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Contributions to the General Geometry of Paths

A. Boyd Mewborn

Abstract

By general geometry of paths is here meant the study of the
properties of a space of undefined elements having a Hausdorff topol-
ogy and coordinates in a Banach space, and having as fundamental
element of structure a class of distinguished subsets called paths.

The paths are defined locally in terms of their mappings under certain
coordingate systems (N.c.s.) analogous to normal coordinates. The topol-
ogic properties of the paths and their mappings in N.c.s. are studied

in § 2.1, and it is shown that the map of the aggregate of paths through
any point is itself an open set. In éELZ a class of allowable coordin-
ate systems is introduced and it is shown that a linear comnection (which
was not postulated) can be defined and from it a curvature form. These
are shown to have their usual properties. It is further shown that the
space is locally flat. In §2.5 a modification of Frechet differentia-
tion is introduced and used to define another linear connection and
curvature which do not necessarily imply a locally flat space. 8 2.4

is devoted to examples illustrating the above in particular instances.

The second part (Chapter III) of the thesis consists of certain
results extending the properties of the normal coordinate component of
linear connection and the curvature form as studied by Michal and Hyers
fAnnali di Pisa 1958f and of a more extended study of the variety of
uniform continuity of the Fréchet differential defined and introduced

by Michal and the writer f Proceedings of N. A. S. 1939 §.
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I

Introduction

The problem of the structure of a space in terms of straight
lines or geodesics and the generalizations of these as paths has
been the subject of extensive study by geometers. Modern work in
the differential geometry of paths has been based on the definition
of these curves in terms of one of their three fundamental properties.
First, the path may be considered as a curve of minimum length in a
metric space and studied by variational methods. Second, it mey be
defined as a self-parallel curve in a space in which parallel dis-
placement has meaning. Third, as a solution of a certain second order
differential equation. In each of these three methods there is used
either directly or indirectly the concept of a linear connection
defined in the space. If a Riemann metric is used the Christoffel
symbols enter in, and in the parallelism of Levi-Civita again they
play an important role. Lven in abstract work, the linear connection
is well nigh all important. These three approaches, however, have
led to essentially equivalent geometries, and, among other things, to
the notion of normal coordinates.

It is the writer's purpose to approach the study of the general
geometry of paths (i.e. geometry of paths in a space with coordinates
in an abstract (Banach) coordinate space) from a different viewpoint

which will, in a sense, generalize the existing theory. Here we start



with paths defined locally as curves with a representation suggested
by the above mentioned normal coordinates. Then fhe properties of
paths so defined are first studied from a topologic viewpoint, and
later the differential properties are studied by the use of Fréchet
differentiation, and the writer's modification of the Fréchet differ-
ential. In the latter aspect, it is shown possible to define a linear
connection and a curvature form locally in a space of paths so defined,
and that these geometric objects have their usual properties.

The second part (Ch. III) of this dissertation is devoted to
the presentation of some additional results extending and generalizing
certain aspects of a paper by Michal and Hyers {1958-ﬂf and another
paper by lichal and the writer {1939-2, 1940-1} .

* The following numbering and reference conventions will be followed

throughout this thesis:

i) The bibliography references are numbered according to year and
are enclosed in braces.

ii) In all numbers the first digit represents the chapter and the
second number, preceding the period, the section.

iii) Equations are numbered in sequence throughout each chapter,
2ll other numbers are in sequence throughout each section.

iv) Internal references to hypotheses are given by number only,
to definitions by number in parentheses, and to theorems and
corollaries by numbers in square brackets.



I

GENERAL GEOMETRY OF PATHS

In the present chapter the geometric space will be taken to
be a Hausdorff space H and the coordinate space will be taken to be
a Banach space B. These two spaces will be assumed to be distinct,
although this need not necessarily be the case. As mentioned before,
the fundamental definition of the paths as distinguished subsets of
neighborhoods in I" l , 1s suggested by analogy with the familiar normal
coordinate representation of paths. No linear connection is assumed,
but in §§2.2 and 2.3 this geometric object is defined and shown to

exist under certain restrictions.

@ 2.1 Definitions and Topologic Properties.

By an open set in B we sha1l mean, as usual, a set U such

that every olé€ U may be enclosed in an open sphere \S of radius

P>o, (hx-ali {9), lying entirely in U .

Definition 21.1 Coordinate system. A fixed homeomorphism (i.e. a

fixed biunique bicontinuous functional relationship) between the
elements of a Hausdorff neighborhood M and an open set X of B .

This we shall denote by X=x (-P) where Pé M and XGX .

Definition 21.2 Curve. A subset C of the space H which has at
least one map K under a particular coordinate system, such that K
" is the continuous transform in B of a single real variable (parsmeter)

defined on a certain real interval (or set of intervals).



This yields as a necessary and sufficient condition for
C c H to be a curve that there exist a coordinate system X= X (P)
on a neighborhood MDC such that x(Q): ‘F('t) where ‘F(i) is a
continuous function on IC-R, (R is the real number system),
to X and Q€ C . In the present discussion, the domain I

will usuelly consist of a single open or closed interval in R-

Definition 21,3 Point of a curve. A point -P. € H is on (or of)

the curve C if and only if R € C-

Clearly, a necessary and sufficient condition that E be on

C is that x (P)e K.

Definition 21,4 Path. A curve L in H for which there exists at

least one coordinete system )’(P) whose geometric domain M contains
L and such that the map ')\ of L. in the coordinate domain Y is

of the form
-
(2.1) A )’=S§ seJc R,

where jré B is fixed and not the zero of B , and J is a single
open interval having zero as an interior point.

It is well to point out in the above fundemental definition
that in the representation 1 . the §f is not uniquely specified
even for a particular coordinate system )’ (P) , and that the interval

1
J will depend on the § used.

Hypothesis 21.5 There exists a class L of coordinate systems such




that every neighborhood UC H is the geometric domain of at least

one coordinate system of .n..

Hypothesis 21.6 There exists at least one coordinate system)/=)/(P)

of (1 for every Ip € H such that every path L containing Po is
mapped in the form (2.1) in this coordinate system.

The first of these two important hypotheses is introduced to
make our theory non-vacuous and is automatically satisfied in the
interesting particular cases of this theory. The second is of more

far reaching import and deserves particular consideration.

Definition 21.7 ©N.c.s. associated wi'bhmPp . Any coordinate system

)"-':)’(P) of {1 on the neighborhood Mo of R to the open set Yo c B
and satisfying the conditions of hypothesis 21.6 will be called an
N -coordinate system or N.c¢.s. associated with -Po .

e

Definition 21.8 Equivalent paths. Any two paths L ; L having a
- i . Pt
point | o in common are equivalent if they have a second point #1

also in conmon.

Definition 21.9 Linearly dependent (independent) set in ,B- A set

of elements f.,f , Ty f\-\ in .B will be termed linearly dependent
(independent) if there exists a set (exists no set) of N real numbers

Q,Gq, * ' Qw not all zero such that a. f. +a"§1+ vt Qn §n= O.

Definition 21.10 N -dimensional space. The dimensionality M of

a space will be taken to be the largest number of linearly independent



elements in the space*.
From the above definitions and hypotheses follow a number

of theorems which are given below.

Theorem 21.11  "Every path L containing a given point Pa will be

contained in the geometric domain Mo of every N.c.s. associated with_

Po ",

Proof. An immediate consequence of hypothesis 21.6.

Theorem 21.12 "In the coordinate domain Yo of any N.c.s. y=)/(p)_

a.ﬁff?fi?f?gf}fﬁag,__ there exists a sphere é of center zero and radiu_g
P20 lying entirely in Yo, end it Y, 4 B, then o bas an
e e R Bk e
Proof: 1) Th; existence of 5 follows from the definitions of open
set and coordinate system (21.1)
2) I :B-Yo is the non-empty complement of \(o, then
Pa=glb lzll, ze(B-Y.),
is maximum radius of the sphere 5 .

(Q.E.D.)

’
Theorem 21.13  "Every f € \50, where A.SO is the sphere of maximum

redius in t«g‘,,iﬁjh?f map of a point Q on a path L through s &
+ +
end y =5, §2y (@), seJ mere J 1o 1s51¢ ff_/nf’u.is a mapping

function of L. .

* Tor further definitions concerning n-dimensional subsets see §2.3.



Proof:

p()’): -TD(S§+) SGJ
gives a set of points L C Mo satisfying (21.4).

(Q.E.D.)

Theorem 21.14  "A necessary and sufficient condition that two paths

L,L turousn B ve equivalont is that, in at least one N.cus., in
which their maps ave respectively y=s§, se) and
)I:??ﬂ Se J , the fixed elements ,rfﬂfmand E’ ‘be linearly
dependants, _
Proof: 1) To prove sufficiency, assume k §t+ Lg} = O and
E;éo and let J be aco¢b and j be '&<o<-f>
2) Since £ 40 by (21.4), K =- R/ Lo
3) Let S, € IR satisfty o< 1Si¢b'=min (—a,b,—lh’la,lh’lg).
4) Then -P. = P(s.i’) " 'P('s',_f_;) is an element of L,
for S,e¢ J Dby step 3), and of —l: , for Eej
by step 3).
5) Wow if P £, then L= L by (21.8). But if
P, - P , then let T =P (s.§%) where S.=18,
and so _F‘;_ #P,:TDQ, Steps 3) and 4) apply for
and (21.8) is again satisfied.
6) Conversely to prove necessity, assume L= T_- and le?b
Q, 9( P, be a common point of L. and T_ .
7) Let )/(Q‘)=S. §+ as a point of L.,
and )/(Q.)=§‘-§_; as a point of L.
8) .. s5,8t- S g_' = © whence by (21.9) §+ and E

are linearly dependent. (Q.E.D.)




— 5 _
Corollary 21.15 "If L= L , the fixed elements § ana § of

their maps in any N.c.s. are linearly dependent.”

Corollary 21.18 "Bvery pair of equivalent paths has infinitely

many points in common and conversely."

Corollary 21.17 "The equivalence of paths satisfies the four condi-

tions of an equivalence relation."

Theorem 21.18 "Given an arbitrary -Poe H and a fixed N.c.s.

associated with o, then every Se B corresponds uniquely to a

class of equivalent paths iL,} ’c_hrgllugh:PoAlmnthe sense that {Ln}

1!
is specified by a rreprersentative L ' Yvhosg map ii_},/.f—,:,s,f', , Se .); )

re e "
h — ) " .

Proof: 1) By theorems [21.12] and J21.13], (°°= sefins of e
exists and §."e So, since W€ N= " '2f|:§ll 3”: %2 < Pe

b
S0 _y=sf,, Is,<'<% is the map in the
s

given N.c.s. of L.,,

2) To prove unigueness, assume a second class {L,j of

representative L a2 , §:= E,ell_:S" § ana §L,§# { LS.

3) This is obviously a contradiction, as any L.,/é { L-}
is equivalent to any L.: € {_L-.,‘f by \'_21.17].

(Q.E.D.)

Corollary 21.19 "If L2 L , then any pair S,ﬂeB to which they

correspond in the same N.c.s. are linearly dependent.”

Tcorem 21.20  "The dimensionalities of DD and the coordinate domsin

\ﬁa of any I\T._c.s, are the same. t



Proof: 1) Since Yoc P the dimensionality n of B is not less
than the dimensionality m of Y. (21.10)
2) TFor N to be greater than v , we should have to have
at least one Sé B not linearly dependent on any
element or set of elements in Y,, , contrary to [_21.18].

(2.E.D.)

Theorem 21.21 "If P is one-dimensional, then every point 'Poe‘@

has only one equivalence class of paths containing it. If ) =) has)

. . ‘ =t -
dimensionality W » 2 then every P,e B has o0 equlvalenqe_a‘
classes of paths through it, where 1 is finite or denumerably%
infinite".

Proof: 1) The first part follows at once from [21.18], [21.19],

and [21.20].

2) If h»2 is finite or denumerably infinite, then the
number q of non-equivalent paths cannot exceed the
number of straight lines through the origin in n-dimen-
sional unitary space or classical Hilbert space
respectively, and is in fact equal to this number.

(R.E.D.)

Theorem 21,22 "If N2 , the only point comuon to all non-equivale;ﬂg

paths through P. is P, ana the map of Y. in all N.c.s. associated
with Po is zero. Hence zero is an element of the intersection of the

coordinate domains of all N.c.s. associated with any Po € H e



Proof: 1) By definition (21.8) non-equivalent paths cannot have
two distinet points in common.
2) Since h » 2 there exists at least two non-equivalent
paths L , L thru eny FPoe H. (21.10), [21.14].
3) The maps A and X in any N.c.s.)’zy(P)associated
with P, have the zero eiement in common. (21.4)
4) Hence by (2121) Y (Pe)=o0.
(Q.E.D.)
Nothing so far has been assumed which would make the N-
coordinate systems discussed above unique. In fact it is quite
obvious that if y:y(p) is an N.c.s. associated with e , then
_)7:5/(13)= l'i)’(-P) 3 ke R 4o, is also an N.c.s.
associated with _Pa. In the following discussion of coordinate systems
it will be convenient to have a fixed and unambiguous notation to be
used whenever applicable., Hence, unless otherwise specified, the
following symbols will henceforth be used only with the meanings stated.
Consider the schematic representation of the situations in
the geometric space H and the coordinate space B under two N.c.s.

associated with a single point P, (3 -E)s figure 1.

