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Abstract

To test the validity of the x~ray crystal method of

determining N and e the crystal structure and densities of two

polycrystalline metals, silver and aluminum, and one "perfect™

crystal, powdered quartz, were determined.

The densities were determined by using a specific gravity

bottle filled with distilled water and the following results were

obtained.

Materiel
Silver 10.4870 +
Aluminum 2.69839 +
Quartz (macroscopic) 2.64822 *
Quartz (fine powder) 2.64810 +

0
0.00019
0
0

G sk 26.0°C

.0008 gm cm™%

.00005
.00015

The lattice constants were measured in a Seeman-Bohlin

focussing spectrograph and the following parameters were obtained.

Silver a=4

Aluminum a=4.04927 £ 0.00002

Quartz a=4,91263 £ 0.00009
c=5,40454 £ 0.00011

.08574 £ 0.00004 x 10~8 cm

Using these results the following values on N end e were

calculated.

Silver
Aluminum
Quartz (1)
Quartz (2)

N

6.0318 4 0.0006x 10°° mol gm mol~
6.0258 £0.0007
6.0259 £ 0.0005
6.0280 £ 0.0005

1

e

4.7957 £0.0007 x 10" Cesu
4.8005 £0.0007
4.8020 % 0.0003
4£.7988 % 0.0006



where the two different values for quartz are for two different
values of the molecular weight of silicon.

The effect of distortion of the metals on the crystal structure
and the density was investigated. The values obtained for powdered
quartz are free from the objection that the density determination may
not be representative of the thin layer at the surface of a crystal
involved in the x-ray reflection.

Since the values of N and e obtained for silver and aluminum
differ by many times the experimental error and the difference between
" a polycrystalline material and a "perfect" crystal is one of degree,
and since after taking into consideration the unfortunate uncertainty
in the molecular weight of silicon the values obtained using powdered
quartz still seem to be in a slight disagreement with those obtained
using large celcite crystals I believe that the best value of e obtain-

able by the x—-ray method is 4.802 + 0.002 x 10710 esu.



INTRODUCTIION

The problem of determining accurately Avogadro's number, N,
and its associated constant, e, the charge of the electron is an
important one. There are two direct and accurate procedures, the
oil-drop method and the x-ray method. The former involves the value
of the coefficient of viscosity of air about which there is no
universal agreement as yet, and the latter contains certain fundamental
objections as to the validity of the method. It is with a critical
examination of the x-ray method that this thesis is concerned.
Information as to the submicroscopic absgolute dimegions of ihe

lattice of a crystal which we can obtain by means of x-ray diffraction

permits the compﬁtation of Avogadro's number which is given by
N } M
- P £ (2sd2,3n,%25%2)X%?
where M is the moleculer weight of the crystal, () its density, and

f the volume associated with one molecule. a,, 8z, az are the axial
lengths and kg , Kz, X3 the inter-axisl angles. Or if we assunme

Ne = Q, the Faradsy, as known, we have e = ja§%~ﬂ

For face-centered cubic crystals f(a,,82,23, %4 ,¥z,X3) is

% a®. Thus to determine N for such systems it is necessary to know
the molecular weight which is best found by chemical or masg-
spectroscopic means, e which is best measured by immersion or a
specific gravity bottle, and a, which is measured by means of x-rays

through the Bragg equation



)\=—-——3§———sin9(1-_—5-2——)
vgfﬁz sin® 6

where Z h? is the sum of the squares of the Miller indices designat-
ing the particular plene used. © is the complement of the angle of
incidence measured from the normal of the plane,lﬂS is the index of
refraction %ggég_is of the order of 106 and since in our work
sin® 0 0.9 this term may be neglected. For A we use the ruled
grating measurements of Bearden, BacKlin and S8dermenn who independently
found that the wavelength in absolute units is 1.00203 + 0.000016 times
the arbitrary Siegbshn Wavelength.l4

Quartz is a hexagonal crystal with three SiO; molecules in
the conventional hexagonal unit cell. For such systems o4 =%y = 90°,
ol =120°, aq= &,= a,a3 = ¢ and f becomes a®c/2Y¥3 . The Bregg
equation tekes the form Az 2 {.,.;.’.'31( h:-+ hoh,+hy ) + .%sl_z-v:in e
where hau"‘n hvg, > 0.

The difficulty with the x-rey method is twofold. In the first
place the x-rays measure only e periodic spacing so that if either a
more or less regular superstructure, random holes or imperfections in
the lattice exist their presence will not affect the lattice constants
as measured by the x-rays, but the measured density, which is the
average density, will not be the true density of the periodic sections

of the lattice. The existence of a superstructure (or mosaeic structure)

has been proposed by ZwickyR2 to account for certain mechanical



properties and habite of growth. He proposed that there are

periodic variationg in the grating space in the crystal along a
‘direction normal tothe planes. Their period would be of the order

of lO_‘G cm and the superposition of such a long period on the inter-
planar spacing of 10~8 cm would not affect the relative positions

of the x-rey diffraction maxima and would have negligible effects.on
their intensity. However, one would not expect the error introduced
in the density by the presence of the superstructure or imperfections
of the lattice to be the seme for all crystals. Tul measured the
density and lattice parameters of calcite, rocksalt, potassium chloride,
and diamond crystals and found that they gave a consistent value of N,
the largest deviation beingegﬁfpmrtsin 10,000. Also, one would not
expect, if there is a regular superstructure, that the secondary com-
ponent would have exactly the same coefficient of thermal expansion
as the normal component. A. H. Jay2 measured the thermal expansions
of silver, duartz and bismuth by the x-ray powder method, precision
measurements being employed. The macroscopic thermal expansion was
also measured by optical methods and the same velues obtained indicat-
ing that the expension of the atomic lattice does not differ from that
of the crystal as a whole. Thus the presence of a large secondary
component appears doubtful., However, it is one of the purposes of the
present investigation to work with lattices known to be distorted and

imperfect and to find how much these distortions affect the value of



fhe lattice constants of the periodic part of the lattice and the
average density of the crystal. It will then be possible to correct
for these distortions and to answer once and for éll this criticism.

The second objection to the x-ray method is that because of
fhe extinction of the x-rays in passing through the crystel the lattice
constant of an extremely thin superficial layer (5 x 10° cm for calcite
in the first order with Mo K« ) is measﬁred, and this may not be repre-
sentitive of the interior of the erystel. Allison and Armstrong5
neasured the wavelength of Mo K«1 in various orders of reflection

from caleite and found

Order Half-depth of penetration
cm no. of planes A _>_\__~;_;_‘__>‘..1-
1 5x107°  1.6x10%  0.707851 £° *
3 4 x107% 1.3 x 10 0. 707902 0.01 %
4 6 x 1072 2% 107 0.707850 0.003
5 1.2 x 1079 4 x 10% 0.707840 0.001

and concluded that the lattice constant is uniform throughout the
crystal. DulMond and Bollman® measured the density and lattice para-
meters of extremely fine powdered calcite, where the size of the
individual crystals was of the order of the depth of half penetration
of the x-rays. They found that within experimental error t=et the
constants and density were identical with those of macroscopic calcite.
While these experiments indicate the absence of any imperfections in

the crystals used, the value of N would be on much surer ground if we



knew what imperfections are found and just what their effect is on

the grating constant and the average density. The purpose of the
present experiments was twofold. TFirst, to answer the above question,
and secondly to meke a precision determination of the lattice constants
and density of three new crystals by methods different from those

? and Bearden®. Both measured their densities by immer-

employed by Tu
sion and their lattice parameters with a two crystal spectrometer.

In the present research the densities were measured with a specific
gravity bottle and the lattice parameters with a Seeman-Bohlin focusing
spectrograph. Silver and aluminum were the imperfect crystals used

and quartz was taken as a "perfect" crystal.

Powder samples of aluminum and silver were prepared by filing
or sawing and these samples along with solid pieces which wefe as large
as would enter through the neck of the specific gravity bottle were
anneéled together in a vacuum. The powder sample of quertz was prepared
by breaking up optical clear quartz in a steel mortar by pounding with
a heavy sledge hammer. The codrser grains were rejected by the fine
screen through which the sample was sifted. The lattice parameters
and density of these samples were measured. If we think of a sample
of the material as made up of many smell perfect crystels or crystal-
lites, randomly situated relative to each other, then the resolving
power of these units for x-rays will depend on their size, that is on

the average number of perfectly periodically spaced planes tha} they



contain., Thus from the width of the diffraction pattern (Debye-
Scherrer rings) it is possible to measure the average length of the
periodic sections of the lattice or the size of the crystallites.

