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INTRODUCTION

The forces induced in buildings by earthquakes are here investi-
gated. The effects of some of ths physical properties of structurss
are determined and from an analysis of earthquake records the general
character of earthquakes is deduced. 4n invsstigation is also made
of ths dissipation of energy of wvibratioca dus to the propagation of
elastic waves in the ground.

This thesis was written to contribute to the program of earth-
quake ressarch that Professor Martel has beean carrying on for the
past ten years. As such, it is a continuation of the work done by
M. A. Bin% and M. P. Wnite. Acknowledgment is made of the financial
support of the County of Los Angeles which made possible the analysis
of the earthquake records.

Sincere appreclation is expressed to Professor R. R. Martel for

the advice he has given and the interest he has shown.



SUMMARY

All the earthquakes analysed are of the same general character.
There are no special features distinguishing sny one earthquake from
another. There is no evidence that the physical properties of the
ground have sny effect on the character of the earthquske.

In the range of periods from 2/10 seconds to Z seconds, all
ground waves are of approximately equal importance. Thers sre no pre-
dominating periocds of ground waves.

The mnalysis of records provides a convenient method of measuring
the intensities of sarthquakes. A scale of intensities constructed in

this manner is shown in the following table:-

Scale of EBarthouske Intensities

El Centro, iay, 1940 ——=- s e e 100
Long Beach, March, 1933, (at Vernon) -—=———-woem—oe———. 65
El Centro, December, 1934 —~~----~——==-cmm—mmaem——ae 80
Helena, Montana, October 31, 1935 ---~=-=—=e——emeuean 55
Ferndale, September, 1938 ----~=---==—ceoeoccaooomno 40
Los Angeles, October, 1933 -——=-==comemmmeom e 17

The analysis of the records shows that there is no so-called
"dominaﬁt ground period®.

Por undemped structures, with periods of wvibration longer than
about 2/10 of & second, the maximum shearing force at the base is, for

practical purposes, independent of the height of the structure and



independent of the peried of vivratica.

For such structures the maximum shearing forces are independent
of the total m=ss of the structure but for ordinary construction vary
in direct ratio as the mass per floor level.

finen the heignt of a structure ls increased, the shearing forces
in the upper portiocns of the structure are increaged.

Only the first few modes of vibration are of importance in pro-
ducing shearing forces.

For undﬁéped stractures flexibility and lightness of constraction
will reduce the magnitudes of the shearing forces. However, the
flexibility of the first story alone has little effect upon the maximum
shearing force at the base of the structure, although it does raduce
the shearing forces in the upper portions of the structure.

Considerable elastic yielding of the ground may take vlace at the
base of a siructure without having sufficient effect on the accelerogram
tq be distinguished by eanalysie of the record.

The energy dissipated into the ground may be an important factor in
reducing the shearing forces. The analysis shows that the reduction in
shearing forces due to energy lost in wave propagetion is greater for
high freduencies than for low frequencies, and is greater for ground of
low rigidity than for ground with high rigidity. Tables are constructed
which indicate that structures with high frequencies may have their
shearing forces appreciably reduced by this energy dissipation. It
appears, however, that structures with periods of about 1 second will be

1ittle affected.
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CHAPTER 1.

The analysis of the forces induced in buildings by earthquakes
is hempered by certain properties of the structures to be considered.
The non-uniformity of shape, mass, and rigidity of ordinary buildings
would Tequire an excessive amount of labor if a complete analysis
were to be made. In addition, the vibration damping that occurs
during the motion of a building is as yet undetermined. The manner
in which this damping takss place, and the degree and type of damp-
ing are not known. If the damping is neglected then there are some
golutions that can be easily evaluated and which represent certain
types of buildings fairly well. These solutions, although not re-
presenting actual buildings, are sufficient to indicate the general
behavior of undamped structures daring an earthquake.

The motion* of an undamped linearly elastic structure in free
vibration can be expressed as the sum of the normal coordinates. The
equation of free vibration for a structure starting with zero dis-

placement at time t =0, is:

7" ”24/, 4 f////,,f (1)

where y = 1lateral displacement
An = amplitude of the nth mode
Tn = function giving the shape of the nth mode

Pn = 2n times the frequency of the nth mode

*The vibration theory here used ig as presented in Webster's,
1Partial Differential Equations of Mathematical Physies".



If taese free viprations are caused by en initisl impalse; that
is, if the pbase of the structure is given a-constant acceleration &
for sn infinitesimal intarval of time 47 , all points of the structure
will be given aﬁ initial wvelocity, relative to the base, equal to

# A . The coefficients /ﬁ, in REquation (1) are then to ne evaluated

so as to satisfy the equation:
7-=Mt=é4r5f"
(]
These coefficients can be evaluated in the Fourier manner since the
types of vibrating systems here investigated have normal coordinates

that are also orthogonal functions, so:
(242) £ —"/-/—/:ﬂ
A, = (7 Y d {(:;,Kdéﬁ%
where x 1is measured along the height of the structure, m is the
mass per unit height, and H 1is the total height. The equation of

motion then is:

A
7/:/441—‘),,2/;5 S Lo

j%é 4&2%
{(:; ik %{ % (2)

The shearing force at any point of the structure is equal to the
sum of the inertia forces above that point. In particular, the shear-

ing force of the base is:
///,ﬁ’ 2
= S 2T Hx
S0 5
From Equation (2), this shearing force is evaluated as:

5= () F [4?2;4:46371
o

o 8T (3)



If the base of the structure is gabjected to an lrregular acceleration
such as ceused by an earthquake, the resulting shearing forces are
deduced by an application of Rayieigh's principle®. The effect of
the continuous ground acceleration A& is determined by summing the
effects of a succession of impulses #4C; then in passing to the
limit this summation becomes & definite integral giving:
» z
ro g LRER, (G 5 (100
Iy s

where S 1is the shearing force at the time t;. Similarly, from

(4)

Equation (2), the displacements due to an arbitrary ground acceler-

?”
ation #/ are:

/;:7 }:”/X / ,1? : /Z‘—Zf
— 4 — SAA7 Lo (U }ﬁe
7= Z m [/’ﬂ /” # (5)

The velocity at any point of the structure is:

# z

' }// // -

=% /.,/;,,;z/x y o cozmm VT
5 7 b X >

Equations (5) and (6) illustrate the rule for differentiating under

the integral sign. The kinstic energy of the structure is equal to:
// [n)z
' = = /77 y dAx
/«Z - A

Since the ﬁ&g Zas are orthogonal functions, the kinetic energy is

explicitly given by:

YRt f [ s crrt)
T &7 E b

*Webster, "Partial Differential Equations of Mathematical Physics",
or Rayleigh's "Theory of Sound", page 74.