Definitions 21.23 (a) Me Me are neighborhoods of -F:o and
geometric domains of the N.c.s. y(P) and f/'(P) respectively.

, —
Ms = M M. which, in general, will not be a neighborhood and

hence not a geometric domain for any coordinate system.

(b) Yc Yo are open sets containing zero eB and are

r ot
the coordinate domains of)/(p) and -;}(P) respectively. Yo, Y,, are
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the maps of Mo under the two W.c.s. and in general will not be
coordinate domains.

(e) .So and 5¢, are the maximal open spheres of theorems

[1.12], [21r.13].

/
(a) Oo is the subset of Mo consisting of the totality

of paiths through —P,,’ and V\/t, and W_o are the maps of Oo in the two

N.c.s.
(e) _L_._ is a path through —Po, and_)\_ andz are the meps of
L in the two N.c.s. (2.1)
) _@ is the point (if it exists) on L whose map in )/=)/(P)
is _;: considered as the end-point of a ray {See below (21.26)(21.27)

where G])Y,F;¢ are also defined.},

The above sets and their inclusions and coordinate homeomor-

phisms are:

Banach spaée B Yo 2 Yo,:’ We > 50 ; Wo 2 A2Y o O, 6*

)’(P) and Ply) ¢ t $ f
Hausdorf? space H* Mo, MoD M D02 No

y (P)and P (5 ) f ¢ t l
Banach space BZ ?,, = —\Fo'D Wo = 5.

The lower case letters S, t, U, ¥ and w will be used %o
represent real variable parameters, and will be assumed to be fixed
when weitten with a subscript.

Theorem 21.24 “Under (21.23) there exists a homeomorphism Y (y v, ) ()/)
¢ /
between Yo and Yo , and for all )/é Wo ()/%‘ o), %—:’) = *qé o,




13

and similarly for y (¥ ).
Proof: 1) By the transitivity of homeomorphisms - {Sierpinski
1054-1, pp. 21-22; Michal 1937-1} the existence of

)’ (5/) and )7()) follows from (21.1).
2) Al )’éWo, )/#o can be written )/a Sf S40,

and)/éWb)y#O W u )7;_3. -’) 4o
soa___yg/)--——sf’ €' and 9'—’—)'()/)=§'

Egg{em 21 25 "The set Yalis an open set.q"
Proof: 1) Assume it is not an open set, thén there exists at least
one )l, & \{,/ such that every sphere about >/, contains
at least one point )/'é- \(o'
2) Since \/,, is open we may assume (). < r’o so )/'e Ya.
3) The coordinate mapping )/ (P) is continuous, hence for
every neighborhood U of F:: = —P(y.) there exists an
open set (and hence an open sphere 5 of radius P >0)
about )/. sueh that )/z::)/(PL)é 5 implies —Pz € U
4) But, by steps, 1), 2), every such S has a)/' such that
P'=PG) e Ms.
5) P is an element of every neighborhood U of -P, by
step 3), contradicting the second Hausdorff postulate in H
(Q.E.D.)

l 4
Likewise \(o is open, and the homeomorphism of theorem [21.24]

carries an open set into an open set. Further, this property is true



in general for all coordinate sysbtems and not only for N.c.s.

Definition 21.26 Ray - A closed subset (segment) G of a patn L

containing Po such that its map Y in the N.c.s. ¥y (P)is of the

form

T
(2.2) Y: )/ =s§ sel where 1 is the closed

interval O €S € i

It is clear that this definition of a ray depends on the
particular mapping ‘A in )/(P) that is chosen. To avoid ambiguity
we shall avoid the equivalence of rays under definition (21.8) and
shall speak only of their equality in the sense of logical identity.

Definition 21.27 End points of a ray - The points -Po and Q. of a

1
ray G whose maps are O and f respectively.
In view of the preceding remark, two rays are equal if and
only if their end points coincide.

Definition 21.28 Half path - A subset (segment) F of a path L

containing _P. such that its map gé is of the form

+
(2.3) ¢: )/-,-sf se K were K is either og¢s<b
| or a(s O
and J of (2.1) is A <CoO ¢ B.

Definition 21.29 lMetric mapping of a path, ray and half-path

= Mappings ), Y, ¢ of definitions (21.4), (21.26) and

¥+
(21.28) respectively which satisfy the additional condition that I1§'H=A4.

[
N



Theorem 21.30 "In any given N.c.s. there exists a metric mapping

of every path and half-path through Po which is unique to within a

factor of +l1, while at most two rays on any path (one on any half-path)

possess a metric mapping.”

Proof':

1) Let the path L. (half-path F ) be arbitrary and let

A (¢). )/=$§d’ se (S(‘K): acs<b (gscsszb?));

be a particular mapping in the N.c.s. y:y(P).
2) Then A (_<_;$);/=§§', sed (565)

will also be mappings of L ( F) in the same N.c.s. where

o<5$|:|l§*ll>

+_ ® '
S=r5¢,  Jranrics<hbis (l‘.' alisth<sso

3) Hence 1 (q‘) will exist and satisfy (21.29) whether or
not §7e Wa
4) 2\_-(¢) will be unique to within sign, for suppose 2_: (in)

is a distinet metric mepping of L (F), then there exist
R, k, # O such tnat bf;:*+ k. §1= © [e1.14]. But

108 = -2 5 = 2 = | ] o ks 2k,

oo

+ +
hence §. = if .
5) TFrom the above, only two points Q- ) Q\ € L (one point
. +
Q € F:) is the geometric map of :I:_i . Hence only
two points (one) which can map metrically end-points.of

a ray. These points are quite independent of the original

mapping A (¢). (R.E.D.)
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In the following theorems no special notation will be used

fo indicate metric mappings.

Theorem 21.31 "In every equivalence class {L} of paths through Ps

there exists one 'maximal path' L° which contains all distinect paths

of {Lz as proper subsets."

Proof: 1)

1‘. )/-'-'-gfr, S'EJ §+=

Let Y, be a fixed point of an arbitrary path L e {L} and

')/,, J- acs<h

I
iy
be a particular (metric) mapping of

’
Toh 9{;(“—1/(: 0¢s<b) ana ¢’ (se K: a<s$o)
be (2.3) be (metric) meppings of the two half-paths into
which it can be separated.
Every other path of {L} will be mapped metrically with
the same §'+, and is separable into two half-paths
equivalent to ¢ and ¢’ respectively.
Let iF} and {F'} be the two equivalence classes of
hadf-paths established in 3). DNow in {Fz, there exists
a l.u.b. b, of the corresponding values of b, and
in {F,f a g.l.b. Qo of the set of values Q.

(These may be finite or infinite).

Clearly FO , Whose map is ¢° (S’e Kol o0gs< b, ),

is in {F}’ and F‘,/, whose map is 75,,’ (S(- K: a,<5\<o)
is in { F"{_

Then Ao _>/=S§d; se J, Jo'. a°<5<b°



T
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N

foi

is the map of a path L, which satisfies the theorem
by (21l.4) and (21.29).
(Q.E.D.)

Henceforth, whenever "the __B%Ehﬁ@,eﬁ%mim@,_bY $o or "the

path corresponding to 'S " is spoken of without further restriction,

)

the "maximal path" of the above theorem is to be understood. The

same condition will also apply to half-paths.

Theorem 21.32 "The set V\/,,is open"
P_rc_>_o_£': 1) Assume W°is not open. That is, assume that fthere exist
one or more elements y, of V\/ow_ith the property that in
every sphere 5. with center ), and radius J>o there
exists at least one point )/, not an element of YVo.
2) Given any y, e \Wo , there is determined a half-path Fi
through 'P,, and P. with metric map

g0 y=sE', seW £=goy 18l=4

K;: 0 S<&,
*
and )/l = S. ?l, S,:’ I‘Y|">04

3) Three possibilities now exist on F, :
(A) There exist a finite number of elements of type)/.
on i =
(B) There exists an infinite number of elements of type
)/. on F, of which one (call it Yo ) has a norm

” )/1- < Yill for all other elements of type Y, on Fu.



8) Then " Sog\*— So?"’ “ = " So i.*— (-So + USO) f"‘" ué° 51 “ é

(C) There exist an infinite number of elements of
type )/. on F, , but none of least norm.
Consider cases (4) and (B) where Y, is the element of
type Y, of least norm on FF, . Then since Ya= Sa {.f eYo,
and Y, is open there exists a <§; >0 (cs,_ < S,.)
such that

hy,-yl<d, 2 yé€Ye.

|
Let Yo = 5o fr where Se= Si- —B—SL

Now, there exists a Jo (O(J 35 ) such that
||y°—j Il < CSo < '}3'5,_ & 5 ye\No

(for if such éo did not exist, then ), would be of

type y, and Uyo < Il Yall contrary to 4).

Let §' be any element of P such that

o ME-T e S

i) N30 <4,
Se ¢

is.$ n§ﬂ

(These conditions are compatible since t) :D: |-

= £
Let S=S°+ur5o and l<4
I se 5 - *n_uué s*us%—

or ”So?l (’M“*q)& S



oy
o AN

&

- =" 3 3 3
and hence by step 6), >/‘=$ $ € WO, 50"",‘J°<s<g°+ 4J°'

0) ye Yo :C. ll}/,_-y"ﬂf«. step 4)
., "y,_—")/o—i-)/o"')—/—\-j—-)’"(c;:_
=y u)/z—yonﬂlyo—jn+uy‘~)/\|<§z
e Mg -yl by = fllYa-Yol + My. =5 13
o, II)’T—-)/H (5,_ ~ {%Jm +(lul—rz',)gc51}
Ly =yl <£¢ 8.

11) Now by steps 7) and 9) we can define the half-path F

whose map is

¢ )/‘-"-\/f* where\/é-K and K o¢v<Es,

o

12) But by step 10) we know that the real interval K can

be increased to at least g V< S + % (S’_ which

can be written as

K: o¢vise+38.-34 =5+ 24,

by the definitions of § and Jo .
13) By our assumption of step 1) we can always choose a

Y3 € W satisfying the conditions:
t
1) Y=%%, si>o  lgh=4

ii) ')l‘._>/3“= "S:.i.;r_‘S3 f; " <',‘__6‘§o



14)

" 15)

16)

17)

20

Hence

i) 16,1 =152) = Sa~-53 <T|ggc
and lS:I“lsll

]

(9}
w

|

w
P
N

0

ii) and either O SL-“Ss i.e. $3 \<S

or 0>5.-55 Lo 5i<Sat i de

by steps 5) and 6)
iii) and » S; € k- by step 12),
i) Suppose Sy =Si+ TZde-W, OCWIEFS.,
1) 82§ =8l = Us (5= 37) = (T2 do—W) 5} 1< Se
111) [ Sl S0 = 571 <z So+ |5 S0 =] < ;3—'5 .

iv) Since S.]=s.= S°+3'-5,_ by step §),
* +‘ _g_o_ - _L '__,__ éa
"gu 3’2’ (851— 8(54,-}7851) <-5—§:

v) and .* f; satisfies step 7) and is a 3—*:

By step 11) )/3 is on a half—pa’ch = and hence is an

element of W, contrary to step 1).

Consider now case C of step 3).

i) No Y3 can lie in -So of theorems [21.12], and E21.15]
hence Nl y;3 I > (’o> O.

ii) Let F‘a be as in step 2) and ')/oz P;' §,+ where
Pt‘),: P'o + é].-b ”)/,” where Yy, ranges over all

elements )/, of type y, on Fn,
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iii) Hence, Yo 18 an accumulation point of elements

of type Y, on Fi, end therefore is itself of type s
iv) This denies the assumption of step 3 C) since we

have shown an element of type >/l of least norm

on L., , and case C cannot arise.

(Q.E.D.)

An analogous method of proof is used in the following

B e ——

‘I’Ileorern‘zl;gz "The set Zo = \{, = V\/,, is oper}.f'

Proof: 1) Assume o is not open. That is assume there exists at
least one element &, of Z o such that in every sphere
with 2Z, as center there is a point &Z3 not an element of

ZLo.

