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ABSTRACT

Reinforcement learning (RL) models have shown great capabilities in characterizing
learning and decision-making in the real world. The dual systems of the model-
free (MF) and model-based (MB) algorithms have been proposed to describe the
computational mechanism underlying a reflexive habitual control and a cognitive
goal-directed control, respectively. Given the dual systems under control, it is
worth asking how the choice of which system to use is made with the changing
environmental statistics of rewards and states. In Chapter 2, three types of prediction
error signals from the dual systems are found to guide the arbitration process in a
reliability-based RL framework. Moreover, an exploratory analysis was conducted
to test for alternative arbitration theories that utilize the cost-benefit analysis on the
goal-directed (or MB) system. Understanding learning and decision-making would
not be complete without knowing how our neural machinery implements these RL
computations when a given system is engaged. The robustness and replicability
of neural encoding of learning and decision signals from the MF and MB systems
are essential to set a reassuring path for future neurocomputational work on dual
systems. In Chapter 3, we address recent concerns over the existence of the MF
system and its neural computations in a widely-used Markov decision task (two-
step task). By applying a model-based functional magnetic resonance imaging
(fMRI) approach to a large number of participants, we found both MF and MB
learning signals in the human striatum and that neural patterns of decision utility
across different RL-strategy groups further add to the evidence of ubiquitous MF
computations in Markov decisions. It turns out the framework of dual systems could
not only account for normal learning behaviors but also inform us of what actually
goes wrong in mental disorders. In Chapter 4, we show that, via the reliability-
based arbitration framework, the MF behavioral bias observed in participants with
high obsessive-compulsive tendency could be attributed to an enhanced encoding
of MB reward prediction error in the anterior cingulate cortex, a region previously
implicated in the error-monitoring process. Chapter 1 introduces basic concepts and
example algorithms in RL; we also review relevant theoretical and neuroscientific
works to build the knowledge base for subsequent chapters. Chapter 5 discusses the
significance of empirical findings in this thesis, the values of adopting some of the
methodologies herein, potential future research directions on the dual systems, and
implications in computational psychiatry.



vi

CONTENTS

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Chapter I: General Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Prediction and Prediction Error . . . . . . . . . . . . . . . . . . . . 1
1.2 The Model-Free and Model-Based Control and their Neural Substrates 4
1.3 The Dual System and the Arbitration . . . . . . . . . . . . . . . . . 12
1.4 Obsessive-Compulsive Disorder and the Error Signal . . . . . . . . . 25

Chapter II: Behavioral Investigations on Various Types of Prediction Errors
Contributing to the Arbitration Between the Model-Free and Model-Based
Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Chapter III: Investigations of Reward Prediction and System Engagement
with Group-Level and Individual-Level fMRI in the Two-Step Markov
Decision-Making Task . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Chapter IV: The Enhanced Encoding of Model-Based Reward Prediction
Error in Anterior Cingulate Cortex and the Model-Free Behavioral Bias
among Individuals with High Obsessive-Compulsive Tendency . . . . . . 118

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Chapter V: General Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 136



vii

LIST OF FIGURES

Number Page
2.1 The two-step task structure and the group-level behaviors . . . . . . . 67
2.2 Manipulations of three reliability signals . . . . . . . . . . . . . . . 68
2.3 Transition Sensitivity Measure . . . . . . . . . . . . . . . . . . . . . 69
2.4 Condition-based arbitration model . . . . . . . . . . . . . . . . . . . 70
2.5 Transition Sensitivity Measure in the Replication Sample . . . . . . . 71
2.6 Evidence of Inter-Reliability Arbitration . . . . . . . . . . . . . . . . 71
2.7 Testing of alternative arbitration theories . . . . . . . . . . . . . . . 72
2.8 Transition Sensitivity Measure on Alternative Arbitration Theories . 73
2.9 Computational Modeling on Alternative Arbitration Theories . . . . 73
3.1 FMRI two-step task, clustering of the group behaviors and the overall

and sub-group behaviors . . . . . . . . . . . . . . . . . . . . . . . . 84
3.2 Group-level fMRI results of Decision Utility and Reward Prediction

Error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.3 Across-group difference and individual differences in decision utility

encoding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.1 Correlations between Behavioral Measures and Obsessive-Compulsive

Tendency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4.2 Neural Correlations between the encoding strength of MB RPE and

the Obsessive-Compulsive Tendency . . . . . . . . . . . . . . . . . 128



1

C h a p t e r 1

GENERAL INTRODUCTION

1.1 Prediction and Prediction Error
A dog will salivate to a piece of nice food, a natural biological response beneficial
to food digestion, which essentially improves the dog’s fitness. Pigeons will peck
in the presence of food also for biological fitness. Such innate and involuntary
responses are not restricted to an appetitive domain but could also be observed
in some aversive situations. For example, a person would startle when a loud
noise is heard. Such a startling response is triggered through the acoustic startle
reflex in the central nervous system, which helps the organism to prepare protective
actions as the loud noise could indicate the presence of potential threats. Hand-
withdrawing would be the reaction when the hand touches a hot surface to avoid
skin tissue damage. In psychology, such a response is also called an unconditioned
response. Such responses are enabled through the biological "hardware" built into
the process of evolution rather than being learned within the life span of an organism
through experiences. Given that these types of innate responses are essential to the
organism’s fitness and survival, the responsive circuit is naturally selected and acts
as the biological "prior" so that, for the organism, the maintenance of fitness could
be efficient and life-threatening risks could be minimized without too much cost
(sometimes could be life itself).

As an organism, to navigate the environment not only successfully but also effi-
ciently, only having spontaneous innate reactions to biologically significant events
is not sufficient. An organism capable of predicting such biologically significant
events could prospectively manage physical and cognitive resources to react better.
As our environment is not solely composed of biologically significant stimuli but
also neutral events that often co-occur with the stimuli statistically, such neutral
events could provide great predictive power over the biologically significant events
for the organisms to learn. A shaking bush by itself might not elicit any innate
biological response (unconditioned response), yet while on a hiking trail, it could
predict some unknown threats (e.g., predators) being present. Being able to predict
the potential present predator from the shaking bush is essential for the organism
to activate the "fight-or-flight" biological circuit in time to increase the chance of
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survival compared to only starting to react when the predator itself is encountered.
Fortunately, animals are gifted with the capability to make such predictions. Pavlov
(2010) found that a dog, usually salivating at the food itself, would start to salivate to
a sound (conditioned stimulus) if that sound is frequently paired with food (uncon-
ditioned stimulus), even when the food is not present. Such a phenomenon is called
Pavlovian conditioning (or classical conditioning). In essence, although probably
unconsciously, the dog makes the prediction of food through a neutral stimulus with
experiences and starts to salivate at the neutral stimulus (conditioned response) for
food digestion. The Rescorla-Wagner model (1972) provides a theoretical account
of Pavlovian conditioning. The process that leads the dog to express the conditioned
response involves repetitions of pairing the food with the sound. If the sound starts
with a zero value to the animal (𝑉 (𝑠𝑜𝑢𝑛𝑑) = 0), the repetitious pairing process will
enable the sound to eventually acquire a value that is equal to the value of the food
itself 𝑅( 𝑓 𝑜𝑜𝑑). Such a process is implemented through a repetitious comparison
between the learned value of sound 𝑉 (𝑠𝑜𝑢𝑛𝑑) and the actual food value 𝑅( 𝑓 𝑜𝑜𝑑),
and whenever a mismatch is detected, there would be a certain portion of updates
made to the quantity 𝑉 (𝑠𝑜𝑢𝑛𝑑) to reduce the degree of mismatch. Mathematically,
the comparison and the degree of mismatch on trial 𝑡 can be written as:

𝛿𝑡 = 𝑅𝑡 ( 𝑓 𝑜𝑜𝑑) −𝑉𝑡 (𝑠𝑜𝑢𝑛𝑑); (1.1)

The reward value of food 𝑅𝑡 ( 𝑓 𝑜𝑜𝑑) is given, and the difference term 𝛿 is called
prediction error. The prediction error would be a non-zero term as long as the value
prediction from the sound about the food𝑉𝑡 (𝑠𝑜𝑢𝑛𝑑) is imperfect to match the food’s
actual value. One note is that if the reward value of food is not fixed (e.g., the change
of satiety state), there is a possibility that the prediction error becomes negative.
The Rescorla-Wagner model utilizes this prediction error to make updates to the
prediction so that the 𝑉 (𝑠𝑜𝑢𝑛𝑑) eventually converges to 𝑅𝑡 ( 𝑓 𝑜𝑜𝑑):

𝑉𝑡+1(𝑠𝑜𝑢𝑛𝑑) = 𝑉𝑡 (𝑠𝑜𝑢𝑛𝑑) + 𝛼 × 𝛿𝑡 ; (1.2)

The 𝛼 term is the learning rate, which decides how fast the conversion happens.
Even with a relatively small learning rate, with enough trials of pairing between the
sound and the food, the predictive value of the sound will converge to the reward
value of the food. This model could explain the Pavlovian conditioning that the dog
would eventually exhibit a conditioned response to an originally neutral stimulus
(i.e., sound) due to its good prediction of the reward value.
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However, not all the learning behaviors can be explained by the Rescorla-Wagner
model. Second-order conditioning describes the phenomenon that once the classi-
cal conditioning (first-order) is established, if now repetitively pairing conditioned
stimulus (e.g., sound) with a new neutral stimulus (e.g., light) independent of the
reward, the conditioned response would eventually be expressed towards the new
neutral stimulus as well. In the example of Pavlov’s dog, the dog would salivate at
the light if the light was later paired with the sound after the dog started to salivate at
the sound, although the light has never been directly paired with the food. According
to the Rescorla-Wagner model, a new neutral stimulus can only attain value when
the reward is experienced on the same trial as the neutral stimulus is experienced.
Then, according to this model, in the case of second-order conditioning, the value of
light 𝑉 (𝑙𝑖𝑔ℎ𝑡) would always stay at zero as no rewards were experienced along with
the light, and thus no conditioned response to the light should be observed. The
assumption that all relevant stimuli and biologically significant events take place on
the same trial gives the Rescorla-Wagner model some limitation in accounting for
learning behaviors that are temporally distant or independent of the trial structure.
Hence, the temporal difference (TD) model in the field of reinforcement learning
was proposed to explain learning behavior that takes place beyond a constrained
trial structure (Sutton, 2018).

In the TD model, the events are characterized in the unit of timestamp rather than
trial so that there can be multiple events occurring at different timestamps within a
single trial. Formally, the TD model learns the predictive value of each state at a
time point 𝑡 as a summation of the actual reward in the next state and the discounted
expected predictive value across all possible next states at 𝑡 + 1:

𝑉𝑡 (𝑠𝑡) = 𝑟𝑡 (𝑠𝑡+1) + 𝛾 × 𝐸 (𝑉𝑡 (𝑠𝑡+1) |𝑠𝑡), 0 ≤ 𝛾 ≤ 1; (1.3)

This is a recursive form of current-state value computation as a function of the
current-state reward and discounted value in the next state (discount factor 𝛾), also
called the Bellman Equation (Bellman, 1957). Learning the true expected value of
the next state 𝐸 (𝑉𝑡 (𝑠𝑡+1) |𝑠𝑡) is not trivial as it is a probability-weighted average of
state value𝑉𝑡 (𝑠𝑡+1) across all possible identities 𝑠𝑡+1. If the learning is not perfect, the
TD model also uses a prediction error signal, the difference between the predictive
value of the current state and the actual value (i.e., encountered reward added with
the discounted predictive value of the next state), to update the predictive value of
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the current state:
𝛿𝑡 = 𝑟𝑡 (𝑠𝑡+1) + 𝛾 ×𝑉𝑡 (𝑠𝑡+1) −𝑉𝑡 (𝑠𝑡); (1.4)

𝑉𝑡+1(𝑠𝑡) = 𝑉𝑡 (𝑠𝑡) + 𝛼 × 𝛿𝑡 ; (1.5)

Critically, in the TD learning model, the prediction error not only factors in the
potential reward encountered at the current time t (i.e., 𝑟𝑡 (𝑠𝑡)) but also takes into
account the predictive value of future rewards𝑉𝑡 (𝑠𝑡+1). This gives the TD model the
flexibility to learn the predictive value of the current state based upon the previously
learned predictive value of possible future states, even in the absence of immediate
rewards (i.e., when 𝑟𝑡 (𝑠𝑡) = 0). Such a feature essentially gives the model the
capacity to learn predictions not only within a trial but also beyond the trial, without
any premise on the presence of rewards.

Going back to the example of second-order conditioning, after the dog fully learns
the predictive value of sound 𝑉 (𝑠𝑜𝑢𝑛𝑑) and exhibits a conditioned response to the
sound, according to the TD learning model, the pairing of light and sound would
eventually drive the predictive value of light towards that of sound thanks to the
temporal difference prediction error even without any rewards in the trial:

𝛿𝑡 = 𝑉𝑡 (𝑙𝑖𝑔ℎ𝑡) −𝑉𝑡 (𝑠𝑜𝑢𝑛𝑑); (1.6)

𝑉𝑡+1(𝑙𝑖𝑔ℎ𝑡) = 𝑉𝑡 (𝑙𝑖𝑔ℎ𝑡) + 𝛼 × 𝛿𝑡 . (1.7)

The TD learning model is a classic model-free reinforcement learning model that
opens up the possibility of modeling the real-world problems of achieving predic-
tions over events that are temporarily extended and unconstrained in terms of their
relevance to the rewards. As we will see in the next section, the TD learning model
can go beyond the classical conditioning paradigm and be expanded to describe
instrumental conditioning in cases with or without a "world model" of the environ-
ment. These variations of the reinforcement learning model gained further support
from the neuroscience literature in animal models and humans.

1.2 The Model-Free and Model-Based Control and their Neural Substrates
Going back to Pavlov’s dog, after repetitive sound-food association, the dog would
start to salivate at the sound through gradual mitigation of prediction errors. Now, if,
along with the sound, two touch pads were simultaneously offered and only touching
the left pad could lead to the delivery of food, the dog could gradually learn which
pad to touch; more interestingly, if the right pad becomes the rewarding pad, the dog
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could change its preference of the pad to adapt. Such learning behavior contrasts
classical conditioning as the behavior exhibits flexible patterns to maximize the
potential rewards. The dog could not only predict the presentation of reward through
the onset of a certain stimulus but also learn the stimulus-response association as
the action itself has predictive power of the outcome.

In classical conditioning, it is essentially the stimulus-outcome contingency that is
learned, and the TD learning model explains how the stimulus gradually acquires the
prediction of the outcome along the process. Another important aspect of prediction
in the real world is the ability to predict the consequences (e.g., how much reward
would be obtained) upon executing certain actions (e.g., a dog touching the pad).
It is thus helpful to know the proper action upon encountering a given stimulus to
maximize biological fitness. The dog learning which pad to touch is one type of
instrumental conditioning, where a stimulus-action association is learned through
experiencing the relationship between an action and the outcome. Thorndike (2017)
described such phenomenon as the "Law of effect" - the stimulus-response associa-
tion would be strengthened if the response leads to rewarding events and weakened if
non-rewarding events were experienced. Such a reinforcing process on the stimulus-
response association is later characterized as habitual learning (Dickinson, 1985).
Importantly, the TD learning model could be easily adapted to describe such a
habitual learning process by adding the "action" component alongside the "state"
component as the learning unit of the prediction of rewards. Formally, the learning
rule for the predictive value of a specific action in a given state can be described as:

𝛿𝑡 = [𝑟𝑡+1 + 𝛾 × max
𝑎

𝑉𝑡+1(𝑠, 𝑎)] −𝑉𝑡 (𝑠, 𝑎); (1.8)

𝑉𝑡+1(𝑠, 𝑎) = 𝑉𝑡 (𝑠, 𝑎) + 𝛼 × 𝛿𝑡 . (1.9)

This is also known as the Q-learning algorithm, an off-policy reinforcement learning
algorithm. The only difference in the prediction error of instrumental conditioning
here compared to classical conditioning is that for the predictive value of the future
state, only the action maximizing the predictive value would be considered. The
update through the prediction error is then made only to the actual stimulus-action
pair.

Now, consider another example where a rat is placed in a newly exposed maze, and
a reward is placed at one of many exits. The rat would eventually learn the efficient
route leading to the reward with some experiences, as the "Law of Effect" would
implicate that the route that led to the reward in the past would be strengthened to
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be retaken in the future. For the rat to run through the route that has been reinforced
in the past, a set of state-action predictive values would be needed in the maze to
guide the rat. As covered in the previous section, such state-action pair predictive
values could be learned through TD errors where the states are the locations in the
maze, and the actions are the possible turn-makings. Hence, acquiring the stimulus-
response association in the maze is done through a model-free (MF) reinforcement
learning algorithm, as only the reward history is relied on to learn the predictive
value. Still in the context of maze navigation, if the rat is firstly exposed to the maze
to explore but without any exposure to any reward in any exits, then if later a reward is
introduced to the environment, it was found that the rat with an exposure experience
of the maze was faster to learn the optimal route to the reward. This is what Tolman
(1948) found as another possible instrumental learning behavior different from the
"Law of Effect," and the concept of "cognitive map" was introduced accordingly.
Specifically, in the exposure phase, although without any reward experience, the rat
could latently learn the maze’s structure and how a specific location (e.g., a potential
reward location) could be reached from some proceeding locations a few steps earlier.
Such a "cognitive map" could later be retrieved and utilized to efficiently reach the
rewarding location — whenever a reward location is reached, the knowledge of how
to reach the current location from a previous state with the appropriate action could
be used recursively back to the starting location in the maze. The knowledge of
maze structure could be mathematically described with the state transition matrix
𝑇 (𝑠, 𝑎, 𝑠′), which encodes the probability of transitioning from state 𝑠 to state 𝑠′ via
action 𝑎. The learning of the state transition matrix could be achieved via the state
prediction errors:

𝛿𝑆𝑃𝐸𝑡 = 1 − 𝑇𝑡 (𝑠, 𝑎, 𝑠′); (1.10)

𝑇𝑡+1(𝑠, 𝑎, 𝑠′) = 𝑇𝑡 (𝑠, 𝑎, 𝑠′) + 𝜂 × 𝛿𝑆𝑃𝐸𝑡 ; (1.11)

𝑇𝑡+1(𝑠, 𝑎, 𝑠′′) = (1 − 𝜂) × 𝑇𝑡 (𝑠, 𝑎, 𝑠′′),∀𝑠′′ ≠ 𝑠′; (1.12)

The state prediction error (SPE) is computed at each step for experienced state
transitions 𝑠 → 𝑠′; for all other non-visited states 𝑠′′, a normalization procedure is
used so that all possible transition probabilities starting from the state 𝑠 would add
up to 1.

With the knowledge of state transition structure in the maze, any information of the
reward location in the maze would lead to efficient computation of up-stream state
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values thanks to the state-transition matrix:

𝑉𝑡 (𝑠, 𝑎) =
∑︁
𝑠′

𝑇𝑡 (𝑠, 𝑎, 𝑠′) × [𝑟𝑡 (𝑠′) + max
𝑎′

𝑉𝑡 (𝑠′, 𝑎′)]; (1.13)

The upstream state-action value is essentially a transition-probability-weighted
downstream value of rewards (if any) and the maximal state-action value upon
all available actions. At the reward location 𝑠𝑟 , 𝑉 (𝑠𝑟 , 𝑎) = 0, for any action 𝑎. Such
a learning algorithm is called a model-based (MB) forward planner, as it builds
a "model" of the task structure — the state-transition matrix in the case of maze
navigation, and conducts action planning in a prospective way through dynamic
programming. Compared to the MF algorithm, the MB algorithm offers the agent
learning flexibility upon environmental changes such as the availability of previ-
ously viable routes or the change of the reward location. In any such events, the
MF algorithm can adapt to a new viable route through a relatively long history of
experiences. In contrast, the MB algorithm can take advantage of the knowledge of
the state structure to quickly re-figure a new route plan.

Besides the difference in knowledge of the environment, another contrasting feature
between the MF and MB algorithms is the online access to the outcome value itself.
Consider an example that two rats in the same maze have already learned the best
route towards the cheese location in the maze, one via the MF algorithm and the other
via the MB algorithm. Now, they are suddenly fed with the cheese to satiety; the
"MB" rat would immediately be unmotivated to move along the best route towards
the cheese in the maze. In contrast, the "MF" rat would still move along that route
towards the cheese until it realized the cheese at the end was no longer valuable. Such
behavioral difference is because the "MB" rat would always have access to the online
value of the end goal while performing forward planning for every intermediate step
along the best route. The change of outcome value for the rat would then provide
an immediate update on the predictive value of every intermediate step back to the
starting location in the maze. On the contrary, the "MF" rat only has access to the
outcome value at the last step before reaching the cheese and consequently would
not update all the upstream state-action values before eventually reaching the reward
that has a changed value. A note is that the dynamic information of outcome value
is not always exogenously sent to the acting agent in the MB learning model (as
described as a sudden devaluation in the above example), and therefore a typical
reward learning mechanism using MB reward prediction error, just as in the case
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of MF reward prediction error, could well be used to learn the actual value of the
possible outcomes.

Now that we have covered the MF and the MB reinforcement learning algorithm
accounting for a variety of learning behaviors (in both classical conditioning and
instrumental learning), it is worth asking how the brain implements the key com-
putational elements of the two models — specifically the predictive values of the
reward-related events, and the prediction errors that are used to reach the accu-
rate predictions of the reward and of the environment. We will first start with the
neuroscience findings on the computational elements of the MF algorithm.

Dopamine (DA) neurons in the mid-brain regions, specifically in the ventral tegmen-
tal area (VTA) and substantia nigra, have been found to be involved in reward pro-
cessing and motivation (Wise, 1982). In the example of classical conditioning, when
the reward (i.e., unconditioned stimulus) was associated with the neutral stimulus
(conditioned stimulus) at the very beginning, using electrophysiological recording
in monkeys, it has been found that dopamine neurons increased their firing response
when the reward was presented (Schultz, Dayan, and Montague, 1997). This obser-
vation suggests that the dopamine response encodes some information related to the
reward. It is unclear whether the DA response signals the reward itself or the reward
prediction error. Yet, it was also observed that as more association between the
reward and the neutral stimulus was experienced and the conditioned response was
observed to the conditioned stimulus, the dopamine neurons started to respond to
the conditioned stimulus as if the previously neutral stimulus was rewarding. Such
observation would suggest the DA response aligns more with a reward prediction er-
ror account, which could be illustrated through a TD learning model (Sutton, 2018).
Through the scope of the TD learning model, when the reward was first presented,
a positive reward prediction error would be associated with the outcome onset time
as the learned value for the time point is zero. As time goes on, the neutral stimulus
acquires predictive value. A positive prediction error would arise when the neutral
stimulus is presented as there is no expectancy of a valuable stimulus in predicting
reward in any proceeding events. Moreover, as the TD learning model would predict,
no further dopamine responses were observed after the conditioning was acquired
when an expected reward occurred, and inhibited responses were observed when
the expected reward was omitted, as it indicated a negative reward prediction error.

Beyond the simple conditioning paradigm, when the neutral stimuli were repeti-
tively paired with reward delivery with varying probabilities, the dopamine neurons
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responded with the same strength as the TD errors (Fiorillo, Tobler, and Schultz,
2003). In a "blocking" paradigm, where a neutral stimulus that robustly predicts the
reward is presented along with a new stimulus, followed by the predicted reward, the
new stimulus does not elicit any conditioned response and becomes the "blocked"
stimulus. When the blocked stimulus was followed by an absence of rewards,
no change in dopamine responses was detected along the process, as no reward
prediction errors would be elicited, consistent with the TD-error account (Waelti,
Dickinson, and Schultz, 2001). The neural activity mimicking the TD-error has also
been observed in human brains. Using functional magnetic c resonance imaging
(fMRI), blood-oxygenation-level-dependent (BOLD) signals were measured as a
proxy of neural activity in the corresponding regions across the whole brain, which
offers more complete coverage of brain regions than electrophysiological recordings
can do. There has been human neuroimaging work showing that the predictability
of rewarding stimulus activated ventral striatum and ventromedial prefrontal cortex
(Berns et al., 2001). Subsequent experiments further pin down the source of the ob-
served neural activation in the human striatum as a temporal prediction error when
the reward is unexpectedly delivered or omitted (McClure, Berns, and Montague,
2003). To strictly confirm the relationship between striatal neural activity and TD
error in the reinforcement learning algorithm, TD reward prediction error signals in
appetitive classical conditioning were computed from a TD model (Schultz, Dayan,
and Montague, 1997) and found to be correlated with the BOLD signal in the human
ventral striatum and in the orbitofrontal cortex (J. P. O’Doherty et al., 2003). A
further study on prediction error signals in the human brain found the prediction
error signals have overlapping representations in the dorsal striatum across different
types of reinforcers (Valentin and J. P. O’Doherty, 2009), suggesting the role of
striatum encoding a common error signal for reward learning in general.

Given dopamine neurons having projections to targeted regions such as the ventral
striatum, nucleus accumbens, and prefrontal cortex, which have been associated
with reward processing and instrumental learning (e.g., goal-directed control), the
DA neurons sit well in the brain to help learn through the past reward history and
reinforce the stimulus-action pair that leads more to the reward (e.g., rat navigating
in the maze for rewards). Hence, the TD-error signal presumably leads to a better
estimation of predictive values in the environment and could be well hosted in the
activity of DA neurons.

Remember, when the rat navigates in the maze, it can use the history of trial and error
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to learn the best route to the reward location; presumably, the striatum facilitates
such learning by communicating reward prediction errors to achieve good reward
prediction from the environment. But if the rat is exposed to the maze beforehand,
it could comprehend the environment by building a cognitive map of the maze (or
state-transition knowledge) through the quantity of state prediction errors (SPE), a
key element of the model-based algorithm. Initial studies on state-based learning
focused on a qualitative error signal during the occurrence of novel stimuli or
expectation violation of neutral stimuli (e.g., auditory stimulus) using EEG and
fMRI (Opitz et al., 1999; Strobel et al., 2008). To investigate how a quantitative
state-based error signal could be implemented in latent learning, Gläscher and
colleagues (2010) used a probabilistic Markov decision task, in which the abstract
state-action-state transition knowledge could help the human participants enhance
the performance. A forward planner model-based algorithm, as described before,
was fit to the behavior to compute the SPE signal for a model-based fMRI analysis,
and the SPE signals were found to be correlated with the BOLD signal measured in
intraparietal sulcus and lateral prefrontal cortex.

In the example of maze navigation, either learning the best route through the reward
history with sequences of RPE using an MF algorithm or prospectively implement-
ing the best route with the help of a cognitive map composed of state-transition
probabilities in an MB manner, predictive values at the end of the day need to be
computed in both types of strategies for all the possible intermediate states between
the reward location and the starting state. If indeed the MF and MB type of strate-
gies could well characterize the key computations underlying maze navigation and,
more generally, the reward learning process, the brain should also represent the
predictive value signal, learned either directly through the reward prediction errors
or through weighing the state-action-state probability, to guide an optimal action
selection process where the action leading to a higher predictive value should be
favored.

As the ventromedial prefrontal cortex (vmPFC) had been implicated in reward-
based decision-making and value encoding (Thorpe, Rolls, and Maddison, 1983;
Bechara, Tranel, and Damasio, 2000; J. O’Doherty et al., 2003; Knutson et al.,
2003; Padoa-Schioppa and Assad, 2006; Plassmann, J. O’doherty, and Rangel,
2007; Tobler et al., 2007) as well as in encoding abstract rules (Wallis, Anderson,
and Miller, 2001; Genovesio et al., 2005), the region was studied specifically
in terms of its role of value encoding in state-based learning. A probabilistic
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reversal learning task was used where the choice signals indexing the value from
a standard reinforcement algorithm (MF) and that from a Bayesian Hidden State
Markov Model (MB) could be dissociated. It was found that the BOLD activity
in the medial prefrontal cortex, which was previously mainly implicated in MF
value computation, explained the value signal better from the abstract state-based
model than that from an MF algorithm (Hampton, Bossaerts, and O’doherty, 2006).
To further pin down and dissociate the neural sources of predictive value signals
of the MF and MB algorithm, Beierholm et al. (2011) have used a bandit-like
neuroeconomic task where different options are associated with different reward
probabilities, and the participants were incentivized to learn the reward probabilities
and prioritized choosing options with higher reward probabilities. As the task
successfully drives participants’ behavior either to an experience-based MF strategy
or a task-information-based Bayesian MB strategy, the computed value signal from
both strategies has been found to correlate in non-overlapping regions in the medial
prefrontal cortex (mPFC). Interestingly, the psychophysiological interaction analysis
found the correlation between the ventral striatum and the ventromedial prefrontal
cortex was increased when behaviors were more under the MF control, suggesting a
neural process of MF learning integration between the error signal encoding region
and the value encoding region. For the parallel computation of values pertinent
to the MF and MB system, researchers have also created separate contexts where
tree-search planning (i.e., MB) was demanded and reward-related choices were
overtrained (i.e., MF) for human participants to maximize the rewards (Wunderlich,
Dayan, and Dolan, 2012). Intriguingly, it was found that the value difference
required in a tree-search strategy correlated significantly with the BOLD activity in
caudate, whereas the values learned in the extensive training correlated significantly
with the BOLD activity in putamen.

Given the past work on the neural representation of predictive value signals from
the model-free and model-based systems, both systems’ value signals seem to be
represented independently and in parallel mainly in the medial prefrontal cortex and
striatum, receiving learning signals from the ventral striatum to form an accurate
representation of the reward environment. Given the availability of the two systems
and their distinct learning modules, the acting agent has the flexibility to engage one
system or the other for adaptive behavioral control on decision-making based on
empirical needs. In the next section, we will cover multiple theoretical frameworks
on the arbitration between the dual system and evidence from some computational
and neural studies.
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1.3 The Dual System and the Arbitration
The mental processes overall can roughly fall into two categories: a "fast" mode
and a "slow" mode, which have been historically called "System 1" and "System 2".
Such characterization originated from behavioral phenomena in experimental eco-
nomics, social judgment, and animal learning (Kahneman, Frederick, et al., 2002;
Loewenstein and O’Donoghue, 2004; Liberman, 2003; Killcross and Blundell,
2002; Dickinson and B. Balleine, 2002 ). Kahneman (2011) described "System 1"
as fast, instinctive, and emotional and "System 2" as slow, deliberative, and logical.
Hence, "System 1" involves mental processes that are relatively simple and effortless
(e.g., driving on a usual commute route), whereas the processes in "System 2" entail
mental expenses or cognitive efforts (e.g., navigating in a new city).

Such dual systems have realizations in the animal learning behaviors we have de-
scribed in previous sections. In the example of a rat navigating in the maze, the rat
could simply rely on the experiences of obtaining a reward or not to trigger necessary
responses at each location of the maze, thus forming a stabilized route for which the
learning process involves a sufficient number of trials and errors. Such a process
falls into the category of "System 1", as a simple stimulus-response association is
learned. On the other hand, if the rat has been exposed to the maze to explore
beforehand, the rat could utilize the state-action-state association (or cognitive map)
learned during the exposure phase to more efficiently figure out the route to the re-
ward. As the rat has to "mentally simulate" the possible route by computing values
at each node of branches in a tree-like decision space, and as the "tree" becomes
larger, the mental simulation would become more laborious and intractable, which
could well be characterized as a "System 2" process. Now, if the rat that learned
a stabilized route through "System 1" faces the situation that the original route is
blocked, then it has to relearn a new route from scratch through trials and errors.
If the rat using the cognitive map faces the same situation, an alternative route
could be figured out quickly through prospective planning over the maze. Also,
as alluded to in the previous section, if the rat is fed to satiety, "System 1" would
still implement the previously learned route as the stimulus-response association is
intact so far, while "System 2" would stop pursuing the reward as the online update
of the new outcome value (much lower) devalues all the state value in the maze.
In cases of sudden reward environment change, such as a route block or a reward
devaluation, "System 1" seems to persist in behavioral expression that was learned
and effective before the change but could not effectively adjust towards the updated
goal, and thus psychologists described such behavioral patterns as driven by habit-
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ual control (Dickinson, 1985). Conversely, "System 2" could adaptively adjust the
behavioral policy online upon these sudden changes to adapt to continually pursue
the current goal, and such behavioral patterns are characterized by psychologists as
goal-directed control (Dickinson, 1985). Linking back to the reinforcement learn-
ing algorithms we introduced before, the habitual control can be mimicked with an
MF agent learning the reward environment, and the goal-directed behavior can be
achieved with an MB agent learning both the state and reward information.

As both habitual and goal-directed control could potentially be engaged in animal
learning contexts, the question is under what circumstances each control would be
engaged. We will describe the experimental findings first and then introduce the
relevant arbitration theories.

Relevant to the outcome devaluation procedure described above, researchers have
trained rodents to perform a stimulus-action pair (S1-A1) to obtain an outcome of
O1. Then, the outcome (O1) was devalued, and the response rate of the rodents was
compared to the control group, which did not go through the outcome devaluation
procedure in terms of the response rate of action A1. If it is habitual control driving
the behavior, then the response rate of A1 should be comparable between the
devaluation group and the controls, displaying insensitivity to outcome devaluation.
If goal-directed control drives behavior, the response rate of A1 should be reduced
in rodents that experienced outcome devaluation, as the updated outcome values of
O1 and O2 are considered. It turned out the rodents would display behaviors under
habitual control if they were moderately trained and would display goal-directed
behaviors if they were over-trained (Adams, 1982; B. W. Balleine and Dickinson,
1998). In human participants, Tricomi and colleagues (2009) used a free-operant
task for training and found as it went from moderate training to extensive training,
human participants shifted their behavior from being goal-directed to being habitual,
echoing earlier findings in animal literature.

Given the good characterization of the MF and MB systems on the habitual and goal-
directed behavior, respectively, a theoretical framework based upon the dual system
uncertainty (or prediction accuracy) has been proposed to explain the arbitration
between the habitual and goal-directed control from a computational perspective
(Daw, Niv, and Dayan, 2005). Daw and colleagues (2005) framed the habitual
and goal-directed control as the two ends of a spectrum going from an algorithm
that is computationally simple but inflexible (model-free) to an algorithm that is
computationally complex but could afford dynamic planning online (model-based).
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Past research has found that lesions of the dopamine system (Faure et al., 2005) or
the dorsolateral striatum (Yin, Knowlton, and B. W. Balleine, 2004) could disrupt
the control shift to habit formation through extensive training, indicating persistent
use of the MB system. Also, lesions of prelimbic cortex (B. W. Balleine and
Dickinson, 1998; Coutureau and Killcross, 2003; Killcross and Coutureau, 2003)
and prefrontal-associated regions of dorsomedial prefrontal cortex (Yin, Ostlund, et
al., 2005) in rodents, and lesions of orbitofrontal cortex in monkeys (Izquierdo, Suda,
and Murray, 2004) were found to lead to impaired MB system, that is, outcome-
insensitive habits were displayed even with moderate training. Such neural findings
suggest a potential parallel MF and MB system in the brain that could compete for
actual behavioral control.

Consider an example where the rat was trained to perform a chain of two state-
action pairs to successfully retrieve a reward. There are two actions that are always
available for the rat to choose: 1) lever-pressing and 2) magazine-entering. At the
initial state, the rat needs to press the lever (action 1) to have the food delivered
and then enter the magazine (action 2) to obtain the food. Entering the magazine at
the initial state or pressing the lever at the subsequent state (i.e., when the food is
delivered) would lead to the no-reward states. Given all potential states, including
the reward/no-reward state, the MB system would need to construct a correct tree
structure (i.e., state-action-state transitions) to compute the state-action values. The
MF system relies on experiences of reward or no reward, given an action at each
state, to estimate the values. When each system estimates the state-action value in
its own manner, there would be estimation uncertainty about the true value, and such
uncertainty indicates how accurate each system is. The core of the uncertainty-based
arbitration theory (Daw, Niv, and Dayan, 2005) is that the system with higher value
estimation accuracy, that is, low uncertainty, should be favored in use. Then for the
system selected to use, the possible actions were implemented with the probabilities
that are proportional to their corresponding values. A Bayesian version of the two
RL systems was implemented (Dearden, Friedman, and Russell, 1998; Mannor
et al., 2004), and the posterior variance of the action value estimates serves as
the uncertainty of the system in use for that action (here we focused only on the
distal action, lever press, for simplicity). When the rat just starts with the task, the
MB system has relatively lower value uncertainty as the initial stream of reward
information can inform the action value more efficiently through propagations in
the learned decision tree, whereas the MF system needs a sufficient number of
bootstrapping to reach a stable estimation of the true value. Hence the distal action
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(pressing lever) would exhibit outcome devaluation sensitivity when the training is
moderate. However, as the training goes on, the MF system could take advantage
of the large number of reward samples to have the variance of value estimates
gradually asymptote to a low level, while the MB system would asymptote to a
relatively higher level of uncertainty, suffering from the "computational noise" in
the additional step of tree search due to practical value approximations when using
the MB system. As a consequence, after extensive training, the MF system would
have a lower uncertainty for the distal action than the MB system would have. Hence,
an insensitivity of the action to the outcome devaluation would be expressed.

