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Contributions to the General Geometry of Paths 

A. Boyd Ivlewborn 

Abstract 

By general geometry of paths is here meant the study of the 

properties of a space of undefined elements having a Hausdorff topol

ogy and coordinates in a Banach space, and having as fundamental 

element of structure a class of distinguished subsets called paths. 

The paths are defined locally in terms of their mappings under certain 

coordinate systems (N.c.s.) analogous to normal coordinates. The topol

ogic propenties of the paths and their mappings in N.c.s. are studied 

in § 2.1, and it is shown that the map of the aggregate of paths through 

any point is itself an open set. In ~ 2 .2 a class of allowable coordin

ate systems is introduced and it is shown that a linear connection (which 

was not postulated) can be defined and from it a curvature form. These 

are shown to have their usual properties. It is further shown that the 

space is locally flat. In § 2.3 a modification of Frechet differentia

tion is introduced and used to define another linear connection and 

curvature which do not necessarily imply a locally flat space. ,§ 2.4 

is devoted to examples illustrating the above in particular instances. 

The second part (Chapter III) of the thesis consists of certain 

results extending the properties of the normal coordinate component of 

linear connection and the curvature form as studied by Michal and Hyers 

{Annali di Pisa l938j and of a more extended study of the variety of 

uniform continuity of the Fr;chet differential defined and introduced 

by Michal and the writer f Proceedings of N. A. S. 1939 f. 
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I 

Introduction 

The problem of the structure of a space in terms of straight 

lines or geodesics and the generalizations of these as paths has 

been the subject of extensive study by geometers. Modern work in 

the differential geometry of paths has been based on the definition 

of these curves in terms of one of their three fundamental properties. 

First, the path may be considered as a curve of minimum length in a 

metric space and studied by variational methods. Second, it may be 

defined as a seif-parallel curve in a space in which parallel dis

placement has meaning. Third, as a solution of a certain second order 

differential equation. In each of these three methods there is used 

either directly or indirectly the concept of a linear connection 

defined in the space. If a Riemann metric is used the Christoffel 

symbols enter in, and in the parallelism of Levi-Civita again they 

play an important role. Even in abstract work, the linear connection 

is well nigh all important. These three approaches, however, have 

led to essentially equivalent geometries, and, among other things, to 

the notion of normal coordinates, 

It is the writer's purpose to approach the study of the general 

geometry of pat~s (i.e. geometry of paths in a space with coordinates 

in an abstract (Banach) coordinate space) from a different viewpoint 

which will, in a sense, generalize the existing theory. Here we start 
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with paths defined locally as curves with a representation suggested 

by the above mentioned normal coordinates. 11hen the properties of 

paths so defined are first studied from a topologic viewpoint, and 

later the differential properties are studied by the use of Frechet 

differentiation, and the writer's modification of the Fr~chet differ

ential. In the latter aspect, it is shown possible to define a linear 

connection and a curvature forn1 locally in a space of paths so defined, 

and that these geometric objects have their usual properties. 

The second part (Ch. III) of this dissertation is devoted to 

the presentation of some additional results extending and generalizing 

certain aspects of a pa~er by Michal and Hyers {1938-ll and another 

paper by Michal and the writer { 1939-2, 1940-1} . 

* The following numbering and reference conventions will be followed 
throughout this thesis: 

i) The bibliography references are numbered according to year and 
are enclosed in braces. 

ii) In all numbers the first digit represents the chapter and the 
second number, preceding the period, the section. 

iii) Eq_uations are numbered in seq_uence throughout each chapter, 
all other numbers are in seq_uence throughout each section. 

iv) Internal references to hypotheses are given by number only, 
to definitions by number in parentheses, and to theorems and 
corollari es by numbers in square brackets. 
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II 

GENERAL GEOMETRY OF PATHS 

In the present chapter the geometric space will be taken to 

be a Hausdorff space H and the coordinate space will be taken to be 

a Banach space B. These two spaces will be assumed to be distinct, 

although this need not necessarily be the case. As mentioned before, 

the fundamental definition of the paths as distinguished subsets of 

neighborhoods in rl' is suggested by analogy with the familiar normal 

coordinate representation of paths. No linear connection is assumed, 

but in § § 2.2 and 2.3 this geometric object is defined and shown to 

exist under certain restrictions. 

§ 2.1 Definitions and Topologic Properties. 

By an open set in B we shall mean, as usual, a set U such 

that every ctE U may be enclosed in an open sphere 5 of radius 

f >o, (II)( -OC'. II< p) 1 lying entirely in U . 

Definition 21.1 Coordinate system. A fixed homeomorphism (i.e. a 

fixed biunique bicontinuous functional relationship) between the 

elements of a Hausdorff neighborhood M and an open set X of B. 
'Ill.is we shall denote by x = X CP) where P ~ M and X € X . 

Definition 21. 2 Curve. A subset C of the space H which has at 

least one map -K under a particular coordinate system, such that K 

is the continuous transform in B of a single real variable (parameter) 

defined on a certain reial interval (or set of intervals). 
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This yields as a necessary and sufficient condition for 

CC: H to be a curve that there exist a coordinate system .x = x (P) 

on a neighborhood M:::>C such that x(Q):::f(t) where f(t) is a 

continuous function on I c R, CR is the real number system), 

to X and Q E- C . In the present discussion, the domain I 
will usually consist of a single open or closed interval in R-

Definition 21.3 Point of a curve. A point 'f! Er\ is on (or of) 

the curve C if and only if 'P. EC• 

Clearly, a necessary and sufficient condition that P. be on 

C is that X CP. ) E K .. 

Definition 21.4 Path. A curve L in H for which there exists at 

least one coordinate system .J (P) whose geometric domain M contains 

L and such that the map A of L in the coordinate domain Y is 

of the form 

(2.1) ). : 

(t,_ 'R 
where J ~ J-J is fixed and not the zero of :B , and J is a single 

open interval having zero as an interior point. 

It is well to point out in the above fundamental definition 

that in the representation J.. : the ft is not uniquely specified 

even for a particular coordinate system j (P) , and that the interval 

j will depend on the 31 
used . 

Hypothesis 21. 5 There exists a class fl. of coordinate systems such 
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that every neighborhood UC H is the geometric domain of at least 

one coordinate system of Jl. 

Hypothesis 21.6 There exists at least one coordinate system y =j' CP) 

of n for every "Po EH such that every path L containing r'o is 

mapped in the form (2.1 ) in this coordinate system. 

The first of these two important hypotheses is introduced to 

make our theory non-vacuous and is automatically satisfied in the 

interesting particular cases of this theory. The second is of more 

far reaching import and deserves particular consid~ration. 

Definition 21.7 N. e. s. associated with -Po . Any coordinate sys tern 

J=j( P) of .fl on the neighborhood M o of B to the open set Yo CB 

and satisfying the conditions of hypothesis 21.6 will be called an 

N -coordinate system or N.o.s . associated with -Po. 

Definition 21.8 Equivalent paths. .Any two paths L , L having a 

point P0 in common are equivalent if they have a second point -P :-J:. Po 
also in common. 

Definition 21.9 Linearly dependent (independent) set in B. A set 

of elements f ,) Ia. , • ·' , f"' in .B will be termed linearly dependent 

( independent) if there exists a set ( exists no set) of t\ real numbers 

a,, a'L, • • ', °'"' not all zero such that a., f , + O.. "r" + ' • ' -t O.." f"' = 0 • 

Definition 21.10 n -dimensional space. The dimensionality n of 

a space will be taken t o be the largest number of linearly independent 
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elements in the space*. 

From the above definitions and hypotheses follow a number 

of theorems which are given below. 

Theorem 21.11 "Every pa th L containir,:g a given point 'Po will be 

contained in the geometric domain Mo of every N. c. s. associated with 

Po ti 

Proof. An innnediate consequence of hypothesis 21.6. 

Theorem 21.12 "In the coordinate domain Yo of any N.c.s. Y=./ (P) 

associated with Po there exists a sphere j of center zero and radius 

>o lying entirely in Yo, and if Y: :f. B , then has an 

upper bound ~ which it attains. t1 

Proof: 1) The existence of 5 follows from the definitions of open 

set and coordinate system (21.1) 

2) If ::B - Yo is the non-empty complement of Y0 , then 

fo = g.l.b. \\:2II, Z E (B-Yo ), 
is maximum radius of the sphere 5 . 

(Q.E.D.) 

Theorem 21.13 "Every S-t E jo where 50 is the sphere of maximUE1_ 

radius in , is the map of a point Q on a pa th L through -Po · 

and y'::: S ft _ ~ +7- (Q), s (: J where J is IS I < f0/i1 f •11 is a mapping 

function of L . " 

* For further definitions concerning n-dimensional subsets see §2.3. 
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Proof: 

gives a set of points L C MO satisfying ( 21.4) . 

(Q,.E.D.) 

Theorem 21.14 !IA necessary and sufficient condition that two paths 

L, L through f! be eq_uivalent is that, in at least one N.c,s., in 

t 
which their maps are respectively Y= s { s E J and 

,t i-. s E J , the fixed elements .) and ~ be linearly 

dependent." 

Proof: 1) To prove sufficiency, assume and 

-b f= o and let J be Cl.. <. o < b and J be ci. <: o < b 
2) Since 'f~o by (21.4), b.'=- o/'.; /;o 

7 

3) Let S,E~ satisfy o<.\S,l<b'=m'in(-o.,b,-l~'la,lb'lb). 

4) Then ?, = -P( s, i-t) = -P (s, f) is an element of L, 

for S,E J by step 3), and of L , for s E.J 

by step 3). 

5) Now if "P. /: P 0 , then L ~ L by (21.8). But if 

-P, = P0 , then let -P1.,,, P( s ... {+) where s ... = ¾ S, 

and so -Pi. :/= 'R =-Po. Steps 3) and 4) apply for 

and (21.8) is again satisfied. 

6) Conversely to prove necessity, assume L ;; L and let 

Q, / P
0 

be a common point of L and L. 

7) Let )" ( Q,) = S, 5 + as a point of L, 

and y, Q,J = s. s~ as a point of L. 

l' ft- - - s~ t .f 8) S, =- 0 whence by (21.9) S and 

are linearly dependent. (Q, .E.D,) 



Corollary 21.15 11If L~ L , the fixed elements 
-t 

~ and ft' ) of 

their maps in ~ N. c. s. are linearly dependent." 

Corollary 21.16 "EveI"J pair of equivalent paths has infinitely 

many points in common and conversely." 

Corollary 21.17 "The equivalence of paths satisfies the four condi-

tions of an equivalence relation." 

Theorem 21.18 "Given an arbitrary -Po f H and a fixed N. c. s. 

associated r, i th Po, then every f B corresponds uniquely to a 

class of equivalent paths L, through P0 in the sense that L, 
1' 

is specified by a representative L, whose map is t_ =Sf, , SE J, 1 

~,. - £2-- J " _wh_e_r_e_ .)""'"1 _-_ 
211 

:f II S__,'-_ ,_, : __ -_ 1 _<_S_<_ \. 

Proof: 1) By theorems [21.12] and [21.13], fo= radius of 5. 

since II~~ II= JI ti1u 1// = ~ < f> 0 

F-t ~ 
so y = $) I ' I s I < I < JI f _.,.,, is the map in the 

given N. c . s . of L 1 , 

2) To prove uniqueness, assume a second class {L. ( of 

representative L 2., s: = t,;U S and i L,1 ~ { L'-\. 

3) This is obviously a contradiction, as any L; € { L,j 

is equivalent to any L: ~ lL1.1 by L21.17]. 

(Q, .E.D.) 

Corollary 21.19 "If L ~ L , then any pair 'S , ~ ~ B to which they 

correspond in the same N.c.s. are linearly dependent. 11 

Theorem 21. 20 "The dimensionali ties of B and the coordinate domain 

of any N.c.s. are the same." 
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Proof: 1) Since Yo c B the dimensionality n of B is not less 

than the dimensionality """ of Yo. ( 21.10 ) 

2) For I'\ to be greater than \"Y'I , we should have to have 

at least one ~ ~ B not linearly dependent on any 

element or set of elements in Yo , contrary to L21.1s]. 

(Q,.E.D.) 

'Iheorem 21.21 "If B is one-dimensional, then every point -Po~ B 
has only one equivalence class of paths containing it. If B has 

-o B "'-' dimensionality 'Y\ ~ 2.. then every r o ~ has oO equivalence 

classes of paths through it, where 1"\ is finite or dem.unerablX.., 

infinite" . 

Proof: 1) 'Ille first part follows at once from [21.18], [21.19], 

and [21.20]. 

2) If h ~2. is finite or denumerably infinite, then the 

number ~ of non-equivalent paths cannot exceed the 

number of straight lines through the origin in n-dimen

sional unitary space or classical Hilbert space 

respectively, and is in fact equal to this number. 

(Q, .E.D.) 

'Iheorem 21.22 "If h Q 2, , the only point coun:non to all non-equivalent 

paths through Po is Po and the map of -P. in all N. c. s. associated 

with P 0 is zero. Hence zero is an element of the intersection of the 

coordinate domains of all N.c.s. associated with any -Pa E H ." 
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Proof: 1) By definition (21.8) non-equivalent paths cannot have 

two distinct points in comrnon. 

2) Since 11 ~ 2. there exists at least two non-equivalent 

paths L , L thru any Po€ H. (21.10), [21.14]. 

-3) Tne maps X and A in any N.c.s._y.::_y(P)associated 

with -P0 ha ve the zero element in common. (2U4) 

4) Hence by (2Ul) y CPo) = O. 

(Q,.E.D.) 

Nothing so far has been assumed which would malrn the N

coordina te systems discussed above unique. In fact it is quite 

obvious that if j=_yfP) is an N.c.s. associated with Po, then 

is also an N.c.s. 

associated with -Po. In the following discussion of coordinate systems 

it will be convenient to have a fixed and unambiguous notation to be 

used whenever applicable. Hence, unless otherwise specified, the 

following symbols will henceforth be used only with the meanings stated. 