2) Every such &, determines a subset 711, of Z. of the form
}b.,' Z=£I*, te T -ﬁ*-"’/?"z','uz'
and T?T bl 04 i—:.-.{.f."e‘z,, for some IG;T
where T is a real interval of one of the forms
1) ¢, ¢tcd,
1) e, &t <d,

111) e, < £ ¢d.
¢t¢d,

~

iv) C,
3) Also every such 2, determines a path whose metric map in

W, is of the form 21.18

3 s )/=sf.*, se J, s a.<s< b,



10)

Suppose C,¢ b, and T, is of form ii) or iv), then

A )/:gf:, seld, Js a<sed,
satisfies definition (21.4) and is the metric map of a
path _':. of Oo and hence

Z, =1z, f.+ is in » contrary to stép 1).
Similarly if C,< b, and 7V, is of form 1) or iii)
This shows thet b,¥)" is not in W, or Z, and hence
is in B = \(o.
Therefore, as in the brevious proof, there exists an
element 2, of type 2, on \.)). and with least nomrm,
bz >bvo
If T, is of form ii) or iv), || 2.\ >¢,; and T
cannot be of form iii) or iv), for otherwise every sphere
about ole,+ would contein points of either B‘Yb (which
is impossible since \(, is open) or points of Wo of form
h 'S’\* which would imply qJ Cc )\C Wb contrary to hypothesis.

Hence there exists € > © such that if we take T,_ as

O<NZ Ul —€ <t < 2. 01+¢

teT. o ==t3'e’..
Let (2,50 satisfy i) IIZ,..\\(ON& , 11) P&
i11) Za-PI<Paror y e Yo (- Y,is open).
Let 24wty §, where tq=llzkll{|--};(3,_}
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whence W24\ ¢ N2l and Z4 is not of type &,

and we can take r:h, > O such that

W2oyicpag £ 2 yeZo (o yzwe)

11) Now, by step 1), there exists some Zg, such that
l‘ -—
“21_—23"< % and Z4 € Zo (or z;e\'\/o)

12) Let A3 be the metric map of the path L3¢ O, defined by

R and Po
+ + \
23. = " 23" §3 ) .SJ = ‘—“‘53"23,
13) From step ll), HZ30 < Iz, 00+ %5-7 NZs3ll= 0z, 0 +8 _2_3:;) (l6|<l)
whence

EN N M ARSA N o RS VEN S A EN Y ARY= LY o

S EUG AR A BT R e PO TN NS ERTR A P

giving NZ. -1 S’,t_ f: “ < P‘l/lf .
14) Let ¥ = ENE (3_:."51”}]’;") then

I 2a = Y= (N2t~ G0Z)S = (Nzeli- Eaza) 3 0
ChzamZel + 8 gzl =50

@4 2
g L2



15) From its definition, Yy € Ay  end Beuse Y € Wo
contradicting step 10).
(Q.E.D.)

Theorrem 21 .34 ':B - Wo has no isolated points.™

Proof: 1) Assume Z ¢ (B‘WO) is isolated. That is assume

there exists P > © such that
hz-yl<p o0 ye W J+E
2) ‘Ihen)'.—.-(lq-.f)z is in W, , and hence is the

end-point of a ray thru O containing Z.

3) This implies Z € W contradicting step 1).

In the study of the properties of the set Op we make some
rather obvious generalizations of familiar concepts in finite dimen-
sional geometry. These will be useful in further study of the above

sets, and the geometry of the local space of paths O, about P., .

Definition 21.35 Pencil of path - The totality of paths in Oo corres-

ponding in the N.c.s.yz)'(P) to elements of B of the form

)"*_._., v, f,? 4+ g: , ( Py v >o) where f.+ and f: are
fixed linearly independent non-zero elements of B and Y. and ¥, are
real parameters, will be called the pencil of paths determined by the
paths L. and l_.L through P, corresponding to j.i and T: , ‘
L'

Clearly all pairs (¥, ,¥a) having the same ratio Vo= -



s

t ¥ -
or Vo= —';i determine the same path L o in the pencil, and L. o

will have the mappings

Rot y=r (P 4w ¥l)  Fedo Jotacreh o

(2.4:) 7 ’ 4
Nt y=r(ri s+ 1) vell Jlolrel vedo

(A . ) ff"'ko S‘i—* 1
e N{F 4 Fo 211

(2.5)4 . pa _
Yo' fn t .rt. v éJ,
v’ §7+ £ °

We shall speak of L, as being "between" L, and L,if e, %' >0,

)
qu ° Y=

The maps of such paths are more conveniently written in the form:

[ A e
')\o : )”-‘S(u, f'*"' (r—Ue) f:) SéJo Tor Tixed We,Wd
(2’6)i - oo, ub ¢ 1
i + ’
Aot y=s(a-ue) T+ ug gl seds
\

Definition 21.36 Path surface - The two dimensional subset Z of
elements of Oo mapping in the form )’ (", \’o) of (2.4) {metric path
. /
surface if j (V, Yo) is of form (2.5)} for W €& J(v‘,\ , J (vd)
- T
{PGJ(\Q.), ,_J(vo'j} and — @O < Yo, ¥d < 0O,

Definition 21.37 Included path surface - A portion of path surface S

A M,
mapping in the form Y (S, o) of (2.6) where S€ J (wo), J'(ud)

where O ¢ Wo, U0 & |.



o

EI‘heorem 21.38 "A path surface (and an included path surface) is
defined uniquely through any given Pa by :

i) Two non-zero elements .T. s jz, € B not linearly dependent

ii~) Two non-equivalent paths, of given mapping, in Oo.

iii) Any path L, , of given mapping, in Oo and a point P:. eOo

not on L. .

iv) Any two points P., R € Oo not lying on the same path through P 5

Proof follows at once from our definitions.

_Theorem Rl.39 "Given an N.c.s. associated with R and any element
y, of Wo there exists a 5 >0 such that for any )’,,.)
“ )/, —)/,_ || P4 S ; there exists a path L lying in the path surface
2 and containing the points P. = p(y.) end Fi=P (_Y:.)
Proof: 1) Since V\/, is open [21.32] there exists S. 2> 0O such
that Ily.-]ll<§. 12! yeWe Let 3-=5,
then ¥, € WWe.
2] EF Yi and )l‘_ are linearly dependent, then there exists
a path through P° containing P. )'P.‘_ and the theorem is
proved, so let )/' 5 }/2_ be linearly independent, and
hence ‘P. )P-L not on the same path through P -
5) Let the path surface ) determined [21.36] map in the
form  S; )/( s,u) =8 ((l—u)y, —+ U_)/;)

SéJLu) - U oo,
/’
4) Denote by 1 the subset of S of form

o



')\': )/(u.)=(\-u)y' + U Ya, we K
K:
5 0
y, ~ Yl - ‘) 0¢ ©<\) (6 fixed)

5) “y.—)/(u)"=\1_\,\.“%_)/1[](5 for 211 u€K.
6) Define ¥=5 (P)=y(P) ~y,. Yow, ¥ (P)is defined for

- UV €

where € = e(

all P in [VL and its set of values Yo is an open set

in B . Hence y (P) is a coordinate system (21.1).
7) InY(P), - _P-(_'A—') has the map

x: )’/‘:L&(y.-yt):u? ue K

where K is an open inderval of -R with zero as an

inner point - hence L’ is the path required (21.4).

(QoEoDo !

Cgrol;l.ary 21.40 "The map in O° of the sphere of radius 5.70

about y. as center in N.c.s.)/:)l(P) lies in the domain of paths O

associated with the point P. = P (y.) for any )/, of V\/o 2

Theorem 21.41 "If P. and -P.,_ are any two points of a path surface

Z. in O, mapping in the form
S _y(s,u)::s((l—u))/, +uy,.)

such that Y (u)= (1-Uw)y, + Uy is in S for all U of
the included path surface, then there exists a path L containing P|
and ’- 0"

Proof: 1) Since W, is open, there exists




$, >0 such that \\y,-yll(é. 1Dy € VV,; and
5;)0 such that l\y,,-y“(&;::: yéWo,
Let & = Min (8“5;),

2) The remainder of the proof is the same as for [21.591

(Q.E.D.)

Theorem 21.42  "If -P. is in Oo , then Po is in O..“

Proof: Steps 6) and 7) of the proof of [21.39] establish this theorem.




§2.2 Allowable Coordinate Systems.

Up to this point, only a very restricted subset of the
general class S). of coordinate systems has been studied. Ve now
introduce a wider class of coordinate and make use of these to study
the differential properties of the local geometry of paths. In the
present section the spacé arrived at will necessarily be "locally
flat?,

Again a diagrematic representation is introduced to present
more vividly the possible relations of the sets and domains discussed.
(Fig. 2\. It should be born in mind, however, that these two-
dimensional schemata may be misleading if teken too literally, though
they serve well enough for the limited number of sets considered here.
We call attention to the fact that when dealing with infinite dimen-
sionel or dimensionless spaces, the boundaries and intersections of
boundaries of sets (assuming sets which have boundaries!) will in
general themselves be infinite dimensional or dimensionless sets.

All notation used in figure 1 will be used with the same mean-

—

ing here except So and So- All other notation not made clear in

the following definition and theorem will be explained later.

Definition 22.1  L-coordinate system (L.c.s.) Any coordimte system
of £) of the form X (P)=*()' (P) ona neighborhood 5., of Po , where
50 C Mo, and whose values form the open set Xo of B . Further-

more, the function X = X (y) by means of which X (P) is defined

29
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above satisfies the following conditions:
(n)

n2 1n/ on Zo,

(m)

) )/(;() m " "t noon " C my2 in X on )(b,
and satisfies the condition x(y(x)):x for all X & Xo
and)/()(()/'))::\/ for all yé Zo,

iii) )((c) = X ()/(P.)) = P, a predetermined fixed element

of XO-

It is well to note that every L.c.s. involves the three elements

i) X()’) is single valued and of class (

of determination: an I\T.c.s.)/ =)/(P), a preassigned element [O of B,
end a funetion X ()l) satisfying ‘certain rather stringent conditions.
Note that a particular X()/), satisfying i), ii) and iii) above, yields
an L.c.s. from any given N.c.s. whose coordinate open set contains Zo .
However, if Z,, is not contained in \/o , We have no assurance that

the resulting mapping will be an L.c.s.

Theorem 22.2  "Let x(P) be an L.c.s., and let 5_\ (P) be another L.c.s.

j Z , and x«. Let 5 be the intersection Ljvf.\ So,

and Z 5 Z:, . Xe and Xa its maps in D Let the homeomorphisms

)/j ,) ()/) [21.24] be of class C(hlj C(“‘)Where A= min (A, m)

n= min (N, v”F\), Then there exist transformations X (X) and

satlsi‘ymg (22 l) with respect to another N.c.s. )/ (P) ‘and the domains

‘ / 1
X(%) taking Xb and XQ into each other, of class C and

) . /
C ') respectively, and such that X (f(x)) =X for all X & Xb
) s
end X (x(X)=X forall X € X



Proof: - 1) y:)/(P) maps Sol on the set Zo/C Zo C Y";
P= P()/) i Zo/ on * " S; ,. and similarly for
J=y(P), P=P ().

2) An argument analogous to that used in the proof of

=
theorem [21.25] will show Z-_ol, /_, are oven sets.

/
{S is not necessarily a neighborhood, however.&

3) Then the homeomorphism y.l‘(y ), g y=Yy ()’) [1.24]

/
maps the open sets Zo 9 Zo on each other.
(w)

4) By hypothesis and by (28.1) x ()7) is of class C )

}7 ()/) of class C(;r), y(x) of class C(M).

Hence X = X (5; ()/ (x )3) = X (X) exists and

h)( N'= min (A, ""‘))/2, as before)

is of class C<
5) Likewise X = X ()’ ()7 (X ))) =X ()?) exists and is
)
of class C<h (ny2),

6) Clearly x = x (y (§ (X (F(y xNM)=X(X ()

and x(y(y(x(y()/(x)))\)) X (x (X))
for every X € Xo end X € Xo as required.
(Q.E.D.)

Definition 22.3 Contravariant vector associated with P‘._ - A geometric

object having components ?, § in every pair of L.c.s. X (P) and
S(' (P) satisfying (22.1) and the hypotheses of [22.ZJ {or ‘coordinate
systems satisfying all these conditions but n,vm .F\ n\;;\ Z 2} this

thas Aoz 1] T & 5
being  replaced by n,m, ", 2314 and v € Y. And further,



such that these components satisfy the linear relations,

(2.7) f':_-;(,(,;i) }:x(k‘.;_f)

where x,= X (P.) X=X (P),

Definition 28.4 Contravariant Vector field - A set of contravarient

vectors (c.v.) such that one ¢.v. of the set is associated with each
point ? of the set considered.

We now establish the existence of a "connection" in the space
of paths associated with 'P., and use this to express the local differ-
ential properties of this space.

Definition 22.5 Linear connection - A geometric object with the

component

+eo Yy
(2.8) [—'(x,f.,?z.)—f—)‘()'; ')f"):“:’li'.‘f.*’dy)

in the L.c.s. x('P) dependent on the N.c.s. >/ (P), The increments
+ o9
fn - ?a. are assumed arbitrary and free to take any value in B and

are related to the arguments f, ) ?,_ by
(2.9) fi'—' X()’; ?:) ?:: 7’("’?;) tely2.