In the situation where two concurrent actions are available to choose to obtain two
different outcomes respectively (Kosaki and Dickinson, 2010), the prediction from
the theory about the arbitration process would change. Since more data samples are
needed to reduce the variance of value estimates from the MF system for the two
concurrent actions, the resulting uncertainty of the MF system would asymptote to
a higher level than that of the MB system according to the simulation, leading to the
sustained use of the MB system, hence displaying sustained outcome devaluation
sensitivity throughout the entire training process.

As the uncertainty-based arbitration theory (Daw, Niv, and Dayan, 2005) explained
well the classic habit formation observed in rodents, a direct RL implementation
of the theory, the reliability-based arbitration, was then proposed and tested in
human decision making (Lee, Shimojo, and O’doherty, 2014; O’Doherty et al.,
2021). The reliability-based arbitration theory approximates the system uncertainty
through experienced prediction errors from each system. When a system’s reliability
is relatively high, then such a system should be assigned a large weight when
controlling behavior. When deciding on the system weight, the reliabilities of both
systems are considered.

For the reliability of the MF system, unsigned reward prediction errors serve as the
proxy estimate, and the quantity of the unsigned reward prediction errorΩ is learned
through:

ΔΩ𝑡 = 𝜂 × (|𝑅𝑃𝐸 |𝑡 −Ω𝑡); (1.14)

Ω𝑡+1 = Ω𝑡 + ΔΩ𝑡 , (1.15)

where 𝜂 is the learning rate for the unsigned reward prediction error. The reliability
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of the MF system is then defined as:

𝜒𝑀𝐹 =
(𝑅𝑃𝐸𝑚𝑎𝑥 −Ω)

𝑅𝑃𝐸𝑚𝑎𝑥

, (1.16)

where 𝑅𝑃𝐸𝑚𝑎𝑥 is the experienced maximal reward prediction error. Hence the
larger the learned unsigned reward prediction error, the lower the MF reliability is.

For the reliability of the MB system, Bayesian inference is used to estimate the
conditional probability of zero and positive state prediction error (as SPE could not
go negative). In detail:

𝑃(𝑆𝑃𝐸 |𝜃) =

𝜃1 if 𝑆𝑃𝐸 > 𝜔

𝜃0 if 0 ≤ 𝑆𝑃𝐸 ≤ 𝜔
, (1.17)

where𝜔 denotes the tolerance level for a positive SPE (graininess of determination);
𝜃0 denotes the probability of making zero SPEs and 𝜃1 denotes the probability of
making positive SPEs, and 𝜃0 + 𝜃1 = 1. The conditional probability of making zero
or positive SPE is assumed to be from a Dirichlet prior distribution:

(𝜃0, 𝜃1) ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (𝜆0, 𝜆1), (1.18)

where 𝜆0 + 𝜆1 = 1. Assuming there is a set 𝐷 of 𝑇 events that consist of a subset
𝐷𝑆𝑃𝐸0 of zero SPE events and a subset 𝐷𝑆𝑃𝐸1of positive SPE events:

𝐷 = {𝑆𝑃𝐸1, 𝑆𝑃𝐸2, ..., 𝑆𝑃𝐸𝑇 } (1.19)

𝐷𝑆𝑃𝐸0 = {𝑆𝑃𝐸 𝑖},where 0 ≤ 𝑆𝑃𝐸 𝑖 ≤ 𝜔 and 𝑖 ∈ {1, 2, ...., 𝑇} (1.20)

𝐷𝑆𝑃𝐸1 = {𝑆𝑃𝐸 𝑖},where 𝑆𝑃𝐸 𝑖 > 𝜔 and 𝑖 ∈ {1, 2, ...., 𝑇} (1.21)

The posterior probability distribution of making zero or positive SPE would then
be:

𝑃(𝜃 |𝐷) ∼ 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡 (𝜆0 + |𝐷𝑆𝑃𝐸0 |, 𝜆1 + |𝐷𝑆𝑃𝐸1 |) (1.22)

which is because the Dirichlet distribution is the conjugate prior distribution of a
categorical distribution. Here |𝐷𝑆𝑃𝐸0 | and |𝐷𝑆𝑃𝐸1 | denote the cardinality of the
corresponding subset.

Then the expected value and variance of the posterior probability distribution can
be calculated as:

𝐸 (𝜃 𝑗 |𝐷) =
(1 + |𝐷𝑆𝑃𝐸 𝑗

|)
2 + |𝐷 | ; 𝑗 ∈ 0, 1 (1.23)
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𝑉𝑎𝑟 (𝜃 𝑗 |𝐷) =
(1 + |𝐷𝑆𝑃𝐸 𝑗

|) (1 + |𝐷𝑆𝑃𝐸𝑘
|)

(2 + |𝐷 |)2(3 + |𝐷 |)
; 𝑗 , 𝑘 ∈ {0, 1}; 𝑘 ≠ 𝑗 (1.24)

The MB reliability informed by the SPE signal is then defined as:

𝜒𝑀𝐵 =
𝜒0

𝜒0 + 𝜒1
, (1.25)

where 𝜒 𝑗 =
𝐸 (𝜃 𝑗 |𝐷)

𝑉𝑎𝑟 (𝜃 𝑗 |𝐷) . This mean-variance ratio is the inverse of a dispersion
index that has been used to characterize the uncertainty in communication channels
(Janesick et al., 1987) and efficiency of information transfer in neurons (Ma et al.,
2006). Hence, the MB system reliability would decrease with the number of positive
SPE observations and with inconsistency within all the observations.

Once the reliability metrics of the two systems have been established as above, to
control the extent of each system influencing the behaviors, the weight of a system
(𝑃𝑀𝐵, probability of MB) is decided through a dynamical two-state transition rule
governed by the two systems’ reliabilities 𝜒𝑀𝐹 and 𝜒𝑀𝐵. The weight for a given
system is probabilistic, and the weights of the two systems sum up to 1. Also,
considering the fact that engaging the MB system could be more demanding in
terms of cognitive efforts than engaging the MF system due to sophisticated tree-
search computation, the transition between the high MF weight to high MB weight
is biased in a way that the MF system is favored, when everything else equal.
Also, through simulations, this specific RL implementation of the reliability-based
arbitration was found to capture well the classic finding in instrumental learning that
behavioral control would first get dominated by goal-directed control and shift to
habitual control as the amount of training increases (Adams and Dickinson, 1981;
Adams, 1982; B. W. Balleine and Dickinson, 1998; Tricomi, B. W. Balleine, and
O’Doherty, 2009).

To test this implementation of the reliability-based arbitration model, Lee and col-
leagues (2014) used a Markov decision task for human participants to make a
decision of a two-action sequence to transition through two layers of states for re-
ward collections. There are fixed types of tokens with various reward amounts
associated with each end-state in the task space. Importantly, the task is designed
to elicit different levels of MF reliability in reward prediction and MB reliability in
state prediction throughout the experiment. The types of tokens for rewards have
periods where all types of tokens are valued ("flexible") vs. only a specific type
of token is valuable ("specific," the specific type of token can change) in order to
create periods when the unsigned reward prediction errors encountered in the MF
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system are larger ("specific" period) or smaller ("flexible" period). Additionally, the
state-action-state transition probabilities were also manipulated with two conditions:
low vs. high state-action-state transition uncertainty (90%/10% vs. 50%/50%), with
which the level of state prediction errors could be set to low vs. high levels, re-
spectively. Through examination of participants behaviors as well as computational
model fitting, supportive evidence for the reliability-based arbitration hypothesis
was found that during "specific" token periods (i.e., low MF reward prediction relia-
bility) and low station-transition uncertainty periods (i.e., high MB state prediction
reliability), more MB-consistent behaviors were expressed. The reliability-based
arbitration model also predicted actual choices well and captured the shift between
MF-consistent and MB-consistent behaviors throughout the experiment.

Besides the arbitration framework, which leverages the uncertainty (or prediction
accuracy) of each system when making reward and state predictions, there have been
other theories that trade off the benefits and costs of the dual systems for reward
maximization (Keramati, Dezfouli, and Piray, 2011; Pezzulo, Rigoli, and Chersi,
2013). When a rat was put in a T-maze for choosing one of two concurrent options
for a reward, it was observed that the rat would pause and exhibit head movements to
both options before finally making a choice (Edward Chace Tolman, 1938; Edward
Chace Tolman, 1939; Muenzinger, 1938). Such behavior is called "vicarious trial-
and-error"(VTE) and indicates the deliberation process during planning. As training
continues, the frequency of such VTE behaviors declines (Hu, Xu, and Gonzalez-
Lima, 2006; Munn, 1950), and the decision time shortens, suggesting the control
shifts from a goal-directed system to a habitual system (Redish, Jensen, and Johnson,
2008). Such observation highlights an important feature in the goal-directed system:
although the deliberation could lead to potentially good information about the entire
environment and sudden change in the environment could be properly incorporated,
it comes with the time cost associated with deliberation. In contrast, the habitual
system only learns the stimulus-action association, which is a simple computational
process that elicits little time consumption, although it comes with the inflexibility
to adapt to sudden environmental changes. As a result, using a goal-directed system
would entail opportunity costs due to the fact that the deliberation time could
otherwise be used for potential reward collection through a fast habitual system,
with a caveat that the fast habitual system might be inaccurate in terms of evaluating
the reward information in the environment, thus not necessarily harvesting more
rewards in an absolute sense. Hence the selection between a goal-directed system
and a habitual system becomes a problem of speed-accuracy trade-off, and Keramati
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and colleagues (2011) proposed a normative arbitration framework that compares
the benefits and costs of using the goal-directed system to decide the actual system
in use for instrumental behavior.

The speed-accuracy trade-off framework uses the MF and MB algorithms to com-
putationally approximate the habitual and goal-directed control, respectively, and
it relies on a key assumption that the goal-directed system would have an almost
perfect value estimation of the rewards in the environment with more deliberation
time. Thus, the benefits of the goal-directed system could be quantified as potential
value gain when having the perfect information (value of perfect information, VPI;
Howard, 1966), and the costs are then the potential rewards that could be accrued
through a habitual system during the deliberation time. If the benefit (i.e., VPI) is
larger than the cost, then the goal-directed system should be engaged; otherwise, the
habitual system should be used. Specifically, the VPI can be considered as the value
gain for a given state-action pair through the following metric (Dearden, Friedman,
and Russell, 1998):

𝐺𝑎𝑖𝑛𝑠𝑠,𝑎 (𝑄∗(𝑠, 𝑎)) =


𝑄̂𝐻 (𝑠, 𝑎2) −𝑄∗(𝑠, 𝑎) if 𝑎 = 𝑎1 and 𝑄∗(𝑠, 𝑎) < 𝑄̂𝐻 (𝑠, 𝑎2),

𝑄∗(𝑠, 𝑎) − 𝑄̂𝐻 (𝑠, 𝑎1) if 𝑎 ≠ 𝑎1 and 𝑄∗(𝑠, 𝑎) > 𝑄̂𝐻 (𝑠, 𝑎1),

0 otherwise.
(1.26)

Here 𝑎1 and 𝑎2 are the best and second-best actions, which 𝑄̂𝐻 denote the value
learned through the habitual system through the temporal difference learning al-
gorithm, while the 𝑄∗ denotes the true value that could be learned through the
goal-directed system. Hence, learning the true value of a state-action pair (𝑠, 𝑎)
is beneficial via a goal-directed system when 1) the current learned best action is
found to be worse than the second-best action, or 2) some non-best action is actually
better than the current best action. Given the definition of 𝐺𝑎𝑖𝑛𝑠𝑠,𝑎, where the true
values (i.e., 𝑄∗) are not accessible but could be approximated by integrating over
the probability distribution 𝑄̂𝐻 learned through the habitual system, the value of
perfect information for a given state-action pair could be defined as:

𝑉𝑃𝐼 (𝑠, 𝑎) = 𝐸 (𝐺𝑎𝑖𝑛𝑠𝑠,𝑎 (𝑄∗(𝑠, 𝑎)) =
∫ ∞

−∞
𝐺𝑎𝑖𝑛𝑠𝑠,𝑎 (𝑥)𝑃𝑟 (𝑄𝐻 (𝑠, 𝑎) = 𝑥) 𝑑𝑥.

(1.27)
Thus, the VPI for each state-action pair, the potential gain of engaging the goal-
directed system, could be computed from the value distribution learned in the
habitual system. Intuitively, for a given non-best action in a state and the best action
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in that state, the VPI is proportional to the overlapping area between the value
distributions of the two actions in consideration.

If assuming that a fixed amount of deliberation time for evaluating VPI is needed,
denoted by 𝜏, then the cost of engaging the goal-directed control could be defined
as the amount of reward that could be obtained with a habitual system during the
deliberation time period. If the average rate of reward obtained per unit of time is
denoted as 𝑅, mathematically, the cost of engaging the goal-directed system is 𝑅×𝜏.
Here the average rate of reward obtained per unit of time could be learned as:

𝑅𝑡+1 = 𝑅𝑡 + 𝜎 × (𝑟𝑡 − 𝑅𝑡), (1.28)

where (𝑟𝑡 − 𝑅𝑡) denotes the prediction error and 𝜎 is the learning rate. Hence,
𝑉𝑃𝐼 (𝑠, 𝑎) and 𝑅 × 𝜏 are compared against each other to determine whether to
engage the goal-directed system.

In the example where the rat has to perform a sequence of two actions (i.e., lever
pressing and magazine entering) to obtain a reward, the shift of dominant control
from the goal-directed system to the habitual system when the training amount
increases could be explained well by the speed-accuracy trade-off arbitration theory.
When the reward sampling process just starts, the VPI of the two actions is high as
there is a large uncertainty around which action has a truly higher value, manifested
by the large overlapping area between the two value distributions. When the outcome
is devalued after moderate training, the probability of the VPI being higher than the
opportunity cost 𝑅×𝜏 is relatively high, and therefore, in the test phase, the behavior
would be driven by the goal-directed system. As training continues, the estimation
of the true values of the two actions becomes more and more accurate (with less
overlapping area between the two value distributions), and eventually, the VPI of
the two actions would be smaller than the opportunity cost. Thus, when devaluation
happens after extensive training, it is more likely that the habitual system would be
the dominant behavioral control. Also, it accounts for the observation that as the
training goes on, the reaction time would drop as the habitual system takes control,
and the deliberation process would be saved in such cases (Edward Chace Tolman,
1938).

In the experiment where two concurrent actions are available for obtaining two
different outcomes (Kosaki and Dickinson, 2010), because the value estimation from
the habitual system through reinforcement learning could not entirely eliminate the
variance of value estimation due to forgetting, and especially due to the fact that
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the two estimated values have the same reinforcing strength, the estimated value
distribution of the two concurrent actions could not separate to enough of a degree
so that the overlapping area would be high, leading to a higher level of VPI than
the opportunity cost in a sustained manner. Consequently, no matter how long the
training duration is, the goal-directed system would be the dominant behavioral
control, explaining well the empirical finding in such a task setting (Kosaki and
Dickinson, 2010). An interesting prediction from the speed-accuracy trade-off on
the experiment with two concurrent action-outcome pairs is that if the reinforcing
strengths (or intrinsic outcome values) are different enough, this will lead to a
decreased overlapping area between the value distribution of the two actions, and
thus a decrease of VPI. This suggests that as the training goes on, eventually the
behavior would become habitual. This prediction would contrast with what the
uncertainty-based arbitration framework would predict: as the relative value between
the two concurrent actions is not considered, but only the estimation uncertainty
of the dual systems is evaluated, the uncertainty-based arbitration would suggest a
sustained use of the goal-directed system regardless of the relative value between
the two actions.

Another arbitration model that leverages the benefit and cost of engaging the goal-
directed/MB system is the "Mixed Instrumental Controller" (MIC; Pezzulo, Rigoli,
and Chersi, 2013). The model is "mixed" in the sense that when an agent navigates
in the reward environment and learns the state-action value, the goal-directed/MB
system could conditionally join and contribute to the value estimation process along
with the habitual/MF system to help with action selection. The habitual/MF system
in MIC uses the typical Q-learning process (Watkins and Dayan, 1992) that learns the
Q-values of a state-action pair based upon experienced rewards, and importantly it is
the default system used for value estimations in MIC. The goal-directed/MB system
in MIC is featured as using an internal model of the environment to perform mental
simulations that sample potential actions and the associated outcomes. Performing
the mental simulations brings the benefits of having better action value estimates,
while at the same time, performing such mental simulations comes with a cost of
cognitive efforts (Gershman and Daw, 2012) and the reward being delayed due to
mental simulation time (Shadmehr, 2010). The benefit and cost of engaging mental
simulations are compared to determine whether the goal-directed/MB system would
be used to help estimate the values. Specifically, for the benefit of mental simulations,
Pezzulo and colleagues (2013) used a simple method to approximate the metric of
"Value of Information" (VoI; Howard, 1966), which quantifies the value of gaining
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more reward information via the mental simulations. For action 1 (𝐴𝑐𝑡1) of the two
possible actions(𝐴𝑐𝑡1 and 𝐴𝑐𝑡2, its VoI is defined as:

𝑉𝑜𝐼𝐴𝑐𝑡1 =
𝐶𝐴𝑐𝑡1

|𝑄𝐴𝑐𝑡1 −𝑄𝐴𝑐𝑡2 | + 𝜖
. (1.29)

Here 𝐶𝐴𝑐𝑡1 denotes the uncertainty of the value estimate of action 1, 𝑄𝐴𝑐𝑡1. The
denominator is the absolute difference between the learned Q-values of the two
possible actions through past experiential learning or mental simulations and 𝜖 is
added to ensure a non-zero denominator. This metric of VoI is then compared against
the cost of mental simulations, set as a fixed threshold 𝛾. If 𝑉𝑜𝐼𝐴𝑐𝑡1 > 𝛾, mental
simulations for that action and possible subsequent actions will be performed to have
more pseudo-observations, which will be used to have a better posterior estimate of
the Q-values for action selection; if 𝑉𝑜𝐼𝐴𝑐𝑡1 < 𝛾, then the MIC would rely on the
cached Q-values learned through past experiences for action selection. Based upon
this metric, it can be seen that the benefit of mental simulation is high 1) when there
is a lot of uncertainty around the value of 𝐴𝑐𝑡1, or 2) when there is little difference
between the estimated Q-values of the possible actions, according to this method.
Additionally, the uncertainty of the executed action (assuming 𝐴𝑐𝑡1) 𝐶𝐴𝑐𝑡1 and the
Q-value of the action 𝑄𝐴𝑐𝑡1 are learned online based on real observations when
navigating through the task.

Pezzulo and colleagues (2013) used MIC to simulate agent behaviors in a double
T-maze environment where a sequence of left-or-right decisions need to be made to
obtain potential rewards placed in the maze. To test how changes of VoI could lead to
changes in the behavioral expression of mental simulations, the authors manipulate
the variance of available reward amount at specific maze locations as well as the
relative value difference of concurrent rewards across multiple maze locations to
achieve various levels of VoI in different experimental settings. In a simple and stable
setting where the reward is placed in one location and the variance of the reward
is small, the typical transfer from the goal-directed system to the habitual system
as a function of training amount is observed, featuring a decrease in the number
of mental simulations and the length of mental simulations, which is consistent
with the classic behavioral findings (Adams and Dickinson, 1981; Adams, 1982;
B. W. Balleine and Dickinson, 1998; Tricomi, B. W. Balleine, and O’Doherty, 2009)
and the neural activity of reduced hippocampal forward sweeps and ventral striatal
covert reward expectations (Van Der Meer and Redish, 2009). In addition, the MIC
model also produces a testable prediction in this simple reward setting when varying
the reward variance: the mental simulations can sustain for a longer period at the
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beginning of the setting when the reward variance is larger, but gradually the "cache"
system would dominate due to sharp relative value difference of available actions,
potentially explaining the patterns of forward sweeps in hippocampus as a function
of environmental uncertainty (Gupta et al., 2010). Also, additional predictions of the
mental simulation patterns are made with simulations of the MIC model: a) when
there is a sudden change in reward location, the mental simulation is reintroduced
to learn the new action-reward contingency due to elevated uncertainty of values;
and b) when both the reward variance (i.e., high uncertainty of value estimates)
and the reward availability at various locations (i.e., low relative value difference)
are manipulated to be large, the mental simulation process sustains for the entire
training period without complete habitualization, due to both high uncertainty of
value estimates and small relative value difference of possible actions. These are all
interesting theoretical predictions from the MIC model that need further empirical
testing in a maze navigation setting.

From the perspective of cost-benefit analysis and with the MF/MB approximations
of habitual/goal-directed system, empirical studies have been run to test relevant
arbitration theories with the help of a two-step Markov decision task where MF and
MB algorithm could be dissociated (Daw, Gershman, et al., 2011). By pairing the
primary two-step task with a secondary numerical Stroop task that taxes working
memory (Waldron and Ashby, 2001), it was firstly found that high cognitive load
induced by the Stroop task drives behavior towards using the MF algorithm in
the primary two-step task as the MB algorithm could be hard to implement due
to insufficient cognitive resources (Otto et al., 2013), highlighting the impact of
cognitive cost on the arbitration process. An arbitration framework that leverages
the practical reward advantage against the cognitive costs was then proposed for
empirical testing (Kool, Gershman, and Cushman, 2017): if the high reward stakes
and the accuracy advantage carried by the MB system, which leads to an estimation
of its overall reward advantage, could offset its cognitive costs, then the MB system
should be favored over the MF system. Kool and colleagues (2017) used a variant of
the two-step Markov task (Kool, Cushman, and Gershman, 2016; Doll et al., 2015)
with manipulation of high vs. low reward stakes incorporated, to test how the usage
of MB system changes when incentivized with different levels of rewards, assuming
the rewards could manage to compensate the cognitive effort or not. Critically,
it has been established that the degree of using the MB algorithm in this specific
two-step task variant is positively associated with the reward rate (i.e., average
rewards collected per trial; Kool, Cushman, and Gershman, 2016), which suggests
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that high stake trials, compared to low stake trials, should promote the usage of the
MB system due to its enlarged reward advantage. Through behavioral analysis and
computational model fitting, such prediction was confirmed. To further resolve a
confound that the MB system would be favored due to high reward stakes regardless
of the actual reward accuracy benefit the MB system could bring, the authors ran a
second experiment where participants completed the original two-step task (Daw,
Niv, and Dayan, 2005) where there is no performance difference between using
the MF system and the MB system. No effects of high vs. low reward-stakes
manipulation on the degree of expressing MB-consistent behavior were found in
the original version of the two-step task. The two experiments together offered
the empirical evidence that a cost-benefit analysis evaluating the computationally
expensive MB system’s reward advantage against its disadvantage in occupying
more cognitive resources could potentially underlie the arbitration process between
the MB and MF systems.

Summarizing the efforts so far in characterizing the arbitration process, past re-
search has focused on different learning targets and the accuracy of predicting such
targets, as well as the benefits and costs due to the fundamental difference in the
computations of the dual systems. The early theory has focused on the uncertainty
of how each system could represent and predict the environmental reward or state
predictions (Daw, Niv, and Dayan, 2005), which characterizes well the classic
findings in studies on instrumental control. Importantly, the uncertainty-based ar-
bitration theory also gains supportive evidence through specific approximations of
system reliability through prediction errors in reinforcement learning by conducting
computational modeling and model-based fMRI analysis on key variables in the
arbitration process (Lee, Shimojo, and O’doherty, 2014). Later, the cost difference
of engaging the dual systems is taken into account to evaluate the value of engaging
the computationally costly goal-directed/MB system (Keramati, Dezfouli, and Piray,
2011; Pezzulo, Rigoli, and Chersi, 2013), which could explain well previous find-
ings in terms of the "vicarious trial-or-error" (VTE) behavior and the neural patterns
of hippocampal forward sweeps. The utility of reward maximization (i.e., accuracy)
to offset computational costs has also been considered, and there has been exper-
imental support that the computation-demanding MB system should be favored,
especially when it gains reward advantage over the MF system (Kool, Gershman,
and Cushman, 2017). To further pin down the key variables in the arbitration of the
dual systems, future work is needed to devise an experiment where multiple model
candidates have different predictions in the dynamics of arbitration, so that model
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performance in capturing the behaviors and the alignment between neural data and
the hypothesized arbitration process could be assessed.

1.4 Obsessive-Compulsive Disorder and the Error Signal
Obsessive-compulsive disorder (OCD) is characterized by experiencing uncontrol-
lable recurring thoughts, corresponding to the "obsessive" component, or by en-
gaging in pointless excessive behavior that makes up the "compulsive" component
of the disorder, or both (Franklin and Foa, 2011). Excessive hand-washing is an
example of the "compulsive" behaviors in OCD. The adaptive goal of hand-washing
is hygiene maintenance, yet when hand-washing is expressed to an abnormal ex-
tent in terms of frequency and duration, the benefit could typically be offset by the
adverse consequence it will bring — the skin abrasion and the time wasted with
no hygiene gain. Hence, compulsiveness can be characterized as a type of relent-
less and repetitive behavior despite its potential adverse consequences (Robbins
et al., 2012). As illustrated in the hand-washing example, the agent expressing the
compulsive behavior seemingly miscalculates the potential benefits and costs of the
hand-washing action and the associated goal, as though the potential hygiene ben-
efit brought by the excessive hand-washing would surpass the costs it induces due
to its time-consuming nature, and stopping the washing action might cause higher
costs than when the action is executed endlessly. Indeed, it has been suggested that
the repetitive behaviors are intentionally expressed to avoid unwanted or aversive
consequences (Salkovskis, 1985; McFall and Wollersheim, 1979; Stanley Rachman,
1998). Thus, the expressed compulsiveness could be due to some "cognitive bias"
allocated to the value of the action options in the environment (with stopping-the-
action as an option as well) to resolve the aversive worrying thoughts (Salkovskis
et al., 2000) due to potential adverse consequences. According to this "cognitive"
account, through a potentially biased value attribution, compulsive behaviors are a
type of goal-directed or purposeful behavior to relieve worry or anxiety and to avoid
the imagined aversive consequences (Rachman, 1976).

Given what has been covered on the habitual and goal-directed system, another
account for the "compulsiveness" observed in OCD proposes that such compulsive
behaviors arise due to the imbalanced allocation between the dual systems. In other
words, OCD patients have no problem in correctly representing the benefits and costs
of performing potential actions in the environment but, at the action-execution stage,
suffer a maladaptive system allocation problem such that the goal-directed behavior
cannot be expressed to a sufficient extent to effectively balance out the influence from
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the habitual system (Gillan and Robbins, 2014). Based upon the common neural
circuit, the ’frontal-striatum’ circuit (Alexander, DeLong, and Strick, 1986), which
is involved in habits (B. W. Balleine and J. P. O’doherty, 2010; Yin and Knowlton,
2006) and OCD (Alexander, DeLong, and Strick, 1986; Milad and Rauch, 2012;
Haber and Heilbronner, 2013), it was suggested that OCD could be due to the
maladaptive functioning of the habitual learning (Graybiel and Rauch, 2000).

Experimentally, through training in an appetitive instrumental learning paradigm
where a specific action needs to be performed upon a given stimulus to receive
rewards, it has been tested that OCD patients displayed learning of the stimulus-
response association (habitual learning) to a greater extent but had difficulty in
adapting to the updated outcome value, and were thus impaired in learning the
response-outcome association or goal-directed learning (Gillan, Papmeyer, et al.,
2011). Using a task of economic choices, it was also found that compared to
healthy controls, OCD patients display reduced "potential regret," which served as
a goal-directed marker underlying counterfactual processing for better performance
(Gillan, Morein-Zamir, Kaser, et al., 2014). As typical compulsive behaviors are
expressed to avoid potential aversive consequences, habitual/goal-directed learning
has also been examined in the avoidance behavior. Specifically through training to
avoid electric shocks, OCD patients expressed persistent avoidance behavior towards
the devalued stimulus, indicating overreliance on habitual learning in the aversive
domain (Gillan, Morein-Zamir, Urcelay, et al., 2014).

As for the explanations for the observed imbalance in habitual and goal-directed
control in OCD patients, it could be due to deficits in the learning of action-outcome
association; hence, the goal-directed process is affected, and the intact stimulus-
action association is instead relied on (Gillan, Papmeyer, et al., 2011). Conversely,
it could also be the reason that the stimulus-action association is established to an
abnormally high degree that the normal learning or execution of the action-outcome
association gets shadowed. Considering the theoretical account and empirical evi-
dence of arbitration between the model-free and model-based reinforcement learn-
ing (Daw, Niv, and Dayan, 2005; Lee, Shimojo, and O’doherty, 2014), it could
be the case that, as a third possible underlying cause, among OCD patients, both
the stimulus-action link (habitual) and the action-outcome link (goal-directed) is
intact, but, critically, the arbitration mechanism between the two systems is actually
impaired (Kim et al., 2024).

To characterize the psychological mechanism of obsessive-compulsive disorder, the
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"error" signal is a fundamental driving factor underlying the expressed behavior. The
mismatch between the expected consequent state of certain action and the perceived
consequence, which is essentially an "error" signal, could induce error-correction
behavior (e.g., checking or action repetition) until the mismatch as perceived is
resolved (Pitman, 1987; Kate D Fitzgerald and Taylor, 2015). Such behavior
would become maladaptive when the error signal is perceived as exaggeratedly large
or when the errors are persistently perceived even after the correcting behavior.
Thus the obsessive thoughts and subjective feelings of incomplete performance
would be elicited due to the unresolved error. As a consequence, error-correction
behavior would be overly expressed to address the perceived "large" errors, leading
to repetitive but pointless compulsive behaviors.

Indeed, the role of abnormal "error" signals in OCD is well reflected based upon ev-
idence from neuroscientific research. In electroencephalography (EEG), a negative
deflection of electrical potential was observed starting at the event of error commis-
sion and reaches its negative maximum around 100ms post the error (Falkenstein
et al., 1991; Gehring, Coles, et al., 1995), and such negative electrophysiological
signal is called event-related negativity (ERN). This ERN signal has been empir-
ically studied and traced back to its neural origin — the anterior cingulate cortex
(ACC), with the approach of functional magnetic resonance imaging (fMRI; Ito
et al., 2003; Holroyd et al., 2004), brain lesion research (Stemmer et al., 2004),
and dipole source modeling (Dehaene, Posner, and Tucker, 1994). In a study with
event-related fMRI, Carter and colleagues (1998) used a variant of the Continuous
Performance Test (AX-CPT; Barch et al., 1997) to elicit response error and to create
trials with high response competition. When examining the BOLD signal within
the human brain, it was found that ACC expressed greater activity on error trials,
implying its role in error detection, which, in relation to OCD, reflects the evalu-
ation of the mismatch between the planned action execution and the actual action.
Moreover, ACC also expressed greater activity in trials with high response conflict,
suggesting ACC could also serve as a conflict detector in the error-prevention system
underlying the OC behavior, which was further established with additional studies
(Botvinick et al., 1999; Van Veen et al., 2001). Accordingly, the neural hypothesis
of ACC being the conflict detector was supported by the evidence that ACC activity
peaked before response in correct high-conflict trials as it resolved potential conflict
in time but peaked after response in error trials as the unfinished evaluation of the
ongoing conflict lingered (Veen and Carter, 2002).
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Considering the role of ACC as both the error detector and the conflict detector, there
were empirical studies specifically testing how activity in ACC shows a difference
in OCD compared to controls. With respect to the role of ACC as the error detector,
OCD patients showed enhanced ERN signal, possibly from ACC, compared to con-
trols during action monitoring, and the degree of this enhancement was correlated
with the severity of the OC symptoms (Gehring, Himle, and Nisenson, 2000). For
better localization of the error processing mechanism in the brain, fMRI studies
were conducted, and indeed, the activation in ACC was higher in OCD patients than
in controls during error trials in the task of AX-CPT (Ursu et al., 2003); and in a
"flanker interference" task (B. A. Eriksen and C. W. Eriksen, 1974), a similar effect
of hyperactivity to errors in OCD was found in rostral ACC (Kate Dimond Fitzger-
ald et al., 2005). Such findings aligned well with the psychological mechanism that
obsessive-compulsive behaviors are driven by hypersensitivity to the experienced
error and manifested through subsequent persistent correction for the unsatisfactory
performance (but for a possible confound of negative affect, see Luu, Collins, and
Tucker, 2000). In parallel, although the task performance was comparable between
the OCD patients and controls in the task of AX-CPT, a hyperactivity effect of ACC
in OCD was still found during high-conflict trials (Ursu et al., 2003). Hence, the po-
tential role of ACC as the conflict detector explains well the fact that although OCD
patients can have unimpaired performance in cognitive tasks (Galderisi et al., 1995),
performing the tasks is constantly accompanied by the subjective feeling of error
and doubt. Further validating ACC’s role in detecting error and conflict underlying
the obsessive-compulsive behavior, the severity of OC symptoms was also found to
positively correlate with the error-related hyperactivity of BOLD activity in ACC in
the flanker interference task (Kate Dimond Fitzgerald et al., 2005) and have a trend
of positive correlations with both the error-related and conflict-related BOLD hy-
peractivity in ACC in the task of AX-CPT (Ursu et al., 2003). Also, a meta-analysis
of 9 fMRI studies showed that when comparing the whole-brain BOLD activity
difference during errors between OCD and healthy controls on inhibitory control
tasks (e.g., stop, go/no-go, Stroop, Simon, flanker, anti-saccade, and multisource
interference), greater BOLD activation in the dorsal part of ACC was found in OCD
patients than in healthy controls (Norman et al., 2019). Together, from both the
electrophysiological and the fMRI studies, ACC as the error/conflict detector serves
as a necessary module in establishing the psychological model of OCD.

To summarize the psychological models of OCD we have introduced so far, there
are two accounts from the perspective of the action selection process: 1) an account
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of biased value attribution and 2) an account of the imbalance between the habitual
and goal-directed system. The biased value attribution account of OCD proposes
that the benefits and costs of potential action and no-action are computed when con-
sidering potential consequences of action/no-action, and such cost-benefit analysis
leads to a goal-oriented behavior where the repetitive action execution minimizes
the cost due to potential adverse consequences and reduces the worrying thoughts
of potential aversiveness. For the account considering the imbalance between the
habitual and goal-directed system, the occurrence of OC behavior could be driven by
a more weighted emphasis on the expression of learned stimulus-action association,
whereas the expression of the action-outcome association is compromised, which
could be due to 1) an over-representation of the stimulus-action association, 2) an
impaired cognitive link between action and outcome, or 3) an abnormal arbitration
mechanism that the brain favors the habitual system over the goal-directed system.
At the same time, OCD could be approached through the scope of an error cor-
rection/prevention process. Neural evidence has been presented that OCD patients
show ACC hyperactivity in error/conflict scenarios compared to healthy controls,
highlighting the role of the internal "error" signal (conflict as an unrealized error)
in OCD, given ACC’s general role in error/conflict detection in action monitoring.
What is unknown yet is whether there could be an integrative model to associate
the neuropsychological model of OCD in terms of resolving "error" and any of
the computational models on the action selection process. One potential node for
such model integration lies in the role of the "error" signal as it, in theory, could
serve as a proxy estimate of the habitual/goal-directed system’s reliability which
drives the arbitrator to favor the more reliable system (i.e., the system generating
fewer prediction errors; Daw, Niv, and Dayan, 2005; Lee, Shimojo, and O’doherty,
2014; O’Doherty et al., 2021 ). Thus, it implies that a biased neural representa-
tion of the errors from habitual and goal-directed systems could cause the apparent
overreliance on the habitual system in OCD. To empirically test for evidence of
such an integrative model, the framework of model-free and model-based system in
reinforcement learning (Daw, Gershman, et al., 2011) could provide the necessary
computational components — MF and MB prediction errors, to approximate the
"error" signal from the habitual and goal-directed system. Such empirical works
could help unravel the model of OCD and find the neural targets for its treatment.
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MODEL-BASED REINFORCEMENT LEARNING
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ABSTRACT

It has been proposed that the reflexive model-free (MF) system and a reflective
model-based (MB) system could both guide decision-making through reinforcement
learning, and an arbitration theory posits that the acting system between the two
should more reliably make predictions about the environment. However, direct
behavioral investigation of how control is allocated between the two systems remains
scarce. In this chapter, to investigate the arbitration process, we used a novel variant
of the two-step task with manipulations of three reliability signals from the two
systems — MF reward prediction error, MB state prediction error, and MB reward
prediction error, and performed statistical analysis on the arbitration behavior from
two online samples of participants. We not only found behavioral evidence of MF
reward prediction error and MB state prediction error driving control allocation,
further supporting previous computational and neural evidence of reliability-based
arbitration framework, but also found that MB reward prediction reliability also
contributes to control allocation significantly. In an exploratory analysis, various
reliability signals were found to interact to influence how behavior is guided by a
certain system. Moreover, in a post-hoc way, we also tested alternative arbitration
theories focusing on the cost-benefit analysis of the two systems but did not find
positive results. Overall, this chapter expands the dictionary of basic building blocks
to further study sophisticated arbitration behavior in real-world settings.
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2.1 Introduction
In the animal psychology literature, a contrasting pair of control systems have been
used to characterize certain stereotyped animal behaviors in learning paradigms:
habitual control and goal-directed control (Balleine and Dickinson, 1998). Habitual
control involves a system learning the association between a stimulus and an action,
in which the action is reinforced through past rewards. As such, upon a given
stimulus, an action would be executed as if there has been value cached to the action.
In contrast, upon a given stimulus, the goal-directed control learns the association of
action and its subsequent state, which is usually, but not limited to, an outcome state.
In other words, the knowledge of the state-action-state transitions in the environment
is needed to execute good goal-directed control. Thus, a specific goal state can be
achieved by implementing the linking actions between different upstream states.
Thanks to the development in the field of computer science and specifically in
reinforcement learning, the aforementioned dual control systems have their own
computational correspondence with the habitual control described as a model-free
(MF) system and the goal-directed control described as a model-based (MB) system.
Intuitively, the MF system learns a cached stimulus-action value through trials and
errors, whereas the MB system computes the action value online through a "World
Model," which encodes the state-action-state information. Empirical experiments
with the computational approaches and the measure of underlying neural signals
(Daw, Gershman, et al., 2011; Gläscher et al., 2010; Wunderlich, Dayan, and Dolan,
2012) have shown such computational characterization of MF vs. MB system attains
good explanatory power on human learning.

