
Strategic planning and sensitivity-enhancing tactics for detecting low-mass
particle dark matter with phonon-mediated detectors

Thesis by
Osmond Wen

In Partial Fulfillment of the Requirements for the
degree of

Doctor of Philosophy

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2025
Defended October 16, 2024



2

© 2025
Osmond Wen

ORCID: 0000-0002-6334-6813
Some rights reserved. This thesis is distributed under a Creative Commons

Attribution-Noncommercial-ShareAlike License



3

Acknowledgments

Funding sources
This work is supported by the following organizations and programs:

• the DOE Office of High Energy Physics Cosmic Frontier and Advanced Detector Research
programs;

• the Fermilab Laboratory Directed Research and Development program;
• the NASA Space Technology Graduate Research Opportunity program;
• and the Caltech Division of Physics, Mathematics, and Astronomy.

Personal acknowledgments
Sunil, I am forever grateful for the boundless support, care, and attention that you give

to your students and their projects. You truly go the extra mile with your impressive stamina
during our in-depth weekly group meetings, your attention to detail toward written documents,
including this thesis, and your many, many, many thoughtfully written emails that powered me
through graduate school. I did not personally pay for my tuition (see above), yet somehow, working
with you, I feel like I got my money’s worth and more.

To my committee—Prof. Bradley Filippone, Prof. Jonas Zmuidzinas, and Prof. Kathryn
Zurek: thank you for being a part of my committee and for following along during my graduate
school journey, through pandemic and all. Brad, it was a pleasure to TA Ph 2c with you back in
2019. Your enthusiasm for physics and teaching is contagious. I very much enjoyed working with
and learning from you. Kathryn and Jonas, I thank both of you for being such strong leaders in
your respective fields given their relevance to this thesis. Without your leadership, I doubt that
the fields of low-mass particle dark matter and kinetic inductance detectors would be as rich and
mature as they are today. Thanks to the groundwork you laid (and of course that Sunil and many
others laid as well), I was given an exciting graduate school project that has only gained in relevance
since I took it on.

To the unofficial mentors of my graduate career—Karthik Ramanathan, Noah Kurinsky,
Dylan Temples, and Bruce Bumble: you have made me a stronger and more capable scientist, and I
thank you for that. Karthik, we went through a lot together with the B101 Oxford fridge, but I
would not have had it any other way. You push me to be creative and resourceful. Many of the
results discussed in this thesis would not have been reached without your dedication and good
ideas. Noah, you have a knack for the bigger picture and thinking about the next step. I admire
both you and the work that you have done and feel grateful to have been able to share my work
with you since the very beginning. Dylan, you are the perfect example of someone who leads by
example. Your management of and passion for the KIDs effort at NEXUS led the project to grow
and prosper beyond what I had thought possible. I feel that we work well together. Bruce, thank
you for teaching me everything that I know about device fabrication. I consider myself lucky to have
been able to fabricate the devices that we test, and that would not have been possible without your



4

patience and guidance. Not only did you teach me about the ways of the cleanroom, but you also
taught me how to conduct myself in moments of failure and disappointment. I thank you for that.

To the Caltech crew working on KIDs for dark matter, both new and old—Yen-Yung Chang,
Taylor Aralis, Brandon Sandoval, Yann Sadou, and Robin Xiong: thank you for joining me through
these formative years of graduate school. I have learned a lot from each of you and hope to keep
in touch as we go our separate ways. Yen-Yung, thank you for teaching me about device design,
simulation, and fabrication. I use your fabrication procedure as my cleanroom Bible. Taylor, thank
you for teaching me how to use the fridge, take data, and measure an energy resolution. Each of
those things is a hugely significant undertaking, and you taught me all of it. Brandon, thank you
for all your hard work in managing the fridge and preparing the detectors. Getting a result out
of B240103 would not have been possible without you. Yann, thank you for taking on the task of
completing the fridge upgrades. That project has been a long time coming, and I am glad you are
taking it to the finish line. Robin, thank you for the enthusiasm you bring to SuperCDMS and
KIPM detectors. Between you, Brandon, and Yann, I feel that I am leaving the project in good
hands.

To the Long-Term Planning Task Force—Sunil Golwala, Tarek Saab, Tyler Reynolds,
Eleanor Fascione, Harrison Coombes: thank you for all the hard work in producing the SuperCDMS
Snowmass 2021 contribution. Lots of man- and core-hours went into producing that document. I
feel proud to have been a part of that effort.

To the members of the SuperCDMS collaboration who supported me during my Run 4
analysis project—Ziqing Hong, Miriam Diamond, Matthew Wilson, Valentina Novati, Stefan
Zatschler, Ata Sattari, Sudipta Das, Enze Zhang, Imran Alkhatib, Huanbo Sun, Matt Pyle, Enectalí
Figueroa-Feliciano, Kyle Kennard, Rohan Shenoy: thank you for your comments, suggestions, and
questions. Kyle, thank you for working with me on investigating the KS tests and the Cs-137 data.
I am excited to hear more about HVeV at CUTE. Rohan, thank you for helping me complete the
project with your diligence in producing the correct HV NRDM signal model as well as setting
optimum interval limits. I can truly say that this thesis would not be complete today if we had not
crossed paths.

To the students I have had the pleasure of mentoring—Chi Cap, Mira Menezes, Garrison
Chan, Monic Moy, Hanna Park, and Emily Xu: thank you for giving me your time and effort. It
was rewarding getting to mentor each of you, and I look forward to hearing more about your future
endeavors.

To my physics teachers and mentors from high school and college—Mr. David Carroll,
Prof. Frank Toffoletto, Prof. Mustafa Amin, and Prof. Douglas Natelson: thank you for instilling
in me a love of physics. Through conversations, lectures, and answers to my pesky questions, you
shaped me into the physicist I am today.

To my friends from graduate school—Magel Su, Adriano Testa, Léo Borrel, Bailey Gu, Jacob
Shen, Alex Buser: thank you for the late-night board games, day hikes through the mountains, and
pandemic-era Zoom calls. You kept me sane through these past six years.

To my family—Mom & Dad, and Oriana & Eric: thank you for the love and support
throughout all these years. You have made me the person I am today.

To Sarah and our cats, Mel & Manuka: thank you for being just the way you are. You bring
joy to my life. I love you so very much.



5

To the next generations of graduate students:
this thesis is for you.



6

Abstract

A non-baryonic matter beyond the framework of the Standard Model is required to explain a
vast set of astrophysical and cosmological phenomena in our universe; it is referred to as dark matter
and comprises 85% of all matter. Previously centered on particle candidates in the 1 GeV to 10 TeV
mass range, dark matter model building has expanded to masses well beyond that range, with an
emphasis toward low-mass particles below 1 GeV. Low-mass dark matter models have invoked new
and creative mechanisms for producing the relic abundance of dark matter and in doing so have
provided a variety of new laboratory-testable hypotheses about the early universe.

Direct detection experiments seek to directly measure a dark matter particle interaction
from the Milk Way dark matter halo with ultra-sensitive detector technologies in low-background
environments. As the paradigm has shifted toward lower-mass particle candidates, detector technolo-
gies have followed suit: single-charge-sensitive detectors and low-threshold, purely phonon-mediated
detectors are among the best detector architectures for probing the most immediately accessible
theoretical models of low-mass dark matter.

The Super Cryogenic Dark Matter Search (SuperCDMS) has used and developed detector
technologies on both of these fronts. On the axis of single-charge-sensitive detectors, the High
Voltage (HV) detector program of the SuperCDMS Collaboration has demonstrated gram-scale,
single-charge sensitive detectors known as HVeV detectors. Recent advances in the collaboration’s
understanding of single-charge backgrounds have enabled much improved sensitivity to low-mass
dark matter parameter space with even these gram-scale detectors. HVeV detectors are a prototype
version of the HV kg-scale detectors to be deployed at the flagship SuperCDMS experiment in
SNOLAB. HV detectors are projected to test vast regions of unconstrained parameter space for
both electron- and nuclear-recoiling dark matter, as shown in Chapter 4 of this thesis among many
other SuperCDMS sensitivity projections.

A potentially limiting background for SuperCDMS detectors at SNOLAB is the zero-charge
low energy excess, which is characterized by an exponentially rising spectrum of background phonon
events below about 100 eV to 1 keV recoil energy. Chapter 5 of this thesis presents a data-driven
technique to subtract the zero-charge low energy excess (0QLEE) as observed in HVeV detectors.
A search for charge-producing, nuclear-recoiling dark matter is performed with this background-
subtraction technique. The resultant exposure-limited constraint on the nucleon-dark-matter cross
section is nearly a factor of 10× stronger than the background-limited constraint and is within tens of
percent from unconstrained parameter space. The two dominant sources of systematic uncertainties
for this search are (1) the uncertainty on the total rate and spectral shape of zero-charge low energy
excess events and (2) the completely unknown behavior of the ionization yield function in silicon for
nuclear recoils below 100 eV.

On the axis of low-threshold phonon-mediated detectors, the SuperCDMS Collaboration
must improve phonon energy thresholds to below 1 eV in order to attain sensitivity to sub-GeV
nucleon-coupled dark matter. Presently, SuperCDMS has achieved detector phonon thresholds in
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the range from 10 eV to 200 eV depending on detector size. In Chapters 6, 7, and 8, we present a
radically different phonon sensor architecture that may provide long-term gains in sensitivity: the
kinetic inductance detector.

There are two main quantities that constrain the capacity of kinetic inductance detectors to be
effective phonon sensors: the detector readout noise and the phonon collection efficiency. Chapter 7
explores the former, detailing the variety of noise sources in kinetic inductance detectors and how
they may impact a sensor’s energy resolution using both theoretical calculations and experimental
measurements. In general, resolution on energy absorbed in the sensor is presently limited to a
range from 1 eV to 5 eV. Chapter 8 then reports on the overall detector energy performance of three
different KID-based phonon-mediated (KIPM) detectors, each of which suffers from percent-scale
phonon collection efficiencies. An empirical model is then built to parametrize and understand the
reasons for the poor phonon collection efficiencies, thereby outlining a path forward to lowering
energy thresholds in KIPM detectors.
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Preface

In Part I of this thesis, I provide a short review of dark matter evidence, particle candidates,
and detector architectures. Essentially all of the figures and equations are reproduced from some
other source with the notable exception of those in Section 3.1, which provides a general framework
for both Chapter 3 as well as the strategic planning that is discussed in Chapter 4. There is an
attempt to be broadly encompassing in all three chapters, but they are by no means comprehensive.
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Chapter 1

The evidence for dark matter

The evidence for dark matter is multipronged and spans a wide range of both physical scales
and fields of astronomical study. We start at the largest scales for the evidence of dark matter and
work toward smaller scales.

1.1 The matter content of the universe
The Einstein field equations govern the relationship between energy and spacetime:

Gµν = 8πGTµν . (1.1)

Gµν is the Einstein tensor and contains information about the spacetime curvature of our universe
and its evolution. Tµν is the stress-energy tensor and contains values for the densities and fluxes of
both energy and momentum in our universe. G is the gravitational constant.

The G00 component of the Einstein field equations gives rise to the first Friedmann equation,
which relates the expansion of our universe to its energy density:

3
(

ȧ

a

)2
+ 3 k

a2 = 8πGρ. (1.2)

a is the scale factor of the universe relative to the present day (a = 1 today). k is the curvature
of the universe: k = 0 for flat Euclidean space; k = 1 for open or spherical space; and k = −1 for
closed or hyperbolic space. ρ is the energy density of the universe. H = ȧ/a is referred to as the
Hubble parameter.

The first Friedmann equation can be recast in terms of individual energy density components
and their relative abundances at the present day:

H2

H2
0

= Ωra−4 + Ωma−3 + Ωka−2 + ΩΛ, (1.3)

where an individual component Ωi = ρi/ρcrit, ρcrit = 3H2
0 /8πG, and H0 is the Hubble parameter in

today’s universe, also known as the Hubble constant. The subscripts r, m, k, and Λ respectively
denote radiation, matter, curvature, and dark energy. Dark energy, also known as the cosmological
constant, is believed to drive the accelerated expansion of the universe.

For a heuristic understanding of the matter and radiation power laws that arise in Equa-
tion 1.3, consider the following: ρm exhibits ∝ a−3 because the energy per unit volume shrinks
for every dimension in volume; ρr exhibits ∝ a−4 because there is an additional redshifting of the
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Figure 1.9: Type IA supernovae and the discovery dark energy. If we assume a flat universe, then the

supernovae clearly appear fainter (or more distant) than predicted in a matter-only universe (Ωm = 1.0).

(SDSS = Sloan Digital Sky Survey; SNLS = SuperNova Legacy Survey; HST = Hubble Space Telescope.)
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Figure 1.10: A combination CMB and LSS observations indicate that the spatial geometry of the universe

is flat. The energy density of the universe is dominated by a cosmological constant. Notice that the CMB

data alone cannot exclude a matter-only universe with large spatial curvature. The evidence for dark energy

requires additional input.

Single-Component Universe

The different scalings of radiation (a−4), matter (a−3) and vacuum energy (a0) imply that for

most of its history the universe was dominated by a single component (first radiation, then

matter, then vacuum energy; see fig. 1.11). Parameterising this component by its equation of

state wI captures all cases of interest. For a flat, single-component universe, the Friedmann

equation (1.3.135) reduces to
ȧ

a
= H0

√
ΩI a

− 3
2

(1+wI) . (1.3.136)

Figure 1.1: Apparent magnitude versus redshift of supernovae. Brightness decreases with
increasing apparent magnitude. This data allows for a fit of Ωm and ΩΛ, assuming a flat k = 0
universe. Reproduced from Baumann (2022).

energy, E ∝ a−1. Matter-radiation equality occurred about 60,000 years after the Big Bang, so
the radiation energy density component has been subdominant since then and is about one part in
10,000 today.

An essential fact of modern cosmology is that the data prefer a flat universe, predominantly
composed of dark energy and matter. Measurements of Type 1a supernovae and the cosmic microwave
background provide compelling motivation for this statement, among many other measurements.

Type 1a supernovae
With the assumption of a flat universe (Ωk = 0), the brightnesses of Type 1a supernovae

may be used to infer Ωm and ΩΛ. Type 1a supernovae are a standard candle of cosmology; their
luminosity is observed to be predicted by their age, so their relative brightness can be combined
with their intrinsic luminosity to infer their distance. When this distance estimate is plotted against
the redshift of each supernova, the observed relation implies that the universe is undergoing an
accelerated expansion. Figure 1.1 shows the universe that the best fits these data are Ωm = 0.32
and ΩΛ = 0.68.

Baryon acoustic oscillations in the cosmic microwave background
The CMB is a background 2.726 K blackbody spectrum seen across the sky. Temperature

fluctuations at one part in 10,000 have been measured in the CMB, and their power spectrum as a
function of angular scale is plotted in Figure 1.2.

The angular position and amplitude of the first peak in the CMB power spectrum are
controlled by the dynamics of baryon acoustic oscillations (BAO) in the early universe. BAO
occurred before photons decoupled from the primordial plasma1 and after overdensities began to
form from local matter density perturbations. There are two relevant forces that govern baryon
acoustic oscillations: the inward force of gravity, which depends on the total mass of the overdensity,
and the outward radiation pressure, which only affects the baryonic matter since it is coupled to

1See Chapter 2 for a more detailed description of the decoupling process.
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Figure 1.2: CMB power spectrum as it varies with Ωk and Ωm. Left: how varying Ωk from
the Planck measured “reference” value impacts the power spectrum. Right: how varying Ωc from
the Planck measured “reference” value impacts the power spectrum. Figure produced by Robin
Wen.

photons. When photons decoupled from baryonic matter during recombination and began their
journey toward becoming the cosmic microwave background (CMB), the oscillations stopped, and
their pattern was imprinted upon the angular power spectrum of the CMB. The physical size of the
oscillations at the time of recombination serves as a standard ruler for cosmologists.

The location of the first peak plays an important role in constraining the universe to be
consistent with a Euclidean, flat geometry. The relative energy density abundances of matter,
curvature, and dark energy were measured by the Planck Collaboration using the cosmic microwave
background and were reported in Planck Collaboration (2020):

Ωm = 0.321± 0.013, Ωk = 0.0007± 0.0019, ΩΛ = 0.679± 0.013.

The impact of changing Ωk from the above reference quantity is shown in Figure 1.2.
Ωm can be broken down into two sub-components that dominate the total relic abundance

of matter in our universe:
Ωm = Ωb + Ωc, (1.4)

i.e., a baryonic component Ωb and a non-baryonic component Ωc. Baryonic matter in the context of
cosmology refers mainly to protons and neutrons, the three-quark particles that compose “normal”
matter. Non-baryonic matter is a generic term to indicate a component of Ωm that does not interact
with photons. This component of the energy density in the early universe is thus not subject to
radiation pressure during the era of BAO. Consequently, the BAO amplitude depends on the ratio
of Ωc to Ωb: for larger Ωc, the BAO amplitude is smaller. Figure 1.2 Right shows this effect. There
are two curves with different Ωc quantities and Ωb held fixed.2 The presence of non-baryonic matter
in the early universe serves to smooth out the fluctuations we see in the CMB. Drawn in green is
the CMB power spectrum corresponding to the Ωc value measured by Planck Collaboration (2020):

Ωbh
2 = 0.02212± 0.00022, Ωch

2 = 0.1206± 0.0021,

i.e., dark matter composes 85% of the matter content in our universe and 27% of the total energy
content.

2The dark energy abundance ΩΛ is modified so as to maintain Ωr + Ωm + Ωk + ΩΛ = 1 for the sake of the figure.
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Fig. 1.—Left panel: Color image from the Magellan images of the merging cluster 1E 0657�558, with the white bar indicating 200 kpc at the distance of the
cluster.Right panel: 500 ksChandra image of the cluster. Shown in green contours in both panels are the weak-lensingk reconstructions, with the outer contour
levels atk p 0.16 and increasing in steps of 0.07. The white contours show the errors on the positions of thek peaks and correspond to 68.3%, 95.5%, and
99.7% confidence levels. The blue plus signs show the locations of the centers used to measure the masses of the plasma clouds in Table 2.

TABLE 2
Component Masses

Component
R.A.

(J2000)
Decl.

(J2000)
MX

(1012 M,)
M∗

(1012 M,) k̄

Main cluster BCG . . . . . . . . 06 58 35.3 �55 56 56.3 5.5� 0.6 0.54� 0.08 0.36� 0.06
Main cluster plasma. . . . . . 06 58 30.2 �55 56 35.9 6.6� 0.7 0.23� 0.02 0.05� 0.06
Subcluster BCG. . . . . . . . . . 06 58 16.0 �55 56 35.1 2.7� 0.3 0.58� 0.09 0.20� 0.05
Subcluster plasma. . . . . . . . 06 58 21.2 �55 56 30.0 5.8� 0.6 0.12� 0.01 0.02� 0.06

Notes.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees,
arcminutes, and arcseconds. All values are calculated by averaging over an aperture of 100 kpc radius
around the given position (marked with blue plus signs for the centers of the plasma clouds in Fig. 1);

measurements for the plasma clouds are the residuals left over after the subtraction of the circularlyk̄
symmetric profiles centered on the BCGs.

Both peaks are offset from their respective BCGs by∼2 j but are
within 1j of the luminosity centroid of the respectivecomponent’s
galaxies (both BCGs are slightly offset from the center of galaxy
concentrations). Both peaks are also offset at∼8 j from the center
of mass of their respective plasma clouds. They are skewed toward
the plasma clouds, and this is expected because the plasma con-
tributes about one-tenth of the total cluster mass (Allen et al. 2002;
Vikhlinin et al. 2006) and a higher fraction in nonstandard gravity
models without dark matter. The skew in eachk peak toward the
X-ray plasma is significant even after correcting for the overlap-
ping wings of the other peak, and the degree of skewness is
consistent with the X-ray plasma contributing of the ob-�9%14%�8%

servedk in the main cluster and in the subcluster (see�12%10%�10%

Table 2). Because of the large size of the reconstruction (34� or
9 Mpc on a side), the change ink due to the mass-sheet degeneracy
should be less than 1%, and any systematic effects on the centroid
and skewness of the peaks are much smaller than the measured
error bars.

The projected cluster galaxy stellar mass and plasma mass
within 100 kpc apertures centered on the BCGs and X-ray
plasma peaks are shown in Table 2. This aperture size was
chosen because smaller apertures had significantly higherk
measurement errors and because larger apertures resulted in a
significant overlap of the apertures. Plasma masses were com-
puted from a multicomponent three-dimensional cluster model
fit to theChandra X-ray image (details of this fit will be given
elsewhere). The emission in theChandra energy band (mostly
optically thin thermal bremsstrahlung) is proportional to the
square of the plasma density, with a small correction for the

plasma temperature (also measured from the X-ray spectra),
which gives the plasma mass. Because of the simplicity of this
cluster’s geometry, especially at the location of the subcluster,
this mass estimate is quite robust (to a 10% accuracy).

Stellar masses are calculated from theI-band luminosity of
all galaxies equal in brightness or fainter than the component
BCG. The luminosities were converted into mass by assuming
(Kauffmann et al. 2003) . The assumed mass-to-lightM/L p 2I

ratio is highly uncertain (and can vary between 0.5 and 3) and
depends on the history of the recent star formation of the gal-
axies in the apertures; however, even in the case of an extreme
deviation, the X-ray plasma is still the dominant baryonic com-
ponent in all of the apertures. The quoted errors are only the
errors on measuring the luminosity and do not include the
uncertainty in the assumed mass-to-light ratio. Because we did
not apply a color selection to the galaxies, these measurements
are an upper limit on the stellar mass since they include con-
tributions from galaxies not affiliated with the cluster.

The meank at each BCG was calculated by fitting a two-
peak model, each peak circularly symmetric, to the reconstruc-
tion and subtracting the contribution of the other peak at that
distance. The meank for each plasma cloud is the excessk
after subtracting off the values for both peaks.

The total of the two visible mass components of the sub-
cluster is greater by a factor of 2 at the plasma peak than at
the BCG; however, the center of the lensing mass is located
near the BCG. The difference in the baryonic mass between
these two positions would be even greater if we excluded the
contribution of the nonpeaked plasma component between the

Figure 1.3: The Bullet Cluster. Both: the white bars indicate 200 kpc, and the green contours
are weak-lensing κ reconstructions. Left: optical image from Magellan Telescopes of the Bullet
Cluster, X-ray plasma peaks marked with blue crosses. Right: Chandra Observatory image of the
X-ray-emitting plasma. Figures and caption reproduced from Clowe et al. (2006).

1.2 Galaxy clusters
Galaxy clusters are made of hundreds to thousands of galaxies, are usually 1014 to 1015 solar

masses, and are about 1 Mpc to 10 Mpc in size. For reference, the observable universe is about
29 Gpc in diameter. Galaxy clusters are the largest gravitationally bound structures in the universe.
The Bullet Cluster and Coma Cluster are two famous examples of galaxy clusters that exhibit
evidence for dark matter.

The Bullet Cluster
The Bullet Cluster, or cluster 1E 0657-558, is a striking example of the need for dark

matter. Two smaller galaxy clusters constitute the Bullet Cluster and passed through each other
approximately 100 million years ago. By way of weak-lensing and X-ray measurements reported in
Clowe et al. (2006), astronomers were able to separately image the matter and plasma distributions
of both the larger and smaller sub-clusters of the Bullet Cluster.

In the two images of Figure 1.3, the larger cluster is on the left and the smaller cluster is
on the right. The discrepancy between the plasma distributions and the matter distributions for
both clusters is shown in the right image. The X-ray distributions have lagged behind the matter
distributions in the collision between clusters because of baryonic effects. Without dark matter,
the matter distribution as inferred from the weak-lensing measurements should coincide with the
X-ray-emitting plasma. Instead, the matter distributions of both clusters are offset from the X-ray
peaks by approximately 8σ. This offset favors collisionless models of dark matter.

The original Bullet Cluster paper (Clowe et al., 2006) reports average magnification κ values
around the brightest cluster galaxy and around the plasma peak for each galaxy cluster. κ is
measured from the elongation of background stars and is directly proportional to the surface mass
density of the gravitational lens. In the larger galaxy cluster, κ = 0.36± 0.06 near the center of the
matter distribution (with the smaller cluster’s κ subtracted out), and κ = 0.05± 0.06 at the peak of
the X-ray emission (with both clusters’ κ subtracted out). Thus, there is a 7:1 ratio in the surface
matter density between these two locations. The paper furthermore reports that the total mass of
plasma and stars is roughly comparable near the galaxy cluster matter distribution center and at
the X-ray emission peak. Therefore, the dark matter to baryonic matter relative abundance is 7:1,
which is not far from the 6:1 ratio inferred from the CMB.
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Figure 1.4: The Coma Cluster. Each dot represents a galaxy. Galaxies are referred to as nebulae
in the original publication. Degrees are demarcated along the axes. Reproduced from Zwicky (1937).

The Coma Cluster
In the 1930s, Swiss astronomer Fritz Zwicky published two articles (Zwicky, 1933) (Zwicky,

1937) on the existence of a “dunkle Materie,” or dark matter, to explain the higher-than-expected
mass of the Coma Cluster. The articles used data from an 18-inch Schmidt telescope at the Palomar
Observatory on Mount Palomar in San Diego County. The locations of the various galaxies that
make up the Coma Cluster are shown in Figure 1.4. The size of the Coma Cluster is approximately
2×106 light years (600 kpc) in radius, according to Zwicky.

Zwicky (1937) performs a virial theorem calculation to estimate the mass of the Coma
Cluster as a stable many-body gravitational system:

−2⟨T ⟩ = ⟨U⟩ (1.5)

−
〈∑

miv
2
i

〉
> −5GM2

R

M⟨⟨v2⟩⟩ <
5GM2

R

M >
R⟨⟨v2⟩⟩

5G
. (1.6)

⟨T ⟩ and ⟨U⟩ are the total kinetic and potential energies averaged over time. mi and vi are the
masses and velocities of individual galaxies. M is the total mass of the cluster, and R is the radius of
the cluster. ⟨⟨v2⟩⟩ is the galaxy velocity, averaged over time and mass. The inequality in the second
line is due to −5GM2/R being an underestimate of the potential energy of the system (overestimate
of the absolute value).3 As Figure 1.4 shows, most of the galaxies are clumped toward the center of
the cluster.

3Recall that the gravitational potential energy of a uniform sphere is −3GM2/5R. In the case of the Coma cluster,
the galaxies are clumped toward the center, so the total potential energy is certainly less than −3GM2/5R (larger in
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Figure 1.5: Galaxy rotation curves for 21 spiral galaxies. Reproduced from Rubin et al.
(1980).

Zwicky evaluates the inequality in Equation 1.6 with the following quantities:

M > 4.3× 1013 M⊙

(
R

2× 106 light years

)( ⟨⟨v2⟩⟩
1.5× 1016 cm2s−2

)
. (1.7)

Since there are about 1000 galaxies in the Coma cluster according to Zwicky, he estimates that the
average galaxy weighs no less than 4.3× 1010 M⊙. This number was about two orders of magnitude
in excess of his expectation4 and provided the first clue for unseen matter in the universe.

1.3 Galaxy rotation curves
The need for dark matter within galaxies was first posited in Rubin et al. (1980). The

argument is derived from introductory physics principles concerning a point-like body of mass m
that undergoes centripetal acceleration ac due to the force of gravity Fg:

Fg = mac

GM<rm

r2 = m
v2

r

v =

√
GM<r

r
. (1.8)

M<r is the total mass of the galaxy within some radius r from the center of a galaxy. Fg = GM<rm/r2

holds for spherical distributions of M and is a consequence of the r−2 dependence of Fg. v is the
velocity and depends on the matter distribution in the galaxy as given by Equation 1.8. In the case
where most of the mass is located close to the center of the galaxy, the velocity should fall as r−0.5

at large distances.
A galaxy rotation curve is a plot of the orbital velocity versus the radial distance from

the center of the galaxy. Orbital velocity can be obtained from line-of-sight velocities, which are

absolute value). However, for the potential energy to be less than or equal to −5GM2/R, the majority of the mass
would need to be concentrated within a radius 3R/25. The Coma Cluster is not so centrally peaked, as is roughly
visible in Figure 1.4.

4Zwicky expected each galaxy to have a luminosity of about 8.5×107L⊙ , which means an M/L ratio of 500. In
the local Kapteyn stellar system, the M/L ratio is 3.
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with Eq. (1) andjmax = 0.28 [3]. Also the above
estimate ofjmax for our own halo is close to the peak
value of 0.27.

Eq. (1) withjmax = 0.25 implies that our halo has
caustic rings with radii near 40 kpc/n, wheren is
an integer. The purpose of this Letter is to point out
evidence in support of this extraordinary claim.

Recently Yanny et al. [10] and Ibata et al. [11]
discovered what appears to be a ring of stars, with
radius of order 20 kpc, circling the Galaxy. The origin
of this star ring is puzzling. In Ref. [10], the ring
is interpreted as the tidal stream from an accreted
satellite galaxy. However, in this interpretation it is
hard to account for the fact that the star population is
confined to a nearly circular region [11]. Also, it would
have to be an accident that the tidal stream lies in the
Galactic plane. Ibata et al. [11] propose instead that
the ring of stars is a perturbation of the Galactic disk
population. What causes the perturbation is not clear
however. Since the ring of stars is near the predicted
n = 2 caustic ring of dark matter, the perturbation may
be the attractive gravitational field of then = 2 caustic
ring. This interpretation accounts for the 20 kpc radius
of the ring, as well as for the fact that the ring lies in
the galactic plane.

The spatial coincidence of the 20 kpc ring of stars
with the predictedn = 2 caustic ring may, of course,
be fortuitous. So it is natural to ask whether there is
similar evidence for any of the other caustic rings.
The answer is yes for then = 3 ring. Binney and
Dehnen studied [12] the outer rotation curve of the
Milky Way and concluded that its anomalous behavior
can be explained if most of the tracers of the rotation
are concentrated in a ring of radius 1.6r� wherer�
is our distance to the galactic center. Throughout this
Letter we use the standard valuer� = 8.5 kpc. That
value is assumed in Eq. (1), and also in Refs. [10,11].
The Binney and Dehnen ring is therefore at 13.6 kpc,
which is within 3% of the predicted radius of then = 3
caustic ring. Moreover, there is independent evidence
for the existence of the Binney and Dehnen ring.

Olling and Merrifield have recently published [13]
a rotation curve for the Milky Way. It is reproduced in
Fig. 1. It shows a significant rise between 12.7 and
13.7 kpc. The increase in rotation velocity is 27%,
from 220 to 280 km/s. A ring of matter in the Galactic
plane produces a rise the rotation curve. The rise
expected from then = 3 caustic ring of dark matter,

Fig. 1. Milky Way rotation curve from Ref. [13]. The different lines
represent the contributions from the bulge (dotted), the stellar disk
(filled circles), the HI layer (crosses), the H2 layer (circles), and
from a smooth dark halo (dashed). The full line represents the sum
of the contributions. Reprinted by permission of the authors and
Blackwell Publishing Ltd.

by itself, is only of order 3%. However, the effect
of a caustic ring of dark matter is amplified by the
ordinary matter (stars, gas, dust, . . . ) which it attracts
gravitationally. The amplification would have to be by
a factor of order nine in the case of then = 3 ring. One
may think, at first, that such as a large amplification is
implausible because the back reaction of the ring of
ordinary matter upon the caustic ring of dark matter
would determine the position of the latter, instead
of the latter determining the position of the former.
However this is not so because the dark matter caustic
is not an overdensity of particles which are at rest
with respect to the caustic ring. The particles which
at a given time make up the caustic ring are moving
with great speed, of order 360 km/s for n = 3, and
are continually replaced by new particles. As a result,
the position of the caustic ring is insensitive to the
gravitational field of the matter it attracts.

The existence of rings of ordinary matter precisely
where then = 2 andn = 3 rings of dark matter are
predicted may yet be fortuitous. Fig. 1 does not show
a significant rise near the predicted location (10 kpc)
of then = 4 caustic ring. Note however that the error
bars in Fig. 1 are very large forr > r�. The rise near
10 kpc, if indeed there is one, may be too small to show
up in the data. On the other hand, the inner (r < r�)
part of the rotation curve is far better measured, and
we may go look for rises there.

Figure 1.6: Rotation curve of the Milky Way and its sub-components. Stellar velocity
versus galactocentric radius is plotted with the squares. The differently sized error bars correspond
to r < R0 and r > R0 radius estimation, where R0 = 8.5 kpc is the assumed galactocentric radius of
Earth. The total best-fit rotation curve is the solid line. The different contributions to the rotation
curve from various elements of the Milky Way are the best-fit dark matter halo (long dashed), the
stellar disk (filled circles), the bulge (short dashed line), molecular hydrogen gas (empty circles),
and atomic hydrogen gas (crosses). Negative values indicate an outward pointing force. Reproduced
from Sikivie (2003); caption and figure originally from Olling et al. (2000).

measured via redshift. Figure 1.5 shows galaxy rotation curves from 21 different spiral galaxies.
None of the rotation curves exhibits r−0.5 behavior in the plotted region. Instead, they all seem to
maintain an elevated, flat velocity at large radii.

The elevated and flat rotation curves at large radii can be explained by a dark matter density
profile that exhibits the appropriate scaling relation with r. In Figure 1.6, a best-fit rotation curve
for the Milky Way is shown as the solid line. The contributions to the rotation curve from the
stellar disk, the galactic bulge, molecular hydrogen gas, and atomic hydrogen gas are displayed,
and none of these contributions are large enough to explain the elevated rotational velocity of stars
≳ 10 kpc from the galactic center. In Olling et al. (2000), the following dark matter halo profile
ρ(r,z) as a function of galactocentric radius r and elevation above the galactic plane z was used to
model and fit the Milky Way’s rotation curve:

ρ(r,z) = ρh
R2

h

R2
h + r2 + (z/q)2 , (1.9)

where ρh is the central density, Rh is the halo core radius, and q is a halo flattening parameter.
M<r in Equation 1.8 can be expressed as an integral of ρ(r): M<r =

∫ r
0 4πr′2ρ(r′)dr′. In the

regime where r ≪ Rh and the halo flattening term can be ignored, the integral is ∝ r3 and the
rotation curve from Equation 1.8 goes as r. For r ≫ Rh, the integral is ∝ r, and the rotation curve
is therefore flat.

Although Equation 1.9 is an effective minimal model needed to fit the data in Figure 1.6,
the total mass of the galaxy is not easily computed because the integral equation for M<r diverges
as r. A popular halo density profile that ameliorates this divergence and fits simulations well is the
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Navarro-Frenk-White (NFW) profile from Navarro et al. (1997). It involves higher powers of r in
the denominator:

ρ(r) = ρ0

r
Rs

(
1 + r

Rs

)2 , (1.10)

where ρ0 and Rs provide the scale for the galaxy’s density and radius. For r ≫ Rs the integral for
M<r is ∝ ln(r), and the rotation curve falls slowly. The mass integral of the NFW profile is only
logarithmically divergent in r.

The essential picture is that the visible matter of the flat and spiral-shaped Milky Way is embedded
in a spherical halo of dark matter. Visible matter clumps into compact objects like stars and planets
whereas dark matter is diffusely distributed. The galactic dark matter halo is the foundation for
direct detection experiments: we seek rare interactions of the dark matter flux through earth
using low-background settings and ultra-sensitive detectors.
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Chapter 2

Low-mass dark matter particle
candidates

In Section 2.1 and Section 2.2 of this chapter, we explore how dark matter fits within the
larger thermal history of the universe. In Section 2.3, we touch on dark matter histories that
invoke weak-scale interactions and masses. Then, in Section 2.4 and Section 2.5, we motivate and
explore the hidden sector, wherein many newly developed dark matter histories involve hidden
sector extensions to the Standard Model at mass ranges below the weak scale. These extensions are
known as low-mass dark matter particle candidates. Finally, in Section 2.6, we study how these new
dark matter models can provide sharp theory targets for direct detection experiments.

2.1 The thermal history of the universe
This section follows Chapter 3 of Baumann (2022).
The ΛCDM model contends that the universe began as a primordial plasma where everything

was in thermal equilibrium at a temperature T . The equilibrium of the primordial plasma is
maintained through various particle processes such as scatterings, annihilations, and creations. As
the universe expands, which is a consequence of the first Friedmann equation, the temperature
decreases with size: T ∝ a−1. The increasing universe size and decreasing universe temperature are
the main drivers in determining when major events in the early universe occur. The major events
that evolve the primordial plasma into the universe that we know today are outlined in Table 2.1.

Each of the events in Table 2.1 can be related to one of the following three phenomena:
1. The temperature falls below the mass of a certain particle. There is not enough thermal energy

to produce the particle from creation interactions. If the particle is not stable, its abundance
decays away. Certain event depend on the relative abundance of certain particles.

• On a related note, how relativistic a particle of mass m is in the early universe is
determined by m/T (setting c = ℏ = k = 1 here and throughout this chapter): if
m/T ≪ 1, the particle’s total energy equals its kinetic energy, which scales with T , and
the particle is said to be relativistic; if m/T ≫ 1, then the particle’s total energy is given
by its rest mass, and the particle is non-relativistic.

2. An interaction rate Γ for a certain process becomes small compared to the expansion rate H.
The interaction rate for a particular process goes as Γ = nσv, where n is the number density
of particles,1 σ is the interaction cross section, and v is the average velocity of the particles.

1For a process of the form 1 + 2 ↔ 3 + 4, we would write the interaction rate of species 1 as Γ1 = n2σv, where n2
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Event time t redshift z temperature T

EW phase transition 20 ps 1015 100 GeV
QCD phase transition 20 µs 1012 150 MeV
Dark matter freeze-out ? ? ?
Neutrino decoupling 1 s 6×109 1 MeV
Electron-positron annihilation 6 s 2×109 500 keV
Big Bang nucleosynthesis 3 min 4×108 100 keV
Matter-radiation equality 60 kyr 3400 0.75 eV
Recombination, CMB forms 380 kyr 1100 0.26 eV
Present 13.8 Gyr 0 0.24 meV

Table 2.1: The thermal history of the universe. Modified from Baumann (2022).

When Γ≪ H, that interaction essentially stops happening, and any physical condition that
relied on its occurrence (e.g., maintenance of thermal coupling) no longer holds.

3. A relevant energy scale, such as a binding energy, becomes large compared to the temperature.
Particles fall into bound states instead of remaining free within the primordial plasama.

We now go event-by-event in Table 2.1 and connect each event to one of the three reasons
stated above.
• The electroweak phase transition occurs around T = 100 GeV. At this point, the W and Z bosons,

which have masses from 80 GeV to 90 GeV, are no longer abundantly produced. Electroweak
particle interactions weaken with temperature and enter the regime of an effective field theory
wherein the strength of particle interactions is given by the unit-ful Fermi constant GF .

– Technically, the phase transition occurs because the Higgs field is no longer thermally
prevented from rolling to the bottom of its sombrero potential. When it does, the Higgs
field acquires its non-zero vacuum expectation value, which gives mass to all particles.

• The QCD phase transition occurs around T = 150 MeV. Above this temperature, quarks are
asymptotically free. Below this temperature, the strong interaction mediated by gluons binds
quarks into baryons and mesons. On a related note, pions become the effective field theory
mediator to describe interactions between baryons and have mass around this energy scale,
135 MeV to 140 MeV.

• Neutrino decoupling occurs when the weak-scale interaction rate becomes much less than the
expansion rate, Γweak ≪ H. Via a heuristic dimensional analysis argument,2 we can assume
n ∼ T 3, σ ∼ G2

F T 2, and H ∼ √ρ/Mpl ∼ T 2/Mpl, where Mpl is the Planck mass and is equal to

is the density of the target species 2 and v is the average relative velocity of 1 and 2. The interaction rate of species 2
would be Γ2 = n1σv. We have used the expectation that at high energies n1 = n2 ≡ n. Footnote taken directly from
Baumann (2022).

2The heuristic argument is that energy units can be used to infer the correct expression for the various quantities
as they depend on T . When c = ℏ = k = 1, the units of a quantity can be expressed in terms of the equivalent
energy unit exponent. For example, the number density n has units of inverse volume, which in energy units is eV3.
Thus, n ∼ T 3 (this expression could also be reached from the 1/a3 dilution of the universe). Next, for a weak-scale
interaction below 100 GeV, σ is proportional to G2

F , i.e., a squared matrix element. GF has energy units of eV−2. To
recover the eV−2 energy units of cross section, σ ∼ G2

F T 2 is required. Finally, ρ ∼ T 4 is the expression for n with an
additional factor of T given that ρ is an energy density. The T 4 dependence can also be recovered from radiation
redshift of the primordial plasma, as mentioned in Section 1.1.
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1/G. We combine these expressions to find when Γweak ≪ H:

nσv ≪ T 2

Mpl

T 3 ×G2
F T 2 ≪ T 2

Mpl

T ≪
(

1
GF Mpl

)1/3

(2.1)

T ≪ 1 MeV.

The temperature of neutrino decoupling as shown in Table 2.1 is derived from this calculation.
• Below the mass of the electron, around T = 500 keV, electron-positron annihilations dominate

over pair creations; photons do not have enough energy to create electrons. After this point and
before photons decouple from the plasma, the energy of electrons and positrons is transferred to
photons, which is why the cosmic microwave background temperature 2.726 K is warmer than
the cosmic neutrino background temperature of roughly 1.95 K.

• The formation of nuclei during Big Bang nucleosynthesis occurs around T = 100 keV and is
sparked by the production of deuterium nuclei D, which are composed of one neutron and one
proton:

n + p+ ↔ D + γ. (2.2)

The deuterium nucleus has a binding energy of 2.2 MeV, so, at that temperature, the formation
of deuterium nuclei becomes energetically favorable over free protons and neutrons in the
primordial plasma. However, the relative paucity of baryons with respect to photons in the early
universe inhibits the forward process in Equation 2.2 until the temperature is well below the
2.2 MeV binding energy. The observed baryon-to-photon ratio is about 10−9, so it is required
that e2.2 MeV/T greatly exceed 109 in order for deuterium to be abundantly produced.3

• Recombination of electrons and protons to form hydrogen is the forward process of the following
reaction:

e− + p+ ↔ H + γ. (2.3)

The binding energy of the hydrogen atom is 13.6 eV. Like with the formation of deuterium,
in order for the forward reaction to dominate over the backward reaction, e13.6 eV/T ≫ 109 is
required, occurring around T = 0.26 eV; electrons and protons (of which there are believed to be
an equal amount in our universe) are much less abundant than photons. For both the formation
of deuterium and hydrogen, the temperature of the universe must be some factor of 20 to 40
below the corresponding bonding energy so that the high-energy tail of photons does not cause
the corresponding backward reaction to dominate.

Matter-radiation equality is also included in Table 2.1 for its relevance in the next section concerning
relativistic dark matter. We then provide an extensive discussion of various possible dark matter
evolutions in the early universe, focusing first on freeze-out in Section 2.3 and then on other
possibilities within the hidden sector framework in Section 2.5.

3The exponential expression is derived from a Boltzmann equation.
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tuations of the CMB from the first year Wilkinson
Microwave Anisotropy Probe (WMAP) [34,35], the
Cosmic Background Imager (CBI) [36], Boomerang [37],
the Arcminute Cosmology Bolometer Array (ACBAR)
[38], and the Very Small Array (VSA) [39]. Viel et al.
[40] have done a similar statistical analysis to that pre-
sented here, using WMAP and the inferred linear matter
power spectrum of VHS to place constraints on a gravitino
WDM candidate, which is applied to sterile neutrino dark
matter via a central-value relationship. The work presented
here is motivated by using a significantly more accurate
transfer function for sterile neutrino dark matter of
Ref. [28], as well as the results of inclusion of many
more independent cosmological structure data.

It should be noted that observations of nonlinear struc-
tures may be a very powerful handle of primordial power at
extremely small scales. The observations of anomalous
flux ratios in gravitational lens systems can be an indica-
tion of the substructure having a significant fraction of the
mass of the lensing galaxies, which would not be present in
certain WDM models [41,42]. However, the exact level of
the suppression of a substructure that can be tolerated by
these lensing observations is not clear, particularly given
that some small mass halos may be formed by fragmenta-
tion in WDM models [43]; moreover, there may be a
significant enhancement of the observed anomaly by
line-of-sight isolated halos [44]. Another highly nonlinear
process asserted to place strong constraints on the presence
of small-scale power is high-redshift (high-z) star forma-
tion inferred to be required to cause reionization early
enough to produce the anomalously high TE cross-
correlation at low multipoles seen by WMAP [45,46].
CDM models themselves generally have difficulty in pro-
ducing such high-z reionization even when including the
invocation of a very early generation of high-mass star
formation [47], and it is not clear that the resolution of
the problem of an anomalously high TE cross-correlation
at large scales observed by WMAP will be solved by the
presence of small mass halos at high-z.

II. ANALYSIS

Here I present the results of an analysis of observational
constraints on cosmological models with a cosmological
constant and a general cold to warm dark matter in the form
of a sterile neutrino. The standard cosmological model of
structure formation from adiabatic Gaussian fluctuations
seeded by an inflationary epoch is affected by perturbation
growth in the radiation through matter dominated eras. The
distribution of velocities of the dark matter suppresses
fluctuations below its free streaming scale, which increases
with the mean dark matter velocities and decreases with its
mass.

The analysis here follows that of Refs. [2,3], extended to
include the possibility of a sterile neutrino warm dark
matter candidate. The strong degeneracy that is present

between the amplitude of the primordial scalar perturba-
tions and the optical depth to the CMB [2] is exacerbated
by the possibility of WDM. This results from the tightness
of constraints on the matter fluctuation amplitude arising
from the Ly� forest. Allowing a reduction of power at the
smallest scales from WDM can be compensated by an
increase in the primordial fluctuation amplitude, but
made consistent with the CMB fluctuation amplitude by
a high optical depth. There results a strong correlation
between the sterile neutrino particle mass, the optical depth
to the CMB, and the primordial fluctuation amplitude. This
requires a prior to be set on the optical depth to the CMB in
order to disallow unphysically high optical depths, 0:01<
�< 0:3. All other parameters have flat priors well outside
of nonzero likelihood values.

FIG. 1 (color online). Shown are the resulting linear matter
power spectra P�k� for a standard flat cosmological model
�DM � 0:26, �8 � 0:9, �b � 0:04, and h � 0:7 at z � 0, and
with sterile neutrino warm to cold dark matter in the mass range
0:3 keV<ms < 140 keV (gray/cyan). The corresponding CDM
case is dashed (black). Small-scale clustering data used here are
the SDSS 3D power-spectrum of galaxies (diamonds), the in-
ferred slope and amplitude of the matter power spectrum from
SDSS Ly� forest observations (star point and slope between
arrows), the inferred matter power spectrum from Ly� forest
observations from Croft et al. [32] (cross points) and the LUQAS
(square points), as interpreted by VHS [33]. Ly� forest measures
are evolved to z � 0 by the appropriate growth function. The
solid (blue) line at high-k is P�k� for upper limit ms � 8:2 keV
from observations of Virgo [56], the solid (red) line at low-k is
that for the lower limit from the SDSS Ly� forest in this work
(ms � 1:7 keV), and the dotted line is that for the lower limit
using high-resolution Ly� forest data from this work (ms �
3:0 keV).

KEVORK ABAZAJIAN PHYSICAL REVIEW D 73, 063513 (2006)

063513-2

Figure 2.1: Matter power spectrum. Shown are the resulting linear matter power spectra P (k)
for a standard flat cosmological model Ωc = 0.26, σ8 = 0.9, Ωb = 0.04, and h = 0.7 at z = 0, and
with sterile neutrino warm to cold dark matter in the mass range 0.3 keV < ms < 140 keV (cyan).
The corresponding cold dark matter case is dashed (black). Small-scale clustering data used here
are the SDSS 3D power-spectrum of galaxies (diamonds), the inferred slope and amplitude of the
matter power spectrum from SDSS Lyman-α forest observations (star point and slope between
arrows), the inferred matter power spectrum from Lyman-α forest observations from Croft et al.
(2002) (cross points) and the LUQAS (square points), as interpreted by Viel et al. (2004). Lyman-α
forest measures are evolved to z = 0 by the appropriate growth function. The solid (blue) line at
high-k is P (k) for upper limit ms = 8.2 keV from observations of Virgo (Abazajian et al., 2001), the
solid (red) line at low-k is P (k) for the lower limit from the SDSS Lyman-α forest (ms = 1.7 keV),
and the dotted line is P (k) for the lower limit using high-resolution Lyman-α forest data (ms =
3.0 keV). Figure and caption reproduced from Abazajian (2006).

2.2 The matter power spectrum: a gauge on relativistic
dark matter

The matter power spectrum P (k) as a function of inverse length scale, represented as the mode
wavevector k, constrains how long a thermally produced dark matter particle can be relativistic in the
early universe and consequently also constrains the dark matter mass. Scale-invariant inflationary
models predict that the P (k) ∝ k for matter fluctuations. In the radiation-dominated era (up to
about 60,000 years after the Big Bang; z ≈ 3400), matter fluctuation modes that are smaller than
the Hubble radius (within the horizon; sub-horizon) are suppressed by a factor k−2 for a duration
of time ∝ k−2 while the mode is sub-horizon, i.e., disturbable by radiation-driven expansion. This
suppression of matter fluctuations due to radiation-driven expansion is known as the Mészáros
effect. The net result is a k−3 power spectrum dependence for all modes that are sub-horizon before
matter-radiation equality. Once matter domination begins, the expansion rate is reduced, and modes
on all scales grow as a1. Thus, the matter power spectrum is frozen in shape at matter-radiation
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equality and simply grows in amplitude from then on.
The constraint on how relativistic dark matter was in the early universe is provided by

the high-k behavior of the matter power spectrum. P (k) ∝ k−3 over sub-horizon scales holds for
non-relativistic matter. Relativistic dark matter can free stream out of overdensities due to its
high kinetic energy, suppressing the amplitudes of these overdensities. The more relativistic dark
matter is, i.e., the lower mass it is, the longer its free-streaming length. Modes smaller than the
free-streaming length undergo greater suppression than the k−3 scaling noted above. Such dark
matter that is relativistic or near-relativistic at the time of matter-radiation equality is called “hot”
or “warm” while non-relativistic dark matter is called “cold.”