It is clear that if both relations (2.9) are to be satisfied
*-
simultaneously for arbitrary §L , then these relations are solvable

linear in the sense that

fa:x(y;y(x;?c)) ?'f:) (x;x()/;ff)) (=),2.



o

+ +
Hence it follows that the set of values f; =X ()/, 74 ), T. € B
is a closed linear manifold in EJ and is either B 1tself or a

sub-Banach space of .

Theorem 22.6  "The linear connection (2.8) is symmetric and bilinear

in its two arguments 3\ ,Y:..“

Proof: Since, from [22.1], the second Frechet differential exists and
is continuous in )/ for )/ € Yc the theorem follows from
the definition of Fréchet differential and a well known theorem
on the symmetry of the second Fréchet differential - {Kerner
1933-1§,

The theory of normal coordinates as developed in Vichal-Hyers
Il958-];} leads to a case in which the homeomorﬁhism 9 (]) is linear.
The assumptions made in the present study are not sufficient to assure
this, nor even to assure the differentiability of 5’- ()’)-

Suppose two L.c.s. X(P) anda ¥ (P) (22.1) heve been defined
and Yy (y) satisfies the hypothesis of [22.2] so that X(X), x(X)
are of class C(h'). Let ;(?) be a third N.c.s. such that 5/ (y)
\/(5/) is not linear or differentiable (see example II §2.4=) v
Hence we have a function X (5'/) =X ()I(j;/)) ; not necessarily of
class Ch;) which defines the same L.c.s. X (P) as before but from an
N.c.s. j(p) However, this does no' violence to definition (22.1),
for nothing was said there about unigueness of defining i‘unctioﬁ

nor about differentiability of all such possible defining functions.

*‘



Under these conditions then, we would have no assurance that a given
c.v. with components in X, X, )/,5/ etc. would have any component
defined in 5/'- From these concepts we are able to distinguish two

further subclasses of the general class O of coordinate systems.

e () )
Dg_fqﬁ.nl‘tlon 287 N.e.s. - Given any N.c.s. )/ (P) then all

other N.e.s. j(P) whose homeomorphisms )/()7),)7 ()/) are of class
(w) )
Cwitl vo setd tobe  C Nicess with respect toy(p) , or Y (P)

_ ()
and y (P) will be said to be a pair of C TN.c.s.

Definition 28.8 Irretional L.c.s. (I.L.c.s.) - Any Le.s. x (P)

satisfying (22.1) and the further condition that §.= x (0;§')=

(%)szc = ¢ for a1 TTeD.

A pair of L.c.s. satisfying both these conditions with respect

(w)

to their defining N.c.s. will be termed a pair of I.C "L .c.s,
‘C[‘hreon:cf,m 2233 "The linear connection (2.8) undergoes a transformation
of the form

(2.10) (%, 6,8.) = X (x5 T(x,5,5.) =% (x; §3 %)

Xlxy M(x,%,,%) +x(x; ?.;-i))

1

under the transformation X = X(x) of L.c.s. on Ve to V.. "

Proof: - 1) TFor Xe Ve we may write x()/)= x (s €%)



3) Tow we know from [22.3) that X (x)= X (§ (y(x)),
SO

5= %—i= X (F (y(x0); ¥ {y(x); yex; $))).
b

4) But,using the notation of Michal and Elconin {1037-21,
— S 8'.— —
X(x;5)=edgXx(a)=A7% (Y {yl(aN)=

= X (F(y(x);dE 5 () =% (Flyx); ¥ (%58,

= = < ; Lot —r= = /.ot
5) Hence § =X (x ;§)=x (X()/). x()/’? ))._—_-.x ()/(y)7>,()/’ 7))
where the last equality must be an identity for )/e Wo' Za
6) Note now that 57 is not a function of Y for any
Yy ¢+
path - hence aLg: _{, o So differentiate the

identity just obtained and get
XY Y580y (s) + 0=
=X (XCYLRCY ;8% (550 + X (x Ly) 5 X (Y5 $.357)),

7) Which gives the first form of (2.10) on substituting
from (2.8), (2.9) §;+z5/(>/3§") obtained as in
steps 4) and 5).
8) The second form of (2.10) follows from a basic identity
proved by Michal {1937-1, (.E.D.)
One should notice that the usual restriction that f, 5 52 of

(2.10) should be components of contravariant vectors is not made here



as this property is established in the course of the proof from the

property (2.2) of (22.5).
We shall need several properties of the second partial deriva-
R

tive % in our further study of the linear comnnection, and these
)

we now establish.

L
. 9%y, ] . .9
Theorem 22.10  "The function 3:1 = X (3)’()()5;), )’(x,%‘), )’(X) Eé'())
ox
2s

is homogeneous of degree two in

n’.
Proof: - 1) Let X=X (5 ? ) -undergo an affine transformation S =at +\3

(a,b fixed and real) of the paremeter S.

x=x((at+b)§') = F(ats+ b,

2)
dx _ dt ax _ Footy _ L e
f:as_ds = _x(;f,i)-ax((a’c+\o)?,a§')
=0 aF; - +
3) g_.éaﬂ_é F, (at+b,57).
£ _dt d§ _
4) Similarly aaS =a(s 335 :Z." Ftt (at+ b, §+).

: ) +
5) Now replace f by A§ in 3) and get f = = Pf (a{:-&b,? )
and note that this replacement, with a,a.‘f' +b, L4
invariant, has the same effect on 3) as the replacement
*-
of a by a X, with §atyb, §7 imvarient, for ail

’>\, not zero.

6) Hence in 4) by the replacement @ —-ya,'l we get

av.x _ | .t + b) +
25  (aA) Fae (4 3)




= )\"_&__= Fet (a’c+b§')

|
o5+ o~

7) But, by the equivalence established in 5), this implies
1 ' v+
[DF(S,O‘)} Y D F(s,0)
os* =23t st o=5".

(Q.E.D.)

Theorem 22.11 "The function = (x, S, ?U ?’- ) =
X($)’(x ;%) ;‘y(x,'f,,) 5 )/ (x ) f:,)) is a homogeneous polynomial

of degree zero in ?’. and is a homogeneous polynomial of degree two

in §,. |
Proof: - 1) A %_:’i = X (Sy(x;)”Sy(x;r\i))‘y(x;li))by [22.10]

) %S-’S = X (Sj(x;)\?)jy(x; ?)J‘/v(x;ﬂ) by linearity

r‘

= x(sj(x;f))')/(x;f),‘](&(;?)).

3) Hence F is a homogeneous function of ?, of degree zero.
4) DNow in all previous considerations of )/.—:. S f* we have
excluded 3”:—- O, and ?¢+=)/(X5 $) is zero at Ti=O
so we must permit this value to have l': (x, S, ?., fn_)
defined and continuous at §‘ =

5) So, given 6)0, there exists £>O such that

IN$:1<S o5 IIF(x, 5,0, $.) =F (x,5,X7s, 52 )ll=
=“F(X,S,O,§’a.) — F(X,S, ?3,5'\-),\(6‘_
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6) But for any §3 é B there exists a A > o such that

",\23" <g hence
F-(X)S/ O, fb):‘_ F(X)ga'?’)i’-) for all ?368)

- that is F(X,S,T., ;x.) is independent of ?n
7) Then I':(X, 5y Y2 +1§3, §-'-)—'= F(XJS' ?')5’-)
which is of degree zero in f: . This satisfies the
definition for a polynomial in 3; of degree zero
{uartin 1932-1}
8) Since F is twice linear in f,,j _ the rest of the

theorem follows. (R.E.D.)

w [ F( ¢ 2x)_ 2%
gheorem 22.12 l (xJ ?'1 f,_) becomes K) SJ »2s /7 2gx
in the case ?. = ?._:- g—ﬁ » If the closed linear manifold of values
S
of 5’5/.3; is B itself, then r(*; 5".‘; f;) is the unique polar of
i
B‘X/BS\ considered as a homogeneous polynomial of degree two in ‘3"/25.

Proof by a direct application of theorem 13.64 in lMartin 51952-1} and

[22.11].

Theorem 22.13  "The equations X=X (s) obtained by fixing the value
T+ + .
of f in A= x(sf ) are solutions of the second order differential

equation -

L — cL)( o x
(2.11) d x 4 | (X,ZEJ;(—')=O,
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@eprem 22‘14 "The N.c.S. component )/, { 3?2 ) of the affine

1]
connection vanishes for every)/ & We.

Proof I: - 1) From definition (22.5) equation (2.8) we have
Yy
+ o
*r()/, ,*) gm. ) = = A groe )’(Cf’) where we are to

interpret](.)’) as )/(x()/)) =Y/, the identity
transformation of \/\/b into Wa.

‘.
2) Hence, since the arbitrary increment Y. is independent

of ¥, +r‘()’. ?I+J§"+)= "Ol;{# fnT:‘o‘

Proof II: - By theorem [22.8] equation (2.10)
+r1()/, ?‘:+) ?Lr )z: )/ (X '7 I__.(XJ Tﬁ) j‘z,)—l' X ()/; ?,*J ?l*))j

and by equation (2.8) the linear argument on the right

is zero. (Q.E.D.)

Theorem 22.15  "The components r'(x ) f\ 'f,) of linear connection in
any L.c.s. X=X (P) dependent on the N.c.s. y=)/(?) vanish for

W
all X € Vo.
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Proof: - 1) By equation (2.10)

M(x,5,5)=%(y 3 TG, 60,50) +y (x5 658
forall)/(-Wp‘Za, . )
2) NOW/(x’?';?‘)zdf‘\/(xgg')=df17a*

+
where, as before, f, is independent of X , hence
y(;)(:,?.;?u)—‘—‘O for all X & Ve.

3) The theorem then follows from theorem [22.14] and the

linearity of the Fréchet differential. (2.B.D.)

Definition 22.16  The curvature form B (X, f,J ?1_, ?3) based on
ﬁhe linear conneqtiop r‘()(, i',, ?,,);—2 A geometric object whose com-

ponent in the coordinate system X= x (P) is
(2.12) P ()(,?,)fg,?3)= (%, %55, 520 $3) - [ (x yn,fn.?bﬁ“
0 T80, 8), )= T (x, T (x5, 55),50),

The above definition is wvalid for all linear connections which
we may consider which have components in X=X (P) which are of class
at least C “), In the present case it is clear that, since the
components of linear connection in all N.c.s. and L.c.S. are zero
throughout their domains of definition, these components possess succes-
sive differentials which are themselves all zero. This yields at once

the following.

@eorem 22.}?: MTMhe compOnen'bs +B()’, f?) g:) ?;) and B (X, 2,!) gz.,?';)



EA
o2

in N.c.s. v =)/(P‘) and L.c.s. X=X (P), respectively exist and
are zero throughout their range of definition.

Definition 22.18 Locally flat space - A geometric space H satisfy-
ing the following condition. Given any ?é H and any coordinate
systen X=X(P) whose geometric domain M contains P , there exists
a neighborhood of P 3 NP’ contained in M such that QG NP
implies that the component B(X) ?fo., §3 ) of the curvature form

is defined at )(::sz X(Q), and B (CB) ?., f:,, ?3 )s?or all

?;, f;,, g; in the coordinate space

E‘heorem 22;:3;_93 "The space H is locally flat under the definition
(22.16) of curvature form."
Proof: -~ If we take Np to be M the conditions of (22.18) are sat-
isfied, since we have shown that although X (Y) was only assumed of

(V\) 7
class C N) 2, the second Fréchet differential is zero, and
hence all higher differentials are defined and zero - hence B (X, iv») ?z.,?s)

is defined and zero is required. (Q+E.D.)

§2.3 A More General Case

A theory of the space of paths which is more inclusive in its
scope will be comnsidered now. A weakening of some of our hypotheses
leads to a somewhat more general concept of differential than the
Fréchet concept used up Lo this point. This, in turn, permits defin-

itions of comnection and curvature for cases to which the previous



definitions do not apply. Further, we shall show that the space of
paths meeting our new hypotheses is not necessarily locally flat.

For this purpose, let us adapt for present use certain ideas
concerning sets and dimensions which are already well known.

Definition 23.1 W -dimensional subset Ey\—' Any subset of a

real Banach space B having the three properties: -
i) Eh contains at least N4 elements, (W finite),
ii) corresponding to every set of hn+| elements
fo, f.,f,_,'" 5 fv\ of va there exists a set of N

real numbers a', a‘, e ,a" such that

?o'—"—dg.\ -l'dhru"i’ B A | akg"‘i

iii) there exists in Eu at least one set of Y\ elements

h ) \ -
4 "'7_']" such that 2 b‘rE‘:o > b =Q, J=hz"N-

Jel

[+
Definition 23.2 Open W - dimensional subset E'h— Any MN-dimen-
sional subset E;\ which is open in ite own linear manifold.
. o= O
Definition (23.2) implies that L is an E, such that ir

Xo € Ei then there exists some Cg(Xo))O such that

2 n
il Xo -xl|<g(x°) 5 where X= Z a’ rzj for some set of real

Je

numbers @', - - , o™ and some set of r].)rl,“ " yl,‘ satisfying

(23.1 1i1), implies that X€ E'w.