Humans show a mixed use of the habitual (or MF) and goal-directed (or MB) systems
in empirical studies of learning (Daw, Gershman, et al., 2011; Kool, Cushman, and
Gershman, 2016; Wunderlich, Smittenaar, and Dolan, 2012; Dezfouli and Balleine,
2013; Otto et al., 2013; Smittenaar et al., 2013; Dezfouli, Lingawi, and Balleine,
2014). Given the prevalence of dual control systems in learning behaviors, it is worth
asking which controller under what conditions should be prioritized. One theoretical
work (Daw, Niv, and Dayan, 2005) has proposed an uncertainty-based arbitration
framework, emphasizing the importance of the variance of value estimation in
deciding the controller usage. Specifically, when a controller has a higher variance
in its value estimation (e.g., habitual control), suggesting higher uncertainty in such
controller, the other controller (e.g., goal-directed control) should be prioritized. The
uncertainty-based arbitration framework has been further tested with "uncertainty"
approximated by the "reliability" within the learning algorithms: the unsigned
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reward prediction error in an MF reinforcement learner and state-prediction error
in a model-based Bayesian estimator (Lee, Shimojo, and O’doherty, 2014), which
supported this reliability-based theory computationally and neurally well.

Researchers have been using a two-step Markov decision-making paradigm (i.e.,
two-step task, Daw, Gershman, et al., 2011) to study the usage of MF and MB
systems. The paradigm is capable of recovering MF and MB control through the
manipulation of transition probability and reward conditions, which are the criti-
cal learning components within the MF and MB reinforcement algorithms. The
control flexibility encapsulated in the two-step task provides a platform for a more
direct behavioral test of the arbitration hypothesis through systematic manipula-
tions of computational variables based upon the previous work (Lee, Shimojo, and
O’doherty, 2014).

Within this chapter, we first sought to establish the validity of the roles of reliability
signals in the arbitration process between MF and MB controls in the two-step
task through behavioral and computational analysis. For this aim, we modified the
original two-step task to incorporate the manipulations of three reliability signals:
1) model-free reward prediction error, 2) state-prediction error, and 3) model-based
reward-prediction error. Specifically, we would further confirm the role of MF
reward prediction error and state prediction error as previously identified reliability
signals (Lee, Shimojo, and O’doherty, 2014) on the arbitration process in a unified
reinforcement learning framework. Moreover, the role of model-based reward
prediction error, as another potential source of reliability signal for the MB system
would be tested as well for its effect on arbitration. The results could potentially add
to the basis of reliability-based arbitration theory with robust behavioral evidence.
Beyond the influence of the change of a single reliability signal, our novel variant of
the two-step task enabled the exploratory testing of how different reliability signals
interact to influence the control allocation process, which is another key building
stone of understanding sophisticated arbitration behaviors in the real world.

As there has been consideration of the extra deliberation time (Keramati, Dezfouli,
and Piray, 2011) or cognitive efforts (Pezzulo, Rigoli, and Chersi, 2013) when en-
gaging a goal-directed (or MB) system, there are alternative cost-benefit arbitration
theories that leverage the benefit of engaging a goal-directed (or MB) control against
its intrinsic costs. As a post-hoc analysis, we also further tested the possible validity
of such alternative arbitration theories based on cost-benefit analysis in the two-step
task.
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2.2 Results
General Behaviors
The task is a novel variant of the original two-step task with a space mining theme,
in which, on each trial, participants must choose between two spaceships (colored
yellow and blue) in order to reach the landing pads on one of two planets, after
which a mining operation will produce different rewarding outcomes. In each trial,
participants are instructed to choose the spaceship in order to win as much reward
as possible. As shown in Figure 2.1a, after choosing the spaceship, the participant
transitions from the spaceship choice state to one of the two planets. The probability
of transitioning to a particular planet, given the choice of a particular spaceship, is
either 70% or 30%, thereby creating common and rare transitions. Following arrival
at a planet, a subsequent transition occurs (without requiring a button press) from the
planet to a particular landing pad also probabilistically. The timing and sequence
of the trial event are shown in Figure 2.1c. Given the structure of the reward
probabilities associated with the two spaceships (Figure 2.1b), there are periods
where one spaceship is more rewarding than the other (reversals of which spaceship
is most rewarding occur throughout the experiment). To see whether participants
performed the task better than chance, we first evaluated the task performance of
the M-Turk group (N=452) in terms of each individual’s tendency to choose the
more rewarding option (Figure 2.1d). We used a random choice agent to generate
choices across the task to estimate a distribution for chance level performance (mean:
43.01%, standard deviation: 0.0279), and we compared this distribution to the actual
probability of reward from all the participants (mean: 48.16%, standard deviation:
0.0371). Participants’ performance was found to be significantly higher than that
of a random agent (𝑇 (451) = 24.6982, 𝑝 < 0.0001, paired t-test). This suggests
that overall the participants learned the reward probability of the two options and
adapted accordingly to obtain rewards.

Next, we aimed to determine whether participants exhibited choice behavior con-
sistent with model-based (MB) or model-free (MF) reinforcement learning (RL)
overall. In this task, as in the original two-step task (Daw, Gershman, et al., 2011),
a model-free (MF) agent would choose the same spaceship in the following trial as
chosen in the preceding trial after receiving a rewarded outcome on the preceding
trial regardless of whether a common or rare transition occurred in that trial. A
model-based (MB) agent, on the other hand, would consider the nature of the tran-
sition that occurred prior to reaching the rewarded outcome on the preceding trial
when making a spaceship choice in the subsequent trial: after a rare transition, an
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MB agent would be less likely to choose the same spaceship as chosen last time,
favoring instead the alternative spaceship associated with the common transition
more likely to lead to the same landing pad on the next trial. Prior studies have
found that, on average, human behavior on this two-step task is a mix of MB and
MF strategies (Daw, Gershman, et al., 2011). In order to diagnose if the behaviors
are consistent with MF or MB control, as in previous studies, we classified trials
by the outcome of the previous trial (i.e., reward vs. no-reward) and the 1st-stage
transition type (i.e., common or rare) on the previous trial, and we then examined
the probability of choosing the same option in the current trial as in the previous
trial (i.e., p(stay)) as a function of outcome and transition type on the previous trial.
Qualitatively, as shown in Figure 2, participants expressed a higher probability of
choosing the same option in the current trial if the chosen option was rewarded in
the previous trial, suggesting an MF component in participants’ reward-maximizing
strategy. However, participants also showed choice sensitivity to the transition type
in the previous trial. They were: 1) more likely to switch the choice after a rewarded
trial with a rare transition than with a common transition, and 2) more likely to
stay with the choice after a no-reward trial with a rare transition than with a com-
mon transition, suggesting an MB component in participants’ reward-maximizing
strategy. Collectively, these results support the typical observation that participants’
behavior reflects a mixture of both MB and MF components on average.

To quantify the degree of reward sensitivity and transition sensitivity, a mixed-
effect logistic regression was run to test how the probability of choosing the same
option is influenced by the previous outcome, previous transition type, and their
interactions (see Methods for details). Consistently, it was found participants were
more likely to repeat their choice if that choice was rewarded in the previous trial,
reflected by a significant, MF-consistent, previous outcome effect (𝛽 = 2.4914, 𝑆𝐸 =

0.049953, 𝑇 = 49.875, 𝑝 < 0.0001). An MB-consistent effect was also found
in that participants were more likely to switch to the other spaceship when they
experienced a rare transition towards a reward, reflected by a significant effect of the
interaction of the previous outcome and previous transition type (𝛽 = −2.9328, 𝑆𝐸 =

0.10025, 𝑇 = −29.256, 𝑝 < 0.0001). In sum, online participants showed a mixture
of MF-consistent and MB-consistent behaviors, replicating the typical behavioral
patterns observed in this two-step task (Daw, Gershman, et al., 2011).



44

Behavioral Evidence for the Effects of Reliability on the Balance between
Model-Based and Model-Free Control
In order to test for the role of uncertainty in the predictions of the MB and MF
systems in determining the degree to which behavior is MB and MF, the space-
miner task featured three different manipulations aimed at perturbing the magnitude
of the prediction errors generated within each system. First, we manipulated MF
RPEs by altering the magnitude of reward outcomes received across blocks of
trials (Figure 2.2b), yielding multiple trial blocks of high and low RPEs. By
testing for signatures of MB and MF control in these blocks and comparing them,
we could, therefore, assess whether manipulating RPEs, which would vary the
reliability of MF predictions, influences the degree to which behavior is MB or
MF. In addition, to manipulate uncertainty in the MB system, we changed the
predictability of transitions from the planets to the landing pads while keeping
the expected value of these transitions constant (Figure 2.2c). Blocks of trials
with highly predictable transitions were interleaved with blocks where transitions
were maximally uncertain — thereby producing periods with low and high state
prediction errors, respectively. Finally, we introduced an additional manipulation
of the reliability of the MB system by switching around reward contingencies such
that model-based reward prediction errors were either high or low (Figure 2.2a).

According to the reliability-based arbitration framework (Lee, Shimojo, and O’doherty,
2014), MB control should increase when either 1) MF-RPEs are high, 2) SPEs are
low, or 3) MB-RPEs are low. To measure the degree to which behavior is MB vs
MF, we used a metric called the Transition Sensitivity (TS, see Methods), which
quantifies the degree of the subsequent choice of "stay/switch" being sensitive to
the 1st-stage transition type experienced in the previous trial. Mathematically,
𝑇𝑆𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑 (or 𝑇𝑆𝑈𝑛𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑) is the absolute difference of the p(stay) after experi-
encing reward (or no reward) upon a common transition vs. upon a rare transition.
The𝑇𝑆𝑜𝑣𝑒𝑟𝑎𝑙𝑙 are calculated as the summation of𝑇𝑆𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑 and𝑇𝑆𝑈𝑛𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑 . Con-
ceptually, an MF agent would be ignorant of the previous transition type and express
a zero 𝑇𝑆. In contrast, an MB agent would fully consider the previous transition
type and express a positive TS. The more MB-consistent behaviors are expressed
than the MF-consistent behaviors, the higher 𝑇𝑆𝑜𝑣𝑒𝑟𝑎𝑙𝑙 would be.

To assess the hypothesized shift of control due to arbitration, we performed a
within-subject comparison of TS expressed in the high-level vs. low-level blocks
for each of the manipulated reliability signals separately: 1)MF-RPE, 2) SPE, and
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3) MB-RPE, respectively (Figure 2.3). For each analysis of the three reliability
signals, we found 1) the TS expressed in the high MF-RPE condition was higher
than in the low MF-RPE condition (𝑍 = 6.5285, 𝑝 < 0.0001, one-tailed Wilcoxon
signed-rank test); 2) the TS expressed in the low SPE condition was higher than in
the high SPE condition(𝑍 = 2.3502, 𝑝 = 0.0094, one-tailed Wilcoxon signed-rank
test); and 3) the TS expressed in the low MB-RPE condition was higher than in the
high MB-RPE condition(𝑍 = 9.4025, 𝑝 < 0.0001, one-tailed Wilcoxon signed-rank
test). The results of the TS analysis were consistent with the hypothesis that the shift
towards MB control was driven by the decreased uncertainty of the MB system (or
increased MB reliability) signaled by the computed prediction errors (i.e., MF-RPE,
SPE, and MB-RPE).

To quantitatively assess the increased MB control in response to the change in
model reliability, a mixed-effect logistic regression was run with the following
fixed effect included: the interaction of the previous outcome, previous tran-
sition type, and the condition-type of the manipulated reliability signals (e.g.,
𝑜𝑢𝑡𝑐𝑜𝑚𝑒 × 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛 × ℎ𝑖𝑔ℎ𝑆𝑃𝐸). For this analysis, all three conditional blocks
independently interacted with the previous outcome and previous transition type
within the same regression (see Methods for details). Since the interactional effect
of the previous outcome and previous transition type indicates the degree of an MB-
consistent component in the behavioral control (MB control), its additional interac-
tion with the condition type could tell how the MB-consistent component would shift
as a function of the level of the reliability signal in consideration. Consistent with
the Transition Sensitivity analysis, the logistic regression analysis shows the proba-
bility of choosing the same option as in the previous trial is significantly modulated
by the previous outcome, previous transition type, and the level of all three relia-
bility signals. As for the M-Turk group (N=452), it was found that the MB control,
indicated by the interaction of previous outcome and previous transition type, was in-
creased during conditions where MF-RPEs are high(𝛽 = −0.1097, 𝐹 (1, 136686) =
155.89, 𝑝 < 0.0001, F-test); also, increased MB control was found during low-
SPE conditions (𝛽 = −0.018941, 𝐹 (1, 136686) = 5.4139, 𝑝 = 0.019979, F-test);
lastly, during conditions where MB-RPEs are low, MB control was found to in-
crease (𝛽 = −0.17836, 𝐹 (1, 136686) = 140.11, 𝑝 < 0.0001, F-test). Similarly, as
for the replication sample (Prolific + virtual in-lab, N=226), this is consistent with
what a reliability-based arbitration theory would predict in that available systems
are arbitrated according to the reliability of the systems in consideration. When
the level of MF-RPEs was high, suggesting the low reliability of the MF system
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for reward prediction, MB control would be more engaged than its MF counterpart
in the two-step task. Similarly, when the level of SPEs was low, suggesting the
high reliability of the MB system given its nature of learning state-state transition,
MB control would be favored over MF control. Along a similar line, as the level
of MB-RPEs decreased, suggesting a more reliable MB system in terms of reward
prediction, MB control would be more relied on for the general behavioral control.

Computational Evidence of Reliability-Based Arbitration
As the evidence of reliability-based arbitration was observed at the behavioral level,
we next tested if the observed behavioral arbitration could be accounted for by a
reinforcement learning (RL) model that leverages the MB and MF control accord-
ing to the levels of the manipulated reliability signals (Cockburn et al., n.d., see
Methods). The RL model has the modules of MF and MB systems, where both
systems learn reward magnitudes, and the values of the two concurrent options are
computed within each system. Critically, for both MB and MF systems, the model
entails condition-specific weights that are associated with high vs. low levels of
reliability signals. Consequently, we have three independent mixture-weight mod-
els that entail model weights associated with high and low levels of the reliability
signal of interest. For example, for the mixture-weight model that considers the
conditional shift between high and low levels of MF-RPE signal (mixture-weight-
MF-RPE model, Figure 2.4a), we have the mixed value for a specific option during
the conditional block of high and low MF-RPE respectively as follows:

𝑉𝑎𝑙𝑢𝑒
ℎ𝑖𝑔ℎ𝑀𝐹𝑅𝑃𝐸

𝑚𝑖𝑥
= 𝑤

ℎ𝑖𝑔ℎ𝑀𝐹𝑅𝑃𝐸

𝑀𝐹
×𝑉𝑎𝑙𝑢𝑒ℎ𝑖𝑔ℎ𝑀𝐹𝑅𝑃𝐸

𝑀𝐹
+𝑤ℎ𝑖𝑔ℎ𝑀𝐹𝑅𝑃𝐸

𝑀𝐵
×𝑉𝑎𝑙𝑢𝑒ℎ𝑖𝑔ℎ𝑀𝐹𝑅𝑃𝐸

𝑀𝐵

𝑉𝑎𝑙𝑢𝑒𝑙𝑜𝑤𝑀𝐹𝑅𝑃𝐸
𝑚𝑖𝑥 = 𝑤

ℎ𝑖𝑔ℎ𝑀𝐹𝑅𝑃𝐸

𝑀𝐹
×𝑉𝑎𝑙𝑢𝑒𝑙𝑜𝑤𝑀𝐹𝑅𝑃𝐸

𝑀𝐹 +𝑤ℎ𝑖𝑔ℎ𝑀𝐹𝑅𝑃𝐸

𝑀𝐵
×𝑉𝑎𝑙𝑢𝑒ℎ𝑖𝑔ℎ𝑀𝐹𝑅𝑃𝐸

𝑀𝐵

where the weight parameter 𝑤 is assigned to the MF and MB system separately for
both high and low MF-RPE blocks. Hence, there are, in total, four weight parameters
fitted in the given model. An option is chosen based on a softmax function that
takes as the input the computed mixed values in a given conditional block.

As in the mixture-weight-MF-RPE model, the same model structure was applied to
the mixture-weight models that incorporate conditional weights for the reliability
signals of SPE (mixture-weight-SPE model) and MB-RPE(mixture-weight-MB-
RPE model). It can adapt to changes in the reward environment. We then searched
for computational evidence of reliability-based arbitration by examining the fitted
conditional MF and MB weights in the models described above. As the model
weights associated with the MF and MB systems were independently fitted for high
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and low levels of reliability signals, we used the difference between the fitted model
weights as the metric to characterize the relative model-based control (RMBC) in a
given reliability condition. Take the mixture-weight-MF-RPE model as an example.
The RMBC for high and low levels of MF-RPE conditions can be calculated as:

𝑅𝑀𝐵𝐶ℎ𝑖𝑔ℎ𝑀𝐹𝑅𝑃𝐸 = 𝑤
ℎ𝑖𝑔ℎ𝑀𝐹𝑅𝑃𝐸

𝑀𝐵
− 𝑤

ℎ𝑖𝑔ℎ𝑀𝐹𝑅𝑃𝐸

𝑀𝐹

𝑅𝑀𝐵𝐶 𝑙𝑜𝑤𝑀𝐹𝑅𝑃𝐸 = 𝑤𝑙𝑜𝑤𝑀𝐹𝑅𝑃𝐸
𝑀𝐵 − 𝑤𝑙𝑜𝑤𝑀𝐹𝑅𝑃𝐸

𝑀𝐹

The same RMBC measures were applied to the mixture-weight model that in-
corporates conditional weight for SPE (mixture-weight-SPE model) and MB-RPE
(mixture-weight-MB-RPE model).

If arbitration were driven by the reliability of MB and MF system, in the current
two-step task, the relative MB control (RMBC) would increase during periods of
high MF-RPEs (i.e., low MF reliability), low SPEs (i.e., high MB reliability), and
low MB-RPEs (i.e., high MB reliability).

Indeed, in the M-Turk sample we tested and through the group-level RMBC measure
derived from the fitted mixture-weight-MF-RPE model, we found 𝑅𝑀𝐵𝐶ℎ𝑖𝑔ℎ𝑀𝐹𝑅𝑃𝐸 >

𝑅𝑀𝐵𝐶𝑙𝑜𝑤𝑀𝐹𝑅𝑃𝐸 (𝑍 = 3.4281, 𝑝 < 0.001, one-tailed Wilcoxon signed-rank test,
Figure 2.4b). Also, as for the weights fitted through the mixture-weight-SPE model,
the MB system was weighted more during low SPE condition than during high
SPE condition, reflected by a trending effect of 𝑅𝑀𝐵𝐶𝑙𝑜𝑤𝑆𝑃𝐸 > 𝑅𝑀𝐵𝐶ℎ𝑖𝑔ℎ𝑆𝑃𝐸

(𝑍 = 1.4995, 𝑝 = 0.0669, one-tailed Wilcoxon signed-rank test, Figure 2.4c).
Lastly, from the mixture-weight-MB-RPE model, MB control was found to increase
during low MB-RPE condition compared to high MB-RPE condition, indicated
by 𝑅𝑀𝐵𝐶𝑙𝑜𝑤𝑀𝐵𝑅𝑃𝐸 > 𝑅𝑀𝐵𝐶ℎ𝑖𝑔ℎ𝑀𝐵𝑅𝑃𝐸 (𝑍 = 6.6739, 𝑝 < 0.0001, one-tailed
Wilcoxon signed-rank test, Figure 2.4d). To summarize, the computational evi-
dence of arbitration according to system reliability was found for all manipulated
reliability signals (i.e., MF-RPE, SPE, and MB-RPE, although to a lesser extent
for the SPE), solidifying the behavioral evidence of arbitration measured by the
Transition Sensitivity.

The Replication of Behavioral and Computational Evidence for the Reliability-
based Arbitration
As we collected the same two-step task data as in the M-Turk sample through different
platforms (N=226, Prolific and Virtual In-Lab), we repeated the same behavioral and
regression analysis as in the previous section in this independent sample to further
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test the hypothesized effects of prediction reliability on the arbitration between
model-based and model-free control.

We first found in this independent sample that participants’ performance (mean:48.26%;
standard deviation: 0.0398 ) was also significantly better than that of a random
agent (mean: 43.28%; standard deviation: 0.0271, 𝑇 (225) = 15.7175, 𝑝 < 0.0001,
paired t-test). Participants also expressed significant reward sensitivity and transi-
tion sensitivity to outcomes and transition types in the previous trial. Specifically,
through the same mixed-effect logistic regression of modeling choice as a function
of the outcome, transition type, and their interaction, we found the significant pre-
vious outcome effect (𝛽 = −0.46832, 𝐹 (1, 68560) = 148.73, 𝑝 < 0.0001, F-test)
and the significant outcome-transition interaction (𝛽 = −0.94594, 𝐹 (1, 68560) =

346.83, 𝑝 < 0.0001, F-test).

Regarding the within-subject analysis of transition sensitivity (TS) measure across
high vs. low levels of system reliability, we also found the hypothesized effects
supported by the reliability-based arbitration theory in the replication sample (Fig-
ure 2.5) — that is, a higher transition sensitivity score, suggesting more MB control,
when MF RPE is high (𝑍 = 3.4186, 𝑝 < 0.001, one-tailed Wilcoxon sign rank test),
when MB RPE is low (𝑍 = 2.3983, 𝑝 = 0.0082, one-tailed Wilcoxon sign rank
test) and a trending effect of higher TS when SPE is low (𝑍 = 1.5894, 𝑝 = 0.0560,
one-tailed Wilcoxon sign rank test).

As for the mixed-effect logistic regression analysis on the choice sensitivity to the
manipulated reliability signals, we found the hypothesized arbitration effects of
three forms of prediction reliability as in the M-Turk sample, indicated by three
significant three-way interactions of previous outcome, transition type, and reliabil-
ity condition. That is, MB control was found to increase when MF-RPEs are high
(𝛽 = −0.089304, 𝐹 (1, 68560) = 46.47, 𝑝 < 0.0001, F-test ) and when MB-RPEs are
low (𝛽 = −0.059513, 𝐹 (1, 68560) = 6.9092, 𝑝 = 0.0085775, F-test ). Also, there is
a trend of increased MB control when SPEs are low (𝛽 = −0.020792, 𝐹 (1, 68560) =
2.8531, 𝑝 = 0.091201, F-test).

To search for the computational evidence of reliability-based arbitration in the repli-
cation sample, we fitted the same set of three condition-based mixture arbitration
models and examined, via the relative mode-based control (RMBC) measure, the
arbitration effect from the shifts of prediction reliability as in the reliability-based
arbitration theory. The hypothesized effect directions from the three reliability
signals were found again but with mixed results in terms of statistical signifi-
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cance: relative MB control increases during periods when MF RPEs are high
(𝑍 = 1.0274, 𝑝 = 0.1521, one-tailed Wilcoxon signed-rank test), when SPEs are
low (𝑍 = 0.2165, 𝑝 = 0.4143, one-tailed Wilcoxon signed-rank test), and when MB
RPEs are low (𝑍 = 2.8881, 𝑝 = 0.0019, one-tailed Wilcoxon signed-rank test). The
MB RPE effect on the arbitration process remained strong, but the effects of MF
RPEs and SPEs are weaker in this replication sample (N=226), which might be due
to a smaller sample size compared to the M-Turk sample (N=452).

Exploratory Analysis of Inter-Reliability Arbitration
So far, we have shown how multiple forms of reliability signals can independently
guide the arbitration between MF and MB control. As all three reliability signals are
manipulated to dynamically shift between high and low levels orthogonally in the
task (e.g., there are periods of high and low SPEs within the high MB-RPE condi-
tion), this enables us to explore how multiple forms of reliability signals could exert
interactional influence on the arbitration process besides their independent roles.
Specifically, given the fact that the manipulation of MB-RPEs was through different
reward-contingency sessions (i.e., state-contingent session vs. stimulus-contingent
session) and the manipulations of MF-RPE and SPE signals were frequently shifted
within each session, we could probe how the reliability signal of MF-RPEs could
modulate the arbitration process as a function of different levels of MB-RPE signal,
and similarly as for the reliability signal of SPEs.

As the degree of shift in the relative model-based control measure (RMBC) across
high and low levels of reliability indicates the strength of the arbitration effect,
we specifically characterized the change of the arbitration strength via the RMBC
measure across high and low MF-RPE conditions within the state-contingent session
(i.e., low MB-RPE) and the same was conducted within the stimulus-contingent
session (i.e., high MB-RPE):

𝑑𝑖 𝑓 𝑓 𝑅𝑀𝐵𝐶𝑀𝐹𝑅𝑃𝐸
𝑠𝑡𝑎𝑡𝑒−𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑡 = 𝑅𝑀𝐵𝐶

ℎ𝑖𝑔ℎ𝑀𝐹𝑅𝑃𝐸

𝑠𝑡𝑎𝑡𝑒−𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑡 − 𝑅𝑀𝐵𝐶 𝑙𝑜𝑤𝑀𝐹𝑅𝑃𝐸
𝑠𝑡𝑎𝑡𝑒−𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑡

𝑑𝑖 𝑓 𝑓 𝑅𝑀𝐵𝐶𝑀𝐹𝑅𝑃𝐸
𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠−𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑡 = 𝑅𝑀𝐵𝐶

ℎ𝑖𝑔ℎ𝑀𝐹𝑅𝑃𝐸

𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠−𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑡 − 𝑅𝑀𝐵𝐶 𝑙𝑜𝑤𝑀𝐹𝑅𝑃𝐸
𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠−𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑡

Similarly, the shift of RMBC across high and low SPE conditions was examined
within the state-contingent session and stimulus-contingent session, respectively.
With this exploratory analysis, we found a stronger arbitration effect induced by
the shifted levels of MF-RPEs when MB-RPEs are low compared to when MB-
RPEs are high (𝑍 = 2.9055, 𝑝 = 0.0018, one-tailed Wilcoxon signed-rank test,
Figure 2.6(left)):
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𝑑𝑖 𝑓 𝑓 𝑅𝑀𝐵𝐶𝑀𝐹𝑅𝑃𝐸
𝑠𝑡𝑎𝑡𝑒−𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑡 > 𝑑𝑖 𝑓 𝑓 𝑅𝑀𝐵𝐶𝑀𝐹𝑅𝑃𝐸

𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠−𝑐𝑜𝑛𝑡𝑖𝑛𝑔𝑒𝑛𝑡

However, for the arbitration effect driven by the change of SPE levels, no sig-
nificant strength difference was found across the state-contingent and stimulus-
contingent session (𝑍 = 0.1682, 𝑝 = 0.4332, one-tailed Wilcoxon signed-rank test,
Figure 2.6(right)).

This analysis on inter-reliability arbitration was also conducted on the replication
sample (N=226). A quantitatively similar interaction effect between MF RPEs and
MB RPEs was detected on directing the relative MB control: the arbitration effect
of MF RPE is more evidently expressed during state-contingent reward session
(i.e., low MB RPEs) than during stimulus-contingent reward session (i.e., high MB
RPEs), reflected by the trending change in RMBC measure across conditions (
𝑍 = 1.3099, 𝑝 = 0.0951, one-tailed Wilcoxon sign-rank test). Also, similarly, as
in the M-Turk sample, the arbitration effect of SPE is not significant either in this
replication sample, as no significant change of RMBC change in high vs. low SPE
conditions was found across state-contingent vs. stimulus-contingent reward session
(𝑍 = −0.3719, 𝑝 = 0.6450, one-tailed Wilcoxon signed-rank test).

In sum, this exploratory analysis shows that the main effect of MF reward predic-
tion reliability (indicated by MF-RPEs) on the arbitration process was more evident
during the state-contingent session where the level of MB-RPEs is low, and the be-
havior is overall more under MB control. This might suggest a potential asymmetric
arbitration mechanism that the arbitrator evaluates more of the MF-reliability to
consider shifting to MF control when the behavior is overall under the MB control
(i.e., due to high MB prediction reliability during state-contingent sessions), but not
much of such evaluation when the behavior is overall under MF control. This is
consistent with the proposal that MF control (or the habitual system) might serve as a
default system (Lee, Shimojo, and O’doherty, 2014; Keramati, Dezfouli, and Piray,
2011; Pezzulo, Rigoli, and Chersi, 2013), and the arbitrator constantly evaluates the
reliability of the MF system to consider the default even when the MB system is
more engaged for the moment (Lee, Shimojo, and O’doherty, 2014).

Testing Alternative Theories of Arbitration between Controls
Through the behavioral and computational analysis so far, we found evidence of
how the arbitration between MF and MB control is governed by the corresponding
system uncertainty varied through multiple forms of prediction error signals, which
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supports an uncertainty-based arbitration theory (Daw, Niv, and Dayan, 2005; Lee,
Shimojo, and O’doherty, 2014). On the other hand, to explain the shift of habitual
and goal-directed control in the psychology literature, alternative arbitration theories
have been proposed, focusing on the cost-benefit analysis of engaging the goal-
directed control (Keramati, Dezfouli, and Piray, 2011; Pezzulo, Rigoli, and Chersi,
2013). Here, we attempted to test predictions of these alternative arbitration theories
by assuming the correspondence between habitual control and MF control and
the correspondence between goal-directed control and MB control, respectively,
although further empirical evidence is needed to support the assumptions.

The alternative arbitration theories proposed by Keramati et al. (2011) and Pezzulo
et al. (2013) entail a cost-benefit analysis of the two controllers and rely on an
assumption about the cost of engaging a slow and deliberative goal-directed (or
MB) system, which is either through 1) the forgone reward that could have been
collected during the relatively long deliberation time (Keramati, Dezfouli, and Piray,
2011), or 2) the cognitive efforts and time spent during mental simulations (Pezzulo,
Rigoli, and Chersi, 2013). Consequently, the arbitration scheme in both alternatives
uses the "cached" value habitual (or MF) control as default and leverages the benefit
of engaging the goal-directed (or MB) control against its associated cost to consider
its usage.

Specifically, the speed/accuracy trade-off theory proposed by Keramati et al. (2011)
assumes the goal-directed (or MB) control could use the knowledge of the envi-
ronmental structure to compute the "value of perfect information" (VPI) of the
concurrent actions and the arbitrator compares it against the opportunity cost (i.e.,
due to the longer deliberation time) for control selection. Conceptually, the VPI of
a given action is the policy improvement if the true value of the considered action
is known, and the VPI measure is proportional to the overlapping area between the
value distribution of the two concurrent actions (Figure 2.7). In the paradigm of
testing sensitivity to outcome-devaluation after moderate vs. extensive training, the
VPI of the actions is high after moderate training since there is a higher probability
that the true value of action 1 is higher than that of action 2 (Figure 2.7(left)),
hence devaluation-sensitive behaviors are expressed (goal-directed control is ben-
eficial). On the contrary, as the VPI of the concurrent actions becomes small as
training becomes extensive (Figure 2.7(right)), devaluation-insensitive behaviors
are expressed (not beneficial to activate the goal-directed control). As the moderate
training schedule, compared to the extensive training schedule, induces a relatively
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smaller value difference between the two concurrent actions, one prediction then
would be the smaller the value difference between the two concurrent actions, the
higher the VPI of the given actions, and thus it is more beneficial for the arbitrator
to activate the goal-directed (or MB) control as the benefit would be larger than the
opportunity cost caused by the loss of time.

In parallel, Pezzulo et al.(2013) proposed the arbitrator evaluates a given action’s
"value of information" (VoI) against the cost of mental simulation on the decision
of activating the goal-directed (or MB) control for value estimation of the given
action. The VoI measure is defined as, in the case of two concurrent actions (𝐴𝑐𝑡1
and 𝐴𝑐𝑡2), the ratio of value uncertainty over the difference between the considered
action 𝐴𝑐𝑡1 and the alternative action 𝐴𝑐𝑡2:

𝑉𝑜𝐼𝐴𝑐𝑡1 =
𝐶𝐴𝑐𝑡1

|𝑄𝐴𝑐𝑡1 −𝑄𝐴𝑐𝑡2 | + 𝜖
. (2.1)

Here 𝐶𝐴𝑐𝑡1 denotes the uncertainty of the value estimates of 𝐴𝑐𝑡1. Thus, if the
value uncertainty is controlled, then again, the smaller the value difference between
the concurrent actions, the more likely the VoI for the concurrent actions would be
larger than the mental simulation cost, and thus the goal-directed control (or MB)
control would have a higher chance to be activated.

Given the task structure that the reward probability associated with the two stimuli
would have periods of small and large differences, the concurrent action values would
hence have periods of small and large differences, respectively (Figure 2.1b). It then
provides an opportunity to test whether the goal-directed or MB control would be
more manifested when the value difference between the concurrent actions is small,
according to the alternative arbitration theories proposed by Keramati et al. (2011)
and Pezzulo et al. (2013). Specifically, first in the main M-Turk sample (N=452), we
compared the degree of MB control via the Transition Sensitivity measure during
periods of large value difference against that during periods when value difference is
small. Yet no significant difference of TS across periods of large and small value dif-
ference was found (Figure 2.8 (left), 𝑍 = 0.1942, 𝑝 = 0.4230, one-tailed Wilcoxon
signed-rank test). We also used a mixed-effect logistic regression to examine how
the effect of previous outcome and transition type on stay choices was modulated by a
binary regressor on small vs. large value difference. Interestingly, we found a signif-
icant interaction between the previous outcome and value difference type on the stay
choices (𝛽 = −0.43204, 𝐹 (1, 136694) = 29.981, 𝑝 < 0.0001, F-test), suggesting
when the value difference of the concurrent actions is small, the behavior was less
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driven by the previous outcome (for which one possibility is the behavior being less
under MF control); however, we did not find the significant three-way interaction
of the previous outcome, previous transition type, and value difference type, which
potentially corresponds to the increased MB control during periods when the value
difference is small (𝛽 = 0.00078283, 𝐹 (1, 235160) = 0.0099999, 𝑝 = 0.92034,
F-test). By fitting a condition-based arbitration model with separate weights for
periods of large and small differences in reward probability (same structure as in
Figure 2.4a), we compared the metric of relative model-based control (RMBC)
across periods of small and large value differences and no significant difference of
RMBC measure was found (Figure 2.9 (left), 𝑍 = −0.7948, 𝑝 = 0.7866, one-tailed
Wilcoxon signed-rank test). If any patterns exist, the RMBC is larger when the value
difference is large, which is opposite to the prediction of the alternative arbitration
theories.

We also examined the same measures of Transition Sensitivity, mixed-effect logistic
regression estimates, and computational system weights in the replication sample
(N=226). Similar to the M-Turk sample, we found no significantly different Transi-
tion Sensitivity measures across large and small value difference periods (Figure 2.8
(right), 𝑍 = −0.1636, 𝑝 = 0.5650, one-tailed Wilcoxon signed-rank test). Also,
for the mixed-effect logistic regression, a significant interaction effect of the previ-
ous outcome and value-difference type was found (𝛽 = −0.048092, 𝐹 (1, 68568) =
17.799, 𝑝 < 0.0001, F-test), whereas the interaction of the previous outcome, previ-
ous transition type, and value-difference type was again found to be non-significant
(𝛽 = −0.0019441, 𝐹 (1, 68568) = 0.029475, 𝑝 = 0.86369, F-test). Through fitting
the same condition-based arbitration model on the replication sample, we found
a non-significant trend of larger RMBC during periods of small value difference
(Figure 2.9 (right), 𝑍 = 1.4156, 𝑝 = 0.0784, one-tailed Wilcoxon signed-rank test).