In the case of the metals the powder and large pieces were then dis-
torted by mechanical working and the new density, grating constant
and size of crystallite were determined.. Actually the shape and
dimensions of the unit cell were found to Be unaffected by working
but the length of the regular periodicity was found to decrease. The
density was found to change slightly, an increase for silver and a
decrease for aluminum. On the basis of these measurements it is
possible to estimate the density of "perfect! crystals of aluminum

and silver.



THE DENSITY MEASUREMENTS

The weights used were calibrated against both a 50 gram
and 1 gram standard obtained from Dr. Swift of the Chemistry Depart-
nment. The method of double weighing with an analytical balance was
employed throughout the experiments. The weighings could be depended .
upon to within 0.1 mg. In fact the specific gravity botile was
weighed many times over a period of several months and its weight
(22 gm) corrected for eair buoyancy never varied by more than 0.1 mg.

The specific gravity bottle was of conventional design and
included a thermometer which could be read directly to fifths of a
degree and estimated to twentieths. This thermometer as well as a
second one used in the temperature bath were checked against a Bureéﬁ
of Standards thermometer obtained from Mr. Weis of the Chemistry
Department. The ground glass joint was reground with 600 carborundum
for at first there was found to be considerable evaporation during the
course of welghing. After it was reground the loss by evaporation
was less than 5-mg in 24 hours. Let W be the apparent weight of the
empty bottle. The bottle ﬁas then filled with freshly boiled redis-
tilled Watér énd placed in a témperatureAbath. The height of water
in the capillary was roughly adjusted by removing some of it with a
fine glass tube placed dowm the capillary. The final adjustment wes
accomplished by changing the temperature of the water bath. When the

temperature was the same in the bath and the bottle and the top of the



liguid in the capillary was opposite the fiducial mark, then the
bottle was removed, dried and weighed. Let the apparent weight be
Wg- The volume of the specific gravity bottle is

g - W 1 1
w0 s ]
GDt 1.00 8.6

where @E+1is the absolute density of water for the particular temper-
ature,6 S is the density of alr, and 8,6 the density of the brass
weights. The laboratory distilled water was redistilled in an all

glass still, freshly boiled, corked and cooled before using. This was
found necessary for if this cooled water was exposed to the air for
about five minutes and then corked again after twenty four hours the
density increased by 0.005%. The result of 15 measurements when reduced
by least squares gives as the volume of the bottle, at the temperature

t

Vi = 24.92735 + 0.00008 + [t - 25.0 1(4,85 + 0.30)

The probable error in this and succeeding measurements was calculated
by the method recommended by Birge .
Let Wg be the apparent weight of the sample whose density is

to be measured; its mass is

Mg = Wg [1+ é(‘(lsg“g%”g)

where (35 1s the approximate dengity of the sample. The sample is



then placed in the specific gravity bottle and enough water added
to cover it. The bottle is evacuated uﬁtil the water boils. This
makes sure that all occluded gases and bubbles are removed from the
surface of the sample. The bottle is then filled with water, the
temperature adjusted, and weighed giving the apparent weight Wy.

The volume of water added is

Vg = (y - Wg - w){ i + g(if%ﬁ - 5%5)}

Thus the density of the sample is

_ Mg
(J Vt—VS
The aluminum was annealed for 4 hours at a temperature of
350°C in a vacuum furnace and allowed to cool in the furnace. The
furnace was made of gquartz, and the sample was placed in a porcelain

dish. The following results were obtained

Density of Annealed Aluminum

7 W e pat 25.0°C
23.,20°C 10 gm 2.69867 gm cm™o 2.69835 gm om0
24.25 10 2.69877 2,69863

24,50 8 2,69880 2.69871

24,70 10 2.69829 2.69824

25.20 8 2.69812 2.69816

25,40 10 2.69816 2.69825

25.80 10 2.69845 2.69859

26.40 10 2.69801 2.69826

26.70 8 2.69803 2.69834
" Av. 2.69839 + 0.00005
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The thermal coefficient of linear expansion of aluminum was
taken as 2.2 x 100 per degree centigrade in reducing both the
density and the lattice constant to 25.0°C.

Some annealed aluminum was placed in an arbor press and com—
pressed without sudden impact so that the dimensions were changed by
a factor of two. This should not change the lattice as much as
hammering or severe working, but if there are any holes in the lattice
they should be cloged and the density increased. The following

results were obtained.

Density of Pressed Aluminum

i Ws e @ at 25.0°C
23.00°C 14 gm 2.69871 gm cm—9 2.69835 gm cm—®
24.05 14 2.69830 2.69813

25.20 14 2.69835 2.69839

Av. 2.69829 £ 0.00004

One may conclude from the fact the density actually decreased
a slight amount that there was no effect due to holes in the annealed
crystals. The samples were severely worked by hammering and the

density redetermined with the following results.:

Density of Worked Aluminum

B Wg e @ at 25.0°C
24.,60°0 12 em 2.69827 gm cm™0 2,69820 gm cm~°
25,15 12 2.69791 2,69794
25,70 12 2.69778 2.69790

2.69801 £ 0.00006



The silver was annealed in the same furnace for 24 hours at
600°C, and allowed to cool in the furnace. The first five determin-
ations in the following table were made. The sample was worked and

reannealed, and the last three measurements are the resulting density

determinations.
Dengity of Annealed Silver
i Wg e @ at 25.0°C
24,4500 40 gm 10.4861 gm cm? 10.4859 gm cm—9
25.20 40 10.4858 10.4859
25.20 40 10.4877 10.4878
26.10 40 10.4866 10.4872
26.20 40 10.4866 10.4873
23.60 40 10.4887 10.4879
24.45 40  10.4869 10.48867
25.90 40 10.4869 10.4874

Av. 10.4870 + 0.0002

The thermal coefficient of linear expansion was taken as
1.9 x‘lO"5 per degree centigrade in reducing both the density and
lattice constant to 25.0°C. The silver was then compressed without

sudden impact in an arbor press and the density determined.

Density of Pressed Silver

T i e o at 25.0%C
23,359 40 gn 10.4891 gm cm~o 10.488L gm cm™
24.20 40 10.4888 10.4883
25,40 40 10.4866 10.4868
22,95 29 10.4878 10.4866
24.25 29 10.4878 10.4874
25.10 29 10.4894 10.4895

Av, 10.4878 + 0.0003
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One concludes from the small increase in density that the
annealed silver is not spongy nor does it contain large holes. The

silver was then severely worked by hammering and its density measured.

Density of Worked Silver

T W © @ at 25.0°C
23,60°¢ 40 gm 10.4937 gm cm> 10.4929 gn cm >
24,15 40 10.4894 10.4889
25.20 40 10.4901 . 10.4902
26.00 40 10.4916 10.4922

10.4911 £ 0.0006

I attempted to measure the density of fine silver powder
prepared by chemical precipitation. It was obtained from Eimer and
Amend, The density of the powder as it camefrom the meker was about
10.470 gm cm~3, but after it was dried and remeasured it had fallen
to 10.410 gm cm~3, As the particles were almost colloidal in size
an extremely thin surface impurity picked up while drying would be
sufficient to explain the decrease in density. The powder had
different "wetting" properties after it was dried and acted "greasy"
and water refused to wet it. This surface coating was probably oxide
for care was teken to prevent chemical contamination. The crystal
structure of the fresh and dried samples was the same. In fact the
demsity of silver prepared by chemical reactions seems to be quite

variable. Kohlschutter and Eydmann7

found values ranging from 9.945
to 10.498 for fine powder prepared by precipitation or decomposition

of Ag,0 and AgzG03.



When the quartz powder was being orepared some pieces as
large as would conveniently enter the neck of the specific gravity

bottle were saved and their density determined.