From Eguation (7), tue kinetic energy of each mode of vibration

can be determined. For any one mode this is:
. e 2 z 2
hE = F M //,{,/ (osﬁ,/t-l‘/ﬂ’f)
” Z # }/27 4 (8)
: o//?? / A
The meximam kinetic energy is equal to the maximum total energy
attained by this mode. If the maximum values of the integrals of

the type:

7
4{/<;;’(1,{/27(25—Z))a/2f (9)

are determined for an earthquake, then the maximum energy in each mode
of vibration can be calculated. In determining the maximum values of
such integrals as (9) , a phase factor is introduced in the cosine
term in order to get the maximum possible values. It is thus seen
that the maximum possible value of (8) is identical with the maximum

possible value of:

///:i;‘xzégfz,(?5'27/472f

(10)
]

The maximum value of (10) has the dimensions of a vélocity and repre-
sents the cumulative effect of the ground acceleration. The maximum
values of such integrals as (10) will be designated by k{.

From Equation (4), it is seen that the maximum shearing force in

any one mode is equal to:

V d 2
(Y 4:44h) V%
27 e 7 "

(4

or



From Equation (7), it is seen that the maximum energy in any one mode
is equal to:
Z
= f Z
~r T 2 4 2, (12)

This gives & relation between the maximum shearing force and the

maximun energy. Equation (12) can be written:
A
/746;6,)
= 13
s, Z/Z (13)

where JZT is the period of vibration. ZEquation (13) shows that for

given values of /£, and (, the maximum shearing force varies in
inverse ratio as the square root of the period of vibration.
The maximum shearing force in any one mode of vibration is thus

given by the expression:
3= &% (14)
where

=

A AL
(L

The maximum shear will then be completely determined if the two factors

7

éz,and k; are evaluated. zé:may be evaluated from the masgs, rigidity,
and dimensions of the structure while k; must be determined from the
recorded ground motion of an earthquake.
The factor [; can be conveniently evaluated for several different
types of structures. There are two of these that are of particular
interest. One is a structure that moves with shearing deformations,

and the other is a structure that moves with bending deformations. For



each of these, a structure uniform in mass and rigidity will be con-
sidered. A structure with shearing deformations and with an elastic
coupling at the base will de first investigated*. Such an elastic
coupling may oe considered to be either a flexible first story or the
elastic yielding of the ground upon which the structure rests. In

the following discussion it will be taken to be a flexible first story.

The value of 4; for this case is:

4’7: __g__{/_/izﬁ’——;;’— M (15)
An O+ 257
where
k = modulus of rigidity of the superstructure
m = mass per unit height of superstructure

RH

nth root of freguency equation A tan A =%h

>
b
W

k = modulus of rigidity of flexible first story
h = height of first story.
H = height from second floor to roof

Equation (15) may be written as:

L'ﬁ: ﬂ” %‘:; (18)

where Dp has the values listed in Table I.:

*) vibrating system of this type is discussed in Webster, "Partial
Differential Equations of Mathematical Physics", page 123, and in the
Ph.D. thesis of M. A. Biet, C.I.T. 1932.



TABLE 1.

_%%_ Dy Do D3
.56 .68 .0l .003

.83 .79 .03 .008
1.11 .87 .06 011
1.66 1.0 .09 022
2.30 1.1 .16 041
3.33 1.15 .21 .062
5.0 1.20 .27 .10
10.0 1.25 . 36 .18
0.0 1.27 .412 . 201

From Table I. it is seen that the flexibility of the first story or
the elastic ylelding of the ground affects the shear in the higher
modes much more than the shear in the first mode. When the flexi-
biiity of the first story is so great that the ratio "ﬁ%ﬂ‘ is
less than 1, the shear in the higher modes is negligible compared

to the sheanin the first mode. In this case the structure is in
effect reduced to one degree of freedom; i.e., it behaves as a simple
oscillator. Teble I. clearly shows the relative importance of the
modes of vibration. For ordinary structures the rigidity of the first
story is approximately the same as the rigidity of the superstructure;
ie., ;é:/.  For such structures an increase in height will increase
the shear in each mode. The shears in the higher modes increase more

rapidly than the shear in the first mode. From this it can be con-



cluded that as the height increases the higher modes teccwme of greater
relative importance and accordingly the shears in the upper portions
of the structure are increased.

The second type of structure to be considered is that having

bending deformationsg*. The value of észor this case is:

s (7-[bu%ﬂé&)t//"f“’ifav) _
4= F - YETm (17)
¢ J?x;/f/j;, co3f, — (oshph 527
where
E = Young's modulus
I = moment of inertia
m = mass per unit helght
H = height of structure
B, = nth root of frequency equation (a:/vﬂ C¢L¥?="/
Equation (17) may be written as:
DI
- ”
fﬁ - H ;EI/” (18)

/
where ;2, has the values listed in Table II.:

TABLE II.

D' D'p D'z D'y

5.7 4.0 4.0 4.0

* A system of this type is discussed in Webster's, "Partial Differ-
ential Equations of liathematical Physics", page 138, and in
Timoshenko, "Vibration Problems in Engineering®, page 331.



1t appears from this Table that all modes of vibration are of approxi-
mately equal imoortance. This would indicate that structures of this
type are in a very nfavorable position to resist earthquakes because
of the importance of the higher modes. However, the value of ké
approaches zero as the period of vibration approaches zero and the
periods of the higher modes decrease rapidly. The frequency of the
nth mode is proportionel to KZ? where fﬁ has the values listed in

Table III.:

TABLE ITI.

ﬁ = 1.875
f. = 4.694
ﬁz = 7.855

for n>3

B, = BT

It ig thus seen that the periods of vibration decrease very rapidly
in the higher modes, being in the proportions 1; 0.16; 0.0567; G.017.
Despite this decrease of period the first few modes will still be
of approximately equal impbrtance and the 2nd and 3rd modes may
cause shearing forces in the upper portion of the structure compar-

aple in magnitude to the shearing force at the base.



10.

A surprising feature of Eouation (18) is thet the height H
occurs in the denominator. Therefore, the shear in each mode is
reduced by increasing the height. This reduction in shear is offset
by the fact that as the height is incressed, more modes of vibration
are excited since the periods increase as H2. This indicates that
ag the height is increased, the base of the structure may Ve scie-
what relieved of stress but the upper portions will be subjected to
larger stresses.

To correlate the iypes of structures investigated, use is made

of the expressions for the periods of vibrations of the first modes.