Consider the schematic representation of the situations in 

the geometric space H and the coordinate space B under two N.c.s. 

associated with a single point -P0 E !) ~ figure 1. 

Definitions 21.23 (a) IV\ o Mo are neighborhoods of -Po and 

geometric domains of the N.c.s. yCP) and y CP) respectively. 

M~ = MO • Mo which, in general, will not be a neighborhood and 

hence not a geometric domain for any coordinate system. 

(b) Yo 
I 

Yo are open sets containing zero E:- J:> and are 
I-, 

the coordinate domains of .J ('P) and J (?) respectively. 'foJ y-;: are 
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I 
the maps of MO under the two N. c. s. and in general will not be 

coordinate domains. -
(c) 5o and 5o are the maximal open spheres of theorems 

[21.12], [21.13]. 

(d) Oo is the subset of M: consisting of the totality 

of pafuhs through -P0 and W0 and \No are the maps ef 0 0 in the t wo 
I -- --

N.c.s. 

( e) _!::_ is a path through "Po, and A and A. are the maps of 

L in the two N.c.s. ("2.1 ) 

(f) _Q. is the point ( if it exists) on L whose map in y -= Y ( P ) 

~ ~ r is ,:, considered as the end-point of a ray l See below (,21. 26) ( 21. 27) 

where f:/Ji, F,cj> are also defined} 

The above sets and their inclusions and coordinate homeomor-

phisms are: 

Banach space 13: 
y ( P) a.W\d -PC>') 

Hausdorff space H: 
.Y ( p) o.nt! 'P(j) 

Banach space J3: 

! t t i 
Ou::, L=> ~.::>Po > Q 

i i t 

The lower case letters $, t, Lt, V and W will be used to 

represent real variable parameters, and will be assumed to be fixed 

when written with a subscript. 

Theorem 21.24 
I 

between Yo and 

"Under (21.23) there exists a homeomorphism 'j__J ... ) LX. (y ! 
V' w ) o._y l)') -+ 
10 , and for all j € o (y J O , _ ,.tr : ~ :/: o, 



and similarly for y (J ), 

Proof: 1) By the transitivity of homeomorphisms - {Sierpinski 

1934-1, pp. 21-22j Michal 1937-1} the existence of 

j (j) and J (j) follows from (21.1) . 

2) Ally E= WoJ y/o can be written y =, s r: S :f OJ 

- - _f .. 
and J f Wo_, y¢ o II II " y:::s J .S¢0 

so 
d. -t -1-

iycy)=dfsf::: s C,.\'\ti t1<1> ... r. 
{Q,.E.D.) 

Theorem 21.25 "'Ihe set Ya., is an open set." 

Proof: l) Asstrrae it is not an open set, then there exists at least 

one 'j, l:. Yo 
I 

such that every sphere about j, contains 

I-'-/' 
at least one point y ~ Io . 

2) Since '( is open we may assume f • < lo so y 1
E- Yo. 

3) The coordinate mapping)' ('P) is continuous, hence for 

every neighborhood U of P, == -P(y.) there exists an 

open set (and hence an open sphere j of radius f >o) 

about y, such that J~ = J { R) (: 5 implies -P2 E LJ . 
4) But, by steps, 1), 2), every such 5 has a y' such that 

P' = --P ~,) l M; . 
P

f 

5) is an element of every neighborhood U of P. by 

step 3), contradicting the second Hausdorff postulate in H. 
(Q, .E.D.) -, . 

Likewise '<r, is open, and the homeomorphism of theorem [21.24] 

carries an open set into an open set. Further, this property is true 

13 



in general for all coordinate systems and not only for N.c.s. 

Definition 21.26 Ray - A closed subset (segment) G of a path L 
containing -Po such that its map Yin the N.c.s. y (P)is of the 

form 

(2.2) Y: where 1 is the closed 

interval 

It is clear that this definition of a ray depends on the 

particular mapping A iny{P) that is chosen. To avoid ambiguity 

we shall avoid the equivalence of rays under definition (21.8) and 

shall speak only of their equality in the sense of logical identity. 

Definition 21.27 End points of a ray - The points Po and Q of a 

ray G whose maps are O and f 7 
respectively. 

In view of the preceding remark, two rays are equal if and 

only if their end points coincide. 

Definition 21.28 Half path - A subset (segment) F of a path L 

containing ~ such that its map fJ is of the form 

and J of ( 2.1) is Q. <. o ( b. 

where K is either o, S < b 

or a..< s ~o 

Definition 21.29 Metric mappi ng of a path , ray and half-path 

Mappings A, Y, ¢ of definitions (21.4), (21.26) and 

(21.28) respectively which satisfy the additional condition that llttft=.i. 



Tb.eor em 21. 30 "In any given N. c . s . there exists a metric mapping 

of every path and half-path through -P0 which is unique to within a 

factor of ±1, while at most two rays on any path (one on any half-path) 

possess a metric mapping." 

Proof: 1) Let the path L (half-path F) be arbitrary and let 

15 

"). ( ¢ ) : y =- s f', s- t- J ( ~ ~ K) > o. < s < b ( ~ ~ \ ~ ~ ) , 
be a particular mapping in the N.c.s. j:;. ;:I (p). 

2) Then A (p): Y = ~ r~, §_ e j ( ~ (: K) 
will also be mappings of L ( f) in the same N. c. s. where 

( 
o<.S.!-bll5tl}) 

.d : a. II rt II ( S < b I\ rt II Ji ~ a ll ~ t l\ < S $ O . 

3) Hence A ( qJ) will exist and satisfy ( 21.29) whether or - -
not j.,. f V¼ 

4) ~ -( r.)) will be unique to within sign, for suppose ~' ( cp,) 

is a distinct metric mapping of L ( F ), then there exist 

~
1 

k, JO such that ~ ~t + ~. ~: == 0 [21.14]. But 

1~ \\i+l/== JI- ::•J_.+/f;=/~/llt~II = J :•J or ~.= :t ~ 
-t- Ct 

hence {, = + !> • 

5) From the above, only tw.o points Q,, Q"' E L (one point 

Q E F) is the geometric map of ± 3-t. Hence only -
two points (one) which can map metrically end-points , of 

a ray. These points are quite independent of the origi.nal 

mapping A ( tp). ( Q, .E.D.) 



In the following theorems no special notation will be used 

to indicate metric mappings. 

Theorem 21.31 t1In ev":._ry equivalence class ( L] of paths through -Po 

there exists one 'maximal path' LO which contains all distinct path§_ 

of [ L / as proper subsets. " 

Proof: 1) Let y, be a fixed point of an arbitrary path L~[L}and 

~ ... _ _!,_ \ I , J .. a. (.S( b 
..) - II t· II JI J 

be a particular (metric) mapping of 

2) Let q> ( s (:- }I( : O , S '- b ) and </> 
1 

(.~ E K 
1

: a. < S ~ 0 ) 

be (2.3) be (metric) mappings of the two half-paths into 

which it can be separated. 

3) Every other path of f L J will be mapped metrically with 

<"~, the same J and is separable into two half-paths 

equivalent to cl, and rp I respectively. 

4) Let [F} and tF'} be the two equivalence classes of 

hamf-paths established in 3). Now in [F{, there exists 

a l.u.b. b0 of the corresponding values of b, and 

in l F 1 5 a g . 1. b • a. o of the set of values a. 

(These may be finite or infinite). 

5) Clearly F 
O 

, whose map is ~o (SE Ko : 0 ~ S < bo ) , 

is inf FJ, and f- 0

1
, whose map is <po' (SE- K:: a.a (.S~ O) 

is in f F 'J. 
6) Then AO : :/ = S f: S ~ J., J o~ a. 0 ( S < bo 



is the map of a path L0 which satisfies the theorem 

by (21.4) and (21.29). 

(Q, .E.D.) 

Henceforth, whenever "the pa th determined by 1 " or "the 

path corresponding to ) " is spoken of without furth er restriction, 

the "maximal pa th" of the above theorem is to be understoo_d. The 

same condition will also apply to half-paths. 

Theorem 21.32 "The set W,, is open" 

Proof: 1) Assume W
0
is not open. That is, assume that there exist 

one or more elements y, of Wo with the property that in 

every sphere S, with center y 1 and radius J > o there 

exists at least one point j
3 

not an element of Wo. 

2) Given any y, E \No, there is determined a half-path F, 

through -P0 and P. with metric map 

<j, l : :I;::. s f,t J s~ K, f + I . 
I = iiy.11 Ya II f,t II == ! 

K,: o<.S<O.., 
+ 

and y. = s, f.' s. ::: ny. ti> o. 

3) Three possibilities now exist on F,: 

(A) There exist a finite number of elements of type y. 

on F;. 

(B) There exists an infinite number of elements of type 

j, on F, of which one ( call it .Y1. ) has a norm 

1 7 

Jl y,. \I ( II)', ll for all other elements of type Y. on F .. 



(C) There exist an infinite number of elements of 

type j. on F1 , but none of least norm. 

4) Consider cases (A) and (B) where yL is the element of 
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type y, of least norm on F1 • Then since y._ = S,.. {.t- E:- Y0 , 

and Y0 is oi)en there exists a d1. >o 

such that 

I\ Yi. -Y II ( d"&. : :::>: Y f Yo, 

5) Let Yo = So ~7 

6) Now , there exists a d0 ( o < J0 ~ "!' ~1.) such that 

II jo - j II <. ~o ~ ~ di. ! .::> : Y E:- Wo 

(for if such J0 did not exist, then Yu would be of 

type y
1 

and II y0 II< II y,_ II contrary to 4) . 

7) Let f' be any element of B such that 

8) 

9) 

i) 

ii) 

(These conditions are compatible sine~ i.) ::, : I- ~o, l\f"'II,!. \-t f;.;; 

Then llso~,·- soI+ll::-llsot't-(.So+Udo)f""-+ ~do~ .. 11~ 4f 

Let 

or 
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-.,. W 'l J - 1 r 
d h • t 6) ';i - S ~ '- o So - - o < S < S'o + 4 do, an ence oy s ep , / . - ~ , .If 

10) 'j (; Yo :c, /lj2.. - j II< J'"- step 4) 

• C, II Ji. -yo+ ,Yo - _j -+ .J -y II< c:}'-

• C , /J y-i. -yo fl + II yo -y 11 + II j -./ \l < f "2.. 

. c. If J -_y D < Ji. - { II)'~ -_yo II + \\y,, -y 11] 

• C , IIJ-_y II ( J"Cl. - [ b J,. -f ( \ U \ -t-¾,) ~ J 1 f 
. C: 115 - J II < ¾ d2. 

. ll) Now by steps 7) and 9) we can define the half-path F 

whose map is 

where V f- K and K ; o t V < S . 

12) But by step 10) we know that the real interval K can 

be increased to at least o ~ V ( s + ¾ di. which 

can be written as 

k: J ( 3 c , ! J.I ( 
O ' V ( S o 4- -r. c> ,_ - -4 d O ~ -So + - d t. 

4f ~ . .]2. 

by the definitions of 5 and Jo. 

13) By our assumption of step 1) we can always choose a 

y
3 

E Wo satisfying the conditions: 

i) S.170 



2-0 

14) Hence 

i) \ Sa. I - Isl I = S:a. - S3 < i'6 ~o 

and I Si I - I S1..I = 53 - S '- < 1 ~ do 
ii) and either O~ Si. - S 3 

or i. e • SJ < S '1. ;- ''o Jo 
or 51 < So + ~ J 2. + 1~ i d i.. 

by steps 5) and 6) 

iii) and :. S1 € K by step 12) , 

15) i) Suppose S1 :S~+ ,' 6 ~ 0 -w 1 O(W(~do, 

ii) II S1 f,+ - SJ r.tu = u Sa.. (1/- !/) ...,. (rr Jo -w) i: II<~ s. 
iii) I s i.1 • II ft - l1• II < -h So + l -h So - w I < J SO • 

iv) Since I S 1. I = S ~ =- $0 -+ ~ d ..,_ by step S) , 

II r:- 3/ II < it.= ~ C.~~.s.) < ,/'~
0 

v) and . •. S/ satisfies step 7) and is a J : 

16) By step 11) /J is on a half-path F and hence is an 

element of Wo contrary to step 1). 

17) Consider now case C of step 3). 

i) No .J1 can lie in 50 of theorems l]z1.12 ), and [21.13] 

ii) 

hence 
I + 

Let Fi be as in step 2) and ,Yo:: p: f 1 where 

f o
1 

= f o + S .lb. lly, II where }', ranges over all 

elements J, of type y. on F", . 
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iii) Hence, y
0 

is an accumulation point of elements 

of type y, on F,, and theref ore is itself of type y,. 
iv) This denies the assumption of step 3 C) since we 

have shown an element of type y, of least norm 

on L, , and case G cannot arise. 

(Q, .E.D.) 

An analogous method of proof is used in the following 

Theorem 21.33 t1Tb.e set Z o = Yo - VV0 is open." 

Proof: 1) Assume Zo is not open. Tb.at is assume there exists at 

least one ele.11ent 'Z I of Z O such that in everiJ sphere 

with ~. as center there is a point ~~ not an element of 

2) Every such i!, determines a subset 'f I of Zo of the form 

f,: ~ = i J, ti t f; T, f. 1- I ~ 
• ::: ~II I 

T. .> T. - - + - t'" T and : .::> : .i!!: = t j, E Z o for some 

where T. is a real interval of one of the forms 

i) C, < t < d. I 

ii) c,,t<d., 
iii) C' I < t ~ d., 
iv) c. ~ t ~d. 

3) Also every such i! I determines a path whose metric map in 

Wo is of the form 21.18 

A: j = s ! .... , s~ J, J,: a,<S< b,. 



4) Suppose C 1 ~ b, and T 1 is of form ii) or iv), then 

satisfies definition (21.4) and is the metric map of a 

pa th L of O o and hence 

is in Wo contrary to s ,tep 1). 