Density of Macroscopic Quartz

i W e e at 25.0°
22,65°C 12 gm 2.64846 gm cm™o 2.64824 gn cm~o
22.80 12 2,64834 2.64814

25,50 12 2.64822 2.64808

24,50 12 2.64846 2,64841

Av. 2.64822 + 0.00005

The thermal coefficient of volume expansivity was teken as
3.5 x 107° per degree centigrade in reducing the density to 25.0°C.

Th;'density of the finely powdered quartz could not be deter-
mined as accurately'as the density of the large pieces. The powder
had a tendency to contain small air bubbles, but these were probably
removed by boiling the water under vacuum. However, since some of
the sample was almost colloidal in size it formed a suspension in the
water andvhen the thermometer was inserted in the neck of the specific

gravity bottle a small amount of water containing some quartz must be

lost.
Density of Powdered Quartz
T W e e at 25.0°C
23,0590 14 gn 2.648% gm cm~2 2.6482 gm cm™o
23,70 10 2.6484 2.6483
24,25 14 2.6480 2.6479
24.25 16 2.6471 - 2.6470
24.50 10 2.6489 2.6489
24.65 14 2.6480 2.6480
24.80 10 2.6484 R.6484

Av. 2.64810 £+ 0.00015
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The density of the powdered quartz seems to be identical with
that of the macroscopic sample.,
"For comparison we include the results of density determina—

tions made by other observers.

Density of Silver, Aluminum and Quartz at 25.0°C

Material e Observer
Silver (electrolytic) ©10.4914 gm em™ Timofeiev?z
Silver (vacuum distilled) 10.4893 Kahlbau:gzé
Aluminum (cold rolled 99.97%) 2.698 Edwards®t
Quartz _ 2.6485 Various I.C.T% %0
Quartz 2.6479 Tul

The quartz was an optically clear sample and apparently a
perfect specimen. It was, I believe, found in California.
The aluminum was obtained through the courtesy of Wm. L. Fink

of the Aluminum Company of America. He gave the following enalysis

Aluminum 99.980%
Silicon 0.004
" Copper 0.011
Iron 0.004
Totanium 0.001

The silver was obtained from Handy and Harmon, Bridgeport,
Connecticut. The Applied Research Laboratories of Los Angeles gave

the following analysis.

Silver 99.957%
Calcium 0.009
Silicon 0.014
Lead 0.004
Tron 0.006
Copper © 0,010

Corrections will be made for the presence of these impurities.
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MEASUREMENT OF THE LATTICE CONSTANT

A Seeman-Bohlin focussing type of powder spectrograph was
used because it gives strong lines with a relatively short exposure
and if the wavelength of x-rays is chosen go that the Bragg angle
for some plane or planes is nearly 90°it is capable of very great
accuracy for sin © varies slowly with 6 in this region. The theory
of this focussing type of camera is as follows. In Fig. 1 let the
photographic film be placea on the arc ASB with a hole in its center
so that divergent x-rays of wavelength A can pass through the fine
slit S. These x-rays will fall upon the powder samples placed along
the arc CDE diametrically opposite the slit S. Since the powder
semple contains a large number of tiny erystels randomly oriented
there will be some crystals properly aligned, no matter where they lie
on the arc CDE, to diffract the x-rays of wavelength A from a given
set of planes of grating space d to a particular point F according to
the Bragg equation A = 2d sin O, where © is the angle which the
incident and diffracted rays each make with the atomic plane normal
to the lattice distance d. That the camera is focussing is apparent
when we consider that the arc SF subtends the .same angle for every
point along CGE. There will be crystals oriented in such a way as to
diffract the x-rays of wavelength A to the point F' such that the
arcs F'8 and FS are equal. The sﬁectrograph gives a photograph which

is symmetric with respect to the slit and by measuring F!'SF we can find
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2s without knowing the position of the slit. Now 20 =T - 4
or 8= gi— % and if D is the camera diemeter ¢ will be given by

s/D and Bragg's equation will become

= A _ A ~ A 2
d= _.__—-—,__{i_(/-ks)

3sne S ”
| asm e Q cos 2 8D
and we see that when s is small &ses 2 large change in s mekes a

small change in d . For example, in our camera where D = 17.5 cm

é_g;'_\_z SAS = SQXAS = Sixé—é—
d yp> - 4D* 8 2o s

and when s = 11 cm, which is as big as it is in any of the photographs
used, then a 1% change in s means a 0.10% change in d.

8 has discussed the errors introduced by vertical

M. U. Cohen
divergence of. the beam, slit width, thickness of the powder sample,
shrinkage of the film and errors in the measurement of the camera
radius and he has shown that for cubic crystals 5%fi o~ k ftan g/2
and suggests plotting a against @ tan @/2 which when extrapolated to
# = 0 would give the correct value of the lattice constent. Two and
three parameter crystals can be treated similarly. However, in the
present work since only two values of @ were obtained from a photograph
of the metals it was felt that extrapblation using only two points
would be a dangerous procedure. Furthermore, such a procedure might
mask systematic errors of measurement. Therefore, the correction for
each error was made separately. In the case of the quartz ten lines

from six different planes were used, but the same method was used for by

examining the residuals in the least squares calculation we would have

an excellent check on the validity of ouf corrections.
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ERRORS OF THE CAMERA

As the errors are all small they will be treated as independent.

Thickness of the photographic film. The effect is to broaden

the lines and shift the meximum toward the slit. From Fig. 2, letting

f be the thickness of the photographic film,

= 8 1 st
; 1 ) and @ T
- _ £
but fr=x+dg end X = g ten @
80 st = s(1 - %5) + f ten @
and since tan ¢ = S48
' D 3D3
_ £ &°f
therefore gt = s(1 - = g 555)

The z-ray film has emnlsibn on both sides and if they are equally
affected the maximum is shifted by §-§r§L. The correction to be added
to the measured s is Asg = %%(1 -+ g%;), This error if uncorrected
would introduce at most an error in d of 0.007%.

Thickness of the sample. Ihe effect is to shift the maximum

towards the slit S. Using Fig. 3 we see that @ is the measured angle

but @' is the angle that should be used in the calculation. As

gr=g+Xx where X = 5—%—— tan @, t being the

film thickness, then gr =g + ten @ or

t
D-+%
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1 = 2 L g
g D{1+D(*+”5T3?)z
As the radiation is strongly absorbed in the sample it is only the
surface layer that matters. The correction to be added is
Bsy = St(l + Dz) This error if uncorrected would introduce at
d
most an error in & of 0.040%.

Film shrinkage i1s corrected by making two markes on the film

with e templet just after the exposure is completed and before develop-
ing. The distance between these marks is measured after developing

and the shrinkage assumed to be uniform. The shrinkage was found to
vary considerably from vhotograph to photograph and would on the
average introduce in d an error if uncorrected of 0.033%.

Vertical Divergence of the Beam. The effect is to broaden the

lines and shift the maximum away from the glit. Using Fig. 4, we see

that since L SKH o= T/2 thes
K=+ 092 sing  but
: K he\ /2 . h? . .
sin (f+8) = 5T 1+ E;J sin g = (1 + _EF) sin # = sin g + 3 cosg
2 <~

hz
Therefore S = =3 ten ¢

And as the image of the focal spot is approximately a uniformly illum-

inated rectangle, the maximun is shifted by /2. Then

_h2 -..?“ 2
ASV—Zﬁtangé—ilgg—[l+%(§)]
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is the correction to be subtracted. This error if neglected would
introduce at most an error of 0.021% in d. The height of the illum-
inated sample is 2h,

Temperature of the sample. Because of the thermal expansion

of the lattice a change of one degree centigrade introduces an error
of about 0.002% in d. The tempersture of the camera was checked
severel times during every exposure and it never veried more than half
a degree. The ceamera dimensions were not affected by temperature by
an appreciable amount.

Overlepping of the « doublets. If the lattices were less

then 1000 A° on a side the diffraction patterns of the components of
the K « doublet would begin to overlap due to the finite resolving
power éf the crystal grating and the apparent maximum would be shifted
in position. A method of calculating the true meximum from the
apparent meximum will be given. For évlattice 300 A° long, an error
in d if one used the position of the
apparent meximum rather than of the true meaximum.