As the cost-benefit arbitration theories assume that goal-directed (or MB ) control
is more likely to be beneficial when the value difference between the concurrent
actions is large, one concern regarding the current approach is whether the periods
of small vs. large reward probability indeed correspond to periods of small vs. large
action value difference. Through post-hoc examination of action values derived
from the condition-based arbitration model, it was confirmed that action values
have a larger difference in periods with large differences in reward probability than
in periods with small differences in reward probability (𝑍 = 13.1624, 𝑝 < 0.001,
Wilcoxon signed-rank test). Thus, from a reinforcement learning perspective, it is
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valid to examine whether the degree of MB control shifts as a function of value
difference in concurrent actions, which are approximated by the reward probability
shifts throughout the task.

In summary, the mixed results could not ensure the applicability of these alternative
arbitration theories to the current data of arbitration between MB and MF control
in this two-step task, suggesting more targeted empirical tests are needed for further
assessment.

2.3 Discussion
Using a novel variant of the two-step task where reward magnitude, state-transition
uncertainty, and reward contingency are manipulated systematically (Cockburn et
al., n.d.), three forms of reliability signals are shifted to high and low levels for
a test of how reliability-based arbitration framework could explain the allocation
between MF and MB control. Not only the role of MF reward prediction error and
state prediction error to exert influence on arbitration is solidified as found by Lee
and colleagues (2014), accumulating more evidence for a reinforcement learning
framework of the uncertainty-based arbitration theory, but also a new learning signal
from the MB system, MB reward prediction error, was found to guide the arbitrator
to allocate behavioral control in a significant way. Through statistical tests on
transition sensitivity and regression analysis of choice sensitivity to high vs. low
levels of various reliability signals, we established that MF RPE, SPE, and MB RPE
effectively shift the behavioral control as the reliability-based arbitration theory
predicted. Further consistent evidence was also found by fitting a reinforcement
learning arbitration model incorporating the three reliability signals in controller
weight determination. These findings were further supported in an independent
replication sample. Statistically, MF RPE and MB RPE were found to exert a
relatively strong influence on control shifting, whereas SPE was found to show the
impact to a lesser extent.

We speculated the weak arbitrating effect of SPE could be due to a feature built
into the task — the manipulation of state transition, designed to manipulate the
SPE level. As in every trial, only one action is made at the first stage, and at the
second stage, where the state transition is manipulated, there is no effective state-
transition knowledge that would inform the optimality of the first-stage choice as
either of the two states following the first transition would emit the same reward
status. From the participant’s perspective, the second-stage state transitions could be
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treated as the intermediate connecting state to the significant outcome stage, which
is necessary to inform an optimal first-stage choice. Given its lesser importance
in driving participants towards good performance, it is plausible that the state-
transition manipulation did not elicit an arbitration effect as strong as magnitude
and contingency manipulations on rewards. Still, it is intriguing that, replicating the
previous work (Lee, Shimojo, and O’doherty, 2014), although not a huge effect, the
manipulation itself did influence the arbitration process even when it is performance-
irrelevant.

The specific design of the task also enabled us to conduct an exploratory analysis of
how various forms of reliability signals interact to influence the allocation of control.
Interestingly, through computational modeling, we found that the increase of MF
RPE, indicating low reliability of the MF system, more strongly shifted participants’
behavior to be under MB control when the reward delivery is contingent upon the
terminal states than when the reward delivery is contingent upon first-stage stimulus.
In other words, the arbitration effect of MF RPE is stronger when MB RPE is low.
Hence, it suggests that the MF reliability signal (MF RPE) exerts asymmetric
influence across high vs. low MB RPE levels. Given this asymmetric effect, it
suggests the arbitrator might not consider the two types of reward prediction errors
in a linear and equally weighted way. Also, this post-hoc observation might first
seem contradictory in that the MF RPE signal guides behavior when the behavior
is more MB-consistent. Yet it could be explained by a hypothesis that the MF
system is always functioning at the back-end and the brain tracks the dynamics of
MF RPE even when the behavior is more under MB control. Previously, Lee and
colleagues (2014) had found that BOLD activity in neural arbitrator regions shows
negative coupling with neural regions encoding MF values but no positive coupling
with regions encoding MB values when behaviors are more MB-consistent. Also,
the arbitrator activity modulates the effective connectivity between the MF value
region and the integrated value region (vmPFC) based on the degree of demand in
MF control. Such findings together suggested a possibility that the MF system is
the default operating system, with the arbitrator modulating the MF system and the
system’s integration process when the reliability signal indicates that the MB system
should be favored. So, our behavioral finding that the interactional arbitration effect
between MF RPE and MB RPE is consistent with this neural arbitration view of the
MF system being the default and functioning regardless of the expressed behavior.
With respect to the state-transition manipulation, however, the SPE signal did not
exert any arbitration effect across high vs. low MB RPE levels. Thus, it might imply
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that the interactional arbitration effect driven by different reliability signals might
be subject to the type of the reliability signal. Since it is only a post-hoc analysis,
more formal and stringent experimental testing and modeling works are needed to
investigate what various reliability signals are integrated and in what manner to
guide the arbitration process.

With a post-hoc test of alternative arbitration theories that leverage the cost of
the goal-directed (or MB) control, the empirical evidence pointing towards these
theories turned out to be mixed. There is an important caveat in this post-hoc at-
tempt. The original arbitration theories from Keramati et al. (2011) and Pezzulo
et al. (2013) were proposed in the context of explaining the controller switch from
goal-directed control to habitual control as the training goes. The evaluation of the
control engaged was typically through the outcome-devaluation procedure. Here in
the two-step task, the control in use was framed as MF and MB, which was identified
either via 1) choice patterns as a function of the states of the previous trial (i.e.,
outcome and transition type) or 2) extracting the parameter of controller weight from
a reinforcement learning model. Hence, the approach makes the assumption that the
control identified via the aforementioned approaches is intrinsically comparable to
the control diagnosis procedure in the outcome-devaluation paradigm. Although the
habitual control identified as outcome-devaluation insensitive shares with MF con-
trol the key feature of inflexible action execution upon accumulated reward history,
there might be an intrinsic difference between the habit and the MF control in terms
of the underlying cognitive mechanism in that non-RL strategies could take the cam-
ouflage of MF control in the two-step task (Cockburn et al., n.d.). More generally,
it is another question whether habit/goal-directed control corresponds perfectly to
the MF/MB control as the two pairs are identified from different tasks or definitive
approaches and could potentially have distinct neural substrates for habitual/goal-
directed control (Balleine and O’doherty, 2010) and MF/MB control (Beierholm
et al., 2011; Wunderlich, Dayan, and Dolan, 2012), respectively. Additionally, there
has been a proposal that the reward advantage carried by the MB system over the
MF system is to be incorporated into the arbitration process (Kool, Gershman, and
Cushman, 2017). As the MF and MB strategies have equal performance in our task
design, we could not exclude the possibility that the strategy’s performance could
play a role in arbitration.

Overall, the work in this chapter further adds to the empirical evidence of the
reliability-based arbitration theory through a two-step task with rich design features,
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which facilitates behaviorally distinguishing MF vs. MB control with three manipu-
lations of reliability signal. The behavioral arbitration effect driven by the MB RPEs
enriches the scope of the MB system’s knowledge, both state-transition knowledge
and the reward information, that contribute to the dual system arbitration process.
With exploratory analysis, there were tentative results suggesting the integration of
multiple reliability signals via the arbitrator might not be linear. Moreover, evi-
dence for alternative arbitration theories leveraging the cost-benefit analysis of the
goal-directed system was not found in a post-hoc analysis. The speculations from
these exploratory analyses need to be formally examined in future works.

2.4 Methods
Participants
For recruitment on online platforms (i.e., Amazon Mechanical Turk and Prolific)
and the virtual in-lab group, we recruited online participants who currently live in
the United States and who are also fluent English speakers and readers. The age
range for the studies is from 18 to 65 years. Specifically on M-Turk, besides the
recruitment criteria specified above, workers are only recruited if 95% of their past
M-Turk jobs have been accepted by the M-Turk requesters. Before the experiment, all
participants signed the online informed consent approved by the California Institute
of Technology’s Institutional Review Board under protocols 19-0914 and 19-0916.
All participants were paid in monetary form (either through an M-Turk account,
Prolific account, or a peer-to-peer payment app). For the experiments conducted on
M-Turk, 1028 workers completed the first session of the space miner task, and 512
of 1028 completed the second session of the task, thus making up the total number
of samples for Experiment 1. As for recruitment criteria for the virtual in-lab group
in Experiment 2, additional recruitment criteria were imposed so that the control
participants would not have any history of anxiety disorder (Obsessive-Compulsive
Disorder, Body Dysmorphia Disorder, generalized anxiety, social anxiety/social
phobia) and/or depressive disorders (dysthymia, major depression).

Experimental Procedure
All participants from M-Turk, Prolific, and virtual in-lab group completed the same
version of the two-step task. Participants from online platforms (i.e., M-Turk and
Prolific) were included based on instruction comprehension and task completeness
(see Exclusion Criteria). No statistical methods were used to predetermine the
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sample sizes. All participants were given a consent form online before the entire
experiment and could only proceed to complete the task if they consented. For
participants in the virtual in-lab group, one-on-one communications were made via
email or phone calls to ensure the quality of task completion with the goal of ex-
cluding potential issues associated with carelessness that commonly occur in online
studies. Specifically, to maximize the similarity of an online experiment to the in-
lab experience, at an arranged time, the experimenter would contact the scheduled
participant via phone or text message to review the online consent form and talk
through the task instructions. Upon completion of the task, the experimenter and
participant would open a text chat, where the participant would report the comple-
tion of each task, and the experimenter could answer questions.

Firstly, participants read through the instructions of the spaceship task. After the
instructions, a few questions were asked to check whether participants understood
the task and remembered the key features of the task. If the participant answered
the questions wrongly, then they were sent back to the beginning stage of the in-
structions to redo the instructions until they answered the questions correctly. After
the instructions, 12 trials of practice were done before the main task.

For the online sample from M-Turk (N=452) and Prolific (N= 160), the main task
consists of two sessions, with 154 trials for each session. Specifically for the M-
Turk group, 1,028 participants completed the first session of the spaceship task, in
which the reward delivery was contingent upon the chosen spaceship regardless of
the planets or landing pads they traveled to (i.e., stimulus-contingent). All 1,028
participants were invited back and offered to complete the second session of the task,
where the reward delivery was contingent upon the terminal landing pads that were
arrived at (i.e., state-contingent). 502 participants on M-Turk were included in the
analysis, given they completed both sessions of the task. For the virtual in-lab group
(N=66), each participant was in one-on-one online communication beforehand about
the general structure of the experiment, in which they performed two sub-sessions
(with a couple of weeks in between) for each of the stimulus-contingent and state-
contingent versions of the task, respectively. In all the behavioral and computational
analyses, we treated two separate sub-sessions as a combined session for the two
reward-contingency conditions so that the data structure in the virtual in-lab group
in all the analyses is effectively the same as in the M-Turk and Prolific group.
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Space Miner Task
For the main task, participants were instructed to collect rewards through space min-
ing on different planets. The background is that mining has begun on two planets
(i.e., one identified as red and the other green) in space, and the goal is to earn
as many points as possible by mining gems from the two planets. However, the
mines on the two planets have changing conditions in their production. Sometimes
gems could be found, but other times, worthless rocks could also be mined out.
Specifically, there are two landing pads for the corresponding mines on each planet,
one to the North and the other to the South. The landing pads are identified through
their unique scenic view and are located in the upper (North) and bottom (South)
parts of the planet on the screen.

Participants can choose between two different spaceships (identified as yellow and
blue, with the screen locations of the spaceships fixed across trials) using a button-
press to travel to the two planets for a miner. They are instructed that the yellow
spaceship usually lands on the red planet, and the blue spaceship usually lands on
the green planet. However, space travel can sometimes be a bit unpredictable due to
space debris, so in some rare situations, the yellow ship will be forced to land on the
green planet, and the blue spaceship will be forced to land on the red planet. Partic-
ipants were instructed to use two buttons to choose the corresponding spaceships.
In a given trial, once participants chose one spaceship, they observed the spaceship
being highlighted and taken off and the planet appearing after the spaceship landed.
Afterwards, the landing pad for the mine would also appear, either on the upper or
the bottom part of the planet, given if they landed at the North or the South mine
on the planet. Once the spaceship landed, the mine production appeared as either
a gem with its price or a worthless rock. Specifically, participants were instructed
that the gem’s price is unpredictable and will change daily. Also, participants had
no control over which mine (North or South) the spaceship would eventually land
on. In general, the conditions at all four mines (two mines on each of the two
planets) would change throughout the game regarding gem vs. stone production.
Participants were encouraged to learn which mine produces gems the most reliably.

After going through the instructions of the spaceship task, participants were asked
a few questions:
1. How many planets are there?
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2. How many mines are there on each planet?
3. Which planet does the yellow ship usually land on?
4. Which planet does the blue ship usually land on?
5. How many points is a mined rock worth? (0 points vs. 1-100 points)
6. How many points is a gem worth? ( 0 points vs. 1-100 points)

Participants proceeded to the practice trials and then the main experiment if they
answered all the questions correctly.

Task Design
The current variant of the two-step task shared a similar task structure as the original
two-step task (Daw, Gershman, et al., 2011) overall but with some differences in
details. The general structure consists of the first-step transition and reward prob-
ability shifts, and also three condition manipulations (i.e., reward magnitude, state
transition, and reward contingency) were built into the space miner task. One key
difference is that in the current task, there was only one action to be made, which
was at the initial state, and the rest of the trial were all state transitions with no fur-
ther actions needed. All three cohorts of participants experienced the same general
structure of the space miner task. On each trial, the yellow and blue spaceships
would appear on the left and right sides of the screen. If chosen, the transition
via the yellow spaceship towards the red planet occurred with a probability of 0.7
and with a probability of 0.3 towards the green planet; corresponding probabilities
were flipped for the transition via the blue spaceship towards the planets. After the
transition from the planet stage to the landing-pad stage, reward or non-reward out-
comes would appear. The underlying reward probability was shared across the two
landing pads on a given planet (reward probability would also be associated with the
spaceship chosen, depending on the reward contingency condition described later
in this section), and there were specific periods built-in such that landing on one
planet was more rewarding than landing on the other planet, and also periods where
landing on either of the two planets was relatively comparable in terms of the reward
probability. To implement this, the reward probability associated with two planets
started from 1 vs. 0, and then by using the Sigmoid function, the reward probability
of the rewarding planet decayed from 1 towards 0.3 (asymptote) within the time
span of from 20 to 25 trials (the exact number of trials depended on whether a rare
spaceship-planet transition is made); for the reward probability associated with the
currently non-rewarding planet, the same Sigmoid decay rate and the flipped sign of
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decay slope was used to have the reward probability drift from 0 to 0.5 (asymptote)
again within the time span of from 20 to 25 trials. Afterwards, the reward probabil-
ities associated with the two planets were reset to 1 vs. 0, but the rewarding planet
was reversed compared to the previous block of trials. This drifting of reward prob-
abilities and the reversal of rewarding planet/landing pads occurred throughout the
entire session of the experiments. The order of which planet was firstly rewarding
was counterbalanced across the participants. The structure of going from strong
preference (large gap of reward probabilities: 1 vs. 0) towards almost indifference
(reward probabilities: 0.3 vs. 0.5) was first to facilitate learning of the rewarding
option and then setting the value of two options towards indifference to prepare for
learning after the preference reversal. Also, a critical trial of rare transition was built
into the very beginning after a preference reversal to facilitate detecting stay/switch
behaviors as a signature of the MB vs. MF strategy. It is worth noting that another
manipulation of reward contingency (described later in this section) would change
the contingency of reward delivery upon the landing pads (or planets) vs. the space-
ships, yet the general fluctuating and reversal dynamics of the reward probability
shift would remain the same across the two reward contingency conditions.

Reward Magnitude Manipulation

On top of the reward probabilities shifts throughout the main task, the reward
magnitudes (points associated with the gem), if there was a reward, were manipulated
to shift between two conditions: low reward prediction error (low RPE) vs. high
reward prediction error (high RPE). For the reward magnitude manipulation, the
magnitudes were drawn from a uniform distribution of (0.1, 0.19) for the low RPE
condition and (0.3, 1) for the high RPE condition, for which the actual points were
scaled by 100. Low vs. high RPE conditions were shifted every 26-27 trials, and the
order of the low vs. high RPE conditions was counterbalanced across participants.
The reward magnitude manipulation was the same and shared across all three sources
of the online sample.

State-Transition Uncertainty Manipulation

For the second-step transition (with no actions required) after landing on a given
planet, the landing pad would be shown subsequently to illustrate whether the North
or South mine was landed on. A state-transition manipulation was built-in at this
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phase of the trial to shift the uncertainty of landing on a specific mine (North or
South) given a specific planet: high state prediction error (high SPE) vs. low state
prediction error (low SPE). During high SPE conditions, the transition to one of
the two landing pads on a given planet was at the equal probability of 0.5 vs. 0.5,
which elicited large state-transition uncertainties. On the other hand, during low
SPE conditions, the transition to one of the two landing pads on a given planet was
at the biased probability of 0.9 vs. 0.1, and whether the transition to the North or
South landing pad was biased would change along the course of the task. Low vs.
high SPE conditions were shifted every 26-27 trials, and the order was counterbal-
anced across participants. As participants would mostly see one type of transition
within a conditional block, the state prediction was relatively certain under low SPE
conditions. The state-transition manipulation was the same and shared across all
three sources of the online sample.

Reward Contingency Manipulation

Besides manipulating reward magnitude and state-transition uncertainty, reward de-
livery was also manipulated to be contingent upon 1) what stimulus (i.e., spaceship)
participants choose or 2) what terminal states (i.e., landing pads) were arrived at,
meaning rewards are 1) stimulus-contingent or 2) state-contingent, respectively.
The stimulus-contingent and state-contingent conditions were run by two separate
sessions of the experiment, and the two sessions had the same number of trials.
During the stimulus-contingent reward condition, the reward probability structure
(described earlier in this section) was associated with the stimulus (i.e., spaceship)
chosen by the participant in each trial, regardless of what second-stage state (i.e.,
planet) or terminal state (i.e., landing pad) was reached. During the state-contingent
reward condition, the reward probability structure (described earlier in this section)
was associated with the pair of landing pads on a given planet, so both the choice
at the first stage and the actual terminal states that were arrived at would potentially
influence the final outcome. Intuitively, under the state-contingent reward condition,
in response to a win or a loss after a rare spaceship-planet transition in the previous
trial, the first-stage transition probability representation (as used in a model-based
strategy) would direct the subsequent choice towards the stimulus more likely lead-
ing to the rewarding terminal states; in contrast, during the stimulus-contingent
reward condition in the similar situation, such a model-based strategy would end
up choosing the option that was less likely to deliver a reward, effectively elicit-
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ing more model-based RPEs. For the M-Turk and Prolific sample (N=612), the
stimulus-contingent and state-contingent reward conditions corresponded to each of
the two sessions (154 trials per session) that every participant completed, and each
contingency condition consisted of 154 trials; for the virtual in-lab part of the sample
(N=66), each participant completed two sub-sessions within state-contingent and
stimulus-contingent reward condition respectively (with 154 trials per sub-session)
and each contingency condition is made up of 308 trials.

Within each reward-contingency session (i.e., the state-contingent and stimulus-
contingent sessions), both reward magnitude and state-transition uncertainty were
manipulated simultaneously along with the reversals of reward probability (either
associated with the state or the stimulus). We ensured all the manipulated compu-
tational variables were orthogonal to each other, so the averaged overall effect of
one conditional variable was solely independent rather than confounded by other
manipulated variables. To realize the orthogonality between conditions, the starting
trial index of each condition was offset to one another (i.e., with a lag of around 13
trials ) so that no two conditional blocks (e.g., High RPE and Low SPE) would com-
pletely overlap, with the aim of obtaining the sole conditional effect by averaging
across one type of conditional blocks and canceling out the correlations between
manipulations.

Statistical Analysis
Transition Sensitivity Measure

We quantify the overall effect of transition on behavior according to a Transition
Sensitivity (TS) measure, defined as the change of the probability of repeating the
previous choice after experiencing a common vs. rare transition in the previous trial,
summed over cases of experiencing reward and those of experiencing non-reward
in the previous trial:

𝑇𝑆 = [𝑝(𝑆𝑡𝑎𝑦 |𝑅𝑒𝑤𝑎𝑟𝑑𝑒𝑑, 𝐶𝑜𝑚𝑚𝑜𝑛) − 𝑝(𝑆𝑡𝑎𝑦 |𝑅𝑒𝑤𝑎𝑟𝑑𝑒𝑑, 𝑅𝑎𝑟𝑒)] +
[𝑝(𝑆𝑡𝑎𝑦 |𝑈𝑛𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑, 𝐶𝑜𝑚𝑚𝑜𝑛) − 𝑝(𝑆𝑡𝑎𝑦 |𝑈𝑛𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑, 𝑅𝑎𝑟𝑒)] .

Logistic Regressions

For all the mixed-effect logistic regression analyses, "fitglme" function in Matlab
was used. To quantify how the previous reward, previous transition type, and their
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interactions affected the stay choices, we used a mixed-effect logistic regression
to model the probability of staying with the option chosen in the previous trial
(𝑖𝑠𝑆𝑡𝑎𝑦) as a function of the previous outcome (𝑖𝑠𝑊𝑖𝑛, 1: reward, 0: no-reward),
the previous transition type (𝑖𝑠𝑅𝑎𝑟𝑒, 1:rare, 0:common) and their interactions. The
fixed effects include the previous outcome, the previous transition type, and their
interactions, and the slope of the previous outcome, the previous transition type, and
their interaction were modeled as a random effect that could vary at the single-subject
level (indicated by 𝑠𝑢𝑏𝐼𝐷). The regression model is:

𝑖𝑠𝑆𝑡𝑎𝑦 ∼ 𝑖𝑠𝑊𝑖𝑛 × 𝑖𝑠𝑅𝑎𝑟𝑒 + (1 + 𝑖𝑠𝑊𝑖𝑛 × 𝑖𝑠𝑅𝑎𝑟𝑒 |𝑠𝑢𝑏𝐼𝐷),

where "×" denotes the main effects and the interaction between each independent
variable, and "1" denotes the intercept, which is the average stay probability for each
subject. Trials, where the choice was not made within 2 seconds were excluded,
before estimating the regression model.

To examine the behavioral evidence of arbitrating between MB-consistent vs. MF-
consistent behaviors, three binary variables indicating the three conditional manip-
ulations (i.e., reward magnitude, state-transition, and contingency) are added to the
first regression model as three independent interactions with 𝑅𝑒𝑤𝑎𝑟𝑑𝑡−1×𝑖𝑠𝑅𝑎𝑟𝑒𝑡−1.
Specifically, 𝐻𝑖𝑔ℎ𝑅𝑃𝐸

𝑚 𝑓

𝑡−1 is a binary variable indicating the previous trial’s reward
magnitude condition (1: high reward magnitude/high MF-RPE, 0: low reward mag-
nitude/low MF-RPE). Similarly, 𝐿𝑜𝑤𝑆𝑃𝐸𝑚𝑏

𝑡−1 indicates the previous trial’s state-
transition uncertainty condition (1: low state-transition uncertainty/low SPE, 0:
high state-transition uncertainty/high SPE), and 𝐿𝑜𝑤𝑅𝑃𝐸𝑚𝑏

𝑡−1 indicates the previous
trial’s reward contingency condition (1: state-contingent reward/low MB-RPE, 0:
stimulus-contingent reward/ high MB-RPE). The fixed effects are the three full in-
teractions of the previous outcome, the previous transition type, and the conditional
variable, and the random effects are the same as in the first regression model, vary-
ing at the single-subject level (for random effects, we did not model the same full
interaction as in the fixed effects due to the convergence issue). The full model is:

𝑖𝑠𝑆𝑡𝑎𝑦 ∼ 𝑖𝑠𝑊𝑖𝑛×𝑖𝑠𝑅𝑎𝑟𝑒×
(
𝐻𝑖𝑔ℎ𝑅𝑃𝐸

𝑚 𝑓

𝑡−1 + 𝐿𝑜𝑤𝑆𝑃𝐸𝑚𝑏
𝑡−1 + 𝐿𝑜𝑤𝑅𝑃𝐸𝑚𝑏

𝑡−1

)
+

(1 + 𝑖𝑠𝑊𝑖𝑛 × 𝑖𝑠𝑅𝑎𝑟𝑒 |𝑠𝑢𝑏𝐼𝐷) ,

where "×" denotes the main effects as well as the interaction between the indepen-
dent variables, and "1" denotes the intercept, that is, the average stay probability
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for each subject. Trials, where the choice was not made within 2 seconds, were
excluded before estimating the regression model.

Exclusion Criteria
We defined a set of exclusion criteria to identify careless and/or malicious behavior
in the task. This includes:

• Not responding in over 10% of the total trials.

• Selecting the same option excessively, quantified as response variance less
than 3 standard deviations below the sample mean.

• Switching between options excessively, quantified as a response auto-correlation
less than 3 standard deviations below the sample mean.

• Poor task comprehension, quantified by repeating the task instructions more
than 5 times.
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Figure 2.1: The two-step task structure and the group-level performance and
choice behaviors. (a) The two-step task structure. In each play, participants started
by choosing from two spaceships, and each spaceship had a common and rare
transition to the two possible planets. Then, from the planet to the landing pads, the
transition is manipulated to be probabilistic, and both landing pads associated with
a given planet share the same reward probability function (see b). (b) The reward
probability structure in the state-contingent reward condition. The red trajectory
denotes the dynamics of reward probability of the landing pads on the red planet,
whereas the green trajectory denotes that of the landing pads on the green planet.
Same structure for stimulus-contingent reward condition (see Figure 2.2a). (c) The
sequence of events of an example trial. After a fixation screen of 1s, the two stimuli
showed up (yellow ship on the left and blue ship on the right as illustrated), and
the participant had a maximum of 2s to make a choice; Choice-Planet interval: 1s;
Planet-Pad interval: 1s; Pad-Outcome interval: 1s; Outcome-Fixation: 1s. (d) The
distribution of the probability of obtaining rewards for a simulated random agent and
the actual group performance. The light blue bars are the group-level probability
of obtaining rewards (N=452). The grey bars are the counterpart distribution with
a random agent running through the trial sequence experienced by each participant.
(e) The stay probability as a function of the previous outcome (i.e., reward or no
reward) and previous first-transition type (i.e., common in blue or rare in red). The
overall group behaviors show a higher stay probability after a rewarded trial (MF-
consistent) as well as an MB-consistent stay or switch choices (depending on the
previous outcome) to a rare transition experienced in the previous trial. The black
error bars reflect the within-subject SEMs.
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Figure 2.2: Manipulations of three reliability signals (MF-RPE, SPE, and MB-
RPE). (a) Reward contingency manipulation. The high and low levels of MB-RPE
were realized by applying the same reward probability structure to different re-
ward contingency targets in separate sessions: 1) contingent on the arrived red vs.
green outcome states (state-contingent) and 2) contingent on the chosen spaceship
(stimulus-contingent). The reward probability trajectory is constituted of multiple
sigmoid curves with reversals between 0% and 100% along each contingency ses-
sion. (b) Reward magnitude manipulation. The varying levels of MF-RPEs were
achieved by varying the reward magnitude range along the scale of 0-100. To achieve
low MF-RPE, the magnitude was sampled from a uniform distribution of (30, 100);
for high MF-RPE, the magnitude was sampled from a uniform distribution of (30,
100). (c) State-transition uncertainty manipulation. The high and low levels of SPE
were achieved by manipulating the probabilistic second-stage transition (from the
planet to the landing pad) to have high vs. low uncertainty. Under low uncertainty,
a given planet will direct the spaceship to one landing pad with 90% probability
and to the other with 10% probability, and the identity of the landing pad to which
the spaceship would travel at 90% probability was randomized across periods of
low state-transition uncertainty at the within-subject level. Under high uncertainty,
the probability of transition to either of the two landing pads is 50%. (d) Exam-
ple dynamics of three reliability signals under manipulations of reward magnitude,
state-transition uncertainty and reward contingency. The plot shows an example of
the averaged PE dynamics for a given design of task dynamics. The two separate
reward-contingency sessions are concatenated here for illustration purposes. The
PE signals were extracted by using group-level optimized parameters and the PE
trajectory was moving-averaged with a 20-trial window.
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Figure 2.3: Transition Sensitivity across different levels of three reliability signals.
Left: The TS measure was calculated across High vs. Low MF-RPE conditions
for each subject. Middle: High vs. Low SPE conditions. Right: High vs. Low
MB-RPE conditions. The black error bars reflect the within-subject SEMs, ∗ ∗ ∗ ∗
𝑃<0.0001, ∗ ∗ ∗𝑃<0.001, ∗ ∗ 𝑃<0.01, ∗𝑃<0.05, 𝑛.𝑠.𝑃 ≥ 0.05.
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Figure 2.4: Illustration of an example condition-based arbitration model and the
shift relative MB control under manipulations of three reliability signals. (a) The
arbitration model based on the manipulated MF-RPE conditions, namely the Mixed-
Weight-MF-RPE Model. Both MF and MB systems learn the stimulus value through
binary reward outcomes with a common learning rate 𝛼. Exogenous independent
conditional weights associated with high MF-RPE and low MF-RPE were fitted
to the periods of interest to combine MF and MB values, respectively, for the
computation of the mixed values. A softmax function was used on mixed-value for
action selection. The arbitration model for SPE and MB-RPE conditions shared the
same arbitration structure and the configuration of parameters, except the conditional
weights were adjusted in the appropriate periods to its corresponding state-transition
uncertainty condition and reward contingency condition (not shown). All three
condition-based arbitration models were fitted independently for each subject. (b)
Comparison of the relative model-based control (RMBC) across high vs. low MF-
RPEs conditions by fitting the Mixture-Weight-MF-RPE Model. Dark blue bars
show the fitted MB weight and the light blue bars show the fitted MF weight across
High vs. Low MF-RPE conditions, the RMBC measure in a given condition is
defined as the difference between the MB weight minus the MF weight in a given
condition. (c) Comparison of the relative model-based control (RMBC) across
high vs. low MF-RPEs conditions by fitting the Mixture-Weight-SPE Model. (d)
Comparison of the relative model-based control (RMBC) across high vs. low MF-
RPEs conditions by fitting the Mixture-Weight-MB-RPE Model. (b-d) The black
error bars reflect the within-subject SEMs, ∗ ∗ ∗ ∗ 𝑃<0.0001, ∗ ∗ ∗𝑃<0.001, ∗ ∗
𝑃<0.01, ∗𝑃<0.05, 𝑛.𝑠.𝑃 ≥ 0.05.
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Figure 2.5: Transition Sensitivity across different levels of three reliability signals in
the replication sample. Left: TS measure across High vs. Low MF-RPE conditions.
Middle: TS measure across High vs. Low SPE conditions. Right: TS measure
across High vs. Low MB-RPE conditions. The black error bars reflect the within-
subject SEMs, ∗ ∗ ∗ ∗ 𝑃<0.0001, ∗ ∗ ∗𝑃<0.001, ∗ ∗ 𝑃<0.01, ∗𝑃<0.05, 𝑛.𝑠.𝑃 ≥ 0.05.

Figure 2.6: Inter-Reliability Arbitration between MF-RPE/SPE and MB-RPE.
Left: RMBC shift high vs. low MF-RPEs as a function of the reward-contingency
context; Right: RMBC shift across high vs. low SPEs as a function of the reward-
contingency context. The black error bars reflect the within-subject SEMs, ∗ ∗ ∗ ∗
𝑃<0.0001, ∗ ∗ ∗𝑃<0.001, ∗ ∗ 𝑃<0.01, ∗𝑃<0.05, 𝑛.𝑠.𝑃 ≥ 0.05.
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Figure 2.7: Prediction testing of alternative arbitration theories. (a) The
speed/accuracy trade-off arbitration theory proposed by Keramati et al. (2011).
The value of perfect information (VPI) is computed and compared against the de-
liberation cost to decide on the activation of the goal-directed control (MB system
in the current context). In testing sensitivity to outcome devaluation, compared to
moderate training (left), extensive training (right) resolves the uncertainty of the
two concurrent action values as the variance of the distribution mean decreases,
and the VPI decreases to a smaller level, and thus it is less beneficial to activate
the goal-directed control, and the behaviors are expressed as devaluation insensi-
tive. The solid line and the two dashed lines illustrate the mean and the variance
of the estimated true value (figure adapted from Keramati et al.(2011)). (b) The
arbitration theory proposed by Pezzulo et al. (2013). The value of information
for a given action is computed as the ratio of value uncertainty over the differ-
ence between the given action and the alternative action. Hence, the smaller the
value difference between the two concurrent actions, the larger VoI would be,
and the more beneficial it would be to activate the goal-directed control consid-
ering the cost of mental simulation. (c)Transition Sensitivity across small and
large value differences. The black error bars reflect the within-subject SEMs,
∗ ∗ ∗ ∗ 𝑃<0.0001, ∗ ∗ ∗𝑃<0.001, ∗ ∗ 𝑃<0.01, ∗𝑃<0.05, 𝑛.𝑠.𝑃 ≥ 0.05.
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Figure 2.8: Transition Sensitivity Measure across small vs. large value difference.
Left: M-Turk Sample (N=452); Right: Replication Sample (N=226). The black
error bars reflect the within-subject SEMs, ∗ ∗ ∗ ∗ 𝑃<0.0001, ∗ ∗ ∗𝑃<0.001, ∗ ∗
𝑃<0.01, ∗𝑃<0.05, 𝑛.𝑠.𝑃 ≥ 0.05.

Figure 2.9: Comparison of the relative model-based control (RMBC) across small
vs. large value difference conditions by fitting the Mixture-Weight-Value-Difference
Model. Left: M-Turk Sample (N=452); Right: Replication Sample (N=226). The
black error bars reflect the within-subject SEMs, ∗ ∗ ∗ ∗𝑃<0.0001, ∗ ∗ ∗𝑃<0.001, ∗ ∗
𝑃<0.01, ∗𝑃<0.05, 𝑛.𝑠.𝑃 ≥ 0.05.
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C h a p t e r 3

INVESTIGATIONS OF REWARD PREDICTION AND SYSTEM
ENGAGEMENT WITH GROUP-LEVEL AND

INDIVIDUAL-LEVEL FMRI IN THE TWO-STEP MARKOV
DECISION-MAKING TASK
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ABSTRACT

The model-free (MF) and model-based (MB) algorithms in the field of reinforcement
learning (RL) field could decently characterize the reflexive habitual control and the
reflective goal-directed control identified in animal and human instrumental learning
behaviors. A Markov two-step decision task has been designed and used to study
the use of MF and MB systems and their neural correlates. However, it has been
recently argued that the two-step task was insufficient to solicit the engagement
of MF control in human participants, and the previously identified RPE signal
in the striatum might be due to the misattribution of variance from the reward
signal. In this study, by having a large number of participants complete the two-step
task with the measurement of functional magnetic resonance imaging (fMRI), we
investigated the basic learning and decision-making computations entailed in the
MF and MB system at the group level and specifically conducted statistical tests
on the existence of the RPE signal from both systems in the striatum. Moreover,
we deployed the approach of individual differences to classify participants into
sub-groups of distinct RL and non-RL strategies, which provided a detailed profile
of the behavioral strategy engaged in the two-step task and the neural substrates
underlying these different behavioral strategies. In sum, we found evidence of both
MF RPE and MB RPE encoding in the striatum, with behavioral strategies on the
MF-MB spectrum present in the two-step task, demonstrating the validity of using
the two-step task to study RL-related strategies with varying degrees of MF system.
Our finer-grained neural analysis on decision utility within both RL and non-RL
strategy groups also shows the ubiquitous involvement of the MF system in Markov
decisions. Potential evidence of an MF-default control allocation process was also
discussed.
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3.1 Introduction
It has been proposed that multiple decision-making systems underlie choice be-
haviors(Kahneman, Frederick, et al., 2002; Loewenstein and O’Donoghue, 2004;
Killcross and Blundell, 2002; Dickinson and B. Balleine, 2002; Rangel, Camerer,
and Montague, 2008; Sloman, 1996), and a reflexive habitual system and a cognitive
goal-directed system are two contrasting learning strategies that could equally well
guide behaviors with their own signatures (B. W. Balleine and Dickinson, 1998).
Researchers have used two types of reinforcement learning (RL) algorithms to char-
acterize these two contrasting decision-making strategies: model-free (MF) control
for habitual system (Houk, Adams, and Barto, 1994; Schultz, Dayan, and Montague,
1997 and model-based (MB) control for goal-directed system (Sutton, 2018). The
MF control navigates in an environment with rewards through trial and error, accu-
mulating values for potential actions by experiencing the associated outcomes. On
the contrary, the MB control uses a "World Model" of the environment, which has
access to the learned information of state transitions upon actions, facilitating flexi-
ble online planning. Although the MF and MB controls have qualitatively different
learning mechanisms by definition, one common mechanism for both controllers
to perform well is the process of reward learning. The temporal-difference error
(TD error), of which the neural signal has been repeatedly found in the striatum
(Schultz, Dayan, and Montague, 1997; O’Doherty et al., 2003; McClure, Berns, and
Montague, 2003), serves as a critical building block of the system for both MF and
MB controller to navigate in the environment to collect rewards effectively.