Similarly if C,< b1 and \ 1 is of forra i) or iii) 

5) This shows that b, i/ is not in W0 or Z O and hence 

. . "P.. '( 
lS ln J..J - o, 

6) Therefore, as in the previous proof, there exists an 

elem.en t 21. of type z I on ~ 1 and with least norm, 

ll "2. \. \l ) b, ';, 0 

7) If T; is of form ii) or iv), 

cannot be of form iii) or iv), for otherwise every sphere 

about c,L }i+ would contain points of either B-Yo (which 

is impossible since Yo is open) or points of Woof form 

~ 1\1 
which would imply tp c ~C Wo contrary to hypothesis. 

8) Hence there exists ~ >O such that if we take Tl. as 

o < II 2. 1. II - E: < t < \\ 2 1. \\ -+ '=:-

: .:::> : 

9) Let rl.>o satisfy i) II Zl.\\pa. < E- , ii) pi.<. I 

iii) ll z!.~ - p ii<. pi. :: =:) : y ~ Yo ( · Yo is open). 

10) Let 'Z '+ i::: t 4 f/' where t tt ::::: II '2 i.11 l 1 - ~ p 1..] 
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whence \\:Ct+\\<.. \\ ~t.11 and ~'-' is not of type c 1 

and we can talce r~ > O such that 

II i!" -J II < f '4 ~ ~i.. : :::> : .J f Z o 

11) Now, by step 1), there exists some ~, such that 

12) Let ).3 be the metric map of the path L 3 c Q
0 

defined by 

B and 'Po 

-, f't -t+ I 2 
z; J . =- 11 : l ,, J 3 ) J J == '"iiii II l . 
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13) From step 11), 1123 \\ < U~"ll-t ~' llz1 ll= U r-1.\l + e f14 
> (181'-I) 

whence 

II i ... 11 • II f. t-- f/ II - I~ I J? ll f; II t \\ \\ ~,. \\ f .+ - \I i!~ll r/- e ~ ~: 11 

0¥ 11~1., 1 llf,+- S/11 - 1e1 ~ II ft II 'll 11 .bi.II i7- U~1 \\ rt II< ~'4 

giving II~~ II· II f,+_ f / II ( r1/4 . 
14) Let J=- llli!lll - ~l. 11~2.u/f;t, then 

\\ t4 -y II == I\ ( II ri.\l - ~ n :z t_ I\) s. t - ( \\ l ~ ll- ~ II it.\\) 13♦ II 

~ \\ r:-i.. -z1 \\ + t? II ~~ll, \l f,f - )t II 

~ ~ + ~ ~ < p41 
4 4 2. \ 



15) From its definition, y E AJ 

contradicting step 10). 

and hence y E Wo 

(Q.E.D.) 

Theorem 21.34 " B - W0 has no isolated points . 11 

Proof: 1) Assume ~ E (B - Wo) is fusola ted. Tb.at is assume 

there exists p > o such that 

:.::>: yeWo 

2) Then J = ( I + f ) Z is in W0 , and hence is the 

end-point of a ray thru. O containing Z,. 

3) This implies ~ E Wo contradicting step 1). 

(Q.E.D.) 

In the study of the properties of the set 0 0 we make some 

rather obvious generalizations of familiar concepts in finite dimen

sional geometry. These will be useful in further study of the above 

sets, and the geometry of the local space of paths Oo about -Po . 
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Definition 21.35 Pencil of path - The totality of paths in Oo corres-

ponding in the N.c.s.y=y(P) to elements 

J .,= Y, f .,. + Y... ~: , ( Y,"' -t \"' i. l. > o ) 

of B of the form 

-e,• where J, and 

fixed linearly independent non-zero elem.en ts of .B and \-', and YL are 

real parameters, will be called the pencil of paths determined by the 

P f .~ 1~ paths L, and L 1. through o corresponding to J. and ~ . 

Clearly all pairs (Y, ,~~) having the same ratio Yo:::: 



v I 1-'1 
or ,., = -

t''L. 
determine the same path Lo in the pencil, and Lo 

will have the mappings 

(2.4) 

( 2. 5) 

"'\ I• 
Ao• 

We shall speak of L 0 as being nbet--ween" L I and L:i if 

The maps of such paths are more conveniently written in the form: 

"-" ./' 
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Ao: j==S(uof,1-+ (L-Uo)f~-t-} S'~Jo for fixed I 
LA.o, ~o 

(2.6) ../\ o <. l.Ao, u.~ <. I ......., 
.i = 3 ( ( l - U~ ) f,-t + U ~ i:) s E: J: A,. 

0 • 

Definition 21.36 Path surface - The t wo dimensional subset L of 

elements of 0 0 mapping in the form )" ('<", Y"o) of (2.4) [metric path 

surface if j {v, Yo) is of form (2.5)) for ~ f j (Ye>\, j 1
(rc:!) 

lr- E- J ('<"o), J'cvo'J J 
Definition 21.37 Included path surface - A portion of path surface ,2_ 

v'\ J..✓.,.' 
mapping in the form 'j (s, U.o) of (2.6) where Sf J ( LAo ), ( ~~) 

where O '- Uo > u; ~ I . 



Theorem 21.38 "A path surface (and an included pa th surface) is 

defined uniquely through any given P0 by: 

i) 'Ivrn non-zero elements j. 
1 

fa. c B not linearly dependent 

ii) 'l\vo non-equivalent paths, of given mapping, in Oo~ 
iii) Any path L 1 , of given mapping, in Oo and a point 'Pl. E- Oo 
not on L 1 • 

iv) A..TJ.y two points P,, R f 00 :p.ot lying on the same path through Po. 
Proof follows at once from our definitions. 

The or em 21. 39 "Given an N.c.s. associated with Po and any element 

y, of Wo there exists a J > O such that for any f-a. J. 

JI y, - j1. II ~ & , , there exists a path L lying in the path surface 

L and containing the points "R == P ( y,) and R -= -P ( y1., ). 

Proof: 1) Since Wo· is open [21.32] there exists S, >o such 

that II )'. - J II < ~ I ~ :::> : j e Wo Let J,:: ~, 

then y,_ E- VVo. 
2) If y, and Y1. are linearly dependent, then there exists 

a path through Po containing -P, "-P'L and tbe theorem is 

proved, so let y 1 , Y1. be linearly independent, and 

hence ~ > P1. not on the same path through Po. 
3) Let the path surface L. determined [21.38] map in the 

form S; )' ( S, u.) :::. S ( ( 1 - v.) y 1 -+ Uy"- ) 

SEJtv..) -o:>< u.<.oo. 

4) Denote by X the subset of 5 of form 



K: -f<:u<,--te 

where E- ; 9 ( £ - I ) 0 < 0 <.. l ( 0 fixed) 
II y, - )'i.11 

5) ll y, - y<u.)\I= \i- ~\· \\ y, _ Y:. ll < ~ for all u. f K. 
6) Define J-= y (P)= yC'P) -y, . Now, j (P)is defined for 

all P in fVl 0 and its set of values Yo is an open set 

in B . Hence y (P) is a coordinate sJrstem (21.1). 

7) In y (P), L '= P ( ).' ) has the map 

X : J = u. < y, - Yi. ) .::: u "f + u. E: K 

where K is an open interval of "R with zero as an 

I 
inner point - hence L is the path required ( 21.4). 

(Q, .E.D.) 

Corollary 21.40 "The map in 0 0 of the sphere of radius ~ 1-,. O 

about y, as center in N.c.s.y =yCP) lies in the domain of paths 0 , 

associated with the point P, = P (y, ) for any y, of VV O • n 

Theorem 21.41 "If P, and P~ are any two points of a path surfac~ 

L in 0 0 mapping in the for.EL 

S: y(s . u)=s(< 1-u)y. -+uyJ 

such that y (\A) = ( I - u ) y, + u. y,. is in 5 for all U of 

the included path surface, then there exists a path L containing P, 

and 'P'l. • " 

Proof: 1) Since Wo is open, there exists 
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such that \\ y, - y II <. ~, ! ? •. 

cS ~ ) o such that II y., .. - y \I <. ~ 1. : ::> : 

Let b = h'\ i -n ( t, fl"'). 

2) The remainder of the proof is the sane as for [21.39J 

(Q, .E.D.) 

n O T"} 0 " Theorem 21.42 "If ,-, is in O , then , o is in , , 

Proof: Steps 6) and 7) of the proof of [21.39] establish this theorem. 



§2.2 .AJ..lowable Coordinate Systems. 

Up to this point, only a very restricted subset of the 

general class Sl of coordinate systems has been studied. We now 

introduce a wider class of coordinate and make use of these to study 

the differential properties of the loc.al geometry of paths. In the 

present section the space arrived at will necessarily be "locally 

flat " . 

Again a diagramatic representation is introduced to present 

more vividly the possible relations of the sets and domains discussed. 

(Fig . 2). It should be born in mind, however, that these two

dimensional schemata may be misleading if taken too literally, though 

they serve well enough for the limited number of sets considered here. 

We call attention to the fact that when dealing with infinite dimen

sional or dimensionless spaces, the boundaries and intersections of 

boundaries of sets (assuming sets which have boundaries?) will in 

general themselves be infinite dimensional or dimensionless sets . 

.AJ..l notation used in figure l will be used with the same mean

ing here except So and So. ill other notation not made clear in 

the following definition and theorem will be explained later. 

De:fini tion 22 .l L-coordinate system (L.c.s.) Any coordinate system 

of n of the form · x (P) = x (y (P)) on a neighborhood 5o of Pa , where 

50 C MO , and whose values form the open set X0 of t) . Further-

more, the function X = >< ( y) by means of which X (P) is defined 
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L 

I 

I 
I 

I ) 

1x - ----
\ 
1 



above satisfies the f ollowing conditions: 
(l'I.) 

Lo, i ) x(j) is single valued and of class C T\~:2 in y on 
(rl"l l X o , ii ) _/(i<) Ill " " " II " C 1-vi~ 2 in x. on 

and satisfies the condition x(y(x.))::::X for all X ~ Xo 
and J ( >< y )) ::. 'j for all y {: L o , 

iii ) X ( o) = ')( Cy ( Po)) = p1 a predetermined fixed element 

of Xo. 
It is well to note that evecy L.c.s. involves the three elements 

of determination: an N .c .s.y =.J ( P ), a preassi gned element p of B, 
and a function X. (j) satisfying certain rather stringent conditions. 

Note tha t a particular X ~) , satisfying i), ii ) and iii) above, yields 

an L.c.s. from any given N.c.s. whose coordinate open set contains L.0 • 

However, if L O is not contained in Yo , we have no assurance that 

the resulting mapping will be an L.c.s. 

Tneorem 22. 2 "Let x.(P) be an L.c.s., and let ~ (P) be another L.c.s. 

satisfying (22.1) with respect to another N. c. s. y ( P) and the domains 

- X 5~ 
0 ' L o ' and • 6 • Let ... 

- I --; 
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and £o 1

, L,,1

, Xo and Xo Let the homeomorphi~ 

be of class Cc~·J 
where Fi 1

-=- m i-n ( V\, m)_ 

n'= rrl \V\ (""' 1 W\ ). _ Then there exist transformations 

x ( )() taking X o' and x~ into each other, of class 

C (VI' ) 
respectively, and s uch that X (x(x)) .::::-X for all 

and for all X
- , II 

X E:: o • 

x (x) and 
(1'1') C an9:... 

X E Xo~ 



Proof: - 1) y= y(P) maps s: on the set r:: C Lo C Yo, 
P= -P<y) " r: on " 11 s~ J and similarly for 

>' ::: y ( p ) ) -p = p (y). 

2) An argument analogous to that used in the proof of 
~ / -==, 

theorem [ 21. 25] will show .£- 0 1 L.. 0 are open sets. 

f S~ is not necessarily a neighborhood, however.) 

3) Then the homeomorphism y::: 1.!. y ) > y ::: .J ( ')') [21. 24] 

maps the open sets L: , L: on each other. 

- ) C (h) 4) By hypothesis and by (2,2.1) X (J is of class , 

- ) C (h ' ) (~) y (y of class , y (x) of class C . 

Hence x-= X (y (y (x ))) = X ( X) exists and 

C (;; ') - ' <- ) .... 2 is of class ( Y'\ = min \"\ J Y\'\ // as before) ., 

5) Likewise )( c X (y ( y ( X ))) =- X ( X) exists and is 

C (n') 
of class ( Y\' h '2. ) . 

J 
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6) Clearly X = x ( y ( y ( X ( 9 ( y ( ><. )) )) )) = X ( X (,d) 

and X =. X ( j ( 'j ( x ( 'j ( )1 ( x. ) ) ) )) ) = )( ( X ( X )) 

X I - x ..... l 
for every X f o and X E o as required. 

( Q, .E.D.) 

Definition 22.3 Contravariant vector associated with P,. - A geometric 

object having components J, f in every pair of L.c.s. X ('p) and 

){ (P) satisfying (22.lj and the hypotheses of [22.2] for ·coordinate 

systems satisfying all these conditions but Y\ 1 Y""' , V'\ , h\ ~ 2.,, this 

being • replaced by h , YY\ , ~ , ~ ?; 1 \ and -o s/ I , E- o• And further, 



such that these components satisfy the linear relations, 

( 2 •7 l f = x ( ,<. , ; ~ ) 

where x 1 = X ( -P, ) 

3 ... x(i ,; 1) 
X, = X ( ? , ). 

Definition 22.4 Contravariant Vector field - A set of contravariant 

vectors (u.v.) such that one c.v. of the set is associated with each 

point ~ of the set considered. 

We now establish t he existence of a "connection" in the space 

of paths associated with Band use t his to express the local differ

ential properties of this space. 

Definition 22.5 Linear connection - A geome tric object with the 

component 

(2.8) 

in the L.c.s. X ('P) dependent on the N.c.s. j (P). The increments 

rt I ~: are assumed arbitrary and free to take any value in B and 

are related to the arguments J 1 > j" by 

( 2.9) 

It is clear that if both relations (2.9) are to be satisfied 

simultaneously f or arbitrary 3 [, then these relations are solvable 

linear in the sense that 

1 t = j (x ; 1' (_j , f {)) L =- I, 2 • 
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Hence it follows that the set of values r \ = x (./; 'i~), 1~ t B 
is a closed linear manifold in B and is either '6 itself or a 

sub-Banach space of B. 