Various P (k) measurements are shown in Figure 2.1. They show agreement with P (k) ∝ k−3.
Figure 2.1 shows the expected effect of dark matter with mass 0.3 keV < ms < 140 keV, in this case
for a dark matter candidate modeled as a sterile neutrino. The data in Figure 2.1 were used to
set lower limits ms > 1.7 keV or ms > 3.0 keV, depending on the selection of the data that was
used. The resulting matter power spectra for warm dark matter at these lower limits are plotted in
red, both solid and dashed, in the Figure 2.1. The matter power spectrum from cold dark matter,
which is dark matter that would be non-relativistic throughout all relevant eras during radiation
domination, is also shown in Figure 2.1 and exhibits no deviation from the k−3 power law at small
scales.

The key takeaway from this discussion is that dark matter as a thermal relic must be greater
than one to a few keV in order to be consistent with measurements of the matter power spectrum
at small scales.

2.3 WIMPs and freeze-out: 1 GeV to 10 TeV
If dark matter is a thermal relic of the primordial plasma, it would undergo a process known

as “freeze-out” to produce the relic abundance that we observe today. This process is shown in
Figure 2.2. When a particle becomes non-relativistic, i.e., m≫ T , the co-moving number density is
exponentially suppressed by a Boltzmann factor e−m/T relative to the co-moving number density
of relativistic particles. If the annihilation process for a particular particle decouples (Γann ≪ H),
then the co-moving number density of that particle cannot decrease, and the particle falls out of
equilibrium with the primordial bath. The resultant fixed abundance of that particle is referred to
as the relic density.

The relic density for any particle that undergoes freeze-out can be calculated using a
Boltzmann equation with the cross section of the annihilation interaction and the mass of the
particle. The earlier a particle decouples, the larger its relic density is expected to be.

A good dark matter candidate χ has a relic density that matches the observed relic density
Ωc from the CMB. The thermally averaged cross section ⟨σv⟩ at the time of freeze-out that produces
the correct relic abundance may be estimated in the following way:

Γ(Tf ) = H(Tf )

nχ(Tf )⟨σv⟩ =

√
8πG

3 ρr(Tf ) radiation-dominated era

⟨σv⟩ =

√
8πG

3
π2

30g∗(Tf )T 4
f

mχ

ρχ(Tf ) radiation ∝ T 4

⟨σv⟩ =
√

8πG

√
g∗(Tf )

10
π

3 T 2
f

mχ

ρ0,χ

T 3
0

T 3
f

matter ∝ T 3
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Figure 2.2: Freeze-out dynamics. n is the number density, m is the mass, and T is the temperature.
In the case of radiation domination, T ∝ a−1, so n/T 3 can be interpreted as the co-moving number
density. Time increases to the right as the temperature falls. Reproduced from Baumann (2022).

⟨σv⟩ =
√

8πG

√
g∗(Tf )

10
π

3
T 3

0
Ωcρcrit

mχ

Tf
(2.4)

⟨σv⟩ = 3× 10−9 GeV−2 = 3× 10−26 cm3/s. (2.5)

ρr and ρχ are energy densities for radiation and dark matter. 0 and f subscripts indicate quantities
at the present and at freeze-out, respectively. g∗(Tf ) is the effective number of relativistic degrees of
freedom at the freeze-out temperature, or in other words, the number of particles that are relativistic
at a given temperature. mχ/Tf is the position on the x-axis in Figure 2.2 at which freeze-out begins.
It must be calculated from a Boltzmann equation; 10 is a good order-of-magnitude estimate.

The quantity calculated in Equation 2.5, ⟨σv⟩ = 3× 10−9 GeV−2, is extremely important.
If dark matter is a thermal freeze-out relic of the primordial plasma, as is the case for all known
matter, then it must have this annihilation cross section to produce the correct relic abundance.

An example of a particle candidate that could produce ⟨σv⟩ = 3× 10−9 GeV−2 is a particle
that annihilates via the Z boson. Such a candidate falls under the classification of a weakly
interacting massive particle (WIMP). For this Z-boson-annihilating candidate, the WIMP would be
more massive than the Z boson, which is about 90 GeV. The thermally averaged annihilation cross
section would follow the standard form for a point-like scattering since the mass of the Z boson is
small compared to the WIMP mass:

⟨σv⟩ = g4

256π2m2
χ

(2.6)

= 3× 10−9 GeV−2
(

g

0.65

)4
(

1.1 TeV
mχ

)2

.

The plugged-in value of g = 0.65 is the coupling constant for the weak force. The fact that such
a coupling constant combined with a larger-than-Z-boson mass would yield a cross section that
is consistent with the relic abundance of dark matter has been termed the “WIMP miracle” and
so motivates the search for TeV-scale freeze-out-produced dark matter. This regime has received
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special attention from the particle physics community because it is a natural energy regime for new
physics. One such new physics candidate is supersymmetry. In general, the above argument applies
not just for the Z boson, but for any massive mediator, such as the Higgs boson or a squark, which
is a hypothetical particle from supersymmetry.

The input values for g and mχ are certainly not the only combination of these parameters
that would produce the appropriate value for ⟨σv⟩. We can increase both mχ and g, but we need to
maintain g ≲ 1 so that the theory remains perturbative. This constraint on g places an upper bound
on mχ in this simplistic model at roughly 10 TeV. We can also decrease both mχ and g and achieve
the appropriate value for ⟨σv⟩, but then we are required to use a less massive boson to mediate
the interaction so that mχ remains larger than the mass of the mediator. Such combinations of
parameters would no longer involve weak-scale physics and so have been referred to as WIMPless
models. A contemporary version of a WIMPless model is the “Elastic Scalar” model described in
Section 2.4.

There is an alternative WIMP regime below the mass of the Z boson wherein the hypothetical
strength of a Z-boson-mediated annihilation now depends on the mass of the Z boson; in this regime,
the electroweak symmetry is broken, and the weak force takes its familiar form, mediating nuclear
processes like beta decays. Recall that it is the relatively large masses of the W and Z bosons that
give the weak force its historical name; the mass of the bosons becomes the dominant term in the
denominator of the propagator. For WIMPs that interact only via the weak force, the relevant
interaction parameter is the Fermi constant GF =

√
2/8 · g2/M2

W , the coupling constant of an
effective field theory at these low energies, where MW is the mass of the W boson.

In this regime below the mass of the Z boson, a thermally averaged cross section can be
recast as an annihilation rate per unit particle number density and so is computed with Fermi’s
Golden Rule:

⟨σv⟩ = Γ
nχ

= 2π|M|2D(E)

= 2π|GF |2
1

8π2 E2N

= N

4π
G2

F m2
χ (2.7)

= 3× 10−9 GeV−2
(

GF

1.166× 10−5 GeV−2

)2 ( mχ

5 GeV

)2
.

In the above calculation, D(E) is the density of states, which is the number of energy states per
unit energy per unit volume, and thus carries units of GeV2. N is the number of relativistic species
that the dark matter particle could annihilate to and is assumed to roughly cancel the factor of
4π.4 The key result here is that a weakly interacting dark matter particle around a few GeV (5 GeV
is the result of the calculation) may also produce the correct relic abundance.

Without invoking Fermi’s Golden Rule, we can also use dimensional analysis to motivate
the ∝ m2

χ scaling: GF is a coupling constant for an effective field theory and carries units of GeV−2;
in order to get the appropriate GeV−2 units for the cross section, which involves G2

F , we can infer
two additional powers of energy from mχ. The ∝ m2

χ proportionality further reminds us that it
does not hold for large mχ. Once the WIMP mass becomes comparable to the W boson mass, we
leave the regime of effective field theory and can no longer use GF as the coupling constant.

The key takeaway from this discussion is that there is a wide potential range for the dark
matter mass mχ from 1 GeV to 10 TeV that would produce the correct relic abundance if dark

4When the temperature falls from roughly 100 MeV to 0.5 MeV, there are about 10 to 20 relativistic species
present in the universe.
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Figure 1

Schematic of hidden-sector dark matter. The barrier in the center of the figure represents the interaction
(from a GUT, weak scale, or light mediators) between the two sectors; a higher barrier represents a weaker
interaction. The mediator connects the visible and hidden sectors, and the different heights of the floors in
the two sectors reflect the mass gap. In the visible sector we have the Standard Model, with a mass gap
for the baryons of around a GeV, while in the dark matter sector, the scale of the mass gap and the structure
of the states there are unknown. Abbreviation: GUT, grand unified theory.

setting its relic abundance through interactions with the SM is challenging (due to constraints
from perturbative unitarity, as explicitly shown below). For heavier-mass DM, one can use gravi-
tational means [e.g., pulsar timing (5) or the unique motions of stars (6)] or an additional DM-SM
fifth force to search for such candidates (7), often through astrophysical means. On the other end
of the mass scale, when the DM is lighter than∼1 eV, it behaves more like a wave than an individ-
ual particle. Detection techniques in this ultralight mass regime focus on using coherence, often
in electromagnetic cavities or with other AMO (atomic, molecular, and optical) techniques (8).
While this is a vibrant area of research, it is not the focus of this article.

We focus on hidden-sector DM candidates in the lowmass range, whose relic abundance is still
naturally set by its interactions with the SM, where there is motivation to search for such a state
through detection of individual particles in terrestrial experiments. This implies a DMmass range
between approximately a few keV (below which DM that is produced by its particle interactions
with the SM will be too warm to cluster appropriately; see, e.g., Reference 9) and approximately
10GeV, just below the weak scale. Because these hidden-sector states have masses below the weak-
scale interactions, making for a low mass floor in the schematic of Figure 1, we refer to these DM
models as hidden-valley DM (HVDM) or hidden-sector DM (HSDM).

The outline of the rest of this review is as follows. In the next section, we review how DM
candidates of a very low mass can naturally have their relic abundance set through interactions
with the SM.We characterize the various kinds of mechanisms that are often used in the literature
to set the relic abundance. We then turn to examining astrophysical and cosmological probes for
HVDM, a discussion that by itself sheds a light on where DM might be detected in terrestrial
experiments. Then we turn to the main subject of the article, terrestrial probes for HVDM, and
focusmostly on direct detection experiments.Novel probesmust be invented to search forHVDM
because the traditional nuclear recoil probes of WIMP DM are ineffective. More specifically, this
implies using the wealth of collective modes (such as phonons and magnons) that are available in
condensed matter systems. We also briefly review other kinds of terrestrial probes for HVDM,
such as accelerator-based experiments.

290 Zurek

Figure 2.3: Schematic of the hidden and visible sectors. Figure reproduced from Zurek (2024).

matter interacts with normal matter via the weak force or a force mediated by electroweak-scale
particles.

2.4 The hidden sector: a few keV to 10 GeV
To produce the relic abundance without the use of weak-scale physics, new interactions and

theories are required. The vast possibilities for these new interactions and theories are referred to
as the hidden sector, in contrast to the visible sector. In general, hidden sector theories may span
up to the 100 TeV unitarity limit, but we focus on extensions to the Standard Model below the
weak scale, mχ ≲ 10 GeV.

Figure 2.3 presents a generic schematic for some overarching structure to the hidden sector.
The horizontal lines represent the mass gap for the various regimes: the masses of the W and
Z bosons, the Higgs, and the top quark correspond to the electroweak-symmetry-breaking scale;
and the mass of the proton, which is a set of confined quarks, provides a rough scale for ΛQCD.
The barrier in the middle of the figure represents the interaction between the visible and hidden
sectors: a larger barrier would mean a weaker interaction. The goal of dark matter direct detection
experiments is to find an interaction of dark matter with the Standard Model beyond just the force
of gravity.

Extensions to the Standard Model that produce the correct relic abundance of dark matter
are very loosely constrained. There may be many dark valleys with complicated internal structure
across a wide range of energies. What is known though is that, for a fermionic thermal relic, the
small-scale matter power spectrum measured from the Lyman-α forest constrains the dark matter
mass to be above a few keV; see Section 2.2. However, there could be other hidden sector particles
that do not satisfy this mass constraint or could even be massless, such as a “dark photon” mediator
between the hidden and visible sectors.

Interactions between the visible and hidden sectors may be mediated by a scalar boson field
or a vector boson field. The unique normalizable interactions of an SM-neutral boson compatible
with all SM symmetries are the vector portal and the Higgs portal (Battaglieri et al., 2017). In
the vector portal, there is essentially a mirror copy of the gauged U(1) symmetry that gives us the
photon. The vector field that arises from this hypothetical symmetry is called the dark photon,
which can kinetically mix with the SM photon via a coupling term of the form −1

2ϵFµνF ′µν , where
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ϵ is known as a kinetic mixing parameter. In the Higgs portal, the minimal model mixes a scalar
field with a minimal SM Higgs, but these couplings can become more complicated. Since the Higgs
field is intimately connected to the mass of particles, many constraints on this particular portal
come from particle physics, such as the decay of the muon.

In the vector portal, there are important differences in the phenomenology depending on
whether the dark matter particle is a complex scalar, a Dirac fermion, or a Majorana fermion. In
the Lagrangian, the mass terms for each of the particles are different, which then changes how the
vector field interacts with the U(1) symmetry. Without going through the details of calculating
Feynman diagrams, the annihilation cross sections of the Majorana fermion and complex scalar
are suppressed by the velocity of the incoming particles. This kind of annihilation is called p-wave
annihilation and corresponds to interactions with angular momentum quantum number ℓ = 1. There
is no such velocity suppression for Dirac fermion dark matter; it undergoes s-wave annihilation,
which corresponds to interactions with angular momentum quantum number ℓ = 0; see Battaglieri
et al. (2017). These ideas are revisited in Section 2.6.

2.5 New dark matter histories in the hidden sector
Some realizations of the portal to the hidden sector are not compatible with the freeze-out

mechanism in that they cannot produce the appropriate relic abundance. Here are three alternatives
to the freeze-out mechanism that may produce the correct relic abundance.

Freeze-in
It is possible for dark matter to have never been in thermal equilibrium with the primordial

plasma, and it is only very weak interactions with the plasma that cause the dark matter abundance
to slowly accrue towards the relic abundance. The dark matter particle would need to have extremely
weak couplings to the Standard Model and so is referred to as a Feebly Interacting Massive Particle
(FIMP) (Hall et al., 2010). Creation interactions of the FIMP produce FIMPs until they stop
because of expansion. If the creation interaction that creates the FIMP has a larger coupling
constant, then one would expect more FIMPs to be created and a higher relic density to be produced.
Note the qualitative difference from WIMP freeze-out, which is controlled by an annihilation cross
section.

Part of the appeal of the freeze-in mechanism is that it is easily reconcilable with super-
symmetry. In many models, the particle that creates the FIMP is called the Lightest Observable
Sector Particle (LOSP) (Hall et al., 2010). Within the framework of supersymmetry, the LOSP is
the lightest superpartner in thermal equilibrium. However, supersymmetry has recently fallen out
of favor due to null results from CERN.

Asymmetric Dark Matter
If the dark matter particle is different from its antiparticle, then there may be an asymmetry

in the number of particles and antiparticles that could determine the relic abundance (Zurek, 2014).
If, say, there were more particles than antiparticles, then once all of the antiparticles have annihilated
away, the remaining particles would comprise the relic abundance. In an asymmetric dark matter
evolution, annihilations cease because there are no more antiparticles with which particles can
annihilate.

The source of this asymmetry may be from a coupling to the Standard Model where there
are plenty of asymmetries. There are more baryons than anti-baryons, and more leptons than
anti-leptons, so either of these two symmetries could be the source of the dark matter asymmetry.
This model was originally motivated by the fact that the energy abundances for baryons and dark
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matter are of the same order of magnitude: ∼4% for baryons and ∼26% for dark matter (Zurek,
2014). Heuristically, this factor of 5 difference could be attributed to a factor of 5 difference in the
masses of the dark matter particle and the proton mass, so this model would predict a dark matter
particle mass around 5 GeV.

ELDERs and SIMPs
All of the above dark matter histories focus on the annihilation or creation interaction of

a dark matter particle χ into or from Standard Model particles as the main process that controls
the relic abundance. The ELDER/SIMP framework introduces two other interactions that could
affect the evolution of dark matter: elastic scattering with SM particles and self-annihilations. The
following discussion of the ELDER/SIMP framework comes from Kuflik et al., 2016 and Kuflik
et al., 2017.

The three relevant interactions are as follows:
1. annihilations to SM: χ + χ→ SM + SM
2. elastic scattering with SM: χ + SM → χ + SM
3. “3 → 2” self-annihilations: χχχ→ χχ.

“2 → 2” scatterings between χ particles also occur and keep the χ particles in equilibrium with each
other.

With three interactions, the order in which the interactions decouple becomes important.
The rates of the first two interactions depend on a kinetic mixing parameter ϵ that couples the
hidden sector to the SM. ϵ was first introduced in the previous section as a way to couple the SM
U(1) symmetry with a hypothetical hidden sector U(1) symmetry. Self-annihilations depend on
a coupling constant α that resides in the hidden sector. The interaction rates also depend on the
prevailing number densities of the interacting particles: if the number densities are higher, then the
interaction occurs more. We assume that the number densities of the χ particles are exponentially
suppressed by a Boltzmann factor of e−mχ/T because the universe has cooled to a point where the χ
particles are no longer relativistic. The number of χ particles on the “reactants” side of the process
then determines the number of Boltzmann factors to include: self-annihilations are most suppressed,
followed by annihilations to SM, then elastic scattering. Annihilations to SM always decouple before
elastic scattering with SM because annihilations to SM have two Boltzmann factors of suppression.

We first cover the dark matter evolution of the elastically decoupling relic (ELDER). The
critical assumption here is that the self-annihilations coupling constant α is large enough that self-
annihilations decouple last of the three interactions (order of decoupling: 1→ 2→ 3). Consequently,
before self-annihilations decouple, χ is no longer in equilibrium with the SM (all interactions with it
have decoupled), so χ would be at a different temperature T ′ from the SM temperature T . This
period of time in which self-annihilations are dominant is called cannibalization. Critically, to
conserve energy, self-annihilations must inject kinetic energy into the χ particles now that there are
fewer of them. These self-annihilations increase the temperature T ′ relative to T , modifying the
Boltzmann suppression to e−mχ/T ′ . Applying conservation of entropy to the now decoupled dark
matter reveals that T ′/T increases quite rapidly; see Figure 2.4 Left. The number density of χ falls
much more slowly than it would have if it had remained in equilibrium with the SM primordial
plasma. Once self-annihilations decouple and the relic density is frozen in, the relic density has
been tightly constrained by the modified Boltzmann suppression, i.e., the relic density depends very
weakly on the exact moment of freeze-out and thus the coupling constant α. This weak dependence
on α is illustrated in the inset of Figure 2.4 Right. In this plot of the co-moving dark matter number
density with time, the relic density has a strong dependence on ϵ and the precise moment at which
the elastic scatterings decouple, hence the name elastically decoupling relic. After freeze-out, the
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Figure 2.4: ELDER dark matter evolution in the early universe. Left: T ′ of dark matter as
a function of the primordial plasma T , which deviate due to self-annihilations of dark matter. The
analytic curve does not take into account the decoupling of the self-annihilations. Reproduced from
Kuflik et al., 2017. Right: mass density versus time in the ELDER framework. Y ≡ n/s, where n is
the number density and s is the entropy density. Since s ∝ T 3 ∝ a−3, Y can roughly be interpreted
as the co-moving number density. Reproduced from Kuflik et al., 2016.

self-annihilations stop injecting energy into the dark matter, so the temperature falls as a−2 (the
dark matter is non-relativistic; this relation results from the first Friedmann equation) whereas the
temperature of the SM falls as a−1, so the temperature of the SM and χ approach each other after
freeze-out of χ, as shown by the Boltzmann solution in Figure 2.4 Left. The main takeaway is that
the relic abundance is strongly dependent on ϵ but weakly dependent on α.

For the strongly interacting massive particle (SIMP), α is small enough so that the self-
annihilations decouple before the elastic scatterings but after the annnihilations to the SM (order of
decoupling: 1 → 3 → 2). When the final annihilation interaction decouples and χ freezes out, χ is
still in equilibrium with the SM, so the number density is Boltzmann suppressed by the usual e−mχ/T .
The moment at which self-annihilations decouple has a large impact on the final relic density. This
evolution is similar to the process depicted in Figure 2.2, except that self-annihilations govern the
freeze-out. Consequently, the relic density is strongly dependent on α and weakly dependent on ϵ.

The so-called “SIMP miracle” is the fact that an mχ around 100 MeV (which is the QCD
symmetry-breaking energy scale) and an α around the strong interaction scale give the appropriate
relic density. It is important to note the qualitative difference with the WIMP miracle: here, the
strong interaction would be between dark matter particles residing in a mirror copy of the SM
strong interaction in the hidden sector, whereas WIMPs interact with the SM via the weak force.

The final possible permutation of the three interactions has the self-annihilations decoupling
first (order: 3 → 1 → 2). The last annihilation interaction to decouple is the annihilation to the SM,
which means that ϵ determines the relic density. Qualitatively, the dark matter evolution is very
similar to the WIMP process, where an annihilation interaction with the SM controls the freeze-out
process; refer to Figure 2.2. In this case, it is possible to produce the correct relic abundance without
invoking weak-scale couplings. These models are described as “WIMPless.”

Figure 2.5 synthesizes the ELDER/SIMP/WIMP(less) relationship into one plot. Each curve
represents different values of α and ϵ that give the appropriate relic density. When the curve is
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Figure 2.5: ELDER/SIMP/WIMP scenarios that produce the relic abundance. α is the
coupling constant that governs the self-annihilations and ϵ is the coupling constant that governs the
kinetic mixing between the hidden sector and the SM. Reproduced from Kuflik et al. (2017).

vertical, there is a strong dependence on ϵ, and when the curve is horizontal, there is a strong
dependence on α.

Summary
As the zeitgeist has shifted away from weak-scale model building, a variety of new theoretical

dark matter histories have been developed that hypothesize connections between the Standard
Model and the hidden sector. Many of these models are built around the inclusion of a hidden U(1)
symmetry.

There has been exploration beyond freeze-out of early universe mechanisms that can produce
the correct relic abundance of dark matter. Freeze-in is a mechanism by which the dark matter
relic abundance is set by the creation cross section. For ELDERs, the relic abundance is set by
the elastic scattering cross section with the SM. For SIMPs, it is the self-annihilation cross section.
Some of these models, like the WIMPless models and asymmetric dark matter, are still focused on
how the annihilation cross section with the Standard Model may set the relic abundance.

2.6 Defining sharp hidden sector targets for direct detection
The scattering cross sections for a dark matter particle with an electron or a nucleon,

σ̄e and σ̄n, are hypothetically measurable in a direct detection experiment. For all of the dark
matter histories outlined in the previous section, except for SIMPs, we can draw a sharp theory
line in the σ̄e–mχ plane under the assumption that electrons are the Standard Model annihilation
product (WIMPless or asymmetric dark matter), scattering target (ELDERs), or annihilation parent
(freeze-in). Conversion from one of these cross sections to the σ̄e scattering cross section in a direct
detection experiment is possible for all the aforementioned interactions because they all arise from
the same Feynman diagram. The Feynman diagram would also include the propagator for the
mediator, which depends on the mass of the mediator. Following Battaglieri et al. (2017), we only
look at the dark-photon vector portal, where the vector field mediator has a mass mA′ that is set to
3mχ for concreteness. We assume electrons for this section, but the following theory targets may
also be converted into the σ̄n −mχ plane.
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Example: annihilation cross section → direct detection cross section
We follow a calculation from Zurek (2024). The thermally averaged annihilation cross section

for two mχ particles to annihilate into electrons through into a vector mediator is given by

⟨σv⟩V =
16παχαem2

χ(
4m2

χ −m2
A′

)2 , (2.8)

where αχ and αe are the couplings of the mediator A′ with the dark matter and the electron.
Specifically, αe is the fine structure constant. Note that the denominator in Equation 2.8, which
arises from the propagator of this theory, is equal to (the available momentum)2 for the mediator.
There are two dark matter particles of mass mχ that contribute (2mχ)2 total energy, and then we
subtract m2

A′ to determine (the available momentum)2.
In the case of a heavy mediator, the interaction cross section with an electron is

σ̄e =
16παeαχµ2

eχ

m4
A′

, (2.9)

where µeχ is the reduced mass between the electron and the dark matter. Because both the expression
for ⟨σv⟩V and the expression σ̄e contain the product αeαχ, the direct detection interaction cross
section can be expressed in the following way:

σ̄e = ⟨σv⟩V

(
1−

4m2
χ

m2
A′

)2
µ2

eχ

m2
χ

. (2.10)

The critical concept to glean from this equation is that σ̄e can be completely specified given a dark
matter mass mχ, a mediator mass mA′ , and an annihilation cross section ⟨σv⟩. This last quantity is
an input from cosmology and is repeated here:

⟨σv⟩ = 3× 10−9 GeV−2 = 1.1× 10−36 cm2, (2.5 revisited)

where the annihilation cross section has been converted into SI units.
In order to draw a sharp theory line in the σ̄e −mχ plane, we must also specify mA′ . In

Figure 2.6, mA′ is set equal to 3mχ, thus removing any mχ dependence from within the parentheses
in Equation 2.10. For the model derived in Equation 2.10, we therefore expect σ̄e ∝ m−2

χ , which
is true for the curves labeled Elastic Scalar and Majorana NR. The curves deviate from m−2

χ at
larger masses where mχ is comparable to the mass of the electron, and the cross section calculations
become more complicated. Putting ⟨σv⟩ = 1.1 × 10−36 cm2, mA′ = 3mχ, and mχ = 1 MeV in
Equation 2.10, σ̄e is approximately 10−37 cm2, which is towards the upper end of Figure 2.6 Left.

We provide brief comments on each of the various curves that are drawn in Figure 2.6.

Elastic Scalar
A complex scalar χ may interact with the SM through χ + χ∗ ↔ A′ → SM + SM. This curve

corresponds to the “WIMPless” scenario (Battaglieri et al., 2017). Technically, s-wave annihilations
of a complex scalar have been ruled out by the CMB. The drawn theory target is for a p-wave
annihilation, which would be adequately velocity-suppressed by the time that recombination occurs
and further velocity-suppressed in present-day direct detection experiments.
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FIG. 6: Constraints and projections for the DM-electron scattering cross section σ̄e. The left (right)

plots assume a momentum-independent (dependent) interaction, FDM = 1 (FDM = (αme/q)
2). Existing

constraints from XENON10 (XENON100) [90, 91] are shown in the blue (red) shaded regions. Projections

show 3 events for a 1-year exposure [50, 90, 94, 95, 98, 99]; the label includes the threshold (in terms of number

of electrons, photons, or the electron recoil energy) and target mass. Solid/dashed/dotted lines indicate

an estimate of the time to start taking data, corresponding roughly to a short/medium/long timescale,

respectively. A solid line indicates a mature technology: data taking can begin in . 2 years and a zero

background (radioactivity or dark currents) is reasonable for the indicated thresholds. A dashed line indicates

more R&D is required and, if successful, data taking could start in ∼ 2− 5 years; the projected sensitivity

assumes that backgrounds can be controlled. A dotted line indicates longer-term R&D efforts. Bottom left

plot assumes DM scatters through an A′ with mA′ = 3mχ. Five theory targets are shown as explained in

Section IV B. In addition to electron-recoil experiments, we show projections from nuclear-recoil experiments

(from Fig. 8). Gray shaded regions are constraints from LSND, E137, BaBar, and current WIMP nuclear-

recoil searches [50]. Bottom right plot assumes DM scatters through an A′ with mA′ � keV; a

freeze-in target is shown. Shaded gray regions are bounds from WIMP nuclear-recoil searches, stellar, and

BBN constraints [50]. The superconductor projection in bottom plots include in-medium effects for an A′

and assume a dynamic range of 10 meV–10 eV. 50

Figure 2.6: Theory targets for MeV-scale electron-recoiling dark matter. Left: σ̄e–mχ

plane for a heavy vector mediator, mA′ = 3mχ. Right: σ̄e–mχ plane for a massless vector mediator,
mA′ ≪ mχ. Both: the orange lines show different combinations of mχ and σ̄e that are compatible
with the observed relic density for different dark matter candidates. Note the arrows on the
SIMP and Asymmetric Fermion lines, for these represent lower bounds. The shaded regions are
current constraints, and the other colored lines are projected constraints for upcoming experiments.
Reproduced from Battaglieri et al., 2017.

ELDER/SIMP
The ELDER line falls below the elastic scalar line because the ELDER relic abundance is set

by scatterings instead of annihilations. Scatterings are not as Boltzmann suppressed as annihilations
(only one dark matter particle is required instead of two), so the correct relic-abundance-producing
scattering cross section must be correspondingly lower. The region in between the ELDER line and
the elastic scalar line is the region that is compatible with the SIMP cosmology. Given mχ and
mA′ , a range of scattering cross sections produces the correct relic density because the relic density
depends weakly on couplings to the SM. The SIMP region is bounded above by the “WIMPless”
elastic scalar line, where annihilations to the SM decouple after self-annihilations (Battaglieri et al.,
2017).

Asymmetric Dirac Fermion
If dark matter is a Dirac fermion, then the annihilations would be s-wave and there would

be no velocity suppression. Constraints from Planck data on the power injected into the CMB by
such annihilations imply that the correct relic density can no longer be reached by freeze-out. The
correct relic density can be achieved if there is an asymmetry between particle and antiparticle dark
matter. The annihilations stop when there are no more antiparticles with which the particles can
be annihilated. These annihilations must stop early enough (the annihilation rate must be high
enough) so that they do not influence the CMB, which is why the constraint plot shows a lower
bound in Figure 2.6 Left as an upward pointing arrow.
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Majorana Fermion
If dark matter is a Majorana Fermion, recall from Section 2.4 that it can only undergo

p-wave annihilations, which are velocity-suppressed and thus are not constrained by the CMB. In a
direct detection experiment, the cross section is suppressed by the velocity of dark matter in the
galactic halo. The Majorana line is the Elastic Scalar line multiplied by 2(µ2

χ,e/n/m2
χ)v2

χ, where
µ2

χ,e/n is the reduced mass of the χ with either an electron or a nucleon. Both scattering processes
are shown in Figure 2.6 Left (Battaglieri et al., 2017).

Freeze-in
If dark matter followed a freeze-in evolution, has a light mediator, and has a mass less than

the mass of the electron, the direct detection cross section σ̄e scales as

σ̄e ≈ 10−39 cm2 mχ

1 keV . (2.11)

This result follows from solving a Boltzmann equation that tracks the production of dark matter in
the early universe (Zurek, 2024). This scaling is visible in Figure 2.6 Right below 1 MeV.

Experimental exclusion limits and sensitivity projections
There are a multitude of direct detection experiments that can probe the 1 MeV to 1 GeV

mass region. The basic mechanism of detection is very similar to the nuclear recoil measurements
for WIMP candidates. Here, because of the low mass of the dark matter particles, detectors search
for electron recoils instead of nuclear recoils. If a given hidden sector model includes a mediator
that couples to both the electron and nucleus, as is the case for the dark photon, then nuclear recoil
exclusion curves can be converted into electron recoil exclusion curves. In the following chapter, we
dive deeper into the fundamental principles of direct detection experiments.
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Chapter 3

Detector architectures for low-mass
particle dark matter

In this chapter, we provide an abbreviated review of the various kinds of particle detector
architectures that can be used to probe particle dark matter. It is by no means comprehensive.
We discuss these architectures in order of detector maturity; the most mature technologies are
those that can be operated at the high exposures and low backgrounds needed to reach some
desired level of dark matter sensitivity. In Section 3.1, we lay the groundwork for deciding upon a
particular detector architecture given the dark matter mass and kinematics of a particular signal
mechanism (nuclear-recoiling or electron-recoiling). In Section 3.2, we discuss particle detection
technologies for weak-scale dark matter candidates, otherwise known as WIMPs, in the 10 GeV
and above mass range. In Section 3.3, we study single-charge-sensitive detector architectures for
low-mass electron-recoiling dark matter. Lastly, in Section 3.4, we explore the burgeoning field of
low-threshold phonon-mediated detectors from a few different angles, including sensor architectures,
phonon calculations, and material choice.

3.1 Typical recoil energies
Nuclear recoils

The transfer of kinetic energy 1
2mχv2 from an incoming dark matter particle of mass mχ

and velocity v⃗ (v ≈ 10−3; c = 1 throughout) to the recoil energy ∆ENR of some target nucleus with
mass mN can be computed with non-relativistic kinematics. In the lab frame, the dark matter
particle imparts some momentum q⃗ upon the essentially motionless nucleus, providing the nucleus
with recoil energy

∆ENR = q2/2mN . (3.1)

Note that, throughout this section, the ⃗ notation indicates a 3-momentum, and the absence of the ⃗
symbol for a vector quantity indicates a Euclidean magnitude; in other words, for the velocities of
dark matter interactions, we can ignore relativistic effects.

Starting from conservation of energy, we can parametrize q in terms of the reduced mass
µNχ and the scattering angle in the lab frame θqv (the angle between q⃗ and v⃗), and then insert the
result back into Equation 3.1:

∆ENR = −∆Eχ

q2

2mN
= 1

2mχv2 − (mχv⃗ − q⃗)2

2mχ
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v

N

v

q
2 N

Figure 3.1: The kinematics of free nuclear recoils. Left: schematic of a dark matter particle
χ about to scatter off a nucleus N . Right: the allowed values of q⃗/2µNχ = v cos θqv for a nuclear
recoil, given by Equation 3.3. The exclusion of q⃗ = 0 is indicated by the empty circle at the origin.
All values of q⃗ have some component that points in the direction of v⃗, i.e., q⃗ · v⃗ > 0. The dashed
line is tangent to the circle at the origin and has been drawn so as to highlight its differences with
the tangent line drawn in Figure 3.2.

q2

2mN
= q⃗ · v⃗ − q2

2mχ

q2

2µNχ
= q⃗ · v⃗ (3.2)

q = 2µNχv cos θqv − π

2 < θqv <
π

2 (3.3)

−→ ∆ENR =
2µ2

Nχv2

mN
cos2 θqv − π

2 < θqv <
π

2 (3.4)

−→ ∆ENR = 1
2mχv2 4mχmN

(mχ + mN )2
1 + cos θCM

2 − π < θCM < π, (3.5)

where θCM is the scattering angle in the center-of-momentum frame. In this case, where one of the
particles is motionless in the lab frame, θCM = 2θqv. The constraint −π/2 < θqv < π/2 arises from
the fact that momentum must be transferred to the nucleus in the direction of the incoming dark
matter particle; the constraint is also necessary to satisfy Equation 3.2. The complete solution to
Equation 3.2 is given by Equation 3.3 and is plotted in Figure 3.1 in the form of q/2µNχ = v cos θqv,
a circle with radius v along the direction of v⃗. All possible values of q⃗ in the collision of a dark
matter particle with a motionless nucleus transfer kinetic energy to the nucleus. We note that the
final line of the derivation, Equation 3.5, is the same as Equation 3.8 in Lewin et al. (1996).

In order to compute a typical recoil energy, we must specify a typical scattering angle.
θqv = θCM = 0 corresponds to head-on collision, the maximal transfer of kinetic energy, and the top
of the circle in Figure 3.1 Right. The boundaries of the scattering angle constraints correspond to
small-angle scattering of the dark matter particle, the vanishing transfer of kinetic energy, and the
bottom of the circle in Figure 3.1 Right. The typical scattering is chosen to be the middle of these
two regimes, corresponding to 45° scattering angles in the lab frame and 90° scattering angles in the
center-of-momentum frame. cos2 45° = 1/2 is also the mean value of cos2 θqv. This angle is inserted
into Equation 3.5:

∆ENR = 1
2mχv2 2mχmN

(mχ + mN )2 , v = 10−3 (3.6)

mχ≈mN−−−−−→ 1
4mχv2 = 5 keV

(
mχ

20 GeV

)
(3.7)



42
mχ≫mN−−−−−−→ mN v2 = 20 keV

(
mN

20 GeV

)
(3.8)

mχ≪mN−−−−−−→
m2

χv2

mN
= 1

2 eV
(

mχ

100 MeV

)2 (20 GeV
mN

)
. (3.9)

We are primarily interested in the final regime, mχ ≪ mN , given the range of low-mass dark matter
particles that are discussed in Chapter 2 and the range of available nuclear targets. The ENR ∝ m2

χ

scaling relation in this regime is critical for determining the type of detector architecture that is
appropriate for detecting a certain dark matter mass.

Electron recoils
Electrons are well suited for low-mass dark matter detection because of their much smaller

mass relative to nuclei. A free electron recoil extracts more kinetic energy from an MeV-scale dark
matter particle than a free nuclear recoil. Furthermore, the kinematics of electron recoils must be
treated differently from nuclear recoils because of the electron velocity; electrons are not motionless
like nuclei. The final deposited energy cannot be characterized as q2/2me because the electron has
some initial momentum p⃗ = mev⃗e (non-relativistic expression because ve ≪ 1, as we see below).
Instead, the electron recoil energy ∆EER can be expressed in the following way, reproduced and
slightly modified from Hochberg, Pyle, et al. (2016):

∆EER = (mev⃗e + q⃗)2

2me
− 1

2mev2
e

= q2

2me
+ q⃗ · v⃗e. (3.10)

An important assumption that is made in Equation 3.10 is that there is no binding energy for the
electron to overcome or at least that the binding energy is small compared to the transferred kinetic
energy. A binding energy is introduced later in this section.

As discussed in Hochberg, Pyle, et al. (2016), a key result of Equation 3.10 is that the
deposited energy depends on the initial velocity of the electron. To see the implications of this
fact more explicitly, we work through a similar calculation as was done for a free nuclear recoil in
Equation 3.3 to arrive at the momentum transfer for a free electron recoil:

∆EER = −∆Eχ

q2

2me
+ q⃗ · v⃗e = 1

2mχv2 − (mχv⃗ − q⃗)2

2mχ

q2

2me
+ q⃗ · v⃗e = q⃗ · v⃗ − q2

2mχ
(3.11)

q2

2µeχ
= q⃗ · (v⃗ − v⃗e) (3.12)

q = 2µeχvrel cos θqvrel − π

2 < θqvrel <
π

2 , (3.13)

where v⃗rel ≡ v⃗ − v⃗e is the relative velocity between the dark matter particle and the electron, and
θqvrel is the angle between q⃗ and v⃗rel. Note the similarity of Equation 3.12 and Equation 3.13 with
Equation 3.2 and Equation 3.3, the main difference being v⃗ → v⃗rel. The circle of allowed q⃗/2µeχ

in Figure 3.2 Right is now centered around v⃗rel instead of just v⃗. As argued in Essig et al. (2016)
and Hochberg, Pyle, et al. (2016), the velocity of the outer electrons in semiconductors or of the
electrons near the Fermi energy in metals is about α ≈ 1/137 ≈ 10−2, i.e., the Fermi velocity. ve for
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Figure 3.2: The kinematics of free electron recoils. Left: a schematic of an electron recoil
wherein the dark matter velocity is perpendicular to the electron velocity. Right: the allowed values
of q/2µeχ for this electron recoil, now centered on v⃗rel ≡ v⃗ − v⃗e and given by Equation 3.13. The
colored segments over the top half of the circle indicate that q⃗ · v⃗ > 0. The smaller blue segment
highlighted by the inset indicates the limited range of q⃗ such that q⃗ · v⃗e > 0. As before, the empty
circle at the origin corresponds to zero momentum transfer, i.e., no collision occurs, and the dashed
line is the tangent to the circle at the origin, now rotated by almost 90° from the dashed line in
Figure 3.1 due to the rapid velocity of the electron.

these electrons thus dominates over the dark matter velocity v ≈ 10−3, which means that v⃗rel ≈ −v⃗e.
In the following paragraphs, we study under what circumstances ∆EER is positive and therefore
detectable for different regimes of mχ.

Large dark matter mass: mχ ≫ me

In this regime, the expression µeχvrel in Equation 3.13 is simply the electron momentum,
which can be estimated from the Fermi momentum or meve: 3 keV to 5 keV. The typical deposited
energy ∆EER is most easily estimated from the right-hand side of Equation 3.11, using µeχvrel ≈
meve = 4 keV and Equation 3.13 for q:

∆EER = q⃗ ·
(

v⃗ − q⃗

2mχ

)
≈ q⃗ · v⃗ = 2× 4 keV× cos θqvrel × 10−3 × cos θqv ≈ 4 eV, (3.14)

where we assume that mχ ≫ q/2v = µeχvrel cos θqvrel/v ≈ meve cos θqvrel/v ≈ 4 MeV and that a
typical value of cos θqvrel is 1/

√
2. Note that cos θqv would then approximately be 1/

√
2 as well.

Furthermore, note that q⃗ · v⃗ is analogous to Equation 3.8, the typical nuclear recoil energy when
mχ ≫ mN : mN v2, except that mN v is replaced by meve. The accessible energy is boosted by a
factor of ve/v. It is important to emphasize that, unlike in the case of free nuclear recoils, not all
collisions of dark matter with free electrons bring about an increase in electron energy. This fact
is indicated by the partial coloring of the allowed q⃗/2µNχ circle in Figure 3.2 Right where q⃗ · v⃗ is
positive. The intuition for why only about half of the q⃗/2µNχ circle provides the electron with
kinetic energy is the following: in the dark matter rest frame, all electron scatters lose kinetic energy
(as is the case for dark matter particles that scatter off motionless nuclei). Only the electrons that
are scattered in the direction of the dark matter’s lab frame velocity receive boosting to their kinetic
energy when transformed back to the lab frame. The kinematics are the same as for spacecraft that
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undergo gravity-assisted acceleration, which was performed on the two Voyager probes. On the
other hand, if v⃗ and v⃗e point in opposite directions, then all values of q⃗ would produce q⃗ · v⃗ > 0.

Small dark matter mass: mχ ≪ me

In this regime, µeχvrel ≈ mχve. The deposited energy can now be estimated from the
left-hand side of Equation 3.11, using µeχvrel ≈ mχve and Equation 3.13 for q:

∆EER = q⃗ ·
(

q⃗

2me
+ v⃗e

)
≈ q⃗ · v⃗e = 2mχv2

e cos θqvrel cos θqve ≈ 2mχv2
e sin2 1

20 ≈
1
2mχv2, (3.15)

where θqve is the angle between q⃗ and v⃗e. Equation 3.15 uses the limit me ≫ q/2ve ≈ mχ cos θqvrel to
ignore the q⃗/2me term in the parentheses. Only a limited range of q⃗ values produces positive q⃗ · v⃗e as
indicated by the blue arc in Figure 3.2 Right. For Equation 3.15, we use θqvrel = θqve = π/2− 1/20
so that q⃗ points halfway between vertical and the orange dashed line in Figure 3.2 Right, maximizing
the product cos θqvrel cos θqve = sin(π/2− θqvrel) sin(π/2− θqve). This direction of q⃗ is also halfway
between v⃗rel and v⃗e. Notably, Equation 3.15 recovers the full kinetic energy of dark matter, which
is the same conclusion as is reached in Hochberg, Pyle, et al. (2016) and broadly motivates the
use of electron recoils to search for sub-MeV dark matter.1 However, there are stringent kinematic
conditions for which the maximal transfer of kinetic energy to electrons is possible: v⃗ cannot be
collinear with v⃗e, and the collision must be glancing. The transfer of kinetic energy from dark
matter to electrons is much less frequent than the other way around. This fact is indicated by the
relatively short length of the blue arc in Figure 3.2 Right where q⃗ · v⃗e > 0.

Ultimately, the depressed rate of ∆EER > 0 when mχ ≪ me and ve ≫ v means that
a strongly constraining dark matter search in this regime requires greater exposure and lower
background rates than if (mass of target) = mχ and (velocity of target) = 0. The large exposure
ensures that the just-glancing perpendicular scatterings with ∆EER > 0 occur frequently enough
for detection; a low background rate is then required from the larger exposure. An alternative
strategy for probing sub-MeV dark matter would be to use an electron target with ve ≪ v, an idea
explored in Section 3.2 of Hochberg, Kahn, Lisanti, et al. (2018a) and the “Novel Materials” section
of Hochberg, Kahn, Kurinsky, et al. (2021); both examples invoke the need for a low Fermi velocity
material. If ve ≪ v, then the kinematics would have the same behavior as free nuclear recoils:
maximum transfer of kinetic energy when mχ ≈ me and a ∆EER ∝ m2

χ scaling when mχ ≪ me. So,
less kinetic energy can be transferred to the electron when ve ≪ v, but ∆EER > 0 occurs more
frequently than when ve ≫ v. In other words, a dark matter search with a ve ≪ v material has less
stringent requirements on exposure and background levels but has more stringent requirements on
energy threshold for a given dark matter mass, with the additional requirement that the background
levels near those lower energy thresholds are sufficiently low.

We briefly revisit the assumptions made in the previous sections. For mχ ≫ me, the term
−q2/2mχ was dropped. The typical energy transfer calculated and the range of q⃗ for which ∆EER
is positive should be considered as overestimates. In contrast, for mχ ≪ me, the term +q2/2me was
discarded. Thus, the range of q⃗ for which ∆EER is positive should be considered an underestimate.

Electron binding energies
We now focus on the impact of electron binding energies Ebound that are comparable to the

free recoil energies calculated above. A large Ebound introduces inelasticity to particle collisions,
1Technically, it is not possible for the full kinetic energy to be transferred from the dark matter to the electron in

the case of perpendicular velocities. There needs to be some component of v⃗e in the direction of v⃗ to completely stop
the dark matter particle. The example provided in Section 2 of Hochberg, Pyle, et al. (2016) does so.
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which means that, when an electron is liberated from a bound state, its free energy Efree cannot
be written as (p⃗ + q⃗)2/2me as it was for a free electron. If we instead parameterize the electron’s
absorbed energy as Efree + Ebound, then the kinematic equation for conservation of energy becomes
the following, reproduced and slightly modified from Equation 2.23 of Trickle et al. (2020) and
Equation A.16 from Essig et al. (2016):

∆EER = Efree + Ebound = −∆Eχ

= −|mχv⃗ − q⃗|2

2mχ
+ 1

2mχv2

= q⃗ · v⃗ − q2

2mχ

−→ vmin(Efree + Ebound, q) =Efree + Ebound
q

+ q

2mχ
. (3.16)

In Equation 3.16, the angle between q⃗ and v⃗ is set equal to 0, corresponding to head-on collision and
maximal transfer of kinetic energy from the dark matter to the electron. Thus, vmin is the minimum
dark matter velocity that could transfer momentum q⃗ and energy Efree + Ebound to produce a free
electron with energy Efree.

It is again useful to see how the (Efree + Ebound)/q term of Equation 3.16 behaves in the
two regimes of earlier discussion: mχ ≫ me and mχ ≪ me. When the dark matter mass is
large, the typical momentum transfer is given by the electron momentum, as stated before. For
Ebound ∼ O(1 eV), which is the case for semiconductor bandgaps between the valence and conduction
bands,2 q ≈ 3 keV to 5 keV would constrain vmin to be 2×10−4 to 3 × 10−4. The majority of the
dark matter particles in the galactic halo have greater speed than this range. In other words, the
rate of electron recoils is not dramatically suppressed by the presence of O(1 eV) bandgaps when the
dark matter mass is large. When mχ ≪ me, the typical momentum transfer is given by q ≈ mχve.
For mχ = 50 keV, vmin ≈ 1/500 is required to free an electron from a 1 eV binding energy. This
constraint depresses the rate of detectable electron recoils given a dark matter velocity distribution
that is centered around v ≈ 10−3. In short, semiconductor bandgaps do not greatly inhibit the
ability of direct detection experiments to search for mχ ≫ me dark matter but are a significant
impediment to the search for mχ ≪ me dark matter. In the latter case, both sub-eV electron recoil
energy thresholds and sub-eV binding energies are required.

Detector architectures for low-mass dark matter
The key ideas of this chapter are summarized in Figure 3.3. The typical and maximum

nuclear recoil energies as a function of dark matter mass for silicon and germanium are plotted in
blue and orange, as computed from Equation 3.6. The regime mχ ≈ mN is towards the right edge of
the plot and corresponds to when ENR ∝ mχ. The regime where mχ ≫ mN and ER ∝ mN is to the
right of the plot limits. The maximum nuclear recoil energy is 2× the typical nuclear recoil energy
and is plotted with the dashed curves. Only when mχ = mN does the maximum recoil energy curve
make contact with the red dashed line, indicating full transfer of dark matter kinetic energy and
optimal kinematic matching.

When the nuclear recoil energy is greater than tens of eV, the nucleus is ejected from its
site, and some amount of charge is produced. This energy regime is indicated in green in Figure 3.3.

2For reference, in silicon and germanium, the bandgaps are 1.11 eV and 0.67 eV. These are the minimum energies
required to produce an electron-hole pair. The average energies to produce an electron-hole pair are 3.6 eV and 2.9 eV.
See Section 5 of Essig et al. (2016).
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Figure 3.3: Recoil energy for silicon nuclei, germanium nuclei, and electrons versus dark
matter mass. Typical and maximum recoil energies are compared against the dark matter kinetic
energy. * indicates that the green dashed curve is constructed in an ad hoc way so as to match the
limiting behaviors that were computed earlier in Section 3.1. Relevant energy regimes are drawn
with different colored bands. Phonon production spans the entire plotted nuclear recoil energy
range. SuperCDMS SNOLAB phonon thresholds are indicated.