; L
Definition 23.3 Linear W -dimensional subset E n - Any subset of

a real Banach space B which is an [on and also & linear manifold
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under the operations of the original Banach space.

Definition 23.4 N -dimensional sub-Banach space C,;.,:. - Any subset of

— L
B which is an L i and is also complete.

The following properties are almost evident from the above

definitions and will be stated without formal proof.

L ©
Theorem 23.5 i) ZEvery En 1s automatically an Erv\__.

e

- N —
ii) ZEvery F determines uniquely an E.h which contains L

" ;
iii) Every EV\ contains at least one set of elements Vi,Va,'''y ‘{“

with the three properties:

2 IVl=0Vali=z - = I Vall= L.

P ——

L)
b) Every fe E: can be expressed in the form SEV\ZGJ \{j

Jei -

n %
i ) .
J= I

— L )
Definition 23.6 Basis of an tr\ (En - Any set Vi, Va, <+ ;Vn

satisfying the conditions [25.5 iii)] (for the E IC\ determined by Eh) "

L W
Theorem 23.7  "Every E, is automatically a C_gl,d

I
Proof: 1) If fE E:’ , then v-:ELISE E'}' is a basis of E[,
i) gl
=
and any X & l:, ) can be expressed as X=aVv.
2) Let {a; =a;\/? be a regular (or Cauchy) sequence of
[
elements of E| .
3) Hence, given € Do there exists an ™I(e) such that
hym and P=1,2,"" 1o
“ XV\*P - Xull = “an-rp Vea.VII= \an+p -aGul( €



4) However, since the real number space is complete, there
exists a real number A = L1m Gj by step 3).
J=© "
5) But av ¢ E'," by [23.3], hence £, is complete.

(3.E.D.)

De:rt‘initio,'nﬂgs.e Sets E 2:), open relat:}y}cﬁe_lryht»owr n—rdime;lsiiqx}e}; subggts -

[o]
any subset of & real Banach space B such that if Ev\ is any open
(o) (o)
N -dimensional subset (23.2) contained in E(,,) (and E(“) contains

o o
at least one such Eh ), then there corresponds to every Xo € En a

(o)
number J(xd?o such that JXo—xll <8(x:>) implies Xo€ B (m)-

The parenthetic restriction is inserted to prevent this defin-
ition from being satisfied vacuously. It will be noticed that this
definition imposes no restriction on the dimensionality of E(co.:) other
than the natural restriction of the dimensionality of the containing

Banach space.

€0) —(0\
Theorem 23.9 "Any set E (n) ©of dimensionality d (provided t(\.\

— O (o)
contains at least one tw\) is necessarily a set E Cvnbh alsoo

(o)
and N M<aO bdut is not necessarily a set E—(].’ , 1<n (even

0) o —~ (¢)
though Egn) necessarily contains at least one E 1 ). A set E. s

is an open set in B , and conversely any open set in B is a set
1

(o)
Edm forail N, osn<d.

o o)
Proof: - 1) Let E m Dbe an open M -dimensional subset of L ¢p)

m < oo and n<vn$o( , and X, an arbitrary element

of E.in



2) We need only show now that there exists at least one

o (o)
Eva containing Xe and contained in E—(n.) and the

theorem will follow from our hypothesis and (23.8).
3) Let Xo =J$l OJ\{," and é(Xd))O satisfy (23.2)
for Ef“ .
4) Consider then the set of elements X of the form
n " . ]
x:J_L; (GJ"'AaJ)\/J + éﬂa',vj ; where
[Aa’l < é_gg), j= 12,00

(=] (o)
5) By (23.2) this is a set Ep which is contained in E m

(o)
and hence in E(h) and it contains Xo. (Q.E.D.),

6) We prove the second part of the theorem by an exemple:-
(o)
let E (3) consist of the open unit sphere about the
origin in rectangular cartesian 3-space plus the open
unit circle in the X y -plane with center (3,0,0) .
o
7) In this example the only E 4 are in the sphere, but
o — (0)
there exists an Ez (that part of E (3) in Z2=0)
which does not satisfy our condition. (Q.E.D.),
o
8) Every Eo consists of one element only (vacuously open).
E(o) — O
Conversely, every element of (o) 1s an \:c , and
(o)
hence any E (o) Satisfies our definition as an open
set in D . (Q.E.D.),
(o) (o)

In particular, one may assume that an E(“\ is not an tn-1)

though we shall not meke this restriction consistently.

ENS
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Definition 23.10 Llfidlfferentlal - A function Fn (X ; é") is

the L.F—differential of F, (X) at X=Xo € E ? C E((".g with
respect to E;o if it satisfies the following conditions:-
1) F (x.3 dx) 1s definmed for all OX ¢ ES = C  cor-
responding to E? and has values in E),
#4.) F. (X, 7ch) is homogeneous of degree 4 in Jx on Ci 5

iii) given &) O, there exists c§> © such that 5X I} < 5,

Sxe G ior IR (Xt 8%) = Fi(x, ) = F(xe38x) I ¢ €lldxll

Theorem £5.11 "The L,F -differential of Filx) is adaitive in

g* » continuous in (SX in some neighborhood of zero, and hence is

linear in gx.
Proof: - 1) Let Xo¢€ C: and let Yy Dbe a basis of C' , then
Fo(x1dx) =a F (xe§ V),
2) F.(xo’;élx+<§tx):(a.+az) Fi(x. £ v) =

=a, F (xe3¥) +a,F, (x,iv)= F(x.:8,%) + F(x.3d.x).
5 Fi(x30)=0 aa IF(x.;3x)1=lal IF.(xe3 V.

v €
4) Hence, given € 20 there exists cg’—' "’"".——‘\ >0
IF(x03 V)

such that Ndxfll= lal <& —

- F (ko) = I F, (xo 36X CE

(Q,QE.DQ)

Iheoygg};;_?;?;zlﬁ "A necessary and sufficient condition that )'n (X) be

- 0
L[ -aifrepentiable throughout E (€ E  is thet the derivative of
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o
= (s'i) with respect to § exist throughout E5 , Where X

o W
is an arbitrary element of E

Proof: - Nee. - 1) e fhere exicsts 0(70 such thet

ldxl = hpgl<8'= & o
Il F, (X-i—d*) —F (x)— F.(Xga{x)ge’u-]“)?n:%_“".fg“
S| F ((s4m%) = FGR) = Fi(sxrirx)l ce

. Filcs+n%x) — Fil x) e
=y )] ( ‘T'yr S SX X)“

2) But this is just the conmdition that

L ivn F,((s++)%) = F, (sX) B AF,CS)T)
11190 T Y

exist and equal [ (5557)—() (Q.E.D.) Nec.

3) The steps of this proof may be reversed in order in an

obvious manner to prove sufficiency. (Q.E.D.)

Definition 23.13 Ly F -aifferential - 4 function i (x3dX)

(o)
is the | aF-ditferential or [ (X), N2, at X=Xec¢ELCE tn)

with respect to E 3‘ if it satisfies the following conditions:
1) Fa(x i d x) 1is defined for all ax e E';l correspond-
fo] .
ing to E n and is valued in E).,
ii) F,‘(x., 30[&) is linear in A X on Et\)
iii) given € >0  there exists J>o such that ll(Sx ”<§
and dx € E.: i Yo
IFw (o +dx) = Fa(Xo) = F (Xoidx) [ ¢ 185 1.
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Attention is ealled to the need for assuming linearity in
(23.13 ii), as theorem [25.1ﬂ is not necessarily true in subspaces

of dimensionality greater than one.

Teorem 25,14 "If the Fréchet differential Fn(Xojdx) of Fn (x),
N> 1, exists at X = Xo , then the L.F -differentialswith
— o (s)
respect to any L n containing Xe and contained in = (n) exist
o= o L ]
at X= Xo and are equal to Fn (Xo,dx) for all dern.
Proof: - The theorem is an immediate consequence of the definition

of Fréchet differential and (23.10) and (23.13).

Definition 28.15 Partial L.F-differentiel - The function

Fo (60,2 X 5 8X) nyt s

ditferential of w (X,A,, ", A¢) With respect to X amd E5 at

, 1is the partial L,F-
X.€ Enc E‘(‘.’,,)) if, for any set Ay, c°° ,As it satisfies
conditions i), ii) and iii) of (23.10) and (23.13) for N= | and
N> 2 respectively.

It will be readily seen that by appropriate changes in wording
of the statements and proofs of theorems [23.11], [25.12] and [23.14]
equivalent theorems for partial Lh F-differentials may be obtained.
Definition 25.16 Higher order L. F -aisferentials - 1t the
(M-l)ﬂ‘ |, F—aitrerential F., (x 77\,) o 7)\$§é, X &M X )
of F. ()(77\,, e -,)5) with respect to X and th exists at

X= Xp € EOY\ and itself has a (partial) Lu F-daifferential

FW(X,./\.)-pc,’)\s g&x; ...;Jw\_.x; &) With respect to X



e
<

and the same Et\ at X = Xo € E W , then F:\(x,)\\,'":)\s;guxj"':;Svnx)
will be called the mth L. F -differential of Fw ()(.,) 9 " '))S)
with respect to X and E% at X= Xa.

Note particularly in the above inductive definition that all
successive definitions are to be taken with respect to the same
open. M ~dimenstions] mibemt Eoe conbeinime Mg, I3 De pessibile
that a function mey bée continuous in a restricted sense while not
satisfying the general criterion for continuity. The importance of
the set E_T,\ increases if the function and its differential are
defined at all points of E_?—, .
Definition 25,17 Contimity with respect toan Ew - 4 function

o =
)C(x) is continuous at X, € £, with respect to E if, given

& > O, there exists a é(Xo,é)>O such that éer?«
and Sx W< dCx,€) D

If (xo+8x) - fixall<e

We can reédily see that the associated ideas of uniform con-
tinuity, locally uniform continuity and so forth may also be consid-

e
ered with respect to some particular t n,

Theorem 23,18 "If F_h (x) has an L»\ F—differential with respect

fe) - O e
to X and EV\ at X =Xo€ t'—v\ , then ]"“ (x) is continuous in

o ]
X with respect t0 En at x = Xo -

S

Proof: - 1) l—n(x,,;SX) is linear in éx , hence there exists a



modulus [\/l (Xo) such that

| F (xogéx)il < Mxa) I Sxll

for all ch € E.?n

2) Given € >0, there exists a CS(X.,(-)>O such that

NéX“(é(X%e) and JX € Ez\ = i
I Fn(xo+gx) "'F(’(o)“éé}\5x|\+M(xo)\\5xll

. &
3) Now let g:mm(S(xo,e), —é——m) and H§xll<§,
(R.E.D.)
Corollery 23.19 "If F’»\(x,)/, g i -,)/‘, ) has a partial L, F -

differential with respect to X and l:: at X = Xo € E:.1
then F,‘ (x,y., '“,)ft) is continuous in X with respect to
Ew at X=Xe.

If we restrict the increment in the usual definition of
Gateaux difi‘erentiai to lie in Ec\)a , then the existence of the
L.‘ F— differential implies the existence of this Gateaux differential.
It then becomes merely a matter of rephrasing the proof of theorem

1.1 in Michal {1936-1] to establish the following.

Theorem 23.20 "Let Fv\ (x., )/) be linear in Y and have a first
partial L,\ F -differential , F’(x,/ ; éx) with respect to X

o
and E n - Then the total L»\ F—differential exists and has the

form

Fn()(.,,)/ié)<,3_)’)= Fi (xo,)/;éx) + Fu (x,8y)



o

m

at X=Xs . Furthermore if Fu (X,)/j CSX) is continuous in
X at X = X. with respect to Ee\ , then Fa (X,/V,:chxjj) is
continuous in X as well as in) ; (SX, and A}’ with respect to
— o W

1 »
Qorollary 23.21 b P }/ in theorem [25.20] is a function y:](X)

- o

of x having an L“ F -differential on the same E n » bhen the total

~ O
differential with respect to X and E v exists and has the form

P (x, y ) gx,&y}: = (x7](x)§ (Sx) + F“(X,)/(Xs’o(x);’."

(vn) —
Definition 23.22 Class lhw = A function \‘v\(x,)/.,"',Ys), hyVs 20,

o T (w)
will be said to be of class C L. if its LuF-differentials of
- O
the first ™M orders with respect to X and b\,\ exist and are
— 0 ©

continuous in x (with respect to E n ) for all X in E » and
all "S.x" Cl, Llyt, s, m.

In the present section we shall again use the notation of
figures 1 and 2 with the meanings given in (21.23) except that L.c.s.,
and all notation pertaining to them, will be replaced by the follow-

ing P.L.c.8.