7 wIE

(shear)

7;.—: L& /z/ﬁ:?“ (bending)

I1f the periods of vibration are egqual, and heights and masses are
equal, then:

The maximum shears are then:

R

For this case, then the ratio of the two shears is:

b7}
B -z
3

So that if periods, mass and height are the same, the shear in a struc-
ture with bending deformations is twice that of a structure with shesr

deformations.
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The factors 47 which have been investigated determine how the
physical properties of the siructure affect the shearing forces. To
determine nhow the earthquake affects the shearing forces, it is

necessary to investigate the walues of the integral:

y - /,f;' s () 2

PN

where ,o'/' is the ground acceleration. Since the maximum possible
values of this integral are t¢ be determined, this properly requires
the introduction of & phase factor in the sine term. It is thus
seen that the same maximum values are given for this integral if a
cosine is substituted for the sine. Using this fact and the condi-

tion that g=4#=+ =0 at Z =0 successive integrations by parts give:

z
:f.{. ,‘;’—-o ’””,f/”f fo‘Zyé/Z‘//n¢X
z,
= [47 sonp e o
z .
= /‘7/:/ 5//7/0/2‘/'270/2‘//»4;(

= =1 ok 5 PO

From the first of these expressions it is seen that as /J becomes

largze the value of %4 approaches 7,“1 . But since there are periods

2t

on the accelerograms as low as 1/10 second —;—J- will be the approx-
imate value only for very short pericds. The last of the above
expressions shows that as the period becomes large the value of 4

approaches fﬂ . These considerations establish the values of 4



1z.

for extreme values of p and for intermediate values,one of the
above expressions for V mict be evaluated from earthqueke records.
In practise these evaluations have been made either mechanically
or graphically. The results of such evaluations are shown in the
sccompesnying figures. Those marked "Stanford" were evaluated mech-
anically at Stanford University in the following manner. The
scceeleration rerord was integratzd twice to give the ground displace-
ments. A cam cut in the pattern of these displacements actuated a
shaking tasble upon which a simple oscillator was placed.f Since the
displacement of such an escillator is equal to /2/—;53/:;-fﬁ%y”/z’z29@3/
the maximum recorded displacements multiplied by p give the
required values of P/. The figures marked "Biot" were evaluated by
M. A. Biot at Columbia Universiiy using & torsion pendulum. If the
point of suspension of a torsion pendulum is given angular displace-
ments equal in numerical magnitude to the ground acceleration Y7 ,
the resulting angular displacements of the pendulum are equal to
?ﬂ?j/C:; 17479/?5'1:/¢72f . The maximum values of the recorded angular
displacements when multiplied by ;,4 glve the required values of V.
The remaining figures were evaluated at California Institute of
Technology. _Those marked "graphical'" were done graphicélly. The
others were evaluated by means of a torsion pendulum constructed at
California Instituté of Technology. A diagram of this instrument is
shovn in the accompanying figure. The forsion pendulum is the most
rapid method and this instrument as constructed permits a skilled

operator to duplicate results within a 5% variation.
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Although the three methods of evaluating )/ should theoretically
give the same results, each method has certain limitations that may
affect the accuracy. The accuracy of the graphical method depends
primarily upon the accuracy of the drawings made. The difficuliy in
making accurate drawings increases as the period decreases so that the
results for short periods in generasl will he less reliasble than for
long periods. Similarly the use of the shaking table introduces
inaccuracies not only in the integration of the acceleration record
and construction of the cam, but also because the measurements made
are of the quantities ‘;g . This means that for short periods the
quantities measured are small compared to those measured for long
periods. The reliability of the values of )/ will thue be less as
the frequency increases. The method of the torsion pendulum is Just
the reverse of this, in that it measures the quantitie87vi/. Since
these quantities are very small for large perieds, the reliability of
the values of )/ decreases as the period increases.

It is thus seen that unless the operator of the particular method
used is especially careful, the reliability of the results will not
be unifogm for all periods. This difficulty may be overcome when
using the torsion pendulum. Since the displacement of the torsion

pendulum is:
Z
;¢p==///<4? 57%;,7/27ﬂ¢/44f
(4
an integration by parts, gives:

Z
/a‘////‘ o5 (6T
T4
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1f the velocity record is used insteed of the acceleration record, the

angular displecements of the pendulum are equal to:

Z .
% ‘f/”' s o (6T TE
o
So the required values of l/’are ggasl to:

//::;/ /f}//:ax/ = )27707

The use of the velocity record on the torsion pendulum will, therefore,
give the values of V’at en undistorted scale for all periods. The
velocity record will thus be more satisfactory to use than the accel-
eration record.

When such diagrams are determined for various earthquakes, it is
apparent that the method used is an important factor in interpreting
the results. An inspection of the figures herein presented shovs
that the character of these diagrams differs according to the method
used. The curves determined with the torsion pendulum at California
Inétitute of Technology were done as carefully as possible. For each
curve the values for over 100 different periods were determined. The
accuracy of these results for short periods is entirely satisfactory
but for periods larger than 2 seconds it was found that the curves
could not Be reliably determined. I% bas been concluded that for
periods larger than 1-1/2 seconds the use of the acceleration record
is no longer completely satisfactory; for these periods the velocity
records should be used.

It is difficult to draw specific conclusions from these results.

The disgrams indicate that an earthquake hass an exiremely erratic



effect. A slight variation of period may mean several hundred percent
va:iation in shear. Moreover, the magnitude of the shear forces
computed from these results are much too large to be corroborated vy
coserved earthquake damage. Since these large values are dus to &
pseuao-resonance, the dissipation of energy daring vibration will have
a marked effect. The energy may bs dissipated either witnin the
structure or into the ground. The external dissipation of the energy
into the ground is investigated in Chapter IV. The investigetion of
the internal energy dissipation is difficult. For small displacements
the dissipetion is apparently small. Tests by the U. 8. Coast and
Geodetic Survey made on masonry structures indicate & logarithmic
decrement of about 10%. This would not be a sufficient dissipation of
energy to correlate computed forces with observed damage. TFor large
displacements,such as would occur during an earthquake, the energy
dissipation is undoubtedly larger but it is difficult to make any
estimate of 1ps magnitude because of the indeterminate manner of
dissipation. It is of interest to note that certain steel mill-type
structures have been damaged by earthquakes. This is a type of build-
ing in which energy dissipation is small even for large amplitudes.

The damage to this type of structure tends to confirm the theoretical
| analysis which predicts that an undamped elastic structure will be
subjected to large forces. In this connection it is suggested that
when collecting data of earthquake damage, particular attention should
be pald to structures with low damping capacity. The steel mill

building and the monolithic concrete building are both structures that



will have a low damping capacity until a structural failure occurs.
The failures to be.observed are deformations exceeding the elastic
limit and thé development of cracks in structural members. Both of
these will cause a dissipation of strain energy. Such energy dis-
sipation explains the observed vehavior of elevated water tanks.

It has been often found that the bracing rods of such structures have
been oroken so that the structure is at the point of collapse. The
fact that such structures remained standing at the end of the earth-
qualke has been attributed by some observers to & slight deficiency

in the intensity of the earthquake or to a subsidence of ground motion
immediately after such failures have occurred. But since such
excessive deformations cause a dissipation of a large percentage of
the energy after which the structure no longer behaves elastically,
it is seen that the structure is in a favorable position to resist
the remainder of the earthquake.

Before the results of this analysis can be applied to actual
buildings, the effect of energy dissipation must be_taken into account.
Since the energy dissipation must reduce the computed forces by
several hundred percent, it is evident that although the uncertainties
have been removed from the earthquake, the uncertainties have in turn
been placed upon the buildings.

Certain general conclusions can be drawn from these analyses of
the earthquake records. Thé value of 54 approaches zero as the period
approaches zero, and these values are in direct proportion to the
period for sufficiently small periods, 4ny structure whose peried

fells in this region will be subjected %to shearing forces equal in
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magnitude to the total mass of the structure multiplied by the maximum
ground acceleration. For undamped elsstic systems this will apply
oﬁly when the period is very short, less than about 0.05 seconds.