The energy required to displace the nucleus is referred to as the displacement threshold energy and
was measured to be 19.7 eV in germanium (SuperCDMS Collaboration, 2018) and is believed to
range from 20 eV to 40 eV for silicon (Holmström et al., 2008). SuperCDMS SNOLAB targets recoil
energies at hundreds of eV and above, as shown by the black points in Figure 3.3. An ideal detector
architecture for these energy regimes would be able to measure charge production and use it for
discrimination of nuclear recoils from background electron recoils. This technique is described in
Section 3.2.

For energies below about 20 eV to 40 eV in silicon and germanium, nuclear recoils no longer
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produce charge; instead, all of the nuclear recoil energy goes directly into the production of phonons.
Thus, to probe nucleon-coupled dark matter below about 1 GeV, there is only the phonon channel.
For sensitivity to ∼10 MeV dark matter mass in silicon and germanium, meV nuclear recoil thresholds
are required. Detector architectures focused on the lowest possible energy thresholds are discussed
in Section 3.4. It is important to keep in mind that, for every decade in dark matter mass reach
that is desired, two decades of improvement in energy threshold are required.

The typical energy of a single optical phonon is shown as the purple band in Figure 3.3.
Due to the constant dispersion relation of optical phonons, they may be a particularly fruitful
phonon channel; see Knapen, Lin, Pyle, et al. (2018) and Section 3.4. At recoil energies below about
100 meV, discretized phonon production becomes relevant. The rate calculations of single-phonon
and multi-phonon excitations from Trickle et al. (2020) and Campbell-Deem et al. (2022) are
examined in Section 3.4.

The electron recoil energy curves are plotted in green. As a reference, the typical ve = 0
electron recoil energy calculated by Equation 3.6 is drawn as the solid curve in Figure 3.3 to indicate
how electrons have better kinematic matching than nuclei; nearly five orders of magnitude separate
the masses of electrons and the plotted nuclei. In practice, electrons have velocity ve ≈ 10−2,
which dramatically changes the kinematics from the ve = 0 case. There are two main differences to
highlight, as illustrated by the dashed green curve. First, the dashed curve is not 2× the solid curve
as is the case for nuclear recoils. In the mχ ≫ me regime, the maximum accessible recoil energy
is boosted by a factor of ve/v. The curve is drawn to level out at 8 eV, corresponding to collinear
electron and dark matter velocities and head-on collision. Second, when mχ ≪ me, the entire kinetic
energy of the dark matter is accessible to the rapidly moving electron, but only for specific kinematic
scenarios: roughly perpendicular electron and dark matter velocities and a glancing collision. As
indicated in the caption of Figure 3.3, the dashed curve for electrons is drawn in an ad hoc way so
as to match the two limiting behaviors that are computed earlier in this section. Across all regimes,
the kinematics of an electron recoil allows for greater transfer of kinetic energy, but the fractional
rate of maximal energy transfer is less than the fractional rate of maximal energy transfer from
a nuclear recoil due to the stringent kinematic requirements for maximal energy transfer from an
electron recoil.

Lastly, only certain electron recoils produce enough energy to overcome certain electron
binding energies. When mχ ≫ me, the recoil energy boost ve/v is sufficient to liberate the maximally
recoiled electrons given semiconductor bandgaps. Charge-sensitive semiconductor detectors with
> 1 eV thresholds are well suited for MeV–GeV dark matter detection and, furthermore, are generally
accessible for fabrication. They are studied in Section 3.3. In contrast, when mχ ≪ me, smaller
electronic bandgaps are required in addition to meV energy thresholds. Such materials include Dirac
materials and superconductors, explored in Hochberg, Kahn, Lisanti, et al. (2018b) and Hochberg,
Zhao, et al. (2016), and are much less readily accessible for detector fabrication.

3.2 Charge-producing nuclear recoils for WIMP searches
Liquid-noble-element detectors: scintillation & charge

Liquid-noble-element detectors have proven to be very effective for WIMP searches above
10 GeV. In the case of the LUX-ZEPLIN (LZ) experiment, which operates a liquid xenon detector,
the combination of ultra-radiopurity down to 10−5 dru3 (LZ Collaboration, 2023a) and experimental
scalability up to ton·yr exposures (LZ Collaboration, 2023b) has been the key to the sensitivity of
the LZ detector.

31 dru=1 event/kg/day/keV
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Figure 3.4: Xenon time projection chamber. Figure panels are screenshots of a video from
XENONnT Collaboration (2024).

A 30 GeV nuclear-recoiling dark matter interaction would cause an approximately 10 keV
nuclear recoil in xenon, producing both scintillation photons and ionization. Liquid noble experiments
leverage both forms of signal in a detector architecture referred to as a time projection chamber.
The production and detection of these two signals are illustrated in Figure 3.4. Both scintillation
and ionization signals are produced immediately upon impact of an incoming particle, as shown in
Figure 3.4 Top Right. The initial scintillation photons, illustrated as the faint white aura, propagate
immediately to the photomultiplier tubes at the top and bottom of the detector; this measurement
is called the S1 signal. Over the following milliseconds, a vertical electric field drifts the electrons to
the top of the liquid xenon, where there is an interface between gaseous and liquid xenon. Here,
a stronger electric field extracts the electrons from the liquid and accelerates them through the
gaseous xenon where proportional electroluminescence converts the ionization signal to light; see
Figure 3.4 Bottom Left. The measurement of these secondary photons is called the S2 signal, which
is localized to the photomultiplier tubes that are closest to the electrons. It provides a measure
of the charge production from the initial particle event. The relative strengths of the S1 and S2
signals can be used to discriminate between nuclear recoils and electron recoils; an electron recoil
produces a fractionally stronger S2 signal than a nuclear recoil.

Argon is another liquid noble element that has been used in time projection chambers. The
main experiment that operates an argon time projection chamber is the DarkSide Collaboration.
For searches above 10 GeV dark matter mass, argon-based searches benefit from additional electron
recoil discrimination via the S1 pulse shape, which is independent of the S2 to S1 ratio (DarkSide-50
Collaboration, 2018). For low-mass dark matter searches, argon has better kinematic matching than
xenon because of its lower atomic mass (∼40 amu versus ∼131 amu). Currently, the world-leading
exclusion limit in the range from 2 GeV to 5 GeV for low-mass WIMPs is from Collaboration (2023),
which uses an S2-only analysis.

The typical mode of detector operation for low-mass dark matter searches in liquid-noble-
element detectors is high-voltage, S2-only (charge-only) readout, analogous to the high-voltage
operation of semiconductor detectors that are discussed in Chapters 4 and 5. The main obstacle to
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these kinds of searches in liquid-noble-element detectors are single-electron backgrounds, consisting
of spontaneous extraction of single electrons from the liquid noble element or emission from other
sources (e.g., wires). These backgrounds tend to be worse in xenon than in argon.

Semiconductor detectors: phonons & charge
In silicon and germanium, nuclear recoils greater than about 50 eV dislocate the nucleus

from its lattice site in the crystal. The following description for what happens next is taken directly
from Particle Data Group (2014): “The recoiling particle deposits energy along its track, with the
majority going directly into phonons. A minority of the energy goes directly into the production
of charge. Energy deposited in ionization is recovered when the carriers recombine.” Similar to
liquid-noble experiments that separately measure scintillation and charge, many semiconductor
detectors are constructed to separately measure the production of phonons and charge. A nuclear
recoil produces fractionally less charge than an electron recoil.

The charge is collected by applying an electric field throughout the detector. The col-
lected charge is read out by transconductance amplifiers attached to the ionization bias electrodes.
SuperCDMS uses high electron mobility transistors (HEMTs) in these amplifiers (SuperCDMS
SNOLAB TDR, 2018) and anticipates charge resolutions of about 50 electrons rms (SuperCDMS
Collaboration, 2023). In the past, SuperCDMS has used junction field-effect transistors (JFETs) for
charge sensing. Current HEMT-based techniques for charge sensing have reached charge resolutions
as low as 7 to 10 electrons by minimizing parasitic capacitances; see Anczarski et al. (2024) and
Ricochet Collaboration (2024).

There are many types of phonon sensors that can be used for phonon-mediated particle
detection. Thermal phonon sensing offers one such avenue for detection. The initial recoil energy
thermalizes over the course of milliseconds and raises the temperature of the crystal’s blackbody
phonon spectrum over that timescale. CDMS I and EDELWEISS I–III were two experiments
that used neutron-transmutation-doped (NTD) germanium thermistors to sense the temperature
change. In both cases, the resistance change of the thermistor was amplified with a JFET-based
voltage amplifier. The simultaneous detection of charge and phonon signals enabled nuclear recoil
discrimination from electron-recoiling backgrounds. In a review of sub-Kelvin detectors in Particle
Data Group (2014), the ultimate phonon energy resolution of a 10 mK, 1 kg detector that senses
thermal phonons is calculated to be about 5 eV and is in practice usually about an order of magnitude
worse due to readout noise or unwanted power dissipation. This energy resolution is still sufficient
for detecting dark matter with a mass greater than 10 GeV.

Athermal phonon sensing is perhaps a preferred alternative to thermal phonon sensing.
There are two main reasons: (1) sensing athermal phonons before they down-convert via anharmonic
scattering to the thermal phonon population enables position reconstruction of the phonon-producing
event and consequent rejection of backgrounds; and (2) athermal phonon-sensing architectures are not
subject to the crystal thermal noise, only the intrinsic noise of the sensor. Superconducting sensors
are a prime candidate for the detection of athermal phonons; the minimum quanta of detectable
energy in a superconductor is the superconducting bandgap, which for most superconductors ranges
from 10 µeV to 1 meV. The current and future possibilities for athermal-phonon-sensing architectures
are discussed in Section 3.4.

We also provide some background information for the energy and frequency scale of athermal
phonons. 1 THz (≈ 4 meV) is the frequency at which phonons begin to propagate ballistically over
a cm-sized chip. The phonons produced during the down-conversion cascade and recombination
of electron-hole pairs have much higher energies (optical phonons in silicon are about 60 meV; see
Griffin, Inzani, et al., 2020) but then undergo frequent anharmonic scatterings and down-convert
to lower energies. The rate of anharmonic scatterings goes as ν5. At frequencies around 1 THz,
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Figure 3.5: Charge-coupled devices for dark matter. Figures are from DAMIC-M Collaboration
(2024).

the rates of anharmonic and isotopic scatterings (which change the direction of phonons but do
not change their energy; the rate of isotopic scatterings goes as ν4) decrease such that ballistic
propagation through the crystal is possible. See Pyle (2012), Martinez et al. (2019), Particle Data
Group (2014), and the references therein for more information.

3.3 Single-charge-sensitive detectors
For signal models of electron-recoiling dark matter with mass greater than the electron,

about 1 to 10 free electrons are expected to be produced (Essig et al., 2016). The rapid velocity of
electrons enables enhanced transfer of kinetic energy, as described in Section 3.1. The many theory
targets that would yield this range of charge production motivate a detector architecture that is
sensitive enough to detect single electrons.

A silicon charge-coupled device (CCD) is an excellent detector architecture that is capable
of single-electron sensitivity. In the CCD schematic shown in Figure 3.5, it is organized into
15µm×15µm pixels, each with a 3-phase polysilicon gate that can hold and transfer charge to
adjacent pixels. After the charge is collected in the various pixels, it is brought to an on-chip
charge-to-voltage amplifier via an assembly-line process called clocking, which essentially is a voltage
control protocol of the 3-phase gates. The final product is a picture of the charge-producing events
in a silicon chip, as seen in Figure 3.5 Right. Techniques for discriminating nuclear recoils from
electron recoils with CCDs are possible, as is evident in Figure 3.5 Right.

The Skipper CCD is an advanced version of the CCD and has provided unprecedented
charge-resolving capabilities in direct detection experiments. Skipper CCDs were originally developed
in the 1990s for use in the Hubble Space Telescope and other such applications; see Chandler et al.
(1990). Skipper CCDs can non-destructively re-measure the charge quantity in a single pixel in order
to integrate down readout noise. This resolution-enhancing tactic has proven immensely successful
at circumventing 1/f low frequency noise that plagues low noise experiments. The result is a truly
remarkable baseline charge resolution of 0.068 e−/pixel (rms) (Tiffenberg et al., 2017).

The SENSEI and DAMIC-M collaborations have used CCDs with masses ranging from 2 g to
10 g to search for electron-recoiling dark matter. Presently, SENSEI and DAMIC-M have set the two
most stringent constraints on electron-recoiling dark matter in a range around 10 MeV dark matter
mass (the size of the range is either one or three decades depending on the choice of mediator mass),
both with about 100 g·day exposures (SENSEI Collaboration, 2023) (DAMIC-M Collaboration,
2023). Both collaborations are pursuing larger exposure searches within their low-background
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underground laboratories: SENSEI at SNOLAB and DAMIC-M at the Laboratoire Souterrain de
Modane. Beyond that, the two collaborations plan to join forces in the near future as the Oscura
collaboration.

Notably, SuperCDMS has also developed gram-scale single-charge-sensitive detectors using
only phonon sensors. They are known as HVeV detectors. These detectors are covered in Chapters 4
and 5.

3.4 Low-threshold phonon-mediated detectors
Phonon sensor architectures

As indicated by Figure 3.3, detecting nuclear-recoiling dark matter below 1 GeV with a semi-
conductor detector requires phonon-mediated detectors with O(10 eV) thresholds. Such thresholds
have already been achieved in prototype gram-scale detectors and have enabled world-leading dark
matter searches in the sub-GeV mass range: see SuperCDMS Collaboration (2021) and SuperCDMS
Collaboration (2022a).

SuperCDMS phonon sensors are known as quasiparticle-trapping-assisted electrothermal-
feedback transition-edge sensors (QETs). The design of the SuperCDMS QETs is shown in Figure 3.6.
Beginning with CDMS II, the SuperCDMS collaboration has used this sensor architecture to detect
athermal phonons. A transition edge sensor (TES) is a superconducting wire that is operated at its
critical temperature Tc; a slight change in the temperature of the TES as a result of some absorbed
energy results in a large change in the resistance of the wire. The TES is the sensitive element of
this architecture.

To maximize sensitivity, a single TES’s volume is kept small, around tens of µm3 (200 µm×
2µm × 40 nm are the dimensions of a SuperCDMS High Voltage detector’s TES, and is coupled
to multiple phonon collection fins, which are responsible for efficient collection of the athermal
phonon energy in the substrate. The phonon fins are usually around 10,000 µm3 in volume
(700 µm × 500 µm × 500 nm are rough dimensions of the aluminum fins of a SuperCDMS High
Voltage detector). For efficient phonon collection, hundreds of such cells are wired in parallel over
the surface of the detector.

When phonons are absorbed in the collection fins, Cooper pairs are broken and quasiparticles
are created. Quasiparticles can be thought of as free electrons in the superconductor, but their precise
treatment is more complicated: they are momentum eigenstates of a diagonalized BCS Hamiltonian
(Tinkham, 2004). The material for a phonon collection fin is chosen to have a higher Tc than the
TES Tc. When there are two materials with different Tcs in contact with each other, randomly
diffusing quasiparticles from the higher-Tc material may enter the lower-Tc material and then emit
a phonon to become trapped in the lower-Tc material. In this case, the trapping of quasiparticles
from the collection fin and into the TES enables the TES to be sensitive to pair-breaking phonons
from the substrate. The longest dimension for a phonon fin is usually kept around 500µm to 1 mm
to accommodate the typical diffusion length of quasiparticles in aluminum.4 The best achieved
energy resolutions with this sensor architecture range from 375 meV (TESSERACT Collaboration,
2024) to 700 meV (Romani et al., 2024), corresponding to O(eV) energy thresholds.

These detectors, the aforementioned O(10 eV) threshold detectors, and many other low-
threshold phonon-mediated detectors in rare event searches have uncovered a new and dominant
phonon-only background at these low energies (EXCESS workshop, 2022). This background has
been referred to as the low energy excess (LEE) or more specifically the zero-charge low energy
excess (0QLEE).5 We describe in more detail and explore tactics to circumvent this background in

4The diffusion length ℓ =
√

Dτqp, where D is the diffusion coefficient and τqp is the quasiparticle lifetime.
5Low-energy ionizing backgrounds are also discussed in EXCESS workshop (2022).
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as described in the text.
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Figure 11: (Left) Diagram of the SuperCDMS HV athermal phonon sensor design. (Middle) Close-
up of the W TES and its connections to the Al phonon collection fins. (Right top) Heuristic
cross-sectional view of the athermal phonon sensor.

and is illustrated in Figure 10. The athermal phonons generated by an event in the detector substrate
propagate to the detector surface and are absorbed by superconducting aluminum collection fins.
The absorbed phonons break Cooper pairs and generate quasiparticle excitations (free electrons,
roughly speaking) in the Al. The quasiparticles diffuse through the Al, with hopefully the vast
majority getting trapped into the attached tungsten (W) Transition Edge Sensors (TESs), where
their energy is deposited, heating up the TESs. The tungsten is voltage-biased into its narrow
superconducting transition, and the small change in its electron temperature from the deposited
energy causes a large (and measurable) change in its electrical resistance. Electrothermal feedback
returns the TES to its nominal operating resistance and provides a simple calibration of the received
energy as the integral of the deficit in Joule heating V 2/R due to the increase in resistance. The
geometry of the QET used for the SuperCDMS SNOLAB CDMS-HV detector design is shown in
Figure 11.

By vastly increasing the surface area from which athermal phonons can be collected relative
to a design that uses TESs alone (e.g., CRESST [85, 86, 28]), while minimally increasing the heat

26

Figure 3.6: SuperCDMS phonon sensor design. The entire sensor is referred to as a quasiparticle-
trapping-assisted electrothermal-feedback transition edge sensor (QET). The TES in red is the
sensitive element and is made from tungsten. The collection fins in teal are responsible for phonon
collection and are made from aluminum. Reproduced from SuperCDMS SNOLAB TDR (2018).

Chapters 4 and 5.
New phonon sensor architectures are being explored to achieve sub-eV energy thresholds.

Kinetic inductance detectors (KIDs) are an attractive option; they are directly sensitive to quasipar-
ticle density in the superconductor and so could provide long-term benefits as a unified phonon
absorber and sensitive element. This idea is explored in great detail in Chapters 6, 7, and 8. Two
other alternatives have been proposed in the last year that involve quasiparticle counting with
superconducting qubits: superconducting quasiparticle-amplifying transmons (SQUATs) (Fink et al.,
2024) and quantum parity detectors (QPDs) (Ramanathan, Parker, et al., 2024).

The transition from free nuclear recoils to single phonons
At low momentum transfer q and low recoil energies ω (previously labeled ∆ENR; note that

ω is not a frequency), a nuclear interaction transitions from the realm of free nuclear recoils to the
quantized excitation of phonons. We work through some of the main results in Trickle et al. (2020).
The article details the rate calculation for both free nuclear recoils and single phonon excitations,
provides intuition for what regimes each calculation holds, and also builds a theoretical framework
for computing dark matter scattering rates across a wide variety of excitations.

Rate calculation
Trickle et al. (2020) writes the spin-independent differential rate (per target mass) energy

spectrum as
dR

dω
= 1

ρT

ρχ

mχ

πσ̄

µ2

∫
d3vfχ(v⃗)

∫
d3q

(2π)3F
2
med(q)S(q⃗, ωq⃗)δ(ω − ωq⃗). (3.17)

Notes and observations:
• ρT = mT /V is the density of a detector with volume V , and ρχ is the local density of dark

matter, usually set to 0.3 GeV/cm3. V ρχ/mχ is the number of dark matter particles present in
the detector.

•
∫

d3vfχ(v⃗) is the integral over the dark matter’s velocity distribution, generally assumed to be
a Maxwell-Boltzmann distribution, shifted by the Earth’s velocity and truncated by the dark
matter escape velocity.
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• (πσ̄/µ2)F2
med(q) = |M(q)|2 is the vacuum matrix element for 2→2 scattering. σ̄ is the scattering

cross section that may be constrained in a direct detection experiment.6 µ is the reduced mass
of dark matter with whatever the target is. Fmed is the q dependence of M, which comes from
the mediator propagator for tree-level scattering:

Fmed(q) =

1 heavy mediator

(q0/q)2 light mediator,
(3.18)

where q0 is a reference momentum and is equal to mχv0 for nucleon scattering and αme for
electron scattering. In essence, M(q) characterizes the strength of the fundamental particle
physics coupling of dark matter with the Standard Model.

• S(q⃗, ω) is the dynamic structure factor and captures the target’s response to an energy deposition
ω and a momentum transfer q⃗. It is given by

S(q⃗, ω) ≡ 1
V

∑
f

|⟨f |FT (q⃗)|i⟩|22πδ(Ef − Ei − ω), (3.19)

where the dark matter triggers a transition |i⟩ → |f⟩ from some initial state with energy Ei to a
final state with energy Ef . FT (q⃗) is a target form factor composed of weighted contributions
from protons p, neutrons n, and electrons e:

FT (q⃗) ∝ fp(q⃗)ñp(−q⃗) + fn(q⃗)ñn(−q⃗) + fe(q⃗)ñe(−q⃗), (3.20)

where fp,n,e are the effective in-medium form factors and ñp,n,e(−q⃗) are the Fourier transforms
of the number densities for the different components. FT (q⃗) may have a factor of 1/fn or 1/fe if
the cross section to the neutron or the electron is used as the reference. Notably, the response of
the target has been factorized from the fundamental particle physics coupling given by |M(q)|2.

• The transfer of energy is constrained by the momentum transfer such that

ωq⃗ = 1
2mχv2 − (mχv⃗ − q⃗)2

2mχ
= q⃗ · v⃗ − q2

2mχ
. (3.21)

The delta function δ(ω − ωq⃗) selects the values of ω that are on this curve. S is evaluated at ωq⃗.

Dynamic structure factor
The key difference in the rate calculation between nuclear recoil production and single-

phonon production lies in the dynamic structure factor S(q⃗, ω). We reproduce and slightly modify
the dynamic structure factors for these two production mechanisms as written in Equation 59 and
Equation 90 from Trickle et al. (2020):

Nuclear recoils: S(q⃗, ω) = 2π
ρT

mN

f2
N

f2
n

F 2
N (q⃗)δ

(
ω − q2

2mN

)
(3.22)

Single phonons: S(q⃗, ω) = π

Ωe−2W (q⃗) f2
N

f2
n

F 2
N (q⃗)

∑
ν

∣∣∣q⃗ · ϵ⃗∗
ν,⃗k

∣∣∣2
mN ω

ν,⃗k

δ(ω − ω
ν,⃗k

). (3.23)

The single phonon expression has been simplified from Trickle et al. (2020) to the case of a single
atom in the primitive cell.

There is a noteworthy correspondence between each of the terms in Equation 3.22 and
Equation 3.23:

6Generally, the constrained cross section is either with the nucleon or the electron; in the latter case an additional
factor σnucleus = A2σnucleon is needed to take into account coherence effects.
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q

(a) LO mode

q

(b) TO mode

FIG. 1. Visual representation of the optical modes in GaAs, for a lattice containing two primitive cells in each
direction. The black lines outline a single primitive cell, containing one As atom (purple) and 8 times 1/8 of a
Ga atom (brown). The green arrows indicate the atomic motions at a snapshot in time, while the black arrow
is the phonon propagation direction. Figures generated with [37].

1. Acoustic vs. Optical Phonons

Polar crystals have a primitive unit cell with more than one type of atom. The total number of
phonon modes is given by the number of atoms in the primitive cell multiplied by a factor of three
due to three spatial degrees of freedom. Three of the phonon modes are always acoustic modes, where
atoms in the primitive cell oscillate exactly in phase in the long-wavelength limit. The rest of the
modes are optical phonon modes, where the atoms oscillate out of phase. For GaAs there are three
optical modes, two transverse (TO) modes and one longitudinal (LO) mode, as visualized in Fig. 1.
For sapphire, there are 10 atoms in the primitive cell and as a result 30 phonon modes, divided into
3 acoustic branches and 27 optical branches. The dispersion of the phonons (energy of the mode as a
function of the momentum) for each material is shown in Fig. 2. Note that we have shown the band
structure along a high-symmetry path within the Brillouin zone; for reference, the typical size of the
Brillouin zone in physical units is on the order of ∼ keV.

The acoustic modes (labeled transverse (TA) and longitudinal (LA) acoustic) have the standard
gapless, linear dispersion at |q| ≈ 0 (“Γ” point in Fig. 2.) The slope is given by the speed of sound
cs = ω/|q| near |q| → 0, where the longitudinal sound speed is cs ∼ 4000 m/s in GaAs and cs ∼
104 m/s in sapphire, though for sapphire the sound speed is somewhat direction dependent [39]. In
the long wavelength limit, these modes carry no energy, as they correspond to translations of the
lattice as whole. In this sense, the acoustic modes can be considered as the Goldstone modes4 of
the spontaneous breaking of the translation invariance by the crystal. The optical phonons are not
protected by Goldstone’s theorem, and at q ≈ 0 they can be thought of as a standing, non-propagating

4 There are no Goldstone modes associated with the spontaneous breaking of the rotation invariance: in the presence
of a broken translational symmetry, rotations do not give rise to a linearly independent set of Goldstone modes (see
e.g. [40, 41]).

6

Figure 3.7: Single-phonon dispersion relations. Left: a visualization of longitudinal optical
phonons in a polar material such as GaAs. Reproduced from Griffin, Knapen, et al. (2018). Right:
phonon modes in GaAs, truncated at qBZ ≈ 2 keV. The phase space for a dark matter particle with
mass mχ = 25 keV is indicated in red. Phonon thresholds at 10 meV and 1 meV are also shown.
Reproduced from Knapen, Lin, Pyle, et al. (2018).

• ρT /mN ←→ 1/Ω. Ω is the volume of the primitive cell.
• (f2

N /f2
n)F 2

N (q⃗) ←→ (f2
N /f2

n)F 2
N (q⃗). This expression, identical for the two cases, is a re-

organization of the fp,n,e terms for F(T ) in Equation 3.20. FT has been expressed in terms of a
weighted average nucleon form factor fN ≡ fpZ + fn(A− Z) and a nucleus form factor FN (q⃗)
that is given by the Helm form factor (Helm, 1956).

• 1 = q2/2mN ω ←→
∑

ν |q⃗ · ϵ⃗∗
ν,⃗k
|2/mN ω

ν,⃗k
. The former does not appear in Equation 3.22 but may

be inserted because it is equal to unity. The equality is enforced by the δ function. The latter
is a sum over the phonon branches ν, which are populated with phonon polarization vectors
ϵ⃗
ν,⃗k

and phonon energies ω
ν,⃗k

. The phonon momentum k⃗ satisfies q⃗ = k⃗ + G⃗, where G⃗ is the
reciprocal lattice vector in the first Brillouin zone. The correspondence of note here is that both
terms take the form q2/mω.

• δ(ω − q2/2mN )←→ δ(ω − ω
ν,⃗k

). The δ functions enforce conservation of energy. In the case of
nuclear recoils, the nucleus receives energy q2/2mN ; in the case of a single phonon production,
the phonon has energy ω

ν,⃗k
, indexed by momentum and energy.

More details on the rate calculation for free nuclear recoils and single phonons can be found in
Appendix A.

The main difference between Equation 3.22 and Equation 3.23 is the term e−2W (q⃗), which
is known as the Debye-Waller factor. It arises from phonon annihilation-creation commutation
relations. As reported in Trickle et al. (2020), W (q⃗) ∼ q2/4mN ω. If q ≫

√
2mN ωph ≈ 100 keV, where

ωph ≈ 10–100 meV is the energy of a single optical phonon, then the direct production of phonons is
greatly suppressed, and the free nuclear recoil rate is higher. Furthermore, if q ≫

√
2mN ωph, then

ω = q2/2mN ≫ ωph, i.e., large momentum transfers correspond to large energy depositions that are
well in excess of typical single-phonon energies. Trickle et al. (2020) makes a heuristic argument on
the topic of energy regimes using the uncertainty principle: hard scattering occurs on the timescale
of 1/ω whereas atomic vibrations occur on the timescale of 1/ωph. If 1/ω ≪ 1/ωph, i.e., ω ≫ ωph,
then the interaction is well approximated as an instantaneous nuclear recoil.

For determination of the actual phonon energies that may be produced from a dark matter
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interaction, we must relate the phonon energy with the transfer of momentum, i.e., ω
ν,⃗k

as it depends
on q⃗, also known as the dispersion relation. Different phonon branches have different dispersion
relations. Acoustic phonons follow a linear dispersion: ω ≈ csq, where cs is a sound speed. In
contrast, for optical phonons, ω ≈ constant, which means that even low momentum transfers can
produce an optical phonon so long as there is sufficient energy transfer. Optical phonons arise
when the atoms in the primitive cell of a crystal oscillate out of phase, as shown in Figure 3.7 Left.
When q⃗ = 0, an optical phonon can be thought of as a standing, non-propagating wave which
stores a finite amount of energy (Knapen, Lin, Pyle, et al., 2018). Examples of the longitudinal
and transverse modes of the optical and acoustic branches are drawn in Figure 3.7. The available
phase space of a dark matter interaction is also drawn, given by qv − q2/2mχ. The intersections of
the dark matter phase curve with the phonon dispersion relations are the loci at which energy and
momentum are conserved, i.e., the interaction is allowed. As a result of the constant dispersion,
low-mass dark matter is more easily detectable through the optical phonon channel than through
the acoustic phonon channel. Importantly, the calculation presented in Figure 3.7 Right is confined
to the region where (1) the momentum transfer is much less than the crystal momentum, i.e.,
q ≪ qBZ = 2π/a ≈ 2 keV, where qBZ is roughly the size of the first Brillouin zone and is given by
the lattice spacing a and (2) the energy transfer is at the single-phonon level (10–100 meV).

Multi-phonon calculations
We now look to bridge the gap between the single-phonon regime where q < qBZ ≈ 2 keV

and the free nuclear recoil regime where q ≫
√

2mN ωph ≈ 100 keV. We follow Campbell-Deem
et al. (2022) in this section, which connects between the two regimes by performing multi-phonon-
production calculations in the crossover energy range. This calculation is important for the somewhat
narrow range of 1 MeV to 30 MeV dark matter. It should be noted that the calculation in Campbell-
Deem et al. (2022) only computes rates for the instantaneous production of n phonons from a dark
matter scattering and does not incorporate anharmonic contributions, so the calculations should
be seen only as an approximation. As before, the calculation is centered on the behavior of the
dynamic structure factor S(q⃗, ω).

In Campbell-Deem et al. (2022), they take the approximation that the n phonon modes are
not coupled to each other and thus are incoherently activated; this approximation is referred to as
the n-phonon incoherent approximation. With this approximation, the dynamic structure factor
contains the following expression:

S(q⃗, ω) ∼
∑

n

(
q2

2mN

)n 1
n!

n∏
i

∫
dωi

D(ωi)
ωi

, (3.24)

where D(ωi) is a density of states and serves to weight the various contributions of 1/ωi. The
scattering dark matter particle would couple to and excite each of these n phonons simultaneously.
The expression in Equation 3.24 is analogous to the q2/2mω expression from Equation 3.23. The
structure of S(q⃗, ω) for GaAs in this regime, calculated from about 2 keV to 100 keV, is very clearly
peaked in Figure 3.8 Right at specific phonon energies, and the extension of the longitudinal optical
phonon mode in this regime above qBZ is also clear. The multi-phonon production of longitudinal
optical phonon modes is visible as the brighter horizontal bands at integer multiples of the ωLO
band.

When q ⪆ 100 keV, the calculation enters a regime where the multi-phonon production is well
characterized as a Gaussian envelope around the free-nuclear-recoil regime. The dynamic structure
factor can be calculated with the “impulse approximation.” Campbell-Deem et al. (2022) asserts
that this regime is entered when q > 2

√
2mdω̄d, where md and ω̄d are the mass and average phonon
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For the single phonon excitations (n ¼ 1) described in
Sec. III A, we use the long-wavelength and incoherent
approximations for q < qBZ and q > qBZ, respectively.
This combination gives good agreement with a full DFT
calculation of the scattering rate, at least for a cubic crystal
such as GaAs.
For multiphonon excitations (n ≥ 2), we use the inco-

herent approximation for the structure factor for all q below
maxd½2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdωd

p �. This is motivated by Sec. III B, where we
argued that the incoherent approximation can serve as an
order-of-magnitude estimate even for q ≪ qBZ. Given the
limitations of the long-wavelength approximation, a dedi-
cated DFT calculation is needed in this regime. For
multiphonon excitations, we sum terms in (36) until we
achieve convergence, as explained in Sec. III C. Finally, for
q ≥ maxd½2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mdω̄d

p � we make use of the impulse approxi-
mation, which ultimately transitions into the well-known
free nuclear recoil regime. This was explained in Sec. III D.
Figure 7 shows our full calculation of the structure factor

for GaAs, overlaid with the phase space boundaries for a
few representative DM masses. In the low q, single phonon
regime, the response is given by a set of δ-functions on the
LO and LA phonon dispersions, represented by the orange
curves. At intermediate and high q, the structure function is
modeled by a continuous function, where the layered
structure for ω≲ 50 meV reflects the various single and
multiphonon contributions. At higher q and ω the individ-
ual resonances cease to be visible and one transitions into
the smooth Sðq;ωÞ predicted by the impulse approxima-
tion. At very high ω the structure function converges

toward its free nuclear recoil form, which is represented
by the black dashed line.

IV. RESULTS

In this section we convert our newly gained under-
standing of the structure factor into concrete predictions for
the DM scattering rate in a crystal target. The event rate per
unit of target mass is

R ¼ 1P
d md

ρχ
mχ

Z
d3v vfðvÞ

Z
d3q dω

dσ
dqdω

ð43Þ

where the experimental energy threshold is implicit in the
boundary of the ω integral. fðvÞ is the DM velocity
distribution, which we take to be

fðvÞ ¼ 1

N0

exp

�
−
ðv þ veÞ2

v20

�
Θðvesc − jv þ vejÞ;

N0 ¼ π3=2v30

�
erf

�
vesc
v0

�
− 2

vesc
v0

exp

�
−
v2esc
v20

��
; ð44Þ

withv0¼220 km=s, Earth’s averagevelocityve¼240 km=s,
and vesc ¼ 500 km=s the approximate local escape velocity
of the Milky Way. The scattering rate can be further
simplified in the isotropic limit; using (3),

R ¼ 1

4πρT

ρχ
mχ

σp
μ2χ

Z
d3v

fðvÞ
v

Zqþ
q−

dq
Zωþ

ωth

dω qjF̃ðqÞj2Sðq;ωÞ

ð45Þ

where ωth is the energy threshold of the experiment, and the
other integration limits7 are

q� ≡mχv

 
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ωth

mχv2

s !
; ð46Þ

ωþ ≡ qv −
q2

2mχ
: ð47Þ

Note (47) defines the phase space boundary shown in Fig. 6
for a given mχ and v. Finally, ρT is the mass density of the
targetmaterial andwehave recast the rate in terms of theDM-
proton scattering cross section σp ≡ 4πb2p.

A. Massive hadrophilic mediator

In the case of a massive mediator coupling to baryon
number, we calculate the scattering rate by taking fd ¼ Ad

FIG. 7. GaAs structure factor. Density plot of the structure
factor in the same regimes of (q;ω) as shown in Fig. 6. Dotted
lines are phase space boundaries for various DM masses with a
typical initial velocity v ¼ 10−3. At low q and ω, the solid yellow
lines are the dispersion relations of the single LA and LO
phonons. At large q, the black dashed line is the free nuclear
recoil dispersion relation; in general, there are separate lines for
Ga and As but for clarity we show only one line corresponding to
the average mass of Ga and As.

7In numerical implementations of (45), as done in DARKELF, it
is beneficial to change the order of integration by first integrating
over v, then q, and finally over ω.
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Figure 3.8: Multi-phonon dynamic structure factor. S(q⃗, ω) for GaAs follows the free-nuclear-
recoil approximation when q > 2

√
2mdω̄d. Below that, the multi-phonon production calculation is

performed, leading to a peaked dynamic structure factor corresponding to the integral production
of various phonon channels. Below qBZ, the single phonon dynamic structure factor is shown. The
dark matter phase space and free-nuclear-recoil approximation are shown as the dotted and dashed
curves.

frequency at some lattice site d, very similar to the q ≫
√

2mN ωph constraint from the Debye-Waller
factor. This particular boundary for the impulse approximation is derived from the fact that the
multi-phonon expansion of the dynamic structure factor includes a factor of (q2/2mdω̄d)n/n! for
n phonon production (Equation 3.24). The higher n terms are more dominant in the expansion
when q is large, or specifically when q2/2mdω̄d ∼ n. S(q⃗, ω) versus ω is more Gaussian-shaped for
higher phonon modes, which are more dominant for larger q. md is generally around 30 GeV for
semiconductors of interest, and ω̄d can be estimated from the single-phonon energy scale, which is
around 30 meV. The free-nuclear-recoil calculation therefore holds when q ⪆ 2

√
2mdω̄d ≈ 100 keV. It

is interesting that this momentum scale is given by the geometric mean of the nucleus mass and the
phonon frequency. From Figure 3.8, the ω = q2/2md curve crosses q = 100 keV around ω = 80,meV.

Also shown in Figure 3.8 is the available phase space of energy deposition and momentum
transfer for various dark matter masses. The curves are given by ω = qv − q2/2mχ. Figure 3.8
shows that the multi-phonon calculations are important in the regime between 1 MeV and 30 MeV
and that the single-phonon calculations are important for the regime below 1 MeV.

Phonon-mediated detection with polar materials
Polar materials are an interesting and novel platform for next-generation phonon-mediated

detectors and were initially proposed for low-mass dark matter searches in Knapen, Lin, Pyle, et al.
(2018) and Griffin, Knapen, et al. (2018). In a polar material, the unit cell is composed of a positive
and negative ion. A free charge in the material would distort the lattice and do so in opposite
directions for the differently charged ions, consequently coupling to the longitudinal optical modes of
the material (optical phonons correspond to two adjacent atoms in a unit cell oscillating in opposite
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FIG. 3. Sensitivity to DM scattering via an ultralight dark
photon, for kg-yr exposure on GaAs. On the orange line the
relic abundance can be explained by freeze-in [17–19]. The
reach for mX < MeV is from scattering into LO phonons.
For mX > MeV, the reach comes from considering GaAs as
a scintillator for DM-electron scattering [11]. The blue re-
gion indicates stellar [62] and BBN constraints [63], while the
green region is a Xenon10 limit [8]. Projections for various
experimental proposals are from Refs. [19, 25, 29, 64] (dotted
lines).

to contribute and the scattering rate transitions to reg-
ular nuclear recoils for sufficiently large momentum and
energy deposited. We therefore restrict to the sub-MeV
mass regime, while other experimental proposals are well
suited for MeV-GeV DM scattering (Fig. 3).

Using Eq. (4), we find that the scattering rate for X
with initial momentum pi is:

Γ(pi) = 2π

∫
d3pf
(2π)3

δ(Ef − Ei − ω)|Mq|2, (6)

with matrix element

|Mq|2 =
κ2g2

X

e2

C2
F

q2
. (7)

The total rate per unit time and target mass is then
given by R = 1

ρ
ρDM

mX

∫
d3vf(v)Γ(mχv), where f(v) is a

boosted, truncated Maxwell-Boltzmann distribution (see
e.g. [65]) with velocity dispersion v0 = 220 km/s, Earth
velocity ve = 240 km/s and escape velocity vesc = 500
km/s. To estimate the reach, we require 3 events for a
kg-year exposure. As is conventional in the literature, we
show in Fig. 3 the resulting sensitivity on κgX in terms
of the DM-electron cross section,

σ̄e ≡
4µ2

Xeκ
2g2
Xαem

(αemme)4
. (8)

where αem is the fine structure constant, me is the elec-
tron mass, and µXe is the electron-DM reduced mass.
We find that even with ∼ gram-month exposures, polar
materials can reach the freeze-in benchmark. Away from

the freeze-in line, a kg-year exposure can extend the reach
of existing proposals by several orders of magnitude.

Scalar-mediated nucleon scattering. Finally we
consider the case of sub-MeV DM with coupling to nu-
cleons only, similar to what was explored in Ref. [27, 28]
for multiphonon production in superfluid helium. The
strength of such an interaction can be parametrized by
the average DM-nucleon scattering length b̄n. GaAs im-
proves over helium for several reasons: first, DM can
scatter by exciting a single ∼ 36 meV optical phonon,
rather than going through higher-order multiphonon in-
teractions. Second, the speed of sound is ∼ 20 times
higher in GaAs, such that the energy of acoustic phonons
is higher and better matched to DM kinematics.

The differential DM scattering rate is

d2Γ

dqdω
=

4π

Vcell

q

mXpi
S(q, ω), (9)

where pi is the initial DM momentum, and S(q, ω) is
the dynamical structure factor, defined in the same way
as for neutron scattering. In the long-wavelength limit,
S(q, ω) is given by [66]

S(q, ω) =
1

2

∑

ν

|Fν(q)|2
ων,q

δ(ων,q−ω) (10)

where ν sums over the various phonon branches. The
phonon form factor is

|Fν(q)|2 =

∣∣∣∣∣
∑

d

b̄d√
md

e−Wd(q)q · eν,d,qe−iq·rd
∣∣∣∣∣

2

(11)

where d labels atoms in the primitive cell with mass md

and position rd. b̄d is the scattering length, eν,d,q is the
phonon eigenvector of branch ν and atom d at momentum
q, and Wd the Debye-Waller factor of atom d.

Here we estimate the rate in the isotropic and long-
wavelength limit where Wd ≈ 0 and the phonon eigen-
vectors have a simple form:

|Fν(q)|2 ≈ b̄2n
2mn

q2
∣∣∣
√
AGae

irGa·q ±
√
AAse

irAs·q
∣∣∣
2

(12)

with mn the nucleon mass, b̄n the DM-nucleon scatter-
ing length and AGa (AAs) the mass number of Ga (As).
The + (−) sign applies to the LA (LO) branch, where
both atoms are in phase (anti-phase). For a rough esti-
mate when mX � MeV, the phase factors in (12) can
be neglected. Similar to the Fröhlich Hamiltonian, the
analytic approximations made here are only valid in the
sub-MeV mass regime; for larger masses, a reliable the-
oretical treatment requires a complete description of the
phonon band structure over the Brillouin Zone as well
as multiphonon processes, which are beyond the scope of
this work.

The approximations made here are expected to break
down for mX & 1 MeV. For such masses, the typical mo-
mentum transfer becomes comparable to or larger than

Figure 3.9: Expected reach of a GaAs phonon-mediated detector to electron-recoiling
dark matter with a light mediator. Projected exclusion curves assume 3 events for a kg·yr ex-
posure. Existing limits, charge-channel sensitivities, and other next-generation detector architecture
sensitivities are shown. Reproduced from Knapen, Lin, Pyle, et al. (2018).

directions; see Figure 3.7 Left). This coupling between charge and optical phonons is governed by
the Frölich Hamiltonian.

In the case of a dark photon A′ that mediates interactions with the Standard Model via
some kinetic mixing ϵ, the dark matter current is coupled to the Standard Model current. To show
this, Knapen, Lin, Pyle, et al. (2018) starts from the Lagrangian for a hidden U′(1) symmetry that
has some kinetic mixing with the Standard Model:

L ⊃ χ̄(�∂ − igχ��A
′)χ− 1

4F ′µνF ′
µν −

ϵ

2F µνF ′
µν −

m2
A′

2 A′µA′
µ. (3.25)

If A′ is massive, a diagonalization to the mass basis can be performed, and the electron has a charge
κe under the dark photon. If the mediator is massless, the final term disappears and we can perform
a field redefinition A′ → A′ − ϵA. The result is

L ⊃ χ̄(�∂ − igχ��A
′ − iϵgχ��A)χ− 1

4F ′µνF ′
µν . (3.26)

The final term in the parentheses shows that the dark matter particle χ is milli-charged under the
Standard Model photon A, with charge e′ = ϵgχ. It is of course also charged under the dark photon
with coupling gχ. In both the massive A′ and massless A′ cases, the Standard Model current is
coupled to the dark matter current with strength ϵgχe.

Since dark matter is milli-charged in the massless mediator model, we can apply the Frölich
Hamilitonian directly: in a polar material, milli-charged dark matter would source a small electric
field and induce oscillations of the ions, which are just optical phonon modes. The only modification
to the Hamiltonian is a re-scaling by the charge ratio of dark matter to the electron: ϵgχ/e. Single
optical phonons are a particularly attractive low energy signal in phonon-mediated detectors because
of their dispersion relation ω ∼ constant; the full kinetic energy of a dark matter particle is accessible
to the detector even when the momentum transfer is arbitrarily small.
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The essential advantage of phonon-mediated polar material detectors is that optical phonons
can be created by electron-coupled DM below the mass range that can create electron-hole pairs.
This advantage is shown in Figure 3.9; the reach of phonon-mediated polar material detectors is
two orders of magnitude lower in dark matter mass than the charge- and scintillation- mediated
detectors, providing unparalleled sensitivity to low-mass electron-recoiling dark matter. More
precisely, the optical phonon signal can be used to place constraints on σ̄e, the scattering interaction
cross section between dark matter and the electron. In practice, a constraint on e′ is placed using
phonon scattering rates, and that constraint can then be transformed into a constraint on σ̄e:

σ̄e =
4e′2αµ2

χe

(αme)4 . (3.27)

Other interesting opportunities for next-generation detector architectures are shown in Figure 3.9,
such as low-bandgap Dirac materials (the ZrTe5 curve), as well as superconducting targets (aluminum
is shown as an example).

As a side note, polar materials can also place constraints on the parameter space of sub-
MeV dark matter mediated by a heavy dark photon, but this mass region for heavy mediators is
excluded by Big Bang nucleosynthesis (BBN), specifically constrained by the abundance of hydrogen,
deuterium, and helium in the universe (Knapen, Lin, and Zurek, 2017). Current data is consistent
with a Standard Model photon and three neutrino species in equilibrium at the time of BBN. Zurek
(2024) points out that, for a heavy mediator, the couplings between dark matter and the Standard
Model are strong enough for dark matter to be in equilibrium with the primordial plasma at the
time of BBN and would thus be constrained by the relativistic degrees of freedom that are presently
inferred from the data. Thus, there is no unconstrained sub-MeV heavy-dark-photon-mediated
parameter space for polar materials to probe.
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Preface

In Part II of this thesis, I describe my main contributions to the SuperCDMS Collaboration.
There are two chapters. Chapter 4 is a reproduction of some key results from SuperCDMS
Collaboration (2023), which presents a long-term strategy for the SuperCDMS Collaboration to
search for low-mass particle dark matter using the SuperCDMS SNOLAB infrastructure. Two
core elements of this strategy are emphasized in Chapter 4 and throughout the rest of the thesis:
high-voltage (HV), single-charge-sensitive detector operation in Chapter 5, and zero-voltage (0V),
low-threshold detector operation in Part III, which encompasses Chapters 6, 7, & 8.

I was one of three members of the SuperCDMS Long-Term Planning Task Force who
operated, upgraded, and interpreted results from SensitivityEstimate, the body of code that was
used to build the long-term strategy described in SuperCDMS Collaboration (2023). Significant
upgrades were made to the code to best inform our strategic planning. My contributions to these
upgrades include but are not limited to the following: implementing a performance-driven model for
forecasting future detector energy and timing resolution, tactically modifying analysis regions of
interest to circumvent HV detector leakage, and enabling of the code to compute two-sided allowed
regions for production of discovery potentials.

In Chapter 5, I describe the results of a nuclear-recoiling dark matter search performed
on data from an experiment known as HVeV Run 4. This search includes characterization and
subsequent subtraction of a zero-charge low energy excess. I was part of a team of analyzers who
investigated the HVeV Run 4 data for many different purposes; various analysis techniques and
protocols were shared among this team and are pointed out in Chapter 5 when originating from
another analyzer or team of analyzers. Outside of these shared techniques and protocols, I was the
sole analyzer for the dark matter search described in Chapter 5.
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Chapter 4

SuperCDMS SNOLAB and beyond

4.1 The basics of SuperCDMS SNOLAB
SuperCDMS SNOLAB is an under construction experiment to search for nuclear-recoiling

and electron-recoiling dark matter with cryogenically operated silicon and germanium detectors.
There are two detector architectures that will be used: interleaved Z-sensitive Ionization- and
Phonon-mediated detectors (iZIPs) and High Voltage (HV) detectors. There are thus four different
types of dark matter searches that will be performed by SuperCDMS SNOLAB, identified by
detector material (Si or Ge) and detector architecture (iZIP or HV): Si iZIP, Si HV, Ge iZIP, and
Ge HV.

Essential detector characteristics
When a nucleus or electron recoils within these semiconductor substrates, the recoil energy

Er immediately goes towards phonon energy or the production of free electron-hole pairs. For the
case of an electron recoil, all of the initial energy of the electron recoil goes toward the production
of electron-hole pairs. For nuclear recoils in the energy regime of interest (below 100 keV), most of
the initial energy goes into phonon production, but a significant fraction still goes immediately into
exciting charge above the bandgap (1.11 eV in silicon, 0.67 eV in germanium) and producing one or
many free electron-hole pairs. The electron-hole pairs that are produced from electron and nuclear
recoils quickly fall back to the bottom of the conduction band by shedding phonons, and when all
the electron-hole pairs finally recombine and the electron re-enters the valence band, phonons are
again produced with energy equal to the bandgap. The net result is that the final total phonon
energy EPt is very close to the initial recoil energy Er.