Definition 23.23 P.L. coordinate system (P.L.c.s.) - Any coordinate

ey

e e ammmae =

system X (P)= x (](P),)‘o) defined in terms of an N.c.s. by a function
A=X (y,Xc) satisfying the following conditions:-
i) X (>/, Xo) is defined, single valued and continuous in the

via')

'
ordinary sense for all )/ € Zo , and it is of class C L with



&) |
o

.’-
respect to )/ and any E.o. of the form )/:5? contained in
Zo':‘WO'Za’ (W\Zi)-

ii) Xe 1is a preassigned element of D ana x (0,xe)= X,, hence
Xo€ Xo

iii) There exists a function }(x o Xo) which is defined, single
valued and continuous in the ordinary sense for all X € Xs and

which satisfies the conditions

= X for all K€x°

X (y (%, X0, %)
)/(_X(j,xuv), Xo) = v for all jéZo,
iv) 'y( X,xo ) 1is of class O\:l‘ with respect to X and any
E°c V, for all x e Vb, where V, is the map of Zo,‘—‘ Wea2 o

by x:X()’,“o)'

Theorem 23.24  "Let X(P) and X (P) be P.L.c.s. obtained from N.c.s.
j (P) and. j (P) respectively. Then there exists a pair of mutually
inverse transformations X (X) and X(x) which constitute a homeo-
morphism between )(o, and X.’ .

Proof: - 1) By [21.24) there exists a homeomorphism J(j},}- ()
ana T,

2) By the transitivity of homeomorphisms and (21.1)

4

between Zo

x (%)= x (7 &) X(x) =X (5 (y(x))
exist and satisfy the theorem. (Q.E.D.)

Theorem 23.25 "If X(P) and X (P) are two P.L.c.s. defined in



Cry
S

~ (n’ =
terms of a pair _)’(P)’J (P) of C :‘) N.C.S. N, 2 then the
- (v) ;
homeomorphism X(X ) , X (x) is of class C Bt vy2.

Proof of this theorem exactly parallels that of [22.2] with the same

range of validity.

Definition 23.26 ILyc.v. associated with P - Let x (%) and X (x)
/

satisfy @;5.24.:) and T)' é S., . 'Then the geometric object whose

—-— )
components ?,f in all such ., P.L.c.8. are related by

(23)  §=% (x(P);x(y(P), xo;§%) = X(x}3)

. x (R(P)X (5 (P), %355

1]
X
..
heS|
©“)
Ne

will be termed an L,c.v. associated with P..
From this definition it follows that this Lyc.v. has components

v)
g“', ¢ in the &L, N.c.s., which satisfy
. + 5 + -, =
(2.14) $'= y (X,579) 5 ’]()/'55+)-

Definition 23.27 P -Linear Connection - A/ geometric object whose

components in P.L.c.s. xX(P) is
(2'15) ,_—'P (K)g‘)§;)=‘ X(y) )(os ?l+; gb*)
— x(SJ (x, Xo } ?);y(x,xo;s,?)’:/(x,xo;sxi))

P = i
where f‘ T,t 5’1. are in the same E‘,’ (1) with respect to which

(w)
* The definition of L., W.c.s. is analogous to (22.7).
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the L.F.-differentials were taken.
Theorem 23.28  "The P—linear connection r‘p (X, ?‘\) g; ) exists

s m—— S - “ = i oz
and is symmetric and bilinear in gn, 2.
Theorem 23,29 "If a linear connection r(x, g:, ?z.) (22.5)
exists, then the -P—linear connection exists and the two are equal
over their common range of definition."
Proof of these two theorems involves only a direct application of
definitions (22.14) (23.10) (23.16) (23.23) and theorems [25.11]
[23.14].
'I'tzeqrem 23.5()_‘4 "The P-—linear connection undergoes the transformation

(2.16) _r:p (;,?iji-)? X (’(; Fp (’(,;5?1)) — 2(’(;?05?1-)

o

/

on anvr Eo (,H to Eo (}1) contained in )(,,, and Xo respectively
)
of the pair X(P),% (P) of (:,L.c.s. ny2, and § of (2.15)

Ul
is an L.c.v. at all poin’cs of Oo.

Proof: - 1) By our hypothesis

5‘-: (X(y,xo) X.(y;x" ?)} ‘)/E' Wa'
§ -

X (7(y);5 (57,
2) ZEquating these yields an identity in )/ which by [23.21 ]

may be differentiated with respect to )/ and E‘:to give



X (X (y, xe) % (Y, %ot f',“)j;( (y, %X} 34))+
% (x(y,%e)} X (Y, Ko £35S =
=X(F(y); 5y (55T UiR))r XG5y Gs8ny50).
5) Now mote that 3i is a fixed element of [=,"
" determined by =5 (A), hence

Ay =ss." se J

L4
p—

X: g =583 seJ,

© where ~f=)7 ()’5 § *) is independent of S.
4) Hence)’()l)fn ?';,) o(f. with respect to )/ and
E? ( N\ ) is zero.

5) % The last term on the right is zero by the linearity

[23.11] of the L,F.-differential, and we obtain (2.16)

directly upon substitution from (2.15) (Q.E.D.)
(w) P
Corollary 23.31 - "The L, N.c.s. component of,linear connection

satisfies

(2.17) r'p()/)’.,)/») SS‘+FP()/7)’)

for all S') S.J S. such that )/))/')YL c E?C Wo.“

(n)
Corollary 23.32 "The - C_ L N.c.s. component of the curvature form

based on the P-linear connection (22.13) satisfies

"Boly, Yy o) = EHE B Y y) =



"
for all §5,8S,,3.,S5; such that DADITPLIRE ¢ E? < Wo.

e now find, however, that ouwr definition (22.18) of a
locally flat space is not in general satisfied under our hypotheses.
This is seen from the fact that the curvature form (22.16) is not
necessarily defined throughout any neighborhood of a given point in
H. This result, moreover, is still in perfect harmony with [25.51]
and f25.32] as we shall show in§ 5.3 that the normal coordinate
component of linear connection a’nd hence the curvature form based on
it vanish for values of the increments in the same linear set as Yy

(i.e. Oon the same path).

§ 2.4. Examples and Illustrations

The first of the two following examples relates the present
theory to the well known theory developed in spaces of finite dimen-
sionality. The second exhibits a case in a dimensionless space of the
modified differential of (23.10).

Example I. Consider the case in which ,B is the WM -dimensional

arithmetic space. Here under (21.4) equation (2.1) is expressed as
P § |'. J .
(2.18) A y‘_—s? S € Csi,2,-0,M

i
e -
where ?: (f),fv') e '-,?) is fixed and Z_ (5‘) # ¢© 1in the normal

L

coordinate system)‘=)"(P) and as

€



where egain & = ( f" ?7‘7..-J f—;") is fixed and LZ_I (5 ) #+ 0o
in the)/-';(P) N.c.s.

In previous treatments of this case the assumption has been
mede that §= s , throughout their common range j = J . We shall
here only insist that 5 () , and S(5) shall be (1 - 1) contin-

uous, and mutually inverse over their ranges of definition. Hence

we obtain
) _;_ 7 —py-d -‘-1—1 = &s Ay J
(2.720) ;(‘:: =5 dyi o AS L3 ;‘)Z, 3
which reduces to the usual form if we let Se3 . Iultiply both

sides by S and we have

B AF' i = ot

(2.21) )f~=s§ == 3—;—;(53 f"“i)’d

where & = = é—.—. é’.y which may or may not be a function
J S d§ A]J

of 8. In case it is not (as for S = S ) then the transformation
of normal coordinates is linear, and the § are components of‘a
contravariant vector.

Let us point out that it is perfectly possible to impose the
condition that a certain finite set of points (or even an infinite
set) on every path shall have equal valugs of the parameters S and
; in the two N.c.s., without thereby necessarily making s=S for

all points of the paths. In particular consider



o P
(4) S=5° s=VTs, s\ €A HEES
s st 74 HEEW

Fi(P)= {s (P (P). (ena §=%)

(B) S=Vz2 sin FTS S= ﬁ,—r-(principal value) aresin \_lf:i)
|s) ¢4 15164,
E.5 Is\y 4 1174

)74 (P) r":("’;)‘( )j (P). (:ma§=7)

It can be shown without difficulty 'that in each case the mapping
)7 (P) has the same geometric domain as )/ (P) and is continuous
and solvable with continuous inverse, and that every path L_ € MO
‘will have a map X of form 5’;' = 'S'-f'~ in ¥ (P) Hence, from
our definitions, ) T e———t, e o
transformations 5/'( >/ ) ,)l (7) are not everywhere differentiable,
end hence the 5 is not a component of a c¢.v. throughout Oo. It
is also possible to construct a similar exemple in which the first
derivative exists and is continuous but the second does not exist
throughout Oo.

On the other hand, if we do assume that_j?Qy) is linear, the
above development leads to precisely the usual definitions and laws
of transformation for the components of linear connection and curva-

ture form {e.g. Veblen 192’7—1}_
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Example ITI  Here we take the coordinate space to be & general
Banach space and consider the properties of certain functions. As
these depend on the norm (which is not Fréchet differentiable),

the uniform continuity of the norm is first established. Ultimately,

a function yielding a P.L.c.s. but not an L.c.s. is studied.

Theorem 24.1 "Tne. funetion ¥ (y) = ll)/l\ on P to the real num-

bers is uniformly continuous on B.“
Proof: 1) nyas\-a—ngyu > n/v°+éy\\,
2) Nyoh—néyn £ \\)4,-1-5)/!\.

3) Given € > o there exists é(é—).—:(—)o such that

1 1 Nyer Sy0 Zlyoll, Wyl @2
)u)/.,+c§y I =0 yell] = 1 ye + 9y - ol ¢ Hoylice g 1),
1) if I|y°+c8}l\g\\)/,|!, Hc@ylkéce) A
Yo +8y1 = Dyl

4) Hence, given € SO there exists cS)o independent of
70,

= Wyl = Uyt yl Chdylice svep 2.

)/ such that
IIA)IRS P o l\r(]+3/) —v(ylce.  (qED)

Theorem 24.2 "The funetion X =f()() = \lj “l/ on B to B
is solvable and has the inverse )/ :—g (X )= ll;dlx‘ X %8 (o) = o}
and the two functions have L.F: differentials with respect to all

<]
E( not containing the zero element of E) , Wwhich are continuous

throughout their range of definition. The two differentials are



C1

*
dx = SII_yHLJ)/ and G(.}l = _J—‘:/T d x and are solvable

fEx \

linear (i.e. they are mutually inverse) in o x and d)/ :

Proof: - 1)

First we show g’(x) is continuous at x =0 . Given

€ >o, there exists a cg(e)-_- €350 such that

15xI<éce) o2 18 (0 +8x) - glo)l=
_lgdoll =15x1% ¢ e -

To show solvability, we have by direct substitution

L
L lixll )
DX 77 )2 X%

*= » I ‘

My YT i v e B
)= iy yu i) lu/vml‘/suynzf"/ for a1l %,y

E} of B will ve of the form y=s$% where § is
fixed and g satisfies (say) ©O<KS<O0. Then %o

show X = || ]uz)/ has the L,F-aifferential
olx = ]ﬂ(yo ;(5)/) = 4 jl)/b ]]ZOS/ with respect to
)/ and E°, at >/=)/o=so§' we have

Hal =1 Cro+8y) = £ Gu) —F (eidy)ll=
=l|s°+§s)"(so+5s) — | 50| S0 *-3ISDILJS‘-II§”3:
= |SE 438285 + 35a(Fs)V (5s) - 52 -35ds |51 =

= [3st 350+ ds | sl = 1Sy Il 3y.+ Syl

ES

Throughout the following proofs, fractional exponents will be
used to denote the positive real roots of positive real numbers.



4) Hence, given € Yo there exists cj: h‘\.\'\(llyo\\

[6)]

b =[RS IR g2

«
; ‘“\ya“)>o
such that NA)/ \l(J implies

Al <4 lSylh iyl <eldyi. (@m0,

The uniform continuity of ]C()J )cg)) in Y follows
from theorem [24:.1] .
¥ \
To show that (x :Jx) = — A is the
Eixe 3 xe 1z X
L. F- differential of g(x) =lxu ™ X with respect to
N o
X ‘and E. of the form X=tﬁ, oct<oo at x= xo='fof,

we have

NAl = B £(xo+8%) ~8(xe) =& (x3dx)l =

- to*;t _ {a /3
}H,o +3tl7 tol% 3!to\”’} L
S IR L L L T
3 Tte

Now by Taylor's theorem it can be shown that

R S & gl

2

where |R] < 2 'gtl<7‘__|tol

(u Xoll € lxol73

Hence, given €»o0, there exists 5:?\’1 " E s )>°

sach what B8l € wpiges

< e éxl,

1%
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9) Again by theorem [24.1], g’(x;éx) is continuous in x at
all points of B except zero. However, we cannot establish
uniform continuity over regions containing zero in their
closure.