Theorem 22.6 " The linear connection ( 2.8) is symmetric and bilinear 

in its two arguments r I ) r i. ~~ 
Proof: Since, from (22.1], the second Frechet differential exists and 

is continuous in )' f or y ~ Yo the theorem follows from 

the definition of Frechet differential and a well known theorem 

on the syrnmetry of the second Frechet differential · {Kerner 

1933-11 . 

The theory of normal coordinates as developed in il/Iichal-Hyers 

34 

f 1938-l J leads to a case in which the homeomorphism y <y) is linear. 

The assumptions made in the present study are not sufficient to assure 

this, nor even to assure the differentiability of y ( Y) • 

Suppose two L.c.s. X ( P) and x ( P) (22.1) have been defined 

and y (y) satisfies the hypothesis of [22.2] so that x ( X.) :> )(. ( X) 

C (h'). 
are of class Let ji(?) be a third N.c.s. such that y ( y) 

is not linear or differentiable ( see example II § 2 .4) . 

Hence we have a function x (_y) :::: X ( y ( y J J , not necessarily of 
(0\ •) 

class C which defines the same L.c.s. X (P) as before but from an 
) 

N.c.s. J ( P ). However, this does no violence to definition (22.1), 

for nothing was said there about uniqueness of defining function 

nor about differentiability of all such possible defining functions. 



Under these conditions then, we would have no assurance that a given 

c.v. with components in )(, X, )",.)' etc. would have any component 

defined in y. From these concepts we are able to distinguish two 

further subclasses of the general class il of coordinate systems. 

C(11.} 
Definition 22,7 N.e.s. - Given any N.c.s. y (P) then all 

other N. c. s. y (P) whose homeomorphisms )' ( J) , j (y) are of class 

Cc~) c<") ( 
will be said to be N.c.s. with respect to y(P), or j -P) 

( Cw 
and J P) will be said to be a pair of N .c .s. 

Definition 22.8 Irrational L.c.s. (I.L.c.s.) - Any Lc.s. x. (P) 

satisfying ( 22U) and the further condition that f0 = x ( o; ~+).:: 

for all l+ f- B. 

A pair of L.c.s. satisfying both these conditions with respect 

. . I C'", to their defining N. c. s. will be termed a pair of . L . c_± 

Theorem 22.9 ~The linear connection (2.8) undergoes a transformation 

of the form 
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(2.10 ) 1-. ( -;: , f, , I" ) == x: ( x ; r < x., r , ) L )) - x { x ; r. ; ~ l.) _ 

= X ( X ; ,-. ( X 'I ~ I J ii.) + X ( X ; f. ; jl. )) 

under the transformation X =- x (x) of L.c.s. on Vo to \lo ." 

Proof: - 1) For )(. f Vo we may write x Cy)= X (s !'..,) 

and cl X ( y ) = X ( s 1 1- • ~ ~) = X. ( v • f + ) = ~ by ( 2. 9) 
as ' / > 

2) Then I = x (y j ft } = ~ ( y ( j ) ; ,Y ( Y ; 1,.)) 



3) Now we know from [22. 2) that ~ ( )( ): x (y ( y( )( ))), 

so 

4) But,using the notation of Tulichal and Elconin ~1937-2f, 

x (x; 1 )-c df x (a-)= at; x (y (y<cr>)) = 

- x {_y(y(x>);d.;-J(y<cr>}=x (y(y(X);y (x;'i))t 

5) Hence f = >< (x; 5) ~ X (x (_j): x(_J; l+))=--;: (j(y} ;y (y; r+)) 

where the last eq_uali ty must be an identity for :ft: Wo· £.o 

6) Note now that f;t" is not a function of y for any 

I y "j+ 
pa th - hence CA. f."'' .) , :::= O.. So differ en tia te the 

identity just obtained and get 

x(Jcy>;y<>1;f;"J;y<y;s:)) t O;;; 

::- X (~(j);~(j; ~7); ,c. (_y ;J: )) + )( (x lj); X (jj 1."j !:)), 

'7) Which gives the first form of ( 2.10) on substituting 

from (2.8), (2.9) s; = ')" (y; f.') obtained as in 

steps 4) and 5). 

8) The second form of (2.10) follows from a basic identity 

proved by Illfi chal [1937-11, (Q, .E.D.) 

One should no-tice that the usual restriction that f, J 32. of 

(2.10) should be components of contravariant vectors is not made here 



as this property is established in the course of the proof from the 

property (2.9) of (22.5). 

tive 

We shall need several properties of the second partial deriva-

lx 
~ 

in our further study of the linear connection, and these 

we now establish. 

Theorem 22.10 "The runctJ.on_ f :, .: X ( S _y ( X l t:); J ( X; g~ )j y(x; g)) 

is homogeneous 
~; ,1 

of degree two in, a':s . 
== 

Proof: - 1) Let X == x (s f't-) undergo an affine transformation S .::a. t + b 
( a, , b ·. fixed and real) of the pararne ter S. 

2) 

3) 

4) 

5) 

~=x((~t+b)f
1)= F(a.i+b,r+) 

3= rJX =. dt dX = x(s p·; ~t) =¾ X ((at~b)1r;a. rt) 
os d.s ot 

f=..!... ft= ..2. F (o.1-tb) ~1-). 
' 4 ?)t a. -t 

s· ·1 l Jf di df I C ( -t b st) 
lilll ar y d s ::: cl s d s ::: al. rt t a.. -+ ., , 

Now replace j by )., f in 3) and get ! = A~ Pt- (C\t 4- b., Jt-) 

and note that this replacement, with a.,a..+tb, j't 

invariant, has the~ effect on 3) as the replacement 

of a. by a.A, with f 1 a.ftbJ ft- invariant, for all 

A. not zero. 

6) Hence in 4) by the replacement oi.,-, o..A we get 



7) But, by the equivalence established in 5), this implies 

(Q, .E.D.) 

Theorem 22.11 "The function F ( X, S, 'l 1.1 f ,_ ) = 
X ( s )' ( X ; 'f, ) ; y ( x., ~ f L) ; y ( X. j r L ) ) is a homogeneous :polynomial 

of degree zero in f I and is a homogeneous polynomial of degree t wo 

. f' It 
in :>, • 
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Proof: - 1) ).."- c>\. = x {s y(x ;) 1) j 'j (x; Ai)~ Y(xj).1})by [22.10] 
c)51. / 

2) ~:1. =X (sy(x.;A~)j J(x; f)j/(xjf)) by linearity 

= x (sy(x;1 )j_y(x; J)~y(x:;f)). 

3) Hence F is a homogeneous function of J1 of degree zero. 

4) Now in all previous considerations of y::::. S f-r we have 

5) 

<!' r -+ 
excluded ) = o, and 'f, :::. j (x. j !°,, is zero at f 1 = 0 

so we must permit this value to have F (-", SJ 1, l 3 1..) 

defined and continuous at L = o 

So, given f )01 there exists J > 0 such that 

II" 3 3 /I < $ ; ;:) ; II F ( X) s, OJ .f '\,) - F (XI s J ~ )\ ' ~"-a..} II= 

= 11 F ( x) s J oJ fa.) - F c", s J rl J r '- ) n < f- _ 



6) But for any J, e 'B there exists a ).. > o such that 

II A ~ 1 JI t.. 6 hence 

7) 

F{x) 5, O.J fl,..)= F ( XJ SJ f1, f \.) for all J3 E:- 'B.J 

- that is F (x) s) r. J fl.) is independent of r. I 

Then F ( X' s.) 'J, + 1. r "3, L. ) .::: F ( ~ J s, f '> l '1. ) 

which is of degree zero in f, . This satisfies the 

definition for a polynomial in ~ 1 of degree zero 

[ Martin 1932-lJ 

8) Since f is twice linear in f2. J , __ the rest of the 

theorem follows. (Q,.E.D.) 

~)- ~ Theorem22.12 11 1--,(XJJ,jJ~) becomes F(x.JSJ1J as - ~ 5=a. 

in the case r ,,: j L = d~ . If the closed linear manifold of values 
- as 

is 13 itself, then F{xl. f,., J'l,.) is the uniq_ue polar of 

39 

considered as a homogeneous polynomial of degree two in cJX/os. 
11 

Proof by a direct application of theorem 13 .64 in Iviartin f 1932-lj and 

[22.11]. 

Theorem 22.13 " The eq_uations X= X (s) obtained by fixing the value 

of 3.,. in ,_ =- X (s 11-) are solutions of the second order differential 

eq_uation -

(2.11) 



Theorem 22 .14 "The N. c. s. component + I .... (.J I f,"' J rt) of the affine 

connection vanishes for every y ~ Wo • " 

Proof I: - 1) From definition (22.5) equation (2.8) we have 

2) 

where we are to 

interpret /(J) as y(.x.~)} y , the identity 

transformation of Wr, into Wo. 

Hence, since the arbitral"J increment f,t- is independent 

of j, 

(Q, ,E.D.) 

Proof II: - By theorem [22. g) equation ( 2 .10) 

and by equation (2.8) the linear argument on the right 

is zero. (Q, .E.D.) 

Theorem 22.15 "The components r {xi f I IL) of linear connection in 

any L.c.s. )l..::X. (P) 
,, 

all X E- Vo. 

dependent on the N.c.s. yc:.y(P) vanish for 
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Proof: - 1) By equation (2.10) 

r < x, er\) fl. ) =- x < 1 ; ~ r (y I r j \ r.,... ) + y r x ; r, ; rt. H 
for all/ f Wo• L 0

, X 

2) Now _/ ( X. ~ f 1 ~ L_ ) -c: d fi. Y ( X j f 1) = d :,. ri1· 
where, as before, f,+ is independent of X , hence 

for all X G 'Jo . 

3) The theorem then follows from theorem [22.14 J and the 

linearity of the Fr'chet differential, 

Definition 22.16 The curvature form 'B (x, ) 1 . f 1., ) 3) based on 

the linear connection r ()(I fl j J 1, ).- A geometric object whose com

ponent in the coordinate system /. =- x. ('P) is 

( 2 .12) B c x ) 1 , ) f ~ , f 1 ) -= r r x 1 \ , , r l. ; j\ ) - r < x, r, , r 1 ; f i. J + 

+ r()(, r(x.,,.JL.), fl)- 1(x, rtx, f,J s3 ),fi.. ), 

The above definition is valid for all linear connections which 

we may consider which have components in X. = X (P) which are of class 

C 
(1) 

at least , In the present case it is clear that, since the 

components of linear connection in all N.c.s. and L.c.s. are zero 

throughout their domains of definition, these components possess succes

sive differentials which are themselves all zero. This yields at once 

the following. 

Theorem 22 .17 



in N .c .s. y =-;7 (P) and L. c .s. x'.= X. (P), respectively exist and 

are zero throughout their range of definition. 

~ nition 22.18 Locally flat space - A geometric space H satisfy-

ing the following condition. Given any --Pt: H and any coordinate 

system X=x(P)whose geometric domain M contains P, there exists 

a neighborhood of P, NP' contained in M such that Q € Np 
implies that the component B ( X) l 1.) r l., 1 3 ) of the curvature form 

is defined at X==iJ= -,.( Q\ and 'B (4i, f,j f~, jJ }::~or all 

J1., ft., J) in the coordinate space B . 

Theorem 22.19 
~ --~- =--=-

"The space H is locally flat under the definition 

(22.16) of curvature form." 

Proof: '- If we take N? to be M the conditions of ( 22 .18) are sat

isfied, since we have shown that although X (y) was only assumed of 

C(~J / 
class Yl 4' 2., the second Frechet differential is zero, and 

hence all higher differentials are defined and zero - hence 

is defined and zero is required. (Q, .E.D.) 

§2.3 A More General Case 

A theory of the space of paths which is more inclusive in its 

scope will be considered now. A weakening of some of our hypotheses 

leads to a somewhat more general concept of differential than the 

Fr~chet concept used up to this point. ?:his, in turn, permits defin

itions of connection and curvature for cases to which the previous 
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definitions do not apply . Further , we shall shOIV that the space of 

paths meeting our new hypotheses is not necessarily locally flat. 

For this purpose, let us adapt for present use certain ideas 

concerning sets and dimensions which are already well known. 

Definition 23.l If'\ -dimensional subset ["' - Any subset of a 

real Banach space :B having the three properties: -

i) 

ii) 

E"' contains at least r'\ + I elements, ( Y'l finite i , 

corresponding to every set of h + I elements 

fo, f I' f '2. J .... ' r"' of E"' there exists a set of Y\ 

I \. M 
real numbers a, A 7 ··•,a such that 

ro = ex r\ + 0. ~ L .. + ' l • -+ a." f ~ , 

iii) there exists in E,.... at least one set of ~ ele~nts 
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.., . . 
Y\ I , 1,. > ... 1 n.. such tha. t ~ bJ Y"lj = 0 : ::, : bj :::: 0 J j == I., 2 

J ... J V} • 
. ( JS:.I l. 

Definition 23.2 
-o 

Open Y'\- dimensional subset t:: - Arry -n-dimen-

sional subset E~ which is open in its own linear manifold. 

Definition (23.2) implies that 

Xe, G E~ ' then there exists some 

II )( o - X. II < i ( Xo) , where 

-o t.. "l'\ is an 

J (Xo)) 0 

f '1 such that if 

such that 

for some set of real 

numbers et',•··, o."" and some set of '1•>YJ1.,"'J l"' satisfying 

(23.l iii), implies that )<..E, E
0

1"\. 

Definition 23.3 Linear rt-dimensional subset C ~ - .Any subset of 

a real Banach space b which is an E Y\ and also a linear manifold 



under the operations of the original Banach space. 

Definition 23. 4 \"\-dimensional sub-Banach space C .... - Any sub€)e;t: :of 

:B which is an 
-L t 1-\ and is also complete. 

The following properties are almost evident from the above 

definitions and will be stated without formal proof. 

Theorem 23. 5 E~ co 
i) Evel"IJ Y\ .is automatically an L...., "'. 

ill Every Elr\ determines uniquely ~n E ~ which contains E i--. 