However, there has been some recent debate (Feher da Silva and Hare, 2020; Feher
da Silva, Lombardi, et al., 2023) on the existence of such TD error signal in the
human striatum, specifically when a Markov decision two-step task was used (Daw
et al., 2011), arguing that some of the previously observed RPE signals in the
striatum could simply reflect the information of reward itself. Given the prevalent
usage of the two-step task in characterizing the MF and MB control use and in
studying the corresponding neural processes, it is necessary to understand better
the complete picture that the current debate is on and investigate further into the
validity of previous TD error finding and the usage of the two-step task. Also, along
with the doubt about the MF RPE signal’s existence in the brain, the use of the MF
system in the two-step task is also in question, for which a finer-grained behavioral
characterization of the strategies within the RL and the non-RL categories, as well
as neural investigations into the existence of key MF learning and decision-making
signals, are needed.
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To answer these questions, first, by using the model-based fMRI approach, we
re-examined the existence of MF RPE and MB RPE neural signals, specifically
in the striatum when human participants were engaged in a two-step task using
reinforcement learning strategies. Such investigation can, through neural measures,
speak to the engagement of the MF system in the two-step task. Secondly, by
leveraging the individual differences in usage of MF vs. MB strategies in the two-
step task and specifically clustering on participants’ behavioral metrics, we also
established individual groups of distinct strategies within the RL spectrum and
beyond. The details of all possible RL strategies identified through the clustering
process provided a better picture of the extent to which participants engaged the
MF system in solving the task. Importantly, the usage of the MF and MB systems
could also be reflected in the encoding profile of the corresponding decision utility
signal from the two systems both at the overall group and at the sub-group level,
where each sub-group used distinct behavioral strategies according to the cluster
allocation. Examining the overall encoding of MF and MB decision signals at
the level of the entire participant pool could first hint at the engagement of the dual
systems in the decision-making process, where the MF decision signal is specifically
in our research interest. Moreover, the finer-grained classification of behavioral
strategies would also allow us to examine how dual systems’ decision signals are
neurally implemented across groups using distinct strategies (both RL and non-RL
strategies). Hence, we can not only validate the behavioral cluster allocation of
strategies such as MF and MB strategies by searching for evidence of the MF and
MB decision signal from the MF and MB systems, respectively, but also investigate
how the decision signal of one RL system (e.g., MF system) is engaged when the
other RL system (e.g., MB system) also exerts behavioral influence, or when the
behavior is more under the influence of some non-RL strategies. Specifically, the
engagement of the MF system across distinct behavioral strategies beyond an MF
strategy could be reflected in the encoding of the MF decision signal across all
behavioral groups we classified. This would also directly speak to the involvement
of the MF system in the Markov two-step task or beyond. In the literature studying
the MF and MB system, the MF and MB values were found to be encoded in the
medial prefrontal cortex (mPFC) (Beierholm et al., 2011; Hampton, Bossaerts, and
O’doherty, 2006; S. W. Lee, Shimojo, and O’doherty, 2014); hence mPFC would
be our region of interest for this purpose.

In addition to tracing down the actual RL computations and the neural substrates
in the two-step task, it is natural to ask how the MF and MB systems cooperate
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or compete with each other to express adaptive behavioral outputs. A reliability-
based arbitration framework, where prediction errors serve as the proxy of the
system reliability, has been proposed accordingly and empirically tested (S. W. Lee,
Shimojo, and O’doherty, 2014; Cockburn et al., n.d.). In this previous work, Lee
and colleagues (2014) showed evidence that supports a potential control allocation
hypothesis that between the MF and MB systems, the MF system is the default
system in use and only gets inhibited when more MB control is needed according
to the arbitrator via tracking the system reliability. One potential deduction of this
hypothesis is that the computational variables, such as value or decision-related
signals of the default MF system, should be present no matter what category the
behaviors fall into MF, MB, Mixture, or even the non-RL group, whereas the
computations associated with the MB system should only be present when the
behaviors are under the guidance of MB control as the MB computations would
only get manifested when the default MF control is inhibited. If this is true, we
should then observe MF value/utility signals represented in the region of interest
(i.e., medial prefrontal cortex) in the MF, MB, and Mixture group; furthermore, we
should only observe the neural representation of MB value/utility signals in mPFC
in the MB and Mixture groups but not in the MF group.

Overall, in this work, with a large sample of participants completing the two-step
task while being scanned, we examine the group-level overall encoding of MF RPE
and MB RPE signals with a model-based fMRI approach with a special interest in the
striatum to address recent literature debate on the MF-existence in the two-step task.
Additionally, through clustering participants’ behavioral strategy on their choice
and reaction time measure, we characterize behavioral strategies with different
degrees of MF or MB control used at the individual level: 1) MF group, 2) MB
group, 3) Mixture group, and 4) non-RL group. Thanks to the decent sample size of
individual groups, we are able to present the profile of distinct strategy groups on the
MF-MB spectrum and examine the neural signals for strategy-specific computations
(e.g., MF decision utility and MB decision utility) within each behavioral group to
exclusively pin down the neural substrates when different strategies on the MF-MB
spectrum are engaged. The findings that the MF strategy is used by a decent number
of participants and that the MF decision signals are neurally ubiquitous add more
evidence of the MF system as a fundamental RL module contributing to behavioral
controls in Markov decisions. Also, the neural findings of MF and MB decision
signals we found are relevant to a control allocation hypothesis suggesting the MF
system is the default controller and the MB system is engaged when needed.
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3.2 Results
General Behaviors
Participants were instructed to perform a variant of the two-step task (Figure 3.1a).
In each trial, participants started by choosing between two options (i.e., spaceships)
at the first stage, which would lead to one of two planets at the second stage in a
probabilistic manner — one spaceship reaches one planet more likely than another
(70% vs. 30%). Then a transition from the planet to one of the two landing pads
would happen before the participants finally observed the outcome, which was either
a reward with some magnitudes or no reward. Participants only had to make one
choice on each trial, and the reward probability associated with choosing either of the
two options fluctuated throughout the experiments (i.e., the more rewarding option
would switch between the two). From the perspective of a participant, achieving a
good performance depends on constantly learning the action value of the two options
throughout the experiment. Representing the internal task structure when necessary
(see the next paragraph, e.g., the first stage probabilistic transition from the spaceship
to the planet) could also be beneficial by design when the reward is contingent upon
the planet they reached. To evaluate how well participants perform the task in
general, we calculated the actual probability of obtaining a reward across all trials
for each participant and obtained the population distribution of such probability
of obtaining rewards. The distribution was compared to a null distribution of the
probability of obtaining rewards by simulating the same number of random agents
as the number of participants performing the same task. Participants’ performance
was found to be significantly higher than the chance level indicated by the null
distribution (𝑝 < 0.001paired t-test), where the actual probability of reward from
all the participants has a mean of 47.19% (𝑠𝑑 = 0.393), and the null distribution has
a mean of 43.08% (𝑠𝑑 = 0.030). This suggests that overall the participants learned
the reward probability of the two options well to obtain rewards.

Next, we aimed to determine whether participants exhibited choice behavior con-
sistent with model-based (MB) or model-free (MF) reinforcement learning (RL)
overall. In this task, as in the original two-step task (Daw et al., 2011), an MF-
consistent behavior can be dissociated from an MB-consistent behavior by examining
the choice repeating pattern when the transition type in the preceding trial is consid-
ered. A model-free (MF) agent would choose the same spaceship as chosen on the
preceding trial after receiving a reward on the preceding trial, regardless of whether
a common or rare transition occurred on that trial. A model-based (MB) agent, on
the other hand, would consider the nature of the state transition that occurred prior
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to reaching the reward on the preceding trial when making a spaceship choice: when
a rare transition happened in the preceding rewarded trial, an MB agent would be
less likely to repeat the spaceship choice if the reward is contingent upon the state,
favoring instead the alternative spaceship associated with the common transition
more likely to lead to the same state (i.e., planet) on the next trial. Prior studies have
found that, on average, human behavior on this two-step task is a mix of MB and
MF strategies (Daw et al., 2011). In order to diagnose if the behaviors are consistent
with MF vs. MB control, as in previous studies, we classified trials by the outcome
of the previous trial (i.e., reward vs. no-reward) and the first-stage transition type
(i.e., common vs. rare) in the previous trial, and we then examined the probability
of choosing the same option in the current trial as in the previous trial (i.e., p(stay))
as a function of outcome and transition type on the previous trial. Qualitatively,
as shown in Figure 3.1b, participants expressed a choice sensitivity to the reward,
indicated by a higher probability of choosing the same option on the current trial
if the chosen option was rewarded in the previous trial (averaging across preceding
trials with both common and rare transitions), suggesting a model-free component
in participants’ reward-maximizing strategy. In addition, participants also showed
choice sensitivity to the transition type in the previous trial. They were 1) more
likely to switch the choice after a rewarded trial with a rare transition than with a
common transition, and 2) more likely to stay with the choice after a no-reward trial
with a rare transition than with a common transition, suggesting an MB component
in participants’ reward-maximizing strategy. Collectively, these results support the
typical observation that participants’ behavior reflects a mix of both MB and MF
components on average.

To quantify the degree of reward sensitivity and transition sensitivity of the current
choice, a mixed-effect logistic regression was run to test how the probability of
choosing the same option is influenced by the previous outcome, previous transition
type, and their interactions (see Methods for details). Consistent with the qualitative
behavioral results, an MF-consistent behavioral pattern is observed that participants
were more likely to repeat their choice if that choice was rewarded in the previous
trial, reflected by an MF-consistent main effect of the previous outcome (𝛽 =

0.65716, 𝑆𝐸 = 0.047577, 𝑇 = 13.813, 𝑝 < 0.001). An MB-consistent effect was
also found in that participants were more likely to switch to the other spaceship when
they experienced a rare transition towards the reward, reflected by a significant effect
of the interaction between the previous outcome and the previous transition type
(𝛽 = −0.67636, 𝑆𝐸 = 0.060504, 𝑇 = −11.179, 𝑝 < 0.001). In sum, the participants
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showed a mixture of MF-consistent and MB-consistent behaviors, replicating the
typical behavioral patterns observed in the two-step task (Daw et al., 2011).

Computational Variables and Behavioral Clustering
As participants express a mixture of MF and MB strategies at the population level,
it is important to understand whether the manifested mixed behavioral strategies
overall could be decomposed into different groups of individuals engaging different
strategies in light of their behavioral features. To approach this problem, we relied
on an external dataset with a much larger sample (N=678; Cockburn et al., n.d.)
to classify the entire participant pool on a set of behavioral features derived from
choice patterns and reaction time patterns conditioned on the preceding trial’s out-
come and transition type (see Methods). There are four cluster centroids from the
external dataset, the label of which was created to make a sensible interpretation
of behaviors in the two-step task. The breakdown of the four groups is 1) Mixture
Group (N=40), 2) MF Group(N=33), 3) MB Group(N=44), and 4) Other Group
(N=62), corresponding to the behavioral signature of each group. As shown in Fig-
ure 3.1c, by plotting cluster identity against each individual’s regression estimates
from the mixed-effect regression, the Mixture Group has an intermediate level of
both outcome effect and outcome-transition interaction effect, indicating a mixture
of MF and MB strategy usage within these individuals. The MF Group tends to
show a larger main effect of outcome but a weaker interaction effect of outcome and
transition, whereas the MB Group tends to show a smaller main effect of outcome
but a stronger interaction effect of outcome and transition. Lastly, the Other Group
has low measures on either regression estimate, indicating the potential use of non-
RL strategies. When plotting out each group’s choice probability as a function of the
previous outcome and transition type, stereotyped behaviors of each identified be-
havioral group were observed (Figure 3.1d). The classification of each individual’s
behavioral strategy provides a clear footing for studying what neural computations
in the RL process are conducted in support of different types of RL strategies. The
shared and distinct neural computations could be unveiled by a model-based fMRI
approach within each of these behavioral clusters.

After confirming the existence of Mixture, MB, and MF strategies when participants
performed the two-step task, we sought to characterize the key MF and MB compu-
tations within the corresponding system to facilitate the expression of MF and MB
signature. For this purpose, we fitted a hybrid reinforcement learning model with
separate MF and MB modules with independent condition-specific weights assigned
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to the MF and MB system (Cockburn et al., n.d.; see Methods for details). The
model’s posterior predictions align with the participants’ actual behavior quite well
(Figure 3.1d), which indicates good model performance so that we can rely on the
learning and decision variables used by the model to study their neural substrates.
Within the model, the Q-learning algorithm for the MF system is used to learn the
magnitude of the outcome and the expected state values of each intermediate stage.
In each trial, as there are three transitions, there are, in total, three MF reward predic-
tion errors (RPE) calculated as the difference between the expected state value and
the encountered state value, with the state value at the outcome stage as the received
reward magnitude. In detail, the first MF-RPE is the RPE encountered at the planet
stage after choosing the spaceship, the second MF-RPE is the RPE encountered at
the transition from the planet to the landing pad, and finally, the third MF-RPE is
the difference between the received reward magnitude and the value of the landing
pad. In parallel, the MB system represents the three MB reward prediction errors
in a similar manner as the MF system — computing the difference between the
expected state value and the actual encountered, although the MB agent learns value
differently. Specifically, the MB system first learns the state value at each stage
by learning the final state value through the final outcome and, subsequently, with
the transition probability between states, computing the expected values of previous
states. Similar to the MF system, the first MB-RPE, second MB-RPE, and third
MB-RPE are calculated within each trial as the transition goes from the chosen
spaceship to the final outcome observed. One important difference between the
MB and MF systems is that the MB system learns binary reward outcome (reward
vs. no reward) as opposed to magnitude reward in the MF system, and this is to
account for the task design that choice optimality depends on reward probability
rather than the magnitude itself, which participants are instructed on beforehand.
Consequently, the MF RPEs and MB RPEs at the three stages are dissociable and
could be leveraged to investigate their corresponding neural correlates through the
model-based fMRI analysis, which was conducted at the population level rather than
within each of the behavioral groups.

Besides the reward prediction error signal from the MF and MB systems, the
decision utility signals from each system are also of interest to understand the RL
computations engaged in the two-step task as the construct of decision utility is
critical for each system to enable the downstream action selection process. The
decision utility of each option could be acquired over a relatively longer time scale
(e.g., multiple past trials) and simultaneously also sensitive to rewards obtained
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recently, for example, in the preceding trial (Iigaya et al., 2019). The learning
mechanism just described in the previous paragraph is known as a slow learning
mechanism that integrates past reward information over multiple past trials. In
addition to such "slowly" learned option value, a fast learning mechanism is also
incorporated into the model for MF and MB systems, respectively, to capture the
"fast" value component updated on a trial-by-trial basis. For the MF system, a value
component would be added or subtracted based on the outcome of the preceding
trial, whereas for the MB system, the value component would be adjusted not only
based on the outcome but also on the transition type in the preceding trial. Hence,
the decision utility for MF and MB systems is computed as the chosen option value
minus the rejected option value, where the option values are composed of "slow" and
"fast" value components. The MF and MB decision utilities derived from the model
were studied within each behavioral group identified by the clustering algorithm
with a model-based fMRI approach. It is an intriguing question as to how MF and
MB systems are engaged at the neural level across groups with distinct behavioral
strategies, and we specifically approach the problem through the lens of decision
utility, given it is a key computational variable in the reinforcement learning process.

Neural Correlates of Reward Prediction Error in the Model-Free and Model-
Based System
As for the model-based fMRI analysis, an event-related design matrix was used for
the general linear model fitted to the fMRI BOLD data (see Methods for details).
The events of interest in the design matrix for each trial are stimulus onset, response
onset, planet onset, pad onset, and outcome onset, which are set as stick functions at
the corresponding event onset time. Since there are three RPE signals from the MF
and MB systems arising in each trial, the derived three RPE variables are set as the
parametric modulators at their corresponding time points: planet onset, pad onset,
and outcome onset. Importantly, to increase the statistical power of capturing the
RPE-specific variance in the BOLD signal, we combine the three event regressors
into one chained regressor "planet-pad-outcome onset," which essentially means for
each trial, there are three stick functions built into the regressor rather than one stick
function per trial. The combined "planet-pad-outcome" regressor, which entails
three stick functions, is parametrically modulated by both the MF RPE and MB RPE
at each stage. Consequently, using the combined event regressor for the RPE signal
would have three times more observation points than setting three separate RPE
regressors at each stage, but at the same time, would not differentiate RPE encoding
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Figure 3.1: The two-step task structure and the group-level performance and choice
behaviors. (a) Left: The two-step task structure. In each play, participants started by
choosing from two spaceships, and each spaceship had a common and rare transition
to the two possible planets. Then, from the planet to the landing pads, the transition is
manipulated to be probabilistic, and both landing pads associated with a given planet
share the same reward probability function. Right: The reward probability function
throughout the task; Bottom: The timing of the trial sequence. (b) The probability
of repeating the previous action as a function of the previous trial’s outcome and
transition type. (c) The clustering result after allocating the participant’s behavioral
features to the four cluster centroids identified from an external large dataset. Four
diamonds denote the four centroids from the external dataset. One empty circle
denotes one individual in our fMRI sample. (d) The line plot of the information
shown in (b) for each behavioral group using group membership in (c). The solid
lines are the participants’ actual behavior, and the dashed lines are the predicted
behavior from the computational model fitted to the participants. The black error
bars reflect the across-subject SEMs.

at different trial stages. Also, both MF RPE and MB RPE are simultaneously put as
parametric modulators of the combined event regressor without orthogonalization
so that the identified signal ascribed to either MF or MB RPE regressor is beyond
the shared variance and belongs to the regressor itself. The three-stage MF RPE
and MB RPE signals are both z-scored across all trials, and we fitted the first-level
GLM to each participant with the outcome magnitude as a parametric modulator at
the outcome onset stage to control for signal-related outcome magnitude. For data
inclusion in this analysis, as we are interested in the RPE computations in RL, we
excluded the Other Group and reported the results from analyzing the data of the
three RL-related behavioral groups (i.e., the Mixture, MF, and MB Group).

From the group-level analysis of the MF RPE and MB RPE, we found that neural
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activity in the right caudate significantly correlated with the combined MF RPE
signal (𝑝 = 0.025, cluster-level FWE, small-volume corrected, Figure 3.2a left)
and found that neural activity in the left ventral striatum significantly correlated
with the combined MB RPE signal (𝑝 = 0.026, cluster-level FWE, small-volume
corrected, Figure 3.2a middle). After establishing the existence of MF RPE and MB
RPE computations in the brain, we sought to investigate whether the just-described
neural results are exclusively attributed to the RPE signal in each system. In other
words, it is a question of whether the neural activity in the right caudate significantly
correlated with MF RPE would also significantly encode the RPE signal from the
MB system and vice versa for the neural activity in the left ventral striatum. To
answer this question, we ran a group-level paired t-test on beta maps of the MF RPE
and MB RPE in the regions previously identified for the RPE signals. Specifically,
we tested whether, in the right caudate, the beta maps for MF RPE are higher than
that for MB RPE and tested whether the betas coefficients for MB RPE in the left
ventral striatum are higher than that for MF RPE. We found that there was a cluster
in the right caudate that has higher betas for MF RPE than for MB RPE (𝑝 = 0.031,
cluster-level FWE, small-volume corrected, Figure 3.2a right). On the other hand,
we did not find any clusters surviving correction in the ventral striatum that encode
MB RPE more strongly than MF RPE. We also took an ROI-based analytic approach
to investigate how the MF RPE and MB RPE signals are encoded in the caudate and
the ventral striatum by extracting the mean beta coefficients of the RPE contrasts
within the pre-defined ROIs (see Methods: Regions of Interest and Small Volume
Correction), respectively. Specifically, we found that, in the Caudate ROI, MF RPE
were encoded with a trending significance (𝑝 = 0.0727), whereas the MB RPE
was not significantly encoded in the region (Figure 3.2b); in contrast, in the ventral
striatum ROI, MB RPE, but not MF RPE, was significantly encoded in the region
(𝑝 = 0.0148, Figure 3.2b). The ROI-based results further illustrated the potential
specificity of the striatal regions in the encoding of RPE signals, as we found in the
voxel-based analysis on the brain maps.

Neural Correlates of Decision Utility Underlying Model-Free and Model-based
Strategy
To study what RL computations are carried out neurally to give rise to the different
behavioral strategies that emerge in the two-step task, we built into the design
matrix decision utility variables from both MF and MB systems to unveil their
neural correlates. Specifically, the chosen utility and rejected utility of the MF and
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Figure 3.2: The encoding of decision utility and reward prediction error at the
group level. All brain images show the T-maps with cluster-forming threshold of
p<0.001, uncorrected, in the corresponding region of interest, k denotes the number
of voxels in the cluster; SVC denotes the application of small volume correction.
(a) Left: The cluster in the right caudate that correlates with MF RPE, k=20, peak
voxel (14, 2, 16), T=3.58, SVC; Middle: The clusters in bilateral ventral striatum
that correlates with MB RPE, only the cluster in the left ventral striatum survives
the small-volume correction, k=51, peak voxel (-14, 14, -8). T =4.49; Right: The
cluster in the right caudate has a stronger correlation with MF RPE than with MB
RPE, k=16, peak voxel (14,-2,12), T =3.54. (b): The group-level beta coefficients
of the MF RPE and MB RPE contrasts in the caudate and the ventral striatum ROIs
(t-test, MB RPE in Caudate: 𝑝 > 0.05; MF RPE in Caudate: 𝑝 = 0.0727; MB RPE
in ventral striatum: 𝑝 = 0.0148; MF RPE in ventral striatum: 𝑝 > 0.05). (c) Left:
The cluster in vmPFC that correlates with MF decision utility (i.e., the contrast
of chosen MF utility minus rejected MF utility), k=3486, peak voxel (-4,62,6), T=
6.34; right: The cluster in vmPFC that correlates with MB decision utility (i.e.,
the contrast of chosen MB utility minus rejected MB utility), k=1297, peak voxel
(-12,58,30), T= 5.04.

MB systems were put simultaneously as parametric modulators for the stick function
at the time of stimulus onset (i.e., spaceship onset). The same GLM was run for
both the previous section on RPE and the current section on decision utility but with
different focused contrasts (see Methods for details). We fit the first-level GLM to
each individual and looked into the group-level results as a function of the entire
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group as well as different behavioral groups: 1) Mixture Group, 2) MF Group, 3)
MB Group, and 4) Other Group. For the overall group-level analysis, similar to the
group-level analysis on RPE, we excluded the Other Group and reported the results
from analyzing the data of the three RL-related behavioral groups.

Firstly, when examining the contrast of decision utility (i.e., chosen utility minus
rejected utility), we observed a significant neural cluster correlating with MF deci-
sion utility (𝑝 < 0.001, cluster-level FWE, Figure 3.2c left) and MB decision utility
(𝑝 < 0.001, cluster-level FWE, Figure 3.2c right) within the ventromedial prefrontal
cortex area (vmPFC), replicating the previous findings on neural correlates of MF
and MB value signals (Hampton, Bossaerts, and O’doherty, 2006; Beierholm et al.,
2011; S. W. Lee, Shimojo, and O’doherty, 2014). Interestingly, when looking into
each individual behavioral group, the MF decision utility was represented signifi-
cantly by all three RL-related groups and the non-RL group in vmPFC (cluster-level
FWE, MF Group: 𝑝 < 0.001; Mixture Group: 𝑝 = 0.023; MB Group: 𝑝 < 0.001;
Other Group: 𝑝 < 0.001; Figure 3.3a), meaning that MF decision utility was also
computed in the groups whose behaviors aligned more with a pattern of MB control
or in the group using a presumably non-RL strategy. In contrast, the MB decision
utility in vmPFC was predominantly found in the MB group but with no signifi-
cant clusters (cluster-forming threshold: p<0.001) surviving corrections for multiple
comparisons (FWE, p<0.05) in vmPFC in the Mixture, MF, or Other Group group
(cluster-level FWE, 𝑝 < 0.001; Figure 3.3b)

Using an independent ROI-based analysis focusing on the vmPFC, a mask derived
from a neural meta-analysis on more than 200 studies of the valuation process
(Bartra, McGuire, and Kable, 2013), similar results were found as the whole-brain
analysis that MF decision utility was represented significantly in all three groups
using RL strategies — in the Mixture group (𝑝 < 0.001, one-sample t-test), MB
group (𝑝 = 0.0249, one-sample t-test), and MF group (𝑝 = 0.0155, one-sample
t-test). In contrast, the neural encoding of MB decision utility was mainly in the
MB group (𝑝 < 0.001, one-sample t-test), only showing the encoding tentatively in
the hypothesized direction in the Mixture group (𝑝 = 0.3527, one-sample t-test) but
not showing positive correlations at all in the MF group (𝑝 = 0.7393, one-sample
t-test). To estimate the overall signal correlations in the vmPFC ROI and to compare
the representation of the decision utility of MF and MB systems from group to
group, we ran two regression models on the 1st-level beta estimates in the vmPFC
(ROI) with an intercept and an ordinal group variable, one for MF decision utility
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and the other for MB decision utility (see Methods). Consistent with the whole-
brain fMRI analysis, we found, in the vmPFC ROI, there are significant overall
positive correlations for MF decision utility (𝛽 = 0.2499, 𝑝 = 0.036039) and for
MB decision utility (𝛽 = 0.66366, 𝑝 < 0.001), indicating the significant intercepts
of the two regression models, respectively. As for the across-group comparison
of the neural representation of decision utility, patterns from the MF and the MB
system diverge. As shown by an insignificant ordinal group effect on the MF decision
utility (𝛽 = −0.011614, 𝑝 = 0.8387, Figure 3.3c), the representation of MF decision
utility in vmPFC across the three groups was comparable regardless of the extent
to which model-free behaviors are expressed. On the contrary, the MB decision
utility was represented in vmPFC differently across the three groups, as indicated
by a significant ordinal group effect (𝛽 = −0.24765, 𝑝 = 0.0033, Figure 3.3c).
More specifically, the representation of MB decision utility in vmPFC was most
strongly represented in the MB group, but as the MB component in the behavior
shrank, the neural representation of MB decision utility waned. In addition to the
comparison in the behaviorally categorical group, we also examined how neural
representation of decision utility varied across varying degrees of MF (or MB)
expression through a more continuous measure: the MF weight parameter (𝑤𝑀𝐹)
from the computational model. Generalizing the previous findings across categorical
behavioral groups, through Spearman Correlations, it was found that when the
individual’s behavior went from MB to MF (increasing 𝑤𝑀𝐹), the representation
of MF decision utility did not shift significantly (Spearman 𝑟 = −0.0113, 𝑝 =

0.9033, Figure 3.3d left) while the representation strength of MB decisions utility
significantly dropped (Spearman 𝑟 = −0.3370, 𝑝 < 0.001, Figure 3.3d right).

Based upon the observation that both MF decision utility and MB decision utility
were represented in the behaviorally MB group but only MF decision utility was
represented in the behaviorally MF group, we conducted a two-sample t-test to
formally compare MB group and MF group in terms of whether they represent
the MF decision utility and MB decision utility differently. The statistical tests
coherently indicated that MB decision utility is more strongly represented in vmPFC
in the MB group than in the MF group (𝑝 = 0.001, cluster-level FWE), yet there is
no difference in vmPFC activity correlating with MF decision utility between the
MB group and MF group, underscoring the contrasting difference of the decision
utility computation underlying an MF strategy vs. an MB strategy.
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Figure 3.3: The encoding of decision utility across different behavioral groups
and across individuals with various degrees of MF (or MB) behavior. (a): The
clusters of MF and MB decision utility of each behavioral group using the RL
strategy with a cluster-forming threshold of p<0.001, uncorrected, in the region of
the prefrontal cortex. (b): The clusters of MB decision utility of each behavioral
group using the RL strategy in the region of the prefrontal cortex, with a cluster-
forming threshold of p<0.001 (uncorrected) for the MB group and a cluster-forming
threshold of p<0.01 (uncorrected) for the Mixture, MF, and Other group. (c): The
beta coefficients of the MF and MB decision utility to account for BOLD activity
in the vmPFC ROI from all behavioral groups. (d) Left: The correlation between
the beta coefficients of MF decision utility in the vmPFC ROI and the weight of
MF system from the computational model; Right: The correlation between the beta
coefficients of MB decision utility in the vmPFC ROI and the weight of MF system
from the computational model (Spearman correlation, "∗ ∗ ∗": 𝑝 < 0.001).

3.3 Discussion
With a large group of participants completing the two-step task, an overall mixture
of MF and MB strategies was evident in the sample we collected, replicating the
previous findings about the behavior in the two-step task (Daw et al., 2011; Kool,
Cushman, and Gershman, 2016; Wunderlich, Smittenaar, and Dolan, 2012; Dezfouli



90

and B. W. Balleine, 2013; Otto et al., 2013; Smittenaar et al., 2013; Dezfouli,
Lingawi, and B. W. Balleine, 2014). Specifically, finer-grained behavioral clustering
analysis enabled us to identify the strategy subtypes that were actually used by
the participants. We leveraged the cluster centroids obtained from a much larger
external sample (Cockburn et al., n.d.) to assign group identity in our current
dataset for classification robustness and reliability. Using clustering features of
various behavioral aspects, such as how choice and reaction time are influenced
by the preceding trial’s information, four groups of participants were identified: 1)
Mixture Group, 2) MF Group, 3) MB Group, and 4) Other Group. The number of
the behavioral cluster groups was found through the Gap statistical method in the
external dataset (Tibshirani, Walther, and Hastie, 2001), and the labels of four formed
groups were allocated by evaluating how choices were influenced by the previous
trial’s outcome and transition type, and each group’s reaction time measure was
found to be consistent with their distinct choice processes (Cockburn et al., n.d.;
Konovalov and Krajbich, 2016). Thus, we first illustrate that a variety of behavioral
strategies on the entire spectrum from MF to MB behavior were actually deployed in
the two-step task. There have been some recent studies on people’s actual strategy
engaged in the two-step task and found the MB strategy was primarily engaged
if participants were given detailed and story-based instruction, and there was no
involvement of the MF strategy (Feher da Silva and Hare, 2020; Feher da Silva,
Lombardi, et al., 2023). With our current large sample of participants, who also
received detailed and story-based instructions and whose behavioral strategies were
identified based upon a reliable criterion set by an external sample, we showed that
strategies with MF components (Mixture Group and MF Group) are also evident
in a large number of participants’ behaviors in the two-step task. This first helps
validate that in the two-step task, the MF strategy is also expressed in a certain
proportion of the entire participant population besides the MB strategy, and it shows
the possibility of arbitration between the two strategies within the same task as well
as the possibility of studying the neural substrates of the MF and MB strategies and
the mix of both given a spectrum of behaviors are present in this task. We also
note that there is a group of participants (Other Group) using apparently non-RL
strategies in the task, who could use certain heuristics or simply be less engaged in
the task. Although our main analysis of group-level fMRI or individual differences
does not include these participants that used non-RL strategy, it suggests that, indeed,
a variety of behavioral strategies could be engaged in the two-step task, and special
care needs to be taken to tease apart different kinds of strategies before drawing
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conclusions to avoid misattributing certain behavioral results due to co-existence of
multiple strategies and inattentive behavior.

By fitting a computational model of reinforcement learning algorithms to the behav-
ior of all participants that used the reinforcement learning strategy (Mixture Group,
MF Group, and MB group, but excluding the Other Group), we first validated that
the behavioral signatures of the participants can be well captured by a mixture of
model-free and model-based RL model through posterior predictive checks. Given
the reliable model characterization, we then identified the key RL computations
during the two-step task at the group level: 1) the decision utility, which guides
the 1st-stage choice on each trial, and 2) the reward prediction errors, which are
experienced at multiple stages of the trial to update the learned value of multiple
stages. Specifically, the model enabled us to extract the decision utility and reward
prediction error signal from the MF and MB systems, respectively. By fitting these
extracted computational variable time series to the fMRI BOLD signal, we found
that the decision utility and reward prediction errors from both the MF and MB
systems were significantly encoded in the brain, which further confirmed the use of
both MF and MB systems when learning and making decisions in the two-step task.

The MF and MB decision utility signals were encoded significantly in the ventro-
medial prefrontal cortex area (vmPFC) across all groups of participants using the
RL strategy, indicating a mixture of MF and MB systems are engaged, aligned well
with the group-level behavioral finding in this study. When looking into how these
learning and value signals were represented in each individual group of participants
using the RL strategy, we further found a ubiquitous MF decision utility encoding
in vmPFC across all groups, from using a pure MF strategy to a mix of MF and MB
strategy to a pure MB strategy. This is a specifically interesting finding as we found
neural evidence of engaging the MF strategy by showing that the MF decision utility
signal is indeed represented not only in the group of participants who behaved in
an MF-consistent manner but also in participants who were mainly deploying an
MB or a Mixture strategy or a non-RL strategy. Such a finding further supports the
ubiquitous engagement of the MF system in the Markov decision-making process,
as shown in the current two-step task. The ubiquity of the MF decision utility signal
also supports a hypothesis of the arbitration theory of control allocation (S. W. Lee,
Shimojo, and O’doherty, 2014): the MF system serves as the default control system
and gets inhibited when MB control is needed, according to the arbitrator. Although
it was not tested in the current study how the arbitrator inhibits MF control when sys-
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tem reliability indicates the need, the presence of MF decision utility in the Mixture
Group and MB Group suggests that the MF system might always serve in the neural
computation even when the behavioral outputs contain the MB elements according
to the arbitrator. This is possible because even though some participants’ mean
behavioral patterns throughout the task might be categorized as MB, a participant’s
behavior who is using the MB strategy overall might not stick to using the same
degree of MB control from the beginning to the end, and there could be unmeasured
control shift between MF system and MB system throughout the task, similarly for
participants showing an overall mixture of MF and MB behavior. The result of no
correlation between the encoding strength of MF decision utility and the degree of
the MF behavior is consistent with the view that the MF module always operates
at the back-end to provide inputs for the arbitrator. With respect to the encoding
of the MB decision utility signal, the gradual decrease of encoding strength of MB
decision utility with an increasing degree of using MF strategy further supports the
aforementioned hypothesis about the arbitration process between the MF and MB
system. It is hence well expected, given such a hypothesis, that we observed the
significant encoding of the MB decision utility in the behaviorally MB Group but no
encoding trend at all in the MF Group. The fact that the encoding of MB decision
utility is weak in the Mixture Group might be a natural product of the cluster group
allocation process within our data sample, as each group’s neural result is sensitive
to some individual-level encoding strength.

We also found a significant encoding of reward prediction error signal from both
MF and MB systems in the striatal area of the brain, with MF reward prediction
error (MF RPE) in the right dorsal caudate and MB reward prediction error (MB
RPE) in the left ventral striatum. Specifically, we found that the right dorsal caudate
region exclusively encodes the RPE signal from the MF system. These neural
results further consolidate earlier behavioral and neural evidence of the co-existence
of MF and MB strategy when participants use an RL strategy in the two-step task,
with the current RPE results suggesting that both MF and MB system are updating
their own estimated value in the environment through a temporal-difference learning
algorithm. A note is that the significant encoding of MF RPE in the current study
was not found in the ventral striatum as typically found in early human studies
(Berns et al., 2001; Pagnoni et al., 2002; O’Doherty et al., 2003; McClure, Berns,
and Montague, 2003). This might be because these early studies used a simple
conditioning paradigm where there is no action to make (e.g., in the Pavlovian
conditioning paradigm) or the response is so simple that there are no concurrent
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options. Thus, the neural computation of the RPE in these no-choice situations
could be very different from the computation of RPE and how it contributes to value
updates in a task that involves flexible choices and more complex task structures,
such as in the two-step task. In an earlier study, Jessup & O’Doherty (2011)
found that dorsal caudate was engaged in RL-consistent choices, and its BOLD
activity was correlated with the prediction error signal in the MF reinforcement
learning algorithm. Our ROI analysis of MF RPE in the dorsal caudate region, of
which the mask was created from the aforementioned study (Jessup and O’Doherty,
2011), reassures the proposed role of dorsal caudate underlying the MF learning
of stimulus-response association, potentially adding further evidence of the dorsal
striatum serving as the "actor" in the actor-critic framework implemented in the
striatum (Montague, Dayan, and Sejnowski, 1996; B. W. Balleine and O’doherty,
2010). Intriguingly, we found MB RPE signals were significantly encoded within
the ventral striatum, a region typically involved in the MF reward learning process.
The MB module in our model requires not only the knowledge of state-transition
structure but also the binary reward information at the terminal state so that the initial
action can be adaptively guided through the state transitions to the more rewarding
terminal state. The induced MB RPEs are dissociable from the MF RPE generated
from the reward magnitude learning at the outcome stage, enabling us to investigate
the corresponding neural signatures of both systems’ RPE signals. The finding of
the MB RPE signal in the ventral striatum opens up the possibility that a shared
neural mechanism of reward learning might underlie both MF and MB strategy;
when computing the choice values, the MF system could relay the learning-related
signal to PFC directly while the MB system needs to first relate the state-transition
information in the cortex (Gläscher et al., 2010) to the learned state value in the
basal ganglia for decision value in PFC. Further connectivity work would be needed
to confirm such a hypothesis of the MB system in the brain. There have been
concerns in recent literature that the MF RPE signal observed in the two-step task
could result from GLM design specification, hence misattributing the reward signal
to the reward prediction error (Feher da Silva, Lombardi, et al., 2023). We want
to note that our current results of MF RPE and MB RPE encoding in the striatum
are obtained with a GLM design that addresses such concerns. Although we used a
design where the multiple intermediate-stage MF RPE signals are combined into a
single regressor (to increase statistical power), by incorporating reward magnitude
as a co-regressor at the outcome stage into the GLM to control for BOLD variance
related to the reward signal, we could ensure the MF RPE encoding result in the
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caudate we observed was not mixed with signals from the reward magnitude. Also,
using a combined-regressor GLM approach is valid here as in our computational
model specification, the MB RPE (binary reward learning) and MF RPE (magnitude
reward learning) are distinguishable (although with high correlations) at all stages.