A fundamental aspect of the current SuperCDMS detector architectures is that a bias voltage
Vb is applied to the detector. The impact of placing a bias voltage on such a detector is twofold:
(1) the electron-hole pairs move to the surface of the detector where a charge sensor may be placed
to sense the arriving charge; and (2) the phonon energy is boosted by an amount given by the work
performed by the electric field upon the electron-hole pairs. This second phenomenon is known
as the Neganov-Trofimov-Luke (NTL) effect (see Neganov et al., 1985 and Luke, 1988), and the
phonons resulting from this effect are referred to as NTL phonons and have energy ENTL. The total
phonon energy EPt for a given event becomes

EPt = Er + ENTL

= Er + NeheVb

= Er + Y (Er)Er

ϵeh
eVb, (4.1)
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Figure 4.1: E-field configurations of SuperCDMS detectors Left: E-field configuration for
iZIPs in red and equipotential curves in blue. The electrodes shown in yellow are held at a positive
bias while the electrodes shown in green are grounded; they are interleaved with each other. Two
example paths of electron-hole pairs are suggestively depicted with the stars and arrows. Right:
E-field configuration for HV detectors with lines that terminate at the top and bottom shown in red
and lines that terminate at the edge in green. Figures reproduced from Golwala (2016).

where Neh is the number of electron recoils that are produced in an event and is equal to Y (Er)Er/ϵeh.
Y (Er) is the yield function that represents the fraction of the total initial recoil energy that eventually
goes toward charge production, and ϵeh is the average amount of energy required to produce an
electron hole pair. It is evident how the total phonon energy EPt has been boosted beyond the
initial recoil energy Er by an amount ENTL.

iZIPs use the first mentioned effect of the bias voltage, point (1) from the previous paragraph:
a voltage brings charge to the surface of the detector. Via direct measurement of charge, iZIPs
can be used to discriminate between nuclear and electron recoils, as well as between surface and
bulk events. iZIPs have both phonon and charge sensors on their surface. The applied electric field
(±3 V in Ge, ±4 V in Si) moves the charge that is produced by a particle event to the charge sensors
on the surface. Nuclear and electron recoils produce different amounts of charge for equal amounts
of produced phonon energy; Y (100 keV) < 0.5 for nuclear recoils, whereas Y = 1 for all electron
recoils. This discrepancy in Y (Er) enables discrimination between nuclear and electron recoils on an
event-by-event basis. The low-energy bound of this discrimination is given by the charge resolution
of the charge sensors.

In contrast, HV detectors use point (2) from the aforementioned effects: a bias voltage
boosts the total phonon energy to achieve a lower recoil energy threshold. They are operated at
Vb = 100 V, much higher than the bias voltage applied to iZIPs, and are only instrumented with
phonon sensors. The HV phonon sensors collect primarily the NTL phonon energy, which is now
much larger than the recoil energy because Y (Er)eVb/ϵeh ≫ 1 eVb/ϵeh ≫ 1. The relatively elevated
bias voltage boosts the energy of recoil events that may be well below the phonon energy threshold.
Given a charge-producing particle event and a fixed energy threshold, a higher voltage detector is
sensitive to lower energy recoils. With good enough phonon energy resolution and large enough
bias voltage, charge-producing events may become discretely resolved in phonon energy, where
discretized peaks in the phonon spectrum correspond to integer quantities of electron-hole pairs.
The remarkable feature of such an architecture is that events that create even a single electron-hole
pair in the substrate can be identified using only phonon sensors.
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accounted for when choosing Tc.
Both SuperCDMS SNOLAB detector designs employ 12 phonon channels, 6 per side, increased

from 8 (4 per side) for Soudan. See Figure 17. The layout of these channels is different for the
CDMS-HV and iZIP designs to take advantage of the differing phonon spatial distributions for the
two modes, as described below in the individual sections detailing the designs. Common to both
designs are phonon quantities that rely on the spatially homogeneous prompt phonon population,
which produce easily reconstructed trends in phonon partitions. Radial position can be inferred from
the pattern of initial energy collection between phonon sensors on a given face, whereas z-position
can be inferred from the difference between energy collected on the two faces. Position dependence
is a more critical feature for the CDMS-HV design than the iZIP design; see Section 4.2.4.

Figure 17: Partitioning of the phonon sensors for the two detector designs. (Left) CDMS-HV.
(Right) iZIP. Both layouts are designed to capture radial and azimuthal information as well as z-
information, and the faces are rotated so as to be the angular complements of each other. Different
phonon channel layouts were chosen for each detector type to maximize sensitivity either to a narrow
NTL phonon column (CDMS-HV) or to the homogeneous prompt phonon population (iZIP). The
iZIP design also incorporates constraints from the ionization electrode design. The iZIP design
relies less on the phonon channels for event position reconstruction given the position information
available from the ionization signals.

Phonon sensing requirements on various subsystems Our analyses of energy resolution and
position sensitivity provide design constraints for various parts of the experiment. We do not discuss
the obvious requirements (e.g., Tower Mechanics must hold the detector and carry the Tower Wiring
and Electronics) and focus instead on those where meeting the requirement is not an inherent aspect
of the design, necessitating that the requirement be explicitly specified. By subsystem:

• Tower Mechanics Beyond the obvious requirement that the Tower Mechanics design must
ensure the detectors can reach the assumed base temperature of ≤ 30 mK (assuming the
cryostat provides it), the design must also ensure the detectors are heat sunk sufficiently
so that any additional time constants beyond the athermal phonon absorption and decay
timescales are negligible for typical event energies7. The heat sinking should, however, not
be so good that there is significant athermal phonon absorption at the clamp points. The
clamps must also hold the detector tightly enough that there is no slippage (and thus creation
of athermal phonons) in the presence of external vibrations.

7For the energetic events noted earlier, where we see direct energy absorption in the TESs, we also see a thermal
time constant for the energy to escape the substrate into the bath.
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Figure 4.2: Phonon sensor configurations of SuperCDMS detectors. Left: HV detector
phonon sensor configuration, optimized for sensitivity to the narrow NTL phonon column. Right:
iZIP phonon sensor configuration, optimized for sensitivity to the homoegenous initial recoil energy
of phonons.

Detector position sensitivity
Both iZIPs and HV detectors utilize segmented phonon sensors, six on each face, to recover

event position information. Some of the sensors are located at the outer rim of the detectors,
allowing for discrimination of surface events from bulk events with a cut in event radius. High-r
events may also suffer suppressed charge collection due to the electric field lines curving outward
near the edges, as is depicted in Figure 4.1 Right (the bowing of field lines near the outer edges is
also true for iZIP detectors but is not shown). Dark matter events are expected to occur uniformly
across the bulk of the detector and so can be discriminated from the subset of backgrounds that
predominantly interact near the surfaces.

A z-direction fiducial volume cut is also possible with both detectors, but the iZIP phonon
sensors are much more sensitive to z-position. The reason for this fact is twofold. First, since the
iZIP is operated at a lower voltage than an HV detector, a fractionally higher component of the total
phonon energy belongs to the initial production of phonons. For the isotropically distributed initial
phonons, z-position sensitivity is given by the 1/z2 scaling of the solid angle that a certain phonon
sensor subtends with respect to an event in the bulk. Second, the interleaved nature of the bias
electrodes in an iZIP causes the NTL phonons for a surface event to be generated primarily near
the surface, as is evident in Figure 4.1 Left. In contrast, the HV detector schematically depicted in
Figure 4.1 Right has its NTL phonons generated uniformly over the charge’s drift path without much
dependence on the z-position (only via what fraction of NTL phonons is generated by electrons and
by holes).

iZIPs are additionally equipped with charge-based position sensitivity in both the r- and
z-dimensions. The interleaved nature of the iZIP charge sensors enables the discrimination of surface
events via charge collection asymmetry; see Figure 4.1 Left. Furthermore, since at least the era
of CDMS I BLIP detectors, CDMS charge-mediated detectors have had an outer annular charge
electrode to enable rejection of high radius events (Golwala, 2000).

Experimental layout
The SuperCDMS SNOLAB detectors are organized into four detector towers, two for each

detector architecture, iZIP or HV. An example of a detector tower is shown in Figure 4.3. Each
tower can hold up to six cylindrical detectors. Each detector is 10 cm in diameter and 3.3 cm in
height, which corresponds to 1400 g of germanium and 610 g of silicon for each detector. The towers
will be housed in what is called the SNOBOX, which is a set of nested cryogenically cooled cans, also
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SuperCDMS SNOLAB Operations Scope of Work

Figure 1. Sectional overview of the SuperCDMS SNOLAB experiment design, showing some of
the main features of the cryogenics and shielding systems, and (right) a detector tower.

As shown in Figure 1, the detector towers are operated at low temperatures within a
cryostat. The experiment incorporates a commercial dilution refrigerator, connected to a
low radioactivity copper cryostat (SNOBOX) via a set of nested tubes (C-stem) with six
thermal layers matched to those of the refrigerator. Together with cryocooler-based
cooling loops, these systems provide a base temperature as low as 15 mK for the
detector towers located in the innermost layer.

Hermetically surrounding the cryostat is a layered passive shield against external
radioactivity, consisting of lead, polyethylene and water. The lead greatly reduces the
gamma ray (and charged particle) flux seen by the detectors, while the polyethylene and
water moderate external neutrons so that they will not produce nuclear recoils that
mimic those from dark matter particles. Within the innermost copper can of the cryostat,
up to 7 towers of detectors can be accommodated, although the initial Project-delivered
payload will consist of only 4 detector towers. This modular expansion capability allows
for future inclusion of advanced detectors (e.g., from SuperCDMS or EURECA) that will
provide increased sensitivity toward the neutrino floor.

Each tower, like that shown at the right in Figure 1, will have six detectors of either
high-purity Ge or Si, with a mechanical and thermal support structure, and readout
electronics and wiring. The detectors have sensors to detect phonons and ionization
created in the crystals by single particle interactions. The phonon transition edge
sensors (TES) are biased in the sharp transition between normal and superconducting
states, and are readout by SQUIDs. The charge sensors are readout by high electron
mobility transistors (HEMTs). Detector signals from these towers are brought out
through the layered shielding inside a tube (E-stem) and via a vacuum bulkhead (E-tank).

Room temperature electronics cards are mounted directly on the bulkhead and
connected by ethernet cables to data acquisition computers, where the experiment

8

Figure 4.3: The SuperCDMS SNOLAB experiment. Left: SuperCDMS SNOLAB. The
SNOBOX will house the detector towers in a set of nested, cryogenically cooled cans. The shielding
attenuates external particle backgrounds. The dilution refrigerator is connected to the rest of the
experiment via the C-stem. Readout cables are housed in the E-tank, which receives additional
cooling. Right: a detector tower, with the detectors indicated at the bottom.

visible in Figure 4.3. The SNOBOX resides in three layers of external shielding in order to attenuate
external particle backgrounds. The innermost and outermost shields, depicted in Figure 4.3 in cyan
and green, attenuate the neutron background. The middle shield in blue attenuates gamma rays. In
the region corresponding to the gray, a thin radon barrier maintains a nitrogen atmosphere within
the interstices of the inner shield, and a µ-metal shield provides adequate rejection of the Earth’s
magnetic field for detector operation.

The SNOBOX can accommodate seven towers, but only four will be installed for the initial
run of SuperCDMS SNOLAB. To provide some insight about why this number of detector towers
and the consequent exposure listed in Table 4.1 is sufficient given the backgrounds that are expected,
we examine the background levels shown in Figure 4.6 Bottom and Figure 4.5 Bottom. A dark
matter search is exposure-limited if it observes zero events over the duration of its exposure. With
zero events, a 90% confidence level (CL) upper limit on the dark matter cross section may be
set at the cross section that would produce 2.3 events over the duration of the exposure; at this
cross section, 90% of experiments would have observed more than 0 events. The search becomes
background-limited when the expected number of background events exceeds 2.3 events.

iZIP HV
Ge Si Ge Si

Number of detectors 10 2 8 4
Total exposure [kg·yr] 45 3.9 36 7.8
Phonon resolution [eV] 33 19 34 13
Ionization resolution [eVee] 160 180 – –
Voltage Bias (V+ − V−) [V] 6 8 100 100

Table 4.1: Anticipated exposures and detector
parameters for SuperCDMS SNOLAB.

For iZIP detectors, the background
levels range from 10−5 dru above 5 keV
phonon energy to 10−1 dru below 1 keV
phonon energy. At low energies, only a
few tens of kg·day exposures are needed
to exceed 2.3 expected background events.
At high energies, say up to 100 keV, a few
thousand kg·day exposures are needed to
become background-limited. The 45 kg·yr
exposure for Ge iZIPs reported in Table 4.1
is thus sufficient for a search to be background-limited up to 100 keV. HV background levels range
from 10−3 dru to 10−1.5 dru below 1 keV depending on detector material. These background levels
would require 100 kg·day to a few 1000s of kg·day of exposure. The 7.8 kg·yr and 36 kg·yr exposures
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listed in Table 4.1 are once again sufficient given the expected background levels. Germanium HV
detectors are expected to have lower background levels, which is why the germanium detectors are
set to have more exposure.

General outline for the rest of the chapter
In Section 4.2, Section 4.3, and Section 4.4, we discuss the projected sensitivity of SuperCDMS

SNOLAB, which is planned to probe unexplored parameter space of both nuclear-recoiling dark
matter and electron-coupled dark matter. In the SuperCDMS Snowmass 2021 contribution, three
different classes of electron-coupled dark matter are explored: low-mass sub-GeV electron-recoiling
dark matter, dark photon dark matter, and axion-like particles. Low-mass sub-GeV electron-recoiling
dark matter produces scattering events whereas the latter two types of dark matter candidates
produce absorption events. In this thesis, we focus on nuclear-recoiling dark matter (NRDM) and
low-mass sub-GeV electron-recoiling dark matter (ERDM).

The organization of the experiment into detector towers provides modularity and flexibility
for future experiments to deploy different detector types. In Section 4.5, Section 4.6, and Section 4.7,
we discuss future possibilities for SuperCDMS SNOLAB and how future detector towers composed
of next-generation detector architectures can leverage the existing infrastructure to probe parameter
space that is not accessible to SuperCDMS SNOLAB. We introduce the 0V detector architecture as
a means to probe low-mass dark matter. The SuperCDMS Snowmass 2021 contribution includes
forecasts for iZIP-, piZIP-, HV-, and 0V-style detectors. This thesis focuses only on HV- and
0V-style detectors.

4.2 SuperCDMS SNOLAB sensitivity projections
Snowmass 2021 was a grassroots study to plan for US particle physics ventures in the decade

from 2025 to 2035 with an eye toward 2035 to 2045 (APS DPF, 2021). The SuperCDMS contribution
to the Snowmass 2021 process is presented in SuperCDMS Collaboration (2023). The first main
component of this contribution is an update to the sensitivity projections for the SuperCDMS
SNOLAB experiment; the previous set of sensitivity projections were presented in SuperCDMS
Collaboration (2017). The main modifications relative to these previous projections are (1) a
discretized treatment of charge production for HV detectors and (2) an updated understanding of
backgrounds and detector resolution performance.

The assumptions about background levels and detector performance in SuperCDMS Collab-
oration (2023) are informed by literature, simulation, and preliminary data from the SuperCDMS
SNOLAB detectors as well as other prototype SuperCDMS detectors. The four limits, using both
the optimum interval (OI) and profile likelihood ratio (PLR) techniques, are shown in Figure 4.5
and Figure 4.6. The optimum interval limit setting technique is an exclusion-only method while
the profile likelihood ratio technique is a background-subtracting method. Presently, the MATLAB
code used to perform these calculations is located in the LTPFeatures branch of

git@gitlab.com:supercdms/Limits/SensitivityEstimate.git.

More details about the code and how it works can be found in the SuperCDMS-internal webpage
Reynolds (2020).

Procedure for projecting sensitivity

1. Generate raw background spectra, which are broadly classified into the four categories below.
All raw background spectra are generated using GEANT simulations and normalized by assay
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results. The one exception is the ionization leakage background, the formula for which is given
below.

• Bulk electron recoils: Compton scatters from detector external radioactivity; tritium (3H)
beta decays within the detectors; for silicon detectors only, 32Si and 32P beta decays;
and for germanium detectors only, cosmogenic activation lines. Except for Compton
scatters, all of these backgrounds arise from detector or material exposure to high-energy
cosmic-ray secondaries or their spallation products.

• Surface electron recoils: 210Pb and 210Bi beta decays, which result from radon exposure
and subsequent 210Pb plate-out onto detector surfaces and detector housing materials.

• Bulk nuclear recoils: coherent scattering of neutrons, neutrinos, and photons with
nuclei. The latter process (Robinson, 2017) is not modeled in GEANT, so we include an
approximate analytic form that is normalized to the Compton scattering rate.

• Surface nuclear recoils: Recoiling 206Pb from 210Po alpha decays. 210Po is present due to
radon decay and 210Pb implantation.

• Ionization leakage (HV detectors only): the tunneling of individual charge carriers from
the electrodes into the bulk. This background is treated as a Poisson process with rate
normalized by prototype HV detectors known as HVeV detectors and scales with the
detector surface area. The following Poisson distribution equation provides the rates for
any number of leakage-induced electron-hole pairs, given the rate of single electron-hole
pairs Rdark and a time resolution tsep:

Rj = Rdark
(Rdarktsep)j−1

(j − 1)! e−Rdarktsep . (4.2)

Rdark is scaled from HVeV Run 4. tsep is computed using the time resolution one can infer
from the optimal filter formalism; see Section 1.2.3.2 of Reynolds (2020). The former
is assumed for the sensitivity projections presented in the SuperCDMS Snowmass 2021
contribution and this thesis.

2. Generate signal spectra; options are:
• WIMP signal model, which is a nuclear-recoiling signal;
• QEDark code signal model, which is an electron-recoiling signal;
• other signal models not further discussed in this thesis: dark photon dark matter and

axion-like particle dark matter, both of which produce charge signals via direct absorption
by an electron and creation of an electron-hole pair. These hypothetical signals are
monochromatic because the entire mass of the particle would be absorbed.

3. Transform all recoil energy spectra into phonon energy spectra by way of Equation 4.1 and
apply relevant detector cuts.

• The yield functions chosen for this particular run of SuperCDMS projections and forecasts
are the IMPACT model for silicon (SuperCDMS Collaboration, 2022b) and the Sarkis
model for germanium (Sarkis et al., 2020). The former is based on the IMPACT
experimental measurement while the Sarkis model is a theoretical one that accounts for
the binding energy of an ion to its lattice site. These models and various others are
shown in Figure 4.4. Cutoff energies were applied to the yield function: 27.8 eV for silicon
and 22.7 eV for germanium.

– Ionization yield cuts are performed for iZIPs. The amount of charge produced by an
event of some recoil energy Er is computed by way of the yield function Y (Er). The
charge threshold, which is given by the ionization resolutions specified in Table 4.1,
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Figure 4.4: Ionization yield models Y (Er). Top: ionization yield data and models for silicon,
shown for different experiments and associated extrapolations, alongside two different theoretical
models: the Lindhard model and the Sarkis model (Sarkis et al., 2020). Bottom: same, except for
germanium. Figure is from SuperCDMS SNOLAB TDR (2018) and was produced by Tarek Saab.

sets the phonon energy above which electron recoils are efficiently rejected. The
rejection ability of these cuts turn off smoothly with energy. The events that are
accepted by it are everything below the ionization threshold, and the fraction of
events falling below that threshold increases smoothly (though steeply) as the mean
yield approaches that threshold.

• For iZIPs , use “continuous” code that treats charge production and ensuing NTL boost
to the phonon spectra as continuous transformations.

• For HV detectors, use “discrete” code that treats charge production discretely at low
energy.1 This discretization incorporates the different expected Fano factors for electron

1 The “continuous” and “discrete” codes are actually quite distinct bodies of MATLAB code that organize the
background and signal spectra and related MATLAB objects in different ways and perform the steps of this procedure
in slightly different orders. There are some shared helper functions, such as everything related to setting dark matter
parameter constrains, but the background and signal spectra generation are performed completely differently, in both
physics and code structure. The choice between the "continuous" and "discrete" codes must be made before any other
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and nuclear recoils and for silicon and germanium. It furthermore incorporates charge
trapping and impact ionization. These two effects “fill in” the spectra between integer
electron-hole pair peaks; see SuperCDMS Collaboration (2020) for more details. This
effect is relevant for all detector spectra, including leakage, electron recoils, and nuclear
recoils.

• Convolve the phonon energy spectra with the detector energy resolution. There is a fixed
baseline resolution as well as an energy-linear degradation for position dependence. See
Section 1.2.3.3 of Reynolds (2020). In the continuous code, the convolution is performed
on the entire phonon energy spectra that have been transformed from recoil energy using
Equation 4.1. In the discrete code, each bin in recoil energy is treated separately in the
production of quantized charge distributions, which ultimately transform into phonon
energy with Equation 4.1. After the phonon spectrum from a particular bin in recoil
energy is calculated and convolved with the energy resolution, the spectra are summed
across the recoil energy bins.

• Position fiducialization cuts: the continuous code uses a simple model to build a distribu-
tion of events in r and z, derived from prior data. The discrete code performs r- and
z-fiducialization by way of geometrical models for the propagation of phonons to produce
full distributions of fiducialization paremeters.

– r-direction fiducial volume cut; both iZIPs and HV exhibit r-sensitivity due to the
presence of inner and outer electrodes.

– z-direction fiducial volume cut; this cut is only applicable for iZIPs because it relies
on the interleaved bias electrodes.

4. On the basis of the above spectra, generate 100 sets of fake background-only events with
Monte Carlo methods and the expected exposure. We refer to these events as d, and as in an
actual experiment, they take the form of a list of event energies: there are Nobs total events,
and dj is the energy of the jth event.

5. Set 90% confidence level exclusion limits on the dark matter interaction cross section (i.e., on
the normalization of the signal spectrum) with two different limit-setting techniques for all
100 data sets and compute the median limit for each technique.

• Upper-limit-only analysis with limits given by the optimum interval (OI) technique; see
Yellin (2002) and Yellin (2007). The fundamental question that an upper-limit-only
analysis seeks to answer is the following: for what combinations of dark matter mass and
cross section would 90% of experiments observe more events than the observed number of
events? On top of that, the optimum interval technique identifies the energy gap between
events that is most constraining for a given DM mass and then pays a trials penalty for
it.

• Profile likelihood ratio (PLR) technique, wherein the generated data is modeled as the
sum of the signal and background spectra and a constraint is set on how much signal
could be present in the presence of a known, subtractable background. The forecasting
code assumes three separate subtractable backgrounds: neutrinos, neutrons, and the sum
of all electron recoils. A more specific walkthrough of the PLR method is carried out in
Chapter 5 and may provide additional intuition for the technique.

– The following likelihood function was used:

L(Ns,{Nb}) =PPoisson(Nobs |Ns +
3∑

k=1
Nb,k) Poisson probability of

total # of events

step and depends on the type of detector architecture for which sensitivity calculations are desired.
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×
Nobs∏

j

f(dj |Ns,{Nb})
probability of each
event given a particu-
lar spectral shape

×
3∏

k=1
G(Nb,k |Nb,k,exp), Gaussian priors on

background rates (4.3)

where f(dj |Ns,{Nb}) = Nsfs(dj) +
∑3

k=1 Nb,kfb,k(dj)
Ns +

∑3
k=1 Nb,k

, (4.4)

Ns and {Nb} are the signal and background normalizations (the three backgrounds
are indexed by k), fs and {fb} are the signal and background spectral shapes, and
G(Nb,k |Nb,k,exp) is a Gaussian prior on the background rates given the expected
number of background events Nb,k,exp for a particular background.

– 10% systematic uncertainty is assumed for each subtracted background. In other
words, 10% of the mean value is taken as the rms of each Gaussian prior G. This
assumption is intended to stand in for uncertainties on contamination assays, simula-
tion systematics, and uncertainty on empirical rate normalizations (e.g., from high
energies and/or signal sidebands). For signals and backgrounds that have the same
spectral shape, i.e., for data that has no constraining ability on a particular signal,
this assumption limits the gains to be had with exposure, which would indefinitely
scale with √exposure if it were only the Poisson fluctuations on the background
rates that contribute to the uncertainty on the background subtraction.

– By Wilk’s theorem, the following D-statistic is assumed to follow a χ2 distribution:

D(Ns) = −2 ln L(Ns,{ ˆ̂
Nb})

L(N̂s,{N̂b})
(4.5)

The ˆ notation in the denominator indicates that the likelihood function is maximized
over both variables simultaneously. The ˆ̂ notation in the numerator indicates that
the the likelihood is maximized over {Nb} at fixed Ns. Since the data are generated
only from the background spectra, the maximum likelihood set of parameters N̂s

and {N̂b} should have N̂s at or near 0. Given that D(Ns) is χ2-distributed, the PLR
technique defines an X% confidence level allowed region by accepting values of Ns

for which D is below the X% point of its cumulative distribution function—i.e, the
experimental outcome is among the 90% most likely outcomes for the computed
values of Ns and { ˆ̂

Nb}.
– The fundamental question that the profile likelihood ratio technique seeks to answer

is the following: given the data, for what values of Ns is the observed experimental
outcome within the set of X% most likely outcomes?

The neutrino fog
The solar neutrino background is an irreducible background for SuperCDMS SNOLAB

and limits the reach to about 10−45 cm2 to 10−44 cm2 dark-matter-nucleon cross section. The
exposures required to reach this level are around 100 kg·yr. SuperCDMS is not expected to be
neutrino-background-limited, but the most sensitive detector architectures may detect one to a few
neutrinos over the course of the experiment.

Single neutrino sensitivity and the neutrino fog are shown in the various forecasts that show
sensitivity to the dark-matter-nucleon cross section. The neutrino fog is determined by a PLR
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method: the neutrino background is assumed to be subtractable and could potentially be identified
by the overall rate and spectral shape, but the uncertainty on this subtraction is the ultimate
limiting factor on the capacity for experiments to explore beyond 10−45 cm2 to 10−44 cm2.

The un-modeled zero charge low energy excess
An extremely important caveat in these projected sensitivity forecasts is that the zero charge

low energy excess (0QLEE) has not been modeled as a background. The 0QLEE background is
a rising low energy spectrum that has been observed below 100 eV to 1 keV and greatly inhibits
low-mass dark matter searches. Details about the low energy excess across many different detector
types are reported in EXCESS workshop (2022). The impact of the 0QLEE background depends on
the phonon threshold of a given experiment. See Section 4.6 and Section 5.1 for more discussion.

4.3 NRDM sensitivity projections
The above procedure is followed to project SuperCDMS SNOLAB dark matter sensitivity

across four combinations of detector architecture and material combinations. The limits are shown
in Figure 4.5 and Figure 4.6, with accompanying plots that show the signal and background spectra
used to compute each limit. Observations:
• High-level descriptions of the shapes of the spectra:

– The iZIP detector spectra exhibit downward turns corresponding to either electron recoil
rejection or surface event rejection. Bulk electron recoils in red are efficiently rejected above
∼1 keV because the ionization threshold is 7×180 eV, or 7 times the ionization resolution.
The efficiency of this rejection improves as the recoil energy increases beyond this threshold.

– The HV detector spectra exhibit resolved peaks corresponding to integer quantities of
electron-hole pairs produced for both electron and nuclear recoils. For electron recoils, the
peaks are located at Neh × (100 eV + ϵeh). For nuclear recoils, the peaks are shifted upward
in energy due to the lower ionization yield for nuclear recoils: for a given charge produced,
a nuclear recoil must deposit more recoil energy than the corresponding electron recoil,
and that extra recoil energy appears as primary phonons.

• HV detectors have better mass reach than iZIP detectors because the greater NTL gain results
in a lower recoil energy threshold. For example, the dashed magenta curve in the silicon iZIP
spectrum plot is the signal spectrum for a 1.6 GeV dark matter particle and reaches roughly
1 keV phonon energy. In contrast, the dashed magenta curve in the silicon HV spectra plot is for
a lower mass 0.5 GeV dark matter particle and reaches roughly 1 keV phonon energy.

• HV detectors are limited by ionization leakage rather than by the phonon energy threshold.
To the left of the dash-dotted line in the spectra, leakage rates are very high; the analysis
conservatively takes the dash-dotted line as the lower bound on the analysis region.2 HV
detectors would be further enhanced in mass reach were it not for the leakage threshold. The
silicon leakage threshold is above the second electron-hole pair peak. The germanium threshold
is above the third.

• Both the iZIP and the HV detector spectra incorporate rejection of surface events above a
certain energy. This rejection can be characterized with fiducial volume cuts in the r- and
z-directions of the detector. The mustard and green curves are surface nuclear recoils and
surface electron recoils, respectively.

2The analysis could have been done down to the phonon energy threshold, treating the leakage as a background,
but the computational cost of the profile likelihood ratio fit, which is done using an unbinned maximum likelihood
technique, is prohibitive. The energy region dominated by the leakage offers little additional sensitivity.
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Figure 4.5: NRDM sensitivity of SuperCDMS SNOLAB and silicon detector spectra.
Top: projected 90% CL exclusion limits for both OI and PLR limit-setting techniques for all four
detector architecture and material combinations along with current limits, the sensitivity at which
a single neutrino event is observed, and the neutrino fog. Bottom: Background and signal spectra
at the exclusion cross section in phonon energy after all analysis cuts for Si iZIPs (Left) and Si HV
(Right) along with phonon energy (dashed) and leakage thresholds (dash-dotted), where applicable.

• The silicon sensitivity projections reach lower dark matter masses than the germanium projections
because the silicon detectors are projected to have lower phonon energy thresholds than the
germanium detectors, as evidenced by the lower 7σE threshold for silicon, which are delineated
in the spectra plots. Furthermore, silicon has a lower atomic mass than germanium and thus
has better kinematic matching at lower dark matter mass; for equal energy thresholds, silicon is
more sensitive to smaller dark matter masses.

• The better resolution of the silicon detector is visible in the HV detector spectra. The germanium
HV spectra with 34 eV energy resolution are much more smeared than the silicon HV spectra
with 13 eV energy resolution.

• The germanium sensitivity projections reach to lower dark matter cross section because the
background rate is lower for germanium than it is for silicon. This latter fact can be seen
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Figure 4.6: NRDM sensitivity of SuperCDMS SNOLAB and germanium detector spectra.
Caption is the same as Figure 4.5, except for germanium signal and background spectra.

from the spectra of all background components; the overall level of the backgrounds, which are
generally dominated by bulk ERs displayed in red, are lower for germanium than for silicon.

Both the NRDM projections in this section and the ERDM projections in the next section
may suffer from worse than projected sensitivity due to the 0QLEE background. Given the 100 eV
to 200 eV 7σE thresholds of SuperCDMS SNOLAB, the background rate near the phonon energy
threshold may be higher due to the 0QLEE background, which has been observed to rise above the
Compton background from anywhere between 100 eV and 1 keV. iZIPs are not expected to provide
the best mass reach for SuperCDMS, so excess rates near threshold are not as much of a concern.
At higher energies, previous CDMS experiments have shown excellent capacity to reject zero charge
events in the 1 keV to 10 keV lower threshold analysis regions that have been investigated; see
SuperCDMS Collaboration (2010). For HV detectors, the 0QLEE background is expected to be
sub-dominant to the ionization leakage background at energies below the dash-dotted lines in the
spectra plots. Above the leakage threshold, it may be possible to subtract the 0QLEE background,
as described in great detail in Chapter 5.
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Figure 4.7: SuperCDMS SNOLAB ERDM sensitivity and related detector spectra.
Top Left: projected PLR-generated 90% CL exclusion limits for electron-recoiling, heavy mediator,
low-mass dark matter with SuperCDMS SNOLAB HV detectors, compared with current limits and
various theory targets. Top Right: same as Top Left, except for a light mediator. Bottom: background
and heavy mediator signal spectra at the exclusion cross section in phonon energy after all analysis
cuts for Si HV detectors, along with phonon energy and leakage thresholds.

4.4 ERDM sensitivity projections
SuperCDMS SNOLAB HV detectors will provide extraordinary reach beyond current limits

for electron-recoiling low-mass dark matter, as shown in Figure 4.7. At the projected sensitivity,
SuperCDMS SNOLAB will probe cross sections that are more than four orders of magnitude smaller
than current limits at 10 MeV dark matter mass for both heavy and light dark photon mediators.
This expectation is attributable to (1) the 4 to 5 additional orders of magnitude in exposure for
SuperCDMS SNOLAB in comparison to the experiments that set the currently world-leading limits
and (2) the low backgrounds that are expected for dark matter searches around 10 MeV particle
mass, in particular for the energy regime where 4 or more recoil-generated electron-hole pairs are
produced. Exposure versus background rate is plotted in Figure 4.8 for the SuperCDMS SNOLAB
projections, as well as the recent results from DAMIC-M (DAMIC-M Collaboration, 2023) and
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Figure 4.8: Exposures and background rates for SuperCDMS SNOLAB HV detectors.
Comparison with DAMIC-M and SENSEI results are provided. The * denotes the fact that DAMIC-
M and SENSEI observed zero events in the 4 to 7 e− range as reported in their most recent results,
so the rate at which zero events over the reported exposure would be excluded at 90% CL is chosen
instead; as mentioned in the legend, the number of events corresponding to that rate is 2.3.

SENSEI (SENSEI Collaboration, 2023) to convey the capacity of SuperCDMS SNOLAB to explore
beyond current exclusion limits.

For electron recoils that produce four or more electron-hole pairs, the background rate is
projected to be about 2×10−3 dru for the germanium HV detectors, dominated by a tritium 3H decay
background and low energy Compton scatters. The background rate is expected to be about 10×
higher for the silicon HV detectors due to the presence of 32Si. To achieve these low background
rates, SuperCDMS has made numerous design choices regarding detector fabrication, detector
handling, and cryostat material makeup to minimize the impact of detector internal contamination
and experimental material radioactivity.

A key limitation for SuperCDMS HV detectors in their search for electron-recoiling low-mass
dark matter is ionization leakage, which dominates background rates at one to a few electron-hole
pairs. The origin of ionization leakage is the tunneling of individual charge carriers from the
electrodes into the bulk. The spectrum plot for the ERDM projection includes a “leakage threshold”
below which the leakage rates are dominant; Events in that energy regime are ignored, as was done
for the nuclear recoil sensitivities.

As a reminder, one important background that has not been modeled for these projections
and that may impact the sensitivity of the experiment is the 0QLEE background. This background
is not expected to be dominant over ionization leakage in HV detectors, which dominate SuperCDMS
SNOLAB’s sensitivity for electron-recoiling low-mass dark matter. Above the leakage thresholds, it
may be possible to subtract the 0QLEE background in search of electron-recoiling dark matter, as
is mentioned for NRDM searches. The subtraction of the 0QLEE background for an NRDM search
is done in Chapter 5.

HV detectors at SuperCDMS SNOLAB are especially exciting for dark matter searches
because of their capacity to probe sharp theory targets in the space of electron-recoiling low-mass
dark matter. In the parameter space presented in Figure 4.7, the theory targets are the combinations
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of scattering cross section and dark matter mass that produce the correct relic abundance of dark
matter. The projected sensitivities surpass the freeze-out and asymmetric fermion target curves
over two decades of dark matter mass from roughly 2 MeV to 100 MeV for a heavy mediator (F = 1).
They also surpass the ELDER theory curve across a single order of magnitude in dark matter mass
from 2.5 MeV to 25 MeV. For the case of a light mediator (F = 1/q2), the projected SuperCDMS
SNOLAB HV detectors are projected to be sensitive to the freeze-in target band over two decades
of mass.

4.5 Forecasting for next-generation SuperCDMS detectors
at SNOLAB

The second major component of the SuperCDMS contribution to the Snowmass process
(SuperCDMS Collaboration, 2023) is to lay out a plan for future SuperCDMS-style experiments.
The SuperCDMS Long-Term Planning Task Force systematically studied future possibilities that
could leverage the under-construction SuperCDMS SNOLAB infrastructure. There are six core
components to forecasting the performance of future experiments: signal models of interest, detector
architecture, detector material, detector size, detector upgrade scenario, and background upgrade
scenario.
• Four signal models of interest: nuclear-recoiling WIMP-like dark matter, electron-recoiling

low-mass dark matter (both heavy and light mediator), dark photon dark matter, and axion-like
particles. Only the first two are presented in this thesis.

• Four detector architectures: iZIPs, HV, 0V, and piZIP. This thesis only discusses the forecasts
that were performed with HV and 0V detectors.

• Two detector materials: silicon and germanium.
• Three different detector sizes: SNOLAB-sized, 10 cm3, and 1 cm3. Each forecast is performed with

the assumption of two towers of detectors, each of which provides 72 readout channels. Limited
by readout channels, a single tower accommodates six SNOLAB-sized detectors, 72 10 cm3, or
72 1 cm3 detectors. Occasionally, when a 10 cm3 or 1 cm3 forecast is seen to be exposure-limited,
20× exposure forecasts are performed, which would require additional cabling beyond what is
currently planned.

• Three detector upgrade scenarios: Det A, Det B, and Det C, which correspond to tiers of
improvement in detector resolution and other detector performance parameters, with Det C
involving the greatest detector advancement. Det A are upgrades that are already possible
today but are too late to be implemented for SuperCDMS SNOLAB.

• Three background upgrade scenarios: Bkg 1, Bkg 2, and Bkg 3, which correspond to tiers of
improvement in background levels, with Bkg 3 involving the greatest decrease in backgrounds.
Bkg 1 are upgrades that are already possible today but are too late to be implemented for
SuperCDMS SNOLAB.

– A major finding of the long-term planning forecasts is that upgrades beyond Bkg 1 are
generally not required to probe large amounts of unexplored parameter space. Detector
upgrade scenarios are shown to be fully capable of exploring new parameter space with
only minimal background improvements. All of the presented sensitivity forecasts are thus
shown for the Bkg 1 scenario. An important caveat in this claim is that there are likely
to be poorly understood and perhaps unforeseen backgrounds (e.g., 0QLEE, background
radiation) that almost certainly require careful study and mitigation.
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Figure 4.9: Det A/B/C: expected energy thresholds, mass reach, and ionization leakage
rates. Left: elastic nuclear recoil energy versus dark matter mass, with expected thresholds and
ergo mass reach demarcated along the curve. Bottom Right: measured and expected ionization
leakage rates for both past and future SuperCDMS experiments.

The Det scenarios: projecting future energy resolutions and leakage performance
The results of Section 4.6 and Section 4.7 make apparent the impact of detector upgrade

scenarios Det A/B/C on experimental sensitivity. Thus, we are motivated to present additional
details on how the various Det scenarios are chosen and projected.

The main difference between the different Det scenarios is the projected detector phonon
energy resolution σE for each scenario. σE of a hypothetical detector is projected based on
current detector performance and appropriate scaling laws for σE as it depends on phonon sensor
parameters and detector dimensions. Specifically, all projected energy resolutions are scaled from
the SuperCDMS PD2 results (SuperCDMS Collaboration, 2021); the key parameters of the phonon
sensor are Tc, which is the critical temperature of the TES, and tW-Al, which is the single attempt
probability of a quasiparticle to transmit from the aluminum collection fin to the tungsten TES (see
Section 3.4). From PD2, Tc = 41.5 mK and tW-Al = 10−4. The following formula is used toe forecast
σE :

σE = σE (PD2)

(
Tc

Tc (PD2)

)3
tW-Al (PD2)

tW-Al

√
fAlAtot

fAl (PD2)Atot (PD2)
X(τcoll,τTES), (4.6)

where fAl is the fractional area coverage of the aluminum fins, Atot is the total surface area of the
detector, and X(τcoll,τTES) is an additional scaling law that depends on the phonon collection time
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τcoll and TES fall time τTES and arises from an optimally filtered pulse height estimation. This final
scaling law is represented as X(τcoll,τTES) for simplicity; see Pyle (2012) for the full expression.

The scalings of σE with T 3
c and t−1

W-Al are well known to the SuperCDMS collaboration.
The former arises from the scaling of thermal fluctuation noise with temperature, and the latter
is derived from the fact that tW-Al is proportional to the efficiency of energy collection within the
TES in the limit of tW-Al ≪ 1. The projected values for Tc in the Det A/B/C scenarios are 40 mK,
30 mK, and 20 mK. For t−1

W-Al the projected values are 10−4, 10−3.5, and 10−3. The Tc values are
set by what can be run in the cryostat (the base temperature goal is 15 mK), and the tW-Al values
are ad hoc but seem realistic. The resultant thresholds for the various Det scenarios are shown in
Figure 4.9 Left, overlain on the curve from Equation 3.6 to show the expected mass reach for each
hypothetical detector upgrade scenario.

There is an additional scaling with (fAlAtot)−1/2 that has not been addressed. fAlAtot is
the total phonon sensor area. Fundamentally, the thermal fluctuation noise in a TES scales as the
square root of TES volume. With the forecasting choice that the phonon sensor cell design does not
change for each of the projected sensitivities, fAlAtot scales linearly with the TES volume. In short,
(fAlAtot)−1/2 is a recast form of the typical V

−1/2
TES scaling for σE . The upshot of the (

√
fAlAtot)−1/2

scaling is that, at fixed aluminum collection fin fractional coverage fAl, energy resolution improves
as detector size decreases, which is visible in the Figure 4.9 Left from the much better resolution
that the 1 cm3 detectors provide over the 10 cm3 detectors.

For HV detectors, beyond energy resolution, the different Det scenarios also project different
levels of ionization leakage, as well as different levels of impact ionization and charge trapping. The
projected leakage improvements are shown in Figure 4.9 Bottom Right. The leakage current has
been seen to improve with pre-biasing the detector at some elevated bias voltage. Improvements in
ionization leakage might also come from the implementation of an insulating blocking layer between
the electrodes and the substrate.

Discovery potential
To illustrate dark matter discovery potential, the toy Monte Carlo was expanded to include

injection of a signal and the PLR code was modified to look for lower and upper boundaries to the
90% CL allowed region. We revisit Equation 4.5:

D(Ns) = −2 ln L(Ns,{ ˆ̂
Nb})

L(N̂s,{N̂b})
. (4.5 revisted)

When the maximum likelihood N̂s is at or near zero, the χ2-distributed D statistic only reaches
the 90% value of its CDF for a single positive value of Ns. If the maximum likelihood N̂s is far
enough from 0, then there may be a second positive Ns that deviates D(Ns) to a 90% confidence
level lower bound on the dark matter cross section.

The forward-looking sensitivity forecasts in the following sections show allowed regions. To
perform this calculation, we assume a hypothetical signal model with a cross section that is a
factor of a few greater than the 90% confidence level background-only upper limit and inject its
spectrum into the data. The maximum likelihood set of Ns and {Nb} should then recover Ns from
the injected signal model, and an allowed region can be computed around that Ns. Additionally, in
this case of an injected signal, we compute the 99.7% confidence level allowed region, corresponding
to a 3σ discovery. Such an exercise will be necessary if and when actual experimental data reflect
consistency with a dark matter signal model.

These 99.7% allowed regions are shown throughout the following sections. They are referred
to as “allowed regions” in the various legends. In some cases, especially for the ERDM QEDark
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signal model, the discretization of the mass range is poor, and the allowed regions do not close
properly around the injected signal.

4.6 Next-generation: low-threshold 0V detectors
Cryogenic phonon-mediated detectors are well positioned to probe unexplored parameter

space beyond the reach of SuperCDMS SNOLAB. The fundamental advantage of phonon-mediated
detectors over charge- or scintillation-mediated detectors is that the latter have relatively high
single-quantum production thresholds (eV and tens of eV).

The effect of improved thresholds
A straightforward path toward new parameter space involves improving the energy threshold

to sub-eV and eventually meV-scale energies. In Section 3.1, we work through the example of an
elastic collision between a motionless nucleus with mass mN and dark matter particle of mass mχ

and velocity v⃗ (v = 10−3). The recoil energy imparted on the nucleus is given by

ENR =1
2mχv2 4mχmN

(mχ + mN )2
1 + cos θCM

2 (Equation 3.5 revisited)

=1
2mχv2 2mχmN

(mχ + mN )2 (Equation 3.6 revisited)

mχ≪mN−−−−−−→
m2

χv2

mN
,

where θCM is the angle of deflection in the center-of-mass frame and isotropic scattering is assumed
at the second equality, i.e., cos θCM is a uniformly distributed around 0.

In the limit mχ ≪ mN , Equation 3.6 becomes ER = m2
χv2/mN ; the recoil energy decreases

with the square of the dark matter mass. For each decade of mass sensitivity that is desired in an
experiment with fixed target mass, two decades of threshold improvement are required. SNOLAB
projects thresholds in the range from 100 eV to 300 eV, providing sensitivity to 1 GeV dark matter.
For sensitivity to 100 MeV dark matter, a threshold of ∼1 eV is needed, which is projected for the
Det C upgrades of 10 cm3 silicon and germanium detectors, as well as the Det B upgrade of a 1 cm3

silicon detector. According to Figure 4.10, these three scenarios would be sensitive to 100 MeV dark
matter to better than 10−42 cm2 dark matter-nucleon cross section, right around the level of single
neutrino sensitivity.

For electron-recoiling low-mass dark matter searches with phonon-mediated silicon or germa-
nium 0V detectors, there is no gain in mass reach by improving the threshold below the bandgap.
In silicon and germanium, the band gaps are ϵ = 1.1 eV and ϵ = 0.76 eV. Thus, 1 cm3 Det C upgrade
scenarios are superfluous for electron-recoiling dark matter searches with a 0V detector. Figure 4.11
displays this cutoff in the signal spectrum.

Lower cross sections may be probed by increasing the exposure beyond just two towers of
1 cm3 silicon 0V detectors. Figure 4.11 shows three higher exposure possibilities: 20× exposure
versions of the Det A and Det B 1 cm3 silicon detectors as well as the nominal two towers of Det C
10 cm3 silicon 0V detectors. As described in the previous paragraph, since both 7σE values for Det B
1 cm3 and Det C 10 cm3 silicon detectors are below the silicon bandgap of 1.1 eV, these detectors
have the same mass reach.

0V detector architecture and the low energy excess
As has been mentioned for all the sensitivity projections that are presented in SuperCDMS

Collaboration, 2023, these sensitivities do not take into account the low energy excess. The impact
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limit plots

SNOLAB proj.
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Det A/B/C/C 20x
Si 0V 1 cm3
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"single neutrino"
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neutrino fog
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surface ERs
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m 0.16, 0.5, 1.6 GeV
7 E threshold

Figure 4.10: NRDM sensitivity of next-generation 0V detectors and related detector
spectra. Top Left: PLR 90% CL exclusion sensitivity for nuclear-recoiling dark matter with
a selection of improved-threshold, next-generation 0V detectors, compared with existing limits,
projected SuperCDMS SNOLAB limits, and the neutrino fog. Top Right: The most sensitive
projections (that are not 20× exposure) along with 99.7% CL allowed regions for an example
injected signal. Bottom Left: background spectra, signal spectra at the 90% CL sensitivity curve,
and phonon energy threshold for a two tower 0V silicon 1 cm3 projection.

of 0QLEE for eV-threshold 0V projections is particularly acute because the excess is seen to rise
steeply at low energies. In each of the experiments shown in Figure 5.2, the low energy excess below
200 eV is seen to rise some four to five orders of magnitude above the flat background spectrum
at higher energies, peaking at the lowest energies below 50 eV. Understanding and mitigating the
0QLEE background is the foremost issue for low threshold 0V detector dark matter searches.

In a SuperCDMS-style 0V phonon-mediated silicon detector operated above ground (Super-
CDMS Collaboration, 2021), the observed event rate at about 20 eV was about 8 events/(g·day·eV),
or 8 million dru, which is seven orders of magnitude greater than the expected SuperCDMS SNOLAB
Compton background at 20 eV: approximately 0.6 dru, according to Figure 4.10 Bottom Left. 8
million dru is also nearly eight orders of magnitude greater than the beryllium-7 neutrino nuclear
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Figure 4.11: ERDM sensitivity of next-generation 0V detectors and related detector
spectra. Top Left: PLR 90% CL exclusion sensitivity and 99.7% CL allowed regions for electron-
recoiling, heavy mediator dark matter with a selection of improved-threshold, next-generation 0V
detectors, compared with existing limits, projected SuperCDMS SNOLAB limits, and various theory
targets. Top Right: same as Top Left, except for a light mediator. Bottom Left: background spectra,
heavy mediator signal spectra at the 90% CL sensitivity curve, and phonon energy threshold for a
two tower 0V silicon 1 cm3 projection.

recoil rate at 20 eV.
Given that the observed 0QLEE rate is enormous compared to the projected background

rates that were used to forecast the sensitivity of future SuperCDMS detectors, it is imperative
to mitigate or eliminate the 0QLEE background. An effort to identify the source of the 0QLEE
background is detailed in Anthony-Petersen et al. (2024). The article demonstrates that stress-
induced backgrounds made up a significant fraction of the background rate at 20 eV. Changing the
detector mounting scheme to a lower stress version reduced the detector’s background rate at 20 eV
by almost two orders of magnitude. Despite immense success in identifying a component of and
decreasing the 0QLEE background, the rate is still at least five orders of magnitude higher than
the expected Compton and neutrino backgrounds at SNOLAB. Film stress is viewed as the likely
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Figure 4.12: ERDM sensitivity of next-generation HV detectors and related detector
spectra. Top Left: PLR-generated 90% CL exclusion limits and 99.7% CL allowed regions for
electron-recoiling, heavy mediator dark matter with two future HV detector payloads, compared
with existing limits, projected SuperCDMS SNOLAB limits, and various theory targets. Top Right:
same as Top Left, except for a light mediator. Bottom Left: background and heavy mediator signal
spectra at the exclusion cross section in phonon energy after all analysis cuts for a two tower
projection of Ge HV SNOLAB-sized detectors, along with phonon energy and leakage thresholds.

dominant remaining source (Anthony-Petersen et al., 2024). More work beyond the forecast upgrade
scenarios described in Section 4.5 is necessary to bring the projected sensitivities to fruition.