E: V iii) Every "contains at least one set of elements V,,V'l., '~ '- 1\ 

with the three properties: 

a) II Va II= II Vz.11 = ••• 
-------

hl Every f f E ~ can be expressed in the f orm 
\-\ . 

= ~aJ\/; _ 
J"'I - -

•. -
b~ ==_ o_ J :::- l , 2, •• • ., n . 

Definition 23.6 Basis of an E-~ (E ... ) . , ., - Any set V, , V 2., • • • 7 V 1-\ ~---------------
satisfying the conditions [23.5 iii)] (for the E~ determined by E ..... J. 

Theorem 23. 7 nEver~ EL is ~utomatically a C, .'' 

Proof: 1) If }f E ~ 

and any Xe 

, then Y = ..!.. ~ f E ~ is a basis of E ~ ~ 
II~ II 

E ·~ can be expressed as 'J'. :::.C\. V. 

2) Let (o.i =Q.;y'f be a regular (or Cauchy) sequence of 

elements of E ~ . 

3) Hence, given (: > o there exists an h"\ { f-) such that 

h ') V'Y' and p.::: 1, '2., • '· : :::, : 

II )( VI -t- f - X i.i \\ = II a\\+ P v - (A" v 11 = \ a"'+ r - a"' \ <. E 
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4) However, since the real number space is complete, there 

exists a real number a. == ~ i rn a J by step 3). 
J ➔ OO 

5) But ~ v € E ~ by [23.3], hence E ~ is complete. 

(Q,.E.D.) 

Definition 23.8 E (o) . 
Sets c~J open relatively to n-dimensional subsets 

Any subset of a real Banach space B such that if E ~ is any open 

E{o\ E(o) 
Yl -dimensional subset (23.2) contained in c~l (and c~l contains 

at least one such E ~ ) , then there corresponds to every Xo E E ~ a 
( (o) 

number J (xo);>o such that llxo-XII < o(x.o) implies XoE E {n). 

The parenthetic restriction is inserted to prevent this defin

ition from being satisfied vacuously. It will be noticed that this 

E(o) 
definition ilnposes no restriction on the dimensionality of en) other 

than the natural restriction of the dimensionality of the containing 

Banach space. 

Theorem 23.9 t1A:ny set 
--(1>\ 

of dimensionality d {provided l: c"' \ . 

contains at least one l::. ~) is necessarily a set E fo) j 

(W\I, D'.' 00 

and Vl < m < co but is not necessarily a set 1 < n (even 

E(o) 
though en> necessarily contains at least one 

- {c,) 
) . A set E_ Co) 

is an open set in B , and conversely any open set in B is a set 

E
(o) 1/ 

(..-.) for all n., 0~ Y1 ~ d~ 
Eo E <o ) 

Proof: - 1) Let m be an open m -dimensional subset of Ch) 

m < ro and n <. vn i d , and Xo an arbitrary element 

of E ~ 
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2) We need only show now that there exists at least one 
o E.(o) E '\l'l containing X o and contained in c""') and the 

theorem will follow from our hypothesis and (23.8). 
WI . 

3) Let Xo = i:, 0. J VJ 
1 J:I 

and ~(X'.c1))0 satisfy (23.2) 

for E ~. 
4) Consider then the set of elements X of the form 

,, . ' ,,.,.. . 
x= 

1
?;; (aJ+ .6aJ)½ + ~+

1
a;Vj ; where 

/Aajl .( d(X.o) j::::: 1, 2 , ••• ,n. 
n ' 

5) By (.23.2) this is a set E ~ which is contained in E ~ 

and hence in E 
(o) 

(n > and it contains Xo . 

6) We prove the second part of the theorem by an example:-

7) 

< o) 
let E (3) consist of the open unit sphere about the 

origin in rectangular cartesian 3-space plus the open 

unit circle in the xy -plane with center (3,0,0). 

E~ In this example the only J are in the sphere, but 

Eo E.-(o) 
there exists an z (that part of C3) in 

which does not satisfy our condition. (Q,.E.D.) 2 

EOC> 8) Every consists of one element only (vacuously open). 

Eco) f o 
Conversely, every eleraent of (o) is an O , and 

E 
(o) 

hence any ( o) satisfies our definition as an open 

set in 5 . (Q,.E.D.) 3 

In particular, one may assume that an E
(o) E{o) 
( "') is not an c ~ _ , ) , 

though we shall not make this restriction consistently. 
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Definition 23.10 L. F -differential - A function f , (x ~ S x. ) is 

the L F -differential of F, (x) at )( ::: Xo E- E : C E ((~ ~ with 

respect to 

i) 

E
-o 

1 if it satisfies the following conditions:-

F, ( X o ; ~ X ) is defined for all d x f E ~ = C , 

responding to E 7 and has values in B > 

cor-

ii) F, ( x 0 ; J x ) is homogeneous of degree 1 in d x on C, 7 

iii) given f- ; o, there exists I> o such that II J X \\ < d , 

47 

J ~ f C I : ::> : II Fi ( XO + ; X ) - F. ( X' o ) - Fi( )( O ; s X ) II ~ f II J X II 

Theorem 23 .11 ttThe 

r" ? continuous in 

linear in S x . 
11 

L F -differential of G (x) is additive in 

• 
in some neighborhood of zero, and hence is 

Proof: - 1) Let Xof C, and let \I be a basis of C, then 

F, ( XO ~ d X ) = a. F, ( x'. t, ~ V ) 1 

2) F, ( Xo; J, X + s -z.. ~) := ( a,+ Ch ) F. (x ,, J v ) = 

== a , F , ( x o ; 'I ) +a.~ F, ( x o 5 v )= F ( x o; $, x ) + f. ( x,, ~~\.x ). 

3) F, ( ><o i O) = 0 and II F, ( >C,; d X) II :: I al, \\ F, ( Xo; v) I\ • 

4) Hence, given (: ')b there exists ~ == II ;(Xo; y)\\ > 0 

such that I I c5 x II = I a I < J : .:::, ; 

\a. J· JI f, (Xo ~Y) II-= II f, (Xo; dX )\I ( E- • 
(Q, .E.D.) 

Theorem 23.12 "A necessary and sufficient condition that f-' 1 (x) be 

- 0 -L,f -differentiable throughout EI Ct is that the derivative of 
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with respect to s exist throughout E 
0

, , where X 

E
O II 

is an arbitrary element of , . 

Proof: - Nee. - 1) E- ') 0 'there exists d ~ O such that 

II al X \\ = II ,, )( II < ~ / = i& \\ : :::> : 

II F (x __.Ld')() -F, (.x)-F.(x : dx)~E- 1
11-r)<'l1=..§:._ll'1"5(11 

I -, ) lf~\I 

: ::> ! )I F. (Cs-t 'f) sr) - F;'(sx) - F,(sx; ,x) /I 'E: I I l 

:::i :jj F,(<s+-r'l~l - F.lsX) _ F.(sx;xJ)j4 E-

2) But this is just the con:lition that 

L ; vY\ F, ( ( s + .. ) X) - Fl ( s X ) :== 

'1-rt-)'o 1 
exist and equal F, (5 X; X). (Q.E.D.) Nee. 

3) The steps of this proof may be reversed in order in an 

obvious manner to prove sufficiency. (Q, .E.D.) 

Definition 23.13 LI\ F -differential - A function Fn ( X; d X) 

L F E o E (o) 
is the .., - -differenti~l of F:, ( X), n ~ 2-, at X = Xo c n C c11 ) 

E o 
with respect to n if it satisfies the following conditions: 

i) ~ ( X. ; d x) is defined for all d.)/\ <:: E ~ correspond

ing to E 01'\ and is valued in B, 
ii) Fn (xo ; d. ~) is linear in dx on 

iii) given ~ '?O there exists J > o 

and dx E E ~ 

L 

E "' ., 
such that ll~xll <d 



Attention is called to the need for assuming linearity in 

(23.13 ii), as theorem [23.llj is not necessarily true in subspaces 

of dimensionality greater than one. 

'Iheorern 23.14 "If the Fr~chet differential Fn (Xo ;d X) of i=-"' (x ) 1 

n )/ 1, exists at 

respect to any E ~ 

)(::: x~ , then the L~F-differentia:Uwith 

containing X o and contained in E (6) 
(>') exist 

at )(.::. Xo and are equal to F"' ( Xo; dx) for all d X c E ~ . 
11 

Proof: - 'Ille theorem is an immediate consequence of the definition 

of Fr~chet differential and (23.10) and (23.13). 

Definition 23.15 Partial L1o.F-differential - 'Ille function 

F" ( X , "- • , • • • "- s ; d X ) , n >/ I 5 ~ I 1 is the partial Ln f -

differential of ~ ( X, A 1 , • • > ).s) with respect· to .X. and E 
0

1'1 at 

E-o Eeo> , ). 
Xo E t'\ C (tr\) if, for any set /\,, • • ·, l it satisfies 

conditions i), ii) and iii) of (23.10) and (23.13) for h~ I and 

'r\ 4-' 2., respectively. 

It will be readily seen that by appropriate changes in wording 

of the statements and proofs of theorems f23.llj, [23.12] and [23.14] 

equivalent theorems for partial Ln F-differentials may be obtained. 

Definition 23.16 Higher order L"' F -differentials - If the 

L "'f-differential F"' (x 7A, · · · ).,. : J 1 x : .. . : 2;._ X) 
) ' ,., j , ' • • , -, 

of F..., (x, A,,·· .,). 5) with respect to A and E~ exists at 

x =- )( 0 E= E ~ and itself has a (partial) L.., F-differential 

F"' ( X, i\..) •~•,As ! J, x: ... : JIM _, )(: J ... i) with respect to X , , 7 J 



5·0 

and the same E ~ at 

will be called the mth 

x= Xo E- E~ , then ~(x),,;··,As;~,Xj··•;t,x ) 

L"' F -differential of F"' ( X, A 1, • • • J As) 

with respect to X and E ~ at X = X o • 

Note particularly in the above inductive definition that all 

successive definitions are to be taken with respect to the same 

E~ open n -dimensional subset , , containing X 0 • It is possible 

that a f unction may be continuous in a restricted sense while not 

satisfying the general criterion for continuity. The importance of 

E~ the set ·~ increases if the function and its differential are 

E.
- 0 

defined at all points of "" . 

Definition 23.17 E: Continuity with respect to an .. - A function 

is continuous at XG E E~ with respect to E. ~ if
1 

given 

E- > O 1 there exists a ~ ( X o, f ) > 0 such that J ><. ~ E ~ 
and II ax II< ~(Xo) E:) 

II f ( X.. + ~ x) - f ( X. ) II < E • 

We can readily see that the associated ideas of unif orm con

tinuity, locally uniform continuity and so forth may also be consid

ered with respect to some particular t ~ . 

Theorem 23.18 "If F"' (x) has an L~ f -differential with respect 

to X and E ~ at x.. == Xo E: E ~ , then I-¾ (x) is continuous in 

X with respect to E~ at X == X. 0 . 
11 

Proof: - 1) F"' (X o j ~X) is linear in J X , hence there exists a 



modulus f"1 (Xe) such that 

II F~ (Xo : ~x) II ' M(xo) II~)( II 
} 

for all J X E E ~ . 

2) Given €')'0, there exists a d(xo..,E-)>o such that 

II J X \\ < a ( X t) J E-} and J X €- E ~ : :::, : 

11 F~(xo-t-$x) -F(x.,)/l{f \\~xi\ +MCxo)\\ax:11. 

3 ) Now let ~ = YY'\ i Y\ ( J ( X O, t ) ' e : M V(o) and II ~ X II ( a . 

( ~ .E.D.) 

Corollary 23 .19 "If F"' ( J( , J• , · · ·, J t ) 

differential with respect to X and C ~ 

has a partial L"' F -

at X = Xo E E; 
I 

is continuous in )C. with respect t o 

If we restrict the increment in the usual definition of 

Gateaux differential to lie in E~ , then the existence of the 

L ... F - differential implies the existence of this Gateaux differential. 

It then becomes merely a matter of rephrasing the proof of theorem 

1.1 in Tvli chal 11936-11 to establish the following. 

Theorem 23.20 "Let F"" ( x, y) be linear in y and have a first 

partial L"' 't- -differential , F ( X, .J ~ J X) with respect to X 

and E O 
~ • Then the total L"' f -differenti al exists and has the 

form 

r-";, 1 V 



at X. = X c • Furthermore if F"' (x ,J j ~ x ) 

X at X. = x o with respect to E ~ , then F"' 

continuous in x.. as well as in ..J , ! x, and 

E O \I 
Y'I • 

is continuous in 

( x1y ; ~1- )y) is 

o/ with respect to 

Corollary 23 .21 "If y in theorem [ 23.20] is a function .:J-= y (x) 

of x having an LI\ F -differential on the same E 0

1'\ , then the total 

E~ differential with respect t o x and . , exists and has the form 

F1i c )( , 1 ( )( ) ; r x. , $ y ) = F... ( x 71 c x ) ; g x. ) + r-.... r x J 1 .{ x ; s )( ) ) . ,, 
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Definition 23.22 Class L.... ... - A function \-1;\ (x,y,, .. ,y,, )7 h )1 1Js ~ o , 

will be said to be of class C ':: ~ if its L~ F-differentials of 

the first m orders with respect to X. and E~ exist and are 

continuous in )( ,with respect to E~ ) for all )(. in Eo 
"I and 

all ll ~-, X II < \ ? 
L= 1,1.) • • -, m . 

In the present section we shall again use the notation of 

fi gures land 2 with the meanings given in (21.23) except that L.c.s., 

and all notation pertaining to them, will be replaced by the follow

ing P .L.c.s. 