Drawing insights about the neural substrates of reinforcement learning strategy with
a group-level analysis across a limited number of participants could sometimes be
challenging, considering the diversity in behavioral strategies and the variability of
meaningful neural signals across individuals. In the current study, we embraced
this challenge by conducting group-level analysis on a large number of participants
as well as leveraging the individual differences in the behavioral strategies and the
relevant neural computations. Given the identified striatal MF RPE encoding and
the stereotyped MF behavior in a decent number of individuals, a literature debate
about the usage of the MF system while engaging the two-step task could now be
reevaluated with the new evidence. Moreover, the individual difference analysis on
decision utility signals across groups with different behavioral strategies also sheds
light on the role of the MF system in the control allocation process when both RL and
non-RL strategies are engaged. As real-world decisions usually involve choosing
strategies in a flexible manner, our current finding could help provide insights into
an accurate arbitration model of strategy shifting for future studies.

3.4 Methods
Participants
For participant recruitment, we recruited participants who reside in the United States
and who are fluent English speakers and readers. The age range for the studies is
from 18 to 65 years. Before the experiment, all participants signed the informed
consent approved by the California Institute of Technology’s Institutional Review
Board under protocol 19-0914. All participants were reimbursed in monetary format
for base pay and their performance bonus. There are a total of 179 participants (105
females) with usable data after exclusions, who have a mean age of 30.3743 years
(𝑠𝑑 = 10.1886). As for recruitment criteria, participants would not have any history
of substance/alcohol use disorder, anxiety disorder (Obsessive-Compulsive Disor-
der, Body Dysmorphia Disorder, generalized anxiety, social anxiety/social phobia),
and/or depressive disorders (dysthymia, major depression). Also, participants would
not use any medications for any subclinical psychiatric disorder treatment.
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Experimental Procedure
There were multiple stages to complete the entire experiment, and all participants
were given a consent form before participating in the experiment and could only
proceed to the next stage if they consented. After consenting to participate, the
participants were first screened through an interview by a psychiatrist, in which
participants’ mental health conditions and medication usage were evaluated to de-
cide whether they were eligible to participate as healthy controls or patients or
ineligible to participate. We only analyzed the data of the healthy controls from
this procedure. After the eligibility evaluation, participants were asked to complete
a few questionnaires on psychiatric measures before coming to the Brain Imaging
Center at the California Institute of Technology to conduct the functional magnetic
resonance imaging study.

Firstly, upon arrival at the Brain Imaging Center, participants were asked to complete
a short questionnaire asking about feelings and emotions. Afterwards, before the
fMRI scan, participants read through the instructions for the spaceship task. After
the instructions, a few questions were asked to ensure participants understood the
task and remembered the key features of the task. After the instructions, 115 trials
of practice rounds of the task were done before participants performed the main
task in the scanner. The spaceship task was paired with another task, studying
habits, and the participants completed both tasks during the scan. The MRI scans
were split into two half-sessions where participants completed one task per session;
completing the spaceship task in the first or the second half was counterbalanced
across participants. During the structural scan in the scanner (either in the first or the
second half session), participants also completed another session (105 trials) of the
spaceship task right before the functional session (154 trials). The behaviors of the
structural scan and the functional scan were combined for the behavioral analysis as
well as computational modeling. Specifically, both sessions were used for behavioral
clustering analysis and for finding the best parameters of the computational models
fitted to each individual, which could offer us more data to generate a reliable
model fit to participants’ behaviors. After completing the two tasks in the scanner,
participants were debriefed about the task and received their reimbursement.

Space Miner Task
For the main task, participants were instructed to collect rewards through space min-
ing on different planets. The background is that mining has begun on two planets
(i.e., one identified as red and the other green) in space, and the goal is to earn
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as many points as possible by mining gems from the two planets. However, the
mines on the two planets have changing conditions in their production. Sometimes
gems could be found, but other times, worthless rocks could also be mined out.
Specifically, there are two landing pads for the corresponding mines on each planet,
one to the North and the other to the South. The landing pads are identified through
their unique scenic view and are located in the upper (North) and bottom (South)
parts of the planet on the screen.

Participants can choose between two different spaceships (identified as yellow and
blue, with the screen locations of the spaceships fixed across trials) using a button-
press to travel to the two planets for a miner. They are instructed that the yellow
spaceship usually lands on the red planet, and the blue spaceship usually lands on
the green planet. However, space travel can sometimes be a bit unpredictable due to
space debris, so in some rare situations, the yellow ship will be forced to land on the
green planet, and the blue spaceship will be forced to land on the red planet. Partic-
ipants were instructed to use two buttons to choose the corresponding spaceships.
In a given trial, once participants chose one spaceship, they observed the spaceship
being highlighted and taken off and the planet appearing after the spaceship landed.
Afterwards, the landing pad for the mine would also appear, either on the upper or
the bottom part of the planet, given if they landed at the North or the South mine
on the planet. Once the spaceship landed, the mine production appeared as either
a gem with its price or a worthless rock. Specifically, participants were instructed
that the gem’s price is unpredictable and will change daily. Also, participants had
no control over which mine (North or South) the spaceship would eventually land
on. In general, the conditions at all four mines (two mines on each of the two
planets) would change throughout the game regarding gem vs. stone production.
Participants were encouraged to learn which mine produces gems the most reliably.

After going through the instructions of the spaceship task, participants were asked
a few questions:
1. How many planets are there?
2. How many mines are there on each planet?
3. Which planet does the yellow ship usually land on?
4. Which planet does the blue ship usually land on?
5. How many points is a mined rock worth? (0 points vs. 1-100 points)
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6. How many points is a gem worth? ( 0 points vs. 1-100 points)

Participants proceeded to the practice trials and then the main experiment if they
answered all the questions correctly.

Task Design
The current variant of the two-step task shared a similar task structure as the original
two-step task (Daw et al., 2011) overall but with some differences in details. The
general structure consists of the first-step transition and reward probability shifts,
and also three condition manipulations (i.e., reward magnitude, state transition, and
reward contingency) were built into the space miner task. One key difference is that
in the current task, there was only one action to be made, which was at the initial
state, and the rest of the trial were all state transitions with no further actions needed.
All three cohorts of participants experienced the same general structure of the space
miner task. On each trial, the yellow and blue spaceships would appear on the left
and right sides of the screen. If chosen, the transition via the yellow spaceship to-
wards the red planet occurred with a probability of 0.7 and with a probability of 0.3
towards the green planet; corresponding probabilities were flipped for the transition
via the blue spaceship towards the planets. After the transition from the planet stage
to the landing-pad stage, reward or non-reward outcomes would appear. The under-
lying reward probability was shared across the two landing pads on a given planet
(reward probability would also be associated with the spaceship chosen, depending
on the reward contingency condition described later in this section), and there were
specific periods built-in such that landing on one planet was more rewarding than
landing on the other planet, and also periods where landing on either of the two
planets was relatively comparable in terms of the reward probability. To implement
this, the reward probability associated with two planets started from 1 vs. 0, and
then by using the Sigmoid function, the reward probability of the rewarding planet
decayed from 1 towards 0.3 (asymptote) within the time span of from 20 to 25 trials
(the exact number of trials depended on whether a rare spaceship-planet transition
is made); for the reward probability associated with the currently non-rewarding
planet, the same Sigmoid decay rate and the flipped sign of decay slope was used
to have the reward probability drift from 0 to 0.5 (asymptote) again within the time
span of from 20 to 25 trials. Afterwards, the reward probabilities associated with the
two planets were reset to 1 vs. 0, but the rewarding planet was reversed compared
to the previous block of trials. This drifting of reward probabilities and the rever-
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sal of rewarding planet/landing pads occurred throughout the entire session of the
experiments. The order of which planet was firstly rewarding was counterbalanced
across the participants. The structure of going from strong preference (large gap of
reward probabilities: 1 vs. 0) towards almost indifference (reward probabilities: 0.3
vs. 0.5) was first to facilitate learning of the rewarding option and then setting the
value of two options towards indifference to prepare for learning after the preference
reversal. Also, a critical trial of rare transition was built into the very beginning
after a preference reversal to facilitate detecting stay/switch behaviors as a signature
of the MB vs. MF strategy. It is worth noting that another manipulation of reward
contingency (described later in this section) would change the contingency of re-
ward delivery upon the landing pads (or planets) vs. the spaceships, yet the general
fluctuating and reversal dynamics of the reward probability shift would remain the
same across the two reward contingency conditions.

Reward Magnitude Manipulation

On top of the reward probabilities shifts throughout the main task, the reward
magnitudes (points associated with the gem), if there was a reward, were manipulated
to shift between two conditions: low reward prediction error (low RPE) vs. high
reward prediction error (high RPE). For the reward magnitude manipulation, the
magnitudes were drawn from a uniform distribution of (0.1, 0.19) for the low RPE
condition and (0.3, 1) for the high RPE condition, for which the actual points were
scaled by 100. Low vs. high RPE conditions were shifted every 26-27 trials, and the
order of the low vs. high RPE conditions was counterbalanced across participants.

State-Transition Uncertainty Manipulation

For the second-step transition (with no actions required) after landing on a given
planet, the landing pad would be shown subsequently to illustrate whether the North
or South mine was landed on. A state-transition manipulation was built-in at this
phase of the trial to shift the uncertainty of landing on a specific mine (North or
South) given a specific planet: high state prediction error (high SPE) vs. low state
prediction error (low SPE). During high SPE conditions, the transition to one of
the two landing pads on a given planet was at the equal probability of 0.5 vs. 0.5,
which elicited large state-transition uncertainties. On the other hand, during low
SPE conditions, the transition to one of the two landing pads on a given planet
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was at the biased probability of 0.9 vs. 0.1, and whether the transition to the
North or South landing pad was biased would change along the course of the task.
Low vs. high SPE conditions were shifted every 26-27 trials, and the order was
counterbalanced across participants. As participants would mostly see one type
of transition within a conditional block, the state prediction was relatively certain
under low SPE conditions.

Reward Contingency Manipulation

Besides manipulating reward magnitude and state-transition uncertainty, reward de-
livery was also manipulated to be contingent upon 1) what stimulus (i.e., spaceship)
participants choose or 2) what terminal states (i.e., landing pads) were arrived at,
meaning rewards are 1) stimulus-contingent or 2) state-contingent, respectively. The
stimulus-contingent and state-contingent conditions were run by two separate fMRI
blocks of the experiment, and the two fMRI blocks had the same number of trials (77
trials each, 154 trials in total), and the order of the two contingency conditions was
also counterbalanced across participants. During the stimulus-contingent reward
condition, the reward probability structure (described earlier in this section) was
associated with the stimulus (i.e., spaceship) chosen by the participant in each trial,
regardless of what second-stage state (i.e., planet) or terminal state (i.e., landing
pad) that was reached. During the state-contingent reward condition, the reward
probability structure (described earlier in this section) was associated with the pair
of landing pads on a given planet, so both the choice at the first stage and the actual
terminal states that were arrived at would potentially influence the final outcome.
Intuitively, under the state-contingent reward condition, in response to a win or a
loss after a rare spaceship-planet transition in the previous trial, the first-stage tran-
sition probability representation (as used in a model-based strategy) would direct
the subsequent choice towards the stimulus more likely leading to the rewarding
terminal states; in contrast, during the stimulus-contingent reward condition in the
similar situation, such a model-based strategy would end up choosing the option that
was less likely to deliver a reward, effectively eliciting more model-based RPEs.

Within each reward-contingency block (i.e., the state-contingent and stimulus-
contingent blocks), both reward magnitude and state-transition uncertainty were
manipulated simultaneously along with the reversals of reward probability (either
associated with the state or the stimulus). We ensured all the manipulated compu-
tational variables were orthogonal to each other, so the averaged overall effect of
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one conditional variable was solely independent rather than confounded by other
manipulated variables. To realize the orthogonality between conditions, the starting
trial index of each condition was offset to one another (i.e., with a lag of around 13
trials ) so that no two conditional blocks (e.g., High RPE and Low SPE) would com-
pletely overlap, with the aim of obtaining the sole conditional effect by averaging
across one type of conditional blocks and canceling out the correlations between
manipulations.

Behavioral Clustering
There are, in general, two types of behavioral metrics we leveraged to perform
cluster allocation on participants’ behavior: 1) choice measure: choice pattern as a
function of the outcome and transition type in the preceding trial, and 2) reaction
time measure: reaction time pattern as a function of current choice, the outcome
and transition type in the preceding trial. Specifically within the choice measure,
summary statistics and regression estimates of each participant served as the features
for the clustering. For the summary statistics, we calculate the following metrics for
each participant:

1. 𝑝(𝑆𝑡𝑎𝑦𝑡 |𝐶𝑜𝑚𝑚𝑜𝑛𝑡−1𝑅𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡−1)
2. 𝑝(𝑆𝑡𝑎𝑦𝑡 |𝐶𝑜𝑚𝑚𝑜𝑛𝑡−1𝑈𝑛𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡−1)
3. 𝑝(𝑆𝑡𝑎𝑦𝑡 |𝑅𝑎𝑟𝑒𝑡−1𝑅𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡−1)
4. 𝑝(𝑆𝑡𝑎𝑦𝑡 |𝑅𝑎𝑟𝑒𝑡−1𝑈𝑛𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡−1)

5. Reward Sensitivity:
[𝑝(𝑆𝑡𝑎𝑦𝑡 |𝐶𝑜𝑚𝑚𝑜𝑛𝑡−1𝑅𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡−1) + 𝑝(𝑆𝑡𝑎𝑦𝑡 |𝑅𝑎𝑟𝑒𝑡−1𝑅𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡−1)]

−[𝑝(𝑆𝑡𝑎𝑦𝑡 |𝐶𝑜𝑚𝑚𝑜𝑛𝑡−1𝑈𝑛𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡−1) + 𝑝(𝑆𝑡𝑎𝑦𝑡 |𝑅𝑎𝑟𝑒𝑡−1𝑈𝑛𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡−1)]

6. Transition Sensitivity:
[𝑝(𝑆𝑡𝑎𝑦𝑡 |𝐶𝑜𝑚𝑚𝑜𝑛𝑡−1𝑅𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡−1) − 𝑝(𝑆𝑡𝑎𝑦𝑡 |𝑅𝑎𝑟𝑒𝑡−1𝑅𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡−1)]

−[𝑝(𝑆𝑡𝑎𝑦𝑡 |𝐶𝑜𝑚𝑚𝑜𝑛𝑡−1𝑈𝑛𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡−1) − 𝑝(𝑆𝑡𝑎𝑦𝑡 |𝑅𝑎𝑟𝑒𝑡−1𝑈𝑛𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡−1)]

7. Absolute Reward Sensitivity:
|𝑝(𝑆𝑡𝑎𝑦𝑡 |𝐶𝑜𝑚𝑚𝑜𝑛𝑡−1𝑅𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡−1) − 𝑝(𝑆𝑡𝑎𝑦𝑡 |𝑅𝑎𝑟𝑒𝑡−1𝑅𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡−1) |

−|𝑝(𝑆𝑡𝑎𝑦𝑡 |𝐶𝑜𝑚𝑚𝑜𝑛𝑡−1𝑈𝑛𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡−1) − 𝑝(𝑆𝑡𝑎𝑦𝑡 |𝑅𝑎𝑟𝑒𝑡−1𝑈𝑛𝑟𝑒𝑤𝑎𝑟𝑑𝑒𝑑𝑡−1) |

For the regression estimates of the choice measure, we used a mixed-effect logistic
regression to model the choice repeating probability as a function of the intercept,
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outcome, transition type, and their interaction in the preceding trial, which serve
as the fixed effects. The dependent variable "isStay" denotes whether choosing the
same option as in the previous trial, and all regressors are dummy variables identify-
ing the status in the previous trial: "isWin" denotes the outcome in the previous trial;
"isRare" denotes the spaceship-planet transition type in the previous trial. Three
binary variables indicating the conditional manipulations are added as three inde-
pendent interactions with 𝑖𝑠𝑊𝑖𝑛 × 𝑖𝑠𝑅𝑎𝑟𝑒. Specifically, 𝐻𝑖𝑔ℎ𝑅𝑃𝐸

𝑚 𝑓

𝑡−1 is a binary
variable indicating the previous trial’s reward magnitude condition (1: high re-
ward magnitude/high MF-RPE, 0: low reward magnitude/low MF-RPE). Similarly,
𝐿𝑜𝑤𝑆𝑃𝐸𝑚𝑏

𝑡−1 indicates the previous trial’s state-transition uncertainty condition (1:
low state-transition uncertainty/low SPE, 0: high state-transition uncertainty/high
SPE), and 𝐿𝑜𝑤𝑅𝑃𝐸𝑚𝑏

𝑡−1 indicates the previous trial’s reward contingency condition
(1: state-contingent reward/low MB-RPE, 0: stimulus-contingent reward/ high MB-
RPE). For the random effects, the intercept and the slope of the outcome, transition
type, and their interaction in the preceding trial are modeled to vary at the single-
subject level. And "subID" denotes the identity of each participant. The full model
is:

𝑖𝑠𝑆𝑡𝑎𝑦 ∼ 𝑖𝑠𝑊𝑖𝑛×𝑖𝑠𝑅𝑎𝑟𝑒×
(
𝐻𝑖𝑔ℎ𝑅𝑃𝐸

𝑚 𝑓

𝑡−1 + 𝐿𝑜𝑤𝑆𝑃𝐸𝑚𝑏
𝑡−1 + 𝐿𝑜𝑤𝑅𝑃𝐸𝑚𝑏

𝑡−1

)
+

(1 + 𝑖𝑠𝑊𝑖𝑛 × 𝑖𝑠𝑅𝑎𝑟𝑒 |𝑠𝑢𝑏𝐼𝐷) ,

where "×" denotes the main effects and the interaction between each independent
variable, and "1" denotes the intercept, that is, the average stay probability for each
subject. Trials, where the choice was not made within 2 seconds, were excluded be-
fore estimating the regression model. From the regression, we extracted the random
effects of the intercept, the outcome, the transition type, and the outcome-transition
interaction from each individual to use as features in the clustering algorithm.

As for the reaction time measure for the clustering, we also used a mixed-effect
logistic regression to characterize how individuals’ reaction times (RT) varied as a
function of the current choice (stay or switch), the preceding trial’s outcome (win
vs. no-win), the preceding trial’s transition (common vs. rare), and all the two-way
and three-way interactions between these regressors. The same were modeled as
random effects for each individual.
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𝑙𝑜𝑔(𝑅𝑇𝑡) ∼ 𝑆𝑡𝑎𝑦𝑡×𝑅𝑒𝑤𝑎𝑟𝑑𝑡−1×𝑖𝑠𝑅𝑎𝑟𝑒𝑡−1+(1 + 𝑆𝑡𝑎𝑦𝑡 × 𝑅𝑒𝑤𝑎𝑟𝑑𝑡−1 × 𝑖𝑠𝑅𝑎𝑟𝑒𝑡−1 |𝑠𝑢𝑏𝐼𝐷) ,
(3.1)

where we log-transformed the RT, and "×" denotes the main effects and the inter-
action between each independent variable; and "1" denotes the intercept. Trials,
where the choice was not made within 2 seconds, were excluded before estimating
the regression model. We also extracted each individual’s random effects of the
intercept, the outcome, the transition type, and the outcome-transition interaction
for their clustering features.

In total, from both the choice measures (summary statistics and regression estimates)
and the reaction time measures (regression estimates), there are 19 behavioral fea-
tures for each participant. We relied on the centroids discovered in an external
dataset with a much larger sample size (Cockburn et al., n.d.) to perform cluster
allocation for this dataset. In the external dataset, a much larger group of partici-
pants (N=678) completed the same two-step task online, and the k-means clustering
algorithm was used on the same 19 behavioral features to classify all the partici-
pants, and the clusters’ centroids were obtained. The optimal number of clusters
was found as four using the Gap statistical method (Tibshirani, Walther, and Hastie,
2001) in the external dataset, which gave sensible classification to separate behav-
iors generally as RL strategies vs. non-RL strategies as well as gave finer-grained
strategy characterization for participants using RL strategy - 1) Mixture of MF and
MB control, 2) pure MF control, and 3) pure MB control. In the current dataset, we
assign each individual to the group label of the individual’s closest centroid in terms
of Euclidean distance. The labels were defined according to behavioral phenotypes
in the external dataset: 1) Mixture Group, 2) MF Group, 3) MB Group, and 4) Other
Group (non-RL strategies).

The Computational Model of Reinforcement Learning
The computational model we used to characterize the behavior was a hybrid rein-
forcement learning model composed of a model-free module and a model-based
module. As the space miner task only requires action at the initial stage, which
leads to two subsequent intermediate states before reaching the outcome, both the
MF and MB modules only learn the action values of the two stimuli at the initial
stage, which were guided through learned the downstream state value within each
trial. As the position of the two stimuli at the initial stage was fixed, choosing the
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left (or right) action always led to the yellow (or blue) spaceship, and thus the action
values learned were effectively the same as the stimulus values.

Model-Free Module

The model-free module is composed of a slow learning and a fast learning com-
ponent, which corresponds to the learning over outcomes of multiple past trials
("slow") and learning upon the outcome of the preceding trial ("fast"). The slow
learning component is described first.

As mentioned above, since there is only one action needed in the task and the action
values at the initial state are equivalent to the stimulus values, the MF module
essentially learns the value of potential states 𝑄𝑛𝑡ℎ

𝑀𝐹
(𝑠) (𝑛 as the stage order in a

sequence, 𝑠 as the potential states within the nth stage). Hence, for example, the
Q-value of the yellow spaceship could be denoted as 𝑄1𝑠𝑡

𝑀𝐹
(𝑦𝑒𝑙𝑙𝑜𝑤), and the Q-

value of the red planet and the Q-value of the north pad on the red planet could
be denoted as 𝑄2𝑛𝑑

𝑀𝐹
(𝑟𝑒𝑑) and 𝑄3𝑟𝑑

𝑀𝐹
(red-north), respectively. The reward prediction

error experienced at the nth stage could be denoted as 𝑅𝑃𝐸𝑛𝑡ℎ
𝑀𝐹

(𝑛 = 2 when at the
planet stage, 𝑛 = 3 when at the landing pad stage, and 𝑛 = 4 when observing the
outcome).

The reward prediction error at each stage and the learning rule for Q-values in
previous stages (with eligible traces) were defined as the following (the subscripts
of 𝑀𝐹 and the chosen/experienced state variable 𝑠 for Q-values and 𝑅𝑃𝐸 are not
shown for simplicity):

𝑅𝑃𝐸 (𝑛+1)𝑡ℎ = 𝑟
(𝑛+1)𝑡ℎ
𝑡 +𝑄

(𝑛+1)𝑡ℎ
𝑡 −𝑄𝑛𝑡ℎ

𝑡−1, 𝑛 = 1, 2, 3, (3.2)

𝑄𝑛𝑡ℎ
𝑡 = 𝑄𝑛𝑡ℎ

𝑡−1 + 𝛼𝑀𝐹 × 𝑅𝑃𝐸 (𝑛+1)𝑡ℎ, 𝑛 = 1, 2, 3, (3.3)

𝑄
(𝑛−1)𝑡ℎ
𝑡 = 𝑄

(𝑛−1)𝑡ℎ
𝑡−1 + 𝛼𝑀𝐹 × 𝜆 × 𝑅𝑃𝐸 (𝑛+1)𝑡ℎ, 𝑛 = 2, 3, (3.4)

𝑄
(𝑛−2)𝑡ℎ
𝑡 = 𝑄

(𝑛−2)𝑡ℎ
𝑡−1 + 𝛼𝑀𝐹 × 𝜆2 × 𝑅𝑃𝐸 (𝑛+1)𝑡ℎ, 𝑛 = 3, (3.5)

where the 𝛼𝑀𝐹 (0 < 𝛼𝑀𝐹 < 1) is the learning rate of the Q-values and shared across
all stages, 𝑛 = 1, 2, 3, within the trial; the trace decay parameter 𝜆 is set to be 1,
meaning that an equal amount of value updates was conducted to a proximal and to
a distal state. All-stage Q-values at the beginning of the session were initialized to
0 (𝑛 = 1, 2, 3). 𝑟𝑛𝑡ℎ𝑡 (0 ≤ 𝑟𝑛𝑡ℎ𝑡 ≤ 1) denotes the magnitude of the outcome (scaled
down by 100) and is only relevant when 𝑛 = 3, which is when observing the actual
outcome, but otherwise 𝑟𝑛𝑡ℎ𝑡 = 0 given no reward delivery in the intermediate states.
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Note that 𝑄 (𝑛+1)𝑡ℎ
𝑡 = 0 when 𝑛 = 3, as there are no learnable states besides the

outcome at that stage.

As for the fast learning component, a value bias 𝑊 (𝑠𝑡−1, 𝑟𝑡−1) was added to the
learned Q-values of the first-stage chosen stimuli 𝑠𝑡−1 in the preceding trial dependent
on the outcome of the preceding trial 𝑟𝑡−1 ∈ {0 : 𝑛𝑜 𝑟𝑒𝑤𝑎𝑟𝑑, 1 : 𝑟𝑒𝑤𝑎𝑟𝑑}. It
essentially builds a stay or a switch action tendency bias into the associated stimulus
based upon a preceding reward or no-reward event. The incorporation of the fast
learning component into the overall utility of the chosen stimulus𝑈1𝑠𝑡

𝑀𝐹
(𝑠) is specified

as follows:
𝑈1𝑠𝑡
𝑡 (𝑠) = 𝑄1𝑠𝑡

𝑡 (𝑠) +𝑊 (𝑠𝑡−1, 𝑟𝑡−1), 𝑠 = 𝑠𝑡−1, (3.6)

𝑊 (𝑠𝑡−1, 𝑟𝑡−1) =

𝑊

𝑠𝑡𝑎𝑦

𝑀𝐹
if 𝑟𝑡−1 = 1

𝑊 𝑠𝑤𝑖𝑡𝑐ℎ
𝑀𝐹

if 𝑟𝑡−1 = 0
, 𝑠𝑡−1 ∈ {𝑦𝑒𝑙𝑙𝑜𝑤, 𝑏𝑙𝑢𝑒}, (3.7)

where𝑊 𝑠𝑡𝑎𝑦

𝑀𝐹
and𝑊 𝑠𝑤𝑖𝑡𝑐ℎ

𝑀𝐹
are the two parameters fitted for each participant, and both

parameters could be positive or negative to capture all possible action adjustment
policies.

Model-Based Module

The model-based module is a forward learner using the dynamic programming
approach, and it also consists of a slow learning component that updates the Q-
values on a multi-trial basis and a fast learning component that considers the trial
experience in the most recent trial. The slow learning component is first described
below.

As described for the model-free module, the Q-value learned in the MB module
could be similarly denoted as 𝑄𝑛𝑡ℎ

𝑀𝐵
(𝑠) ( 𝑛 as the stage order in a sequence, 𝑠 as

the potential states within the nth stage as listed for the MF module). To carry out
dynamic programming to compute the Q-values of upper-level states, the reward
information (binary) was essentially learned in the MB module through 𝑅𝑃𝐸4𝑡ℎ

𝑀𝐵
at

the outcome stage for the Q-value of the experienced landing pads 𝑄3𝑟𝑑
𝑡 :

𝑅𝑃𝐸4𝑡ℎ
𝑀𝐵 = 𝑟4𝑡ℎ

𝑡 −𝑄3𝑟𝑑
𝑡−1 (𝑠), 𝑠 ∈ {red-north, red-south, green-north, green-south},

(3.8)
𝑄3𝑟𝑑

𝑡 (𝑠) = 𝑄3𝑟𝑑
𝑡−1 (𝑠)+𝛼𝑀𝐵×𝑅𝑃𝐸 (𝑛+1)𝑡ℎ, 𝑠 ∈ {red-north, red-south, green-north, green-south},

(3.9)
where 𝛼𝑀𝐵 (0<𝛼𝑀𝐵<1) is the learning rate for the MB module. 𝑟4𝑡ℎ

𝑡 is a binary
variable of 1 when rewarded and 0 when unrewarded in the current trial.
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Besides learning the binary reward information, the MB module determines the
value of the terminal states 𝑄3𝑟𝑑𝑀𝑎𝑔 (𝑠) by integrating the magnitude of the reward
experienced 𝑀𝑎𝑔(𝑠) into the value component 𝑄3𝑟𝑑 (𝑠) learned through the binary
reward information:

𝑄
3𝑟𝑑𝑀𝑎𝑔
𝑡 (𝑠) = 𝑄3𝑟𝑑

𝑡 (𝑠)+𝑀𝑎𝑔𝑡 (𝑠), 𝑠 ∈ {red-north, red-south, green-north, green-south}.
(3.10)

The MB module utilizes two sets of state-transition probability to compute the
upper-level Q-values from the learned Q-value of the landing pads. The first state-
transition probability is hard-coded instead of through learning, as assumed by the
fact that participants were instructed about the common vs. rare transition structure
from the spaceship and the planet and had enough time to practice before the main
experiment. The first state-transition probability 𝑇1(𝑠, 𝑠′), 𝑠 ∈ {𝑦𝑒𝑙𝑙𝑜𝑤, 𝑏𝑙𝑢𝑒}, is
specified as below:

𝑇1(𝑦𝑒𝑙𝑙𝑜𝑤, 𝑠′) = [0.7, 0.3], 𝑠′ = {𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛}; (3.11)

𝑇1(𝑏𝑙𝑢𝑒, 𝑠′) = [0.3, 0.7], 𝑠′ = {𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛}. (3.12)

In contrast, the second state-transition probability 𝑇2(𝑠, 𝑠′) was learned through
state prediction errors (𝑆𝑃𝐸) experienced through the transition from state 𝑠 to the
subsequent 𝑠′ (i.e., from a planet to either the north or the south landing pad on that
planet). The second state-transition probability ( 𝑇2(𝑠, 𝑠′) ) is updated as below:

𝑆𝑃𝐸 = 1 − 𝑇2(𝑠, 𝑠′), 𝑠 ∈ {𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛}, 𝑠′ ∈ {𝑛𝑜𝑟𝑡ℎ, 𝑠𝑜𝑢𝑡ℎ}, (3.13)

𝑇2(𝑠, 𝑠′) = 𝑇2(𝑠, 𝑠′) + 𝜂 × 𝑆𝑃𝐸, 𝑠 ∈ {𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛}, 𝑠′ ∈ {𝑛𝑜𝑟𝑡ℎ, 𝑠𝑜𝑢𝑡ℎ}, (3.14)

𝑇2(𝑠, 𝑠′′) = (1 − 𝜂) × 𝑇2(𝑠, 𝑠′′), 𝑠 ∈ {𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛}, 𝑠′′ ∈ {𝑛𝑜𝑟𝑡ℎ, 𝑠𝑜𝑢𝑡ℎ}, 𝑠′′ ≠ 𝑠′,

(3.15)
where 𝜂 is the state-transition learning rate and is a fixed value as it is not a
recoverable parameter through model fitting, and thus set as a median value of 0.5.
For potential but non-experienced states 𝑠′′, the transition probability was scaled by
(1- 𝜂) to normalize the transition probabilities associated with the state 𝑠.

With the Q-value of the terminal states after incorporating the learned magnitude
component 𝑄3𝑟𝑑𝑀𝑎𝑔

𝑡 (𝑠), and the second state-transition probabilities, the Q-values
of the planets 𝑄2𝑛𝑑

𝑀𝐵
and spaceships 𝑄1𝑠𝑡

𝑀𝐵
could be computed through dynamic pro-

gramming as below (the subscripts 𝑀𝐵 are not shown for simplicity):

𝑄2𝑛𝑑
𝑡 (𝑠) =

∑︁
𝑠′

𝑇2(𝑠, 𝑠′) ×𝑄
3𝑟𝑑𝑀𝑎𝑔
𝑡 (𝑠′), 𝑠 ∈ {𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛}; (3.16)
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𝑄1𝑠𝑡
𝑡 (𝑠) =

∑︁
𝑠′

𝑇1(𝑠, 𝑠′) ×𝑄2𝑛𝑑
𝑡 (𝑠′), 𝑠 ∈ {𝑦𝑒𝑙𝑙𝑜𝑤, 𝑏𝑙𝑢𝑒}, 𝑠′ ∈ {𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛}. (3.17)

In addition to the slow learning component, the MB module also integrates in-
formation from the preceding trial to rapidly adjust the action tendency of stay-
ing with the selected option versus switching to the other option, which is re-
ferred to as the fast learning component. Specifically, to facilitate the stay vs.
switch action selection tendency, the fast learning component utilizes the task
model, considering the outcome and the first-stage transition type in the preced-
ing trial, to add either a positive or negative value bias 𝑊 (𝑠𝑡−1, 𝑟𝑡−1, 𝑐𝑡−1) to the
option selected in the preceding trial, where 𝑠𝑡−1 ∈ {𝑦𝑒𝑙𝑙𝑜𝑤, 𝑏𝑙𝑢𝑒} denotes the
selected spaceship, 𝑟 ∈ {0 : no-reward, 1 : 𝑟𝑒𝑤𝑎𝑟𝑑} denotes the outcome, and
𝑐 ∈ {0 : 𝑟𝑎𝑟𝑒, 1 : 𝑐𝑜𝑚𝑚𝑜𝑛} denotes the transition type. The value integration of
slow and fast learning into the overall utility 𝑈1𝑠𝑡

𝑀𝐵
(𝑠) is specified as the following:

𝑈1𝑠𝑡
𝑀𝐵 (𝑠) = 𝑄1𝑠𝑡

𝑡−1(𝑠) +𝑊𝑡 (𝑠𝑡−1, 𝑟𝑡−1, 𝑐𝑡−1), 𝑠 = 𝑠𝑡−1, (3.18)

𝑊𝑡 (𝑠𝑡−1, 𝑟𝑡−1, 𝑐𝑡−1) =

𝑊

𝑠𝑡𝑎𝑦

𝑀𝐵
if (𝑟𝑡−1, 𝑐𝑡−1) = (1, 1) or (0, 0)

𝑊 𝑠𝑤𝑖𝑡𝑐ℎ
𝑀𝐵

if (𝑟𝑡−1, 𝑐𝑡−1) = (1, 0) or (0, 1)
, 𝑠𝑡 ∈ {𝑦𝑒𝑙𝑙𝑜𝑤, 𝑏𝑙𝑢𝑒},

(3.19)
where𝑊 𝑠𝑡𝑎𝑦

𝑀𝐵
and𝑊 𝑠𝑤𝑖𝑡𝑐ℎ

𝑀𝐵
are the two parameters fitted for each participant, and both

of the parameters are unbounded and could be either positive or negative to capture
all possible action adjustment policies.