10) Lastly, by a direct substitution, it is verified that the two

L.F—differentials are mutually inverse in their increments

)L

\
= Y 0( =
Ax - 3“7 ! N XN " I hyn"y "

d)’ = 5:—;‘7,3 3lynitdy = dy.
(Q.E.D.)3
It will be readily seen that the functions in the above
theorem do not possess higher order L,F_differentials, hence the
following case is of greater importance. The existence of a linear
functional L, not identically zero, in any normed vectorial space

has been established by Banach {’I‘heorem 3, p. 59, 1952-2} and we

shall assume that the function L(x) on .B to R in the following

theorem is such a function.

Theorem 24,5  "Define

(2.22) X =f(y,%e) = Iyl L(y)y+ xe

(2.23) Yy =8 (Ax,xoi) = |l x —xon”{ | L (x —Xo)f% (x=xa)

Then - i) (2.22) and (2.83) are mutually inverse provided we take Xa,



the set of values of (2.22) as the domain of definition of g (%, %a)
and g (Xo,Xe)= O,

(2)
ii) (2.22) and (2.23) are each of class L, on subsets

E ()fss?, se)) end ES (x-t§ 140 tel)

and the L.F.differentials are of the following form

(2.22) f(\,x,,g 5)} = 4"}\\;L L(i/))/ =4\\yhtl_())(5)f
(2.25) f(j,x‘,;&/;&w =12 Iyl (Sy)dvy

L(X-Xn)

_%'ch

(2.28) g(x,x,,}éx)_’q—'-“x,xo“-"z

(zan) & (Xxe3dti o) = -2 oL (xx)

iii) ]C(D,)(o)= PN g ()(,,)40)30.

y e,
iv) g,x,_-dlfy]((% %o ) and é./‘/ =0(£x8(’<;")

)
are mutually inverse linear functions of their increments.’

In the proof we shall take X,=z0 € B which simplifies
the notation and does no-;; lessen the generality.

Proof: - 1) To prove (2.24). Given any E 7 as in ii), Y, € e

and € 20, there exists a

CS‘ = min (Il\/OM,‘—é‘;-llyol}-z)l_()/o))_') >0

64
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swon wnat 1 yN¢d am Sy E? smnies

1 ot 8y) - F ) = F Qusdy) Il =

_=/ln/v°+c5/vu‘L(y°+£y)<ja+éj)w DYoL (s ) o =
AN A=

= [1so ¢ 851 (50 + 85) ~ 1552 — hisal™sa §s ) s IP | Lis)) =

=le sk (55)+ 4 s.(8s7+ (Ss)'-IsIPI L (5] -

SsPlesr +hs.Ss + (sl Isl [LG)| s e f Syl

2)  Remembering that a(j/ is independent of )/ (2.24)
follows from theorem [242] .
—b/

o
3) To prove (2.28), we have for any £, as in ii), X, € 1'_’.,

and € Do , ‘there exists a

nx.ll B7
A-L_\’Y\\Y\( k. 7m Il x |”q“—(><) )>O
where we understand that ’2 is so chosen that, in the
7 Lat gt \-
Teylor's expansion (l+ J't) ‘ é.t", + ('{T) En

|§t1< o 1R <,

implies
Ilg(x.~+£x) -&(x) ~ & (»x.ggx)“ =
= “ n)(\-i*th‘ilL(x.+ gx)rﬁ(xma éx) st ] ><|H"l‘|L(x.)l"‘l'x\ -

\

- 2';‘ Il %% [LCX«)l—ﬂ cg. X N=
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S e SO 4 +8E) = 12474 E, -
Chle b s Lol

where the ambiguous sign is to be chosen so that T 1/>o0
and hence ’it:'l" +t. .

It follows then that I JX I { J,_ implies

Ilg(x.+5x) -€(’<‘) —g()(\;‘Jx”l:

=Iit\*/&/ilﬁ.l-ll¢ﬂ)“l‘ NP
< LS R € €18,
4) To prove (2.2%) - given E y as above and € >0, there
exists
5y = wie (B L L[] L (Bl ) 50

such that ” &_x H < J,_ implies (ambiguous sign as above) -

18 (kv Suxsdin) = & (x:60) = Blxi i 8ix s dx)ll < |
o E TP P VRO ) R e S TR 3 (O
+Z 1 %, u“*{ux)l"é’-L(Jx)J x| =
<1t d ) et 2 2t t)
Jadx -y =517 L)) T ) ¥
Jrtl T ar )i L2 (8) ]-})%cf.xlrl!?fll'%-IL(f)l-
LD S Il | Loxf . He ()< € N



5) A direct substitution will verify iii) and iv) (Q.E.D.)

It is well known that the norm of a Banach variable is not
Fréchet differentiable, hence, though the functions (2.22) and (2.23)
will permit the definition of a P.L.c.s. frqm a given N.c.s., they
will not define an L.c.s.

Several other functions similar to the above have been
studied in this connection with the following results which will be

presented without proof.

Iheorem 24.4 A x:f(/ ) = “/ “ L(y has a first L.F—differen—
a1 £ (ysdy)azuynllly)y =301k dy
with respect to y and E? but has no inverse."

Theorem 24.5 _"The general problem of finding real eprnents o« and

(3 such that X = H)/"“L(y))/ ]=]]x1|F(L(x)t'x
will be mutually inverse has no solution.“

Theorem 24,6 X=f(y) = llyl |y hes a fivet L,F.aifferential
f() J] zuyny and. an inverse)/zg(x)_— -.l lell-ix also
with first L.F-differential g(x Jx . < W XH"?"JX N

Theorem 24.7 e \\yl\ as a real valued function,is not

L, F - aifferentiable, "

G'7
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ADDITIONAL RESULTS

§ 3,1 Abstract Normal Coordinates

The first of the following two theorems relating to the
paper on abstract normal coordinates by Michal and Hyers {1958-1}
extends the corollary on p. 166 (see also theorem 17.2 {1959-11)
by showing that the normal coordinate component of linear connection
still vanishes if the second two arguments are not even maps of
points oﬁ a path, but merely are points in the coordinate space
which are scalar multiples of the first argument. The second theorem
applies the methods of {1938—1} to proving the validity of an
identity in the curvature form analogous to one due to ¥Weblen
{1922—11. This is proved both for spaces in which an abstract co-
variant differential 51956-1} is defined and for spaces in which
a normal coordinate system and hence a kth extension can be defined.
Iguations mentioned in the latter theorem are specific references

to equations in 51958-1}

Ihegrem75£;i "In any normal coordinate system with coordinate

domain Y there exists a number (J) o such that

(3.1) T (2,12, uaX)=0.



for any N € B, l1t1<oo, tlul<oo, ‘S‘S‘E? Further,

Wan e

if Yr,[ B , then there exists a greatest such P < oo."

Proof: - 1)

For any fe\( and o0&sg€t o, y:sf satisfies
dy dy
+[_'()/7AS’ s)“'o'

Hence +J—1(S§',f,§):

Since Y is an open set containing o ¢ E) , .there
exists a P)o such that \\)/ i ((3 1D yeé Y,
Furthermore if Yo DD there exists a maximum such

P S 00 (Compare theorem [21.12]).

Let- Ne B> be arbitrary and §'= ?T\E" A, OKBLI.
Then ”?'”:9(2< (3 and by step 3) g'e Y, and by -

step 2)

+F(S’f',f',§')_—.—o o <£s'¢ .

By the bilinearity and hence homogeneity of *'T-1 we have
"7\" +
on multiplying through by -F— £t W where and W

are any finite numbers,

+ I
™ (s'5",¢ 1 uX) =
Let SAe s' N e "N\ A,  ‘then on substitution
we obtain (3.1) from steps 5) and 6) and the corresponding

restriction on the range of the parameter S . (Q,.E.D.)
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It might be noted in passing that (4.10) of Michal and Hyers

{1958-13 can be written as
Hy (8) =Tve (%, 5,700, 55 €) = (em) Toe (X, T (x,5,5)8, 075 §)

by using the symmetry of rﬂr-l .

Theorem 31,2 "The curvature form Eb (x, ?\,5;,§;) of (5.12)

satisfies the identity

(5.2) B(x,?‘\,gm,?Slf‘()* _B(’(;?;,gv,?‘i‘?'z)""
+ B(’(.?H,?zlfnig.) + b(:()fx) 5‘4,&'23): O:"

Proof: - 1) Whether the above terms be regarded as covariant differ-
entials or as first extensions (6.1) the expression (6.2)

gives the following expansion for the first term above
B(xp ?\)?L,g;‘ ?‘() = E(x)?\_,gl,?3; §”~& ) -
. —B(X,R(’Qi}j}(), ?L‘ §‘3)- E) (x)?“l"',_(x,?».,?.‘)j;)—

_.B(x7 ?‘) f") P(X:?3>§“))+ PL(K,B(K,?,J},_‘ §3), gQ)- \

2) Direct application of definition (5.12) to the right side
of the above expansion gives a set of 22 terms each in
five, six, or seven arguments, hence the verification of
(3.2) will involve combination of 88 such terms. However,

these terms fall into six types which we shall denote as
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follows: -
0 (x5, 8,5, Ja) by 12,3,4
1y Iy (X, n(x$,5) 5 5:)

=[x, £, (xS, B3 §3) b A8
1) o (%, P (x,f,5.75%4), 52) by 12,41 3

iv) R(xl[':(x’ R.(X, ?.,?q)) ?1.), ?3)
ST (x5, (), 6, 50), §2) vy 14]2ls
D P (05T T (x5, ) o 12,1 54

W Tl N0 E,E), 0,5, 00 o il

where terms of types 1), v) and vi) are symmetric in the

first pair and in the second pair, but terms of types ii),

iii) and iv) are symmetric only in the first pair.

Under the above notation we have -

Bx, 5,5, 5] 5a)=12,3,4 = 13,2, 4 + 123,44 12,4|3-
=13 02,4 =13,4]2 =314)2,3 = 45,2 + 14)2)3 —14]3]2+
+24|1,3 — 13,024 243 -13lj24 +12,)38 341,24
12034 = 34)1)2] 412,304 —13,2]4 +12]3]4 —13]2[h
Since we cannot have combinations between these

types of terms, we must have the terms of each type

cancelling among themselves as the subscripts are



permuted (1342). This takes place as follows -
5) There are eight terms each of types i) v) and vi)

which combine as follows

13, 24" | 12134 - 13|| 24"

/ z 1
12,3,4 - 13,2,4 | 12,|34

2 3 1 3 2
+31,4,2 - 34,1,2 |+31,142 - 34,|12 |21 ||42 - 34|12’

4 3 4 3
+a3,2,1 - 42,3,1 [+43,| 21 - 42,31 43|21 - 42|50

4 ’ 4 ' '
+24,1,3 - 21,4,3 |+24,113 - 21,43 R4 ||13"- 21|43

6) Thére are sixteen terms of type iii) which combine
as follows -
! Y g 2
12,413 - 13,4]|2 + 12,3]4"- 13,2]4
= [ & 3
+51,2la - 3a,2|1 + 31,412 - 34,1|2
3 7 A 4
va2,112 - 42,13 + 43,2|1 - 42,3]1
4 g 7 i
+24,311 - 21,3|4 + 24,1]3 - 21,4]3".
7) There are twenty-four terms of types ii) and iv) which
combine as follows -
' & 9 Vi 4 4
12]5,4 - 13]2,4 - 14l2,3 + 14|3,2 - 24|1,3 + 34[1,2
' 1 6 10 7 (4
+3114,2 - 34]|1,2 - 32|1,4 + 32l4,1 - 12]3,4 + 42|3,1
3 7 [ 9 2 b4
+43|2,1" - 42(3,1 - 41|3,2 + 41|2,3 - 31|4,2 + 21|4,3
&y b4 z Io 3 5
+24|1,3 - 21|4,3" - 23|4,1 + 23]1,4 - 43]|2,1 + 13|2,4".

(Terms are indexed in red in pairs which cancel). (Q.E.D.)

Note: - A briefer proof of this theorem consists in showing that

(l.2) holds in normel coordinates as follows -
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1) All terms of types ii)... vi) vanish at the origin of
normal coordinates.

2) By step 5) above all terms of type i) cancel out in
normal coordinates evaluated at the origin of coordinates.

3) Since B (’()?n_,cs-z_,i; \iq ) and hence any sum of such
is c.v.f. valued it vanishes in all coordinates at a
point, if it vanishes in one coordinate system.

4) Since Xo “ Y.=0 Vas any arbitrary point of the
space, the theorem holds in general.

(Q.E.D.)

§_5.2 The é -property .

In a recent paper on the projective geometry of paths f1959-
2, 1940-13 special use was made of the following restriction on the

Fréchet di fferential .

