to the zeros, and by the coustant gain factor in the eqguation
(49.2 x 10_6). It is apparent from the root locus plot that the range

Fd

for a stable configuration is from the gain where the roots ~523 "
cross into the stable half plane to the gain where the roots ”5_244/"
cross into the unstable half plane, referring to Fig. 14. The loci in
this range are plotted to an enlarged scale and appear in Figs. 15 and
16. As an example of the computation, approximate expressions for

the gain along the loci in this range are:

For root

_ (6.25-w)(6.25+a)) (co?) 2050 .
’s,) (49 2410 "j//9,79)//9! 6/)//,‘(02 — (for <« small)

For root

a (,( 7 1720‘3/)/6‘ 257&2-5)(/6"2@ (fOI‘ ”/( "sma_ll)
RNV 59. 10385 V5T 1759,) 99,2500

/7?521)

Ao ) 3670 r 020%)
It will be noted that the gains at the limits of the stable range

check within limits of accuracy of the scale used on the graph as shown

in the table below for the Nyquist and the Evans Root Locus plots.
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Method Upper Limit of K Lower Limit of K
Nyquist plot 75.0 12.0
Evans Root Locus 74.80 11.85

Having established the gain scale along the root loci in the range

of positive stability, referring to Figs. 15 and 16, it is possible to

choose an operating gain and determine the values of the roots s/,g

"

and S, . atthat gain. Some possible operating points have been

tabulated below

Roots K =50 K = 60 K=70
Sy -.0031 +1i .156 -.00325 +1 .171 -.0033 +1.185
S3 -.0031 -1i.156 -.00325 -1 .171 -.0033 -i .185
Sy -.0068 +1i6.25 -.004 +16.25 -.0003 +1i6.25
Sy -.0068 - i6.25 -.004 -i6.25 -.0003 -1i6.25

The low frequency roots ”5/13“ are associated with the motion
of the main rocket, whereas the high frequency roots /IS&,,.V“ are as-
sociated with the motion of the nozzle. The time to damp to half am-
plitude and the period may be computed for the modes quite simply;

the results of such a computation for a gain of #A=g&0 are tabulated

below.
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K = 60

Rocket Oscillation

Nozzle Oscillation

Time to damp to
half amplitude

210 seconds

171 seconds

Period of one
cycle

36.8 seconds

1 second

Number of cycles

5.7 cycles

171 cycles

to half amplitude

It is apparent that the damping is quite poor, and an improve-
ment is desirable. The acceleration of the V-2 at take-off is roughly
equal to 30 ft. /sec.z. If it is assumed that at a velocity of 200 ft. /sec.
the aerodynamic forces stabilize the rocket, the period of take-off in-
stability is approximately 7 seconds long. For the foregoing example,
the rocket conceivably could complete only one-fifth of a cycle of
slightly damped motion in the take-off period as a result of a unit dis-
turbance at the instant of firing. The nozzle oscillations are so rapid
as to conceivably cause overloading of the control device.

In order to improve the damping characteristics of the system,
referring to the root locus plot, Fig. 14, the addition of one or more
zeros along the negative real axis would serve to pull the roots S,
and 83 into the negative half plane more quickly, since zeros attract
the roots much as lines of force are drawn to magnetic poles. This
should increase the magnitude of the negative real part of the roots at
a given gain. Also, the angle of departure of the root SZ would be

increased counter-clockwise as a result of the angle condition of the
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root locus plot. The root would then be forced to travel a longer path
before passing into the unstable half plane.
The addition of zeros in the left half plane involves adding addi-

tional lead networks, which in real components have transfer functions

(/»7—5)
of the type m where 62;—/5 7‘0:2.(5 .

Assuming a new nozzle control transfer function to be of the form

_ AT TS 75)
’ (7+ %) (/05 S)

// W
the factored expression for A’ is now

where /=/

2

_ GriGri)(6+I)(S~19.79)( s+ /9. 64)
£6=~ Q968 /
S(s-. aaé)(sfzdfsfza)/s{—. 0204 7¢ '5.23%—(7 02 o‘/-c'é.zﬁ(%)

The root locus plot of Eq. (83) is shown in Fig. 17. The range

of gain for stability is now from K = 4 to K = 918,
By approximating the loci of the roots in the stable range by
straight lines, the roots associated with various gains can be estimated

conservatively. Some representative values are tabulated below.

Root K = 600
Sl -.0446 +1i .541
S3 ~-.0446 - i ,541
SZ -.02+1i15.25
54 -.02 -1i15.25

If the damping time and period are computed for the latter
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system, the following results are obtained.

K = 600 Rocket Oscillation Nozzlc Oscillation
T}il:;;a :;g;ﬂ%:o 15.3 seconds 34.2 seconds
Period of one 11.6 seconds 412 seconds

cycle
o Tt ammpliade 1.3 cycles 83 cycles

Interpreting the results as before, the rocket now completes ap-
proximately two-thirds of a cycle of oscillation during the launching
period, but the effect of a unit disturbance is damped to a much greater

extent. The nozzle oscillations occur at a higher frequency but the

damping has been improved considerably.
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VI. CONCLUDING REMARKS

The analysis shows the feasibility of stabilizing a rocket during
the launching period by utilizing the motion of a compound pendulum
suspended nozzle as the input to a feedback servo-control system. It
was determined that the nozzle control for such a system must includc
response to both the attitude and the rate of change of attitude of the
rocket, as computed from the pendulum motion, in order to obtain
stability. It was further determined that changing the nozzle control
to include response to accelerative motions of the rocket improved the

damping characteristics of the system.
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APPENDIX

The V-2 Rocket

] | }
500 Ky | 3500 Kg : 5250 Kj :4sox., 530 Ky
|
— !
EXPLOSIVE -+ | + @ : + | + +
1
' AUXILIARIES ! ALCOHOL : OXYGEN : PUMPS
-.7,42-| ! ! MOTOR
1]
SR NP __——J \
—— e 3 0. 83
C6
_— 30.2 ]
— 3?-5
- 417
B OVERALL HEIGHT 50’
Weight and Balance Table
Moment

Wt. in Kg. Wt. in Lbs. Moment Arm, ft,. 1b. ft.