4.7 Next-generation: low-leakage HV detectors
Next-generation HV detectors will benefit greatly from lower leakage backgrounds for searches

of electron-recoiling dark matter. Figure 4.12 Top Left and Right show projected gains in ERDM
sensitivity in both cross section and mass for SNOLAB-sized Det B and Det C upgrade scenarios.
Both sensitivity projections are shown for germanium detectors, which offer lower radioactive
backgrounds than a same-size silicon detector. The fact that SNOLAB-sized HV detectors show
better sensitivity than smaller HV detectors implies that exposure is more important than threshold
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Figure 4.13: NRDM sensitivity of next-generation HV detectors and related detector
spectra. Top Left: PLR-generated 90% CL exclusion limits and 99.7% CL allowed regions for three
future payloads, compared with existing limits, projected SuperCDMS SNOLAB limits, and various
theory targets. Bottom Left: background and WIMP signal spectra at the exclusion cross section in
phonon energy after all analysis cuts for a two tower projection of Ge HV SNOLAB-sized detectors,
along with phonon energy and leakage thresholds.

for ERDM.
In the example signal and background spectra shown in Figure 4.12 Bottom Left, the

leakage threshold is now below the second electron-hole pair peak. There are thus three additional
electron-hole pair peaks to use for the dark matter search as compared to the SuperCDMS SNOLAB
projections, now excluding only the first electron-hole pair peak in the analysis region. These
additional peaks provide an extended mass reach for next-generation HV detectors, as lower mass
QEDark models produce fractionally more signal at lower numbers of electron-hole pairs than at
higher ones. It is also interesting to note the sharp detector resolution that is plotted in Figure 4.12
Bottom Left for a Det C detector: the electron recoil peaks are very finely resolved around their
Neh × (100 eV + ϵeh) positions; likewise, the charge-producing nuclear recoils from neutrinos and
neutrons are clearly visible in between the peaks.
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For searches of nuclear-recoiling dark matter, lower leakage rates and lower leakage thresholds
are useful but not necessarily as critical for enhanced sensitivity. The leakage threshold shown in
Figure 4.13 Bottom Left excludes the second electron-hole pair peak, yet the sensitivity projections
are still able to reach the neutrino fog. Since HV NRDM searches rely on charge-producing nuclear
recoils being at higher energies than equal-charge-producing electron recoils, an HV detector’s
capacity to resolve in-between-peak events from events in the peaks is key to its sensitivity. 10 cm3

Det B detector scenarios are sufficient in energy resolution to enable sensitivity down to the neutrino
fog, as seen in Figure 4.13 Top Left; Det C upgrades are not needed. Even a Det A upgrade scenario
at 20× the nominal exposure is sufficient to reach similar levels of sensitivity; more exposure helps
to resolve nuclear recoils from the electron-recoiling background peaks.

Once again, the 0QLEE background is not modeled for these sensitivity projections. Com-
pared to the SuperCDMS SNOLAB projections, these sensitivity projections are more susceptible to
degradation from the 0QLEE background due to the lower leakage thresholds that are hypothetically
achieved in these Det scenarios. It is still possible that the 0QLEE background is suppressed
enough by 200 eV by its exponential shape to not have a significant impact on the validity of these
projections. In this way, HV detectors are not as crippled in sensitivity by the 0QLEE background
compared to 0V detectors because the leakage thresholds are in a regime where the low energy
excess may be sub-dominant. In other words, leakage backgrounds are the foremost issue for HV
detectors whereas the 0QLEE background is the foremost issue for 0V detectors.

As a reminder of how the leakage background is modeled, it is assumed to scale with the
surface area of the electrodes, which would be true if the source of the leakage current is the
tunneling of individual charge carriers from the electrodes into the bulk. See Figure 4.9 for the
expected level of ionization leakage in the first electron hole pair peak.

4.8 Strategies for detecting sub-GeV dark matter with 0V
and HV detectors

Table 4.2 provides a summary matrix for the variety of potential paths to investigate the
unexplored parameter space beyond the reach of SuperCDMS SNOLAB. This thesis is only concerned
with the 0V and HV detector architectures, but the SuperCDMS Snowmass 2021 contribution includes
forecasts for next-generation iZIPs and the yet-to-be-demonstrated piZIP detector architecture.
Furthermore, as mentioned earlier, the Snowmass contribution includes projections for sensitivity to
dark photon and axion-like particle dark matter in addition to the projections for nuclear-recoiling
and electron-recoiling sub-GeV dark matter that are presented in this thesis. There are two main
paths toward improved sensitivity that are outlined in this thesis: low-threshold 0V detectors and
low-leakage HV detectors.

The first path involves developing better phonon energy resolution and lower threshold
detectors. This can be done with TES-based detectors by lowering the critical temperature Tc

and improving the transmission of quasiparticles between the phonon-absorbing fins and the TES
itself, the projections of which were shared in Section 4.6. Current efforts to this effect have further
demonstrated the need for greater shielding of low Tc detectors from pair-breaking IR.

An alternative path toward more sensitive detectors is to use a completely different phonon
sensor architecture. Kinetic inductance detectors (KIDs), quantum capacitance detectors (QCDs),
and superconducting quasiparticle amplifying transmons (SQUATs) are three possible future sensor
architectures that may pave the way toward meV energy thresholds. Fundamentally, they are all
sensitive to the quasiparticle number in the sensor; absorbed energy can be computed in terms of
the number of broken Cooper pairs, which is the fundamental quanta of superconducting energy. In
contrast, TESs rely on the conversion from a temperature change to absorbed energy and, therefore,
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nuclear-recoiling dark matter electron-recoiling dark matter
0V • limited by 0QLEE

• 1 decade of mass reach for 2 decades of
threshold improvement
• need better phonon sensors

• limited by 0QLEE
• no benefit beyond sub-bandgap
thresholds
• sharp theory targets

HV • potentially limited by 0QLEE
• large uncertainty in yield function
• theoretically benefits from spectral dis-
crimination of nuclear recoils from electron
recoils and leakage backgrounds

• current exclusion curves are exposure-
limited and thus motivate 10s kg·year ex-
posures
• limited by leakage backgrounds
and/or sub-gap IR for one to a few e−h+

pairs
• potentially limited by 0QLEE
• sharp theory targets

Table 4.2: Challenges and opportunities for next-generation 0V and HV detectors in
search of sub-GeV dark matter.

are dissipative in a way that may limit long-term gains.
A second path toward unexplored parameter space involves using existing single-charge

sensitive detectors. These detectors have significant overlap in projected sensitivity with other
charge-sensing technologies, most notably charge-coupled devices and their Skipper variety; see
Section 3.3. The path toward increased sensitivity involves tens of kg·year exposures as well as
background rates below 0.01 dru. Single-charge backgrounds are also a significant impediment
toward increased sensitivity, and the mechanism for their production needs to be better understood.
Most importantly, single-charge sensitive detectors provide the clearest path forward to testing
those dark matter models for which there is a possible mechanism to produce the appropriate relic
abundance in the early universe.

The zero charge low energy excess (0QLEE) has the potential to limit the sensitivity of
any low-mass dark matter search that uses a phonon-mediated detector. It is particularly limiting
for 0V detectors, the main advantage of which is their ability to probe at low energies where the
0QLEE is dominant. Current evidence points to stress-induced events as a dominant contributor to
this excess, but the rate of events still significantly exceeds other standard particle backgrounds.
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Chapter 5

HVeV Run 4 NRDM search with
background subtraction of the low
energy excess: a prototype
SuperCDMS SNOLAB analysis

This chapter is temporarily embargoed.

5.1 Background information, key concepts, and motivation
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This chapter is temporarily embargoed.

Figure 5.1: HVeV Run 3 versus HVeV Run 4.
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Figure 5.2: The zero charge low energy excess as observed in various experiments.
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Figure 5.3: Ionization yield models for nuclear recoils and HV NRDM signal models.
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5.2 HVeV Run 4
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Figure 5.4: HVeV Run 4 detector payload.
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Figure 5.5: Raw event rates in HVeV Run 4.
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5.3 Live-time cuts
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Figure 5.6: Example events identified by the anti-coincidence-based live-time cut.

5.4 Data-quality cuts
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Figure 5.7: Cs-137 source data: χ2 versus pulse amplitude and event types.
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Figure 5.8: Zoom-in of the post-cut χ2 versus amplitude-reconstructed energy of HV
and 0V Cs-137 data.
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5.5 Comparing the 0V and HV spectra
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Figure 5.9: Post-cut unblinded background spectra of the HVeV Run 4 detectors.

Figure 5.10: Kolmogorov-Smirnov tests of the 0V and HV data in the ROI.
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5.6 Background estimation for NFC1
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Figure 5.11: Maximum-likelihood-based background model parameter estimation for
HVeV Run 4.

5.7 Constraining the DM-nucleon cross section
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Figure 5.12: HVeV Run 4 NRDM constraints.
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Part III

Kinetic inductance detectors for dark
matter
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Preface

In this final part of my thesis, I explore kinetic inductance detectors (KIDs) as a new and
potentially more sensitive phonon sensor. The detector architecture is termed a KID-based phonon-
mediated (KIPM) detector. In Chapter 6, I first explain how kinetic inductance detectors work,
going step by step from the absorbed energy in a superconducting film to the modulation of some
resonator-coupled readout signal. This chapter is intended to be an introductory guide for kinetic
inductance detectors and so predominantly draws on reference texts regarding superconductivity
and microwave engineering as well as various seminal works on kinetic inductance detectors. The
one exception is Section 6.7, which presents a new parametrization that I developed to understand
the nonlinear response of kinetic inductance detectors to large deviations in resonator parameters.

In Chapter 7, I work through the different sources of noise in kinetic inductance detectors,
first providing calculations for each noise’s expected contribution to the resolution on absorbed
energy, and then reporting their measured contribution to the resolution from various experiments.
I was either the sole or primary data taker and data analyzer for all of the reported measurements,
all but one of which was performed at Caltech.

In Chapter 8, I examine the energy performance of three different KIPM detectors. The first
detector, known as DMLE2, was originally studied in Moore et al. (2012) and Moore (2012); they
were the first publications on a KID-based phonon-mediated detector. The energy performance of
the second detector, known as OW200127, was measured in NEXUS at Fermilab and published in
Temples et al. (2024). As mentioned in the foreword on published content, I designed and fabricated
this detector, studied its noise performance at Caltech, developed the LED data-taking protocol for
measurement of energy resolution, and provided close supervision to the experiment at NEXUS
that measured the energy resolution. The third and final detector that is examined in Chapter 8
is known as B240103, which was fabricated by Bruce Bumble at the Jet Propulsion Laboratory.
I was the lead member of the Caltech data-taking team that measured the energy performance
of this detector, using the same protocol as was used for OW200127. A notable improvement to
the analysis that I developed for B240103 was the implementation of a nonlinear pulse coordinate
system, allowing for calibration to the energy in the resonator across a much broader range of energy.
With the energy performance of these three detectors as data points, I then build an empirical
model in Chapter 8 to describe the phonon collection efficiency for KIPM detectors.
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Chapter 6

Superconducting microwave resonators:
signal calibration and responsivity

Kinetic inductance detectors are made with superconducting microwave resonators. During
operation of a kinetic inductance detector, the resonator is probed with a microwave readout tone
at the resonant frequency fr. Modulations in the complex transmission δS21 of the resonant tone
can be used to measure the energy absorbed Eabs by the resonator. The physical processes that
govern Eabs becoming δS21 are the topic of the first section of this chapter. This discussion also
provides the conversion of the measured δS21 into the desired Eabs. In broad strokes, the conversion
can be conceptualized in the following way:

absorbed
energy

quasiparticle
density

complex
conductivity

surface
impedance

resonator
parameters

complex
transmission

Eabs nqp σ = σ1 − iσ2 Zs = Rs + iωLs Qr, fr S21

6.1 Absorbed energy → quasiparticles:
the Cooper pair

Below the critical temperature of a superconductor, the majority of free electrons enter a
paired state known as the Cooper pair. An unpaired free electron is referred to as a quasiparticle.
The energy required to break a Cooper pair is 2∆, where ∆ is the superconducting bandgap. A
broken Cooper pair increases the quasiparticle population Nqp by two. Thus, the average energy to
create one quasiparticle is ∆. Kinetic inductance detectors respond to the density of quasiparticles
nqp, so we divide by the superconducting volume Vsc. We can write

dnqp
dEabs

= 1
Vsc∆

. (6.1)

6.2 Quasiparticles → complex conductivity:
Mattis-Bardeen theory

Mattis-Bardeen theory (Mattis et al., 1958) is concerned with the response of superconducting
electronic states upon application of an electromagnetic wave with frequency ω, an idea succinctly
expressed as Ohm’s law: J = σE, where J is the current density, E is the electric field, and
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D(E)
N0

Figure 6.1: Basic machinery of Mattis-Bardeen theory. Left: The dependence of ∆ on
temperature. Figure is from Tinkham (2004). Right: D(E) vs E for a superconductor. The flat
density of states for a normal conductor is also noted. Figure is modified from Tinkham (2004).

σ = σ1 − iσ2 is the complex conductivity. Both J and E are taken to be phasors with time
dependence eiωt. The real component σ1 corresponds to in-phase, dissipative oscillations in J
with respect to E, and the imaginary component σ2 corresponds to the out-of-phase and reactive
oscillatory response.

Mattis-Bardeen theory builds on BCS theory and invokes the following terms:

D(E) = N0
E√

E2 −∆2
, F (∆, E, E′) = 1

2

(
1∓ ∆2

EE′

)
, f(E) = 1

1 + eE/kT
. (6.2)

• ∆ is an order parameter that characterizes the phase transition of a metal from normal
conductor to superconductor. The transition occurs at some critical temperature Tc. In the
case of superconductivity, ∆ is the gap that appears in the density of states. Above Tc, the
order parameter is 0. At Tc, the order parameter follows a

√
Tc − T curve and its derivative

diverges, marking a phase transition that is characteristic of mean-field theories. Below Tc, ∆
can be numerically computed in a self-consistent way such that for a particular value of ∆ there
is a corresponding nqp, i.e., if there are fewer quasiparticles then ∆ must be larger. As a result,
∆ asymptotically reaches some ∆0 in the limit where nqp and T approach 0. This behavior is
plotted in Figure 6.1 Left. Details about this self-consistency calculation can be explored further
in Tinkham (2004). One result of the calculation is that ∆0 ≈ 1.76kTc.

• D(E) is the quasiparticle density of states and is plotted in Figure 6.1 Right. N0 is the single-
spin density of electron states at the Fermi energy. There is a 2∆ energy gap between the
lowest-energy quasiparticles and the Cooper pair energy. The function peaks near the gap and
asymptotes to 1 away from the gap.

• F (∆, E, E′) is a coherence term that ranges from 0 to 1 and results from the wavelike nature of
quasiparticles and Cooper pairs: 0 is destructive interference and 1 is constructive interference.
For E, E′ ≫ ∆, the gap becomes irrelevant and the wavelike properties are diminished: F = 1

2 .
For electromagnetic absorption, E′ = E + ℏω.
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– The negative sign in the expression for F (∆, E, E′) is used for processes that are even
under time reversal of electronic states; this case is referred to as case I in the BCS and
Mattis-Bardeen literature. The positive sign is used for processes that are odd under time
reversal, and these situations are referred to as case II. The canonical example of a case II
process in a superconductor is nuclear-spin relaxation by interaction with quasiparticles;
the spin interaction is the source of the odd parity under time reversal.

• f(E) is the standard Fermi-Dirac distribution for spin-1
2 particles.

The thermal population of quasiparticles nqp can be computed from these terms and evaluated
in the limit where kT ≪ ∆:

nqp = 4
∫ ∞

∆
D(E)f(E)dE

kT ≪∆= 2N0
√

2πkT∆0e−∆0/kT . (6.3)

Equation 6.3 is plotted in Figure 6.2 with N0 = 1.72× 1010 eV−1µm−3 and ∆0 = 180 µeV, values for
aluminum. Because we are interested in detecting perturbations in nqp, the goal of Mattis-Bardeen
theory as it applies to kinetic inductance detectors is to derive expressions for the dependence of
the complex conductivity on nqp.

With the basic machinery described, we return to the original question of Mattis-Bardeen
theory: how does a superconductor respond to an external electromagnetic field. There are two
natural regimes of Mattis-Bardeen theory, given a photon with energy ℏω and a superconducting
bandgap of 2∆: ℏω < 2∆ and ℏω > 2∆. Kinetic inductance detectors are generally probed at
frequencies well below the gap frequency f∆: f∆ = 2∆/h ≈ 74 GHz×(Tc/1 K). ℏω < 2∆ is assumed
throughout this section.

The real component σ1 of the conductivity can be interpreted as a measure of electromagnetic
absorption. σ1 signifies the capacity for in-phase power from an electromagnetic field to be delivered
to the conductive material. For the sub-gap photons that are used to probe kinetic inductance
detectors, only the quasiparticles can be excited into higher energy states. σ1 may thus be computed
from quasiparticle scattering rates, which depend on the relative occupation of D(E) at the initial
and final energies of the quasiparticle; the essential building blocks of the calculation are underscored
with brackets below. The reported quantity is a ratio of σ1 to the normal state conductivity σn,
which may be computed with a similar integral as below and setting ∆ = 0.1

σ1
σn

= 2
ℏω

∫ ∞

∆

E√
E2 −∆2︸ ︷︷ ︸

D(E)

E + ℏω√
(E + ℏω)2 −∆2︸ ︷︷ ︸

D(E+ℏω)

(
1 + ∆2

E(E + ℏω)

)
︸ ︷︷ ︸

coherence term

(f(E)− f(E + ℏω))︸ ︷︷ ︸
F-D statistics

dE (6.4)

Observations:
• The integral is performed only on the quasiparticles, from ∆ to ∞. In general, there is another

integral from −∆− ℏω to ∆ for direct Cooper pair to quasiparticle creation. It is 0 for ℏω < 2∆.
• The coherence term is for a case II interaction (positive sign) because the interaction Hamiltonian

for electromagnetic absorption is proportional to p ·A,2 which is odd under time reversal.
• The net scattering rate is computed as (forward scattering rate − backward scattering rate).

A forward scattering rate from E1 → E2 takes the form D(E1)f(E1) ×D(E2) (1− f(E2)); it
depends on the occupation of the initial state and the vacancy of the final. Subtraction of the
backward scattering from E2 → E1 results in ∝ f(E1)− f(E2).

1There is a factor of N0 and other material parameters that cancel out between numerator and denominator. See
Tinkham (2004).

2This interaction term comes from the kinetic term in the Lagrangian for a charged particle in an electromagnetic
field, which has a modified canonical momentum (p − eA)2/2m.
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Figure 6.2: Quasiparticle density and complex conductivity versus temperature as a
fraction of Tc ≈ ∆/1.76k. The span across the y-axis is identical across the right two plots for
ease of comparison.

• When ∆ = 0, the integrand simplifies to f(E)− f(E + ℏω).

The imaginary component σ2 of the conductivity represents the strength of out-of-phase
oscillations to be induced by an external electromagnetic wave. σ2 can be computed in a similar
way to σ1 but has a few key differences:

σ2
σn

= 1
ℏω

∫ ∆

∆−ℏω

E√
∆2 − E2︸ ︷︷ ︸

D(E)

E + ℏω√
(E + ℏω)2 −∆2︸ ︷︷ ︸

D(E+ℏω)

(
1 + ∆2

E(E + ℏω)

)
︸ ︷︷ ︸

coherence term

(1− 2f(E + ℏω))︸ ︷︷ ︸
F-D statistics

dE, (6.5)

Observations:
• Equation 6.5 is reproduced as written from Mattis et al. (1958). Zmuidzinas (2012) provides

another expression for Equation 6.5 that integrates from ∆ to ∆ + ℏω after applying a change
of variables E → E + ℏω. Under that change of variables, an interpretation for Equation 6.5 is
that it is an integral over virtual quasiparticle states that range in energy from ∆ to ∆ + ℏω.

– Note the bounds of the integral and the first D(E) term. The integral is performed over
states in the gap! A speculative interpretation of the integral is that a photon has a non-zero
probability of spontaneously creating quasiparticles above the gap by interacting with
virtual states inside the gap. This process is similar to a photon that drives the stimulated
emission of an excited electron in an atom, but in this case the outgoing quasiparticle is
out of phase with the initial photon.

• Because the photon interacts with virtual states, the Fermi-Dirac term only cares about the
available states at the final quasiparticle energy: 1 − f . The photon makes 2 quasiparticles,
hence the factor of 2.

• The different Fermi-Dirac terms between σ1 and σ2 lead to an important qualitative difference:
σ1 → 0 as T → 0, whereas σ2 → constant.

If we consider the limit ℏω ≪ ∆ and kT ≪ ∆, then these integrals can be done analytically



109

Tc
3

Tc
4

Tc
5

Tc
6

Tc
7

Tc
8

Tc
9

Tc
10

Temperature

10 2

10 1

100

101

102

103

104

105

n q
p (

m
3 ) lowest nqp

measured
6
7 e /kTc

Tc
3

Tc
4

Tc
5

Tc
6

Tc
7

Tc
8

Tc
9

Tc
10

Temperature

10 8

10 7

10 6

10 5

10 4

10 3

10 2
1/| 0|

1 2/| 0|

Figure 6.3: Quasiparticle density and complex conductivity versus a reciprocal temper-
ature axis. Fractional deviations from |σ0| = π∆/ℏω are computed. The intersections with the
vertical grid lines have been marked as a visual guide. The vertical spacing between two adjacent
markers has been pointed out to emphasize the exponential scaling of nqp with 1/T .

and have been reported in various documents; see Gao (2008). They are

σ1
σn

= 4∆
ℏω

e−∆/kT sinh(x)K0(x) and σ2
σn

= π∆
ℏω

(
1− 2e−∆/kT e−xI0(x)

)
, (6.6)

where x = ℏω/2kT and In and Kn are nth order modified Bessel functions of the first and
second kinds. It is useful to calculate the low temperature limiting value of the conductivity
σ0 = limT →0 σ(T ). Taking this limit in Equation 6.6, we find that σ0 = −i(π∆/ℏω)σn; it is
completely reactive.

Equation 6.6 is plotted in Figure 6.2. They show qualitatively similar exponential responses
to temperature as nqp. The response of σ2 as a fraction of σn is larger than that of σ1, visually
aided by the equal reaches across the y-axis in Figure 6.2 Middle and Right. Furthermore, the
deviations of σ1 and σ2 have been expressed as a fraction of π∆/ℏω, which provides the scale for
the deviations.

It is interesting to plot Equation 6.3 and Equation 6.6 on a logarithmic y-axis and a reciprocal
x-axis as is done in Figure 6.3. Doing so illustrates the approximately linear relationship between
the logarithmic quantities on the y-axis with the reciprocal temperature, e.g., ln nqp ∝ 1/T . The
key point of Figure 6.3 is that the other temperature-dependent terms in the expressions for nqp,
σ1/σn, and σ2/σn are small compared to exp(−∆/kT ).

The lowest nqp that has been robustly measured in the literature to our knowledge is from
de Visser et al. (2011)3 and has been pointed out in Figure 6.3 Left at 25 µm−3. Measurements of
nqp bottom out at whatever the quiescent quasiparticle population is, as shown in Figure 4 of de
Visser et al. (2011). Likewise, σ1/σn and σ2/σn (as well as δfr/fr and δ(1/Qi), which we introduce
later) cannot actually be measured below a certain temperature because σ0, the conductivity at
zero temperature, cannot be measured in experiment. So, in practice, it is instead necessary to

3Temples et al. (2024) infers a quiescent quasiparticle population of 18.5 µm−3, but this measurement is not as
robust as de Visser et al. (2011). See Section 7.2.
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Figure 6.4: The Mattis-Bardeen equations for κ1 and κ2 as a function of temperature and
photon frequency. Top Left: κ1 and κ2 versus a linear temperature axis. Bottom Left: κ1 and κ2
versus a reciprocal temperature axis. Right: κ1 and κ2 as they depend on the electromagnetic wave
frequency ω, assuming ∆ = 0.18 meV as it is for aluminum.

define some baseline reference value σref (or fr,ref or Qi,ref) that is measured at the lowest possible
temperature of the experiment. Deviations from the reference quantity may instead be plotted.

We desire to calculate the derivatives of Equation 6.6 with respect to nqp (i.e., how the
y-axis of Figure 6.3 Right depends on the y-axis of Figure 6.3 Left), which involves the subtlety
that σ and nqp both depend on temperature under certain assumptions. Gao (2008) describes two
methods for computing this integral: (1) if nqp is completely specified by the thermal population as
determined by Equation 6.3, then dσ/dnqp = ∂σ/∂T ÷ ∂nqp/∂T by the chain rule; and (2) if nqp is
independent of T , as would be the case if the nqp population is dominated by external pair-breaking
sources, then the expression for nqp, Equation 6.3, can be substituted into Equation 6.6, and the
partial derivative ∂σ/∂nqp can be taken as the total derivative that is desired. In both cases, the
temperature dependence of ∆ must also be included. Gao (2008) shows that these two methods
lead to very similar numerical results and thus draws an equivalence between thermal quasiparticles
and excess quasiparticles. We report the latter result below:

1
σn

dσ1
dnqp

= 1
N0ℏω

√
2∆
πkT

sinh(x)K0(x) 1
σn

dσ2
dnqp

= − π

2N0ℏω

1 +

√
2∆
πkT

e−xI0(x)

 . (6.7)

The previous equations may then be expressed in terms of fractional deviations from |σ0|,
allowing us to define

κ1 ≡
dσ1/|σ0|

dnqp
= 1

πN0

√
2

πkT∆ sinh(x)K0(x) κ2 ≡
dσ2/|σ0|

dnqp
= − 1

2N0∆

1 +

√
2∆
πkT

e−xI0(x)

 .

(6.8)
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We remind the reader that x = ℏω/2kT and that K0 and I0 are modified Bessel functions. Equa-
tion 6.8 is plotted in Figure 6.4. Only the absolute value is plotted; the κ2 response is technically
negative. The key observations about the plot are (1) the κ2 response is greater than the κ1 response,
as suggested by Figure 6.2 and Figure 6.3, and (2) κ1 and κ2 do not change much over the typical
operating temperatures of a kinetic inductance detector. If this second point were not true, kinetic
inductance detectors would be much more difficult to calibrate. Equation 6.8 is the ultimate result
of this section and can be interpreted as the fractional response of the conductivity to changes in
the quasiparticle density.

Also plotted in Figure 6.4 Right is the dependence of |dσ1,2/σ0|/dnqp on the applied electro-
magnetic wave frequency ω. The κ2 response plateaus at low frequency. The κ1 response goes to 0,
which is expected for the dissipative response to a low-frequency electromagnetic wave. At the right
edge of the plot, the inequality ℏω ≪ ∆ no longer holds.

6.3 Complex conductivity → surface impedance:
a lesson in penetration depth

The next physical quantity for conversion of Eabs into δS21 is the superconducting film’s
surface impedance Zs, which governs its electrical response and is usefully parametrized as Rs +iωLs,
the sum of impedances due to surface resistance and surface inductance. The relationship between
the conductivity and surface impedance of a material is easiest to understand when Ohm’s law is
local: J = σE. For a superconductor, the relevant length scales that determine locality are the
penetration depth of the magnetic field λ from the Meissner effect, the coherence length of the
Cooper pairs ξ, and the mean free path of the charge carriers ℓ. Locality occurs when ℓ≪ λ and
ℓ≪ ξ. In other words, the charge carriers scatter on a small enough scale that the long-length-scale
coherence effects of superconductivity are suppressed. The result is that the normal forms for
impedance and resistance in terms of σ can be adopted with the replacement of σ by σ1 − iσ2.

Scenario 1: thin film
We start with the most basic case: a thin superconducting film of dimension L ×W × t,

where the thickness t≪ λ, thus enforcing t ≈ ℓ≪ λ,ξ. The fact that the thickness is much smaller
than the penetration depth implies that the fields (and thus the current) are uniform across the film
thickness rather than decaying with distance from the surface. The resistance adopts the familiar
form

R = ρL

A
= ρL

Wt
= Rs

L

W
; Rs = ρ

t
= 1

σt
, (6.9)

where Rs is the sheet resistance and carries units of Ω/square. For the rectangular geometry in
this example, the number of squares can be calculated with L/W , which can be recognized as the
aspect ratio of the film. To obtain the desired relation between Zs and σ, we promote Rs → Zs and
substitute σ → σ1 − iσ2, with the assumption that the sheet inductance of the film is due solely to
the complex conductivity. The final equation is

Zs = Rs + iωLs = 1
σt

= 1
(σ1 − iσ2)t . (6.10)

As with the complex conductivity, we are interested in fractional perturbations about the
low temperature impedance Zs,0 and the low temperature conductivity σ0, recalling that σ1 → 0 at
low temperatures:

δZs

Zs,0
= −δσ

σ0
. (6.11)
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Figure 6.5: Schematics of thin film and bulk superconductors. Left: thin film superconductor.
Right: bulk superconductor with penetration depth δ. In the text, penetration depth is referred to
as λ. Both images are from the Wikimedia commons.

Scenario 2: bulk superconductor in the local limit
If we remain in the local regime but now allow for the incident E and B fields to decay over

a length scale given by λ, then we start from the formula for the intrinsic impedance η of an EM
wave inside of a good conductor:

η = (1 + i) 1
σλ

= (1 + i) 1
σ

√
ωµσ

2 =

√
iωµ

σ
, (6.12)

where ω is the frequency of the incident wave and µ is the magnetic permeability of the material.
In the second equality, the expression for the skin depth in a good conductor is used. There is an
interesting conceptual link between the expression for Rs in Equation 6.9 and the first expression for
η above: they are equivalent upon exchange of t↔ λ, modulo the factor of (1 + i); the surface layer
through which the field penetrates can be interpreted as the effective thickness of a thin conducting
film in which the current flows. A change in σ includes a change in λ, which conspires to produce
an η ∝ σ−1/2 relationship. As before, we take η to be Zs and substitute σ → σ1 − iσ2:

Zs =

√
iωµ

σ
=
√

iωµ

σ1 − iσ2
. (6.13)

The fractional response of the impedance about the low temperature impedance is now
suppressed due to the square root:

δZs

Zs,0
= −1

2
δσ

σ0
. (6.14)

Scenario 3: a non-local superconductor and the anomalous skin effect
When ξ ≫ λ and l ≫ λ, then the current is coherent (does not suffer scattering) over a

much larger length scale than the decay length of the fields, so the current at a given point can no
longer be related only to the field at the point, i.e., the superconductor is no longer in the local
limit. Instead, we must adopt a non-local version, first suggested by Chambers and Pippard and
motivated by the phenomenological London equations, J = −1/λ2A; see Tinkham (2004) and Gao
(2008).
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The fractional response of the impedance about the low temperature impedance is now
further suppressed over the local superconductor case due to the anomalous skin effect:

δZs

Zs,0
= −1

3
δσ

σ0
. (6.15)

Summary
The results of the three scenarios are collected here:

δZs

Zs,0
= γ

δσ

σ0
; γ =



−1 thin film, local;

−1
2

thick film, local
i.e., “dirty” limit;

−1
3

thick film, non-local
i.e., extreme anomalous limit.

(6.16)

The main takeaway is that, of these three scenarios, thin films are the most responsive to fractional
changes in the complex conductivity.

The response of the surface impedance can be broken down into the dissipative and reactive
components.

δZs

Zs,0
= δRs + iωδLs

iωLs
= γ

δσ1 − iδσ2
σ0

⇒

δRs

ωLs
= γ

δσ1
|σ0|

and δLs

Ls
= γ

δσ2
|σ0|

. (6.17)

In the low temperature limit, it is assumed that Rs and σ1 are both 0. The final form of Equation 6.17
has stripped all factors of i and has had the absolute value taken where appropriate so that all
quantities are real.

6.4 Surface impedance → resonator parameters:
the kinetic inductance fraction

The essential ingenuity of a kinetic inductance detector is that changes to the surface
impedance of a superconductor (which arise from changes to the complex conductivity which in turn
arise from quasiparticle density) can be measured by fashioning a resonator out of the superconductor
and then measuring changes to the resonant frequency fr and internal quality factor Qi of that
resonator. For a resonator fashioned out of an RLC circuit, these quantities are

fr = 1
2π

1√
LC

and Qi = 2πfrL

R
= 1

2π

1
frRC

. (6.18)

Following the theme of the rest of this chapter, we explore fractional perturbations to these
quantities4 as a result of δZs = δRs + iωδLs, reproducing derivations that are found in Siegel (2016):

41/Qi is already a fractional quantity; it represents the fraction of stored energy lost in the resonator over a radian
of oscillation.
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δfr

fr
=

√
L√

L + δLs
− 1

=
(

1 + δLs

L

)−1/2
− 1

= −1
2

δLs

L
(6.19)

δ
1

Qi
= R + δRs

ω(L + δLs) −
R

ωL

= R + δRs

ωL

(
1− δLs

L

)
− R

ωL

= δRs

ωL
− RδLs

ωL2 −
δRsδLs

ωL2

= δRs

ωL
. (6.20)

In the above derivation, we have used the fact that δLs/L and R/ωL are small, only keeping linear
terms of these quantities in the final result.

The perturbations are expressed as a fraction of the total inductance L. The total inductance
includes a component Lgeom that depends on the geometry, allowing us to define α, the fraction of
the total inductance that is due to the surface inductance:

L = Lgeom + Ls; α ≡ Ls

L
. (6.21)

α is usually referred to as the kinetic inductance fraction. With this definition, we can rewrite 6.19
and 6.20 as

δ
1

Qi
= α

δRs

ωLs
and δfr

fr
= −1

2α
δLs

Ls
. (6.22)

6.5 Resonator parameters → δS21:
the RF responsivity

S21 is measured across a feedline that is inductively or capacitively coupled to a microwave
resonator. The resonator has some internal quality factor Qi. The coupling to the feedline is a
path for energy to leave the resonator as well as for energy to enter; therefore, there is a coupling
quality factor Qc associated with this loss of energy. Qc is associated with non-dissipative energy
loss, whereas Qi is associated with dissipative energy loss. The loaded quality factor Qr that is
associated with a resonator embedded into the readout circuitry is thus

1
Qr

= 1
Qi

+ 1
Qc

. (6.23)

For some additional intuition regarding this equation, recall that quality factors in general may
be defined as 2π × (energy stored in the resonator ÷ energy lost per cycle). Equation 6.23 can be
interpreted as a statement of energy conservation: the total energy lost per cycle is equal to the
energy that leaks out of the resonator to the feedline plus the energy lost to dissipation within the
resonator itself. For further discussion of loaded and unloaded quality factors, please see Chapter 5
of Pozar (2005).

The quality factor for a parallel RLC circuit can be derived from the following calculation,
where we use ωr = 1/

√
LC and ω = ωr + ∆ω, with ∆ω ≪ ωr:

1
Zin

= 1
R

+ 1
iωL

+ iωC (6.24)

= 1
R

+ 1
i(ωr + ∆ω)L + i(ωr + ∆ω)C
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= 1
R
− i

1
ωrL

(
1− ∆ω

ωr

)
+ i(ωr + ∆ω)C ∆ω ≪ ωr

= 1
R
− i

( 1
ωrL

− ∆ω

ω2
rL

)
+ i(ωr + ∆ω)C

= 1
R

+ 2i∆ωC

= 1
R

(
1 + 2iQ

∆ω

ωr

)
. (6.25)

In the last line, we define Q ≡ ωrRC = R/ωrL. When the resonator is probed on resonance,
i.e., ∆ω = 0, the imaginary component of the input impedance is 0, Zin is maximized, and
power ∝ |Zin|2 is maximally delivered to the resonator. Equation 6.25 motivates another definition
for the quality factor of a resonator that is useful for measurement: Qr = fr/FWHM, where
FWHM is the full width at half maximum. If we plug in this definition for Q and set ω such that
∆ω/ωr = ∆f/fr = FWHM/2fr, then we find that 1/Zin = (1 + i)/R, which is a factor of

√
2 larger

in magnitude than when ∆ω = 0. The power delivered to the resonator is then a factor of 2 smaller
than when ∆ω = 0, thus motivating the “half maximum” part of the definition.

We write without derivation the transmission across a feedline that is coupled to the
resonator:

S21(f) = 1− Qr

Qc

1
1 + 2iQr

f−fr

fr

. (6.26)

It is fully derived in Gao (2008). Observations:
• The denominator 1+2iQr(f −fr)/fr matches the expression in the parentheses of Equation 6.25.
• When the input impedance of the resonator is minimized in magnitude by setting f = fr, the

transmission S21 is minimized. Maximal power is delivered to or reflected at the resonator.
• When the circuit is operated on resonance, the transmission is 1−Qr/Qc, giving the fraction

of the RF power that is transmitted across the resonator. This expression can be rewritten as
1− (1/Qc)/(1/Qr); the latter term has been recast in terms of energy loss mechanisms and is
literally the ratio of energy lost through the feedline coupling to the total lost energy. There are
three scenarios shown in Figure 6.6.

1. Qi ≫ Qc; the resonator is overcoupled to the feedline. When the coupling to the feedline
is too strong, energy leaks out of the resonator too quickly before it can dissipate in the
resonator. This situation corresponds to a large reflected wave and a smaller transmitted
wave, the amplitudes of which can be extracted directly from Figure 6.6 Top Left for the
scenario where Qi = 3Qc. The fraction of supplied feedline power (Pg in most of the KID
literature) that is transmitted, reflected, and dissipated at the resonator is (1/4)2, (3/4)2,
and 1− (1/4)2− (3/4)2 = 3/8, respectively. As stated, the power dissipated at the resonator
is less than maximal because most of the power is reflected.

2. Qi = Qc; the resonator is optimally coupled to the feedline. At optimal coupling, the
amplitudes of the transmitted and reflected waves are equal and opposite, and the powers
of the transmitted and reflected waves are 1/4 of the supplied power, as shown in Figure 6.6
Middle. The dissipated power is thus half of the supplied feedline power, the maximal
value it can reach.

3. Qi ≪ Qc; the resonator is undercoupled to the feedline. When the coupling to the feedline is
too weak, energy is not efficiently delivered to the resonator, and the |S21(f)|2 curve becomes
very shallow, as shown in Figure 6.6 Right for Qi = Qc/3. In this case, the fraction of Pg

that is transmitted, reflected, and dissipated is (3/4)2, (1/4)2, and 1−(3/4)2−(1/4)2 = 3/8,
respectively, which is the converse of the overcoupled case.



116

0.0 0.5 1.0
0.6

0.4

0.2

0.0

0.2

0.4

0.6
Qi = 3Qc

1
4

3
4

idealized S21

0.0 0.5 1.0
0.6

0.4

0.2

0.0

0.2

0.4

0.6
Qi = Qc

1
2

1
2

idealized S21

0.0 0.5 1.0
0.6

0.4

0.2

0.0

0.2

0.4

0.6
Qi = 1

3Qc

3
4

1
4

idealized S21

4 fr
Qr

2 fr
Qr

fr 2 fr
Qr

4 fr
Qr

12

10

8

6

4

2

0

|S
21

|2  (
dB

)

4 fr
Qr

2 fr
Qr

fr 2 fr
Qr

4 fr
Qr

12

10

8

6

4

2

0

4 fr
Qr

2 fr
Qr

fr 2 fr
Qr

4 fr
Qr

12

10

8

6

4

2

0

Figure 6.6: Examples of S21(f) for resonators in the overcoupled, optimally coupled, and
undercoupled regimes. Top: complex S21(f) for three different ratios of Qi to Qc. The distance
of the on-resonance S21 point from the origin and from the off-resonance transmission are indicated.
Bottom: the power transmission across the resonator for the three different Q ratios.

• When f − fr = ±FWHM/2 = ±fr/2Qr,

S21 = 1− Qr

Qc

1
1± i

=
(

1− 1
2

Qr

Qc
∓ i

1
2

Qr

Qc

)
. (6.27)

So, S21(fr ±FWHM/2) are separated by Qr/Qc, as indicated by the blue dots in Figure 6.6 Top
and Bottom.

We are interested in how S21 changes in response to changes in fr and Qi. We take the
derivative of Equation 6.26 with respect to these two quantities and evaluate at the resonant
frequency, where the response is maximized:

fr
dS21
dfr

∣∣∣∣
f=fr

= −2i
Q2

r

Qc
and dS21

d(1/Qi)

∣∣∣∣
f=fr

= Q2
r

Qc
. (6.28)

For δ(1/Qi), we use the fact that d/d(1/Qi) = d/d(1/Qr) as a result of Equation 6.23. We also use
d/d(1/Qr) = −Q2

rd/dQr. These two equations can be succinctly expressed as

δS21 = Q2
r

Qc

(
δ

1
Qi
− 2i

δfr

fr

)
. (6.29)
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The regime of validity for Equation 6.29 can be roughly approximated as δS21 ≪ Qr/Qc, i.e., the
S21 deviation is much smaller than the diameter of the resonance circle.

There are two very important simplifications that have been made to Equation 6.26: (1) it
assumes an off-resonance transmission of unity and (2) it assumes a real Qc. In practice, the
transmission of a resonance as measured with a vector network analyzer is better modeled with the
following equation:

S21(f) = ae2πiτ(f−fr)

1− Qr

Q̂c

1
1 + 2iQr

f−fr

fr

 , (6.30)

where a is the off-resonance transmission, τ is a measure of the cable delay, and 1/Q̂c = eiϕ/|Q̂c| is
a re-parametrization of the coupling quality factor when there are impedance mismatches along the
feedline, which are commonly seen in actual data; see Khalil et al. (2012). When the derivatives are
taken as before, we get

δS21 ∝ |a|
Q2

r

|Q̂c|

(
δ

1
Qi
− 2i

δfr

fr

)
, (6.31)

where the overall complex phase has been ignored. Note that the responsivity in terms of raw S21
depends on the magnitude of a and Q̂c. This expression is relevant in the next chapter about the
noise of resonator readout.

6.6 Summary of equations and Mattis-Bardeen fits
The boxed equations from this section are collected here:

δS21 = Q2
r

Qc

(
δ

1
Qi
− 2i

δfr

fr

)
(6.29 revisited)

= Q2
r

Qc
α

(
δRs

ωLs
+ i

δLs

Ls

)
(6.32)

= Q2
r

Qc
αγ

(
δσ1
|σ0|

+ i
δσ2
|σ0|

)
(6.33)

= Q2
r

Qc
αγ(κ1 + iκ2)δnqp (6.34)

= Q2
r

Qc
αγ(κ1 + iκ2) 1

Vsc∆
Eabs. (6.35)

To actually use Equation 6.35, one needs to measure or compute all the relevant quantities
that appear. The Qr and Qc are computed with S21(f) fits, which are typically performed directly
with Equation 6.30. The combination αγ and the superconducting bandgap ∆ are measured with
what are known as Mattis-Bardeen fits. An approximate Mattis-Bardeen fit may take the following
form, derived from Equation 6.29 and Equation 6.34 and reproduced from Aralis (2024):

d(1/Qi)
dnqp

= αγκ1(T )

1
Qi(T ) −

1
Qi,0

= αγκ1(T ) (nqp(T )− nqp,0)

(6.36)

df/fr

dnqp
= αγκ2(T )

fr(T )− fr,0
fr,0

= αγκ2(T ) (nqp(T )− nqp,0) .

(6.37)
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Figure 6.7: Example Mattis-Bardeen fit. Left: fractional frequency shift as a function of
temperature with the fit to Equation 6.37 shown as the black dashed curve. Right: internal
quality factor as a function of temperature with the fit to Equation 6.36 shown as the black dashed
curve. Insets show complex S21 data from which the resonator parameters are extracted. For
illustrate purposes, colors indicate specific temperatures at which S21 was measured. Fit values
are ∆ = 0.18 meV and α = 3.8%. Baseline resonator parameters are f0 = 4.2401 GHz; and
Qi,0 = 410,000. Figure reproduced from Wen et al. (2022).

Going from the first line to the second line in the above two equations, an integral over nqp
is performed from some quiescent quasiparticle population nqp,0 at some base temperature to
a quasiparticle population at a temperature T . In this approximate Mattis-Bardeen fit, the
temperature dependence of κ1 and κ2 are ignored in the integral since they are rather slow functions
of temperature in comparison with nqp(T ) from Equation 6.3:

nqp(T ) = 2N0
√

2πkT∆0e−∆0/kT . (6.3 revisited)

The general procedure of a Mattis-Bardeen fit is to measure the left-hand sides of Equa-
tion 6.36 and Equation 6.37 and then to fit for αγ and ∆0 on the right-hand sides. The measurement
consists of extracting the resonator parameters fr and Qr at elevated temperatures where the
thermal population of quasiparticles is dominant, allowing us to ignore nqp,0. Technically, this
procedure fits for the superconducting bandgap at zero temperature ∆0, but ∆ is what enters in
Equation 6.35 and Equation 6.1 and is slightly smaller than ∆0 for non-zero temperatures. It is
assumed that ∆ ≈ ∆0 for our purposes.

Once αγ and ∆0 are determined from the above fitting procedure, a δS21(fr; t) timestream
can be converted to a δnqp(t) timestream using Equation 6.34. An example of a Mattis-Bardeen fit
is shown in Figure 6.7.

6.7 Non-linear pulse shapes in KIDs
For small perturbations in δnqp, the δS21 response is linear:

δS21 = Q2
r

Qc
αγ(κ1 + iκ2)δnqp (6.34 revisited)

For large enough deviations δfr/fr and δ(1/Qr), the S21 response is no longer well approximated
as linear. An effort to parameterize the non-linear response of KIDs is reported in Zobrist et al.
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(2021). In this section, we show that the quantities δfr/fr and δ(1/Qr) are always extractable for
any deviation δS21 measured by a tone held fixed at some original resonant frequency.

The complete S21 response can be expressed in terms of the initial resonant frequency
fr,0, the initial quality factor Qr,0, and the fractional changes about these quantities: δfr/fr,0 and
δ(1/Qi). The relevant terms in the S21 formula Equation 6.26 transform in the following way:

1
Qr

= 1
Qr,0

+ δ
1

Qi
(6.38)

fr = fr,0 + δfr ⇒
f − fr

fr
= −δfr

fr,0 + δfr
. (6.39)

These transformations may then be plugged into the full expression for δS21 = S21(fr)− S21(fr,0),
based on Equation 6.26:

δS21 = 1− Qr

Qc

1
1 + 2iQr

f−fr

fr

−
(

1− Qr,0
Qc

)

= 1− 1
Qc

1
1

Qr
+ 2if−fr

fr

−
(

1− Qr,0
Qc

)

= 1− 1
Qc

1
1

Qr,0
+ δ 1

Qi
+ 2i −δfr

fr,0+δfr

−
(

1− Qr,0
Qc

)

= 1− Qr,0
Qc

1
1 + Qr,0δ 1

Qi
− 2iQr,0

δfr

fr,0+δfr

−
(

1− Qr,0
Qc

)

≈ Qr,0
Qc

1− 1
1 + Qr,0δ 1

Qi
− 2iQr,0

δfr

fr,0

 . (6.40)

The final line assumes δfr ≪ fr,0. The value of Equation 6.40 is that the pulse has been completely
expressed in terms of the initial resonator frequency and quality factor, fr,0 and Qr,0, as well as the
total change in fractional resonant frequency δfr/fr and the total change in internal quality factor
δ(1/Qi).

Inverting the final equation, we get

δ
1

Qi
− 2i

δfr

fr,0
= 1

Qr,0

 1
1− Qc

Qr,0
δS21

− 1

 . (6.41)

The fact that we have an invertible equation means that conversion from δS21 to δfr/fr,0 and
δ1/Qi is now completely tractable for any deviation in the idealized S21 plane with δfr ≪ fr,0. The
regime of validity for this expression is much greater than |δS21| ≪ Qr/Qc, the regime of validity
for Equation 6.29.

It may useful to define βt ≡ (δfr/fr,0)/δ(1/Qi) and recast Equation 6.40:

δS21 = Qr,0
Qc

1− 1
1 + Qr,0

δfr

fr,0
( 1

βt
− 2i)

 . (6.42)

This substitution is important because as fr shifts in the resonator, so does Qi. We now take the
derivative as we did in Equation 6.28:

fr,0
dS21
dfr

=
( 1

βt
− 2i

)
Q2

r,0
Qc

1(
1 + Qr,0

δfr

fr,0
( 1

βt
− 2i)

)2 . (6.43)
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For clarity, we reiterate that δS21 = S21(fr) − S21(fr,0) and that δfr = fr − fr,0. We have taken
the derivative of S21 with respect to fr. Equation 6.43 implicitly assumes that βt is constant with
δfr/fr. Comparing Equation 6.43 with Equation 6.28,

fr
dS21
dfr

∣∣∣∣
f=fr

= −2i
Q2

r

Qc
, (6.28 revisited)

we see that there are two main differences. First, the coefficient is modified from −2i→ (1/βt − 2i).
The implication is that the derivative takes into account changes in both fr and Qi through the βt

parametrization. Second, the derivative is shown for any deviation δfr/fr,0 such that δfr ≪ fr,0.
We use Equation 6.43 to derive the following propagation of error formula:

σδfr/fr,0 = Qc

Q2
r,0

1∣∣∣ 1
βt
− 2i

∣∣∣
∣∣∣∣∣1 + Qr,0

δfr

fr,0

( 1
βt
− 2i

)∣∣∣∣∣
2

σS21 . (6.44)

We highlight the term in | · |2 as the “energy-dependent” term:

σδfr/fr,0 =
∣∣∣∣∣1 + Qr,0

δfr

fr,0

( 1
βt
− 2i

)∣∣∣∣∣
2

σδfr/fr,0

∣∣∣
fr=fr,0

. (6.45)

This relationship is particularly important for converting amplifier noise, which is fixed in S21, to
noise in δfr/fr,0 or quasiparticle density for any δS21 such that δfr ≪ fr,0. See Section 8.4 and
Figure 8.9 Left in particular for an application of the above nonlinear formulae.