When the erystal grating was longer than 2000 A° on a side ther
diffraction patﬂern congisted of distinct spots. As the length of
grating decreased the spots became less distinct and begen to overlap
and when the length of grating was lese than 1000 A° the lines on the
photographic plate became quite uniform end begen to broaden out
congiderably. From the amount of this broadening it is possible to

celculate the length of the lattice or the size of the crystal.
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FINITE RESOLVING POWER OF A CRYSTAL

We shall now derive an expression which connecte the shape
of the diffraction pattern with the length of the lattice. During
the analysis we shall meke the following assumptions.

1) The crystals are rectangular parallelopipeds with o simple
orthorhombic lattice with axial lengths ay, ay, ay and 2Ny + 1, &y + 1,
ANy + 1 particles on a side respectively. The formule derived, however,
will be more general than this, for the shape of the line depends
only on the length of the lattice perpendicular to the Bragg plane.

2) The crysfals are oriented at random.

3) The crystals are undistorted and act independently.

4) The radiation is monochromatic.

5) Absorption and extinction are negligible

Consider first normsl incidence of a planec wave on a line
grating (Fig. 5) composed of 2Nz + 1 idenbical particles with the dis-
tence a, between adjacent neighbors. Each point particle will send |
out a spherical wave of amplitude
ami(Ba _ 2)

f-

-

F = | feal %’-—e

where T is the period and X\ the wavelength of the incident radiation,
Cz is a scattering constant, end t the time. Since (2z + 1l)ay £ Ro
we have Fraunhofer diffraction and at P the vector amplitudes add

algebraically. Also (Ro - Rp) = ra, cos o, so the amplitude at P is
1245

F‘Fe+%F¢=
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and if the incident plane radiation is not normel but mekes an angle

Gi with the grating we have

e R

F- Real [ + £ <2 Raliansip COS(S%) ég‘%a-i N, (Cosely+ COSFE‘)]
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Summing the geometric series we find

ar (Ko _ 2
F Rea/ Ct e (,\° T {Cos 5&‘;2’&'_(6050(%-}-005@2)_ Cos:’.ﬁ_z_(/\ﬁ/ji’_)_(Coso(iﬁ'CcsLZi)‘rZ

- ara
! Cos s (cosoe+ cos (3z)
The average intensity over a period is independent of t and is propor-

tional to the square of the amplitude.

7
Ie';, C'; cos g}a‘iNi(m*‘CO%@%) _ Cos ai (Mi‘fl)(COS')(!* COS(’E)}
/| - Cos 2L a3 (cosoly + Gos(S'-z)

Furthermore, since N, is large almost all the energy will be found in
the renge %Eai(wso(% * €9383) = 4m0 (the meximum), g

. o o5 03 ain ~ g
being an integer, to Laah, (CDSo(i—b ccs@i)= (amy22)7 (the first minima
on either side). Hence %}L‘a%(CoSo(&-f Cos (3.2) mey be considered as

differing from m,® Dby a small amount, end expanding we find
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sin? g/‘/i%{i\'di (coso{2 + 605(3-3)57
2
[ ama T — 8/{’-‘-3,5 (cos 3 + CoSﬁ%)J

For a three dimensional grating the total intencity will be
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where of, , A4 , oy are not independent but setisfy cos’ely+ Cosely  Co5ox= 1
=1

R N 2 1
must setisfy cos¥x + Cos'B,+ CoS (=

and ale
and aleo @,)ﬁ,’ . ﬂ%
The meximum velue of I occurs when the three denominators vanish

For a genersl wavelength the Bragg maximum will occur

(M%-‘-.ﬂ.) ) °<,‘J:——ﬂ4,=

(or any permutation of x, y, z).

:—L-'MA

simultaneously.

when Coso{y = Cos B3 = %-z

.B.l’ld a(;:ﬁ,, :g (m,y‘.__o)
(If there is a particular wavelength such that Cos Xx+ Cosfd, = F
: myd nd Cosely, & C = Ma A
e e and Cos os
C05 &y + CO5 (3o = 2 (P2 =y
£ 0 , we will have a Laue

3 ™ )

simultaneously where m, ) Muy, Ma
maximum). We are interested in the diffraction pattern along the
arc SF in the plane SGF and the incident and diffrected wave normals

Since nearly all the energy goes into a region
Ay

lie in this plane.
close to the centrel meximum, we will set o(, = Bx= &
-4
where Cosf3, = Cos X, "'(‘Izéf)

where & << 4 and let Ba= 3+ S
» and finally let o(y= o ~S4w =Bs~9S + @ whsre

and <S )
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w<< 1 .« Then since £ and J are small they can be varied
independently. The cosine condition then requires that
o(njzg._(o(,_&w) and (3, = -4 + (B+8)

When we make these substitutions I becomes

' ‘ i - ur
v ow sin™ 3L Hydawsinal o sin® &L Ny 3y (@8—w0) Sinlo x " M€

A =X T ~ 2 A&
" (B 230 50hat, ) (&8 34 @S —«)sim <) (5 2¢)

T-G¢,

This is the inteneity in the direction w from the central
meximum F (Fig. 6) in the plane SGH when the crystel is oriented in
the range d&§d4€ . Then by integrating over $ and & we will
teke into consideration the random orientations of the crystals. Our:
substitutions have been so constructed thet 8 and & can be inte-
grated independently and during the integration the angle SGF" remains
constant (Fig. 6). It is sufficient to integrate over the centrel

maximum. Since
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FIG6 ORENTATION OF THE CRYSTAL GRATING (ot = %y= )



(‘%Qdiw sino, )a“

Thén Jw = ¢/ NMe Ny
(ax X&, Sihof,

and we see that the shape of the line is independent of Ny,ox,Ny and
.y and these factors affect only the total intensity. However,
since X, y, z can be interchanged the diffraction pattern will consist
of the sum of three patterns of different widths and intensities. ' For
the moment then let us congider the crystals as cubic with a cubic
unit cell.

Experimentally we determine the shape I(w ) and from it we
wish to determine 2N a, +the depth of the lattice. It is most conven~
ient to do this by measuring the average width which we define as the

2
area under the curve divided by the maximum height. As Img"whll(w”) =CN,
i

and Hre-a-./I(w)dw-: CN"A—-—-/S’.”Q“(— dq_: L.84 CN*_A__

PP L AN agsine,
W
and i ) 2 & o] 1
and s:mcejsnl:&l«t du = A.g4 sthen the average breadth of the
-
diffrection pattern is B= Aréa . _ 284 A . Let A= MN,a,

Ihax aTdiNt Sind.
be the length of the crystsl in the z direction; then B = 2724
‘ A sin =,
where B is expressed in redians. If we had used the breadth at the

/
point of half maximum we would find B = _Q_ii_’l.
' A sin,

r
Scherrer? gives B :_Qiﬂ;ia_ in his derivation based on
Jsih As
gimilar assumptions. Verious investigators have calculated the value
of the numerical coefficient for various sheped erystals and found that

the line breadth is not particularly sensitive to varistions in shape,
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giving velues ranging from .9 to 1.1.

When the cubic latkice does not have the same nﬁmber of
particles on each side, our formula for B when aspplied to the observed
diffraction pattern gives for A the arithmetic mean value,%%(h@+A@,Ag)d
Furthermore, let us consider the case where the cubic crystals have N
particles on each side but let the crystals be of different sizes.

Let the number of size N be f;(N). Then using our formula for B we
NP 00 VL,
find ) [N‘*f(/v) - NW%L - kN
& T 7= BN CIVEY: ’
[Weman ) (K) G

where N is the meximm velue of f£(N).end if we know f(’%—) we can
0

calculate the value of the numericel constent K. For distributions
of particles we would experimentally expect this numerical constant
will not be greatly different from unity. On the average I think our
formula for B will give the most probable value of the length of the
lattice within 25%.

It is necessary to correct for slit width and vertical cdiver—
gence which give appreciable symmetric line broadening. In meking these

Q

corrections it will be necessary to expsnd /[-ﬂhavL da

u}
0
in a series and it will be very inconvenient to use more then two terms.

a
a Toin &
Ap[sm&l&dqz &a-a’, _a g%
3 75 g 25 T

if we keep a £ 3/2 two terms will represent the integral within 5%

error.
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Each section of the slit of width‘ d(z will give rise to a
separate pattern with its meximum at & different position along SFEM
(Fig. 6) but the resultant pattern which is the sum of all the separate
patterns will Be symnetric and the position of its meximum will be
unchanged (w=o0) . Let the angular width subtended at the crystal
sample by the rectenguler slit be 23 . The area under the curve will

be the sum of the aress due to each secltion of the glit of width d@ .