1. Explosive 980 2160 7.42 16,000
2. Fuselage 1750 3860 26.65 103, 000
3. Pump 450 993 37.5 37,200
4. Motor 550 1214 41.7 50, 600
5. Auxiliaries 300 662 14.0 9,300
6. Alcohol 3500 7720 20.83 161, 000
7. Oxygen 5250 11600 30.2 250, 000

Totals 12,980 28, 620 727,100

Moment arm of C.G. = 20200 = 25 4 ¢,
28, 620

Note: Data was obtained from Ref. (4) and is only approximately
correct.
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Calculation of the Moment of Inertia

/—— -

/
[ h=133.35.

}-592L—i

;
|
i
- l
i ® C6 s' |
:
|
|
|

Assume the rocket is a solid cylinder as shown in the above sketch.

Radius of gyration of a solid cylinder about its C.G. is
/& “\/3r+h
9 1z
ey ERJ
= /RAT+(3335)  _\ oo A 12 1
/p{q - - ‘14-7{" —_— q

12

Additional Data from Ref. (4)

F = Total Thrust =27.2 tons = 54, 400 1bs.

W = Total Weight = 12,980 Kg. = 28, 620 lbs.

M) = Mass Flow =— +2:229105: = _ 193 51p, /sec. =—6 1b.sec. /ft.
100 sec.
I.. = Specific Impulse = ——— = 22290 _ 385 gec.

P Mpg 193.2
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Calculations for the Conslanls of Seclion III

2
M, = 27,406 [bs = 851 122
M, - 1214 Ibs = 37.7 &3¢
y b Ib sec
M, =—193.2 4& - -6 1830
k, = 9.7 #t
k, >~ 2 ft (radius of gyration of motor)
ro=20 ft
yg_ = 3.7 FT
M,
ho o= 0.3 #t %G, |
) o= 4.0t
I = Mk" = 80,600 Ib ff sec’
Yo US) Ib T osect )
I, = Mk, 151 | sec M, \ (G
T, = 282 secs ——t
Ib sec’ —I h
= )
M: +M2 - 668-7 f.}, il;:_"—*——_i
PIN
_ MMEA L MPea L MALLN e T, M A
X MI‘LM\ ’ +((MI+M‘)‘+ M‘+M-‘)S +—( M|+H1p~ CH|+HZ,);>
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X ) {(27)406 1bo) (377 L35 )(ao #1)(3.74) 5

28,620 lbs

37,7 b ) ( 60 B3 ) (2o dt)s20) | s )60 2 252) (2044) (4001) |
(287 lozect)? ! 3oL lepes :

——

8%87 }b sect

+ L(SSJ ”’s" J(-6.0 2225 )( 20 £4) (32.2 £ ) (232 sec)
T

(37.7 == )2( -6.0 ! ) (20ft)(z.7 H)J

(888 7 Ib;iec )3

K 6
X = |2675 s — 4615 — 1044 x 0 } (16 #1)

S .
M, M, ¢, (4,-42) 2 .2 M. M L (0-4) M, oM, A L
VI' T ) oo (M‘ Koy e T M+ Mo )SJ

<!

551 o 2ec thsec £t 3.7) {1t
( AL )(377 )(zo )(20-3.7) ) s? 4

Y ® (60 600 Ib{t sec® +*— 588, 7 Ibsect\y2&
( )

: (37.7 252~ )(~ 2= W20 tt)20—~13.7)¢+

(‘6'0 B )e ) + (2887 B2r=t)2
T

B8%. 7 lb-.é;c
i

(85 %E‘)(-—G.O sec ) (o0 1) (. o#))

Y = [92,330 st — uos]
z

(M + M, )l "(*nl

[(M.ML,G (f-£) Iz) S"_'.(NzM 4 (4 ﬁ)+M 05 (s + N /195]

H,*Hz
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Zli B5NB27)3.2)020=37) _ ) 42, (52.7)(~6)(3.7)(20~3.7)
R 880.7 > (368 7)°

(32.72)(3.7)
(—6)(4)(‘3 T 88,7 )) ]

Z: [(znau~usa)3l + (—.052—11)5 ] 1ot

Z = [203032 — 1L6S S ]

]

w

U Lo kY
M, M, £ 2 ML M, £, M. _
[(1z A ) st + (___—(ﬂ.+m)‘ ™, 1(} + st )) S

2 .1
Mi Ml 1511
(H,+M.,_)3

3 ?
_ (3851)(32.7)(3.7) 2 (27.2) (-s)(3.7) (32.2)(3.7)
\/\/ = [(’5' M T T 3 +< wen7)r — el 4)( 3 Y567 ))

_ B22) (-6) (20)(3.7)
(888.7)3

W = (51+495)s" + (—15+11) S —.0054

2
\/\/ o [6463 + 10.35 s]
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