Definition 23.23 P.L. coordinate system (P .L.c.s . ) - .Ariy coordinate 

system X (P) = ><. (y (f'),Xo) defined in terms of an N .c .s. by a function 

J<.. = X (y , x o ) 

i) X (j , X o) 

satisfying the followi ng conditions:-

is defined, single valued and continuous in the 

C
(-) 

ordinary sense for all y E- L. 0 , and it is of class L.. , with 



respect to y and any E 01 of the form ./::: s ft contained in 

2. o
1 

,= w O ' r. o ( yV\ ~ :l_ ) • 

ii) )(., is a preassigned element of .:B and X ( o, X:o )-=- Xo, hence 

XO E X o 

iii) There exists a function .,,J ( ><, x o) which is defined, single 

valued and continuous in the ordinary sense for all x E X o and 

which satisfies the conditions 

for all 

)J(X (j 7 x")) Xo) = _)I for all 

iv) C
(ml 

_j( x 
1 

::1. 0 ) is of class 1... , with respect to X and any 

E ~ C \/0 for all 

by )(. -::- X (j, x o ) • 

x. E:. v'0 , where \/o is the map of 2..:-= Wo· 2.o 

Theorem 23.24 "Let x('P) and x ('P) be P.L.c.s. obtained from N.c.s . 

..J (?) and _j ( P ) respectively. Then there exists a pair of mutually 

inverse transformations X (i) and i (x) which constitute a homeo

morphism between Xo' and X: . 
Proof: - l} By [21.24} there exists a homeomorphism y (j}) j (y) 

between 2: and 

2} By the transitivity of homeomorphisrr1S and (21. 1} 

exist and satisfy the theorem. (Q.E.D.} 

Theorem 23.25 "If x(P) and X (P) are two P.L.c.s. defined in 
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terms of a pair y (P) ,y ( P) of 

homeomorphism X ( X) , X. ( x) is of 

Proof of this theorem exactly parallels that of [22.2] with the same 

range of validity. 

Definition 23.26 L1c.v. associated with r. -Let x.(i'i} and x ( x) 

satisfy [ta.3. 24] 

components r. r 

and -P, f s: . Then the geometric object whose , .. ) 
in all such C. L, P.L.c.s. are related by 

3 :: x ( x ( P,) j x. (y ( P,) , Xo ; 1 t )) 

3 = x ( i ( P, ) ; i (j C P, ) , Xe. 1 1° t J J -= x C x i r J 

will be termed an L,c.v. associated with P,. 
From this definition it follows tbat this L, c.v. has components 

(") 
in the C., L I N .c .s .) which satisfy 

(2.14.) 

Definition 23.27 "P -Linear Connection - Ar_ geome tric object whose 

components in P.L.c.s. x('?) is 

(2.18) 

t ~ t r+ 
where 1 J J 1 , • .h. are in the same E ~ (). ) with respect to which 

(n') 

* The definition of C L , N.c.s. is analogous to (22.7). 



the L.F.-differentials were taken. 

Theorem 23.28 11The P -1inear connection rp ( X) f, · f2. exists 

and is symmetric and bilinear i ~ 3 11 r 2. , \I 

'Th.eorem 23. 29 11If a linear connection r ( I.. , r. i fz.. ) ( 22.5) 

e_xists, then the __ p -linear connection exists and the two are equal 

over their cormnon range of definition.n 
" . -

Proof of these two theoreras involves only a direct application of 

iefinitions (22.14) (23.10) (23.16) (23.23) and theorems [23.111 

(13.14]. 

Theorem 23.30 "The P -linear connection undergoes the transformation 

(2.16) 

-
on ~~r _ ~ ~ {r.) ! O _ E; J j>- ) contained in 

of the pair X ( P)... i { P) of C(") 
L, L.c.s. 

0 0.
f/ 

is an L.c.v. at all points of 

Proof: - 1) By our hypothesis 

A~ and 

- , 
X o respectively 

and f of ( 2.1B1 

2) Equating these yields an identity in J which by [ 23. 21 J 
may be differentiated with respect to ;/ and E ~ to give 



X ( )( (y) )( 0 ) j ;( ( y', .>< o ~ f, +) ~ x'. (y, x O ; f i°)) + 

-t J (,<.(_y, >lo); x.. (_y, ><o ~ f ,t-; r/)) = 
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= X (J ( ..>') ; )" ( _j ; f , ... ) ; y (Y J 3 l 'i-)) t- X (9 (y) ;J ( y) f/ ~ f ;- ) ) . 

3) Now note that f, +- is a fixed element of E I L 

determined by 1::.. ~ f~\ hence 

y st" J 

where f ,+-= .J (y j 3 1 r } is independent of 5. 

4) Hence j {_y j f,1'; 7 :) = J.. ft with respect to y and 

E ~ ( ).. ) . is zero. 

5) :. The last term on the right is zero by the linearity 

[23.11] of the L1F.-differential, and we obtain (2.16) 

directly upon substitution from (2.lS) ( Q.F..D. ) 

Corollary 23.31 .- "The 

satisfies 

C<-.> P-
L, N.c.s. component o f Alinear connection 

(2.1'7) 

f or all s.) s ' .) s.. such that )') J,) y.. E E ~ C Wo .'' 

c., .. , Corollal"IJ 23.~ " The · L1 N.c.s. component o f the curvature form 

based on the -P-linear connection (22.13) satisfies 

-=O 



a ,, 

such that y, ;;I,, y .. 1 Y~ E- EI C:. Wa • 

We now find, however, that our definition ( 22.18) of a 

locally flat space is not in general satisfied under our hypotheses. 

'Ihis is seen from the fact tba t the curvature form ( 22.16) is not 

necessarily defined throughout any neighborhood of a given point in 

H. This result, moreover, is still in perfect harmony with [23.31] 

and [23.32] as we shall show in § 3:.3 that the normal coordinate 

component of linear connection and hence the curvature form based on 

it vanish for values of the increments in the same linear set asy 

(i.e. on the same path). 

§ 2. 4. Examples and Illustrations 

The first of the two following exa~ples relates the present 

theory to the well known theory developed in spaces of f inite dimen

sionality. The second exhibits a case in a di mensionless space of the 

modified differential of ( 23 .10) . 

Example I. Consider the case in which B is the Y'\. -dime nsional 

arithmetic space. Here under (21.4) equation (2.1) is expressed as 

s E:- J 

..!l ,. 
is fixed and ?- ( 5 ') 4 o in the normal 

t..=:1 

coordinate system .. /.:: .J; (P) and as 

(2.19) s t- J 



~ c-, -'l. -") where again .:> = l ., 3 
7 

• , ·, f 
,. 

is fixed and 2. ( f' f" t= o 
i.:: I 

in the j ; ( p) N. C. s. 

In previous treatments of this case the assu.,_"'Il.ption has been 

made that .s.::: 5 , throughout their common range J =- J . We shall 

here only insist that s (s) and $( s) shall be ( 1 - 1) cont in-

uous, and mutually inverse over their ranges of definition. Hence 

we obtain 

( 2. ~o) 

which reduces to the usual form if we let .Sc: S . 

sides by 5 and we have 

Multiply both 

y~ - 3'- - ds 1f r; == D( J yJ (2.2:t) = .s = .s -0-5 

where o(i = 5 ~ d._y -~ which may or may not be a function 
J ..s d-s <A /J 

of s . In case it is not (as for S=s ) then the transformation 

of normal coordinates is linear, and the § are components of a 

contravariant vector. 

Let us point out that it is perfectly pos sible to impose the 

condition that a certain finite set of points (or even an infinite 

set) on every path shall have equal values of the parameters 5 and 

S in the two N.c.s., without thereby necessarily maldng S.:=-S for 

all point s of the paths. In particular consider 
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(A) 5 C' 53 ~ 5.:::: s) IS\~ i ) sl ~ i ; 

5 = s IS\ 7 i lsl7.i~ 
) 

J~(P) = [s CP)]yl (1'). 
(and S-='S) 

(B) S= ~ ( principal value) 4.r'c ii"' i) 

lslfl \flE-1; 

It can be shown without difficulty that in each case the mapping 

J ( P) has the same geometric domain as y ( P) and is continuous 

and solvable with continuous inverse, and that every path L ~ Mo 
-· 

'will have a"map A of fo~ J~ ; s r' in )I (P). Hence, from 

our definitions, J (?) is an N.c.s. associated with -Po. Yet the 

transformations y ( :J) ,.J Cj) are not everywhere differentiable, 

and hence the 5 is not a component of a c. v. throughout Oo. It 

is also possible to construct a similar example in which the first 

derivative exists and is continuous but the second does not _exist 

throughout Oo. 

On the other hand, if we do assume that .J (y) is linear, the 

above development leads to precisely the usual definitions and laws 

of transformation for the component s of linear connection and curva

ture form [e. g . Veblen 1927-1] . 
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Example II Here we take the coordinate space to be a general 

Banach space and consider the properties of certain functions . .As 

these depend on the norm (which is not Frechet differentiable), 

the uniform continuity of the norm is first established. Ultimately, 

a function yielding a P.L.c.s. but not an L.c.s. is studied. 

Theorem 24 .1 :'The function 't-' (y) == llyll on B to the real num-.., 

B Ii 
bers is uniformly continuous on . 

Proof: 1) lly0 \\+ 11$y11 ~ lljo + 6_)11\, 

2) llyo II - H Jy11 ~ 1\_jc, -t a7 I\. 

3) Given E ;> o there exists d U-) = E: > o such that 

i) if llyo+ ~yll ~ lljoll, ll~Jll<~C<:-} ~:,: 

)nyo+~)' II -ll/0 111 = lljo +~JI\ - I\Joll ~ H~yll<~step 1)) 

ii) if llyo-r3/I\ { \\joll, \16yl\<~(E:) ::::,; 

11110 +~yll - ll)'oll I-= IIJoll -uyo-rlyll ~ ll~ll<'E-_, step 2) . 

4) Hence, given G 70J there exists J >o independent of 

J such that 

11Jyll<i :::,: IY(J+~j) -r1(y)) <E- . (Q.E .D.) 

Theorem 24. 2 "'.Ille function )( ~ f (y) = \lj llj on B to ~ 

is solvable and has the inverse j == ~ ( X ) == ~I x o \lxll 1 _ 

and the t wo functions have L 1 F:: differentials with respect to aJ,.l 

Eo, B not containing the zero element of , which are continuous 

throughout their range of definition. The two differentials are 



dx = 3Jlyll'l.J.J and dy = IIX 
11

,. 11 d x * and are solvable 

linear ( 1. e. they are mutually inverse,) in J. X and cl .J . 

Proof: - 1) Firs t we show g ()() is continuous at x = o . Given 

€- > o 
I 

there exists a J (f::):: f 3 > o such that 

11 a x 11< i c ~ ) : .::> = 11 g co + t x ) _ g co> 11 = 
y 

= II g c J x ) II = II ~ x II l < E:- * 

2) To show solvability, we have by direct substitution 

Y _ ll Y W- J _ II Y II l.. j'-= y f or all X J j E. .B • 
- 1111 y11-i. y II l.11 - 111yw·1i011y11~ / 

3) E; of B will be of the form ;y = s 3 where 5 is 

fixed and s satisfies (say) o < S < co. Then to 

show X.= J1Jlly has the L,F-differential 

d X -= f (y0 J J .J) == 3 JI)': ll t J y with respect to 

J and E ~ at y ==Yo= Sor we have 

11 ~ ll = )l f < jo + 6 _y ) - f CID ) - f CJ<> ; J y ) II == 

= / 1~0+-J°sJ1. (So +Js) - )So(\So -j/Sof·Js/·1131/
5

=. 
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=- Is:+ 3 $: 6 s + .s Su(Jst+ (Js i - <:,J - 3 501..Js 1-11~ li3 = 

= l J s I~ I s s., + J s / -j r II 3 = ll c0 J II l_ 11 3 Jo + c1 y II. 

* Throughout the following proofs, fractional exponents will be 
used to denote the positive real roots of positive real numbers. 



4) Hence , given E- ) o there exists 

such that lldy \l <:.J implies 

(Q, .E.D.) 1 

5) 'Ille uniform continuity of f (y ~ Jy) in y follows 

from theorem [24 .1]. 

6) To show that g( x.o; c).x ) = 
1 

t/ J x is the 
3 II Xo ll 1 

LI F- differential of _g'(x.) = I\ x 1(1/3 X with respect to 

X and E 7 of the form X =t). Dt. -l <GO at X:::. Xo -=to f, 

we have 

7) Now by Taylor's theorem it can be shown that 

where l RI ( 2 
Sf 

8) Hence, given E- >o ~ there exists s= m\n ( 1~ 1, E-ll~ll .1) >o 

such that /I £x // < J implies 

. 111.1 u = 1 \ t r, R 1 • 11 x O 11 ~J = 11 d x 1( 1 RI s, ~ 11 J .di '-3_ _ ( E 11 ~ x 11 . 
O D x., II IJ II X11 II .s/2 ,.; 



9) Again by theorem [24.11, i&(;.id)d is continuous int. at 

all points of B except zero. However , we cannot establish 

uniform continuity over regions containing zero in their 

closure. 

10) Lastly, by a direct substitution, it is verified that the two 

l. F - differentials are mutually inverse in their increments 

(Q.E.D. h 

It will be readily seen that the functions in the above 

theorem do not possess higher order L1F - differentials, hence the 

following case is of greater importance. The existence of a linear 

functional L> not identically zero, in any normed vectorial space 

has been established by Banach {Theorem 3, p. 55, 1932-21 and we 

shall assume that the function llx) on B to ~ in the following 

theorem is such a function. 

Theorem 24.3 "Define 

Then - i) ( 2. ~) and ( 2 • ~ Ji) are mutually inverse provided we talce )( o, 



the set of values of (2.22) as the domain of definition of g<x,Xo) 

and g ( X o ; t. .. ) -e o ._ 

C 
( 1. ) 

ii) (2.22) and (2.2~) are each of class L , on subsets 

and EO I ( ) 
- 1 x~t f , -t / o i. e::J ' 

and the L ,F-differentials are of the following form 

(2.24 ) 

(2.25) 

(2,26) 
I 

g ( X J X O j 6 X ) ==- ~ \\ X - XO II - i I L { x' - >< 0 ) I -
4 ~ ' )( 

iii) 

iv) 

/I 
are mutually inverse linear functi ons of their increments. 