Definition 52_.; The g—properntz)- Let f (x.y) have arguments and
values in Banach spaces. The Fréchet differential Jc(x o,y; A‘x)
of ]C(x,)/) at X= Xp 1is said to have the g-property with respect

to)/ if for every € >0 , c » O there exists a g(eja,x°)>o

independent of )/ such that

(3.3) \\éx“<é(€,o~,Xo) and ||)/n<a

D01 (he+8x,y) = Fde, y) = § (xo,y 380N <X,



This definition may be restated in terms of the following

modified concept of uniform continuity

??fini,t,i,°n_???;§ Relatj.ve uniform continuity at a poin't*—‘vli‘et -F( x,y)
be on E‘ H +o E,_ where E.) Ez. are Banach spaces and H isa
topologic space. Then 7C(>(,y) will be said to be continuous at X=Xo
uniformly with respect to )/ on the open set 5 (i H if/ given

€ > o, there exists a é(e.x°)7°independent of )’ such that
(3.4)  NEx N < S(e, %), yel o
| F (%ot 8%, y) = f (xe,y) <€

Def%_nition 3255 Relative loce{}}ymuniform con’cinu:f._j:z at a po:mt’n

- Let f(x,y) be as in (32.2). Then f(x,y) will be said to be con-
tinuous at X =Xo locally uniformly with respect to )/ on the open
set 3 C H if given € 20 and Ys€ S, there exists a neighbor-

hood Uy°C5 and a rS(e,xo, jo) > O independent of Y such that
(3.5) l\éX“(é(E‘)Xo)YQ), e Uy, :2°
I f(xo—%réx,j)—f(xo,])\i\(é.

In many instances we will take the space H to be also a

Banach space topologized by taking spheres as neighborhoods.

Definition 32.4 The S -property - Let )c(x,y) be as in (32.2)

i

and be Fréchet differentidile in X at X = Xo. The Fréchet differ-

ential 7( (Xo,)’; cS X) will. be said to have the 5 -property

#* These definitions differ from the use made of the same term by
Hildebrandt and Graves 1927-2 .

N
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with respect 'tO)/ on 5 if

é(X'?J)/)JX): f<x°*éx,y) = /:(éXOIy)—][(X‘Jy;CSx)
haxh

has the value € (xa,y,o)=o at cfx-:o and is continuous in

CSX at éx =0 uniformly with respect to )/ for all )l in a given

open set 56 H,

Theorem 32.5  "The definitions (32,1) and (32.4) are equivalent when
S Rl
H is a Banach space and contains Q€ H.

Proof: - 1) Let (32.4) be satisfied, then by the definition of open

set S , there exists a (>> © such that
Iyli<p 2 yes.
2) Given any & 2?0 and the above ())o, there exists a

Cg(é,n)?o such that

I}chll<5(é,xo), liyn<p 2
He(x.,,)/,Jx) — €(xe, y,0) lI=

I f(xoﬂ-SX,y) ")C(Xo,)) —f(xo,y,;ch)\\ Le

lléyn
5 or 1§ (xe+8x,y) = £, ¥) = Flxo,y 34 XM CEUSKN.

4) Let (32.1) be satisfied, then for any € >0, NYyH{Q,
]Ié(Xo,)’,éX)li ¢ € for all IlJX“( é(e,a, Xo) .

5) But this is the condition of (32.2) that €& ()(o,)/, ) X)



be continuous at rSX =0 uniformly with respect tO)/
on the sphere 5& of radius a about the origin, and

have the value € ( x,,y, o)_—. o . (Q.E.D.)

Theorem 32.6 "Let }C,(x,y) and fz(x,y) be two functions satis-

fying (32.4). Then any linear combination

F(x,y) =k fi(xy) + kfuliy)

with constant real coefficients kR, and k. will satisfy (32.4)."

Proof: - 1) Let Ei(Xo))/‘Jx): ‘
) h—%:“ {fi(xw er,)/) _fi(x"*/v) _)L’L(Xaa)/)'JX)}

2) By (s2.2) theve exists $(€x0)70 such that
18x<b (g oxe) yeSior letuyole

5) 5 Wixi<d =mind: (m) ), yeS :o:
lexe,y, 8x)l1= \;"—é—;n{ﬂmsx,])- F (o) - Flwy ;5003 -
= ”f ki e (Xo,y, 0| ¢ €.

Corollary 32.7 "Let f; (x)y)) i:l,l,-",t satisfy (3.2.4).

Then

t
F (x,y) =2 Rife(y)

with constant coefficients h;e-R satisfies (32.4)."



Definition 32.8 8-property (locally) uniformly in Yy - Let
fx,y) ana f(xo,y;8%) satisty (32.4). Ten f(xo,y;dx)
will be said to have the (S -property (locally) uniformly in_)/
if ][(x,,y; Jx) is continuous in Sx at Jx: O (locally)
uniformly in )/ on the open set 5 C H according to (32.2)
{or (32.3)}.

This property is not automatically satisfied by the linearity

o£ )C(Xo,y;ojx) in dx since the modulus M in
| £ (e, y 3 80 Mxl

is itself a function of X, and )/ . It is .clear, however, that if
(32.8) is satisfied we will have for )/ e (_y & L)y,) a

modulus M which depends on Xe alone.

Theorem 32.9 "A necessary and sufficient condition that f(x,y )
have a Fréchet differential with the é—property (locelly) uniformly
in y on Sc H  is that f(xo,y; dx ) exioh with Ba &~
property énd f(x,y) be continuous in X at X =X, (locally)
uniformly in )/ on S C H-“

Proof: - Necessity 1) Let f()(o)}/; AK ) satisfy (32.8),

then, given ¢ 720  and SC H, there exists

cg.({, Xo) >0 such that
néX”<CI«(§'Xo) s = “é(xo;\/;tg)C)”é’e;..

) By (32.2) for (32 .3)] there exists cgl({,xo)h) (and

77
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such that
16X ¢ Su (€, x0) 222 1f (o,y; SN € €.
3) Now step 1) implies |
I (o 85, y) = Flxay) = I f (o, y 580U CE 1 8xl
4) hence there exists cS: in (l,&({-,x,,], S,, (%_,xo), G_) 70
independent of )/ such that
18xi<d , yes (yeUy) :o:
» -“)C(xo+ ch,y)—— )C(xo_‘])n ¢ &

(QoEan)

Sufficiency 5) Let )C(x,y) satisfy (52.2) (or (32.3)),

then there exists &) (£ x,)>O (ena Uy,)
such that

I x I ¢ 8: (§,%0) yeg ()/(:U)’o)
implies

&

“f(xo +[§x,y) —f(’(o)y)" < 7.

6) By (32.4) there existséq(-s,)(o)70 such that
150 <8y (£,%) yeS. 1o

IE Ceesy 5 8301 = 1f ey Sx ) = f (o, )V €
4 “gx"'\\ G(XO,chyx)\\ < £ Sxll



7) But this implies that there exists §= min (4, J;(ff,x,,)l

J* ( .S} Xa)) 7O  independent of o such that

1 Sxi<d yeS  (yeUn)
1o Hf(x.,,y;Jx)u -y

(Q.E.D.)

In the foliowing theorems H will be a Banach space. Hence
we shall use definition (32.1) of the (g ~property as being more
convenient. It will, of course, be assumed that the wording of other

definitions and theorems hsve been modified to conform to this.

Theorem 32.10 "Let f. ()(,y) ve on E.,(¥Xo)a E;, to E,}linear in Y,
continuous in X uniformly in)/ on E}_(O)‘g and such that the
Fréchet differential F‘(xm.)’f Sx) sxleis eull hem ¥ oo
property at X = Xo .

s f,_(x,z) veon £, (Xo)a = 3 toE 4 linear in Z
end such that the Fréchet differential f\_ (Xo,‘& 5 Jx) exists and
has the 5-property at X=Xo. u

Eu EL, E‘3» E,_,, are Banach spaces and E.(Xo )« and
F.(o). are the open spheres llxo—-X Il o ana “)/ NH<b,

Then - i) F'—(x,y)=)(”,(x)f,(x,y)) is on E,(Xo}k EL
to Eq linear in j , and ii) F- (x,y) has the Fréchet differen-

tial



F—('(o )’;fgx)‘—“ 701 (K°))c‘ (x").y);gx) T )CL()(olfl(xc”y;gx))

with the g-property uniformly in )/ on E L(O) L at X = X'

Proof: - i)

ii)

(3.6)

follows at once from the hypotheses and the definition
of linearity.

1) Since )C. (x,y) is linear in Y» it follows that
ﬁ(}(o,)’ " dx) is bilineer in Y and & X and hence

there exists a modulus ™M, (Xs) > ©  such that
I (o, 75 85 ) <ML ) ITIN Sxll T e B,

2) and also a modulus Mz(Xa) 2O such that

o (e, 00 & Mu( %) el

3) et €50, by o be given and remain fixed.

4) By the g—property of O(f. , there exists a constant

0o 5 (5

3 My (xs) 7b; X°)>Q independent of ¥

such that I cjx I € (5. “)/ I < b

“G-n = " fv (XO =< éx,)’) —f:(xc,)’)~f,(xa,)’,’fjx)“§36

5) Steps 2) and 4) further imply

1 (e, o kot 8,y 1) = o e ) (o)) £ (e, s, 580K £

6) Since f,(x,y) is continuous in x wuniformly in

.

)/ , there exists a constant §L= ng- (3M (xo) ’

xo)



independent of Y such that |\é>( < (57_ .=

170 = Ufi (xe+ 3%, y) = frlxe, 00 ¢SS

7) If also ||dx)l¢ | , steps 1) and 6) further imply

(5.7) “f:. (XDI ‘Fu(x°+ gx)j)séx) - )(.L ("mfr(xo,)’);c(x )“ é%.

8) Since )c. (X,)/) is linear in ', there exists a
modulus Mj (Xe) 7O such that “f.(XO,)/)" < Mg(xo)")‘" )’5 E,

and so by step 6) and the triangle inequality

€

Nl = If (xo e S, Ol € 5 + IR el

. e
J MA(Ko)

+ M3 (xo)h =€ sor ||>/u<b.

9) Given ¢ as in step 8), we have by the J—property of
) - i
C(f-., that there exists a constant cS; = J; <3 3 oy x.)}o

independent of ¢.) such that

lIJK“((Y; and ledlice o0
(3.8) “;1 (Xa'fgx) LJ) - f,_ (Xo)a))—-fx(xh (—JBéX)" < g;' “chu.
10) Now let S: g(éj bJ Xo, M.(Xa), M;(Xe), MJ("")) =

e it (2, i Oy ) %5

which is a positive constant independent of )/ such that

Iléxnug ) ||)/ll<b s =5 7 (3.8) (3.7) (3.8).



11) Add these three'equations and make uée of the triangle

inequality end additivity end we have -

Gor s o (xoxdx)y)) = fu (xo, fi (40,30 -
"f»()(o,fl (xe,y58%) +f1 (xo,-ﬁ(xméx,)/),‘ch)-
- fu (%o, fi (%o, 9); dx) + (o + 4%, {1 (xot 6%, y)) -
-]fL (xo, filterSu,y) —fo (e, fuleavd y 1300 < €.

12) Hence, by the linearity of the Fréchet differentials
the hypothesis on the linearity of f,_(X, 2-) in #

and steps 10) and 11)

(3.10) F(xo;)’}O()‘ ) :701-()(0,]0'()(0,7};6[)() +](,. {Xu,f,(xo,\ ;Jx))

is linear in Jx and satisfies definition (32.1).
13) By theorem (32.9) and the expression (3.10) it follows

that F(K.y) is continuous in X wniformly in >/ and

hence F(Xo,y 35&) has the J-property uniformly

in)/_ (Q.E.D.)

————

Corollary 32.11 "Theorem [32.10] holds if the words 'locally

uniformly ' be substituted for 'uniformly' wherever they occur".




Theorem 32.12  "The set é of all functions ‘F()(_,y) on E,(Xe)a Ea
to E,_ linear and solvable in ] , continuous in X uniformly in

)’ on E,_ and with differentials having the é-property plus the
function @ (x,y) =O(—Ez’under suitable definitions of &, ©

and ” '“”)_ form a Banach ring."

Proof: - 1) By theorem [32.6] and corollary [32.7] this is linear
set and @ is the plus operation of Ez_ .
2) i) @ is commutative
ii) @ (X,y) is the identity under @ ,
111) if £(6y) € then —f(x,y) is slso linear
and solvable, etec. and hence is in é .
3) The operation O in é will be defined as iteration,
and by theofemeZ.lO] the set is closed under O.
4) The idenmtity function I (X,y) =y forall Xé& E, (xo)a
is in é
5) To show that the inverse g(x.,y) of fx,yle d
is in @ we need only show its Fréchet differential
é (X,Y; Ix ) has the S -property uniformly in

)/ at X=X, This follows from
I(x,y;éx)::o:f(x,g’(x,y);ch)-ff(x,g(x,)/;c&x)).

6) Associativity is readily verified.

7) Distributivity follows from the linearity of eve'ry

f (X:y){- § in’)/.



cC
H

8) The norm will be defined as

| £yl = Mmax M (x)

XGE.(Xo)a

where P4 CX) is the modulus of J‘(X,>/) , and this
can be shown to have the norm properties.

(Q.E.D.)

Corollary 32.13 "The Banach ring d@ is a subring of the Banach

ring R, of {lo20-1].
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