- 284CNX
R 2T sin <, Q(B

The intensity distribution is given by
/‘ﬂsin “al Na(w+@)sins »

I(w) - ( BLa(w+e) sino(,)‘?“

B

and while this cannot be integrated directly its maximum velue can be
calculated. Before we do this let us include the correction due to
the vertical divergence of the beam. We saw before that its effect is
to spread out the intensity curves end shift the maximum to the point

u):éé. The ares under the curve is

. 2.84CNA
)= 203 mme €28

and the intensity distribution is given by
6 - @+ :
. 2 ap we@) s1ho ;
Te- acf / sin® QAN
ar +3) Sind
o,(,-.,.(g(,\a(“’f” s)

We can now calculate I, . (using the fact that it occurs at w = ‘Y/g)
by expanding sm“u,4dl in a series and integrating term by term.

Usging only two termg the result is
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Tlw=3;)= 2CHESSan - (3 Nesrot (64 45

Thus 132 Frea _ 2,84 A Ai;_
Limax  2amanNsind, 57 — [f\ﬁstinda)a(g—Z#-%)f

For thig formula to be a good approximation

N .
I N (g+4)sinet, < 25

The largest crystals we will try to measure have _/l.: 1000 Af,
the largest velue of sin &, we will use is 0.25, the shortest wave-
length 1.54 A°, end the largest value of 'Xézused was 1.5 x 1079,

This requires that (3 & 2.3 x 1079 or in our cemera the slit should
be equal or less than 0.8 mm. A slit was built which had this width.
When the expression for B is put into the preectical form for the

camera used, it becomes

A 553:0° A
= 2 9
Bs 5/~ :Ajgiféﬁ.éx/fg+ 4950752}

At first the second term in the denominator is neglected and a preliﬁ—
inary value of _A_ found, This is then inserted into the correction
term and a final value of _A. calculated. B and s are both expressed
in centimeters. The shape of the diffraction pattern was experimentally
determined by teking a microphotometer trazce of the photograph. As

the lines on the photographs were curved, a set of circular defining
slits having epproximately the same redius of curvature es the lines

on the photograph was built. Because of this curvature the height of
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the illuminated portion of the photograeph (perpendicular to the axis
of resolution) was kept as small as possible. vThe dengity of the film
was low so. that the galveanometer deflection should be propoftional to
the opaciiy of the film. A typical microphotometer trace is shown in
Fig. 7. The overlapping doublets were decomposed by using the doublet
separation teken from other photographs where the overlapping was very
slight and teking the intensity ratio of the Kty to Ky, as 2. Let

F(s) be the observed curvélo, then

F(s):f(s)+%f(8+§) |l
£(s) = F(s) - 2F(s +8 ) + LH(s + 28) oo

However, because of the geometry of the spectrograph § isnot a
constent but pr0ponygonal to 1/s, so care must be taken in applying the
above equation. Also because of this the curves will be slightly
unsymnetricel, being stretched out slightly on the long wavelength
side (smaller s). If it is only desired to fix the meximum of f(s)
this is done by plotting

£1(s) =F1(s) - L (s+ )+ Lr(s+28) e
for several points in the region of the suspected meximum, finding
gsome positive and some negative values. Then the point f'(s) = 0

will give the maximum of f(s).
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THE X-RAY TUBE

The source of radiation was an interchangeable target x-ray
tube designed and constructed by DrM.Kirkpatrick. I assembled the
tube for the first time and made minor revisions in the design. The
tube is shown schematically in Fig. 8. The heated filament assembly
was of commercial design and the current was supplied by an insulation
transformer and adjusted by a series resistance in the secondary. Its
distence from the target could be adjusted by sliding the whole assembly
in its holder, and 3/4 of an inch distance between the end of the fils-
ment zssembly end the target gave a good focel spot. The target and
body of the tube were grounded and unrectified high véltage applied to
the cathode. The x-rays could emerge through three holes in the body
of the tube and close to the target so thet a line focus was obtained.
These holes were made vacuum tight‘by covering with 0.001 inch aluminum
foil end sealing with picein. The foil was held firmly in place by
the slotfed brass cleats shown in Fig. 8. The body of the tube as
well as the target were water cooled. The body was covered with lead
to prevent stray radiation. Two targets were built using ordinary
copper rod. One served as a source of copper radiation while the other
was chromium plated. These two materials were selected because the K
component of their characteristic radiation gave possible reflections
from silver and aluminum crystels with the Bragg angle equal to nearly

20°.
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The tube was evacuated by a single stage brass oil pump built
at Stanford University and used n-Butyl Phthlate. A Cenco liegavac
was used as a forepump. The pressure was determined by means of a
Knudsen Gauge, and once the tube was made "hard" the pressure could be
kept about 5 x 10~6 mm, Hg, even while running. There was a low temper-
ature trap between the pump and the tube and a mixture of acetone and
solid carbon dioxide was employed as a refrigerant.

The actuel operation of interchanging a target took about
‘fifteen minutes but it required twelve.hours pumping before it was
hard enough to run again. One burned out filament was replacéd. The
heater wire is unsoldered at the extreme end of the cathode, and the
£ilement assembly was removed through the target end. A new filament
assembly was inserfed. This seemed preferable to taking apart the
cathode end‘éf the tube which would involve replacing a rubber gasket
which could not be conveniently painted if desired.

The camera is the same one used by Bollmen and is fully des-

eribed in his thesisll.

A new rectangular slit of 0.80 mm width and
1.20 mm height was constructed by meking a new slit plug of the same
design but with a very small pin hole which was filed into a rectangu-
lar opening with a jeweler's file. The slit was replaced on the cir-
cunference within 0,001 inches. The camera was made vacuum tight by
plaeing a piece of 0.0005 inch aluminum foil over the window, painting
generously with glyptdl, and clamping it firmly in place with the face

plate. The camera was placed on a movable table drilled with three
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holes into which the three legs of the camera fitted. The position

of the table was adjusted until the imege of the focel spot was as
intense as possible end the rectangular imege was symmetric across

the equatorial plane of the camera. The table was then waxed in place
so that the camera could be removed and then replaced in the identical
position., A film was placed diametrically opposite the slit and an
exposure of the image of the focal spot taken. The image was rectangu-
lar, being 3.2 by 0.8 cm with the greater dimension being the vertical
one. The diameter of the camera was checked end found to be identical
‘with that given by Bollmen. (D = 6.905 inches). The camera slit was
as close to the target as possible, the distance between the center of
the target end the sglit being about 4.5 em. The camera was evacuated
to prevent scattering of the x-reys by the air.

The high voltage wasg controlled by means of an eutotransformer
in the primery of the high voltage transformer. It was found that the
greaﬂest contrast in the photogrephs was obtained when the copper
target was operated at 30,000 volts (r.m.s.) and the éhromium target
at 80,000 volts (r.m.é.). A nickel filter was tried with the copper
radiation but the contrast was not increased. A normal exposure with
copper K o« radiation was one hour with 10 milliamperes current, and
with chromium Ko two hours with 10 milliemperes current. The powder
gample was placed on the camera circumference by makingla.paste of it
with a little Duco cement diluted about three to one with acetone.

This made an excellent binder with very little body. The foil, and
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aluminum evaporated on mica were attached to the camera wall with a
smedl amount of stopcock grease.

The.templet for making the'fiducial marks on the film consisted
of two phonograph needles firmly imbedded in a brass bar. The film
was removed from the camers and placed between two plane and parasllel
blocks of wood with the top block having two small holes through which
the needles could pass, and a light impression of the needle points
wes made.