The Hybrid of MF and MB Module

With the learned first-stage stimulus utility from both the MF and MB modules,
integration of the utilities from the two modules was implemented to obtain the
mixed utility of first-stage stimulus, which was used for action selection. The
learned MF stimulus utility 𝑈1𝑠𝑡

𝑀𝐹
(𝑠) and MB stimulus utility 𝑈1𝑠𝑡

𝑀𝐵
(𝑠) are combined

through a weighting parameter 𝑤𝑀𝐹 that decides the weight of utility from the MF
module for combination and (1−𝑤𝑀𝐹) is the weight of the MB stimulus utility. A
semi-arbitration mechanism is introduced to calculate the value of 𝑤𝑀𝐹 for trials
within certain condition blocks. Considering the three manipulations of prediction
error signal throughout the experiment, as hypothesized by the reliability-based
arbitration theory (S. W. Lee, Shimojo, and O’doherty, 2014), we set three free
parameters that correspond to the weight adjustment of the MF system in response
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to the three manipulations:

Δ𝑤𝑀𝐹
𝑚 𝑓 𝑅𝑃𝐸
𝑡 =


𝑎𝑚 𝑓 𝑅𝑃𝐸 if low reward magnitude on trial t

−𝑎𝑚 𝑓 𝑅𝑃𝐸 if high reward magnitude on trial t
, (3.20)

Δ𝑤𝑀𝐹𝑚𝑏𝑅𝑃𝐸
𝑡 =


𝑎𝑚𝑏𝑅𝑃𝐸 if stimulus-contingent reward on trial t

−𝑎𝑚𝑏𝑅𝑃𝐸 if state-contingent reward on trial t
, (3.21)

Δ𝑤𝑀𝐹𝑆𝑃𝐸
𝑡 =


𝑎𝑆𝑃𝐸 if high state-transition uncertainty on trial t

−𝑎𝑆𝑃𝐸 if low state-transition uncertainty on trial t
, (3.22)

where 𝑎𝑚 𝑓 𝑅𝑃𝐸 , 𝑎𝑚𝑏𝑅𝑃𝐸 , and 𝑎𝑆𝑃𝐸 are the three free parameters. Based upon what
the manipulated reliability condition a given trial 𝑡 is in, the weight adjustments are
integrated into the baseline weight of the MF module:

𝑤𝑀𝐹𝑟𝑎𝑤
𝑡 = 𝑤𝑀𝐹𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑡 + Δ𝑤𝑀𝐹
𝑚 𝑓 𝑅𝑃𝐸
𝑡 + Δ𝑤𝑀𝐹𝑚𝑏𝑅𝑃𝐸

𝑡 + Δ𝑤𝑀𝐹𝑆𝑃𝐸
𝑡 . (3.23)

The adjusted raw MF weight is then passed into the sigmoid function to transform
the raw weight onto the scale of (0,1):

𝑤𝑀𝐹𝑡 =
1

1 + 𝑒−𝑤𝑀𝐹𝑟𝑎𝑤
𝑡

. (3.24)

The weight assigned to the MB module on trial 𝑡 would then be 1 − 𝑤𝑀𝐹𝑡 . Hence
the mixture of the MF stimulus utility and the MB stimulus utility is achieved by:

𝑈𝑀𝑖𝑥
𝑡 (𝑠) = 𝑤𝑀𝐹𝑡 ×𝑈𝑀𝐹

𝑡 (𝑠) + (1−𝑤𝑀𝐹𝑡) ×𝑈𝑀𝐵
𝑡 (𝑠), 𝑠 ∈ {𝑦𝑒𝑙𝑙𝑜𝑤, 𝑏𝑙𝑢𝑒}. (3.25)

Once the mixed stimulus utility is computed, the probability of choosing a specific
stimulus 𝑠 is then calculated through a softmax function:

𝑃𝑡 (𝑠) =
𝑒𝛽×𝑈

𝑀𝑖𝑥
𝑡 (𝑠)

𝑒𝛽×𝑈
𝑀𝑖𝑥
𝑡 (𝑠) + 𝑒𝛽×𝑈

𝑀𝑖𝑥
𝑡 (𝑠′)

, 𝑠, 𝑠′ ∈ {𝑦𝑒𝑙𝑙𝑜𝑤, 𝑏𝑙𝑢𝑒}, 𝑠′ ≠ 𝑠. (3.26)

With the calculated choice probability for each participant, we fit the specified
parameters to maximize the summed negative log-likelihood of participants’ choices
across all trials (with no-response trials excluded):

𝑛𝑒𝑔𝐿𝐿𝐸 = −
∑︁
𝑡

log(𝑃𝑡 (𝑠)), 𝑠 ∈ {𝑦𝑒𝑙𝑙𝑜𝑤, 𝑏𝑙𝑢𝑒}, (3.27)

where 𝑠 denotes the participant’s actual choice on trial 𝑡.

For each individual, the model parameters were fitted with a Bayesian inference
method using the cbm (computational and behavioral modeling) toolbox (Piray et
al., 2019) with the non-hierarchical specification. Each parameter was fit using a
normally distributed prior with a mean of zero and a variance of 6.25 that ensured
the cover of a large range of parameters with no excessive model complexity penalty.
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Functional MRI Acquisition
The fMRI data were acquired at the Caltech Brain Imaging Center (Pasadena, CA)
using a Siemens Prisma 3T scanner with a 32-channel radiofrequency coil. The
functional scans were conducted using a multi-band echo-planar imaging (EPI)
sequence with 72 slices, -30 degrees slice tilt from AC-PC line, 192 mm × 192
mm field of view, 2 mm isotropic resolution, repetition time (TR) of 1.12 s, echo
time (TE) of 30ms, multi-band acceleration of 4, 54-degree flip angle, in-plane
acceleration factor 2, echo spacing of 0.56 ms, and EPI factor of 96. Following each
run, both positive and negative polarity EPI-based field maps were collected using
similar parameters to the functional sequence but with a single band, TR of 5.13 s,
TE of 41.40 ms, and 90-degree flip angle. T1-weighted and T2-weighted structural
images were also acquired for each participant with 0.9 mm isotropic resolution and
230 mm × 230 mm field of view. For the T1-weighted scan, TR of 2.55 s, TE of 1.63
ms, inversion time (TI) of 1.15 s, flip angle of 8 degrees, and in-plane acceleration
factor 2 were used. The T2-weighted scan was acquired with TR of 3.2 s, TE of 564
ms, and in-plane acceleration factor of 2.

Functional MRI Data Preprocessing
Results included in this manuscript come from preprocessing performed using fM-
RIPrep 23.1.3(Esteban, Christopher J Markiewicz, et al., 2019; Esteban, Christopher
J. Markiewicz, et al., 2023; RRID:SCR_016216), which is based on Nipype 1.8.6
(Gorgolewski et al., 2011; RRID:SCR_002502).

Anatomical data preprocessing

A total of 1 T1-weighted (T1w) image was found within the input BIDS dataset. The
T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) with
N4BiasFieldCorrection (Tustison et al., 2010, distributed with ANTs (Avants et al.,
2008, RRID:SCR_004757), and used as T1w-reference throughout the workflow.
The T1w-reference was then skull-stripped with a Nipype implementation of the
antsBrainExtraction.sh workflow (from ANTs), using OASIS30ANTs as the target
template. Brain tissue segmentation of cerebrospinal fluid (CSF), white matter
(WM), and gray matter (GM) was performed on the brain-extracted T1w using fast
(FSL, RRID:SCR_002823, Zhang, Brady, and Smith, 2001). Brain surfaces were
reconstructed using recon-all (FreeSurfer 7.3.2, RRID:SCR_001847, Dale, Fischl,
and Sereno, 1999), and the brain mask estimated previously was refined with a cus-
tom variation of the method to reconcile ANTs-derived and FreeSurfer-derived
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segmentations of the cortical gray-matter of Mindboggle (RRID:SCR_002438,
Klein et al., 2017). Volume-based spatial normalization to one standard space
(MNI152NLin2009cAsym) was performed through nonlinear registration with antsReg-
istration (ANTs), using brain-extracted versions of both the T1w reference and the
T1w template. The following template was selected for spatial normalization and
accessed with TemplateFlow (23.0.0): ICBM 152 Nonlinear Asymmetrical tem-
plate version 2009c (Fonov et al., 2009, RRID:SCR_008796; TemplateFlow ID:
MNI152NLin2009cAsym).

Functional data preprocessing

A B0-nonuniformity map (or fieldmap) was estimated based on two (or more) echo-
planar imaging (EPI) references with topup (Andersson, Skare, and Ashburner,
2003; FSL). The estimated fieldmap was then aligned with rigid-registration to the
target EPI (echo-planar imaging) reference run.

For each of the 6 BOLD runs found per subject (across all tasks and sessions),
the following preprocessing was performed. First, a reference volume and its
skull-stripped version were generated using a custom methodology of fMRIPrep.
The BOLD reference was then co-registered to the T1w reference using bbregis-
ter (FreeSurfer) which implements boundary-based registration (Greve and Fischl,
2009). Co-registration was configured with six degrees of freedom. Head-motion
parameters with respect to the BOLD reference (transformation matrices, and six
corresponding rotation and translation parameters) are estimated before any spa-
tiotemporal filtering using mcflirt (FSL, Jenkinson et al., 2002). BOLD runs were
slice-time corrected to 0.52s (0.5 of slice acquisition range 0s-1.04s) using 3dTshift
from AFNI (Cox and Hyde, 1997, RRID:SCR_005927). The BOLD time-series
were resampled onto the following surfaces (FreeSurfer reconstruction nomencla-
ture): fsaverage. The BOLD time-series (including slice-timing correction when
applied) were resampled onto their original, native space by applying a single, com-
posite transform to correct for head-motion and susceptibility distortions. These
resampled BOLD time-series will be referred to as preprocessed BOLD in original
space, or just preprocessed BOLD. The BOLD time-series were resampled into
standard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym
space. Several confounding time-series were calculated based on the preprocessed
BOLD: framewise displacement (FD), DVARS, and three region-wise global sig-
nals. FD was computed using two formulations following Power (absolute sum of
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relative motions, Power et al., 2014) and Jenkinson (relative root mean square dis-
placement between affines, Jenkinson et al., 2002). FD and DVARS are calculated
for each functional run, both using their implementations in Nipype (following the
definitions by Power et al., 2014). The three global signals are extracted within
the CSF, the WM, and the whole-brain masks. Additionally, a set of physiological
regressors was extracted to allow for component-based noise correction (CompCor,
Behzadi et al., 2007). Principal components are estimated after high-pass filtering
the preprocessed BOLD time-series (using a discrete cosine filter with 128s cut-off)
for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor).
tCompCor components are then calculated from the top 2% variable voxels within
the brain mask. For aCompCor, three probabilistic masks (CSF, WM, and com-
bined CSF+WM) are generated in anatomical space. The implementation differs
from that of Behzadi et al.(2007) in that instead of eroding the masks by 2 pixels
on BOLD space, a mask of pixels that likely contains a volume fraction of GM is
subtracted from the aCompCor masks. This mask is obtained by dilating a GM
mask extracted from the FreeSurfer’s aseg segmentation, and it ensures components
are not extracted from voxels containing a minimal fraction of GM. Finally, these
masks are resampled into BOLD space and binarized by thresholding at 0.99 (as in
the original implementation). Components are also calculated separately within the
WM and CSF masks. For each CompCor decomposition, the k components with the
largest singular values are retained, such that the retained components’ time series
are sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM,
combined, or temporal). The remaining components are dropped from considera-
tion. The head-motion estimates calculated in the correction step were also placed
within the corresponding confounds file. The confound time series derived from
head motion estimates and global signals were expanded with the inclusion of tem-
poral derivatives and quadratic terms for each (Satterthwaite et al., 2013). Frames
that exceeded a threshold of 0.5 mm FD or 1.5 standardized DVARS were annotated
as motion outliers. Additional nuisance time-series are calculated by means of prin-
cipal components analysis of the signal found within a thin band (crown) of voxels
around the edge of the brain, as proposed by Patriat, Reynolds, and Birn (2017).
All resamplings can be performed with a single interpolation step by composing all
the pertinent transformations (i.e., head-motion transform matrices, susceptibility
distortion correction when available, and co-registrations to anatomical and output
spaces). Gridded (volumetric) resamplings were performed using antsApplyTrans-
forms (ANTs), configured with Lanczos interpolation to minimize the smoothing
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effects of other kernels (Lanczos, 1964). Non-gridded (surface) resamplings were
performed using mri_vol2surf (FreeSurfer).

Many internal operations of fMRIPrep use Nilearn 0.10.1 [Abraham et al., 2014,
RRID:SCR_001362], mostly within the functional processing workflow. For more
details of the pipeline, see the section corresponding to workflows in fMRIPrep’s
documentation (https://fmriprep.org/en/latest/workflows.html).

Functional MRI Data Analysis
The SPM12 package was used for the GLM analysis on the fMRI data (Wellcome
Department of Imaging Neuroscience, Institute of Neurology, London, UK). The
fMRI data were slice-timing corrected and were applied with a high-pass filter of
180 seconds to remove low-frequency drifts potentially caused by physiological and
physical noise. The fMRI data were corrected for motion, warped to the standard
Montreal Neurological Institute (MNI) template, and smoothed with a Gaussian
kernel (8mm FWHM) to mitigate individual anatomical differences.

We set up a general linear model (GLM) to perform voxel-wise statistical modeling
on the BOLD activity. The two blocks of the fMRI data were concatenated into
one longer sequence, and there are, in total, seven event-related regressors with
their associated parametric modulators in the GLM. The event-related regressors
are modeled as a stick function with zero duration and are followed by the z-scored
parametric modulators if they have any, as below:
1. Fixation Onset;
2. Stimulus Onset: 1) MF Chosen Utility, 2) MF Rejected Utility, 3) MB Chosen
Utility, 4) MB Rejected Utility;
3. Left Response Onset;
4. Right Response Onset;
5. Planet-Pad Onset: 1) State Prediction Error (Note: The event onset regressor
is a combined regressor from the two events of interest, and the SPE signals at the
planet and pad stage are combined into one parametric modulator);
6. Planet-Pad-Outcome Onset: 1) MF Reward Prediction Error, 2) MB Reward
Prediction Error (Note: The event onset regressor is a combined regressor from the
onsets of the three events, and both MF RPEs and MB RPEs at the three stages are
combined into one parametric modulator);
7. Outcome Onset: 1) Reward Magnitude.

https://fmriprep.org/en/latest/workflows.html
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To control for motion and non-neuronal fMRI signals, we include the following
nuisance regressors: six rigid-body motion regressors (three translations and three
rotations), framewise displacement (FD; quantification of the estimated bulk-head
motion) (Power et al., 2012), the averaged signal within cerebrospinal fluid (CSF)
mask, the average signal within the white matter mask, the average signal within
both the cerebrospinal fluid and white matter mask, and the average signal within
the whole brain mask and the derivative of the average signal within the whole brain
mask. Besides, the scan volumes with an FD larger than the threshold of 0.77mm
were set as regressors of motion spikes. The threshold of 0.77mm is determined by
first calculating the FD threshold of 1.5 times the interquartile range plus the third
quartile of each participant’s FD across all scans, then performing the calculation
of 1.5 times the interquartile range plus the third quartile of the entire FD threshold
distribution across all individuals.

To obtain the statistical beta maps of decision utility from the MF system, we
computed at the contrast level the beta of the MF chosen utility minus that of
the MF rejected utility. It is computed the same way for the contrast of the MB
decision utility. To assess how decision utility and reward prediction error signals
from the MF and MB system are represented by groups using varying degrees of
the MF/MB strategy, we extracted the corresponding first-level beta estimates from
the corresponding behavioral group and performed second-level random effects
modeling across individual betas to test significance with one-sample t-test. To
determine whether there is any significantly different encoding of the variable of
interest (i.e., decision utility and reward prediction error) between the MB group and
MF group, a two-sample t-test between the MF group and MB group was conducted
at the whole-brain level on the first-level contrasts of the variables of interest.

Regions of Interest and Small Volume Correction
For the small volume correction conducted for the contrasts of MF RPE and MF
RPE > MB RPE in Figure 3.2a, the ROI was defined as the bilateral 10mm spheres
centered on the coordinates of (6,2,10) and (-6,2,10), where the coordinates of
(-6,2,10) are peak coordinates of an outcome prediction error contrast from the
work of Jessup & O’Doherty (2011), and we mirrored this coordinate to the other
hemisphere to get the coordinates of (6,2,10).

The small volume correction for the contrasts of MB RPE is a hand-drawn ventral
striatum mask that is composed of bilateral nucleus accumbens and bilateral ventral
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putamen (parts of posterior ventral putamen were not included to create correspon-
dence to rodents literature — posterior putamen is analogous to dorsolateral striatum
in rodents). The region labels here were identified based on the Harvard-Oxford
Subcortical Structural Atlas (RRID: SCR_001476).

The ROI analysis on vmPFC in Figure 3.3b & Figure 3.3c is a vmPFC mask published
from a meta-analysis on neural correlates of subjective value (Bartra, McGuire, and
Kable, 2013).

Statistical Analysis
Logistic Regression

For all the mixed-effect logistic regression analyses, "fitglme" function in Matlab
was used. To quantify how the previous reward, previous transition type, and their
interactions affected the stay choices, we used a mixed-effect logistic regression to
model the probability of staying with the option chosen in the previous trial (𝑖𝑠𝑆𝑡𝑎𝑦𝑡)
as a function of the previous outcome (𝑅𝑒𝑤𝑎𝑟𝑑𝑡−1, 1: reward, 0: no-reward), the
previous transition type (𝑅𝑎𝑟𝑒𝑡−1, 1:rare, 0:common) and their interactions. The
fixed effects include the previous outcome, the previous transition type, and their
interactions. The intercept and the slope of the previous outcome, the previous
transition type, and their interaction were modeled as random effects that could vary
at the single-subject level (indicated by 𝑠𝑢𝑏𝐼𝐷). The regression model is:

𝑖𝑠𝑆𝑡𝑎𝑦 ∼ 𝑖𝑠𝑊𝑖𝑛 × 𝑖𝑠𝑅𝑎𝑟𝑒 +
(1 + 𝑖𝑠𝑊𝑖𝑛 × 𝑖𝑠𝑅𝑎𝑟𝑒 |𝑠𝑢𝑏𝐼𝐷) ,

where "×" denotes the main effects and the interaction between each independent
variable, and "1" denotes the intercept, which is the average stay probability for each
subject. Trials, where the choice was not made within 2 seconds, were excluded
before estimating the regression model.

Exclusion Criteria
Participants for the main analysis were excluded based on the proportion of fMRI
volumes that exceed a manually specified motion threshold to eliminate potential
neural confounds due to too much motion (for threshold selection, see the section of
Functional MRI Data Analysis). Participants who had over 15% of the total volumes
whose framewise displacement (FD) exceeded the threshold of 0.77mm in both of
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the two fMRI runs were excluded. In the fMRI analysis, we also excluded any runs
with over 15% volumes that exceeded the threshold of 0.77mm.
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C h a p t e r 4

THE ENHANCED ENCODING OF MODEL-BASED REWARD
PREDICTION ERROR IN ANTERIOR CINGULATE CORTEX

AND THE MODEL-FREE BEHAVIORAL BIAS AMONG
INDIVIDUALS WITH HIGH OBSESSIVE-COMPULSIVE

TENDENCY
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ABSTRACT

Obsessive-compulsive behaviors are repetitive, unhelpful behaviors that are difficult
to inhibit despite the behaviors’ adverse consequences. It has been suggested that
a psychological model of imbalance between the habitual (model-free) and goal-
directed (model-based) control could characterize obsessive-compulsive behaviors:
people with high obsessive-compulsive tendencies express bias towards model-free
behavior. However, it is unclear what specific computations go wrong across the
dual controllers that cause the observed behavioral abnormality. In the current
study, by leveraging individual differences in reward prediction error encoding and
self-reports of obsessive-compulsive tendency, we demonstrate that a neurocom-
putational model of the anterior cingulate cortex (ACC) performing error/conflict
monitoring could explain the abnormal imbalance between the dual controllers
within the theoretical framework of reliability-based arbitration. The over-reliance
on the habitual (model-free) control in highly obsessive-compulsive individuals is
found to be caused by the enhanced encoding of the reward prediction error (RPE)
signal from the model-based system in ACC, as the exaggeratedly encoded RPE
could over-signal the unreliability of the model-based system, biasing the arbitrator
to rely more on the model-free system to guide behavior. Our finding suggests it
is the computation of the reliability signal in the arbitration process that causes the
dual-control abnormality, and ACC could be one of the potential neural targets for
symptom alleviation in obsessive-compulsive disorder.



120

4.1 Introduction
Compulsive behaviors, as manifested in Obsessive-Compulsive Disorder (OCD),
are featured as conducting repetitive but pointless behaviors with the difficulty of
controlling them (Robbins et al., 2012). A dual-controller framework capturing the
learning process (Balleine and O’doherty, 2010) offers insights into how compul-
sive behavior might arise. The framework consists of the inflexible and history-
dependent habitual controller, which associates action with a stimulus upon reward
history, and the flexible, outcome-driven goal-directed controller, which plans and
executes actions to achieve desirable outcomes. It has been experimentally shown
that OCD patients display impairments in goal-directed behavioral control and in-
stead increased habit expression in a task with the outcome-devaluation procedure
(Gillan, Papmeyer, et al., 2011), consistent with the nature of inflexible and senseless
behavior in OCD.

A computational framework in reinforcement learning (RL) postulated a pair of
algorithms, the model-free (MF) and the model-based (MB), to describe the psy-
chological pair of habitual and goal-directed control. In essence, the MF system
learns "cached" values of actions through rewards and errors in history with no
explicit encoding of the task environment; in contrast, the MB system represents
the task environment by learning the state-transition model and computes the ac-
tion values by deploying the model of the environment. The relationship between
compulsiveness tendency and deficits in goal-directed control holds with the com-
putational characterization of the MF and MB systems. With the two-step task
to evaluate the participants’ tendency to express MB control and with self-report
questionnaires to assess OCD levels, it is shown that having a strong psychological
trait of "compulsiveness" is associated with having deficits in MB control (Gillan,
Kosinski, et al., 2016).

The higher propensity of expressing habitual control (or MF control) in the OCD
population has not been understood well in terms of its computational mechanism.
The computational framework of using two independent RL algorithms with the
two-step task to dissociate each of their role in the expressed behavior offers an
opportunity to further elucidate the mechanistic cause of reduced goal-directed
(MB) control in RL terms. An uncertainty-based control allocation theory has been
proposed (Daw, Niv, and Dayan, 2005), and a form of the theory’s RL realization,
reliability-based arbitration, was shown to act as a good computational model of
arbitration in the two-step task, and the key computational variables were found to be
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represented neurally in a model-based fMRI approach (Lee, Shimojo, and O’doherty,
2014). Given the imbalance of MB control and MF control in the populations
with high obsessive-compulsive tendencies, it is worth testing the abnormality of
what components within the reliability-based arbitration process might cause the
observed impairment in MB control. Specifically, the reliability-based arbitration
framework has the MF controller learning values through reward prediction errors
(RPEs), where the level of RPEs indicates the "reliability" of the MF system, and
smaller RPEs indicate higher reliability; on the other hand, the MB controller learns
the state-transition model of the task through state prediction errors, which serve
as the reliability of the MB system, and smaller state prediction errors indicate
good reliability. In addition, another source of learning signal, model-based reward
prediction error (MB RPE), was shown to serve as another source of reliability of
the MB system as well (Cockburn et al., n.d.). An arbitrator, neurally found to be
located in the inferior frontal gyrus (Lee, Shimojo, and O’doherty, 2014; Kim et al.,
2024), monitors these multiple forms of reliability signals from either the MF or
the MB system and allocates weight to the more reliable controller. In the case of a
more manifested MF control in OCD patients, there has been behavioral evidence
that OCD patients experienced larger MB uncertainty signals than healthy controls,
causing the arbitrator to engage the MB controller to a lesser extent, a potential
computational cause of the control imbalance (Kim et al., 2024).

Besides a potential computational source, it is helpful to unravel the potential neural
causes of the observed control imbalance in people scoring high on obsessive-
compulsive symptoms. As the neural arbitrator (i.e., inferior frontal gyrus) rep-
resents the controller reliability given the prediction error signals from the two
controllers, it modulates the value region MF system via negative coupling to gate
the MF controller (Lee, Shimojo, and O’doherty, 2014). Consequently, it could be
the case that the connectivity between the arbitrator region and the MF value region
is attenuated in OCD patients compared to the healthy controls, which was indeed
the case experimentally (Kim et al., 2024). However, it is an unanswered question
whether the upstream neural process in monitoring the reliability signals in the
uncertainty-based competition is distinct in the highly obsessive-compulsive group.
It is thus a necessary task to unravel the underlying neurocomputational mechanism
by probing the neural encoding of multiple forms of reliability signals in high vs.
low OC tendency: 1) MF reward prediction error (MF RPE), 2) state prediction error
(SPE), and 3) MB reward prediction error (MB RPE). The hypothesis is that the
neural encoding of MB reliability signals in people with high obsessive-compulsive
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tendencies would be stronger than that of people with low obsessive-compulsive
tendencies, as the stronger neural signature of uncertainty in the MB control would
lead the arbitrator to put more weight on the MF control. Conversely but otherwise
similarly, the neural encoding of MF reliability signals could be weaker in people
with higher obsessive-compulsive tendencies.

As for the brain regions tracking the reliability signals, the literature has shown
the striatum encodes the reward prediction error signal (O’Doherty et al., 2003;
McClure, Berns, and Montague, 2003; Jessup and O’Doherty, 2011), and the intra-
parietal sulcus and the lateral prefrontal cortex encodes the SPE signal (Gläscher et
al., 2010); thus these regions would be of interest in testing whether their representa-
tions of prediction error signals differ as a function of obsessive-compulsive levels.
Importantly, as obsessive-compulsive behavior can be understood as the repetitive
behavioral correction to mitigate the mismatch between the expected state and the
actual perceived state upon an executed action, the neural region that supports the
conflict/error detection would be of specific interest to examine for a relationship
between conflict/error processing and the downstream behavioral control (Pitman,
1987; Fitzgerald and Taylor, 2015). Since the anterior cingulate cortex (ACC) has
been found to serve as an error/conflict monitor, it is probable the neural informa-
tion in ACC consequently leads to the expression of obsessive-compulsive behavior.
Specifically, the anterior cingulate cortex (ACC) has been found to play a critical
role in monitoring the conflict between habitual and goal-directed control (Watson,
Wingen, and Wit, 2018). The abnormality in ACC’s activation (Del Casale et al.,
2011) and in its connectivity with other regions among OCD patients further indi-
cate ACC’s important role in maintaining an adaptive instrumental control. Hence,
it is a natural question whether a distinct neural profile of ACC, when monitoring
the error signals from MF and MB controllers, directs OCD patients towards the
inflexible habitual (MF) control more than the healthy controls.

With participants (N=238, including controls and patients) self-reporting their
obsessive-compulsive scores (OCI-R, Foa et al., 2002) and performing the two-
step task while scanned by functional magnetic resonance imaging (fMRI), we
could use the model-based fMRI approach to establish how different neural regions
support the tracking of reliability signals differently as a function of various de-
grees of obsessive-compulsive tendencies. The use of the two-step task provides a
scope to validate the relationship between the degree of MF vs. MB control and
the level of OCD and, more importantly, to extract the controller-specific reliability
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signals to test the neurocomputational hypotheses. Specifically, we would use a
semi-arbitration reinforcement learning model (Cockburn et al., n.d., see Methods)
to characterize participants’ MF (or MB) tendency and derive various prediction er-
ror signals from their corresponding MF/MB controller. Our main interest would be
to investigate whether the individual obsessive-compulsive level measured through
self-reports would correlate with the encoding strength of prediction error signals
across individuals in the region of interest that we just described, which from the
neurocomputational point of view could explain the overreliance on habitual (MF)
system of high OC-tendency people through their high susceptibility to the "error"
signal (the inverse of reliability) experienced through the dual controllers.

4.2 Results
The Reinforcement Learning Strategy across Various Levels of Obsessive-

Compulsive Tendency
First, to ensure participants with all levels of OC tendency comprehended the two-
step task and engaged in effective learning of the reward dynamics, we ran 1) a
statistical test between the task performance of all participants and that of a random
agent and 2) a correlational analysis between the participant’s task performance, as
indicated by the proportion of rewarded trials among all trials, and the self-report
measure of OCI-R collected before performing the task. A good learning of the
task across various levels of OCI-R score would be indicated by a significantly
better performance than a random agent and by no correlation between task perfor-
mance and the OCI-R measure. Indeed, we observed that the performance of all
participants (reward rate, the average proportion of rewarded trials: 47.16%) was
significantly better than a random agent (reward rate: 42.96%; 𝑝 < 0.001), and
we did not find a significant correlation between task performance and the OCI-
R score (Spearman correlation 𝑟 = 0.0258, 𝑝 = 0.6925, Figure 4.1a), suggesting
good and comparable task learning across all participants with varying levels of
obsessive-compulsive tendency. The result holds when further decomposing the
OCI-R score into the "obsessiveness" and "compulsiveness" components from the
overall OCI-R questionnaire, as the participant’s task performance was not either
correlated with the "obsessiveness" component (𝑟 = −0.0078, 𝑝 = 0.9050) or with
the "compulsiveness" component (𝑟 = −0.0305, 𝑝 = 0.6392). One note is that given
this variant of the two-step task was designed in such a way that the MF strategy
and the MB strategy would be equally optimal in reward earning, no correlation be-
tween task performance and OCI-R score does not imply the degrees of MF strategy
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engagement are comparable across all levels of obsessive-compulsive tendencies,
which was further investigated below. Establishing a comparable level of task en-
gagement across all levels of OCI-R score is critical as this precludes the possibility
that any behavioral results and difference in neural profiles across different levels
of obsessive-compulsive tendency are due to differences in meta-task factors such
as task comprehension and learning efficacy, which might introduce interpretation
difficulty in any correlation observed between the OC tendency and the measured
behavioral variables.

To evaluate the change of behavioral strategy, specifically, the reinforcement learning
strategy of MF and MB control, used by participants across multiple levels of OCI-
R score, we conducted the correlational analysis between the OCI-R score and the
degree of MF control across all participants. As for the degree of MF control,
we extract the weighting parameter (i.e., 𝑤𝑀𝐹) indicative of the degree of MF
control usage from a hybrid reinforcement learning model, where 𝑤𝑀𝐹 was used
to proportionally combine the option utility learned in parallel from the MF module
and the MB module (see Methods for model details). We found a significant positive
correlation between the OCI-R score and the degree of MF control (𝑟 = 0.1708, 𝑝 =

0.0083, Figure 4.1b). Again, if further decomposing the OCI-R score into the
"obsessiveness" and "compulsiveness" components, the degree of MF control was
correlated with both the "obsessiveness" component (𝑟 = 0.1385, 𝑝 = 0.0327) and
the "compulsiveness" component (𝑟 = 0.1594, 𝑝 = 0.0138). Overall, the results
are consistent with the previous work on the impairment of behavioral control in
OCD (Gillan, Papmeyer, et al., 2011; Gillan, Kosinski, et al., 2016), suggesting
an impaired MB control and potentially goal-directed control in people with high
obsessive-compulsive tendencies.

To explore if the reliability-based arbitration theory could account for the overweight
of the MF system in high OC-tendency participants, we ran a few post-hoc corre-
lational analyses between the OC-severity (OCI-R score and its "obsessiveness"
& "compulsiveness" sub-components) and the computational variables of absolute
prediction error signals derived from the hybrid reinforcement learning model: the
absolute MF RPE signal, the absolute MB RPE signal, and the SPE signal (the SPE
signal is always positive) from the MB system. All prediction errors experienced at
different stages were concatenated and averaged over the entire experiment for each
participant before the correlational analysis was conducted. Overall, we did not find
any significant correlation between the OC-tendency and the experienced absolute
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MB RPE signal (Raw OCI-R, Spearman 𝑟 = −0.0987, 𝑝 = 0.1290; obsessiveness,
Spearman 𝑟 = −0.0842, 𝑝 = 0.1954; compulsiveness,𝑟 = −0.1026, 𝑝 = 0.1143),
or any significant correlation between the OC-tendency and the experienced SPE
signal (Raw OCI-R, Spearman 𝑟 = −0.0857, 𝑝 = 0.1878; obsessiveness, Spearman
𝑟 = −0.0851, 𝑝 = 0.1910; compulsiveness,𝑟 = −0.0719, 𝑝 = 0.2695). Interest-
ingly, we found a trending effect of negative correlation between the OC-tendency,
specifically the sub-component of compulsiveness, and the experienced absolute
MF RPE (Raw OCI-R, Spearman 𝑟 = −0.1243, 𝑝 = 0.0556; obsessiveness, Spear-
man 𝑟 = −0.0708, 𝑝 = 0.2768; compulsiveness,𝑟 = −0.1255, 𝑝 = 0.531). This
suggests that the lower level of the absolute MF RPEs experienced by the high OC-
tendency participants could signal the higher reliability of the MF system, whereby
the participants’ behaviors are guided with a higher weight.

Figure 4.1: The correlations between the measured OC tendency (OCI-R score)
and behavioral measures of task performance and MF weight estimated from the
model (a) The correlation between the OCI-R score and the task performance:
average proportion of rewarded trials. (b) The correlation between the OCI-R score
and MF weight (𝑤𝑀𝐹) that estimated from each participant through the hybrid
reinforcement learning model. The MB weight (1 − 𝑤𝑀𝐹) would be perfectly
anti-correlated with the MF weight in the current model.

Obsessive-compulsive tendency and the neural encoding of prediction errors
After establishing the relationship that participants with high obsessive-compulsive
tendencies tended to exhibit a higher degree of MF control, we sought to exam-
ine how such behavioral correlation was manifested through a neurocomputational
mechanism. Through the lens of a reliability-based arbitration framework, we ap-
proached the behavioral variation of MF tendency as a consequence of adapting
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behavioral controls according to the various levels of the perceived prediction error
signals encoded by the brain. Specifically, according to the reliability-based theory,
if the prediction error signals, a proxy of the system reliability, from the MB system
were found to be neurally encoded more strongly in people with high obsessive-
compulsive tendency, the perceived low reliability of the MB system would drive
people’s behavior towards the MF end of the spectrum. We thus used the model-
based fMRI approach to examine how prediction error signals were neurally encoded
across individuals with various levels of the OCI-R score.

First, to estimate the neural encoding of the prediction error signal from each
individual, we extracted the prediction error signal from the computational model
fitted to each individual. As the reliability measure of the MB system, MB reward
prediction errors (MB RPEs) and state prediction errors (SPEs) were extracted,
whereas MF reward prediction errors (MF RPEs) were extracted for the reliability
measure of the MF system. All three extracted prediction error signals were built
into an event-related design matrix to model the modulation of the prediction errors
on each individual’s fMRI signal (see Methods for details). Since three RPE signals
from the MF and MB system arise on each trial, the derived three RPE variables
are set as the parametric modulators at their corresponding time points - planet
onset, pad onset, and outcome onset. Importantly, to increase the statistical power
of capturing the RPE-specific variance in the BOLD signal, we combine the three
event regressors into one chained regressor "planet-pad-outcome onset," which
entails three stick functions are parametrically modulated by both the MF RPE
and MB RPE at each stage. Consequently, using the combined event regressor for
the RPE signal would have three times more observation points than setting three
separate RPE regressors at each stage, yet not differentiate RPE encoding at different
trial stages. Similarly, as the state prediction error signals arise at two stages within
a trial (i.e., planet onset and pad onset), a combined event regressor "planet-pad"
parametrically modulated by the SPE signals was built into the design matrix.

The first-level general linear model (GLM) was fitted to each individual’s fMRI data
to estimate the encoding strength (i.e., beta maps) of the MF RPE, MB RPE, and
SPE at the whole brain level. Once the beta coefficients of the three prediction error
signals were obtained, at the second-level group analysis, each individual’s OCI-R
score was entered as a covariate in the model to estimate how the OCI-R score
correlates with the encoding strength of the three prediction error signals across
individuals. To ensure the specificity of any observed correlation comes from the
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obsessive-compulsive disorder per se, we also included the self-report score on the
measure of anxiety (STAI-Trait,Spielberger, 1983) and depression (BDI-II, Beck,
Steer, and Brown, 1996), as the covariates at the second-level group analysis. In-
terestingly, we found that the encoding strength of MB RPE signal in the anterior
cingulate cortex (ACC) was significantly correlated with the OCI-R score across
individuals (𝑝 = 0.046, cluster-level FWE, peak voxel (-12,50,16), Figure 4.2), sug-
gesting that the higher the OCI-R score an individual reports, the stronger encoding
of MB RPE signal in ACC in that individual. As for the hypothesized correlations
between the OCI-R score and the encoding of the MF RPE signal (i.e., negative
correlations) or the SPE signal (i.e., positive correlations), no significant clusters
survived FWE corrections across the brain.

The significant correlation between MB RPE encoding in ACC and the individual’s
OCI-R score is consistent with the reliability-based arbitration framework to account
for the observed high MF expression among people with high obsessive-compulsive
tendencies in this two-step task. Among people with higher obsessive-compulsive
tendencies, the perceived strong MB RPE signal indicates a less reliable MB system
during the task, hence the arbitrator driving behavior to rely more on the MF system.
Importantly, in spite of the significant correlations between obsessive-compulsive
tendency and other psychiatric traits such as anxiety (Spearman correlation, 𝑟 =

0.5438, 𝑝 < 0.001) and depression (Spearman correlation, 𝑟 = 0.4706, 𝑝 < 0.001),
our results are robust to such confounds and the observed correlation of prediction
error encoding strength and the OCI-R score comes above and beyond the variance
that could be accounted for by the anxiety and depression measures.