When damping is.introduced this rezion may be extended to ineclade
longsr periods. For structures with long periods the conclusions
dramm are quite different. Undamped structures with periods from
2/10 to 2 seconds are apparently affected equally by the earthquake
and the maximum shear depends primarily on the factor }%;;; or
Zégz; . B8ince it is reasonable to assume that tall structures

will all have internal energy dissipation of the same character, it
may be concluded that even when the effects of such energy dissipation
are taken into account, the shearing force will depend only on /4;;
or ¢455; . Except for local variations in the diagrams of % , these
shearing forces will be practically independent of the height and
period of vibration.

Certain other conclusions can be drawn from the znalysis of the
earthquake records. The irregular character of the diagrams of
clearly indicates resonence with the ground waves. The fact that thess
resonance peaks are so nearly of the same gensaral character and magni-
tude throﬁghout the range from 2/10 to 2 seconds period is of particular
interest. This indicates that the seismographs are functioning satis-
factorily and are not influencing the record by virtue of any natural
periods of ths instruments. These diagrams also show the random
character of the ground waves in that thers are no predominant periods.
These diagrams show clearly that there is no so-called '"dominant

ground period". These diagrams also show no characteristics that can



is.

be attributed to the physical properticss of the ground in the region
where the earthquake occarred. Considering the marked difference in
character of the soil in El Centro, Los Angeles, and Helena, the
absenée of any peculiarities tinat could pe attribauted to the elastic
properties of the soll is significant.

It is of interest to note that these diagrams show no marked
gvidence of having been influenced by the natural periods of the
vailding in which the seiswograph was housed. However, it can be
shown that elastic yielding of the ground of the magnitude that could
reasonably be expected wo.ild have little influence on the diagrams of

If the amplitude of the ground yielding is A inches and the

period is T seconds, the scceleration in feet per second per second is:

o ay 27
- 274 sy 2z
127
The value of 4 for the condition of resonance is after '. cycles

equal to:
d 74
/Z

}/:: A7
If A = 1/10 inch, T =1 second and the motion lasts for 40 seconds,

Y Will _eq\z.al 1 foot per second. A coupling effect of this magnitude
could not be distinguished on the diagrams, since their irregularities
are larger than this. It can be concluded from this that there can be
considerable base motion due to coupling without noticeably affecting
the diagrams of ?’. So, in general, it will not be possible to tell
from an analysis of the earthquake records whether there has been any

coupling.
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These diagrams of ;/ furnish a convenient scale of intensities
of earthquakss. If the average ordinate on such a diagram is called
thé intensity, each earthquake may be accurately classified with
réspeci to other earthquakss. The following table lists the intensi-
ties of the sarthquakes where the Xl Centro earthquake of say, 1940,

is taken as 100:

Vernon, March, 1933 €5
El Centro, 1940 100
El Centro, 1934 6o
Helena, October, 1935 55 ¢
Ferndale, September, 1938 30

Sabway Terminal, October,1932 17
This table shows that for engineering purposes neither the Mercalli
scale nor the maximum ground acceleration is a satisfactory method of
measuring the intensities of earthquakes.
The mbove conclusions can be interpreted in terms of the method
of design of buildings. The maximum shearing force at the base of an
undamped structure with shear deformations, in any one mode of vibra-

tion,is!

%Z = AL 272;;; 24

(19)

The maximum shear for a structure with bending deformations, is, for

each mode:

/

R ()



In each of these cases the so-called 'percent g' method of desizn is
the proper one to use for structures with very short periods. For
tall structures, with relatively lcng periods, it aspears from the
sarthquakes snalysed that for design purposes the factor ké a8y vE
Leken to be & constant. For such strucvares the maximum snearing
force is independent of the pericd. The shearing furce depends
primarily upon the square root of the stiffness times the mass per
anit height. Tests made on existing buildings by the U. S§. Coast and
Geodetic Survey show that in general the period of vibration depends
only on the height. From this it can be inferred that the stiffness
of ordinary buildings varies directly as the mass per unit height, and,
therefore, the factor #Aa»? is proportional to m. Since the mass

per unit height is proportional to the total mass per floor, it follows
that the maximum shear varies ia direct proportion to the mass per
floor.

The shearing force in tall structures of the type of Equation (19)
is independent of the height. For structures of the type of Equation
(20), the shearing force is decreased by an increase of height. TFor
both types of structures as the height is increased,higher modes of
vibration‘become relatively more important. This is especially true
for structures of the type of Equation (20). Therefore, as the height
of a structure is increased, the strength of the upper portions should

be incresased.
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CHAPTER III.

Derivation of Equations of Motion

for Structure with Shear Deformations

The 1oilowing notation is used:-

x = coordinate measured along height from top downward.
¥y = lateral displacement.

t = time.

K = modulus of rigidity of supersiructure.

k = modulus of rigidity of first story.

m = mass per unit height (constant).

H = height from second story te roof.

h = height of first story.

A = root of frequency equation.

The fundamentsl equation of motion for a structure with shear

deformation is:=-

Py

This expresses the fact that at each point the rate of change of slope
is proportional to the inertia force. Substituting '1]=X T , where X
is a function of X only and T a function of T only, reduces the

above equation toi-

w1 AT ‘X__l_
® T g - A X

H

Since the left side of this equation is independent of X and the

right side is independent of t , the equation can hold true only if



36.

each side is constant. This equation reduces then to the two equations:-

Ry
7 2
Ll =—EpT

-and

&/ZX _ "‘flx

____,_;...,,.
AxX

where -—f" is an undetermined constant. The solutions of these equa-
tions arei~
' K
T= A, 5/n/7/;‘—‘:t + A, cosplEt
X= B s prF B, cosp¥*

The shear at the top of the structure must be zero and at the base
it is equal to )i:- times the displacement of the second floor. Also
only those solutions are desired that will give zero displacement at

zero time. Therefore, the following conditions must be satisfied:-

______ﬂ{X:O a‘l" A=0O

A%

de R X=0 at=x=H
mrEX

T=0 at T=°

The first and third of these conditiong requires the arbitrary

constants Az and B, to be zero. The second condition requires:-

—Kp sn pll +'—£‘i cosph =0

or setting /9H= A
.34
Lfan X = kh



The roots of this equation determine the frequencies of vibration.
Calling the nth root of the eqﬁation A, o, the displacement of the

gstructure is written:-

A
y:;fﬂ [05727‘&2'_ f/”;-—/,;—":—é (la)

where the arbitrary constants [,’, are determined from the initial
velocity.