After the film was developed it was placed on a ground glass
viewer and a faint line ruled on each meximum of the diffraction pattern.
It wes easy to see the point of meximum intensity with the eye but the
lines were so broad that they could not be distinguished under the
microscope of the .comparator. The distances between the ruled lines
and between the needle points were measured on the comparator, the
ruled lines appearing quite sharp. Actuelly with such broad lines and
the crude way of marking thg points of maximum intensity the accuracy
of measurement possibie on the comparator is an unnecessary refinement.
But this methocC of measurement wes used because after the lines have
been ruled on the photograph the comparator is en extremely impartiel
instrument. I found that in meking several measurements on the distance

between two points with a pair of dividers (as well ag in recording
the swings of the pointer of the balance in the weighings) there was
a strong tendency to repeat the first observation. In the cases where

a microphotometer trace was taken the ruled lines appeared as very
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narrow peaks and did not distort the general shape of the curve.
Comparing the gosition of the ruled meximum with real maximum I esti-
mate the error in using the ruled meximum to be for a single measure-
ment 0.01 cm which represents at most an error of 0.009% in the lattice
constent. Furthermore with the large number of photograrhs used, such

errors, which I do not believe were systematic, should cancel out.

RESULTS OF THE X~RAY MEASUREMENTS

Both aluminum anc silver are face-centered cubic crystals, and
for such systems the interplanar distance for the (511) and (333) -
plenes (and all perhutations of the indices) is the same. If there is
any chenge of shape of the unit cell the interplenar distences for the
(353), (333), (3533) and (533) might all be different and these four
planes would give rise to four seperate diffraction pattems. If the
distortion is smell the patterns will overlap and give the appearance
of a single but broader line. In the same wey, with distortion, the
permutetions of the (511) indices will give rise to as meny as twelve
non equivelent interplenar distances.

For a general lattice with a,,a3,23 being the axial lengths
end oy (g & 1 the interexial engles, the interplenesr distence in

terms of the reeiprocal lattice (defined as a; eby = 33 )25 is

,_‘lj_z hy &1+ hyba + 45 B and
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Now we shall consider the case of cubic crystals which
have undergone a small distortion where 3,=a+ 09, 4,2 %488, lg=d+Ads,

,,4':1’3?___&)0(.1:%.‘_51 ando(5=g_55 . Then

! h2 }71 /71'

L ) 8 2h h,& &

a2 + —2 - ) 7128 24 haCi &
a < j.,z

da =4 , hiad+ h,s8+ 0, 82, " hho€s + hahot+ hsh,&a 2

Ch*+hi+ hi)Ya h +hi+ h2 h*+ hZ + h2

We see that for the (511) and the (333) planes the first
term is the same. TFor any change in the length of the lattice, the
second term always has the same sign for both positive and negative
values of the h's. However, the third term is sometimes positive
and sometimes negative and its average value is zero. Thus when we
find that our diffraction patterns are broadened when the lattice is
distorted by working it may be caused by either the finite resolving
power of the shorter crystal grating or by thé fact that we have
formed several planes with nearly the same interplamar distance.
However, if the position of the central maximum is unchanged we can
say positively that there is no change in the axial lengths for
h?Aa,-P h:Adg"’ h;_A ds cannot vanish for (333), (511), (151),

and (115) simultaneously except Aa, = A a, = Ag, = 0. This



assumes that all the crystallites are distorted in the same

manner. Furthermore, since a cubic face-centered lattice is

a close packed configuration it is difficult to see how the inter-
/

axial angles could be changed without altering the lengths of the

sides.

Since the volume of the unit cell is

Ye.
V = a,a,0; [I — cos"®,~ cos’d, — cos™dly + 2 cos o, cosd, os d, ]

then when the unit cell is distorted as on the previous page the

volume becomes, considering only first order terms,

V= @+ & (La, + 43 +4ay)

This second term is proportional to the average value of

hfba. + h:Aaa.'Fh: AQ; vwhen we consider all permutations of the
tiiller indices. Therefore, if the latter term is zero (average
value of the interplanar distance unchanged), then the distortion

we have pictured changes the volume of the unit cell by second order
terms only. As the largest first order change in some interplanar
distance required to explain the observed width of line is 0.2%, any
second order effects are negligible.

The wavelengths used in the celculations were
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Siegbahn units  Absolute Angstroms

B ou Ktz 1.541232 1.544361
Cu Kk, 1.537595 1.540516
3Ccr Koty 2.28891 2.29356
Cr Kd, 2.28503 2.28967

The results of the powder photographs of aluminum are

as followss

Lattice Constant of Annealed Aluminum Powder (99.98%
at 25.0° ¢
Radiation and Planes a

Cu Kk (511) (333) 4.04919 A (absolute)

4.04925

4.04926

4.04933

4.04935

4.04942
Cr Kt (222) .04914
.04919
.04924
.04957

L

Av. 4.04927 + 0.00002

The estimated length of lattice was 2000 A°.
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Lattice Comstant of Annealed Aluminum Foil (99.80%) at 25.0 C
Radiation and Planes a

Cu K (511) (333) 4,04904 A° (absolute)
4,04905
4,04910
4,04917
4,04922
4.04933
Cr X (222) 4.04876
4.04895
4,04905
4.,04913

Av. 4£.04908

The estimated length of lattice was 1500 Aﬂ

Lattice Constent of Worked Aluminum Powder (99.98%) at 25.0°C

Lattice % change

Radiation and Planes a ;
length in a
Cu K (511) (333) 4.,04930 A° (absolute) 530 A° 0.001
Cr Ka (222) 4,04872 740 -0.014

ILattice Constant of Worked Aluminum Foil (99.80%) at 25.0°C
Lattice % change

Radietion and Plenes a Length in a
Cu K -(511) (333) 4,04878 A° (absolute) 1200 A®  -0,007
4.,04917 490 0.002

Cr Kk (222) 4.,04878 740 -0.007

One may conclude that when the saluminum is worked by heammer-
ing smaller diffracting units having the same unit cell as the
- diffracting units in the carefully annealed sample are formed, and
since a difference of 0.2% in some interplanar distances which were
identical before the distortion would be required to explain the

observed width and as in every case but one the maximum was shifted



37

by less than a 0.007% change in the average interplansr distance

one concludes that the distortion occurs mainly in the layers

separating the diffracting units. In all cases the microphotometer

traces were symmetrical within the limitations mentioned on page as.
Powder photographs were taken of aluminum evaporated on mica.

The lines were extremely weak and difficult to measure for the

sample was of the order of a wavelength of light thieck. The results

of the best photographs are

Iattice Constant of Evaporated Aluminum at 25.0°C

Radiation and Plane a

Cu Kx (511) (333) 4,0487 A° (absolute)
4.,0465

Cr Kx (222) 4,0525

The last two measurements were from photographs where the
lines were only visible on only one side of the slit, and may not be
due to aluminum at all but to the mica onto which the aluminum was
evaporated. It is also interesting to mention that in order to
obtain the first photograph, which was the only really successful one,
it was necessary to take the powder photograph immediately after the
evaporation was finished or no lines were obtained. TFurthermore,
when a second exposure was tried one dey later with the same sample
ﬂsed in the successful photograph the lines were no longer present.
This I interpret as showing the aluminum crystals are no longer ran-

domly orientated, but have taken up soﬁe preferred orientation on the
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mica surface which was freshly cleaved just before the evaporation
took place.

The results of the powder photographs of silver are as follows.

Lattice Constant of Annealed Silver (99.96%) at 25.0°C

Radiation and Planes a w4 Type

Cr K¢ (222) 4.08540 A° (absolute) Powder
4,08553
4.08569
4.,08878
4,08578
4.08382
Cu Ky (511) (333) 4.08386
4.,08589
4.,08%96
4.08603
4.,08621
4,08623
Cr K« (222) 4.,08631 Foil
4.08549
4.08553
4.,08553
4.08574
4,08603
4.08604
4.08604
Cu Ky (511) (333) 4.08543
4.08547
4.08549
4.08560
4.08566
4.08570

Av. 4,08574 + 0,00004
The estimated lattice length for both foil and powder is 2000 A°,
It will be noted that the results for silver are not as con-
sistant as those for aluminum. This is mainly, I suspect, due to

nonlinear film shrinkage, coupled with the fact that larger values
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of s were used, With the large number of measurements used this

error should cancel out.

Lattice Constant of Worked Silver (99.96%) at 25.0°C

Rediation and Planes a lathice b chAmge g
Length in a
Cu X (511) (333) 4,08562 A° 280 A° -0.004 Powder
4,08530 (absolite) 230 -0.011 Foil
4,08551 - 185 -0.006 Foil

Again the evidence is thet the unit cell is not distorted
by working by hamering.