After establishing the overall correlation between the OCI-R measure and the encod-
ing strength of the MB RPE signal in ACC, we conducted a post-hoc decomposition
of the OCI-R measure (21 items) into the components of the obsessiveness (3 items)
and compulsiveness (18 items) to further interrogate the source of the observed
correlation. In the second-level group analysis, both scores associated with the ob-
sessiveness and compulsiveness components were entered as the covariates. Not too
surprisingly, it was found that it was the trait of compulsiveness within the OCI-R
measure that was correlated with the encoding strength of the MB RPE signal in
ACC (𝑝 = 0.026, cluster-level FWE, peak voxel (-12,50,16), SVC, see Methods),
which depicts the specific psychiatric trait that is influenced through the prediction
errors in the neural arbitration mechanism.
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Figure 4.2: The T-map of the cluster showing the correlational effect in ACC
between neural measures of encoding strength of MB RPE and the obsessive-
compulsive tendency (OCI-R score). The cluster was formed with a threshold
of p<0.001, uncorrected, k=169, peak voxel (-12, 50, 16), T=4.68; k denotes the
number of voxels in the cluster.

4.3 Discussion
By scanning a large number of participants while they were doing the two-step task
and by taking their self-reported scores of the OCI-R questionnaire, we were able to
have enough across-individual variance in the behavioral measures to study its re-
lationship with the variation in participants’ obsessive-compulsive tendency as well
as to investigate potential neural sources that potentially facilitate such behavioral
relationship across individuals. Specifically, we first examined whether the degree
of obsessive-compulsive tendency in our participants has any relationship with the
performance in the two-step task or whether it has any correlation with the MF/MB
tendency expressed throughout the task measured through a reinforcement learning
model. Given no discrimination against any specific reinforcement learning strategy
in this version of the two-step task, the result that there was no correlation between
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the OC tendency and task performance provides evidence that there are no adverse
effects of high OC tendency on task comprehension or task engagement. This is an
important fact for the validity of all correlational arguments made on OC tendency
using the current task, as it suggests any observed behavioral or neural correlations
related to OC tendency could not be attributed to meta-task factors that could po-
tentially be indirectly caused by the psychiatric symptoms. Also, although OCD
patients suffer constant subjective feelings of doubt and unsatisfactory behavior, they
exhibit unimpaired performance in cognitive tasks (Galderisi et al., 1995). Thus,
to study real-world obsessive-compulsive behavior from an ecologically valid point
of view, it is critical to have a decision-making task that facilitates the investigation
of psychological models of obsessiveness and compulsiveness while maintaining
the capacity to enable unimpaired task performance even in people with high OC
tendencies as in the real world. The current version of the two-step task seems to
serve well in this regard.

Using a computational model to characterize participants’ behavior in the two-
step task, we found a significant positive correlation between the participant’s MF
tendency in the task and the self-reported OCI-R score. In detail, both the "ob-
sessiveness" and "compulsiveness" components in the OCI-R score were found to
be positively correlated with the MF tendency, which provides better specificity in
explaining the sub-component of obsessive-compulsive behavior through the rein-
forcement learning model. The current finding is consistent with previous findings
that the OCD populations tend to have impaired goal-directed control (approxi-
mated by the MB algorithm) and rely excessively on a habitual system modeled
through the MF system (Gillan, Papmeyer, et al., 2011; Sanne de Wit et al., 2012).
Specifically, the positive correlation between both the degree of "obsessiveness"
& "compulsiveness" sub-component and the MF behavioral tendency echoes the
previous finding that the psychiatric dimension of "compulsive behavior and intru-
sive thoughts" relates to the deficits in goal-directed control with clinical specificity
(Gillan, Kosinski, et al., 2016). From the perspective of having a correct psycholog-
ical model of obsessive-compulsive behavior, it is important to learn whether OC
behavior is 1) a product of enhanced habitual (MF) learning or 2) a consequence
of compromised goal-directed (MB) learning. However, since we approached the
behavior with a reinforcement learning hybrid model where the weight of MF and
MB modules sum up to one, it is not feasible to differentiate whether the increase
in the degree of MF (or MB) tendency (i.e., the weight of the MF system, 𝑤𝑀𝐹) in
high OC-tendency participants was due to the enhanced learning of stimulus-action
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association through the MF system or the impairment of action-outcome association
through the MB system, and therefore it is hard to draw evidence for either psy-
chological account. It needs further modeling work, potentially by orthogonalizing
the model weights, to dissociate the independent contribution of the MF and MB
modules to the overall behaviors.

Although we could not rely on the current behavioral model to differentiate whether it
is the abnormality from the MF or from the MB system that causes the overreliance
on the MF system among high OC-tendency participants, the neural measures
indeed gave us the means to investigate whether the arbitration process between
the dual systems might underlie the observed behavioral shifts across individuals.
With the model-based fMRI approach, we found a significant positive correlation
between the severity of obsessive-compulsive tendency, specifically the component
of "compulsiveness," and the encoding strength of the MB reward prediction errors
in anterior cingulate cortex across all participants (both controls and patients). Such
result supports the account that the bias towards MF behavior in high OC tendency
participants could be attributed to an abnormal reliability-based arbitration process
that the reliability signal of the MB system, MB RPE, was exaggeratedly represented
in ACC so that the MB system was signaled as unreliable according to the arbitrator
and the MF system was instead relied on. Here we want to make a further clarification
on the interpretation of this neural finding with regards to the distinction of this
arbitration account at the algorithmic level vs. at the neural implementation level
(Marr, 2010). Considering specifically the role of MB RPE in the reliability-based
arbitration framework, a high degree of expressed MF behavior in high OC-tendency
participants could be 1) driven by higher-level of absolute MB RPEs experienced
in the algorithmic MB computations throughout the experiment on average, or 2)
driven by a relay of information from an upstream neural region (e.g., ACC) that
exaggeratedly encodes the algorithmic MB RPE signal to a downstream region
(i.e., arbitrator) that takes this input to decide the system weight for behavioral
output accordingly, or 3) both the first and the second scenario. Our current neural
finding potentially supports the second scenario, a mechanism at the level of neural
implementation, but did not directly speak to the first scenario at the algorithmic
level. The post-hoc correlational analysis between OC-tendency and the MB RPE
provided some tentative evidence. The result of no significant correlation suggests
it is not the algorithmic MB RPEs experienced by the participants but the relay of
exaggeratedly represented neural information of MB RPEs in ACC that elicits the
MF bias in behavior in participants with higher levels of OC tendency.
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Besides the role of MB RPE, the role of MF RPE and SPE were also examined at the
algorithmic level (in a post-hoc way) and at the neural implementation level in terms
of driving the behavior to be more MF in high OC-tendency participants. Our results
suggest that the bias towards the MF behavior could also be partially attributed
to the lower MF RPE signal experienced by the high OC-tendency participants,
implicated by the trending negative correlation between absolute MF RPE and
the OC-tendency. Yet there was a lack of evidence indicating that the MF RPE
signal was disproportionally represented in the striatal regions in high OC-tendency
participants. Also, we did not find any SPE-related effects at either the algorithmic
level or the neural implementation level (in cortical regions of interest; Gläscher
et al., 2010) on mediating the system balance across individuals with varying OC
tendencies. As the correlational behavioral analysis regarding the experienced
prediction error signal is, in essence, post-hoc, cautions are needed when interpreting
the reported algorithmic cause of the increased usage of the MF system in high OC-
tendency participants. More tailored investigations are needed to pinpoint how the
prediction errors as the reliability proxy would account for the overreliance on the
MF system at the algorithmic level. One potentially informative analysis would
be to measure the shift of the degree of MF (or MB) behavior when the levels of
prediction error signal are manipulated to be high vs. low and to examine how
the degree of the measured shift varies as a function of one’s OC tendency. The
participants with higher OC tendencies should have a higher degree shift to engage
the MF system when the MF RPE is deemed low or when the MB RPE is deemed
high compared to those with less severe OC tendencies. This would potentially also
be a behavioral corroboration of the neural finding on the correlation between MB
RPE encoding and OC tendency in the current study.

One potential confound in the correlational analysis between the OCI-R score
and the encoding strength of MB RPE comes from the "comorbidity" at the trait
level (Gillan, Kosinski, et al., 2016), specifically from the correlation between the
obsessive-compulsive measure and the depression-related or anxiety-related psychi-
atric measures, bringing into question whether the observed correlation was specific
to the obsessive-compulsive tendency. In our group-level fMRI analysis, both the
STAI-Trait and the BDI-II scores of the participants were entered as the covariates
along with the OCI-R score; we could argue the enhanced MB RPE encoding was
specific to participants with high OC tendency rather than influenced by levels of
anxiety or depression, although we could not rule out the possibility that variance
from other psychiatric symptoms besides OC, anxiety, and depression measures
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could contribute to the observed variation of MB RPE encoding strength, which
requires more strictly-controlled study to narrow down the contributing psychiatric
sources.

In this chapter, we leveraged the behavior of a large cohort of participants with both
controls and patients to investigate the relationship between obsessive-compulsive
tendency and the tendency of engaging habitual learning (approximated through
model-free reinforcement learning algorithm) as well as the potential neurocompu-
tational mechanism that gave rise to such a behavioral relationship. The significant
correlation between OC tendency and degree of MF usage is consistent with pre-
vious findings on the overreliance on habitual control in OCD populations (Gillan,
Papmeyer, et al., 2011) and justifies the computational characterization of OCD
using reinforcement learning algorithms. Critically, we found evidence of the dis-
proportionally encoded prediction error signal in ACC among high OC-tendency
people that could explain their behavioral MF bias through the reliability-based
arbitration framework. Lastly, with the current insights and potential future findings
through the neurocomputational approach, we can study OCD better in terms of
its mechanistic causes in the brain, and more importantly, clinical interventions on
relevant neural targets could be developed accordingly to better treat OCD.

4.4 Methods
Participants
For participant recruitment, we recruited participants who reside in the United States
and who are fluent English speakers and readers. The age range for the studies is
from 18 to 65 years. Before the experiment, all participants signed the informed
consent approved by the California Institute of Technology’s Institutional Review
Board under protocol 19-0914. All participants were reimbursed in monetary form
for base pay and their performance bonus. There are a total of 238 (158 females)
participants with usable data after exclusions, who have a mean age of 30.0084
years (𝑠𝑑 = 10.0694). As for recruitment criteria of healthy controls, participants
would not have any history of substance/alcohol use disorder, anxiety disorder
(Obsessive-Compulsive Disorder, Body Dysmorphia Disorder, generalized anxiety,
social anxiety/social phobia), and/or depressive disorders (dysthymia, major de-
pression). Also, participants would not use any medications for any subclinical
psychiatric disorder treatment.
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Experimental Procedure
See the same section in Chapter 3.

Space Miner Task
See the same section in Chapter 3.

Task Design
See the same section in Chapter 3.

The Computational Model of Reinforcement Learning
See the same section in Chapter 3.

Functional MRI Acquisition
See the same section in Chapter 3.

Functional MRI Data Preprocessing
See the same section in Chapter 3.

Functional MRI Data Analysis
For the design matrix of the 1st-level GLM, see the same section in Chapter 3.

To assess how the encoding strength of MB reward prediction error (RPE) signal
varied across individuals with various levels of OCI-R score, we took the 1st-level
contrast of MB RPE estimated from the 1st-level GLM as the dependent variable and
ran the 2nd-level multiple regression with the OCI-R score (or its sub-components
of obsessiveness or compulsiveness), along with the STAI-T and BDI-II scores as
covariates. The coefficient estimates of the OCI-R score in the regression were
tested for statistical significance.

Regions of Interest and Small Volume Correction
For the small volume correction on the fMRI group-level correlations between
the betas of the MB RPE cluster in the cingulate cortex and the sub-components
of the OCI-R score ( i.e., obsessiveness and compulsiveness), the ROI used is
a binarized mask of the paracingulate gyrus extracted from the Harvard-Oxford
Cortical Structural Atlas (RRID: SCR_001476).

Exclusion Criteria
See the same section in Chapter 3.
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C h a p t e r 5

GENERAL DISCUSSION

When biological agents interact with the world, predictions about events and learning
an accurate value of the events are critical from an evolutionary perspective, as
predictions with accurate values of the real-world states could help biological agents
accrue rewards and avoid risks effectively. The prediction errors could serve as the
critical learning signal for the organisms to build these necessary predictions in
appetitive and aversive domains. Through theoretical modeling work, the temporal-
difference (TD) error was shown to be capable of facilitating value learning over
an unconstrained temporal structure and explaining well the behaviors observed
in both Pavlovian and instrumental conditioning (Schultz, Dayan, and Montague,
1997; Hollerman and Schultz, 1998; Fiorillo, Tobler, and Schultz, 2003; Waelti,
Dickinson, and Schultz, 2001; Berns et al., 2001; O’Doherty et al., 2003).

To explain the learning behavior observed in the biological agents through a compu-
tational scope, specifically regarding the reflexive stimulus-response learning and the
reflective action-outcome learning, the model-free (MF) and model-based (MB) re-
inforcement learning algorithms have been proposed to characterize these respective
learning behaviors. Importantly, the TD error serves as the basic learning module to
facilitate the operation of the MF and MB systems by establishing accurate reward
predictions in the environment. Devising an appropriate task for the experimental
study of the MF and MB systems is critical in that the task should be capable of
soliciting the actual MF and MB strategies as expressed in the behavioral signatures
when the task is engaged rather than alternative strategies that masquerade as MF,
MB, or a mixed strategy. A Markov decision-making task called the two-step task
(N. D. Daw, Gershman, et al., 2011) was developed for investigations of the MF
and MB systems and the corresponding neural substrates. However, there has been
some debate recently about whether the apparent MF and MB behaviors are indeed
driven by the well-defined MF or MB computations or whether the strategy identi-
fied through the task behavior is actually the consequence of strategy misattribution
(Feher da Silva and Hare, 2020; Feher da Silva, Lombardi, et al., 2023). Such
debate could potentially cast doubts on the relevant findings regarding the MF and
MB strategies and underlying neural systems in studies that used the two-step task
(N. D. Daw, Gershman, et al., 2011; C. M. Gillan, Otto, et al., 2015; Wunderlich,
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Smittenaar, and Dolan, 2012; Smittenaar et al., 2013; Doll et al., 2015; F. Cushman
and Morris, 2015). Specifically, the arguments on the limitation of the two-step
task are that the mass strategy engaged in the two-step task is model-based and the
detected MF components in the behavior could be due to using a wrong model on
the task, and this thus negates the legitimacy of studying the MF strategy in the
two-step task. Besides, such arguments were presented with neural results showing
the absence of MF reward prediction error (TD error) signal among participants
while engaging in the two-step task (Feher da Silva, Lombardi, et al., 2023).

In Chapter 3, through recruiting a large sample of participants, we found the neural
evidence of reward-independent MF RPE encoded in the striatum as well as the MF
decision utility signal in the ventromedial prefrontal cortex, which helped address
some of the recent concerns about the validity of using the two-step task to study
the MF system. In addition to the investigations on the existence of MF signal in the
two-step task, our work in Chapter 3 also presented the evidence of the key signal
of learning and decision-making for the MB system, with MB RPE encoded in the
ventral striatum and MB decision utility encoded in the ventromedial prefrontal
cortex. The co-existence of MF- and MB-related computational signals we found
provides the support for using the two-step task to potentially study the behavioral
and neural profile of both the MF and the MB systems, which could help obtain
insights into the more fundamental stimulus-response and action-outcome learning
mechanisms.

A validated two-step task for studying the MF and MB system does not imply that
the evidence of MF and MB strategy engagement at the group level we observed
consists of such evidence present at each individual level. This is cause for caution
when drawing insights from the group average into the individual decision-making
process; at the same time, the individual differences in strategy use as observed in
the sub-groups are themselves of critical research interest (Charpentier et al., 2024),
especially when these research insights are to be used as guidance for individually
targeted therapies in psychiatry. Reinforcement learning strategies can largely fall
into the category of MF and MB as we discussed, and previous literature has iden-
tified people’s behavior in the two-step task as a mixture of the two (N. D. Daw,
Gershman, et al., 2011; Kool, F. A. Cushman, and Gershman, 2016; Wunderlich,
Smittenaar, and Dolan, 2012; Dezfouli and Balleine, 2013; Otto et al., 2013; Smitte-
naar et al., 2013; Dezfouli, Lingawi, and Balleine, 2014). Therefore, if considering
the MF and MB strategies as the two ends of the RL spectrum, each individual’s
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strategy when engaging in the task could lie anywhere in between, with the mix-
ture sitting in the middle point. Of course, when other non-RL decision-making
strategies are considered, such as win-stay-lose-switch or gambler’s fallacy (Jarvik,
1951; Tversky and Kahneman, 1971), the kinds of possible strategies in use could
increase exponentially. Any patterns of individual differences in strategy use might
be viewed as insignificant when the number of participants is limited for any given
kind of strategy, and hence it is difficult to draw any meaningful insights. Increasing
the sample size would resolve such concerns effectively.

In Chapter 3, the behavioral and neural data from a relatively large number of partic-
ipants provided a good handle on approaching the individual differences of strategy
use in the two-step task. The overall group-average strategy was decomposed into
four subgroups through cluster classification, which gives a finer-grained delineation
of the degree of RL strategy use in the two-step task on the MF-MB spectrum and
other potential non-RL strategies. The previously identified apparent group-level
strategy of using a mixture of MF and MB algorithms could only describe around
a quarter of the actual strategy type deployed by individuals in the participant pool.
The apparent mixture strategy was actually made up of participants using pure MB,
pure MF strategy, and other potential non-RL strategies (we did not dive into the
non-RL group here). With the help of the individual difference approach, we again
demonstrated the existence of an MF system engaged in the two-step task by iden-
tifying a behavioral group that engages a pure MF strategy. Given the rich profile
of the individual-level strategies used in the current two-step task, it also brings up
an important follow-up question as neural measure (e.g., fMRI, N. D. Daw, Gersh-
man, et al., 2011) or physiological data (e.g., eye-tracking, Konovalov and Krajbich,
2016) are accompanied with the behavioral measures: how much of the neural or
physiological findings at the group-average level are representative of neural and
physiological processes of individuals deploying a behavioral strategy that deviates
from the overall average strategy in the group?

To investigate this question, we leveraged the fMRI measures on the large participant
sample and investigated the individual strategy group’s neural processes in Chapter
3. We found the involvement of MF computations on decision-making (i.e., decision
utility signal) in the medial prefrontal cortex across all strategy groups, which is
consistent with previous group-level findings (Hampton, Bossaerts, and O’doherty,
2006; Beierholm et al., 2011). At the same time, the ubiquitous presence of
the MF decision utility signal across distinct strategies (including the potentially
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non-RL strategies) underscores the essential role that a computationally efficient
MF system serves in human Markov decision processes — MF computations are
carried out indiscriminately to facilitate downstream value integration and action
selection, in cooperation with the MB system. On the other hand, the decision-
making computation (i.e., decision utility) from the MB system was found to be
present in the medial prefrontal cortex most significantly in the MB strategy group,
and the strength reduced gradually as the behavioral strategy shifted to the MF end
of the spectrum. Such a finding again is consistent with the previous group-level
neural hypothesis that the medial prefrontal cortex performs MB decision-related
signal (Beierholm et al., 2011) or MF/MB value comparison (Wunderlich, Dayan,
and Dolan, 2012), but it also makes a detailed neural hypothesis regarding the MB-
related computations underlying various strategy type in use, which directly benefits
from the individual difference analytic approach we took here. Relying on group-
level behavioral and neural results to test theoretical hypotheses and draw insights
into decision-making has been an adopted practice. Here through our work in
Chapter 3, we demonstrate that indiscriminate generalization of group-level findings
to each individual could cover intrinsic data variance that, if identified properly,
could make the picture of decision-making theory more complete to account for
heterogeneity in the biological agents. It highlights the significance of deploying
the individual difference approach in the field of learning and decision-making
to develop meaningful behavioral characterization (Charpentier et al., 2024) and
the corresponding neural theory to achieve high explanatory power on real-world
behaviors.

As shown in Chapter 3, various types of controls of MB, MF, or a mixture of both
could be elicited across different individuals using the two-step task. It is an inter-
esting question as to why different individuals facing the same decision-making task
would deploy different behavioral strategies, which could have important psychiatric
implications that we will discuss further later. But for now, if we take the current
behavioral profile across individuals as it is, it makes sense to make the assumption
that for a given individual, the necessary neural modules to implement a different
strategy like what is implemented in other individuals of the same cohort are likely
to be also available in this individual. Thus, if we further zoom into each individ-
ual’s strategy on the timescale of completing the entire task, it is possible that the
strategy deployed by an individual could change as the experiment goes on. Having
the flexibility of deploying different kinds of computational systems for decisions
could benefit the biological agent as the environment keeps changing, and various



140

computations of each strategy would have certain advantages or disadvantages upon
the changes. The pros and cons of systems could be theoretically leveraged mainly
through 1) the uncertainty evaluation regarding the system in its signature predic-
tions (N. D. Daw, Niv, and Dayan, 2005; Lee, Shimojo, and O’doherty, 2014), 2)
the cost-benefit analysis of deploying different strategy systems (Keramati, Dezfouli,
and Piray, 2011; Pezzulo, Rigoli, and Chersi, 2013), or 3) the system optimality in
reward accruement (Simon and N. Daw, 2011; Kool, Gershman, and F. A. Cushman,
2017; Yi and O’Doherty, 2023). An arbitrator can then effectively adjust the strat-
egy system in use according to these pros and cons when environmental statistics of
reward and states shift.

In Chapter 2, we found direct behavioral evidence supporting an arbitration frame-
work centered on system uncertainty: the reliability-based arbitration framework,
which makes use of various types of prediction errors to approximate the system re-
liability (Lee, Shimojo, and O’doherty, 2014). The findings fit well with the recently
proposed generalized arbitration framework in decision neuroscience: Mixture of
Experts (MoE, O’Doherty et al., 2021), which was adapted from the field of ma-
chine learning (Jacobs et al., 1991). As the prediction error signals, both on reward
and state learning, have been robustly found to be neurally encoded in classical and
instrumental conditioning settings in the literature (Schultz, Dayan, and Montague,
1997; Schultz and Dickinson, 2000; O’Doherty et al., 2003; Gläscher et al., 2010),
it is natural to assume that these neural signals could be easily adapted to guide an
upper-level decision to make in the brain — which strategy system to use according
to the prediction errors the systems generate. It is reassuring that the role of the RPE
signal from the MF system and the SPE signal from the MB system serves as the sys-
tem reliability for the arbitrator’s decision, given that the MF system predominantly
learns the environmental reward and the MB system learns the state structure by
definition (Sutton, 2018). We also found the reward prediction error signal from the
MB system, if hypothesized as another source of MB system reliability, also exerted
a significant effect on the arbitration of controls. Theoretically, one might consider
the reward prediction error a conventional MF learning signal that also contributes
to MB value computation, yet in our study, the reward learning for the MF and MB
systems were modeled as learning magnitude or binary, respectively; hence the two
system’s reward prediction error signal can have dissociable contributing effects
on control selection during arbitration. This behavioral finding about the role of
MB RPE also echoes the neural encoding result we found in Chapter 3: the MB
RPE signal was found to be significantly encoded in the ventral striatum, whereas
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the RPE signal was found to be encoded significantly in the dorsal caudate. The
non-overlapping nature of the brain region that encodes these two signals provides
evidence that, indeed, in the current two-step task, the MF and MB systems could
possibly learn two different aspects of the reward in the environment simultaneously.
In the future, the causal role of the RPE signal from the MF and MB system in arbi-
tration could be validated through neural stimulation in regions encoding these RPE
signals by observing if the behavioral output could be biased towards MF (or MB)
control contingent upon the neurally represented MB (or MF) RPE signal being
enlarged by stimulation.

Given the multi-facet nature of environmental statistics of reward, other aspects
of the reward, beyond magnitude and contingency, could potentially guide the
arbitrator as well. In one study, it has been shown behaviorally that the volatility
and noise of reward magnitude would affect the arbitration process according to
their influence on the uncertainty of value estimation (Simon and N. Daw, 2011).
Specifically, the presence of both low noise and reasonably high volatility in rewards
should make the MB system more favorable in this uncertainty-related framework.
It makes intuitive sense as the flexible cognitive MB system could react properly
to sudden changes in rewards, and the MB system would have little advantage if
there are relatively large reward samples needed to average for accurate estimation
when there is large reward noise. To account for such observation through the
reliability-based arbitration framework, higher MF RPE (magnitude) or lower MB
RPE (binary) should be observed when the reward volatility is high and the reward
noise is low, compared to other combinations of volatility and noise levels, which
needs model simulations and behavioral testing using the two-step task presented
in this thesis for further examination. Although the manifested temporal effect
on prediction error from reward volatility might be comparable to those imposed
from reward magnitude and contingency, it is not hard to imagine there could be
other kinds of "volatility" defined on various lengths of unit time. It is an open
question how these temporally defined reward features and potentially state features
could contribute to the relatively static features of reward and state so far. This
brings up the question for future studies to answer: whether the computational
model and the corresponding neural implementation of the arbitration model that
was found to have explanatory power for the "static" reward feature (Lee, Shimojo,
and O’doherty, 2014) could also generalize to cases when the "temporal" reward
features are weighed in for system reliability evaluation. Also, in the exploratory
analysis of Chapter 2, we found evidence that MF RPE and MB RPE interact as
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reliability signals during the arbitration process. It is an ecologically interesting
research problem how prediction errors estimated over multiple timescales could
interact to guide the arbitrator to allocate the controller’s weight. Future works
with sophisticated task design and computational modeling are needed to tackle this
problem which is pertinent to real-world decision-making given the complexity of
the environment.

The goal-directed or model-based strategy is considered to be more capable of
representing the environment to accrue more rewards, but at the same time, is
cognitive resource demanding and requires additional computational time for de-
liberation, given the working memory and the amount of complex computations
needed (Shenhav, Botvinick, and Cohen, 2013). Arbitration schemes that evaluate
this cost-benefit trade-off regarding the engagement of the MB system have been
proposed (Keramati, Dezfouli, and Piray, 2011; Pezzulo, Rigoli, and Chersi, 2013).
In our post-hoc exploratory analysis in Chapter 2, we did not find direct supporting
behavioral evidence of such cost-benefit arbitration. In the framework of Mixture
of Experts (O’Doherty et al., 2021), the cost-benefit analysis of engaging the more
complex MB algorithms could be implicitly reflected in the evaluation of the predic-
tion reliability of the MB algorithm, as high prediction reliability (i.e., low prediction
error) would likely lead to better reward accruement, and too complex models that
use a lot of cognitive resources would potentially generate a lot of prediction errors
(i.e., low prediction reliability), as too complex models could not generalize well
to new data samples due to the bias/variance trade-off (Geman, Bienenstock, and
Doursat, 1992; Von Luxburg and Schölkopf, 2011). Hence, our current finding is
consistent with the potential explanatory power entailed in the MoE framework, and
we hope to see more future empirical studies confirm the role of the proposed essen-
tial minimal factors (i.e., prediction uncertainty) in characterizing well all aspects
of the arbitration process.

We as individuals navigating life could be described with sequences of various
types of actions, with these actions expressed by us with different traits and states
of mood, and so on and so forth. Daily tasks as simple as driving or cooking could
be accomplished differently depending on one’s state of mood or the valence of
temporally proximal events. As we have previously alluded to in the discussion of
individual differences in strategy use in the two-step task, individual differences of
strategy use in cognitive tasks identified through computational models could show
significant relationships with measures of one’s psychiatric traits, especially if the
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tasks are well chosen, and the behaviors are properly modeled to capture the key
symptomatic signatures in the psychiatric disorders (Zou et al., 2022; Wu et al.,
2024). As the computational models in such investigations are typically composed
of lower-level mechanistic components (e.g., learning, value integration, planning,
action selection) that coordinate together to serve the cognitive tasks, it could then
provide a detailed scope to study the problematic node that gives rise to the observed
abnormality, which would be beyond what could be offered through a descriptive
psychological model of the disorder of interest.

In Chapter 4, we found a positive correlation between one’s obsessive-compulsive
tendency (OCI-R score and its obsessiveness and compulsiveness sub-score) and
one’s degree of using the MF strategy in the two-step task. Computationally,
such a finding, along with previous literature (Voon et al., 2015; C. M. Gillan,
Kosinski, et al., 2016), informs us that the bias towards relying on habitual control
in populations with obsessive-compulsive disorder (OCD) can be traced back to the
computation of state-action value learning and the subsequent action selection in
the RL framework. Pinning down the source of how the variation in computations
relates to the variation in obsessive-compulsive (OC) tendency would require finer-
grained investigations on computational model parameters. Within the framework
of a hybrid RL model with a semi-arbitration mechanism discussed throughout the
thesis, the learning rate of the MF and MB system or the arbitration parameter to
decide the model weight within the model could both potentially contribute to the
biased behaviors in participants with high OC tendency. Out of speculations, it
is possible, just as part of all possibilities, that the observed overreliance on MF
control is due to an impaired MB learning process that could be reflected through
a low MB learning rate or due to the weight bias added towards the MF value
in the arbitration process (N. D. Daw, Niv, and Dayan, 2005; Lee, Shimojo, and
O’doherty, 2014). Although not directly approached computationally in our work
in Chapter 4, such modeling efforts to know the specific mechanistic causes of
the overexpression of habit-like behavior are critical to curating better therapy for
OCD. A problematic value learning process in the goal-directed (or MB) system
would suggest treatments emphasizing prompting the opportunity cost of engaging
the maladaptive ritualistic behaviors, whereas if the problem sits in the lack of a
proper control allocation process, then behavioral intervention such as exposure
to symptom-triggering stimuli with inhibition of OC behavior could potentially
strengthen the relevant neural "muscle" to execute adaptive arbitration. It should be
noted that these are some naive ideas for cognitive behavioral therapy inspired by
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potential computational psychiatric findings on OCD, and more stringent and robust
clinical testing is needed to validate such proposals before any applicative practice.

Understanding the computational mechanism of OCD is valuable in itself for learn-
ing and curing the disorder better, and at the same time, it is also helpful to guide
the integration of neuroscience knowledge to obtain insights into mechanisms of
neural computations underlying OCD. Our finding in Chapter 4 regarding the role
of the anterior cingulate cortex (ACC) in compulsive behaviors is an example. It
has long been suggested in the cognitive control literature that ACC serves as a
performance monitor that is sensitive to behavioral errors and conflicts so that the
actions can be adjusted upon needs (Holroyd and Coles, 2002). OCD involves con-
stant feelings of error/conflict as well as the need to adjust, and hence the findings
associated OCD with abnormal activation of ACC were inspiring as they led to one
neural source of OCD with respect to the error/conflict-monitoring process(Gehring,
Himle, and Nisenson, 2000; Ursu et al., 2003; Fitzgerald et al., 2005); however, it
still remained unclear what specific computations ACC contributes when monitoring
errors/conflicts to generate the behavioral deficits among OCD. Is ACC signaling
performance "error" in a hyperactive way? Or is ACC conveying action adjustment
information for executive control after an experienced error/conflict OCD? Utilizing
a model-based neural analytic approach helped clarify the answer. OCD approached
as the imbalance between the MF system and MB system in computational terms,
could be explained by an abnormal reliability-based arbitration process in evalu-
ating the absolute prediction error signals as the proxy of system reliability (Lee,
Shimojo, and O’doherty, 2014; Kim et al., 2024); the reliability of the MB system
is deemed too low so that behaviors are mostly driven by the MF system. The
analysis of fitting the dynamics of MB reward prediction error to the fMRI blood-
oxygen-level-dependent (BOLD) signal across individuals of varying OC tendency
cast light on a potential cause of the overreliance on habitual/MF behavior in OCD:
ACC sends input for reliability approximations to the arbitrator in an abnormally
enhanced manner so that the neural arbitrator perceives the MB system as very
unreliable, the degree of which is so large that it mismatches the actual reliability
estimated through the prediction error information in the external environment.

The abnormal activity of ACC underlying OC behaviors was a bit better understood
from a scope of impaired arbitration between the MF and MB systems in the RL
framework. Yet some additional questions remain to be answered for a complete
neurocomputational model of OCD. Although the MB RPE encoding strength in



145

ACC significantly correlated with an individual’s self-reported OC tendency, indi-
cating ACC’s role in signaling the neurally-perceived RPE signal for the arbitrator
to evaluate, it is a little mysterious why ACC itself does not encode MB RPE at the
group level and why we only found MB RPE encoding in the ventral striatum (Chap-
ter 3). Also, there seems to be a functional specificity of ACC that relays information
related to the system reliability for arbitration, as it is only ACC that shows MB RPE
encoding strength correlation with OC severity, and we did not find such correlations
in other PE-encoding regions we found at the group level in Chapter 3 (i.e., MF
RPE: dorsal caudate, MB RPE: ventral striatum). One possibility is that the MB
RPE encoding in the ventral striatum and MB RPE encoding strength correlation
observed in ACC simply reflect two different stages of neural computations when
the brain learns the value through reward experience and adjusts action policy based
upon behavioral feedback. Holroyd and Coles (2002) proposed a unified account of
two neural systems that cooperate for behavioral control: a reinforcement learning
system in the basal ganglia and an error-processing system in the anterior cingulate
cortex. In this theory, the basal ganglia learn about the state values through reward
prediction error signals when interacting with the environment, and the reward pre-
diction error signals are conveyed to ACC for its monitoring and the subsequent
adjustment of action policy by commanding the motor module in the brain. Under
this framework, the classic error-related negativity (ERN) in ACC is a reflection of
RPE relayed from the basal ganglia, and the ERN was used for behavioral policy
adjustment. This framework could potentially explain our current findings of the
ventral striatum and ACC encoding different information related to MB RPE, with
the former encoding a pure learning signal and the latter monitoring the relayed
MB RPE signal from the ventral striatum for strategy adjustment at the individual
level. The presented work in Chapter 4 potentially only unravels a partial neural
mechanism that underlies OC behaviors. Future works are needed to study how the
action selection process might be differently implemented in OC vs. "normal" be-
haviors; also, it is a question to be answered that besides the neural representation of
prediction error in ACC, whether the value representation underlying OC behaviors
also shows distinct patterns compared to that underlying the "normal" behaviors and
how the distinct patterns of value encoding drive the stereotyped action policy in
OC behaviors.

Our knowledge of reinforcement learning computations and the corresponding neu-
ral regions that implement such computations underlying obsessive-compulsive
behaviors could inform us of potentially better neural therapy that mediates symp-
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toms of OCD. Given that ACC could overrepresent the MB RPE signal sent by
the ventral striatum in high OC-tendency people, neural intervention that mediates
the strength of neural communications between ACC and ventral striatum could
help alleviate the MF bias in OCD, as the reliability-based arbitration theory would
predict. Additionally, conditional neural inhibition of ACC could also help reduce
the maladaptive policy adjustment adopted by the OCD population due to the hyper-
sensitive ACC in delivering motor commands for downstream neural regions. More
insights, if any, on how the error signals are abnormally generated in the first place
in the brain underlying OCD could also help identify effective clinical interventions
correspondingly that help the OCD populations alleviate their subjective feeling of
"error" and doubt. Overall, the so-called computational psychiatry approach that re-
lates task measures of certain cognitive process engagement through computational
modeling to the self-reported psychiatric measures could have important clinical
implications (Huys et al., 2021), as not only a detailed understanding of but also
neuroscience-based therapies of the mental disorder could be developed alongside
the neurotechnological tools (e.g., transcranial direct current stimulation, Brunelin
et al., 2018; transcranial magnetic stimulation, Trevizol et al., 2016; Rapinesi et al.,
2019).

In sum, in this thesis, we first focused on the computations of learning, choice
valuation, and strategy arbitration in reinforcement learning and their neural im-
plementations across a large sample of healthy participants, with a special focus
on individual differences in behavioral strategies. Our findings suggest that these
relevant computations from the MF and MB systems, the two fundamentals in the
reinforcement learning framework, are present in human Markov decisions with
both behavioral and neural evidence. Despite the fact that expressed behavioral
strategies vary from individual to individual, the commonality of the underlying
neural computations shared by these distinct behavioral strategies is the MF RL
computations, highlighting the influence of an evolutionarily early neural system
featuring reflectiveness and efficiency on our daily decisions today. In response to
moment-to-moment environmental changes when navigating the world, an adaptive
arbitration mechanism between these behavioral strategies is critical for our biolog-
ical fitness. We expanded the dictionary of the factors considered by the arbitrator
in a reliability-based framework, and we expect to have more vocabulary not just for
arbitration within the RL strategies but also for generalized arbitration between RL
and non-RL strategies. Moving from adaptive decision-making to maladaptive be-
haviors, our work also suggests that the abnormal neural encoding of an arbitration
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signal related to reward prediction (i.e., MB RPE) could help explain the behavioral
compulsiveness, proposing the role of the anterior cingulate cortex as the mediator
between learning and strategy adjustment to maintain adaptive decision-making.
With the computational modeling approach and fine-grained neural investigations
focusing on individual differences, we hope to gain more insights into the homogene-
ity and heterogeneity of the computations and the neural implementation of adaptive
and maladaptive decision-making strategies within and beyond the reinforcement
learning framework. Importantly, such insights, in relation to psychiatric disor-
ders, can help us develop individually-targeted clinical interventions to maintain our
decision adaptiveness as human beings.
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