In the proof we shall take )( a = o E: b 

the notation and does not lessen the generality, 

which simplifies 

Proof: - 1) To :prove (2.2."1). Given any E. ~ as in ii), y ,, E E. ", 

and E "'? o .> there exists a 



such tha t II~ II < ~1 and J J f E ~ implies 

II f (Jo+ J j) - f (yo) - f Cjo J J .J) I} == 

=- II II Jo + J y1 \\ >- L {yo --t- J J) 01 o + J J) - 10"o 111-L (y~) / o -

, - 4 llJo 11'" L ( Jy )yt) I\ -= 

= l1so-rfs1'"(~0 +is)'"- lSol,.Soi._ 41 Sol .... So c\s)· l\sllJ I L(r)\;:: 

~ '" So,_ ( J s r-+ 4 So (as )3 -t- ( J s) ~) • II f 1(5) L ('.l) } = 

= I i s 1,., ~ ~: + 4 So r s + ( a" s )1' I . \I 5 II? \ L Ci) \ ~ f, II J _)' \ L 

2) · Remembering that d_j is independent of _j (2. 24) 

follows from theorem [24.2J. 
--o/ --o/ 

3) To prove (2.28), we have for any t:., as in ii), X, E E; 

and 6 >o ) there exists a 

where we understand that h, is so chosen that, in the 

( I J,tJ?4 
- I+..!. h + (~)'-'R Taylor's expansion 1--t T, - 4 t, t,, , , 

1it l< ~.1 
\R,I < Mi 

•<" implies 

11 e c x • -~ J )(. ) - e, x \ ) _ g c x, ~ ; ~ > 11 = 

.,::: ll 11 )C + Jx ictl L (x I -t- s X ) , -~ Cx 1 -to J X) - II x, U-1 IL (x ,)r¾x, -



66 

= l, ± ct, +~ t )i'-
114

( +. Ts+ ) - 1 ± 1: I 1 - ' 14 t:, -

- ¾ I ± t ii~ J/~ J t l · II + f 11- t ) L c + s) {-i ll f I l 
where the ambiguous sign is to be chosen so that .±. t, > o 

and hence I ± t . I = ± t , . 
It follows then that II J X. H ( J'l. implies 

llt5 (x ,+ Jt) - gc:.<.) - g (x, ; fx) l1= 

= 1 ± t l ~ / #) ~ I R, I · II + f ,i- ¼. I L c + > ) 1- ~ ll r 11 ~ 

c )IJ d \><, 11,:\L(,,llv• ~ t' II Sx\1. 
CI 

4) To prove (2.2ll) - given E I as above and f >o,, there 

exists 

J3 = ""'" ( ll~~I, :;, II X, 1(f; J LC,,)(" J L (Ix)/ ') :>o 

such that )I fnx /1 < clt. implies (ambiguous sign as above) -

II t c J( , -+- J~ )( J J. J{ > - g c x:, ~ J, -" ) - g c x . ~ J. x 3 J\. x J II l: 

=-II¾ IIX,-+ t( x ,i-t IL (x 1-tb~x ) r ~J. x - { II x, 11-i j L (.( ,) r1J, i + 
s 

3 ... -l: [ 1-qL r r 
-+,?; Ii )(, , II L Cx ,) ( a,x) d\. X I/ == 

~ ]J±C-t,-+-J~t)I~~ - }:t t.ri "r J /ttJ~J,;t } · 

• ll~J. x 11 • ll =1= S 11-l IL ct J l · l L c :i: f) 1- f = 

= l ± l,i-i l c 1+ #.ri -1 + ¾ C{~) 1 · l1 iJx11-111 r1rt1 Lr1Jl · 

• J L ( f j) 1-(~ Ti JI i.x r ,, X1 ,r f j L ( X 1) /-f I Rt)·/ L (£.~)I ~ € JI d1 X II 



5) A direct substitution will verify iii) and iv) (Q.E.D.) 

It is well known that the norm of a Banach variable is not 

/ 
Frechet differentiable, hence, though the functions (2.22) and (2.23) 

will permit t he definition of a P.L.c.s. from a given N.c.s., they 

will not define an L.c.s. 

Several other functions sinlilar to the above have been 

studied in this connection with the following results which will be 

presented without proof. 

Theorem 24.4 
11 

)('-e f 0' ) c:: l\y II L (y ) y has a first L.F°-differen-

tial f (y ; i y) ~ 3 IIJ II L ( ly ) y = 3 IIJ II L ( y ) J j 
t:. 0 II 

with respect to J and c. 1 but has no inverse. 

Theorem 24. 5 
11
The general problem of finding real exponents o<.. and 

(3 such that X =- Hj llb( L ( y ~ 
,, 

will be nrutually inverse has no solution. 

Theorem 24.6 
11x.=f (y): 1/yny has a first L F°-differential 

f Cy ; iy) ::. .2, U ,Y 11)1 and an inverse J=i ( x): { II X u-i X. also 

with first L, F'- differential 8 ( ;< ~ Jx ) :- ~ \\ X 11-i J x :' 
II I'\ 

Theorem 24.7 S =- \I y I\ as a real valued f unction~ is not 

Li F - differentiable. 11 



III 

ADDITION.AL RESUL'IB 

§ 3.1 Abstract Normal Coordinates 

The first of the following two theorems relating to the 

paper on abstract normal coordinates by Michal and Hyers fl938-1} 

extends the corollary on p. 166 (see also theorem 17.2 fl939-1]) 

by showing that the normal coordinate component of linear connection 

still vanishes if the second two arguments are not even maps of 

points on a path, but merely are points in the coordinate space 

which are scalar multiples of the first argument. The second theorem 

applies the methods of fl938-1} to proving the validity of an 

identity in the curvature form analogous to one due to Veblen 

[1922-17 . This is proved both for spaces in which an abstract co

variant differential [1936-1} is defined and for spaces in which 

a normal coordinate system and hence a kth extension can be defined. 

Equations mentioned in the latter theorem are specific references 

to equations in f1938-l} 

Theorem 31.1 "In any normal coordinate system with coordinate 

domain. Y there exists a number p ;> o such that 

(3.1) ,.. r (s). , t. :\ ) u.). ) = o . 
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for any AE O, ltl< a:::> lu\ <co -' IS I~ _e__: 
J - "~". 

Further, 

if Y-=/: .B , then there exists a greatest such 
II p <: oo. 

Proof: - 1) For any f ~ Y and o ~ s ~ I , y cs 3 satisfies 

~ +r· ( d.)I d.y ) 
ct.si-+ 'J,rs 'Ts :::O. 

2) Hence + r (s 3, f, 5 ) = 0 , 

3) Since Y is an open set containing o f- B , there 

exists a p > o such that \\y ll <. f ~.::,; y f- Y. 

Furthermore if Y 4 'B there exists a maximum such 

4) 

5) 

(Compare theorem [21.12]). 

Let A ~ B be arbitrary and f 'c ~ :;.\ O < <9 <. I . 
ij ,X. II ' 

Then II? 1 /I = Bf < f and by step 3) ! 1 
€ Y, and by 

step 2) 

6) By the bilineari ty and hence homogeneity of ~I-, we have 

IIAll'I.L 
on multi plying through by f... l; u. where t and LA. 

are any finite numbers, 
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7) Let then on substitution 

we obtain (3.1) from steps 5) and 6) and the corresponding 

restriction on the range of the parameter .S. L Q,.E.D .) 



It might be noted in passing that (4.10) of Tvti.chal and Hyers 

[1938-11 can be written as 

H
1

c1) cr.,_, (;( , r)•· · ~3;r)-(.,-,) 1-:_, (x , r(x )1,3)J , · ·, 3) 

by using the syrmnetry of r,. - l • 

Theorem 31.2 "'The curvature form B (x , ~,) L. 1 f\) of (5.12) 

satisfies the identity 

(3.2) B ()( , f, J L.) 13 I stt) ,- .B (x , 3 .s , ~I; 14 I 1'l. )+ 

-+ .B (x.. , r~Jr1,f\.1r . ),.. ~(-<Js'°J ft-i , r, lsJ)= o. " 

Proof: - 1 ) Whether the above terms be regarded as covariant differ

entials or as first extensions (6.1 ) the expression (6.2) 

gives the following expansion for the first term above 

J3(x, r ,
1

1'"' , ~s, r4) = BCx,1 ,JJ°1. ,1a; f4) -
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- B ( x , r-i.. ( ,( , r, / 11) , fl. , r 3 ) - b ( x) r , J r1.. C x , r 1., r" ) , s d-

- B(x, r,) fL , r(x , Jj)it))-t- ri.(x , 1::>(K , r,JJl. , fJ)) f4), 

2) Direct application of definition (5.12) to the right side 

of the above expansion gives a set of 22 terms each in 

five,. six, or seven arguments, hence the verification of 

(3.2) will involve combination of 88 such terms. However, 

these terms fall into six types which we shall denote as 



follows: -

i) r~(x,1',., ~i.; i\; J4) by 12,3,4 

ii) rt ( xJ rt- ( x) 1,J r~ ), t; r1 ) 

i::: !'i ( x) fl., r1. ( x. f, J fiJ; r 1 ) 
by 1412,3 

iii) 
r.,~ ( x) r & c x . r , j f ~ ; ~ ~ ) ) ? J ) by 12, 4 I 3 

iv) r: ( X J r: ( )( ) r~ ( X .I r I J r £i ) ) f 1. ) I fl ) 

= ~ ( x, rl. ( )\ rl. , r2.. Lx:, r,) r 4 J r 3 ) by 14 \ 2 \3 

v) r'" < x /?, J r" ; 1---: c x J 1\ . L~ ) J by 12, \ 34 

vi) • r,_ ( )( 1 rJ )(I 3 1) fl.)' ~ (x Ii\ ) f4 )) by 12 II 34 

where terms of types i), v) and vi) ar e symmetric in the 

first pair and in the second pair, but terms of types ii), 

iii) and i_v) are symmetric only in the f i rs t pair. 

3) Under t he above notation we have -
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B(x,f,.)f'L, 33/~4)= 12.,J,"¾ - 11,2,~ + 12.j3)Li+12)4IJ-

- 11 I 2, 4 - 11 J 4 j 2. - l I 4 )'2., J - l ~ / 1 it + 14 j 2. \ 3 - I~ I 1 I 2. --t 

+2.4j1 J3 - 11.J\ 2.~ +1.4/1)3 -nl\2~ -t l2Jj34 -34/1,2.+ 

+ I ~ ll 3 4 - 3 4 j I ) i J + I 2 I 3 I 11 - I 3.) 2 I 4 + l 2 l 3 l 4 - 13 j-i. f4 .. 
4) Since we cannot have combinations between these 

types of terms, we must have the terms of each type 

cancelling among t hemselves as the subscripts are 



permuted (1342). This takes place as follows -

5) There are eight terms each of types i) v) and vi) 

which combine as follows -

12,3,4
1 

- 13,2,4i 12, 134' - 13, 124
4 

12 11 34
1 

- 13 11 24 1.. 

+31,4, 2,. - 34,1, 2 +31, I 42,_ - 34, I 12
3 

+21 11 42 ,. - 34 11 12 3 

~ 4 .I 4 1 4 
+43,2,1 - 42,3,1 +43, I 21 - 42, 131 43 11 21 - 42 11 31 

q ' 4 <, 

+24 ,l,3 - 21,4,3 +24, I 13 - 21, 143' 24 II 13 - 21 I 143 , 

o) There are sixteen terms of type iii) which combine 

as follows -

12,4 13
1 

- 13,4 12~+ 12,314
1

- 13,214
2 

+31,2 14L - 34,2 11 + 31,4 12
5 

- 34,1 12
3 

I , 7 I " " +42,l 2 - 42,1 13 + 43,2 1 - 42,3 11 

" 8 +24,3 11 - 21,3 14 + 24,1 13
7

- 21,4 13'. 

7) Tb.ere are t~enty-four terms of types ii) and iv) which 

combine as f ollows -

I I I .!,' I 'f I 
If 

24 11,3\ ' 12 3,4 - 13 2,4 - 14 2,3 + 14 3,2 - 34 jl,2 

I ,.. I " ,o 11, ' 
1 

+31 4,2 - 34 1,2 - 32 jl,4 + 32 14,1 - 1213,4 + 42 13 ,l 

3 ? " <t 1.. i 
+43 12,l - 42 13,l - 41 13,2 + 41 12,3 - 3lj4,2 + 21 14,3 

I ¾ i / 1. l o 3 

I 
{" 

+24 1,3 - 2l j4,3 - 23 14,l + 23 11,4 - 43 j2,l + 13 2,4 . 

(Terms are indexed in red in pairs which cancel). (Q.E.D.) 

Note: - A brief er proof of this theorem consists in showing that 

(1.2) holds in normal coordinates as f ollows -
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1) All t ~pms of types ii) .•• vi) vanish at the origin of 

normal coordinates. 

2) By step 5) above all terms of type i) cancel out in 

normal coordinates evaluated at the origin of coordinates. 

3) Since :B ( X J 1, .> 11., 11 \ 3 4 ) and hence any sum of such 

is c.v.f. valued it vanishes in all coordinates at a 

point, if it vanishes in one coordinate ~ystem. 

4) Since XO ~ )'o = o was any arbitrary point of the 

space, the theorem holds in general. 
(Q, .E.D.) 

~g The ~ -property 

In a recent paper on the projective geometry of paths f1939-

2, 1940-lf special use was made of the following restriction on the 

Frtchet differential. 