An important caveat to the previous paragraph is the assumption that βt is constant. βt,
which is the ratio of the total changes in δfr/fr,0 and δ(1/Qi), should depend on the integral of
κ2/κ1, which is the ratio of the instantaneous δfr/fr and δ(1/Qi) at a particular temperature. κ1
and κ2 are plotted in Figure 6.4 Top Left. Variations in κ1 and κ2 can theoretically be incorporated
into an expression for βt through integrals of κ1 and κ2.
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Chapter 7

Noise sources in superconducting
microwave resonators

There are many sources of noise in superconducting microwave resonators. In the first half
of this chapter, we describe and detail the following:
• generation-recombination noise (not yet observed in KIPM detectors);
• two-level system noise;
• Johnson, amplifier, and readout chain noise;
• and electronics 1/f noise.

In the second half of the chapter starting with Section 7.5, we present measurements and characteri-
zations of the latter three as have been observed in KIPM detectors.

7.1 Noise on resonator readout
We start with a basic description of how the noise on S21 readout manifests during operation

of a kinetic inductance detector and how that noise is converted into physical units using equations
from Chapter 6. S21(t; fr) can be measured from the input to the output of some cryostat operating
the resonator and is proportional to the voltage measured at the output. In other words, S21 = V2/V1,
where V2 is the complex voltage at the output and V1 is the complex voltage at the input. For this
section, we refer to the raw data in terms V (f) and V (t; fr), the voltage as measured by some
instrument at the output of the cryostat. A may be divided by gains and/or attenuations that
appear on the readout chain so that it is instead measured at some other location along the readout
chain, but doing so does not affect the following results. A voltage may even be divided by the
voltage of the input tone to the cryostat so as to produce a raw S21, which is usually directly
measured by a vector network analyzer, abbreviated VNA.

Figure 7.1 Left shows how the raw voltage data may appear during data-taking. V (f) is
shown in gray and is schematically illustrated as a circle in the complex V space. V (t; fr) is
illustrated as the blue noise blob with size σV . a may be thought of as the off-resonance voltage, or
the voltage that would be measured at this frequency if there were no resonator present. Notice
that the axis of the circle that includes V (t; fr) is rotated away from a, parametrized by an angle ϕ.
This parametrization is described in Khalil et al. (2012) and arises from impedance mismatches
of the transmission line near the resonator. In the parametrization by Khalil et al. (2012), the
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Figure 7.1: The transformation from raw voltage data to idealized S21. Left: an example
resonator’s V (f) scan in gray and the on-resonance readout noise in blue. Right: “idealized” version
of the resonator, where V (f) have been scaled such that the off-resonance transmission is equal to
unity and where the resonance circle is projected along the real axis in a manner consistent with
Khalil et al. (2012).

diameter of the circle is |a|Qr/|Q̂c| as can be inferred from Equation 6.30, reproduced below:

S21(f) = ae2πiτ(f−fr)

1− Qr

Q̂c

1
1 + 2iQr

f−fr

fr

 . (6.30 revisted)

1/Q̂c may be parametrized as eiϕ/|Q̂c|; note that 1/|Q̂c| is the magnitude of the parametrized
complex quantity, not |Q̂c| as one might naively assume. Furthermore recall that τ is the cable
delay and is the reason for the arc shape at the off-resonance transmission in Figure 7.1 Left.

We desire to transform the raw data into what is known as “idealized S21,” which corresponds
to the following resonator equation from the previous chapter:

S21(f) = 1− Qr

Qc

1
1 + 2iQr

f−fr

fr

. (6.26 revisited)

We desire to operate in the idealized S21 space where the equations from Chapter 6 hold. In this
space, the off-resonance transmission a and resonance-circle rotation ϕ due to impedance mismatches
are scaled out. The transmission can now be studied purely as it relates to the resonance parameters
fr, Qr, and Qc.

Figure 7.1 Right also shows how the transformation to the idealized S21 plane is done. There
are two steps: (1) division of all points by a so that the the off-resonance transmission is equal to 1
and (2) projection along the real axis as is described in detail by Khalil et al. (2012), resulting in a
natural definition for 1/Qc ≡ Re[1/Q̂c] = (1/|Q̂c|) cos ϕ.1 The on-resonance idealized transmission
is then equal to 1−Qr/Qc, i.e., the circle is centered on the real axis.

Crucially, both V (f) and σV are scaled by cos ϕ during this transformation into the idealized
space. For V (f), the idealized resonance circle has diameter Qr/Qc, which is equal to (Qr/|Q̂c|) cos ϕ;
the transformation is |a|Qr/|Q̂c| → (Qr/|Q̂c|) cos ϕ . Likewise, for σV , transformation into the

1Note that the inverse quantities 1/Qc and 1/|Q̂c| are what provide a measure for S21(f) and V (f) circle size in
the idealized S21 and raw voltage planes; cos ϕ projects 1/|Q̂c| into 1/Qc. The inverse nature of the cos ϕ projection is
very important for its ensuing cancellation in Equation 7.2!
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idealized space follows σV → (σV /|a|) cos ϕ. This transformed noise quantity is referred to as σS21 .
Since both signal and noise are multiplied by cos ϕ, it has no effect on the final SNR and the
resultant resolution on δfr/fr and absorbed energy. We refer to equations from the previous chapter
for the following calculation:

σS21 = σV

|a|
cos ϕ (7.1)

σδfr/fr
= σS21

Qc

2Q2
r

= σV

|a|
cos ϕ

|Q̂c|
2Q2

r

1
cos ϕ

= σV

|a|
|Q̂c|
2Q2

r

(7.2)

σnqp = σδfr/fr

1
αγκ2

= σV
|Q̂c|

2|a|Q2
r

1
αγκ2

(7.3)

σEabs = σnqpVind∆ = σV
|Q̂c|

2|a|Q2
r

1
αγκ2

Vind∆. (7.4)

A key result from the above calculation is the cancellation of cos ϕ that occurs in Equation 7.2. The
resolution on physical quantities, such as δfr/fr, nqp, and Eabs, only depends on the size of the
noise blob divided by diameter of the resonator circle in the raw data plane, with an additional
factor of Qr for the frequency spacing around the resonant frequency: (σV /|a|)/(Qr/|Q̂c|)/Qr. The
resolutions on these physical quantities do not depend on the resonator rotation directly, but it is
possible that larger ϕ rotations are correlated with worse transmission |a|.

Noise on S21 readout may be converted into any of these units, but certain noise sources
are naturally expressed in certain units. For example, generation-recombination noise arises from
stochastic fluctuations in quasiparticle number, so it is usually measured in units of quasiparticle
density σnqp then converted into Eabs. Amplifier noise due to cryogenic readout produces a voltage
noise at the input of the amplifier and so can be measured in terms of σV and then converted into
σEabs using the above calculation.

Throughout this chapter, we refer to the noise levels and spectral shapes from various noise
sources in terms of their power spectral density J(f). For some real-valued continuous timestream
x(t), its power spectral density can be computed from the Fourier transform x̃(f):

J(f) = lim
T →∞

1
T
|x̃(f)|2. (7.5)

T is the duration of the timestream. PSDs can also be computed from the Fourier transform of the
autocorrelation R(τ):

J(f) =
∫ ∞

−∞
R(τ)e−i2πfτ dτ

=
∫ ∞

−∞

[
lim

T →∞

∫ T

0
x(t− τ)x(t)dt

]
e−i2πfτ dτ

=
∫ ∞

−∞
⟨x(t− τ)x(t)⟩e−i2πfτ dτ. (7.6)

Autocorrelation is the correlation of a signal with itself that is delayed by some time τ . Note that
the average in the last line is performed over the time variable t as concretely expressed in the
second line.

By Parseval’s theorem, the total variance of the time stream is equal to the integral of power
spectral density:

σ2
x = ⟨x(t)2⟩ =

∫ ∞

−∞
J(f)df. (7.7)
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In other words, PSDs written as J(f) decompose the size of the noise blobs into the component
frequency contributions. For actual detector operation, what really matters is the optimally filtered
variance or resolution. Optimal noise filters generally take the shape of low-pass filters, cutting away
the contribution of noise from higher frequencies that do not contribute to the shape of the signal.
If J(f) rises at low frequencies, like with two-level system noise or electronics 1/f noise, the optimal
filter down-weights the contribution from those frequencies. The optimal filter ϕ(f) for a particular
signal is precisely the Fourier coefficients of that signal in Fourier space, s̃(f), divided by J(f):

ϕ(f) = s̃∗(f)
J(f) . (7.8)

The optimally filtered variance is then

σ2
x =

[∫ ∞

−∞
df
|s̃(f)|2

J(f)

]−1

. (7.9)

Throughout this chapter and for simplicity, we apply the optimal filter corresponding to a single-sided
single-pole exponential with fall time τqp in order to compute expected energy resolutions:

s̃(f) = τqp
1 + i2πfτqp

. (7.10)

To calculate the contribution to σEabs of each type of noise, we assume the following
values for the various relevant parameters: Vind = 30,000 µm3, ∆ = 180 µeV, α = 0.038, γ = 1,
κ2 = 4.3× 107µm3, and Qr ≈ Qc = 105. This final assumption is a design choice to overcouple the
resonator to the feedline so that the resonator rise time Qr/πfr is short enough to see the phonon
rise time information. The values for ∆ and α come from Figure 6.7.

7.2 Generation-recombination noise
Generation-recombination (GR) noise is the fundamental limit of noise in a kinetic inductance

detector. GR noise results from fluctuations in the number of quasiparticles present at any one time
due to the stochastic process of Cooper pairs breaking to yield quasiparticles and quasiparticles
recombining to form Cooper pairs. GR noise is analogous to thermal fluctuation noise in TESs. The
key distinction is that, in principle, GR noise in superconductors should be exponentially suppressed
(with 1/T ) while thermal fluctuation noise in TESs scales as a power law in Tc (precisely what power
law depends on some design choices). In practice, anything that creates a quiescent quasiparticle
population causes GR noise to saturate at the level determined by that population density.

GR noise formalism
To derive an expression for the GR noise PSD, we start with the following differential

equation:

dnqp
dt

= −2ΓR

= −Rn2
qp. (7.11)

ΓR is the rate of recombination events per unit volume. For each recombination event, two
quasiparticles become Cooper pairs, hence the factor of 2. R is known as the recombination constant
and characterizes the strength of the recombination process. Heuristically, two quasiparticles must
find each other in order to recombine and decrease the total population. The number of pairs of
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quasiparticles per unit volume scales with n2
qp/2. R is the proportionality constant between the

rate of recombination events and the number of pairs of quasiparticles: ΓR = Rn2
qp/2. See Wilson

et al. (2004) for further context.
The steady-state solution to the above differential equation is nqp = 0, but in practice, a

generation rate per unit volume ΓG should be introduced to the right-hand side to account for the
generation of quasiparticles from their thermal distribution (Equation 6.3) or external loading. The
latter is usually dominant for aluminum resonators below about 200 mK. If we set 2ΓG = Rn2

qp,0 so
that nqp = nqp,0 is a steady-state solution, then the differential equation becomes

dnqp
dt

= 2ΓG − 2ΓR

= Rn2
qp,0 −Rn2

qp. (7.12)

It is useful to insert nqp = nqp,0 + δnqp into Equation 7.12:

dδnqp
dt

= −2Rnqp,0δnqp −Rδn2
qp. (7.13)

There are two regimes to point out: δnqp ≪ nqp,0 and δnqp ≫ nqp,0. In the first regime, the
linear term on the RHS of Equation 7.13 dominates; solutions take the form exp(−2Rnqp,0t); and
the expression 1/2Rnqp,0 can be seen as a decay time or a quasiparticle recombination time τqp.
Henceforth, we equate

1
2R

= nqp,0τqp.2 (7.14)

On the other hand, if δnqp ≫ nqp,0, the quadratic term on the RHS dominates and the differential
equation is non-linear. Solutions take the form 1/t instead of e−t/τqp . The complete solution to
Equation 7.13 is derived in Appendix A.3 of Chang (2023) and compared to data in Appendix D of
Aralis (2024).

To incorporate the stochastic effects of shot noise, we replace 2ΓR and 2ΓG with IR(t) and
IG(t), which in turn are expressed as the sum of delta functions:

dnqp
dt

= IG(t) + IR(t)

=
∑
kG

2
Vind

δ(t− tkG
)−

∑
kR

2
Vind

δ(t− tkR
)

≈ 2(ΓG + δΓG(t))− 2(ΓR + δΓR(t)). (7.15)

There are a few comments to make.
• The variable I(t) is chosen to represent the “currents” of recombination and generation. There

is a direct correspondence between GR noise and electrical current shot noise, which was first
introduced in Schottky (1918).

• The delta functions are located at time points tk. Integrating both sides over a small window
around a particular tk shows that an individual delta function serves to increase or decrease the
quasiparticle density by 2/Vind, which is the “shot size” of each event. The integral of a delta
function is the step function.

2τqp as measured from a pulse fall time may saturate to some maximum value τmax less than the τqp as inferred
from a quasiparticle density measurement. For this calculation, we assume that nqp is what sets τqp as given by
Equation 7.14, using R as a constant derived from material parameters (see below). One way to take into account
τmax is to set τ−1

qp = 2Rnqp,0 + τ−1
max.
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Figure 7.2: Generation-recombination noise as a stochastic Poisson point process. Top:
100 realizations of δnqp(t). Each step corresponds to a delta function in I(t), and the size of each
step is 2/Vind, where we choose Vind = 30,000µm3. The black realization corresponds to the I(t)
curves shown in the bottom panel. Bottom: IG(t) in blue and IR(t) in orange. The average rate
for both processes is set to VindΓ = VindRn2

qp,0/2, where we set R = 10 µm3/s and nqp,0 = 25 µm−3.
Note that the example shown in this figure is a fully Poissonian point process, i.e., there are no
correlations on τqp timescales as there is for true GR noise.

• {tkG
} and {tkR

} describe separate and independent Poisson point processes for the recombination
and generation of quasiparticles. The Poisson point processes are constructed to have average
occurrence rates of VindΓG and VindΓR. Thus, taking the average over t of both sides in the
second line of Equation 7.15 produces ∆nqp/∆t = 2ΓG − 2ΓR. Figure 7.2 provides an example
of such a process.

• Fluctuations about the average rates are parametrized in the final line of Equation 7.15 with
δΓG(t) and δΓR(t). Given the Poissonian construction of I(t), it can be shown that the
autocorrelation and power spectral density are equal to

⟨I(t)I(t− τ)⟩ = 4Γ2 + 4Γ
Vind

δ(τ) and JI(f) = 4Γ2δ(f) + 4Γ
Vind

. (7.16)

See Section 2.3.2.1.2 of Siegel (2016) for a derivation. Recall that the power spectral density
and autocorrelation form a Fourier transform pair. 4Γ2 is the steady-state value of ⟨I(t)⟩2
and is equal to (shot size)2×(rate of events)2 = (2/Vind)2(VindΓ)2. 4Γ/Vind corresponds to the
fluctuations in the rate as a result of the irregular occurrence of generation and recombination
events—in other words, shot noise. It is equal to (shot size)2×(rate of events) = (2/Vind)2VindΓ.
As one would expect for a Poissonian process, the variance of the rate scales with the rate
itself, and the noise is completely uncorrelated—it has a white PSD. Given the factors of 2 in
Equation 7.15, we identify Γ/Vind as the autocorrelation and power spectral density of δΓ(t):

⟨δΓ(t)δΓ(t− τ)⟩ = Γ
Vind

δ(τ) and JδΓ(f) = Γ
Vind

. (7.17)
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The GR noise power spectral density for δnqp fluctuations can be computed from Equa-
tion 7.15 with the following derivation. We allow ΓR to fluctuate by setting 2ΓG − 2ΓR = Rn2

qp,0 −
Rn2

qp ≈ −2Rnqp,0δnqp = −δnqp/τqp. As a reminder, this approximation uses nqp = nqp,0 + δnqp
and sets δnqp ≪ nqp,0.

dδnqp
dt

= 2(ΓG + δΓG(t))− 2(ΓR + δΓR(t)) Equation 7.15

dδnqp
dt

= − 1
τqp

δnqp + 2δΓG(t)− 2δΓR(t) 2ΓG − 2ΓR ≈ −δnqp/τqp

i2πfδñqp = − 1
τqp

δñqp + 2δΓ̃G − 2δΓ̃R Fourier transform

δñqp = τqp
1 + 2πifτqp

2
(
δΓ̃G − δΓ̃R

)
re-arrange

|δñqp|2 =
τ2

qp

1 + (2πfτqp)2 4
(
|δΓ̃R|2 + |δΓ̃G|2

)
multiply by conjugate

JGR(f) =
τ2

qp

1 + (2πfτqp)2 4ΓG + ΓR

Vind
shot noise result

=
4Rn2

qp,0τ2
qp/Vind

1 + (2πfτqp)2 ΓG + ΓR = Rn2
qp,0

JGR(f) = 2nqp,0τqp/Vind

1 + (2πfτqp)2 = 1/RVind

1 + (2πfτqp)2 . R = 1
2nqp,0τqp

(7.18)

JGR(f) is the power spectral density of GR noise in units of (quasiparticle density)2/Hz. This
expression is for a two-sided power spectral density. For comparison, the numerator of the second
to last line matches the sum of Equations 6.7 and 6.10 from Gao (2008). Note that Siegel (2016)
and de Visser et al. (2011)3 report one-sided PSDs, so their expressions are larger by a factor of 2.

Characteristics of GR noise
Here are a few important characteristics of the power spectral density for GR noise.

• The spectral shape of GR noise is flat up to 1/τqp. Note in Equation 7.18 that the roll-off at
1/τqp arises from the −δnqp/τqp term, which in turn arises from letting the 2ΓR term from
Equation 7.15 fluctuate away from its equilibrium value, separate from the δΓR(t) shot-noise
fluctuation. GR noise is different from pure shot noise with a fixed average rate (such as electrons
entering a diode) because shot noise fluctuations can cause the underlying rate of GR events
to also fluctuate; more or fewer quasiparticles at a given point in time directly impacts the
instantaneous rate of GR events. The −δnqp/τqp term brings the quasiparticle population back
to equilibrium on timescales around τqp, meaning that δnqp is correlated with itself on timescales
around τqp. For true Poissonian shot noise as is shown in Figure 7.2, there is no roll-off at high
frequencies and no correlation between events on any timescale.

• For a thermal population of quasiparticles, the flat level nqp,0τqp does not change with tempera-
ture. τqp can be derived from an integral similar to Equation 6.3, which is restated here:

nqp,0 = 4
∫ ∞

∆
D(E)f(E)dE

kT ≪∆= 2N0
√

2πkT∆0e−∆0/kT , (6.3 revisited)

3See de Visser (2014) for the derivation and comment on the single-sidedness of the PSD in de Visser et al. (2011).
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where N0 is the single spin density of states at the Fermi level. Note that the integrand
is ∝ D(E)f(E) (see Section 6.2). When two quasiparticles recombine, they emit a phonon.
So, as stated in the second line of Equation 8 from Kaplan et al. (1976), τqp(E) can be
computed from a similar integral over emitted phonon energies Ω, with integrand proportional to
D(Ω−E)f(Ω−E). For quasiparticles at the gap edge (E = ∆), Kaplan et al. (1976) computes
the following expression for τqp:

τ−1
qp = τ−1

0
√

π

(2∆0
kTc

)5/2 ( T

Tc

)1/2
e−∆0/kT , (7.19)

where τ0 is a characteristic electron-phonon interaction time. The key point is that, as a result
of the similar integrands for computing the thermal population nqp,0 and the recombination
time τqp, both nqp,0 and 1/τqp are proportional to

√
Te−∆0/kT . Thus, the product nqp,0τqp is a

constant given by material parameters:

nqp,0τqp = τ0
2N0(kTc)3

(2∆0)2 = 1
2R

. (7.20)

For aluminum, R ≈ 10 µm3/s.
• The bandwidth of the noise increases with temperature because τqp decreases with temperature.

Expected energy resolution
GR-noise-dominated σnqp can be computed from Equation 7.9:

σ2
nqp =

[∫ ∞

−∞

|s̃(f)2|
JGR(f)df

]−1

JGR(f) = 2nqp,0τqp/Vind
1 + (2πfτqp)2 s̃(f) = τqp

1 + i2πfτqp

=
[∫ ∞

−∞

τ2
qp

1 + (2πfτqp)2
1 + (2πfτqp)2

2nqp,0τqp/Vind
df

]−1

=
[∫ ∞

−∞

Vindτqp
2nqp,0

df

]−1

= 2nqp,0
Vindτqp

[∫ ∞

−∞
df

]−1

−→ σ2
nqp = 2nqp,0

Vindτqp

1
2∆f

=
2Rn2

qp,0
Vind

1
∆f

. (7.21)

In the final line, the integral over f has been replaced with some effective bandwidth ∆f . The
key concept with GR noise is that the signal-derived optimal filter rolls off in the same way as
GR noise, enabling integration of signal-to-noise up to arbitrary frequencies. In practice, there
comes a frequency at which the GR noise becomes subdominant to some other source of noise. For
concreteness, we evaluate Equation 7.21 at ∆f = 1/2πτqp = Rnqp/π, which corresponds to the 3 dB
cutoff frequency of the signal-derived low-pass filter.

We use nqp,0 = 25 µm−3, the lowest observed quasiparticle density for aluminum, from
de Visser et al. (2011). As mentioned in a footnote in Section 6.2, Temples et al. (2024) infers a
quasiparticle density of 18.5 µm−3, but the pulse lifetime measurement in that article is not as
robust as the combined pulse lifetime and noise PSD measurement from de Visser et al. (2011).

Putting in the expression for ∆f and the value for nqp,

σ2
nqp = 2πnqp,0

Vind
(7.22)
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−→ σEabs = σnqpVind∆ =
√

2πnqp,0Vind∆ = 390 meV. (7.23)

Equation 7.22 can be computed as the variance in the quasiparticle number Nqp by multiplication of
V 2

ind. The result is σ2
Nqp = 2πNqp. The proportionality of variance to Nqp makes sense, given that

GR noise arises from a Poissonian process.
From Equation 7.21, one might argue that we can integrate up to an arbitrary frequency and

so can do better than 390 meV. Doing so relies on other sources of noise being subdominant to GR
noise at higher frequencies than 1/2πτqp (faster timescales), where the GR noise PSD rolls off as
1/f2. The interpretation here is that sudden generation events of quasiparticles provide an infinite
signal-to-noise ratio over the τqp-correlated GR noise. From a Poissonian counting perspective,
σ2

Nqp = 2Nqp provides a rough scale beyond which further resolution improvement may be difficult.
The 2 is a result of the fact that the fundamental underlying stochastic process is the emission and
absorption of 2∆ phonons during the generation-recombination process; quasiparticles are created
and destroyed in pairs. So, we argue that 390 meV may be improved by a factor of

√
π ≈ 1.77 so

that σEabs = 220 meV, assuming that other sources of noise can be rendered subdominant up to
1/2τqp (instead of up to 1/2πτqp). If the other sources of noise can be brought to even lower levels
beyond 1/2τqp, further improvements are theoretically possible but exceedingly difficult given the
1/f2 roll-off of the GR noise PSD.

In the readout of KID-based phonon-mediated detectors, the GR noise level has been
unobserved and is expected to be much lower than the noise level of other sources, largely due
to the large volume resonators that are used. Although more realistic values for nqp, say around
200 µm−3 to 1000 µm−3, would degrade the GR noise contribution to σEabs by a factor of 3 to 6,
the contribution is still subdominant to other sources of noise.

7.3 Two-level system noise
Exposure of a superconducting microwave resonator to the atmosphere inevitably leads

to the formation of surface oxides, such as aluminum oxide or silicon dioxide. Two-level systems
(TLS) are present in surface oxides as a result of their amorphous atomic structure. Figure 7.3 Left
illustrates how atoms that tunnel between adjacent available sites can form a two-level system. The
energy separation between the two levels is denoted as E. See Phillips (1987) for a review of how
these tunneling states affect the material properties of amorphous materials.

Each atom-vacancy pair that forms a two-level system carries an electric dipole moment, as
indicated in Figure 7.3 Left with the arrows. The electrical response of an amorphous material to
an external electromagnetic wave depends on the aggregate polarizability of these dipole moments
or, in other words, on the electric permittivity ϵh of the TLS-hosting material. For superconducting
microwave resonators, fluctuations in the capacitor’s permittivity manifest as fluctuations in the
resonant frequency.

Here are two ways in which two-level systems may mediate fluctuations in the permittivity
of an amporphous material.
• Two-level systems with transition energy E roughly equal to the readout photon energy hfr can

randomly switch states via absorption or emission of a phonon. When an EM-resonant TLS
switches states, the dipole moment flips, and the reactive load of the TLS on the resonator
switches sign. Random state switching as a result of thermal phonons occurs frequently if
kT ≫ hfr (note that 100 mK ≈ 2 GHz× h/k). However, even if kT ≪ hfr, the resonant TLS
may absorb the photon energy and reside in the upper state, and spontaneous emission can still
occur.

• Two-level systems with E ∼ hfr may fall out of resonance with the EM wave as a result
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S
uperconducting quantum bits1 have recently achieved a
breakthrough by demonstrating excellent gate fidelities
and long coherence times in a fully scalable architecture2,

placing the realization of an integrated quantum computing chip
within reach. The solid-state approach, however, bears the burden
that the material of the quantum device itself may host parasitic
defects that give rise to two-level systems (TLS) acting as a sparse
decohering bath.

First signatures of coherent TLS in phase qubits were found in
spectroscopy data, where observed avoided level crossings
manifest the defects’ two-level quantum character3,4. Often,
these defects show longer coherence times than the qubit itself5,
and thus might be useful as quantum memories6 and resources
for quantum algorithms7,8. Phase qubits were used in several
attempts to identify the physical origin of those TLS, for example,
by obtaining statistics on frequencies and coupling strengths9,
estimating their density4, measuring the temperature dependence
of their coherence times5 or verifying theoretical models
describing their origin10.

The possibility of a direct interaction between TLS has been
invoked in the past to explain the line width broadening and
spectral diffusion of ultrasonically excited ensembles of TLS in
glasses11,12 as well as various other low-temperature properties of
disordered solids13,14. TLS are furthermore a widely accepted
model to explain noise in superconducting circuits, and mutual
TLS coupling was recently suggested as the origin of the
low-frequency noise observed in microwave resonators15.

Here, we report the first clear experimental evidence of two
coherently interacting TLS residing in the tunnel barrier of a
Josephson junction (JJ). The data are obtained with a new
technique for high-resolution defect spectroscopy that exploits
the tunability of TLS by mechanical strain and their strong
coupling to a superconducting qubit. To characterize the coupled
defect system in more detail, we build on this technique and
perform coherent two-photon spectroscopy that directly reveals
the TLS’ coupling strengths and independent parameters.
Interpretation of the measurement based on atomic tunnelling
systems fully accounts for all observations.

Results
Atomic tunnelling systems. To explain the microscopic origin of
the TLS in superconducting electronics, several models16–20 have
been proposed. However, all experimental results obtained so far,
including the recent demonstration that the energy of the TLS is
tunable by static mechanical strain21, are readily explained
assuming that they originate from atomic tunnelling systems.
As in the well-studied model describing the low-temperature
thermal, dielectric and acoustic properties of disordered
solids22–24, it is assumed that some atoms or small groups of
atoms are able to tunnel between two energetically almost
equivalent sites within the disordered oxide material of the device.
These systems give rise to two-level excitations in a wide energy
range of up to the order EEkB � 1K or Eh � 20GHz. In bulk
disordered solids, TLS are found in large numbers but, in contrast
to their counterparts present in superconducting qubits, cannot
be addressed individually.

According to the tunnelling model, an atomic tunnelling
system is described as a particle in a double-well potential as
shown in Fig. 1a. The energies of the two wells differ by the
asymmetry e and the tunnelling amplitude between them is
denoted as D, resulting in a level splitting of the two eigenstates

given by E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ e2

p
. Tunnelling systems couple to the

environment predominantly by variation de of their asymmetry
energy with de depending linearly on strain fields and, if the
tunnelling entity moves a non-zero charge, as well on electric

field—the latter serving as an apparent explanation for the
observed coupling of the TLS to the qubit circuit. A variation dD
of the tunnelling amplitude induced by strain or external fields is
generally believed to be negligible12,24. We have recently verified
the linear strain dependence of e and the corresponding
hyperbolic variation of the energy splitting E by tracking
individual TLS with a phase qubit while bending the chip
circuit with a piezo actuator21. In our setup, sketched in Fig. 1b,
an applied piezo voltage Vp results in variable strain fields in the
order of 10� 6/V.

Defect spectroscopy. In this study, we detect and analyse TLS
using a superconducting qubit. These devices rely on JJs as
nonlinear circuit elements, which are realized as two super-
conducting films separated by a thin, insulating tunnelling
barrier, consisting of a 2–3-nm-thick structurally disordered layer
of aluminium oxide. A sketch of the employed phase qubit25

including measurement and manipulation circuitry is shown in
Fig. 1c. The qubit’s level splitting and their population are
controlled by externally applied flux bias and resonant microwave
pulses, respectively, and a DC-SQUID is used for qubit readout.

In order to trace the energies of individual TLS while applying
strain to the qubit chip, we use a spectroscopy scheme based on
the pulse protocol depicted in Fig. 2a. The qubit is first biased at a
frequency far away from the intended spectroscopy region and
excited by a resonant microwave p-pulse. Applying appropriate
flux bias, it is then tuned to the probing frequency fh where it
resides for the holding time t. If at this frequency the qubit is in
resonance with a certain TLS, the excitation is shared between the
systems6,9. This results in coherent oscillations that effectively
swap the quantum states of the two systems at a frequency
determined by their coupling strength as shown in Fig. 2b.
A change dP in the qubit excitation probability, measured after
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Figure 1 | Using a superconducting qubit to access defects in JJs.

(a) Illustration of the double-well potential for an atomic tunnelling system.

Tunnelling energy D and asymmetry energy e determine the level splitting E.

(b) Sketch of the sample holder. To control the strain, the qubit chip is bent

by applying a voltage Vp to the stacked piezo actuator. (c) Schematic of the

phase qubit including manipulation and measurement circuitry. The JJ

tunnel barrier is sketched as a disordered insulator hosting TLS defects,

here pictured as atoms tunnelling between two metastable positions,

with the arrows illustrating their electric dipole moment.
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S
uperconducting quantum bits1 have recently achieved a
breakthrough by demonstrating excellent gate fidelities
and long coherence times in a fully scalable architecture2,

placing the realization of an integrated quantum computing chip
within reach. The solid-state approach, however, bears the burden
that the material of the quantum device itself may host parasitic
defects that give rise to two-level systems (TLS) acting as a sparse
decohering bath.

First signatures of coherent TLS in phase qubits were found in
spectroscopy data, where observed avoided level crossings
manifest the defects’ two-level quantum character3,4. Often,
these defects show longer coherence times than the qubit itself5,
and thus might be useful as quantum memories6 and resources
for quantum algorithms7,8. Phase qubits were used in several
attempts to identify the physical origin of those TLS, for example,
by obtaining statistics on frequencies and coupling strengths9,
estimating their density4, measuring the temperature dependence
of their coherence times5 or verifying theoretical models
describing their origin10.

The possibility of a direct interaction between TLS has been
invoked in the past to explain the line width broadening and
spectral diffusion of ultrasonically excited ensembles of TLS in
glasses11,12 as well as various other low-temperature properties of
disordered solids13,14. TLS are furthermore a widely accepted
model to explain noise in superconducting circuits, and mutual
TLS coupling was recently suggested as the origin of the
low-frequency noise observed in microwave resonators15.

Here, we report the first clear experimental evidence of two
coherently interacting TLS residing in the tunnel barrier of a
Josephson junction (JJ). The data are obtained with a new
technique for high-resolution defect spectroscopy that exploits
the tunability of TLS by mechanical strain and their strong
coupling to a superconducting qubit. To characterize the coupled
defect system in more detail, we build on this technique and
perform coherent two-photon spectroscopy that directly reveals
the TLS’ coupling strengths and independent parameters.
Interpretation of the measurement based on atomic tunnelling
systems fully accounts for all observations.

Results
Atomic tunnelling systems. To explain the microscopic origin of
the TLS in superconducting electronics, several models16–20 have
been proposed. However, all experimental results obtained so far,
including the recent demonstration that the energy of the TLS is
tunable by static mechanical strain21, are readily explained
assuming that they originate from atomic tunnelling systems.
As in the well-studied model describing the low-temperature
thermal, dielectric and acoustic properties of disordered
solids22–24, it is assumed that some atoms or small groups of
atoms are able to tunnel between two energetically almost
equivalent sites within the disordered oxide material of the device.
These systems give rise to two-level excitations in a wide energy
range of up to the order EEkB � 1K or Eh � 20GHz. In bulk
disordered solids, TLS are found in large numbers but, in contrast
to their counterparts present in superconducting qubits, cannot
be addressed individually.

According to the tunnelling model, an atomic tunnelling
system is described as a particle in a double-well potential as
shown in Fig. 1a. The energies of the two wells differ by the
asymmetry e and the tunnelling amplitude between them is
denoted as D, resulting in a level splitting of the two eigenstates

given by E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ e2

p
. Tunnelling systems couple to the

environment predominantly by variation de of their asymmetry
energy with de depending linearly on strain fields and, if the
tunnelling entity moves a non-zero charge, as well on electric

field—the latter serving as an apparent explanation for the
observed coupling of the TLS to the qubit circuit. A variation dD
of the tunnelling amplitude induced by strain or external fields is
generally believed to be negligible12,24. We have recently verified
the linear strain dependence of e and the corresponding
hyperbolic variation of the energy splitting E by tracking
individual TLS with a phase qubit while bending the chip
circuit with a piezo actuator21. In our setup, sketched in Fig. 1b,
an applied piezo voltage Vp results in variable strain fields in the
order of 10� 6/V.

Defect spectroscopy. In this study, we detect and analyse TLS
using a superconducting qubit. These devices rely on JJs as
nonlinear circuit elements, which are realized as two super-
conducting films separated by a thin, insulating tunnelling
barrier, consisting of a 2–3-nm-thick structurally disordered layer
of aluminium oxide. A sketch of the employed phase qubit25

including measurement and manipulation circuitry is shown in
Fig. 1c. The qubit’s level splitting and their population are
controlled by externally applied flux bias and resonant microwave
pulses, respectively, and a DC-SQUID is used for qubit readout.

In order to trace the energies of individual TLS while applying
strain to the qubit chip, we use a spectroscopy scheme based on
the pulse protocol depicted in Fig. 2a. The qubit is first biased at a
frequency far away from the intended spectroscopy region and
excited by a resonant microwave p-pulse. Applying appropriate
flux bias, it is then tuned to the probing frequency fh where it
resides for the holding time t. If at this frequency the qubit is in
resonance with a certain TLS, the excitation is shared between the
systems6,9. This results in coherent oscillations that effectively
swap the quantum states of the two systems at a frequency
determined by their coupling strength as shown in Fig. 2b.
A change dP in the qubit excitation probability, measured after
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(a) Illustration of the double-well potential for an atomic tunnelling system.

Tunnelling energy D and asymmetry energy e determine the level splitting E.

(b) Sketch of the sample holder. To control the strain, the qubit chip is bent

by applying a voltage Vp to the stacked piezo actuator. (c) Schematic of the

phase qubit including manipulation and measurement circuitry. The JJ

tunnel barrier is sketched as a disordered insulator hosting TLS defects,

here pictured as atoms tunnelling between two metastable positions,

with the arrows illustrating their electric dipole moment.
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Figure 7.3: TLS basics. Left: schematic of two-level systems in an aluminum-oxide Josephson
junction. For resonators, oxides may form on their surfaces. The two-level systems are shown as
the purple and blue atoms that may tunnel between two nearby sites in the amorphous material,
creating electric dipole moments as indicated by the arrows. Right: a two-level system where the
levels are separated by an energy ε and the tunneling amplitude is given by ∆ (we use δ throughout
instead).4 The red and blue curves are the two eigenstates of the diagonalized Hamiltonian with
eigenenergies separated by E =

√
δ2 + ε2. Both are reproduced from Lisenfeld et al. (2015).

of phonon interactions with nearby TLSs that have E ≲ kT . When a nearby TLS switches
states, it influences the strain field experienced by an EM-resonant TLS. This effect can also be
interpreted as the coupling between the elastic dipole moments of the TLSs. The EM-resonant
(but not thermally active) TLS may fluctuate in and out of resonance as a result of the thermally
active (and noisy) TLSs, causing the permittivity at the readout frequency to fluctuate. These
fluctuations can occur even if kT ≪ hfr, so long as there are TLSs with E ≲ kT . This case is
explored in Faoro et al. (2015).

TLS noise formalism
We now provide a brief overview of the mathematical formalism for TLS noise, following

Phillips (1987), Gao (2008) and Faoro et al. (2015). The basic two-level Hamiltonian H0 with energy
splitting ε and tunneling amplitude δ can be expressed in terms of Pauli matrices σx,y,z:

H0 = 1
2

(
ε δ
δ −ε

)
= 1

2σzε + 1
2σxδ = σ⃗ · a⃗, (7.24)

where a⃗ = (δ, 0, ϵ). The eigenenergies for this Hamiltonian are separated by energy E = |⃗a| =√
ε2 + δ2. The eigenstates of this system are linear combinations of the no-tunneling basis states,5

as reflected by the red and blue curves of Figure 7.3 Right (the figure uses ∆ for the tunneling
amplitude whereas we use δ). We refer to these eigenstates as the tunneling basis states.

A two-level system may interact with a number of things in its environment. We list
some interaction possibilities with the following Hamiltonian in the no-tunneling basis and provide

4The depiction of the tunneling amplitude ∆ as the width of the tunneling barrier is perhaps misleading. As
discussed in Phillips (1987), the tunneling amplitude is approximately proportional to exp(−d(2mV0/ℏ2)1/2), where d
is the well separation, V0 is the tunneling barrier height, and m is the particle mass.

5In other words, the vector of no-tunneling basis states is multiplied by a 2 × 2 rotation matrix with angle θ to
produce a vector of tunneling basis states. θ satisfies tan 2θ = δ/ε.
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descriptions for each term:

H = H0 + Hphonon
int + Hfield

int + HTLS
int = H0 + σzγe + σzd⃗0 · E⃗ + 1

2
∑
i,j

ui,j

r3
i,j

σi
zσj

z. (7.25)

Descriptions:
• Hphonon

int = σzγe: the TLS is embedded within the amorphous atomic structure and therefore
can emit or absorb phonons when it transitions between its two eigenstates. e is the strain
field, and γ is a coupling constant and can be conceptualized as an elastic dipole moment. The
tensorial and vector nature of e and γ have been ignored. The σz term reflects the fact that the
physical displacement is maximized between the no-tunneling basis states.

• Hfield
int = σzd⃗0 · E⃗ : the material may be probed by an external electromagnetic wave with an

electric field E⃗ that couples to the TLS’s electric dipole moment d⃗0. As calculated in Gao
(2008) (in the tunneling basis) and mentioned in Faoro et al. (2015), the dynamics produced by
H0 + σzd⃗0 · E⃗ is equivalent to the dynamics of a spin-1

2 particle in a magnetic field with a large
time-constant component and a small time-varying component. The latter has been studied in
great detail for its application to nuclear magnetic resonance and MRI.

The calculation essentially involves solving the Bloch equations for an ensemble average of
TLS/spin-1

2 particles that are thermally coupled to some bath at a temperature T . We highlight
the main results and point out correspondences in parentheses: (1) T1 is an aggregate relaxation
time for the ensemble of TLSs (spin-1

2 particles) to emit thermal phonons (photons) and reach
an equilibrium configuration, given by the vector on the Bloch sphere that is collinear with a⃗
(the static component of the magnetic field); and (2) T2 is the transverse relaxation time or the
dephasing time between TLSs. Conceptually, vectors on the Bloch sphere precess around the
equilibrium direction, and the precession rate of a given TLS depends on E =

√
ε2 + δ2. For

EM-resonant TLSs, interactions with other TLS may cause fluctuations in E and therefore the
phase between them. T1 and T2 as decoherence times are also relevant in qubit technologies.

• HTLS
int = 1

2
∑

i,j
ui,j

r3
i,j

σi
zσj

z: the two-level system might interact with nearby two-level systems via
phonon exchange, where ui,j is an interaction strength and ri,j is the distance between two
TLSs. Faoro et al. (2015) points out that the maximum radius of nearby TLSs to an individual
TLS can be expressed as R0 = (U0/Γ2)1/3, where U0 is the interaction strength and Γ2 is a
T2-affiliated energy loss linewidth resulting from phonon interactions with a single thermally
active TLS. As the temperature drops, Γ2 decreases, causing R0 to increase and the number
of nearby TLSs to increase. The result is that TLS noise actually decreases with temperature,
which is atypical for a noise source.

Through the aforementioned mechanisms, TLS can alter the permittivity of a TLS-hosting
material by an amount δϵh = δϵ1 − iδϵ2. By solving a set of Bloch equations and relating the net
dipole moment to the applied electric field, an average δϵh can be expressed in terms of d0, fr, T2,
T , and Emax; see Gao (2008) for more details and a full expression, which involves a digamma
function. T1 is irrelevant for a TLS that resonates at fr ∼ few GHz since most T1 ≳ 1 µs for T ≲ 1 K
(the T1-affiliated energy loss linewidth Γ1 for thermally active TLSs, however, is important and
determines Γ2 for the EM-resonant TLS). The resulting fractional frequency change of a cavity
resonator can be derived from cavity perturbation theory (Pozar, 2005), where δϵh resides in a
volume Vh:

fr − fr,0
fr,0

= −Uh

U
= −

∫
Vh

δϵ1(r⃗,t)|E⃗(r⃗)|2d3r⃗

2
∫

V
ϵ|E⃗(r⃗)|2d3r⃗

. (7.26)
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Uh is the electrical energy stored in the TLS-hosting material, and U is the electrical energy stored
in the unperturbed resonator with volume V . The factor of 2 arises from the energy stored in the
magnetic field. δϵh(r⃗,t) also depends on the many other physical parameters listed previously. The
imaginary component δϵ2 causes the Qi of the resonator to shift.

For spectral information about δfr/fr noise, the autocorrelation function of the permittivity
would need to be calculated:

〈
δfr

fr
(t− τ)δfr

fr
(t)
〉

=

〈∫
Vh,1

δϵ1(r⃗1,t)|E⃗(r⃗1)|2d3r⃗1 ×
∫

Vh,2
δϵ1(r⃗2,t− τ)|E⃗(r⃗2)|2d3r⃗2

〉

4
(∫

V
ϵ|E⃗(r⃗)|2d3r⃗

)2

=

∫
Vh,1

∫
Vh,2
⟨δϵ1(r⃗1,t− τ)δϵ1(r⃗2,t)⟩ |E⃗(r⃗1)|2|E⃗(r⃗2)|2d3r⃗1d3r⃗2

4
(∫

V
ϵ|E⃗(r⃗)|2d3r⃗

)2

= ⟨δϵ1(t− τ)δϵ1(t)⟩

∫
Vh

|E⃗(r⃗)|4d3r⃗

4
(∫

V
ϵ|E⃗(r⃗)|2d3r⃗

)2 (7.27)

where ⟨δϵ1(r⃗1,t− τ)δϵ1(r⃗2,t)⟩ = ⟨δϵ1(t)δϵ1(t− τ)⟩ δ3(r⃗1 − r⃗2). (7.28)

From the first line of Equation 7.27, we assume that δϵ1 and δfr/fr are stationary in time so
that their autocorrelation functions only depend on the time difference τ . The delta function in
Equation 7.28 implies that the fluctuations in δϵ1 are not correlated in position and enables one of
the volume integrals to be evaluated. Furthermore, we assume that the material is uniform and that
TLS fluctuations are not a function of position, allowing the autocorrelation function to be taken
out of the volume integral in the final line of Equation 7.27. To actually compute the autocorrelation
function, remember that the average ⟨·⟩ is performed over the time variable t. Cross-TLS time
correlations as mediated by phonon interactions would need to be calculated, but doing so is highly
non-trivial.

Since the power spectral density JTLS(f) can be computed from the Fourier transform
(τ → f) of the autocorrelation function, we present the following parametrization from Gao (2008):

JTLS(f) =
∫ ∞

−∞

〈
δfr

fr
(t− τ)δfr

fr
(t)
〉

e−i2πfτ dτ

∝
∫ ∞

−∞
⟨δϵ1(t− τ)δϵ1(t)⟩ e−i2πfτ dτ

= Jϵ(f) = κ(f)√
|E⃗ |2 + E2

c

(7.29)

In the final line, Jϵ(f) is parametrized in terms of frequency dependence κ(f) and electric field
dependence. For field strengths beyond some critical field Ec, the PSD obeys a JTLS ∝ |E⃗|−1 ∝ P

−1/2
g

relationship and is constructed in this way to match experimental observations, reflecting the semi-
empirical nature of Equation 7.29. Faoro et al. (2015) describes one technique for computing κ(f)
in the case of EM-resonant two-level systems that interact with thermally active two-level systems;
they derive a 1/f dependence.
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Characteristics of TLS noise
TLS noise has been observed and studied in many superconducting microwave resonators.

We report some basic observations about these measurements, gathered from Zmuidzinas (2012)
and Gao (2008).
• TLS noise is only present in the δfr/fr direction. TLS noise PSDs are commonly expressed in

units of (δfr/fr)2/Hz; note the unitless numerator.
• The TLS noise power spectral density generally follows this form:

JTLS(f) = Af−n

1 + (f/froll-off)2 . (7.30)

There are two observations to make about the shape of TLS noise:
– The shape of the noise as reflected in the power spectral density follows a power law f−n

where n is usually less than 1 and generally around 0.5. The power law reflects the TLS
density of states. f−0.5 corresponds to a log-uniform density of states, i.e., D(δ) ∝ 1/δ.
Faoro et al. (2015) concludes that, for resonant TLSs that are coupled to thermally active
TLSs, the PSD goes as f−1.

– The noise rolls off with the resonator ring down time: froll-off = fr/2Qr = 1/2πτres.
• Figure 14 from Zmuidzinas (2012) compares the TLS noise level from many different supercon-

ducting resonators. The TLS noise PSD at 1 kHz is used as the fiducial value for comparison
between resonators, yielding

JTLS(f) =
JTLS(1 kHz)

(
|f |

1 kHz

)−n

1 + (f/froll-off)2 . (7.31)

• TLS noise varies with readout power as P −0.5
g and with temperature as T −β where β = 1.5 to 2.

At low temperatures, Figure 5.19 of Gao (2008) shows a flattening of the noise level, suggestive
of the tanh hfr/2kT dependence seen in other quantities like Qi (Equation 5.75 of Gao, 2008).

• TLS noise depends on the capacitor geometry. This dependence comes from the electric field
strength, Equations 5.78 to 5.80 of Gao (2008).

• TLS noise is material dependent. Different materials have different propensities for the formation
of surface oxides and those oxides may have different levels of TLS.

Expected energy resolution
Given the form of TLS noise expressed in Equation 7.31, the impact on the intrinsic resolution

of the detector may be computed. For this calculation, we assume that the fall time of the pulse
is longer than the ring down time of the resonator; in other words, we assume that the signal
bandwidth is smaller than the noise bandwidth. We also assume that the slope of the TLS power
spectral density is n = 1/2.

σ2
δfr/fr

=
[∫ ∞

−∞
df
|s̃(f)|2

JTLS(f)

]−1

JTLS(f) =
JTLS(1 kHz)

(
|f |

1 kHz

)−1/2

1 + (f/froll-off)2 s̃(f) = τqp
1 + i2πfτqp

=
[

1
JTLS(1 kHz)

√
1 kHz

∫ ∞

−∞
df

τ2
qp|f |1/2

1 + 4π2f2τ2
qp

]−1

x = 2πfτqp df = dx

2πτqp

=
[

τ
1/2
qp

(2π)3/2JTLS(1 kHz)
√

1 kHz

∫ ∞

−∞
dx
|x|1/2

1 + x2

]−1

2
∫ ∞

0
dx

x1/2

1 + x2 =
√

2π
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= 2
√

π
JTLS(1 kHz)√

τqp · 1 ms . (7.32)

Note that the denominator of Equation 7.32 is the geometric mean of the pulse fall time τqp with
1 ms. In Figure 14 of Zmuidzinas (2012), the lowest reported JTLS(1 kHz) is 10−21 (δfr/fr)2/Hz.
We input that value, as well as a quasiparticle lifetime of 2.2 ms from de Visser et al. (2011). Values
for α (= 0.038), γ (= 1), and κ2 (= 4.3× 107 µm3) that have been observed for KIPM detectors
(Wen et al., 2022) are also plugged in for conversion to absorbed energy.