If the base of the structure is given a constant éccelerafioh gt
for an infinitesimal interval of time 4Z , this will give all points of
the structure an initial relative velocity equal to @42, TFor this

case the constants ¢ must be determined to satisfy the equation:-

ot) = £ &y Cersn2)( 25 VE )

Since the terms éaf_/_‘gz x form a set of orthogonal functions*,
the constants < may be evaluated by multiplying both sides of the

equation by iji_’fx and integrating. Since:-
. A

4 -
/(”5A»7 EOSAm X = ‘f s
4 o7 X e Ax

#
-z oA / cos thdx
/7

2’7 // / cos A x x

and _
41 = /”Jt} 2 (/_,‘ )’//722” /7:_
' Z22n

The displacements of the structure are then:-

*Webster, "Partial Differential Equations of Mathematical Physicsh.
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(2a)

When the height of the flexible story is zero, this reduces to ths
case of a uniform structure encnored at its base. The value of A,

then is ZH%FL JI- and the disvlacements are:-
L 22/ ' 277,
7 (445//1/,_ f_/ e cos 2 rx sin 2ty )5 ¢

The shearing force at the base of the structure is given by:-

Y
S =/ A ¢g/
s 1o
y 2
d /”Mdﬂ,,z‘/f%"; > s 22 JJE
) cyj/\n%-d?‘
which gives:~
2
442.‘)2 2 3//7 " f— A
> = 7 An 1+ 222 fm s YE € (3a)
"

Equations (2a) and (3a) give the response of the structure to a single
sharp shock. If the base of the structure is given an arbitrary accel-
sration 44 , the response of the structure is given by applying

"Rayleigh's principle" *. The displacement and shear are then:-

zs/ﬂlh

V= % i 7 Y [
2 An

5:2 zsmw5An Km//// ;/ﬁ;(,, /—'t ot (5a)

W (H_snalln
Z;Kh

*Bayleigh, "Theory of Sound", Vol. 1, page 74.
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Derivation of the Equetion of lotion

for a Structure with Bending Deformations

The following notation is used:-

x = coordinate measured along height.
¥ = lateral displacement.

H = height.

E = Young's modulus.

I = moment of inertis.

t = time.

ﬁh = nth root of frequency eguation.

B
n

mass per unit haight (constant).

The fundamental equation of motinn is:i-
¥ 2
LT 5)—}, = -m A
This equation states that the structure is deformed as if acted
upon by a load equal to the inertia forces. Substituting in this equa-
tion 77=X7 , where X is independent of 7 and Tis independent
of X , glives:-
£ L X -F <7
T X A sz
Since the left side of this equation is independent of Z and the
right side is independent of X , it can be satisfied only if each

side is equal to a constant. This reduces then to the two equations:-

e

A7 T
e 4
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LN ety

dp('f A
where 707‘ is an undeiermined constant. The solution of the firset
equation is:~

7”:—4 ,r//y/zbf A, 405/‘3

The solution of the second equation isi-

X = B coskx » 5B, srkx + 5 coARX +B, swrBLX

where u
K= yre*
e
For determining the arbitrary constants the following conditions
are available. The sheer and bending moment are zero at the top and the
displacement and slope are zero at the bottom. 4Also only such solutions
are desired that will give zero displacement when =0 . Therefore:-
3 2
_é/_——X =72 i/j =0 a * x= b/
Ax> ) X
- a7 A=O
_q/‘—/r =0 - X =0

7=0

The last of these requires 4’” . The second set of conditions

requires 5=“'é_’§ and &, =-5, . Therefore:-

X =5 [cos K —cosbkix) » B, (517 KX — s Ax) on

Substituting this in the first set of conditions, zives the equations:-

ﬁ//(z/—-Cask#—Co-S//‘ﬁ') rZ /f"(—j//)/e/}‘ - ://;%k//) =0
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gz /Vg(ené¢4¢7 — soobAH) +—J;}<3{C-C¢:5/eﬁl-‘:4,5A,AM%)=Q9

Solving each of these for A gives:~

B =-&8 cosiy F coshAY
2- 7
S sl g 5T

5=z ﬂ:ﬂﬂ//«//
2. 4

cosKl +ePIBKH
The constant /K must be so determined that both of these give the

same value of EL. This requires that:-

s AH ,l-j//?ék// CedSIRM ,n.(‘aj/‘k}f

cos il P+ €OIARH Symich — SITTAAH

2 2
Clearing of fractions and using the relation cos4 x# — somd AW =+/
resalts in the equation:-

cos B cosh/S =~/

whereﬁ=Kﬁ . This is the frequency equation whose roots determine
the proper values of ﬁ . These values of ﬁ are listed in the

following table:-

ﬁ, ﬁ-'_ Fg for n>3

-7
1.875 4.694 7.855 B T

Since K= Z_éé these vaiues of ﬁ determine the freguencies

of vibration of the normal modes by determining 77,, . i.e.i=

p=KVE = A1EA
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The displacements of the structure are:-

y=Z X T,

or

=Z CZ?[&SA x _ 5, X ) -~ 503/'/5), # €25/54 ]
H ™ h ﬂhﬁ ce. /ﬁ) 5/”% l_f/,”ﬁ (f//ré/j,,/% —f/):/,,ﬁzzﬁj,«/ﬂﬁz-

(62)
For convenience, this equation may be written:-
= W, siop Z
7 f(_ <, VY, it (7a)

where the constants C’ﬂ are to be determined from the initial velocity.
If the base of the structure is given a constant acceleration "a" for ‘
an infinitesimal interval of time :41', each point of the structure
will be given an initial relative veloclity equal to 242, The Vvalues

of the constants d;., must be determined to satisfy the eiuatioh:—

(@ 42) = g_ Yy W,f,,

It can be shown that the functions Wk form a set of orthogonal

functions so that:- *
o » ' .
/m% Ay o // Vel
. ﬂ .

Multiplying both sides of the above equation by M//r and integrating

gives:- P
Lo = oat) EHE
” # 2 /%
/M; ax

* Webster, "Partial Differential Equations of Mathematical Physicsh.
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The displacements of the structure thus are:-

//’/ﬂ’
/ 5/: f//?/»f (5a)

The shear at the base is:-

= //ﬁ-—f %

Y= [¢4l7 Z

or ///
L W # )
;:m/mfz‘/Z /:,, ;//7//;
/// ” (9a)
Applying "Reyleigh's principle", gives for the response of the structure

to an arbiirary ground acceleration 4/ -

V4
LWy 2 [ s l5t) A

= Z pZ (10a)
7 » /%1:/x ?
z
wh o) 5 7z —-Z) I
= £ T //,« “ 5 /0 (i g (2 ~2 (118)
To comylete the solution, it is necessary to evaluate the integralsi-—
Fd
a/%&/x
~
: 2
//’/4 x
- e

where

:-(/222»¢%5}2§ — co95; j;, - “lﬁé%a;#‘”;éz /fazféi-— -;%7%5

572y % 59
The first of the ahove integrals can be evaluated directly and the
gsecond is evaluated in the following manner. Consider two solutions

W% and )AQ which satisfy the equations:-



M _ gL,
/7{# - F* 7
4’

Multiplying the first of these equations by W, end the second by Worr |

subtracting and integrating gives:-
z 2 V4 # #
- = 4/%“4-»)4/ 6{1@? X
/’ZZLZ{/,,/% Wete = [ (1 L = o/x’)d

integrating the right side by parts:

2z o7 B dW AWy o Ay S My _ AW ;/’/I/
(EE22) Sl o= [P0 5 VRS G T x

If m#&/ the right side of this equatinn is equal to zero and when #7=+
the left side of the equation is equal to zero. This difficulty is

avoided by the following ertifice. Let:i-
= + % §}<
Wo = Y+ 22

where XK~ [g’f as in the original solution of the differential equa-

tion., This gives then:-

prox =VZE

or
. ¥ FoK
22 - o) = KRS
F*
and 2 L _ ui sk
’? (-~
| £
Equation (12a) then becomes :-
,
5/’”’ a’Mn d’h’m ﬂ/ 4’"
#K/ﬂ/ X '/W //\z &/7{ dK 0/7(3 )

My S ))”
e ;7/;/ﬁ/?f" /a/ (138)

(12a)
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where infinitesimals of higher order are neglected. Now considering

the original differential equation:-

¥
AL
Ax*
and changing the independent variable to:
= % JZ_: l45/7<

this equation becomes:-

S /574// / /WK"‘ =KW
A
or W= WwW

where the primes indicate derivatives with respect to = . Also:-

W A~ WK

A Az X
and .
57/,2?/:720//:

Equation (13a) then becomes:-

V4
4%”;/ i = /f W # KA Vs —2/<1WW " i K (W //

From the end conditions specified all terms on the right side are zero

except the second, so:-

z ﬂ <
Syrae= 2/ = E A,

4 =
The coefficients in Equation (1lla) are then evaluated as follows:-

L) A nt
[ LY,




_ Lokt o5y fppahg, +eos)
_ un /)//”A”-f//’”/ )'/»A/j’;,f-—j//’/;/ 7

A Ceortp, cog) — Cortlotcos® (g —)

S174/5,, A

This reduces to:-

SN (7—cwzé52)V7>A¢4pﬁo}
4" (<xwzﬁz;£&géé'—(zuﬁéﬁ;ﬁéﬁéé)

Equation (1la),which gives the shearing force at the base of the

structure, becomesg then:-
2 .
5= Mﬁ{;ff f/”fr/” 5% (G- E 2 - (14a)

where - C’/ﬁ¢zasééz/06/rcna3/£L)
7 ¢ f//’%; c ;//; — (>sh5 5/%7)

Substituting:-

2.
e e
gives:~ - ‘

: : Z
_ yplEzm /o Y o
5= 2 2 [ s

(15a)

The numerical values of /fi are listed in the table below:-

™ ¥a ’ F3 4

1.44 1.00 1.00 1.00
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CHAPTER IV,

Energy Loss Due to Wave Propagation

The motion of structures during an earthquake may be considerably
affecﬁed by the dissipation of energy of vibration. Such energy dissi-
pation may take place in two ways. There may be an internal dissipation
through the various elements of the structure, or there may be an externsal
dissipation into the ground. This external dissipation of energy may be
due either to inelastic deformation of the ground immedizately underlying
the structure, or it may be due %o the propagation of elastic waves. |
The latter is the one here investigated.

The problem of propagation of elastic waves is exceedingly complex.
It is only because of certain special features of the case here considered
and because certain simplifications can be made that the following
approximate solution is possible. The special features are as follows.
During an earthquake & structure builds up energy of vibration and for
ordinary structures at least 80% of this energy is in the first mode of
vibration. The force exerted on the ground by this mode is equal to the
shear st the base of the structure. As was shown, this shear force is
proportional to 57777¢%°%, The problem reduces then to that of find-
ing the energy dissipated by the action of a sinusoidal force acting on
the surfécé of & semifinfinite solid, This force is actually distributed
over the area covered by the base of the structure. This distributed
forCe'may be replaced by a concentrated force and the magnitude of error
involved by so doing can be shown %o be small. Another simplifying
feature ig that for ordinary structures the velocity of vibration is

very small compared to the velocity of the propagated waves. It is
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assumed that no surface waves will be produced by ths action of this
force on the ground.

In the following discussion the ordinary elasticity theory is
used with the system of notation used in Love's "Theory of Elasticity".
All theorems and special solutions here used will be found in Love's
book, except one which will be worked out in detail.

To investigate the assumption of & single concantrated force acting,
the following theorems are used.

Theorem I. When a single static force acts at & point in an
infinite or semi-infinite elastic solid the resulting displacements
vary inversely as the distance from this point.

Theorem 1I. %hen in a limited region a system of forces with
zero resultant acts the displacements vary inversely as the square of
the distance from this region.

If a structure exerts a static system of forces on the ground it

may be considered to be composed of two systems of forces as follows,

where

..

1
- «— - - |
e
«— - - -——
A B C

If ¥~ is the distance from the point of application of the force

the displacements of case B are proportional to {:. The displacements

!
of case ( are proportional to 7:1 except in the immediate vicinity of
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the points of application of the forces. Therefore, tha displacements
of case A will be satisfactorily represented by D except in a local
rrégion near the base of the structure.

If a static force F acts at a point in an infinite or semi-

infinite solid the displacements in the x, y, z, directions are:-

M= F L
/,a_

qf=F/-§’ (1v)
4

//U'=F~;

where /', 6, ¢ , are polar coordinates with origin at the point of
application of the force and / , [ , /), are functions of & , ¢, and
the elastic constants. The assumption is now made that if F varies as
a function of the time, the displacement at any point is given by
Equations (1b) with the proper phase factor added. This is equivalent
to assuming that the velocity of propagstion of strain is verj large
compared to the velocity of the displacement at the origin. For the
cz;,se of a building on the ground these velocities are in the approximate

ratio of TOT%’O’U‘ . In accordance with this assumption the velocit;f at any

point is:- .
du_ oz oyF
dt T JE
v _ L JIF
F o9
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The kinetic energy of an element of volume is then equal to:-
2. z a
o7 4L QTG B2 teh

where ﬂ is the mass density.
The kinetic energy of a spherical shell of thiclmess a/l" at a

distance / from the crigin is:- ,
OF )*
///7:2” '9‘(-5{) dAr (3b)
e g

where 0" is a function of the elastic constants. If F is directed

parallel to the x-axis, then:-

3F _ oum L
ot ot Iy

’

where J4lis & point on the x-axis which will be taken at a distance R .

Equation (3b) may be written:-

=L e Som |
7=E e ) A

The apparent mass of a spherical shell is therefore equal to:-

which is é constant independent of the distance from the origin. The
apparent mass of the infinite solid is therefore the same as the mass
of a heavy, infinitely ‘long,_ stretched string. Moreover, since the

displacements of the infinite solid are propagated with & velocity te"
the analogy is complete. TFor energy considerations, then, the case of
such an elagtic solid is similar to a stretched string of mass "m" per

unit length and with velocity of propagsation "ei.



Bl.

The propagation of motion along the string is given by the expression:-

= Plx=ct)

Af = lateral displacement.

N
"

coordinate measured along string.

c

L}

velocity of propagation.
¢ = arbitrary function.