Definition 32.l The J -property - Let f c~,y) have arguments and 

values in Banach spaces. The Frechet differ ential f ( x. o > y ; d x ) 

off ( .x.J_y ) at X:: Xe is said to have the d-property with respect 

to J if for every f ;:;, CJ , °" "7 o there exists a J ( ~ J o.. , X O ) > O 

independent of .J such that 

( 3. 3) \l ~ )C.. II < ~ ( t , c,.. , X o ) and II y II < a.. 
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: .:::> : II f ( XO + ~ )( ) .J ) - f ( )( 0 J j ) - f ( X OJ / ; J X ) II ~ f:. II J X II ' 



This definition may be restated in terms of the following 

modified concept of uniform continuity 

Definition 32.2 Relative uniform continuity at a point*~ et f ( x. Jy) 

be on E 1 \-1 to E 2. where E, > E 'l. are Banach spaces and H is a 

topologic space. Then f (:i<Jy) will be said to be continuous at x = Xo 

uniformly with respect to ./ on the open set 5 C H if
1 

given 

f > o) there exists a ~ (<,-,Xo)7°independent of y such that 

(3.4) II b X \I ( JU: 1 Xo) > ./ E 5 : :::>: 

ll I ()(I) + b X ) _y ) - f (XO) j ) II (. f: • 

Definition 32.3 Relative locally uniform continuity at a point~A'-

- Let f 6<,y) be as in (32.2). Then f(X1j) will be said to be con

tinuous at X :::Xo locally uniformly with respect to)' on the open 

set 3 C H if, given f? o and ')'o E 5 J there exists a neighbor

hood Uyoc5 and a JcE)Xo,Jo)>O independent of y such that 

(3.5) II ~ X n (._ iJ CE-.) XO; y O) ' .J ~ u yo : .::, •. 

II f (XO + d X J y ) - f ( }(. 0) _j ) II {. E • 

In many instances we will take the space H to be also a 

Banach space topologized by taking spheres as neighborhoods. 

Definition 32.4 The b -property - Let f (x,y) be as in (32.2) 

and be Frechet differentiable in )I.. at X := X. o. The Frechet differ-

ential f ( X o, J; c) X.) will be said to have the J -property 

* These definitions differ from the use made of the sa~e term by 
Hildebrandt and Graves 1927-2. 
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with respect to / on S if 

f. (X
O

; j) J X ) = f ( X o -t- c) Xi _y ) - f ( X o I y) - f ( x.,,, y / J x. ) 

II J XII 

has the value E: ( X: o 
I 
y) o ) = 0 at J .x. = o and is continuous in 

d x at J )( = 0 uniformly with respect to )" for all y in a given 

open set 5 f- H . 

<Theorem 32~ " The definitions {32.1) and (32.4) are equivalent when 

\-4 is a Banach space and .S contains o '= H . 11 

Proof: - 1) Let (32.4) be satisfied, then by the definition of open 

set S , there exists a f > O such that 

11 j 11 < p : ::>: y ~ S. 

2) Given any f )0 and the above f > O, there exists a 

d(fJ)(o))o such that 

ll l X. II ( 0( t J XO)) ll_y II < p : ~ : 
II E (X o,)', Jx) E-( Xo;J,O) II= 

== // f(x.-rix,y) -fCx.,y)-fcx0 ,y;JxJ\\ lE:-
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IIJjll 
3) or ~f (xo-tc5x ,y)-fcx 0 , _y) - f(x: ,,,y;Jx)J)~El1a.x.l\. 

4) Let (32.1) be satisfied, then for any ~ > 0, II y II t... ~, 

JI e (XO J y J J X ) II ' f: for all ll J X II < d ( f J 0.. 1 XO ) • 

5) But t his is the condition of (32.2) that E:- (x 0 1 y, d X) 



be continuous at hx = 0 uniformly with respect toy 

on the sphere 5o.. of radius a about the origin, and 

have the value f- ( Xo,)' , o) = o . (Q, .E.D.) 

Theorem 32.6 ''Let f,(t.,y) and /2..<x , y) be two functions satis-

fying (3.2.4). Then any linear combination 

with constant real coefficients ~ . and k ... will satisfy (32.4). 
11 

Proof: - 1) Let Ei (X o> / • J x) = 

7 6 

= l\~ x. 11 ff.(x ot,Jx ,y) -f~(xo,y) -f~ (xo,y;Jx) f i.-:1, 1 • 

2) By (32.2) there exists J lcc:xoL>o such that 

II s X I\ ( ~ ~ (IT' ' XO ) J C 5 ; ::) ; 11 E ~ ( X' 0, J j )( ) 11 ~ ~ ~ 

3) .'. \I~ X /I <'.. ~ = ""'?: 
1
~ r ~ ( 2\, > )( o) , / E 5 ~ :::, : 

I\ t (X O) J ~ i") II = \\ n'Jx H l Fe XO -t ~ X ;J )- F ( x ,,,y) - F(x,.v j $ x) J II= 
2. : II L ~, t ~ ( XO J y, d X) II ( E , 
1.: I 

( Q.E.D.) 

Corollary 32.7 _... "Let f · ( t. j ) i - I l • .. t t. J ) ->II satisfy (3.2.4) . 

Then 

with constant coefficients h.i.t "R satisfies (32.4) . 11 



Definition 32.8 ~& -property (locally) uniforrnJ.y in y - Let 

fcx,y) and f Cx o, y ; Jx ) satisfy (32.4). Then j (x o, y;Jx) 

will be said to have the ·~ -property (locally) unifonnly in y 
if f ( x. 01 y j J X ) is continuous in ~ .X. at J x. ::: 0 ( locally) 

uniformly in j on the open set 5 C. H 

{ or ( 32. 3) J . 
according to (32.2) 

This property is not automatically satisfied by the linearity 

of f ( x o .1 y ; J X ) in d X since the modulus M in 

l\ f ( Xo, J ; J X) \\ ~ \\J\ II ~ XII 

is itself a function of X0 and j . It is .clear, however, that if 

(32.8) is satisfied we will have for j E: 5 ( )' <= l.) y,. ) a 

modulus M which depends on x c alone. 

Theorem 32.9 "A necessary and sufficient condition that f ( x, y ) 

he.ve a Frechet differential with the ~ -property (locally) uniformly 

in y on ~ C H is that f ( Xo, y; dx ) exist with the S
property and f ( )( 1 j') be continuous in X at )(. :::: X o (locally) 

On S C H. 11 
uniformly in y 

Proo.f: - Necessity 1) Let f (><o,y; d x) satisfy (32.8), 

then, given f- ) o and S C H, there exists 

d 1 ( f , X: o ) > O such that 

l\ ~xll <(t ctxo) : :::J : llf (xo, y ) J x: )ll~ t . 
2) By (32.2) for (32.3)J there exists d1..({ ,xe>)>o (and 
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such that 

3) Now step 1) implies 

llfCtot-S1-Jy)-fC.'-'0Jy)\i-llf(XojJ;lx)U(f nSxl) 

4) hence there exists J = m \\'\ {I, J, ( ½,x 0 ), J1. (l,xo), f) > O 

independent of j such that 

II J X II < J J j ~ s ( J t u y O ) : _::) : 

.~ -fl f Cxo ~ J)( ,J) - f (x-o,y J \l ~ f: . 

(Q, .E.D.) 

Sufficiency 5) Let f (x, y) satisfy (32.2) ( or (32.3)), 

then there exists J1 { "i.. ,xo) > O ( and Uy'") 
such that 

implies 

6) By (32.4) there elit:ists J'f ({ ,x'c));o such that 

11Sxll<~if(t>x") yf 5. ::::,·. 

llf (xojy j Jx) I/ - llf Cx o+ dx ,y) - f (x oJ yJU t. 

' \I ~ )( II ' \\ E:- ( )( 0 _, )' J J X ) \\ ~ ~ II s )(. 11 • 



7) But this implies that there exists ~ = 'rY'liW\ (i, J:<t,x0 )
1 

J,,. ( (
1 

)( 0 )) ? o independent of / such that 

11Jxll<d yE-5 (yf:Uyo} 

: J : II f ( X O l y; J X ) II t t • 

( Q, .E.D.) 

In the following theor ems H will be a Banach space. Hence 

we shall use definition (32.1) of the d -property as being more 

convenient. It will, of course, be assumed that the wording of other 

definitions and theorems hsve been modified to conform to this. 

continuous in X uniformly in y on 

Fr~chet differential f1 (:x O, y; J x ) 

property at )( = Xo . 

Ejo) l, and such that the 

exists and has the 

to E Lf linear in Z 

and such: that the Frechet differential f .. (Xo, z:-; Ix) exists and 

has the d -property at )(. = X o . I,, 

E.J Ei.., EL t:.. '-+ are Banach spaces and C., { Xo t.. and 

E i..C o) ~ are the open spheres II XO - ,>( II <.. 0... and II y \I < b. 

Then - iJ F(><Jy )= f-a.. (x.1f1 (xi y)) is on E 1 (x'o }4. Et. 

to E4 linear in j , and ii) F ( x 1 'j } has th e ]'rechet differen

tial 



with the ~ -property uniformly in J on E 1. ( 0) b at "'- = x o," 

Proof: - lJ follows at once from the hypotheses and the definition 

of linearity. 

ii ) 1) Since f 1 (x ,y) is linear in )' , it follows that 

f1 ( Xa , j; J X) is bilinear in .J and 6 X and hence 

there exists a modulus fv11 (.i<o) > O such that 

2) and also a modulus Mi. ( X o) ) o such that 

3) Let ~ > o) b > o be given and remain fixed. 

4 ) By the ~-property of CA f, , there exists a constant 

such that II J x 11 < a, Hy 11 < 6 : ? : 

80 

lier!\= llf. (xo --r Jx)y) -f,(:,c_,,yJ-f,{xo)y;Jx)ll~
3
~,.txo) 

5) Steps 2) and 4) further i mply 

( 3. 6) 11 f 1. ( I. 0 J f I (XO -t ~ X j J ) ) - r,. (XO, f I ( i C> / '/) )- fl. (x O I f ( Xo) j; J X) )lk J 
6) Since f 1 (x ,y) is continuous in x uniformly in 

j, there exists a constant d'l.=6~ {3 ~
1
(.1('.o)' b ,x.o) >o 



independent of ;/ such that I\ ~ X: \I < ~ 1. : ::> : 

ll1'11 = llf.()(.o-t-Sx,y) -f,(x.o)J)I\ ~ JE-M,(xo)" 

7) If also II [ ;(!\ ( I , steps 1) and 6) furthe r imply 

8) Since f, (x._, j) is linear in y , there exists a 

81 

modulus M3 (Xo)>o such that /lf,(Xo_,)'Jll, M 3 (Xo)IIJ11 J'= El. 

and so by step 6) and the triangle inequality 

llcJll= 1/f.(xo+~xJyJII ~ 3M~(xo) + llf,(.i<o;_y)II( 

< €;- . -+ Ml (Xo) b = C for II\/ II ( b. 
J M, (x o) / 

9) Given C as in step 8) , we have by the J -property of 

df~ that there exists a constant d3 = d1 ( ~, <.. , x0 )>0 

independent of W such that 

11lx1 <iJ and Uwll<c. :.:,: 

( 3.8) ll/2.(Xo-t~x)w)-fl. (><i,.,w)-f1.(Xo,w;Jx)/I ~~\\~xii. 

10) Now let s == s { E J bJ Xo) M, (x., L Mi. (x .. ), MJ (){,,)) =z 

== rn·,n ( 11 S.) Ji., JJ) > o 

which is a positive constant independent of y such that 

II £ X. II ( ~ J II _j II< b : =::> : (3.6) (3.7) (3.8). 



11) Add these three equations and make use of the triangle 

inequality and additivity and we have -

(3.9) !If, (X'oJf, ( Xo+Jx ;y )) - f 1. (Xo> f• { Xo,)' ))-

-f i, ( X o I f I ( )(. o ,J ; J X )) + f-i. ( Xo J f i (X O+ J X ; Y) ; J X ) -

82 

-f i.. ( X o I f, ( X o, J) j 1 X) + f 2. ( X o + J X, J, ( j o ,-t- J X1j) )-

(3.10) 

- f 1.. ( i o)f ,(xo+Xx.;J )) -f ,._ (xo,f,lxo-t!,<.,,yJ;!x)II ~ r::. 

12) Hence, by the linearity of the Frlchet differentials 

the hypothesis on the linearity of f 1.(X, ~) in ;t 

and steps 10) and 11) 

is linear in Jx and satisfies definition (32.1). 

13) By theorem (32.9) and the expression (3.10) it follows 

that F ( x. ,j) is continuous in X. uniformly in y and 

hence F{ Xo>f; J X..) has the J-property uniformly 

in J . ( Q, . E. D. ) 

Corollary 32.11 11 Theorem [ 32.10] holds if the words ' l ocal1L 

uniformly' be substituted for 'un:!:_f~mly' wherev~r they occur" . 



Theorem 32 .12 " The set i of all functions f (.)( 1y) on E,(xo)Q. E.,_ 

to E 1.. linear and solvable in ..J , continuous in .>( uniformly in 

J on E 2. and with differentials having the ~ -property plus the 

f unction 6> (x,y) ::0 t: E,,under suitable definitions of © 
1 

0 

and II"· II.,_ form a Banach ring . 11 

Proof: - 1) By theorem [32.6) and corollary [32.7) this is linear 

set and EB is the plus oper13.ti on of E 2.. 

2) i) ~ is commutative 
) 

ii) 8(K 1J) is the identity under @) 

iii) if f (x,y) E ~ then - f (x ,y) is also linear 

and solvable, etc. and hence is in ~. 

3) The operation 0 in p will be defined as iteration, 

and by theorem[32.101 the set is closed under 0 . 
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4) The identity function I (x,J) = j 

is in i. 
for all )( E: EI (x o)~ 

5) To show that the inverse 6 (J( ,y) of f (x J y) E ~ 

is in <p we need only show its Frechet differential 

8 ( )( J y ; d x. ) has the ~ -property uniformly in 

/ at X.: X o This follows from 

ICxJ_y;Jx)-==o == f (x )gcx)y); Jx)+f(x,s <x,y; ~x)). 

6) Associativity is readily verified. 

7) Distributivity follows from the linearity of every 

in .'/· 



8) The norm will be defined as 

II f ( x } y ) II = m ~ x M ( x ) 
X f E 1 (x'o )o. 

where M (x) is the modulus of [ ( X, y ) 

can be shown to have the norm properties. 

and this 

( Q, .E.D. ) 

Corollary 32.13 "The Banach ring f is a subring of the Banach 

ring 'R, of f 1940-1} .
11 

0 
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