σδfr/fr
= 1.5× 10−9

(
JTLS(1 kHz)

10−21 (δfr/fr)2/Hz

) 1
2
(

2.2 ms
τqp

) 1
4

(7.33)

−→ σEabs = σδfr/fr

1
αγκ2

Vind∆ = 510 meV. (7.34)

Vind = 3× 105µm3 and ∆ = 0.18 meV have also been used. So, even in the optimistic scenario where
the TLS noise level is at the lowest that has been observed, energy resolutions are limited to the
O(100 meV) level for current design values. Furthermore, the improvement to the energy resolution
with the quasiparticle lifetime τqp is a slower function of τqp and thus nqp than in the GR-noise
dominated case (quartic root versus linear).

7.4 Johnson, amplifier, and readout chain noise
Kinetic inductance detectors require very small amounts of feedline readout power P ,

typically less than 10 pW (= −80 dBm) and sometimes as low as 1 fW (= −120 dBm). Signals of
this power can be produced at room temperature, but the 50 Ω output impedance of the source
residing at 300 K would emit Johnson (blackbody) noise, which is given by

σP = kT∆f, (7.35)

where T is the noise temperature and ∆f is the readout bandwidth. Equation 7.35 expresses power
fluctuations σP in terms of the equivalent power fluctuations that arise from a resistor at temperature
T due to electron thermal movement; thus arises the term “noise temperature.” Throughout this
section, noise is referenced in units of temperature. As a starter example, the Johnson noise at
300 K over a readout bandwidth of 1 MHz6 is about 4 fW and would actually exceed the desired
signal at the low end of the aforementioned readout power range.

Improved signal-to-noise ratio at the desired readout power can be achieved by producing a
signal tone at room temperature with a larger power than needed and then attenuating the signal
with cryogenic resistors for which the Johnson noise is smaller than room temperature noise. For
this section, we assume that signals of any size can be produced with room temperature readout
noise, but this assumption is certainly not true for all signal powers.

Attenuators and amplifiers are the basic tools with which we can control the signal and
noise level of our readout. The equations that describe the effect of these components on the signal
and noise of a tone are the following:

Pout = Pin
Latten

Tout = Tin
Latten

+ TL

(
1− 1

Latten

)
(7.36)

Pout = PinGamp Tout = (Tin + Tamp, in) Gamp, (7.37)
61 MHz readout bandwidth corresponds to a sampling rate of 2 MHz, or two samples every 1 µs. 1 µs is about the

shortest time interval over which we expect there to be relevant signal information.
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Figure 7.4: Signal and noise power levels as they evolve along an example readout chain.
Full color individual noise component lines represent physically realized sources of noise as they
are incrementally introduced along the readout chain; their sum is shown in gold. Faded color
component lines represent the various components of the final readout noise as referred to different
locations along the readout chain.

where Pin & Pout are the signal power at the input and output of the component, Tin & Tout are the
total noise level of the signal tone at the input and output of the component, Latten & Gamp are the
loss of the attenuator and the gain of the amplifier, TL is the temperature of the attenuator, and
Tamp, in is the input noise of the amplifier. Observations of these equations:
• Equation 7.36 shows that input power and noise are attenuated by a factor of Latten. The second

term of the noise equation indicates that the attenuator adds noise TL(1− 1/Latten). This term
vanishes when Latten = 1; i.e., a lossless line adds no noise.

• Equation 7.37 shows that the input power and noise are amplified by a factor Gamp. The noise
that the amplifier adds has been expressed in terms of the noise at the input of the amplifier.

Noise from a particular component can always be referred to a different spot on the
readout chain by multiplying or dividing by the gain or loss along the chain. In this case,
the physical noise from the amplifier that is realized at its output is Tamp, inGamp; the gain is
then divided out to infer the noise temperature of the amplifier as referred to the input of the
amplifier Tamp, in. In practice, amplifier gain is difficult to measure precisely, so the input noise
of an amplifier is instead usually measured using a Y-factor measurement.

• Attenuators and amplifiers always degrade the signal-to-noise ratio along a readout chain. The
level of degradation depends on the relative values of TL or Tamp, in versus Tin.

Figure 7.4 presents an example readout chain and the evolution of the signal and noise as
they progress through the chain, using Equation 7.36 and Equation 7.37 to introduce new noise
contributions for each additional component along the chain. Each new component’s contribution
is plotted in full color and contributes to the total noise. The example begins with 300 K input
noise and an input signal that is 10,000× larger than the noise, which would correspond to about
40 pW or roughly −74 dBm; see Equation 7.35. Since the plot has a logarithmic vertical axis, the
signal-to-noise ratio at a given point in the chain is given by the length of the signal line in black
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that is in excess of the noise line in gold. As Equation 7.36 and Equation 7.37 foreshadowed, the
signal-to-noise ratio degrades after each step along the readout chain due to the introduction of new
noise from each component.

At each point, the noise contributions from all components of the chain are plotted. If the
bar is in full color, then it represents a physically realized noise source that contributes to the total
noise. If the bar is in faded color, then it represents the noise of that source as referred to that point
in the chain, i.e., the gains and/or losses of the intervening components have been divided out to
put each source of noise on the same footing (see second observation above). We comment that the
ratios of the sources of noise are independent of the position along the readout chain.

The three stages of cryogenic attenuation total 40 dB, reducing the signal to roughly
−114 dBm. Importantly, the noise has been reduced to the sub-1 K level, a huge improvement
over the non-cryogenic option of producing −114 dBm directly at room temperature. Cryogenic
attenuation is a key strategy in producing low-noise readout tones and is relatively easy to implement
into a readout chain. It should be noted that a single 40 dB attenuator located at the mixing
chamber would have a similar effect of decreasing 300 K noise to sub-1K levels, but in this case, most
of the 40 pW signal power would be dissipated at the mixing chamber. If higher readout powers are
desired, then the power dissipation at the mixing chamber may become prohibitive. Since similar
noise attenuation can be achieved with the chain of attenuators shown in Figure 7.4, the attenuator
chain provides a greater dynamic range for signal power than a single attenuator at the mixing
chamber.

After the attenuation, the signal reaches the kinetic inductance detector. Noise may be
added to the readout tone as has been described in the previous two sections. That noise has
been shown in purple and is drawn as a “0 dB” attenuator. 0 dB attenuators technically do not
add any noise, per Equation 7.36. The KID has been drawn in Figure 7.4 as a 0 dB attenuator
because the noise that it adds does not quite fit into the framework described by Equation 7.36 and
Equation 7.37, but it can certainly add readout noise that is measurable in units of temperature via
the mechanisms described in the previous two sections.

The dominant noise contributor appears after the KID: the noise of the first amplifier, in
this case a high-electron-mobility transistor (HEMT) amplifier. Typical input noise values for
HEMTs are between 2 K and 5 K. In Figure 7.4, the HEMT noise has been set to 4 K and dominates
over other noise sources in the readout chain. Furthermore, even though the warm amplifier just
downstream of the HEMT has a larger input noise, the HEMT gain ensures the HEMT noise remains
dominant. Thus, the warm amplifier degrades the signal-to-noise as referred to the output of the
HEMT by a negligible amount. This scenario is referred to as HEMT-dominated noise.

Improving the noise contribution from the first amplifier of a readout chain is in general
quite difficult. For improvements beyond an order of magnitude, new technologies are needed. One
such example that are explored in Section 7.9 is the kinetic inductance traveling wave parametric
amplifier, commonly referred to as a KI-TWPA.

Expected energy resolution
We now compute the expected energy resolution for amplifier-dominated noise. For this

subsection, it is useful to work in voltage units instead of power units. To convert from power
fluctuations on a transmission line into voltage fluctuations, we modify Equation 7.35 in the following
way:

σ2
V = 1

4kTZ0∆f, (7.38)

where Z0 is the characteristic impedance of the transmission line and V is an rms quantity. For a
sine wave, Vrms = Vpeak/

√
2. In our notation, V = Vrms. In some texts, 4kTR∆f is shown to be the
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Johnson noise for a resistor of resistance R at a temperature T . Here is a full accounting of the
various discrepant factors that lead to a factor of 16:
• For a transmission line, the Z0 impedance source is in a circuit with a Z0 impedance load. The

voltage fluctuations appear across a resistance of 2Z0, which reduces the variance by 4.
• ∆f is one-sided in these other texts, i.e., only positive frequencies are used.
• The total noise power is a sum of noise in two different quadratures, such as gain and phase.

For the following calculation, we only examine the noise in one quadrature of readout.

By Parseval’s theorem, the power spectral density for these voltage fluctuations is

JTN
(f) = 1

4kTN Z0. (7.39)

We now work through the optimal filter calculation for amplifier-dominated noise:

σ2
V =

[∫ ∞

−∞
df
|s̃(f)|2

JTN
(f)

]−1

JTN
(f) = 1

4kTN Z0 s̃(f) = τqp
1 + i2πfτqp

=
[

4
kTN Z0

∫ ∞

−∞
df

τ2
qp

1 + 4π2f2τ2
qp

]−1

x = 2πfτqp df = dx

2πτqp

=
[ 4

kTN Z0

τqp
2π

∫ ∞

−∞
dx

1
1 + x2

]−1

= kTN Z0
2τqp

σV =
√

kTN Z0
2τqp

= 3.8 nV
√

TN

4 K
Z0

50 Ω
100 µs

τqp
. (7.40)

This time, for amplifier noise, we first compute σS21 (remembering that the cos ϕ eventually cancels!)
and then convert into σEabs as usual. σS21 is given by Equation 7.1, where |a| is the rms voltage
amplitude. For a −80 dBm signal on a 50 Ω impedance feedline, |a| =

√
PgZ0 = 22.4 µV.

σS21 = σV

|a|
cos ϕ = 3× 10−4 cos ϕ (7.41)

σEabs = σV

|a|
|Q̂c|
2Q2

r

1
αγκ2

Vind∆ = 280 meV (7.42)

Q2
r/|Q̂c| = 100,000 is chosen for this calculation and reflects a common design choice KID-based

phonon-mediated detectors (see Section 7.7). The result of the calculation is that HEMT-dominated
amplifier noise limits the resolution on absorbed energy to the O(100 meV) range, but the exact
value is very sensitive to readout power, Vind, and α.

7.5 Noise measurements in KIPM detectors
Experimental setup

In the following three sections, we report on a variety of noise measurements that were made
over many different KIPM detectors. All noise measurements were performed in Cahill B101 in
an Oxford Kelvinox 25 dilution refrigerator with operating temperatures ranging from 60 mK to
100 mK. Many different devices are discussed in the following sections; we provide a basic description
of each of the resonators and relevant device parameters.
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The readout circuit that was used for each of these measurements is the same as what is
shown in Figure 7.4. The expectation with this readout circuit is that the noise is HEMT-dominated,
but, in many cases, the resonator-internal TLS noise is also a significant contributor.

For all noise measurements that were performed in the Cahill B101 dilution refrigerator, we
used a layer of µ-metal magnetic shielding, thermally sunk to the 1 K still stage and surrounding
everything at the mK stage. Shielding from the Earth’s magnetic field is critical for achieving high
Qi superconducting resonators.

All data in this section and the following chapter were taken with an Ettus Research Labs
universal software radio peripheral (USRP). The USRP is flexible and relatively easy to use compared
to its counterparts. The firmware and code used to operate the USRP was developed by Lorenzo
Minutolo and is described in Minutolo et al. (2019).

Power spectral densities
Power spectral densities (PSDs) J(fn) of noise timestreams x(t) for some real-valued variable

x are computed with the function welch from the scipy.signal library, wherein the user provides
the sample frequency fs and window size N . The highest frequency bin produced by welch is
fs/2, the Nyquist frequency. The lowest frequency bin, which is also equal to the frequency
spacing, is given by the lowest frequency wave that fits a full cycle in the duration of the window
size: 1/(N/fs) = fs/N = ∆f . When N is even, discrete power spectral densities span from
−fs/2 to fs/2−∆f . Because all of the PSDs in this thesis are computed for real-valued timestreams,
J(−fn) = J(fn).7 welch chooses to return one-sided PSDs J+(fn) in this case, spanning from
0 to fs/2, where the positive frequency contributions have been multiplied by 2: J+(fn) = 2J(fn).
All PSDs produced in this thesis are technically one-sided PSDs as directly produced by welch but
are referred to as J(fn), i.e., the one-sided notation is suppressed when referring to J(fn).

Parseval’s theorem states that the variance of the noise timestream equals the integral of its
PSD over frequency:

⟨x(t)2⟩ =
fs/2−∆f∑
fn=−fs/2

J(fn)∆f =
fs/2∑
fn=0

J+(fn)∆f. (7.43)

In other words, the variance of a timestream receives independent and orthogonal contributions
from the different frequency components that form a basis for the real-valued timestream space. As
a result of Parseval’s theorem, variance may be estimated quickly from a PSD plot by estimating
some average value over all frequencies and then multiplying by the bandwidth fs/2.

Two final notes on the PSDs plotted in this thesis: (1) welch averages the PSDs across M
blocks of length N that make up a timestream of length M ×N . Prior to averaging, a Hann window
is applied to each N -sample block. (2) All plotted PSDs omit the DC bin where f = 0.

7.6 Electronics 1/f noise and correlated-noise removal
Electronics 1/f noise is a relatively generic term that can arise from many different sources.

One possible source for electronics 1/f noise is drifts in the total gain and/or transmission of a
readout circuit. In general, this kind of drift has no roll-off frequency—it rises to as low a frequency
as one can measure.

More specific to this application, the dominant electronics 1/f noise arises from the Ettus
USRP readout system used for KIPM detector readout in this thesis. The 1/f noise from the

7This equality is a result of the fact that the Fourier coefficient at negative frequency is equal to the complex
conjugate of the Fourier coefficient at positive frequency for a real-valued timestream. PSDs are computed from the
square of the fourier coefficients.
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USRP is believed to be caused by the different local oscillators for up- and down-conversion between
the USRP baseband and the few GHz RF band of our resonators, in particular the phase noise
engendered by using two different LOs. This noise manifests in the “electronics arc length” direction.

For both gain/transmission and USRP phase noise, the noise is correlated between on-
resonance and off-resonance tones. Through simultaneous readout of on- and off-resonance tones,
the correlated noise can be tracked and removed (“cleaned”).

Defining the “radial” and “arc length” directions
In general, S21(t, fr) or V (t, fr) timestreams are complex and thus have two quadratures.

The USRP reports voltages in terms of complex quantities with real part I and complex part Q, so
S21(t, fr) or V (t, fr) chart out trajectories in the complex IQ-plane. Another natural basis is the
gain and phase basis, which is equivalent to converting the complex number I + iQ into reiθ, where
r corresponds to gain and θ to phase.

The USRP noise under study was found to be well-aligned along this latter basis and was
particularly egregious in the phase direction. In this thesis, we transform the gain and phase
quadratures into radius and arc length timestreams such that the two orthogonal timestreams carry
the same units as the IQ-plane. The cleaning algorithm is then performed separately on the radius
and arc length directions.

The USRP reports voltages as a fraction of the ADC full scale voltage, which are referred
to as “ADC units” in this thesis; we perform no conversions of ADC units into voltage units. All
radius and arc length units are thus reported in the generic “ADC units” or “ADCu.”

The basic cleaning procedure
KIDs provide a natural way to remove correlated electronics noise by the simultaneous

readout of off-resonance tones. In the simple case where there is a single on-resonance tone with real
timestream D(t) and a single off-resonance tone with real timestream S(t), the on-resonance tone
can be cleaned of the correlated noise with the off-resonance tone using the following transformation:

D′(t) = D(t)− xS(t), (7.44)

where x is referred to as a cleaning coefficient. In this case, D(t) and S(t) may either be radius or
arc length timestreams. The variance of a “cleaned” tone D′(t) can then be minimized in a way
that subtracts the correlated noise between D(t) and S(t):

Var(D′(t)) = Var(D(t)− xS(t))
= Var(D′(t)) + x2Var(S(t))− 2xCov(D(t), S(t))

−→ ∂Var(D′(t))
∂x

= 2xVar(S(t))− 2Cov(D(t), S(t))

−→ x = Cov(D(t), S(t))
Var(S(t)) , (7.45)

where in the final line, ∂Var(D′(t))/∂x has been set to 0, and the equation is then solved for x.
As mentioned earlier, this procedure is performed separately for the radius and arc length basis
directions.

This cleaning procedure is demonstrated in Figure 7.5. The data shown are for a niobium
resonator of the same design as from Chang (2023) and Aralis (2024). The raw data from the USRP
is shown in Figure 7.5 Left, for both the VNA data V (f) and the timestream data V (t; f) for both
the on-resonance and off-resonance tone. The radius and arc length basis directions have been
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Figure 7.5: Correlated noise cleaning in KIDs. Left: raw USRP V (f) in black and V (t; f) in
orange and blue in the complex plane. The radius and arc length directions are marked as well.
Top Right: the same data, zoomed into the two noise blobs. The plot in the far upper right shows
the on-resonance timestream after it has been cleaned of the correlated noise with the off-resonance
timestream and has the same scale as the plot to its left. Bottom Right: a representation of the
cleaning algorithm in the D(t) versus S(t) and D′(t) versus S(t) planes for the arc length direction
of the complex timestreams.

indicated and are defined with respect to the origin of the IQ plane, which is located at 0 ADC
units.

Figure 7.5 Bottom Right then shows how the correlated noise is removed in a particular
direction, in this case the arc length direction. The on- and off-resonance timestreams in the arc
length direction D(t) and S(t) are seen to be strongly correlated. The slope of the correlation can
be computed with Equation 7.45 and is shown to be well aligned with the major axis of the noise
blob in the D(t) versus S(t) plane. The plot of D′(t) versus S(t) then shows how the subtraction of
xS(t) from D(t) leads to substantial noise reduction of D′(t) in comparison to D(t). In Figure 7.5
Top Right a reduction in the size of the noise blob in the arc length direction is visible.

Cleaning in the radius direction for this niobium resonator had little impact. The fact
that the remaining dominant noise is primarily in the frequency direction and uncorrelated with
off-resonance tones is evidence that it is TLS.

A sometimes critical step in the calculation of the cleaning coefficient is additional decimation
(low pass filtering & down-sampling). This may be required so that the high frequency noise does not
dominate in the calculation of the cleaning coefficient. The 1/f noise is largest at low frequencies,
so it is important that the noise is dominated by the correlated noise in order to correctly calculate
the cleaning coefficient. One can calculate x with decimated data and then use that coefficient x for
the subtraction of the un-decimated S(t) from the un-decimated D(t).

Correlated-noise removal with multiple cleaning tones
For validation of the cleaning algorithm, it may be desired to use multiple off-resonance tones,

so that the off-resonance tones can be used to clean themselves, thus providing a resonator-agnostic
procedure for validation of the cleaning algorithm. When cleaning the off-resonance tones, the
on-resonance tone is not used. With N off-resonance tones Sn that require N cleaning coefficients
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xn, the cleaning algorithm can be generalized in the following way (t dependence is now suppressed):

D′ =D −
∑

n

xnSn

Var(D′) =Var(D −
∑

n

xnSn)

=Var(D) + Var(
∑

n

xnSn)− 2Cov(D,
∑

n

anSn)

=Var(D) +
∑

n

x2
nVarSn +

∑
n̸=m

∑
m

xnxmCov(Sn, Sm)− 2
∑

xnCov(D,Sn)

∂VarD′

∂xn
=2xnVar(Sn) + 2

∑
m ̸=n

xmCov(Sn, Sm)− 2Cov(D, Sn) (7.46)

−→ ∇VarD′ =2KS,Sx− 2b (7.47)

where KS,S is the covariance matrix of the N cleaning tones, x is a vector of the N cleaning
coefficients, and b is a vector whose elements are Cov(D, Sn). The gradient in the final line is taken
with respect to the cleaning coefficients xn. To minimize the variance of D′ under the cleaning
transformation, we find a local minimum by setting the gradient equal to 0:

KS,Sx = b, (7.48)

which can be solved for x. In the case where there is only one cleaning tone S for which we desire the
optimal cleaning coefficient x, Equation 7.48 simplifies to the single-tone equation for the cleaning
coefficient written in Equation 7.45.

The results of a multiple-cleaning-tone algorithm are displayed in Figure 7.6. The resonator
under study in this example is a TiNx resonator of the same design as B240103 described in
Section 8.4, but moved up in frequency. For this example, three cleaning tones were chosen, the
minimum number such that the multi-tone cleaning algorithm could be used for the off-resonance
tones. In all plots, the gray line shows the frequency at which all timestreams were decimated for
the determination of cleaning coefficients: down to 1 kHz, or a 500 Hz Nyquist frequency. This level
of decimation was chosen so that the variances of the noise timestreams were dominated by the
low-frequency correlated noise.

In the on-diagonal plots, power spectral densities (PSDs) are plotted before and after cleaning
in both the radius (blue) and arc length (orange) directions. The off-resonance tones show a capacity
to clean below 10−13ADCu2/Hz in power spectral density, exhibiting flat noise characteristic of
amplifier-dominated white noise. The on-resonance PSDs show excess noise above 10−13ADCu2/Hz
in both the radius and arc length directions, the source of which is believed to be two-level systems
in the resonator as detailed in Section 7.8.

The only off-resonance timestream that did not demonstrate cleaning below 10−13ADCu2/Hz
was the arc length direction timestream of off-resonance tone 1, which also showed the greatest
transmission of the four tones. Assuming that the 1/f noise is proportional to the carrier amplitude,
cleaning a tone with amplitude a1 using a tone with amplitude a2 results in a2’s white noise σ2
appearing in the cleaned a1 with amplitude (a1/a2)σ2. If a1 ≫ a2, then the white noise of a2 is
greatly amplified.

The off-diagonal plots show the coherence between the uncleaned and cleaned tones. Coher-
ence is defined as

C(f ; S1,S2) = |JS1,S2 |2

JS1JS2
(7.49)
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Figure 7.6: Multi-tone cleaning in resonator readout. On-diagonal plots show power spectral
densities in units of log10(ADCu2/Hz), and off-diagonal plots show coherence (defined in text)
between two particular tones, as specified by their row and column headers. Both off- and on-
diagonal plots show the effects of cleaning for both the radius and arc length timestreams: dark blue
corresponds to uncleaned radius timestreams; light blue are their cleaned counterparts; dark orange
corresponds to uncleaned arc length timestreams; light orange are their cleaned counterparts.
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and is a useful quantity for evaluating the level of correlation between two timestreams. A single
subscript J is a power spectral density, and a double subscript J is a cross spectral density. In
general, the cleaned tones are much less coherent with the other tones after cleaning is performed.
In fact, the pre-cleaning coherence values are near 1 across nearly the entire plotted bandwidth for
all pairs of tones in Figure 7.6.

The key takeaway from Figure 7.6 is that off-resonance tones can be used to clean each other
down to white noise, which implies that any residual 1/f noise in the on-resonance timestream after
cleaning is intrinsic to the resonator. The remaining noise in Figure 7.6 Top Left is uncorrelated with
the off-resonance tones. As we see in Section 7.8, the remaining noise is entirely in the frequency
direction and therefore can be identified as TLS noise.

7.7 An amplifier-noise-dominated KIPM detector
YY180726 is an 80-resonator device on a 75 mm diameter, 1 mm thick silicon wafer. The

resonators are made from 30 nm aluminum and the feedline from 300 nm niobium. The resonant
frequencies are located between 3.1 GHz and 3.55 GHz, intended to align with a ROACH-1 ADC/DAC
board readout architecture used for MUSIC(Duan et al., 2010). For more details on the design of
this device, see Chang (2023) and Aralis (2024).

YY180726 exhibited hugely varying transmission across its operating frequencies. Figure 7.7
shows transmission variation of around 60 dB. Given the few cm size of the device box and the results
of an Eccosorb test described in Chang (2023), it is believed that the coupling of the RF modes of
the feedline to the RF modes of the box is the main cause of the transmission non-idealities. The
effect of these excitations may have been worsened by the somewhat atypical grounding scheme that
was used for the coplanar waveguide transmission line. Specifically, the ground plane does not cover
the entire wafer and so is perhaps poorly grounded to the box given its meandering structure over
the wafer; see Chapter 8 for a description of a similarly designed detector. Chang (2023) discusses
these effects in more detail as well as potential strategies to improve transmission non-idealities.

Since the vast majority of resonators exhibited poor transmission and poor Qr, the readout
noise was dominated by the amplifier. Recalling Equation 7.2,

σδfr/fr
= σS21

Qc

2Q2
r

= σV

|a|
cos ϕ

|Q̂c|
2Q2

r

1
cos ϕ

= σV

|a|
|Q̂c|
2Q2

r

(7.2 revisited)

σδfr/fr
can be expressed in terms of |a|, |Q̂c|, and Qr, three quantities that are fit for and extracted

from raw V (f) data or raw S21(f) data. Furthermore, if σV is mostly fixed in the raw V (f) plane
across probing tone frequencies and thus fixed across different resonators, the performance of a
particular resonator in terms of σδfr/fr

is dominantly dependent on the quantity |a|Q2
r/|Q̂c|. We

define this quantity:

RQ ≡ |a|
Q2

r

|Q̂c|
, (7.50)

and we refer to RQ as the “RF responsivity.” We remark again that a can be extracted from
either V (f) or S21 data. In the case of the former, |a| is larger for larger readout powers and thus
can be used to facilitate cross-readout-power comparisons; for the latter, |a| does not depend on
readout power. A quantity similar to RQ that omits the dependence on |a| was first introduced in
Ramanathan, Aralis, et al. (2022).

The key result in Figure 7.7 is that the variation in resonator noise performance is due to
variation in RF responsivity. The full bandwidth level of δfr/fr noise is shown in Figure 7.7 Bottom
Left and displays the tightest trend between noise level and RQ of the three plots in Figure 7.7
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Figure 7.7: YY180726.2 device performance. Top: transmission of the device. Bottom:
resonator noise performance in various units versus RQ. The green star corresponds to the expected
noise performance given the desired RQ described in the text. Bottom Left: resonator δfr/fr noise
over the full bandwidth. Bottom Center: resonator δfr/fr noise after application of the optimal
filter. Bottom Right: resonator resolution on absorbed energy.

Bottom. Figure 7.7 Bottom Center displays the RQ dependence of the optimally filtered δfr/fr

resolution, which shows greater variation because of pulse shape variation among resonators. The
optimally filtered resolution is computed in the following way:

σ0 =
√√√√√ 1∑

fn

T |s̃(fn))|2
J(fn)

(7.51)

Finally, Figure 7.7 Bottom Right displays the RQ dependence of σEabs , which has additional scatter
due α and ∆ variations.

In Figure 7.7 Bottom Right, a green star is shown to indicate the expected noise performance
for a resonator with RQ given by the best transmission observed in the data and Qr ≈ Qc = 105.8 It
is located around 2 eV, about a factor of 10 worse than the expectation calculated in Section 7.4. This

8Setting Qc = 105 and overcoupling the resonator are desirable for this particular detector architecture because
phonon arrival time information is maintained if the resonator ring up time is not too long. The ring-up time of the
resonator is given by Qr/2πfr.
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discrepancy may be due to uncertainties in the operating readout power at the device, worse than
expected HEMT noise, or, perhaps most likely, unaccounted for attenuation in the readout chain
between the device and the amplifier (recall that attenuation always degrades signal-to-noise). The
RF performance of the device was very poor, and its overall transmission is not well characterized.

7.8 TLS-noise-dominated KIPM detectors
In this section, we report the contributions of amplifier noise, electronics 1/f , and TLS noise

in the readout of a lumped element resonator design that was originally designed and engineered by
Chang (2023). The original design for 3 GHz resonators was later modified for 4 GHz and 5 GHz
resonant frequencies, with the desire to better match the gain bands of kinetic inductance traveling
wave parametric amplifiers. Many different materials were also explored. The list of devices studied
here is as follows:
• Niobium resonator from OW200127,
• TiNx-Al bilayer resonator from OW221031p3,
• Al resonator from YY180726p2,
• Al resonator with Nb-capped capacitor from OW200127.

After an introduction to the various bases used for PSD analysis, we present the data for each
resonator in each basis and study how the noise depends on readout power.

PSD units
The PSDs in this section, shown in Figures 7.8 to 7.11, are displayed in three different bases:

the electronics basis, the fractional electronics basis, and the resonator basis. PSDs in each basis
carry different units. Each basis has two directions, and PSDs are computed for both directions.
We explain the difference between the different bases first.

Electronics basis
The raw data from the USRP in ADC units is shown in the left column of Figure 7.8 to

7.11. The gross effect of readout power on the signal-to-noise ratio can be seen in Figure 7.8 to 7.11
Top Left, where the data are shown in ADC units. Higher readout powers lead to larger voltages
at the ADC, which is illustrated by the fact that the VNA circles get larger with readout power.
The readout powers are separated by factors of 5 dB, which corresponds to a factor of

√√
10 ∼ 1.78

difference in circle size between adjacent powers.
In the electronics basis, PSDs are computed in the radius and arc length directions of the

complex plane; these directions are illustrated with gray dashed lines and are collinear with the
gain and phase directions, which are more often quoted in the literature. The S21(t; fr) timestreams
in the top left panel of each figure do not change much in size with different readout powers. The
noise of these timestreams is generally dominated by amplifier noise, which is additive noise and
stays fixed as the carrier tone amplitude is changed. An elongation of the S21(t; fr) noise blob is
visible along the tangent direction to the S21(f) circle; this excess noise is TLS noise, as we discuss
in more detail below.

Fractional electronics basis
In the middle columns of Figure 7.8 to 7.11, all data have been divided by the resonator

fit parameter a for each readout power, converting V → S21. In the complex S21 space, all VNA
circles lie on top of each other now, modulo small changes to fr and Qr with readout power. The
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noise blobs decrease in size with increasing readout power, reflecting the improved signal-to-noise
ratio with higher readout powers.

This basis, where the off-resonance transmission has been divided out, is referred to as the
“fractional electronics basis,” to reflect the fact that the noise PSDs are computed in fractional
units with respect to the amplitude of the incoming wave. In other words, S21 = V2/V1, its usual
definition, where V2 corresponds to an output port just after the resonator and V1 to an input port
just before the resonator.

There are two observations about the noise PSDs in the fractional electronics basis:
• The white noise level in the PSDs decreases as P −1

g (recall that the readout powers for the PSDs
are separated by 5 dB). This dependence is most evident in the arc length direction PSDs at the
lowest readout powers, which has the greatest contribution from amplifier white noise: the blue,
orange, and green curves are each separated by about a half decade.

• The uncleaned noise shows a prominent 1/f noise at the highest readout powers, which is
roughly fixed at 10−8 (δS21)2/Hz at 100 Hz in the arc length direction. This constancy reflects
the fact that the electronics 1/f noise is believed to be a multiplicative gain and phase noise
and therefore is fixed in this fractional electronics basis.

Resonator basis
In the right columns of Figures 7.8 to 7.11, the S21 data are projected onto the real axis

using the resonant fit parameter ϕ; the resonance circle and timestream data are multiplied by cos ϕ.
This transformation is the same as the transformation performed in Figure 7.1 Right; the resonator
basis and the “idealized S21” basis are the same.

In this idealized S21 space, the deviation of S21 from its quiescent value is described, for
small changes (linear approximation), by

δS21 = Q2
r

Qc

(
δ

1
Qi
− 2i

δfr

fr

)
, (7.52)

This expression allows us to extract δfr/fr and δ(1/Qi) timestreams from δS21.

Calibration to the resonator basis
Depending on the readout system of choice, there may be systematic differences between

the VNA scan that measures S(f) and the noise timestream that measures S21(t; fr). The USRP
has exhibited misalignment and offsets between noise timestreams and VNA scans, so a scheme was
devised to correct for such deviations.

The crux of the scheme is to, just before and after data acquisition, and sometimes during,
measure S21 at two tones slightly off resonance to determine the frequency direction. Typical
frequency values used for these off-resonance tones are fr ± fr/5Qr. Currently, the alignment of
the noise data with the VNA is done by fitting a line in the complex plane that passes through
[V (t; fr − fr/5Qr), V (t; fr), V (t; fr + fr/5Qr)] and rotating these points so that they are parallel
to the line that passes through the corresponding points from the VNA: [V (fr − fr/5Qr), V (fr),
V (fr + fr/5Qr)].

For better confidence in the efficacy of the calibration, it would be good to have more
calibration tones, as shown in Ramanathan, Wen, et al. (2024). At some point, with noise
timestreams at enough frequency points, the resonator basis calibration begins to resemble a VNA
scan. With more just-off-resonance noise timestreams, the on-resonance timestream can be more
confidently converted into the resonator basis.
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Figure 7.8: OW200127 Nb resonator noise PSDs. The resonant frequency is 4.206 GHz. Top:
S21(f) are depicted as lines, and S21(t; fr) are depicted as points. The different colors correspond to
different readout powers, separated by 5 dBm. The “radius” and “arc length” directions are drawn
with the dotted gray lines. Middle and Bottom: log10 of power spectral densities of the various
timestreams in different units. The faded curves are for uncleaned timestreams. The dashed lines in
the bottom right are the TLS component of a TLS + white noise fit.
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Figure 7.9: OW221031 TiNx resonator noise PSDs. The resonant frequency is 4.345 GHz.
Caption is the same as the caption in Figure 7.8.
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Figure 7.10: YY180726.2 Al resonator noise PSDs. The resonant frequency is 3.423 GHz.
Caption is the same as the caption in Figure 7.8.
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Figure 7.11: OW200127 Al resonator with niobium-capped capacitor noise PSDs. The
resonant frequency is 4.240 GHz. Caption is the same as the caption in Figure 7.8, with the exception
of an additional κ1–κ2 correlated noise cleaning in the third column; the post-cleaning PSD is shown
as the solid color curves. In the third column only, the faded colors are for PSDs that are not
cleaned of the κ1–κ2 noise (but are cleaned of the electronics noise).
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Example 1: niobium
Figure 7.8 shows the noise performance in different readout units of a niobium resonator with

a 4 GHz lumped element design as a function of readout power. The excess noise in the frequency
direction in comparison to the dissipation direction provides clear evidence for TLS noise in this
niobium resonator. The frequency direction PSDs are fit with a model consisting of TLS and white
components. The dashed curves in the frequency direction PSDs are the TLS component of the
fit. For the TLS component, the frequency roll-off is fixed by the resonator bandwidth, and the
amplitude and power law of the TLS component are floated. As expected with TLS noise, the TLS
noise level decreases as P

−1/2
g . Recall that the power levels are separated by 5 dB, and observe that

the TLS components of the fit are roughly separated by a quarter decade along the y-axis.

Example 2: TiNx-aluminum bilayer
Figure 7.9 shows a similar set of data for a TiNx-aluminum bilayer resonator from OW221031,

which was fabricated with the intention of reducing TLS noise in the capacitor. TiNx was believed
to exhibit less TLS noise than niobium (McRae et al., 2020) while also serving as a higher gap
material (target Tc around 4 K) for the dead metal region of the capacitor. The “x” in the name
refers to the stoichiometric nature of TiNx. The 30 nm aluminum resonator with a 100 nm TiNx
layer capping the capacitor was never observed, but the resonators with the 100 nm TiNx layer
capping the entire aluminum resonator (that is, a TiNx-aluminum bilayer) were used to measure
the TLS noise of the proximitized TiNx resonators. The TLS noise slopes were better described by
power laws closer to −1 than to −0.5, the latter being observed for the niobium resonator.

Example 3: aluminum
Resonators composed only of aluminum were studied in YY180726, an 80-resonator, 3 in

diameter device with a 300 nm niobium feedline and 30 nm aluminum resonators. The aluminum
resonator reported in Figure 7.10 is one of the resonators whose transmission is shown in Figure 7.7.
This resonator had the highest RF responsivity RQ and thus the lowest contribution from amplifier
white noise. One oddity about this particular resonator is its shape in the IQ-plane: the resonance
circles encircle the origin, suggesting a Qc that is less than Qr and by inference a Qi that is negative.

TLS noise was marginally visible above the amplifier noise. The noise undergoes the same
fitting procedure for the previous resonators, and the TLS component of the noise shows a rough
agreement with the P

−1/2
g scaling expected for the TLS noise. Of the 70 resonators observed on

YY180726, we focused on this one because it had the largest RQ and thus the TLS noise was most
easily visible above the amplifier noise.

Example 4: aluminum resonator with a niobium-capped capacitor
OW200127 had ten 30 nm niobium resonators and a single 30 nm aluminum resonator that

also had a 30 nm niobium capping layer on the capacitor. The noise of this resonator was studied
and reported in Wen et al. (2022) and plotted in Figure 8.4.

The dissipation direction exhibited enormous noise in excess of the white noise level, the
source of which is currently unknown. The noise was observed to be correlated between the frequency
and dissipation directions. The noise was referred to as κ1–κ2 correlated noise. To remove this noise
from the frequency direction, a similar cleaning procedure as was done for the electronics noise was
followed:

δnqp,f,cleaned(t) = δnqp,f (t)−AQ,f δnqp,Q(t), where AQ,f = Cov(δnqp,Q,δnqp,f )
Var(δnqp,f ) . (7.53)
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Figure 7.12: TLS comparison across different materials. Left: fit-for TLS noise PSD in the
four different material compositions that were measured at the highest readout power for each
material’s dataset. It is important to note that relative noise levels should not be compared with
this plot because the stored energy in the resonators are not equal. For comparison, an arbitrarily
normalized Fourier coefficient signal template is shown to illustrate the relevant signal bandwidth
for these detectors. Top Right: JTLS(1 kHz) versus number of readout photons, which follows a
power law with the stored energy in the resonator. Bottom Right: the calculated impact on the
intrinsic energy resolution σEabs .

In the frequency direction, the PSDs that include the κ1–κ2 correlated noise are shown in the faded
colors, and the solid colors show the result of the κ1–κ2 correlated noise cleaning.

After the κ1–κ2 correlated noise is cleaned away in the frequency direction, TLS noise
remains present and is fit for in combination with white noise, as was done for the other three
resonators.

Comparing PSDs for different materials
In order to compare the TLS levels of the different materials under study, an approximation

to the number of readout photons at each readout power was computed for each resonator. The
conversion from readout power to number of photons was done by first calculating the stored energy
in each resonator:

Estored = χc

2
1

1 + 4Q2
rx′2

QiPg

2πfr
, (7.54)

where χc = 4QcQi/(Qc + Qi)2 is a coupling efficiency, x′ is the detuning of a resonator due to
elevated readout power, and Pg is the readout power on the feedline at the resonator. We operate
in a low readout power regime where x′ is 0. It is interesting to note that χcQi/2 = 2Q2

r/Qc; the
latter is the same expression used in conversion from δS21 to δfr/fr and δ(1/Qi) in the linear
approximation of δS21. Finally, Estored is converted into photon number by N = Estored/hν. It
should be remarked that there are large systematic uncertainties on the stored energy of the resonator
due to uncertainties regarding the measurement of Qi, especially when the resonator is greatly
rotated by some angle ϕ. There are further complications when the baseline transmission itself is
not precisely known.
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The extracted TLS noise level at 1 kHz as a function of photon number is shown in Figure 7.12
Top Right. Compared with the data in Figure 14 of Zmuidzinas (2012), the aluminum and TiNx TLS
noise levels are comparable to the lowest levels seen in the literature, JTLS(1 kHz) ≈ 10−21 Hz−1.

The impact of TLS noise on intrinsic energy resolution σEabs is then shown in Figure 7.12
Bottom Right. The noise PSDs used in the calculation of the optimally filtered resolution (Equa-
tion 7.51) are shown in Figure 7.12 left, where it is apparent that, for a typical signal template,
the signal bandwidth is smaller than the TLS noise bandwidth, hence the assumption made in
Section 7.3 that 1/τqp ≪ froll-off. Figure 7.12 Bottom Right shows that TLS noise limits the intrinsic
energy resolution to about 1 eV to 10 eV, depending on the material and the operating readout
power. The calculation from Section 7.3 computed a TLS-limited intrinsic energy resolution for
this resonator design of around 500 meV. The discrepancy between the calculation and the data is
probably due to the 2.2 ms lifetime that was assumed in Equation 7.32 whereas the signal template
assumed here has a fall time of 100 µs.

7.9 KIPM detector operation with a KI-TWPA
In this section, we briefly discuss the noise improvement results of Ramanathan, Wen,

et al. (2024) given its relevance to the discussion of the KIPM detector noise sources in this
chapter. We show how a kinetic inductance traveling-wave parametric amplifier (KI-TWPA) enabled
resonator-noise domination instead of HEMT-noise domination.

KI-TWPAs are a burgeoning technology in the field of quantum-limited amplifiers that
leverage non-linearity in the kinetic inductance of superconductors to provide quantum-limited
cryogenic amplification for RF circuits. As shown in Section 7.4, cryogenic amplifiers are a common
and significant source of noise for KID readout. Widely accessible HEMT amplifiers are limited to
about 2 K to 4 K of noise. KI-TWPAs, by virtue of their superconductivity, can in theory reach the
standard quantum limit (SQL) of added noise for linear amplifiers, which is 1

2hν.9
KI-TWPAs are dispersion-engineered transmission lines that transfer pump power into

signal power. When the pump is supplied to the transmission line, the non-linearity in the kinetic
inductance enables the transfer of power. A notable feature of the KI-TWPA is that, since it is just
a feedline, the readout circuit transmits the signal with unity gain (modulo insertion and reflection
losses) even if the KI-TWPA is not supplied with a pump tone. This feature greatly facilitates gain
and noise measurements of the amplifier and is in general not a property of other amplifiers.

Ramanathan, Wen, et al. (2024) reports on a 40-resonator, 75 mm diameter prototype KIPM
detector that was operated with a KI-TWPA as the first cryogenic amplifier. The experiment was
performed in a dilution refrigerator located in the Microdevices Laboratory of the Jet Propulsion
Laboratory. Some of the 40 resonators were made of aluminum and others of niobium; only six
aluminum resonators were investigated. Like YY180726, which was discussed in Section 7.7, this
75 mm diameter device exhibited box modes that were strongly coupled to the feedline and degraded
both transmission and resonator performance. Further details on the cryostat, the KI-TWPA
circuitry, and the absolute noise calibration can be found in Ramanathan, Wen, et al. (2024).

The key result KIPM detector readout with a KI-TWPA was a 5× improvement in the
baseline intrinsic energy resolution over the HEMT-dominated noise. This result is shown in
Figure 7.13. The figure is reminiscent of Figure 7.7 Bottom in that RQ dominates the noise
performance across the six different resonators, indicated with different markers. The y-axis is
the optimally filtered noise performance transformed into substrate energy resolution σE for the
case of a hypothetical single-resonator device with an assumed phonon collection efficiency of 30%.

9There is an additional 1
2 hν of vacuum zero-point motion presented at the input to the amplifier even if there

were no white noise from the input side chain or the KID. The SQL input noise for an amplifier is thus hν.
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Figure 7.13: Improved KIPM detector noise performance with first-stage amplification
from a KI-TWPA. Left and Right: the inferred κ1 and κ2 energy resolutions of a hypothetical
single-resonator device for six different resonators as a function of RQ, readout power, and KI-
TWPA status. Dashed lines indicate benchmark RQ values given design goals for Qr and optimal
transmission performance. Solid lines indicate the average noise level for different amplifier scenarios.
The SQL noise level is calibrated for using a Y-factor measurement. In the κ2 quadrature, an
additional trend is drawn suggestively in purple to show the impact of TLS on the KI-TWPA-
improved readout noise. The expected contribution from GR noise is also shown.

In contrast with Figure 7.7, Figure 7.13 shows the noise performance of each resonator for three
different readout powers; higher readout power leads to higher values of a and therefore higher
values of RQ and lower values of σE . Benchmark RQ values are shown for the different readout
powers assuming optimal transmission of the detector and Qr ≈ Qc = 105.

The 5× improvement in noise is visible in the difference between the empty and filled
points, as well as in the difference between the gray and black lines, which, respectively, are fits
to the differently styled points. RQ has been referred to the input of the KI-TWPA so that a is
independent of whether the KI-TWPA is on or off, i.e., supplied with a pump or not. The noise has
clearly improved, but is still about a factor of 3 away from the standard quantum limit, which was
calibrated using an in situ Y-factor measurement.

The improvement in amplifier noise with increasing RQ does not apply to the inferred final
detector energy resolution in the κ2 direction at the highest RQ values because the resonators
become TLS-noise limited. The TLS noise demonstrates good agreement with a P

−1/2
g trend line

that is suggestively drawn in Figure 7.13 Right. So, as the contribution of the amplifier noise is
reduced by improved RQ, the next limiting factor to reach the desired sub-eV energy resolutions
becomes the noise in the resonator, which in this case is TLS noise. The TLS noise for this prototype
device is quite elevated, probably due to suboptimal fabrication conditions. Beyond TLS noise,
the contribution of GR noise is also shown in Figure 7.13 Right and corresponds to a quasiparticle
population of 25 µm−3 to 475 µm−3.
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7.10 Summary of noise sources

GR noise TLS noise amplifier noise electronics noise
source nqp fluctuations two-level systems in

surface oxides
Johnson-Nyquist
thermal noise

transmission & gain
drift, USRP phase
noise, etc.

relevant
basis

quasiparticle basis,
signal direction

only present in the
δfr/fr direction

fixed in electronics
basis

fixed in fractional
electronics basis

spectral
shape

flat, with roll-off at
1/2πτqp

f−n for n < 1, with
roll-off at fr/2Qr

flat 1/f at low
frequencies (other
slopes possible)

Pg dep.;
elec. basis

P ∗
g P

1/2
g fixed Pg

Pg dep.;
res. basis

fixed∗ P
−1/2
g P −1

g fixed

limit on
σEabs with
current
design

220 meV – 390 meV 510 meV 280 meV –

how to
improve?

reduce quiescent nqp
with IR shielding,
both free-space and in-
line

• modify capacitor
geometry
• use metals with
lower propensity for
surface oxide formation

quantum-limited
amplifiers

correlated-noise
removal

Table 7.1: Summary of noise sources in KIPM detectors. The table includes descriptions
of the the noise PSDs, the dependence on power, current limitations, and ways to improve the
noise. The *s in the GR noise entries for Pg dependence indicate the assumption that nqp is not
Pg-dominated.
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Chapter 8

Optimizing KIPM detectors for
low-threshold particle detection

8.1 Previous measurement of energy resolution
Moore et al. (2012) and Moore (2012) report on the energy resolution of a KIPM detector

known as DMLE2 (“dark matter lumped element”). DMLE2 was a 2.2 cm×2 cm×1 mm silicon
chip with twenty 25 nm thick aluminum resonators instrumented on one surface of the detector.
For measurement of energy resolution, DMLE2 was illuminated with an iodine-129 source, which
provides X-ray lines near 30 keV. Moore et al. (2012) and Moore (2012) also report roughly 1 mm
position resolution using position reconstruction based on relative pulse heights.

The baseline energy resolution σE of DMLE2 was measured to be 380 eV, and the phonon
collection efficiency ηph was measured to be 7.0%±1.1%. These quantities can be used to infer the
intrinsic energy resolution σEabs , also known as the resolution on absorbed energy in the sensor:

σE =
√

Nr

ηph
σEabs . (8.1)

The above equation assumes that σEabs is the same across the Nr resonators and that the total
phonon collection efficiency summed over all the resonators is ηph. In the above references, ηph is
computed by measuring the peak number of quasiparticles observed in each resonator and summing
over the resonators. We note that Equation 8.1 applies to any σEabs , regardless of whether it is
amplifier-noise-dominated, TLS-noise-dominated, or GR-noise-dominated. Using Equation 8.1, σEabs

for a single resonator in DMLE2 is around 5.9 eV.
When we confine our study of DMLE2 to a single resonator, we find that the phonon

collection efficiency for particular events is resonator dependent: resonators that are closer to the
event detect more energy; see Figure 8.1 Left. As we explain later, the relevant quantity is the
phonon collection efficiency of the single resonator that is closest to the event. From the relative
pulse heights in Figure 8.1 Left and the reported quantity of 7.0%±1.1% for all resonators, we infer
a phonon collection efficiency of 1.1%±0.25% for the closest-resonator phonon collection efficiency.

Thin-film KIPM detectors
Three different thicknesses were explored for the aluminum film in DMLE2-style devices:

15 nm, 25 nm and 75 nm. The 15 and 25 nm devices performed better in baseline energy resolution
than the 75 nm device by about a factor of 3. In Figure 8.1 Right, a reproduction of Figure 7.23 in
Moore (2012), the collection efficiency is shown to improve with film thickness, but other factors
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Figure 7.6: Coincident phase pulses in each resonator for a 200 keV phonon-mediated
interaction in the substrate. The coloring indicates the resonator ordering in frequency
space, with resonator 1 corresponding to the lowest frequency and resonator 20 denoting
the highest frequency. A 200 kHz low-pass filter has been applied, and the pulse heights
have been rescaled by the relative resonator responsivity as described in Sec. 7.3.1 below.

Eq. 6.14 [298] to determine the loop center, zc, resonant frequency and quality factor. For

the timestream for resonator i, we define zi(t) = Ii(t) + jQi(t), and calculate the change in

the phase and amplitude of the response, relative to the center of the loop:

δφ(t) = φ0 − arctan

(
Im[zi(t)− zc]
Re[zi(t)− zc]

)
(7.2)

δa(t)

a
=
|zi(t)− zc|

r0
(7.3)

where φ0 is the phase at the probe frequency in the steady state, r0 = |zi(0)−zc| is the radius

of the loop in the steady state, and the signs have been defined to make the quasiparticle

response move in the positive phase and amplitude direction.