Six photographs using two different samples of quartz were
taken with Cu X« radiation. The iines were indexed from similar
photographs taken by Bradley and Jayze. Six planes and ten different
lines were used. When lines from two different planes overlapped no
attempt to resolve them was made and they were omitted from the

calculation.

Interplanar Distances for Quartz at 26.0°C

Plane and wavelength e Interplanar Distance
(216) Ou Ko, 79 .297° 78429 A° (Siegbahn)
(218) Cu K« 78.563 78427
(234) Cu Key 77 .509 78961
(234) Cu K«, 76.765 .78967
(421) Cu Ke(y 76.159 79366
(315) Cu K<, 75.11% 79539
(420) Cu Ky 73.843 .80230
(480) Cu K, 73.330 .80242
(33%) Cu Ko, 72.510 .80797
(502) Cu K&, 71.636 .80994



If we let a/c equal kK these interplanar distances (see
page 2) give rise to the following set of simultaneous equations

which were solved by least squares

Residuals

21.8667 + 2.6240 K% - 82 = 0 -20 x 107%
23,5005 + 0.6528kK° - &5 = 0 31
24,0382 + 00,0000 ¥¥ - &° = 0 14
24,0310 + 0.,0000 ¥¥ - &° = 0 -58
10,9659 + 15.8162 kK - & = 0 -26
23.5163 + 0.6299 ¥ - &° = 0 — 3
15.7974 + 9.9773 k¥° - & = 0 44
15,7949 + 9.9757 ¥ - &° 0 6

5.7408 + 22,1429 ¥® - & 0 2

5.7410 + 22.1440 ¥* - &° 0 9

giving a® = 24,0368 + 0.0009 and a = 4,90275 = 0.00009; also

¥* is 0.82626 % 0,000025 and ¢ = 5.39362 ¢ 0.00011. When these
measurements are changed into absolute Angstroms and corrected to
25.0°C using the following thermal coefficients of linear expansion,
along the a axis 1.34 lO'5 per degree centigrade and along the ¢

axis 0.7 1079 per degree centigrade, we find

Lattice Constants of Quartz at 25.0°C

4,91263 .00009 A®° (absolute)

a £ 0
5.40454 ¢ 0.00011

c

nou

There is no systematic trend to the residuals so our method of cor-
recting for the errors of the camera is justified.
For comparison we include the results of other observers on

the lattice constants of aluminum, silver and quartz.

Lattice Constants at 25.0° C

Observer
Silver a 4.0861 A® (absolute) Neugebauer?’
Aluminum a 4.,0496 n
Quartz a 4.,9132 . Bradley and Jay26
¢ 5.,4044
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MOLECULAR WEIGHTS OF SANMPLES

For 2luminum the molecular weight as determined by mass
spectroscopic means was used. On the basis of 015 = 16.0000 its
molecular weight is 26.991717, (Aston'sl? value corrected to
C1g = 12,00388). TFrom the relative abundance of the isotopes of
oxygenl8 the conversion factor of mass spectroscopic atomic weight
to chemical atomic weight is 0.99973. When a smell amount of impurity
is present these foreign atoms will f£fit into the aluminum lattice

without distorting it. Therefore the effective atomic weight is

26.989.
Al 26.9917 x 0.99973 x 0.99980 = 26,979
Si 28.06 x 0,00004 = 202001
Fe 55.84 x 0.00004 = 0.002
Cu 63,57 x 0.00011 = 0.007
Ti 47,90 x 0.00001 = 0.000

26.989 x 0.001

In the case of silver the chemicel molecular weight is used,

and the effective molecular weight is found to be 107.858,

Ag 107.880 x 0.99957 = 107.833
Pb 207.21 x 0.00004 = 0.008
Fe 55.84 x 0.,00006 = 0.003
Si 28.06 x 0.00014 =" 0.004
Cu 63.87 x 0.00010 = 0.006
Ca 40.08 x 0.00009 = 0.004

107.858 = 0,002

The probable errors are estimated on the bases of the

probable error of the chemical analyses.
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Unfortunately there is no universal agreement about the
atomic weight of silicon. The value accepted by the International
Cormittee on Atomic Weights 1s based on the determination of
Baxterzs, Weatherill, and Scripture who compared SiCly and SiBry
with Ag and found the moleculer weight of silicon to be
28.063 + 0.,003.

However, more recently Honigsé&idzg and Steinheil by compar-
ing SiCly with Ag found the molecular weight to be 28.105 = 0.003
and Weatherill3C ang Brundage using the same method found
28,103 + 0.003 as the molecular weight. Because of the large differ-
vence between these observers it is unsatisfactory to average their
values so we shall carry through the calculation for quartz using two
different values for its molecular weight, 60,063 & 0,003 and
60.104 + 0,003. The mass spectroscopic determination of the molecular
weight of silicon gives 28.125 but this must. be regarded as quite
inaccurate for the calculation is based on some preliminary values
of the relative abundances of the isotopes as measured by licKellar3l

using the band spectrum of SiN.



CAICULATION OF THE EXTINCTION COEFFICIENT

19

Equation (6.55) in Compton and Allison™” giving the

approximate extinetion coefficient (along the actual path) is

__4ariF
Ye = 73sin og

where Z is the number of elecirons in a unit cell, A is the inci-
dent wavelength, 95 is the Bragg angle, and F is the crystal structure

factor which is calculated by

T = :S_ £y egﬁi(h xj + hayj + hyzj)
J

where h,,h,,h; are the IMiller indices of the plane foar the Bragg

angle 8o, xj,yj,zj are the positions of the jth atom in the unit

20

cell, and fj can be found from Pauling and Sherman™ in terms of

scattering from a free J. J. Thompson electron. The scattering from
a single electron is from Compton and Allison (3.04)

——————1‘34 ( 2 g)
1 + cos
2r2m20 ¢

where ¢ is the angle between the primary and scattered rays and

¢ = 290.

the unit decreme»Z of
5 which isAthe index of refraction is found from (4.46) in

Compton and Allison to be

T = ne® A2
27meR

where n is the total number of electrons per cubic centimeter.
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But n = ﬁ x %T x 2 where @ 1is the density in grams per cubic
centimeber, M is the molecular weight, N is Avogadro's number, and

V is the number of molecules per unit cell. Thus

é
Ne /\l+cos 28 2 i(h,z3 + hoyy + haZg)
= 0.} 3
Ve mgrg cZ %/Ff T sin o g ] J

where Fj is the number taken from Table VII of Pauling and Sherman.

6 23 6 -60
oy e - 6,06 x 10°° x (4.,8)° x 10

260 | (9.03)3 x 10°9% x (1.9)2 x 10-26 x 30 x 1000

= 3,78 x 10+

and if we express A in Angstrom units

Jle = 3.78 x 10° @é. = 21203“ 2 E (75) o2Mi(h,xy + hpyj + hgzj)

Then for Cu K« radiation reflected from the (333) (511)
planes the depth of half penetration is for

Aluminum 1.4 x 1074 en or 1.8 x 10% planes
Silver 5.8 x 10~° cnm or 7.3 x 109

For Cr K« radiation reflected from the (222) plane the depth
of half penetration is for

Aluminum 6.1 x 107° em or 5.2 x 10° planes
Silver 1.6 x 1072 em or 1.4 x 10°

Thus in all cases the radiation penetrated throughout the
diffracting units.
For quartz with Cu K o radiation the depth of half penetra-

tion varies from plane to plane but is on the average about



1.3 x 107% cm or 1.6 % 10% planes. The largest particles that could
get through the screen were 5 x 10-3 cm but when a sample was viewed
under a microscope the average size appeared to be about 5 x 10"4” cn.
As the radiation could penetrate from either side this is equivalent
to an effective thickness of 2.5 x 10™% cm so that the x-ray informa-

tion is fairly representative of all the sample used.
EFFECT OF DISTORTION ON THE METALS