If the end of the string is given a sinusoidal displacement:-

M = A71207(‘;4¢)25)

then = /,f/)/cﬁf?‘"(_)

The force required at the end of the string to produce this displacement
igi~-

2 /2
f: - /77 € [T;z x =0

— ._4;77 i co"ja)d’

The velocity at the end of the string is:-

Furet

The force f is thus proportional to the velocity so the energyloss due |
to wave propagation has the same effect as a viscous damping. The rate
of diss»ipatio‘n is /775[44)2- When the rigidity of the elastie solid is

small, the velocity of propagation is relatively small and when the



O
L.\')

rigiai ty is iarge, the velocity /{% is small. The ensrgy dissipation,
therefore, is a maximum when the rigidity is neither extremely small
nor extremely large.

To investigate the effect of this energy loss on the displacement,

a force F is considered to act at the origin where:-
= 4:/)7/3—
Fo
el # 5 A= Ao pE
vhere 47/ is now taken to be the displacement at the point R, on the

x-axis. The solution of thig equation ig:-

_ A2~ Sl — 17 S P éoifﬂf)
e[ (77 7

The magnitude of the term (/)76'//’7/ represénts the effect of the energy
dissipation. To illustrate the effect of this term in a specifié case
the terms /7 and /’ will be évaluated for the case of a fofce é.cting at
a point in an infinite solid. The exact solution will then be worked
out;. s0 that a comparison may be made.

The static displacement caused by such a concentrated force acting

parallel to the x-axis is:-

. £ ges2
iy
, .
= gibS L /78
s Tz T2 y/y Vel

' /t’/j = 0
where '7 is Lame's constant and "a" and "b" are the velocity of

propagations of compression and shear waves,respectively. The term-©&~

appearing in the expression for the apparent mass is:-
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27 27

,;C’ D/ﬂiﬁy / 2/‘ o5 — (- ;;/ZJ%/”za )(/«9 P

P/%/Z//(/f// ( j)zzr

also /’ for this case is:-

/

%zcy/?

/7=

% yr2/7 = _ﬁ (7~ %‘//

If Poisson's ratlo 1s taken equal to 1/4 then #°= 35
and /?7,/’ = ——-)7‘4f3ﬁ?

now, ,y:/dé and if ¢ is taken equal to b:-

17/Zpo f—/‘—’f

V%4

The displacement of Equation (3b) then becomes:-

7 Z
M= / 57 cosp?) (4b)
47y /*/ (7777 /""‘/ 7 |
sopl.
or rewriting this equation and neglecting small quantities of higher order:-
= [ sinpl= —~ corpl (50)
A= ;‘/77/? { /#A/ )1 / ) j

If the loss of energyis completely neglected, the displacement is:-
/;/‘—‘———é f//?fZ‘L
ﬁ'//:y/?
For purposes of comparison, the exact solution will be derived for
the case of a sinusoidal force acting at a point in an infinite solid.

The notation used isi=



b4.

/0 = mass density.

Lame's elastic constants.

>
X
i}

velocities of compression and shear waves, respectively,

80 7Z=2%?EZ J Jl:'z%

%ZM: displacement in x, y, 2z direction.

"

A = dilation = div. (4 yus) = ?’;‘ o 33; * ‘3;:
A = scalar potentlal F, G, H = vector potential, so (u, v, w)
-~ £ ron? G H) vhere div. (F, G, H) =
F’§”=—énd , ete..
2t L 9

. : 2 3 2 -
V = La Placian operator o + S~
The equations of equilibrium are:-

(A+24y) M oy P +pX = /O ;t"-
<7L+2*1)—’—?j~ ruVo +pY =p 5

1

() 2y T +pZ S -p T

(1e)

Expressing the body forces in terms of the scalar potential é and

vector potentials (L, ¥, N):-

. it &+ crl(MKL)
(X,%,2) === ¢ ’
Writing Equations (lc) in terms of the potentials, gives:-
_ 2 vh _2ve) o 2% _ W L IM
é"'?‘l")%vﬁ-ﬁﬂ(;vvl') 2 va) f’(";;)’{‘ 9y 2 )

- - — 2 ;36
‘—ﬁ[;tl 9’7 +92>
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Collecting termsi-
£ (P32 ~(arq) vy o) -2 £ (% ~g7¥ =¥

e 3
al(f’ =L - VG M)
with similar equations for 2/ and «, Particular solutions will be

obtained if solutions are found for the equations:-

22 - vy =3 ; ,_LVFLuLc (20)

dt

These equations are of the form called Lorenz's equation*, the solution

of which is given by the "retarded potential®:-
A g AN
7= 4/742///;4 P (13 )clx'ly =
/ / , ,
’;ﬁ‘////’f/l/f’z/&/z’b/yé/z (3c)

! 1
The values of the functions 5? . l~ , etc., are to be calculated at the
point x', y', z' at the time (‘é"— %) stc.. The integration is over the

’ 1
volume in which é? , /. , etc., are not zero.

e

As in Love's Theory of Elasticity ﬁé, L, M, etc., can be expressed
) - ’l_ // /XZ&:I :Z)L’—/ Z/:;‘—):—-’) dx,ﬂ/ /41/
f = / S + Y(;V rZ o7 Y

L= o 3 =Y B Dy’

where X', Y', Z' are the values of X, Y, 2 at the point (x', ¥', z'),

by -

r is the distance from the point (x, ¥, z). In the limit when the body

* Webster,"Partial Differential Equations in Mathematlical Physics," p. 216.
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forces reduce to a single force in the x-direction, these integrals

become:~

ot ity et
JeYsy e’ =2 <7<

The potentials reduce to:-

9’.:‘ (t)_,l‘_,
ég %WO /( .) - L- C)) /w +ﬂf’)F

1 Jr™
Fmp f(t) oY (4e)
From Equations (3c) and (4c) the potentials are evaluated giving:-

va
2 2+~
&= A - [Z//ZT-Z}o/f

F= o0

G < ;= —————/ch(t )t 50

P i 2 % / 2ttt It

 From the above expressions the displacements are calculated. The

integrals in these expressions are differentiated in the following

mnanner -
% ,,
< o/ EOfCE)E - 7% fCt-8) % 5

The displecements are given by the expressions:-

“= G / l‘f/ wt)t # g flam o) 1 () f A 1) - 75))?

I

" ‘V":y');/_/‘d 9/’ /Z‘//t t)/f /‘#/79’ 9: / )((1‘ /) f/t/°,g)}
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,77/ Ix az{w/ﬁ “

(6c)
When the applied force is:-

O = Aspd

the displacements in the direction of the forces, at points on the x-axis

are.-

o= ‘T/'F;JZ;__:;[:’:A,*‘%)__ eo:fafzﬁ-%/)

* "”" f/fr/o(z‘ //—;/ﬂ/g{z‘ /j) FRVA TG ZZ] (7¢)

This equation is in the wave form, but it is desired to reduce this to
an -equation giving the displacement at a fixed point. This ig done by
expanding each term of the above equation. Since r is to be very
small compared to "a" and "b", all terms of high order in 1/a or 1/b

»ére neglected. The first term in the brackets is expanded as follows:-

;_?/_’ //ta{;vz" (a;,f;" L .f/)l/’f .’”7’4,7 ) é o5 . cosply » syl Sy A ))
4 B a

-2 o3/ : |
== (coop? (2% PB) b st (220 - ey )

The second term expanded thus gives:-

Zz_ ,
/’Jf’z /49;/:2"/!/)7/%’1‘119 4)74- :‘//)/DZL(:aJ/aZ - (as/bg))



Expanding in seriss gives for the sum of these two:-

cop? [l 0% 1 = & [1- )% -~ 7)

/s ([f '[#)3/"";7 [A (}"93,7‘--~-J)

with a similar expsznsion for the term containing 5A7f7‘. Combining

terms and neglecting those of higher order, gives:-

2. / /

I P g )eospl b JL Lo LN P 2L

79[53 43) /:' Z’/‘Qz g2 %‘/‘5# g#/j/f?ff
The third term in Equation (7c¢) gives:-

/ 2,2 .

A — a

/42/' f‘;’: Pl ~—g’-§m/’f

. z
Combining these and using the relation 7/=74u5 , &ives for the dis-

placenent:-
/‘ﬂ;y/?/f/_ %‘/ /¢;‘/‘7/J/ﬂf7f /—/Z*A/Jasféz

For comparison with the gpproximate soclution previously derived, the

2
- value 47?:35 , corresponding to Poisson's ratio of 1/4, is substituted .

giving:-

A )% — > 0
iy Z/[/ el Gus © ’7062 (8¢)

Gomparing this with Equatibn (5b), it is seen that they differ only in
the magnitude of the numerical factors. The approximate solution
indicates a larger energy dissipation than the exact solution. This is
consistént with the assumptions mede. It can be inferred that the
assumptions underlying the approximate solution do not seriously affect

the validity of the results.
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The approximate solution for the case of a horizontal force applied
to the surfsce of & semi-infinite selid is worked out in t.he same manner
as for a force in an infinite s0lid. TFor this case the static displace-

ments arei~ *

A, = —_ 7~ A3 e - ;@c‘Q)Ca5¢
4 ZJTArﬂQI‘ [' #
Ay = L At3a ) 4L sect2 )
277 (A )t 24 ol (9¢)

{cﬂzﬂé; i lator 5A7ﬁ;)64nn¢
4 .
The displacement of a peoint in the direction of the force f:’"Af/i/OZl

ig:=~

A R )’
:3:7?)*2’/)R / ﬁ— (iéf_’y/ et Mcw/b é)

It is seen that in this case the energy disgipation has a much larger
effect than in the case of the force acting at a point in an infinite
solid.

As was shown, the energy dissipated due to the propagation of elastic
waves is of the same character as a viscous damping, so since the dis-

placement.v due to a force ,/=AssZis of the form:
2t = ST .suagxzﬁhx)
the rate of dissipation ig:-

: M://’ZA’ L;ﬂ‘ (,,2//2‘;‘.,4))

* J. H. Michell, "Proc. London iath., Soc.", 1900, vol. 32, page 34.
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Since m, ¢, and / are functions of the elastic properties of

2
the ground, let & =/27¢/7 and the rate of dissipation then is:-

¢ At cosprre)

The total energy dissipated in one cycle is:-

2
TEAR
The average rate of dissipation is:-
6/47\ “17_
Z
The energy of vibration of the structure, from Equation (12), Chapter I,
is equal to:-
;AT
L Tz

FE

The average rate of dissipation can, therefore, be written:-

3 y :
FehE =L s lm L - O (2N,
fd h

/e
whére the notation is that of Chapter I. and ¥ is the total mass of the
structure. If € and M are constant, then the rate of dissipation

varies directly as the energy E and inversely as the periecd to the

fourth power.

This dissipation of energy will reduce the masnitude of the shear-
ing forces computed for an undamped structure. To illustrate this, let
it be assumed that the energy of an undamped structure increases linearly
with the time to a maximum value of E' at the time t3. The energyin the

corresponding damped siructure at any time + is:-

R g
£ 7 - Jasr
a/ }

Z,



where AF£ ig the rate of dissipation. The solutlion of this equation is:-

rd
= E )
= Z,

The maximum value of E occurs at the time t3 and the ratio of the

energies at the time t1 1is:-

o —
L (/- 2

£ =7

The following table gives the values of this ratio for different

ralues of "al and t3:-

TABLE ITT,

Retios of %T

i

.a\\tl 5 10 15
.01 .98 .95 .93
.05 .88 .78 .7
.10 .78 .63 .52
.15 .70 .52 .40
.20 .63 .43 .32
.25 .57 .36 .26
.50 .40 .20 .13

If the maximum shearing force in the undamped structure is (S') and

in the demped structure (S), then:-

%



h
[ab)

Table IV. shows how the damping affects the magnitude of the maximum

shearing force.

TABLE IV.

Ratios of 'g—r

5\\tl 5 10 18
.08 .94 .88 .84
.10 .88 .79 .72
.15 .84 72 .63
« 20 .79 .65 .87
.25 .75 .80 .51
.50 .63 .45 . 36
.75 .52 .56 .30

1.00 .45 .32 .26

1.80 .87 .26 .21

From this table it is seen that if the energy is not pumped in too
rapidly and if "a" is relatively large, there is a considerable reduction
in the magnitude of the maximum shearing force.

The factor "s" will now be evaluated for the case of Egquation (10¢),

where R = 1~

a = 930,.,7//—\:;; 938 (———?’22# M

[og T3 sz T‘f
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Substituting the following typical values for a 10 story building:-

4/ km = 3 x 106
7 = 1
P =3
b = 2000
), = 1.25

gives B = 0.00154 and if the period T is taken equal to 1/10, then
& = 1.5. This value of b corresponds to a shearing modulus of
elagticity of 84,000 pounds per inch. The probable range of the moduli
of various soils is from 5000 to 100,000 pounds per inch. The following
table lists the values of "&" corresponding to given values of T and

shearing modulus G:-

TABLE V.

Values of tat

G}\g © 1.0 > .50 ! .25 .10
100,000 .0012 .0028 . 0096 077 1.2
75;000 .0018 0042 014 115 1.8
50,000 .0033 .0078 .0265 211 3.3
25,000 .0092 .0215 ,073 .590
10,000 .038 . 0890 .305 2.43

5,000 .105 .245 .805

l



Tables IV. and V. indicate that for long periocds the redaction in
maximum shearing force is small. The saort periods show considerable
reduction particularly for the less rigid scils.

Tue numerical values of Table V. are, of course, not accurate,
beceuse of the mssumptions underlying Equation (10c) and becsuse the
ground is not a homogeneous elastic solid. This table does, howevsr,
give an indication of the rate of energy dissipation due to wave
propagation. Considering other forme of energy dissipation, such as
internal demping in the ground immediately underlying the structure,
it is seen that the ground may have a considerable effect in reducing

the shearing forces in buildings with short periods.