Wle have seen that the unit cell is unchanged by working., ILet
us assume that samples of aluminum and silver are made up of blocks
of undistorted unit cells separated by ammorphous or demaged layers
of constant thickness. The measured density will be affected by these
layers of constant thickness 2AD. Then the measured density will be

e- a°p, + 30°AD P!
(d +A D)®

. _ 38D
or approximately e - @, = ((0 - <o')

where (/’, is the true density, f ' the density of the ammorphous or
discontinuous layers, and d the length of one of the blocks. Thus

for aluminum, since

2.69801 for 4 = 800

g = 2.69839 gm em™® for d = 2000 A° at 25.0°C

we find (o = 2.69853 gn em™o, However, due to the sketchy nature of

this calculation the value we will use in calculating N and e will



be the value found for the annealed sample with the probable error

ahd e
equal to the difference between the annealed value,plus the probable

error of the -annealed sample. Ve shall use as the density of alumin-
wn at 25.0° C 2.69839 + 0.00019 gm em™>
Following the same procedure for silver since

2000 A° at 25.0%C

¢ = 10.4870 gn en®  for d
300

( 10.4911 for 4
then (90 10.4864

and we will use 10.4870 = 0.0008 gnm em™2 as the density of silver at

25.0°C.
CALCULATION OF N AND e

In making the celculations we shall give two probable errors,
the first will represent the errors in the lattice constant as com-
puted from the inner consistency of the experimental date, the error
in the density and the error in the molecular weight. The second
will include the probable error in the absolute measurement of the
wevelength of the x-rays and the error in Q. If our assumptions
are correct all the values of N and e should agree within the first
probable error, since the same value of Q and the wavelength was
used for all the substances. The value of Ql5 used is
2.89270 + 0.00021 x 101% esu gm mol=t

For aluminum, using

]

2.698%9 + 0.00019 gn em™ at 25.0°C
26.989 & 0.001 gm gm mol-®
4.04927 + 0.00002 x 1078 em at 25.0°C

I
a

]
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6.0258 + 0.0006 x 102° mol gm mol~t
£ 0.0007

4,8005 + 0,0004 x 10710 esu
£ 0.0007

we find N

e

For silver, using

€ = 10.4870 = 0.0008 gn em™° _at 25.0°C
I = 107.858 + 0.002 gn gn mol™t
a = 4.,08574 x 0,00004 x 1078 em at 25.0°C
we find N = 6.0318 + 0,0005 x 1023 mol am mol=%
+ 0.0006
e = 4.7957 + 0,0004 x 10710 esu
+ 0.0007

For quartz, using

¢ = 2.64810 % 0.00015 gm cmw™> at 25.00C
a = 4.91263 + 0.00009 x 1078 em at 25.0°C
¢ = 5.40454 + 0.00011
M= 60.063 = 0.003 gm gm mol™+ (Baxter, Weatherill &
Seripture)
we find N = 6.0239 £ 0,0004 1023 mol gm mol
+ 0.0005
e = 4.8020 + 0.0003 10710 esu
+ 0.0006

but if M = 60.104 £ 0.003 gn gn mol™t  (Honigschmid & Steinheil,
Weatherill & Brundage)

0.0004 1073 mol gm mol~t

we find N = 6.,0280 %
£ 0.0005
e = 4.7988 = 0,0003 10710 esu
= 0.,0006

DISCUSSION OF THE RESULTS

If the molecular weight of quartz is in the range of 60.063

then the value of e obtained is in agreement with that given by

14

Bearden—~, 4.8036 = 0,0005 10710 esu. Bearden's value is based on

the measurement of the lattice constant of large samples of calcite



with a two crystal spectrometer and the density of the large samples
were determined by immersion. Both the density and lattice para-
meters have been measured by a great many observers and there is no
doubt és to their value.

lowever if the molecular weight of quartz is in the range of
60,104 then the value of e will be in agreement with that obtained
for alimmym.  In such an event it is impossible to reconcile the values
obtained using quartz and &lilmmwm with those obtained using calcite
without resorting to the concept of a more or less regular super-
structure in the crystals.

Considering the results of silver and aluminum alone where
there 1s no uncertainty in the molecular weights we see that the dif-
ference in the value of N obtained for the two materials is 0.10%
while the largest experimental error is 0.001%. Thus some of our
assumptions as to the nature of the polycrystalline metals must be
invalid. In order to obtain agreement witgfialue of N obtained using
calcite the value of the density must be increased. This suggests
the presence of holes or gaps in the metals which would render the
measured density less than the true density. However, the little
metal crystals must part together in such a way that there is a repro-
ducible percentage of very small spaces between the crystals for the
density of different samples was the same and when an annealed sample
was worked and reannealed the density returned to its original value.

But the density of silver increases with working and that of aluminum
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decreases. This I interpret as showing that working changes some

of the crystalline structure into amorphous material which for

silver and aluminum is less dense than the crystals (silver and alum-
inum expand on melting) and which can fill the holes and make the
density greater, as in silver, or it can more than fill the holes

and make the density less, as in aluminum.

These experiments show that there is certainly not a mosaic
structure, even in the metals, which renders the value of N and e
obtained by the x-ray method incorrect by more than 0.1%. Using the
results of Tul on the glancing angle and density of calecite, rock-
selt, potassium chloride, and diamond and the latest value of their
molecular weights we find the following values of N and e where the

probable error neglects the uncertainty in the ruled grating measure-

ments and the value of the Faraday.

For Calcite = 2.71003 + 0.00005 gm cm”° at 18° C

d = 3.03557 + 0.00001 x 107° em ot 18° C
@®) = 1.09602 + 0.00001 =t 18° C

M = 100.090 + 0.005 gn gm-mol™t 33
N = 6.0235 + 0.0003 x 1025 mol gm-mol-t
e = 4.8024 + 0.0003 x 1010 esu

For KC1 @ = 1.98950 + 0.00014 gm cm=3 at 18° C
d = 3.14541 + 0.00004 x 10-8 cm at 18° C
M = 74.553 + 0.003 gm gm-mol—1 5%
N = 6.0214 + 0.0005 x 1023 mol gm-mol-l
e = 4.8040 + 0.0004 x 10-10 esu

For Rocksalt d = 2.81962 + 0.00005 x 107 cm at 18° C

(NaCl) @ = 2.16418 + 0.00014 gm cn™> at 18° C

M = 58.456 + 0.002 gm gm-mol ™t 54
N = 6.0247 % 0.0005 x 10°° mol gm-mol™t
e = 4,8014 + 0.0004 x 10™esu
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For Diamond @ = 3.5141 + 0.0001 gm cm™ at 18° ¢

(.89Kk) = 3.56692 + 0.00002 x 107 cm_at 18° ¢
M = 12.0115 + 0.0005 gn gm-mol™t 33
N = 6.0255 + 0.0003 x 10°° mol gm~mol~t
e = 4.8008 + 0.0005 x 10710 esu

(1.78) © = 3.5142 + 0.0001 gm cm™> at 18° C
d = 3.56683 + 0.00002 x 10~° cm at 18° ¢
N = 6.0258 + 0.0003 x 100 mol gm-mol™t
e = 4.8006 + 0.0005 % 10~ Oesu

In the calculetions we have taken 0.709268x 1078 cm as the absolute
wavelength of MoKy, 52 Ve see that the values of N and e obtained
for these "perfect" crystels differ by many times the experimental
error. We have no assurance that "perfect" crystals are not going

to behave like the metals to some extent for the difference between

a2 polycrystalline material and a "perfect" crystal is one of degree.

I believe, therefore, that the assumption that calcite is a "perfect!
crystel might invalidate the x-ray value of e by 0.04%. It is also
significant that the value of e obtained for crystals other than
caleite, with the single exception of KCl, is lower than the calcite
value, Thus the best value of e obtainable by the x-ray method is
4,801 + 0.002 x 10710 esu. This value is a personal estimate.
Actually the average value using my results and those of Tul (weighing
the metals as one-half and using the mean of the two values obtained
for quartz) is 4.8013 + 0.0004 x lO"10 esu. However, as the individual
values differ by many times the experimental error the least squares

probable error mesns nothing for the spread in values is not due to



statistical fluctuation but to something fundemental in the method.
The values of the lattice constants I determined were slightly
lower than those given by other observers (page 40), the sverage
being 0.009% lower. If this difference were real it would mean
raising my value of e by 0.03%. Neither this nor the uncertainty in

the molecular weight of quartz would change the conclusion reached.
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