As discussed in Sec. 7.4 below, the noise in the phase and amplitude direction is domi-

nated by HEMT noise at the signal frequencies of interest. Since the phase response is larger

by a factor of β = S2/S1 ≈ 2–3, the signal-to-noise is dominated by the phase information

and we can ignore the amplitude information with negligible loss of sensitivity. The energy

deposited in each resonator is initially determined by three different methods:

1. Each trace is filtered by a 20 kHz low-pass filter, preserving the pulse fall time but

removing high-frequency noise and position-dependent variations in the rising edge of

the pulse. The energy is then estimated by integrating the filtered pulse.

2. An optimal filter fit is performed in the frequency domain using a single template to
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Figure 7.23: Measured phonon collection efficiency, ηph, as a function of film thickness
for the Al devices. An approximately linear increase in collection is observed as the film
thickness is increased.

for the 15 nm thick device. Taken together, these tradeoffs led to a factor of 3 improvement

in the baseline resolution of the 25 nm device relative to the 75 nm device, but no further

improvement in the resolution when decreasing the film thickness to 15 nm. From these

tests, the Al film thickness that maximizes signal-to-noise was found to be ≈15–25 nm.

The frequency and dissipation response versus temperature for the Tc = 0.65 K device

is shown in Fig. 7.24. Unlike the Al data, the shape of the frequency response versus

temperature is not well described by Mattis-Bardeen theory. Instead, an approximately

linear dependence for δf0/f0 is observed at temperatures T � ∆. Such a dependence

appears to be a generic property of resonators fabricated from TiN and NbTiN films. A

similar response was observed for the Tc = 0.5 K TiN device as well as by Barends et al. for

Tc = 16 K NbTiN films [325]. Improved fits to the data can be obtained after introducing

a broadening of the gap, Γ, in the density of states following Barends et al., ∆→ ∆− jΓ.

This gap broadening smears the divergence at the gap in the density of states and

introduces a distribution of quasiparticle states below the gap edge. The presence of these

sub-gap states increases the number of thermally excited quasiparticles at low temperature,

which could account for the observed linear frequency dependence at T � ∆. The number

of quasiparticles can be calculated from [298]:

nqp =

∫
f(E)DOS(E)dE = 4N0

∫ ∞

0

1

1 + e
E
kbT

Re

[
E√

E2 − (∆− jΓ)2

]
dE (7.19)

where DOS(E) is the broadened density of states, f(E) is the Fermi function and the

Figure 8.1: Phonon collection efficiency of DMLE2 resonators. Left: relative pulse heights
of the twenty different resonators in response to a 200 keV event in the substrate. Reproduced
from Figure 7.6 in Moore (2012). Right: phonon collection efficiency versus film thickness for
DMLE2-style devices. Reproduced from Figure 7.23 in Moore (2012).

caused the detector energy resolution to degrade overall. The discussion of why the overall detector
energy resolution degrades with thickness is reproduced from Section 7.5.4 of Moore (2012):

As shown in Fig. 7.23, there is an approximately linear increase in the collection efficiency
with film thickness, as expected in the limit that the film thickness t ≪ λpb, where
λpb ≈ 1 µm is the characteristic pair-breaking length in Al. As the films are made thinner,
the volume is also reduced linearly, so the quasiparticle density remains approximately
unchanged. In addition, α increases with decreasing thickness, giving higher responsivity
for the same quasiparticle density and improving the signal-to-noise of the device.
However, thinner films also saturate at lower powers, decreasing the maximum readout
power that can be used and increasing the amplifier noise contribution. The quasiparticle
lifetime was also found to decrease from τqp = 73.7 µs for the 75 nm thick device to
τqp = 15.4 µs for the 15 nm thick device. Taken together, these tradeoffs led to a factor
of 3 improvement in the baseline resolution of the 25 nm device relative to the 75 nm
device, but no further improvement in the resolution when decreasing the film thickness
to 15 nm. From these tests, the Al film thickness that maximizes signal-to-noise was
found to be 15–25 nm.

The key takeaway is that thinner films optimized the confluence of detector parameters for
energy resolution. The subsequent detectors described in this chapter use 30 nm aluminum films.
For comparison, the aluminum films used for phonon collection by QET phonon sensors are usually
600 nm thick and thus comprise a much larger collection volume. Given the smaller collection
volume of the lumped-element resonator design, which combines the roles of the sensitive element
and the phonon absorber, we expect this design to be more sensitive to other loss mechanisms in
the substrate. QET phonon sensors have demonstrated collection efficiencies around 30% (see Ren
et al., 2021) or greater (see Romani et al., 2024 or TESSERACT Collaboration, 2024). In principle,
collection efficiencies at this level should be achievable as long as the aluminum film remains the
dominant sink for greater-than-2∆Al phonons in the substrate. One of the main thrusts of research
presented in this chapter is an exploration of the dependence of phonon collection efficiency on
metal volumes and other loss mechanisms. This analysis provides guidance on how to modify the
KIPM detector design so that the collection efficiency may be improved to the tens of percent level
that is expected for a phonon-mediated detector.
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Figure 8.2: Designs and photographs of OW200127. Top Left: the design of the 2.2 cm ×
2.2 cm OW200127 chip with 11 total resonators: 10 Nb resonators and one Al resonator in the
middle. Each resonator is coupled to a 300 nm thick Nb co-planar waveguide (CPW) feedline (dark
beige) that meanders over the chip and terminates in wirebond pads at the top and bottom. The
signal line is visible and separated from the the ground planes by 10.75 µm. Top Right: the central
resonator is fashioned out of 30 nm thick Al, shown as a light beige, with 30 nm of Nb on the
capacitor (the same Nb that is used for the other 11 resonators), shown as an intermediate beige.
Bottom Left: Photograph of an OW200127 chip mounted in its device housing. Bottom Right:
Micrograph of the central resonator in OW200127.

8.2 Design considerations for a low-threshold detector
We initiated work on a new KIPM design to improve σE of DMLE2. The new device design

is referred to as OW200127 (initials of the fabricator and date of fabrication, YYMMDD). With
DMLE2 as a reference point, there are three ways to improve σE .

First, the phonon collection efficiency of DMLE2 almost certainly had room for improvement.
Given the much higher phonon collection efficiencies (≳ 30%) for other QET-based phonon-mediated
detectors mentioned previously, it is likely that there were loss mechanisms in DMLE2 that limited
its phonon collection efficiency. It was hypothesized that the non-signal-contributing aluminum
components, such as the resonator capacitors, the feedline, and other auxiliary components, were
the main source of phonon loss.

Given this hypothesis, the first major design choice for OW200127 was that niobium, a
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Figure 8.3: Schematic depicting possible avenues for phonon energy loss.

higher gap material, would be used for the “dead metal” on the device, i.e., any metal that does not
contribute to the signal. In Figure 8.2 Top Left and Right, the dead metal is shown in dark beige,
and the inductor is shown in lighter beige. The dead metal in OW200127 includes the feedline, other
resonators that are used for phonon creation via readout power (see Aralis, 2024), and the capacitor
of the phonon-sensitive resonator. For the capacitor, we used the proximity effect to lift its gap; a
Nb film is placed on top of an Al film. In Figure 8.2 Top Right, the proximitized aluminum-nioibium
bilayer is shown as an intermediate shade of beige. Overall, by lifting the superconducting bandgap
of the dead metal, we prevent phonons between 2∆Al and 2∆Nb (or whatever the proximitized gap
is) from being absorbed and down-converting in these non-signal-contributing regions.

The second way to improve energy resolution is to confine all the phonon energy to just
one resonator, i.e., set Nr to 1. As shown in Equation 8.1, this choice is motivated by the fact
that the readout noise of such KID-based detector scales with

√
Nr because the noise from each

readout channel must be added in quadrature upon the summation of collected energies. In some
circumstances, decreasing Nr tends to decrease ηph and thus degrade σE . The naive intuition is
that ηph scales with the surface area coverage of “live metal,” which is the metal where absorbed
phonons contribute to the signal, i.e., our inductors. However, if the live metal is the dominant
down-converting loss mechanism of the phonon energy in the substrate, then fewer resonators do
not necessarily imply a lower ηph. This idea that ηph may not degrade as Nr decreases motivates
the design choice Nr = 1.

The third way to improve σE would involve improving σEabs . This process involves a careful
understanding of the noise sources involved in the readout of the resonator; these noise sources and
some strategies for reducing their contributions are discussed in detail in Chapter 7.

Given the results that are shared in this chapter, we comment in advance on two ways in
which these design choices might not have the desired effect.
• Other down-converting and lossy surfaces, such as mounting interfaces or diced, unpolished

edges, can dominate loss of phonons; see Figure 8.3. Simply making the dead metal of the chip
inert to phonons may not be enough if there are other significant loss mechanisms. In fact,
Figure 8.1 Right provides a clue to this effect. The figure shows that the collection efficiency of
the DMLE2 design improved linearly with film thickness. This result demonstrates that DMLE2
operated in the regime in which there were dominant mechanisms of phonon loss beyond the
aluminum film. The contrapositive here is that, if the aluminum film was indeed the dominant
sink for phonons in the silicon, then there should be no improvement in phonon collection
efficiency with thickness because the volume of dead aluminum and sensitive aluminum both
increase linearly with thickness.

• Enough of the initial phonon energy may be above 2∆Nb such that it is then absorbed in the
Nb, and this absorption may promote down-conversion of that energy to < 2∆Al.
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A comment on sub-percent surface coverage designs
The dimensions of the inductor are roughly 700 µm×1 mm, corresponding to 0.007 cm2. The

surface area of the 2.2 cm× 2.2 cm× 1 mm chip is 10.56 cm2. The surface area coverage is very low,
about 0.07%. It is believed that most of the detectable phonon energy can still be absorbed even at
such low surface area coverage. We follow the argument presented in Golwala and Figueroa-Feliciano
(2022). The article notes that the majority of the athermal phonon energy can be collected if

fsurffabsNsurf ∼ 1, (8.2)

where fsurf is the fraction of the surface covered with sensors, fabs is the probability of absorption
for a single interaction between an athermal phonon and a phonon sensor, and Nsurf is the number
of times an athermal phonon strikes the surface of the crystal before it down-converts to sub-2∆
energy. Heuristically, fsurfNsurf is the average number of interactions between an athermal phonon
and a phonon sensor, and fabsfsurfNsurf is the fraction of such athermal phonons that are absorbed
by the phonon sensor before being lost. An essential realization in the early days of CDMS was that
if fabsNsurf is large enough, then fsurf < 1 could still allow highly efficient phonon collection. In
general, smaller fsurf tends to lead to improved intrinsic sensor resolution (by reducing the volume
of the phonon sensor itself), so operating near the lower bound of fsurf is usually beneficial.

Hochberg, Pyle, et al. (2016) bounds Nsurf between 103 and a few ×105 for bare and polished
semiconductor crystals. fabs can be approximated as (the thickness of the phonon sensor) / (its
pair-breaking length). Taking into account the acoustic mismatch between the sensor and the
crystal, fabs ≈ 0.01–1 is presented as a reasonable range. For Nsurf ≈ 103, a conservative lower
bound on fsurf is thus 0.001-0.1. The above provides a rationale for fsurf = 0.07% in OW200127. As
the results of this chapter show, the aluminum inductor is not the dominant phonon-loss mechanism
in the detector, and consequently, the collection efficiency suffered from such a low-coverage design.

8.3 OW200127, a single resonator device: results and limi-
tations

The performance of the OW200127 design has been reported twice: Wen et al. (2022) and
Temples et al. (2024). The two devices reported in the two articles are different chips from the
same wafer and have the same design, so are referred to as OW200127 Device 1, or just “D1”, and
OW200127 Device 2, “D2.” In Wen et al. (2022), the noise performance of D1 as a function of
readout power was reported and shown to be limited by TLS noise. These tests were performed in
an Oxford Kelvinox 25 dilution refrigerator at Caltech, as described in Chapter 7. In Temples et al.
(2024), an absolute energy calibration, i.e., a calibration on the energy deposited in the substrate,
was performed for D2, in addition to a characterization of the noise performance. These tests were
performed at the Northwestern Experimental Underground Site in Fermilab, in parallel with HVeV
Run 4, which is described in Chapter 5. Details about the NEXUS experimental setup concerning
the cryostat and external shielding can be found there.

The readout chain at NEXUS was slightly different than the readout chain at Caltech and, in
general, provided better environmental shielding from parasitic loads. Instead of an attenuator chain
consisting of 20 dB@4 K–10 dB@1 K–10 dB@100 mK as described in Chapter 7 for the Caltech readout
chain, the input chain at NEXUS had 20 dB@4 K–20 dB@10 mK; both are adequate for suppressing
room temperature blackbody noise below the HEMT noise of about 3 K to 4 K. Furthermore, a
10 GHz low pass filter was deployed at the 1 K stage to prevent pair-breaking high-frequency RF
waves from entering the detector. Further shielding in this regard was provided by in-line Eccosorb
filters both at the input and output of the device; these filters are intended to attenuate infrared
pair-breaking radiation and are described in Spahn (2021). Lastly, the NEXUS readout chain
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Comparison of noise results for OW200127
D1 @ Caltech D2 @ FNAL

JTLS(1 kHz)
(

(δfr/fr)2

Hz

)
2× 10−19 to 10−20 2× 10−19 to 3× 10−20

feedline power Pg −105 dBm to −75 dBm −106.5 dBm to −91.5 dBm
photon number 3× 104 to 4× 107 5× 104 to 2× 106

τqp 50–100µs 6.5 ms
σEabs 6 eV 2.1±0.2 eV

Table 8.1: Comparison of noise results for OW200127, including TLS noise level and the
feedline & resonator powers (in units of photon number) at which those TLS noise levels are
measured.

included an isolator at the mK stage between the device output and the HEMT amplifier at 4 K. The
isolator has two purposes: (1) prevent reflections and mitigate standing waves that can degrade RQ

and (2) prevent emission from the HEMT from reaching the detector and degrading its performance.
Both Caltech and NEXUS readout schemes used an Ettus Research Labs USRP X300 for

measuring S21(f) frequency scans and S21(t; fr) timestreams. Thus, both readout schemes required
cleaning of the correlated electronics 1/f noise that was described in Section 7.6.

TLS noise
In Wen et al. (2022), TLS noise was shown to dominate the readout noise of the aluminum

resonator. The previous chapter provides additional context for this result and describes the κ1–κ2
correlated-noise cleaning that was performed. After that noise was removed, the TLS noise was fit
for (also described in the previous chapter). This procedure was followed in Temples et al. (2024),
and the results of both devices are shown in Figure 8.4

Figure 8.4 Top shows that the TLS noise in both D1 and D2 becomes visible above the
amplifier white noise when the white noise is below approximately 10−2 (µm−3)2/Hz. As the readout
power is pushed higher, the white noise level in quasiparticle density units decreases, causing the
TLS noise to become even more visible above the white noise.

Figure 8.4 Middle shows how the white and TLS noise levels were extracted from PSD fits.
The residuals of the fits are also shown. Both fits show good agreement with the f−0.5 power law
that is generally expected for TLS noise PSDs.

Lastly, Figure 8.4 Bottom shows how TLS noise levels compare across a range of readout
powers for the two devices. For the measurements of D1, the nominal attenuation in the readout
chain was −65 dB.1 Thus, in terms of feedline power Pg, the two data sets are roughly aligned along
the x-axis at the lower end of readout powers that were measured in D1. A comparison of the
noise performances is provided in Table 8.1 and shows good consistency across the range of readout
powers at which both devices were studied.

1There was an additional −25 dB of attenuation on top of the intentional −40 dB for this particular data set
because of a faulty copper coax at the input to the device.
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(a) (b)

FIG. 11. The noise PSDs, in units of quasiparticle density fluctuations, after correlated noise removal as measured by the (a) dissi-
pation and (b) frequency readout quadratures. Note that the κ1(κ2) PSDs are multiplicative rescalings of the δ(1/Q)(δf/f ) PSDs. The
color indicates the RF power on the feedline of the device for each noise acquisition.

TLS noise, given by

J (f ) = JTLS(f ) + AwJw(f ) (B2)

= ATLSf n
∣∣∣∣

1
1 + 2jQr(f /fr)

∣∣∣∣
2

+ AwJw(f ), (B3)

where ATLS is the magnitude of the noise power from TLS,
n is the TLS frequency-dependence exponent, fr is the res-
onant frequency, and Qr is the total quality factor. The
white noise component Jw(f ) in the model is taken to be
the δf /f PSD for the lowest readout power and its con-
tribution to the overall noise power Aw is fixed by the P−1

g
scaling for white noise. The TLS contribution is modified
by the resonator’s response function (equivalently, a low-
pass filter) which rolls off at a frequency fr/(2Qr) [32]. In
the fit routine, we fix the value of 2Qr/fr for our resonator,
leaving ATLS and n the only free parameters. This clean-
ing and fit to the noise model is shown in Fig. 13 for the
largest readout power before the correlated κ1 − κ2 noise
arises. At this readout power, we find a frequency depen-
dence for the TLS contribution of n = −0.501 ± 0.007, in
good agreement with n = −0.5 as is typically expected for
TLS noise [32].

This process is repeated for all readout powers in the
region of interest. We find that for the two lowest read-
out powers, the best fit indicates TLS noise is not present,
opting for n = 0. For the highest three readout powers, the
optimizer selects frequency dependence in the range n =
0.51 − 0.55 with ±0.1 statistical uncertainty. The noise
power of the TLS component at 1 kHz is extracted as a
function of feedline power and fit to a power law. When
all PSDs in the readout power range specified above are
considered, the power law exponent is found to be 0.66 ±
0.05. However, when only the three highest readout powers
are considered (where f −1/2 dependence is observed), the

exponent becomes n = −0.519 ± 0.005, consistent with
the power scaling for TLS noise. This is shown in Fig. 12

The absence of this noise in the dissipation direction,
its frequency dependence, and dependence with readout
power (P−1/2

g ) indicate this is TLS noise. For comparison
to TLS noise as observed in different device architectures
and materials, see Ref. [32]. We conclude the noise in our
device is TLS-dominated at readout powers below those at
which the unknown correlated κ1 − κ2 noise arises.

FIG. 12. Dependence of the magnitude of TLS noise at f0 = 1
kHz as a function of readout power present on the device feed-
line Pg . The circles and squares are the fluctuation powers of the
frequency (δf /f ) and dissipation (δ(1/Q) readout quadratures,
respectively. The dashed and dotted lines indicate the best fit of
the these data to power laws. Note that only the three highest
readout powers are used in the fit shown, as those exhibit the
expected f −1/2 scaling of the TLS noise power when fitting the
PSD to the model in Eq. (B3).
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(a)

(b) Frequency (Hz)

Frequency (Hz)

FIG. 13. (a) The δf /f noise PSD for Pg = −91.5 dBm, the
highest readout power before the correlated κ1–κ2 noise arises,
is shown before cleaning with δ(1/Q) (green points) and after
cleaning (red points). These data are fit (black line) to a model
comprising a TLS-noise term (orange dashed line) and a white-
noise term (blue dashed line), for f > 100 Hz. Below this, a
slightly steeper frequency dependence in the noise power is
observed. (b) The fractional residual of the cleaned data to our
model in the 0.5–1 kHz region, indicated by the gray shaded
region in the upper panel.

1. GR noise

Determining the quasiparticle lifetime by way of the
noise PSD is not possible with our device. This is due to
noise from the first-stage amplifier at a power larger than
that of the GR noise. To infer the quasiparticle lifetime
from the PSD requires a resolvable shoulder in the PSD,
after which the GR noise dies out.

The power spectrum of GR noise, for the case of thermal
generation of quasiparticles only (i.e., no optical or phonon
loading) can be expressed in units of quasiparticle density
fluctuations [34] as

S(ω) = 1/(�V)

1 + (ωτqp)2 , (B4)

where V is the resonator volume, � is the quasiparti-
cle recombination constant, and τqp is the quasiparticle
lifetime. In these units, the GR noise power is inversely
proportional to resonator volume. The device under test
has a relatively large inductor volume, which makes the
GR noise power very small. For low frequency (<10 Hz),
the GR noise in our device is white with a power of approx-
imately 10−5 (µm−3)2/Hz, falling quickly off above a few
10 s of Hz. The observed noise power in units of quasipar-
ticle density fluctuations is at the 10−3 (µm−3)2/Hz level
for frequencies below 100 Hz (see Fig. 11 for the observed
noise PSDs in units of quasiparticle density for compar-
ison). However, this is due to the observed 1/f noise
that appears in both readout quadratures for the highest

readout powers. If not for this noise, and we were lim-
ited by amplifier white noise, we would approach 10−5

(µm−3)2/Hz. Further reduction in amplifier noise (for
instance, by using a parametric amplifier) would enable
resolving GR noise in our device, provided the κ1–κ2 noise
that rises steeply with decreasing frequency for high read-
out powers can be mitigated. GR noise has been observed
in lower-volume devices fabricated and studied by this
group for millimeter-wave astronomy [57].

2. Voltage dependence of noise PSDs

The noise PSDs shown in Fig. 4(a) display some scat-
ter with respect to LED voltage setpoint. However, they
do not exhibit a clear trend versus voltage. Their scatter
was investigated and it was found that fitting the lowest
frequency bin value of each PSD versus LED voltage to
a line resulted in a slope that was consistent with zero.
While we do not have a clear understanding of why this
scatter is present, it is unlikely to be due to long tails of
the pulse since the “pulse-free” region begins 95 ms after
the LED flash (and, consequently, the rising edge of the
pulse). These pulses return to baseline well before 20 ms
after the LED flash. Furthermore, the scatter in the noise
PSDs are inconsequential to our result. For this analysis we
chose our noise PSD that enters the optimal filter formal-
ism (J (fn)), for all LED voltage settings, to be that from the
2.0-V LED setting. If instead, we picked any other noise
PSD for the optimal filter, this would shift our resulting
resolution on energy deposited in the substrate by <2%,
about an order of magnitude smaller than other sources
of uncertainty (∼10%), discussed in the main text. Due to
the dependence on the baseline resolution from the choice
of noise realization, the resolution on quasiparticle density
and energy absorbed by the resonator both would shift by
<0.5%. As such, this would shift the phonon collection
efficiency also by <2%.

APPENDIX C: RESOLUTION MODEL

For a set of LED flashes with the same settings, the sub-
strate will absorb an average number of photons N̄ γ in each
flash, corresponding to an average energy deposition of
Ē = N̄ γ hν, where hν is the energy of an individual photon.
Due to the Poisson statistics of this process, the vari-
ance in the number of photons deposited in the substrate
is σ 2

Nγ
= N̄ γ , giving a fluctuation in number of photons

deposited of

σNγ =
√

N̄ γ , (C1)

which corresponds to fluctuations in deposited energy of

σE = hν

√
N̄ γ . (C2)
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(a) (b)

FIG. 11. The noise PSDs, in units of quasiparticle density fluctuations, after correlated noise removal as measured by the (a) dissi-
pation and (b) frequency readout quadratures. Note that the κ1(κ2) PSDs are multiplicative rescalings of the δ(1/Q)(δf/f ) PSDs. The
color indicates the RF power on the feedline of the device for each noise acquisition.

TLS noise, given by

J (f ) = JTLS(f ) + AwJw(f ) (B2)

= ATLSf n
∣∣∣∣

1
1 + 2jQr(f /fr)

∣∣∣∣
2

+ AwJw(f ), (B3)

where ATLS is the magnitude of the noise power from TLS,
n is the TLS frequency-dependence exponent, fr is the res-
onant frequency, and Qr is the total quality factor. The
white noise component Jw(f ) in the model is taken to be
the δf /f PSD for the lowest readout power and its con-
tribution to the overall noise power Aw is fixed by the P−1

g
scaling for white noise. The TLS contribution is modified
by the resonator’s response function (equivalently, a low-
pass filter) which rolls off at a frequency fr/(2Qr) [32]. In
the fit routine, we fix the value of 2Qr/fr for our resonator,
leaving ATLS and n the only free parameters. This clean-
ing and fit to the noise model is shown in Fig. 13 for the
largest readout power before the correlated κ1 − κ2 noise
arises. At this readout power, we find a frequency depen-
dence for the TLS contribution of n = −0.501 ± 0.007, in
good agreement with n = −0.5 as is typically expected for
TLS noise [32].

This process is repeated for all readout powers in the
region of interest. We find that for the two lowest read-
out powers, the best fit indicates TLS noise is not present,
opting for n = 0. For the highest three readout powers, the
optimizer selects frequency dependence in the range n =
0.51 − 0.55 with ±0.1 statistical uncertainty. The noise
power of the TLS component at 1 kHz is extracted as a
function of feedline power and fit to a power law. When
all PSDs in the readout power range specified above are
considered, the power law exponent is found to be 0.66 ±
0.05. However, when only the three highest readout powers
are considered (where f −1/2 dependence is observed), the

exponent becomes n = −0.519 ± 0.005, consistent with
the power scaling for TLS noise. This is shown in Fig. 12

The absence of this noise in the dissipation direction,
its frequency dependence, and dependence with readout
power (P−1/2

g ) indicate this is TLS noise. For comparison
to TLS noise as observed in different device architectures
and materials, see Ref. [32]. We conclude the noise in our
device is TLS-dominated at readout powers below those at
which the unknown correlated κ1 − κ2 noise arises.

FIG. 12. Dependence of the magnitude of TLS noise at f0 = 1
kHz as a function of readout power present on the device feed-
line Pg . The circles and squares are the fluctuation powers of the
frequency (δf /f ) and dissipation (δ(1/Q) readout quadratures,
respectively. The dashed and dotted lines indicate the best fit of
the these data to power laws. Note that only the three highest
readout powers are used in the fit shown, as those exhibit the
expected f −1/2 scaling of the TLS noise power when fitting the
PSD to the model in Eq. (B3).
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Figure 8.4: A collection of all published plots illustrating the TLS noise in the aluminum
resonators of OW200127. Left Column: OW200127 D1 TLS results from testing at Caltech.
Right Column: OW200127 D2 TLS results from testing at FNAL. Top Row: κ2 direction PSDs at
different readout powers. Middle Row: example of TLS noise + white noise PSD modeling. Bottom
Row: TLS noise level as a function of readout power.
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APPENDIX E: ELECTRICAL AND OPTICAL
WIRING DIAGRAMS

Figure 14 shows the in-refrigerator wiring diagram for
electrical and optical lines as well as a simplified schematic
of the warm electronics used for RF readout and LED con-
trol. Figure 15 shows a 3D rendering of the KIPM detector
in its enclosure and the relative positioning of the optical
fiber. In this setup, the optical photons impinge upon the
surface of the bare substrate opposite the inductor of the Al
resonator at the center of the chip, leaving only two narrow
slots (visible in Fig. 1) for reflected photons to enter the
side of the enclosure where the superconductor is exposed.

APPENDIX F: CONSTRAINING DIRECT
IMPACTS ON INDUCTOR

One may be concerned about the effect of photons
directly incident on the inductor rather than on the sub-
strate, as energy directly deposited in the inductor is
much more efficient at breaking Cooper pairs than energy
deposited in the substrate. Given our ηph of ∼1%, direct
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FIG. 14. Simplified wiring diagram for the device under test in
this work. RF connections are indicated by solid black lines while
optical fiber connections are indicated by solid blue lines. The in-
refrigerator components are thermally coupled to the temperature
stage inside which they appear. Note that only the nonzero atten-
uators at each temperature stage are shown. Both the input and
output lines are thermalized at each temperature stage with 0-
dB attenuators. The schematic of the warm electronics has been
vastly simplified. Components that are not shown include the
VNA, RF switch, and the DC power supply used to bias the
fiber-coupled LED that is modulated by the arbitrary waveform
generator (AWG).
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FIG. 15. The relative positioning of the optical fiber tip and
the inductor of the aluminum resonator. (a) A cross-sectional 3D
rendering of the KIPM detector chip, enclosure, and fiber con-
nection. Note the chip geometry has been vastly simplified to
only show the aluminum resonator’s inductor as a monolithic
layer. The thickness of this layer has been exaggerated for vis-
ibility. (b) A picture of the KIPM detector chip in its housing
(rear side is facing up) and the lid with the optical fiber penetra-
tion. (c) A picture of the KIPM detector installed in the NEXUS
dilution refrigerator showing both the RF input and output lines
as well as the optical fiber connection.

photon hits on the inductor produce a ∼100× larger sig-
nal than hits in the substrate, for the same total energy. For
direct photon impacts to be negligible in this calibration,
the efficiency for direct hits must be small compared with
ηph, or � 1%. Due to the geometry of the device, its enclo-
sure, and fiber position, this is a very inefficient process
(see Figs. 1 and 15), as motivated in the following.

For context, in our largest LED voltage setting (most
light produced), approximately 42 keV is deposited in
the chip through photons, of which the resonator collects
roughly 420 eV in phonons. A single direct photon impact
would impart 2.6 keV into the superconductor. Two direct
photon hits would correspond to an energy of roughly 1%
the amount deposited via phonons. The value of 42 keV
corresponds to roughly 1.6 × 104 photons, so to have an
order unity number of photons impinge directly on the
superconductor requires an efficiency at the 10−4 scale.

We constrain the contribution to our signal from pho-
tons directly incident on the inductor with two methods:
(1) investigating the rise time of our observed pulse shape;
and (2) a back-of-the-envelope estimate on intensity of
reflected light. We discuss these methods in the following.
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(a) (b)

FIG. 4. The average PSDs in the (a) frequency and (b) dissipation directions for the pulse-free region for each LED voltage. The
mean of these PSDs is shown in the black dashed line. The PSD from a dedicated noise acquisition before the LED data acquisition
is shown in blue. Only the frequency-direction readout is used for the energy resolution analysis. For a decomposition of these noise
spectra, a discussion of noise sources and the voltage dependence of the PSDs, see Appendix B.

the cleaned signal-free region, J (f ), is calculated for each
window, then averaged over the windows for each LED
setting. These average pulse-free PSDs, shown in Fig. 4,
are compared with the noise-only PSD to confirm no sig-
nal has leaked into the signal-free region and to each other
to confirm compatibility of the data. The observed noise
at this readout power is far from white and contains con-
tributions from TLS noise and 1/f noise that arises at the
highest readout powers (see Appendix B), which limits our
sensor’s energy resolution. Investigations into resonator
design optimization for mitigating the presence of TLS
sites and their impact on the overall noise are underway.
A discussion on the voltage dependence of the noise PSD
is presented in the same appendix.

The signal region of every pulse window surviving cuts
is baseline-subtracted and averaged to determine the pulse

shape, shown in Fig. 5. The average pulse from the largest
LED voltage defines the signal template. With the Fourier
transform of this template s̃(f ) and the average noise PSD
J (f ), the fractional baseline resolution σ0 is found using
Eq. (4) for both the phase and magnitude readout quadra-
tures. These are then scaled by the maximum amplitude of
the unnormalized time-domain signal templates in δf /f
and δ(1/Q) to obtain the resolution in changes of the res-
onator’s characteristics. The resolutions are converted into
resolution on changes in quasiparticle density, as measured
by the phase (frequency, κ2) and magnitude (dissipation,
κ1) readout quadratures, by way of Eq. (2). These results
are summarized for both calibration runs in Table I.

While the resolution calculated in this fashion carries
some uncertainty due to the relationship between a par-
ticular realization of noise and its PSD (see Appendix B

1×10–7(a) (b)

Time (ms) Frequency (Hz)

FIG. 5. The average pulse shape in the (a) time and (b) frequency domains for each LED voltage. Each pulse window begins at 0
ms and extends to 100 ms.
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Figure 8.5: LED pulses: setup and examples. Left: images of the LED mounting scheme with
the device box. The photons are deposited on the rear face of the detector. Right: examples of
phonon-mediated detection of LED photons with kinetic inductance detectors. The different LED
voltages correspond to different LED intensities and thus different pulse amplitudes. Each plotted
timestream is averaged over several hundred pulses. Figures reproduced from Temples et al. (2024).

Measuring phonon collection efficiency using LED illumination
Temples et al. (2024) reports two measurements of ηph: 0.66±0.1% and 0.89±0.11%, which

are compatible to within 1.7σ. ηph = Eabs/Edep is measured from separate calibrations of Eabs, the
energy absorbed by the phonon sensor, and Edep, the energy deposited in the substrate. The intrinsic
energy response is calibrated from δS21 to Eabs with Mattis-Bardeen theory. Edep is measured by
Poisson counting statistics as inferred from photon shot noise:

σ2 = σ2
0 + σ2

Poisson

= σ2
0 +

(
σNphotonsr

)2

= σ2
0 + Nphotonsr

2

= σ2
0 + µr (8.3)

where µ and σ are the mean and width of a histogram corresponding to a pulse height µ, σ0 is
the optimally filtered baseline energy resolution, and r is the responsivity of the detector, i.e., the
response of the detector in readout units per photon. r is used to convert photon number into
readout units: µ = Nphotonsr and σPoisson =

√
Nphotonsr as used in Equation 8.3. This technique for

inferring the photon number from Poissonian fluctuations was first demonstrated in Cardani et al.
(2018).

Setup and procedure for taking LED pulse data
The setup for depositing LED photons in the KIPM detector is shown in Figure 8.5. 2.6 eV

photons are deposited on the rear face of the detector. 2.6 eV is greater than the bandgap of silicon
(1.11 eV) and so is sufficient to excite electrons into the conduction band, eventually creating phonons
as the electron-hole pairs recombine.

The 2.6 eV photons were routed from a room-temperature fiber-coupled LED that was
controlled by an arbitrary waveform generator. The voltage level on the arbitrary waveform
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generator controlled the LED intensity, which set the number of photons that reached the detector.
Different LED voltages yielded different pulse heights, as shown in Figure 8.5 Right. The timestreams
in Figure 8.5 Right were averaged over several hundred pulses. Averaging was facilitated by the
synchronization of the arbitrary waveform generator with the USRP: the USRP generates a single
pulse per second (PPS) from its internal clock and initiates readout commands in sync with this
PPS signal, so this signal was also used to trigger the arbitrary waveform generator. More details
can be found in Temples et al. (2024).

An optical fiber coupled the LED photons to the detector. The fiber was thermalized at
multiple temperature stages below 50 K and interrupted with a KG3 infrared filter at 100 mK to
mitigate undesired blackbody photon radiation.

The LED was pulsed at 5 Hz for 200 seconds with 2 µs pulse width. The narrow pulse
width ensured that the timescale of phonon production by the incident photons was much less than
any timescale of the resonator.2 Since the observed pulse fall times were about 6 ms, 5 Hz pulse
repetition rate (200 ms between pulses) was deemed sufficient for the pulse to fully decay and recover
to baseline before the next pulse began. The most essential part of the procedure is the repeated
measurement of the detector response at many different LED intensities so that the photon number
can be inferred from increasing pulse height fluctuations for larger pulse heights.

The readout of the KIPM detector was performed synchronously with the pulsing of the
LED, as described above. In this experiment, regular checks of the LED-off timestreams were also
performed so that calibration to the resonator basis was ensured. This calibration is described in
Section 7.8. Lastly, since the RF readout was performed with an Ettus USRP, which has shown
prominent phase noise above other noise sources (see Section 7.6), off-resonance tones were necessary
to remove the correlated 1/f electronics noise. Importantly, cleaning coefficients must be computed
with LED-off data and then applied to the LED-on data.

We now provide an analysis procedure for computing the number of photons deposited in
the detector using the above LED-pulsing technique. This procedure references the LED-off data
and cleaning tones that are mentioned above.

Procedure for cleaning and analyzing pulse data
1. Compute the cleaning coefficients from the LED-off data in the electronics basis, i.e., the

radius and arc length directions. Confirm that the cleaning algorithm works by examining
pre- and post-cleaning PSDs and cross-tone coherences (defined in Section 7.6) of the various
tones, as was done in Section 7.6.

2. Clean the pulse data by using the cleaning coefficients computed in the previous step. It
may be necessary to compute and subtract the quiescent point of the pulses first so that the
cleaning tones and the to-be-cleaned tones are both centered around zero baseline. Confirm
that the cleaning algorithm works by examining pre- and post-cleaning PSDs and cross-tone
coherences of the non-pulse regions.

3. Average the pulses together. If the LED is synchronized with the S21 readout, leverage the
fact that the pulse positions are known in time to perform the averaging.

4. Convert the complex S21 pulse shapes into some units that are linear with LED energy, such
as δfr/fr, δ(1/Qi), δnqp, or Eabs.

5. Build amplitude histograms for each pulse height.
a) Compute s̃(f) from the largest energy, averaged pulse.
b) Compute J(f) from regions of the timestream in between pulses. Confirm the stability

of J(f) for each data set; J(f) should not change between different pulse amplitudes.
2The shortest such timescale is the resonator ring-up time, given by Qr/πfr ≈ 19 µs.
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Select a J(f) that is representative of the typical J(f), such as the median. The mean
may suffer from distortion by outliers.

c) Compute the optimally filtered baseline resolution:

σ0 =
√√√√√ 1∑

fn

T |s̃(fn))|2
J(fn)

. (8.4)

d) Apply the optimal filter to each pulse in the timestream to estimate the pulse’s amplitude:

A =

∑
fn

s̃∗(fn))ṽ(fn)
J(fn)∑

fn

|s̃(fn))|2
J(fn)

, (8.5)

and populate histograms with A.
e) Fit for the the mean µ and variance σ2 of each histogram.

6. Fit the σ2 vs. µ data with Equation 8.3 to measure the shot noise of the photons and infer the
number of photons arriving at the detector.

Figure 8.6 Top shows the result of step 5 of this procedure. The data show good agreement
with the Gaussian distribution fits, as indicated by the residuals plot and the χ2 plot of Figure 8.6
Top. Figure 8.6 Bottom shows the results of step 6, which includes a fit of Equation 8.3. The legend
shows the main result of the fit: the baseline energy of the detector σE = 318.3± 28.3 eV, which can
be computed from σ0/r × 2.6 eV. For the measurement shown in Figure 8.6, σEabs = 2.1± 0.2 eV.

Once calibration to the total photon energy is performed, calculation of the phonon collection
efficiency is now possible: ηph = Eabs/Edep = σEabs/σE . As stated at the beginning of the section,
Temples et al. (2024) reports two measurements of ηph: 0.66±0.1% and 0.89±0.11%.

Discussion
Since the phonon collection decreased from the 1.1%±0.25% that was measured for a single

resonator in DMLE2, the hypothesis that the niobium would be inert to phonons in the substrate
was incorrect. There are two mechanisms to consider. First, niobium may more efficiently than
expected down-convert the incident phonon energy into sub-2∆Al phonons due to the shedding
of phonons by quasiparticles. Second, phonons may stay in the niobium too long and effectively
become trapped. However, it is notable that the size of the resonator has decreased and the size
of the dead volume (now considering Nb as dead volume) has increased enormously relative to
DMLE2; the phonon collection efficiency has not scaled simply with (live metal) / (dead metal).
This fact means that the niobium dead metal is likely less susceptible to phonon down conversion
than the aluminum dead metal of DMLE2, but the sheer volume of niobium countered any gains
from replacement of dead aluminum by Nb or the niobium-aluminum bilayer.
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TABLE I. The baseline resolution estimates, Eq. (4), from ded-
icated noise acquisitions taken during each of the calibration
runs. The average pulse with largest amplitude is used as the sig-
nal template. In the phase and magnitude readout quadratures, σ0
is reported as a fraction of the amplitude of the average pulse.
The resolutions are also reported in terms of fractional shifts
in resonator characteristics (σ df /f

0 , σ
1/Q
0 ) and as fluctuations in

quasiparticle density (σκ2
0 , σ

κ1
0 ) in per cubic micrometer (µm−3).

Date Feb 15, 2023 Jul 13, 2023

σ0 (phase) 7.8 × 10−3 9.8 × 10−3

σ0 (mag.) 3.2 × 10−2 4.0 × 10−2

σ
df /f
0 3.6 × 10−9 5.2 × 10−9

σ
1/Q
0 7.4 × 10−9 1.1 × 10−8

σ
κ2
0 [µm−3] 0.48 0.70

σ
κ1
0 [µm−3] 0.86 1.24

of Ref. [41]), we report no baseline resolution uncertainty
for two reasons: (1) this uncertainty amounts to <1% and
thus the dominant uncertainty on resolution in quasiparti-
cle density (from which the resolution on energy absorbed
by the sensor σ abs

E is calculated) arises from the calculation
of κ1,2(T) due to differences between the physical device
temperature and the effective temperature of the Cooper
pairs, amounting to a relative uncertainty of roughly 9%
as discussed in Appendix D; and (2) the values in Table I
are not used to determine the device energy resolutions and
serve only as a point of reference.

Resolution in quasiparticle density fluctuations, as mea-
sured in the κ1 or κ2 direction σ

κ1,2
0 , can be translated

into a resolution on energy absorbed by the sensor: σ abs
E =

�σ
κi
0 V, where � is the superconducting gap energy and V

is the volume of the superconductor in which the Cooper
pairs are broken. However, determination of the resolution
on energy deposited in the substrate requires knowledge of
ηph, provided by the LED calibration procedure described
previously. For a single-pulse window, the best estimator
for the pulse amplitude A is

Â =
∑N

2 −1

n=− N
2

s̃∗nvn
J (fn)

∑N
2 −1

n=− N
2

|s̃n|2
J (fn)

, (5)

where n is an index of frequency bins and vn is the Fourier
transform of the signal-region timestream for each pulse
window [40,41]. In our case, we choose the frequency-
domain signal template s̃n to be the average pulse from the
largest LED bias voltage, the complex conjugate of which
is s̃∗

n. The estimator Â is calculated for the signal region
of each pulse window, and their distribution for each LED
voltage is shown in Fig. 6.

The distribution of pulse amplitudes for a given volt-
age in our readout units, assuming a detector response
linear with deposited energy, has a mean μ = RĒabs =

FIG. 6. Results of the LED calibration: distributions of pulse
amplitude estimators for each LED voltage, overlaid with Gaus-
sian fits. The colors represent the LED bias voltage, as in
Fig. 5. Fit residuals and reduced χ2 values are shown in the
panels below. The amplitude values have been normalized to
the amplitude of the average pulse in fractional frequency shift
for the largest LED voltage. The upper horizontal axis is the
reconstructed energy using the results of this calibration.

RηphĒ = RηphhνN̄ γ where R is the responsivity in read-
out units per unit energy absorbed by the sensor, hν = 2.6
eV is the energy of a single photon, and Ē (N̄ γ ) is the
average energy (number of photons) deposited in a sin-
gle flash. The width σ of each distribution is assumed to
have contributions from two independent fluctuations: the
intrinsic device noise σ0 and the Poissonian fluctuation in
the number of photons delivered per LED flash σLED:

σ 2 = σ 2
0 + σ 2

LED, (6)

where these various σ all have the same units as the
readout timestream. As dictated by Poisson statistics, the
variance in number of photons delivered is σ 2

Nγ
= N̄ γ ,

which implies (see Appendix C for the derivation) the
variance in pulse amplitudes is

σ 2
LED = (

Rηphhν
)2 N̄ γ . (7)

Using this expression, where N̄ γ has been substituted using
the expression for the distribution mean μ, Eq. (6) becomes

σ 2 = σ 2
0 + r · μ, (8)

where r = Rηphhν is the responsivity per photon (i.e., car-
ries the same units as readout). The μ and σ are found
for the pulse amplitude distribution at each LED bias set-
point (shown in Fig. 6) from unbinned Gaussian fits and
are fit to the above equation to determine r and σ0, the
results of which are given in Table II and Fig. 7. These
carry units of fraction of largest average pulse amplitude
in δf /f (Fig. 5). The uncertainty on the width of each
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FIG. 7. Results of the LED calibration: variance (σ 2) versus
mean (μ) of the Gaussian fits to distribution of pulse amplitude
estimators for each LED voltage (shown in Fig. 6), demonstrat-
ing their linear relation. The marker colors indicate LED voltage,
as in Fig. 5. The fit to the two-component resolution model is
shown in blue, whereas the baseline resolution determined from
noise traces and a signal template is indicated by the gray line.
Fractional residuals of the data to the fit are shown in the lower
panel. The values have been normalized to the amplitude of
the average pulse for the largest LED voltage. The error bars
represent the total of statistical and systematic errors, the latter
estimated from the variance in distribution widths from noise-
only acquisitions. The upper horizontal axis is the reconstructed
energy using the results of this calibration.

pulse amplitude distribution is the quadrature sum of the
statistical errors returned by the fitting routine and our
systematic uncertainty. The latter is estimated from the
variance in pulse amplitude estimator distribution widths
from the signal-free region of each pulse window. This
uncertainty arises from drifts in the noise PSD, and is later
combined with other sources of systematic uncertainty
discussed throughout the text. Note that the baseline reso-
lution inferred from this method and the baseline resolution
measured from the signal template and noise timestreams
alone are consistent to 1.3σ .

The resolution on energy deposited in the substrate is
given by the ratio of the baseline resolution in readout units
to the responsivity per unit energy: σE = σ0/(r/hν). For
the February calibration, we determine σE = 318 ± 29 eV.
Following the same prescription for determining the res-
olution on quasiparticle fluctuations as before, we find
σ

κ2
qp = 0.47 ± 0.04 µm−3, from which we infer the res-

olution on energy absorbed by the superconductor to be
σ abs

E = σ
κ2
qp V� = 2.1 eV ± 0.2, using V = 2.4 × 104 µm3

for the Al inductor. The phonon collection efficiency ηph is
determined from Eq. (3): ηph = σ abs

E /σE = (0.66 ± 0.1)%
for Nr = 1 resonators read out. These values, along with
the device responsivity R in fractional frequency shift per
unit energy deposited in the substrate, are presented for
the two calibration runs in Table II. The deposited energy
scale can be reconstructed using R and ηph, and is given
by the upper horizontal axis in Figs. 6 and 7. With this

TABLE II. Results of the energy resolution measurement for
both calibration runs. The fit parameters r and σ0 are given
as a fraction of the largest average pulse amplitude in δf/f.
The responsivity per unit energy absorbed by the sensor R =
(r/hν)/ηph is given in per electronvolt (eV−1) and represents the
fractional change in resonant frequency (δf/f) per electronvolt
of phonon energy absorbed by the sensor. The responsivity per
unit energy deposited in the substrate is the product of R and the
phonon collection efficiency. The sensor and device energy reso-
lutions and phonon collection efficiency from each calibration are
also presented. The rightmost column indicates the compatibility
between the two calibration results as a fraction of the combined
uncertainty.

February 15, 2023 July 13, 2023

r (6.2 ± 0.5) × 10−5 (7.3 ± 0.6) × 10−5 1.4σ

σ0 (7.5 ± 0.2) × 10−3 (8.8 ± 0.1) × 10−3 2.4σ

R [(δf /f )/eV] (1.7 ± 0.2) × 10−9 (1.7 ± 0.3) × 10−9 . . .

σ abs
E [eV] 2.1 ± 0.2 2.8 ± 0.3 1.9σ

σE [eV] 318 ± 29 315 ± 29 0.08σ

ηph[%] 0.66 ± 0.1 0.89 ± 0.11 1.7σ

reconstructed energy scale, we find the average energy
deposited in the substrate with each pulse at the largest
VLED to be 42 keV, corresponding to a mean of 1.6 × 104

photons absorbed by the substrate per pulse.

VI. QUASIPARTICLE LIFETIME MEASUREMENT

The observed pulses have ms-scale lifetimes, as shown
in Fig. 5. The importance of pulse lifetime can be inferred
from the construction of the optimal filter estimate for
energy resolution, Eq. (4): as the pulse lifetime increases,
the signal template roll-off moves to lower frequency, shift-
ing the signal weights in the sum for the resolution Eq. (4)
from higher frequencies to lower frequencies. This effect
holds so long as the noise dependence with frequency is
shallower than f −1, though gains in resolution are highest
when the noise is white. If one considers the case for white
amplifier noise and a signal template given by a single
falling exponential with time constant τ , one determines
the energy resolution scales as τ−1/2, as shown in Ref. [47].
If, instead, the noise is TLS-like (f −1/2) rather than white,
the energy resolution scales as τ−1/4. In both cases, longer
pulse lifetimes lead to improved resolution, though TLS
noise limits this gain. It is thus instructive for device design
to understand the signal time constants at play, as well as
the sources of noise, to optimize energy resolution.

One contribution to the pulse lifetime is the quasiparti-
cle lifetime τqp, which depends on the device temperature.
The quasiparticle lifetime can be determined by the roll-
off in the noise PSD in the case the noise is dominated
by GR noise [39]. This is not the case for the system
under test in this work [51], but τqp can be estimated
from pulse data by fitting pulses taken at varying tem-
perature to a pulse shape model. However, this approach
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Figure 8.6: LED pulse histograms and σ2 versus µ for photon energy calibration. Top:
pulse height histograms for different LED intensities. The data are fit to Gaussian distributions
shown in gray, and the residuals and χ2 values of these fits are shown. Bottom: σ2 versus µ for the
different LED intensity pulse histograms and the fit for Equation 8.3 shown in blue. The fractional
residuals of this fit are also shown.
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Figure 8.7: B240103 device design. The darker beige is niobium, and the lighter beige is
aluminum. The device is 2.2 cm by 2.2 cm.

8.4 B240103, a single resonator device with reduced dead
metal

Design considerations
OW200127 showed percent-level phonon collection efficiency despite all dead metal being

replaced with niobium. It was hypothesized that the niobium on the chip could still prevent
detectable phonon energy from reaching the aluminum. To test this hypothesis, our next device
iteration (termed “B240103”) vastly reduced the amount of Nb. The additional Nb pulsing resonators
were eliminated. This change also allowed the feedline to be shortened because it only needs to
serve one resonator. Furthermore, the thickness of the niobium decreased from 300 nm to 70 nm.
The niobium thickness was not further reduced out of concern for elevated kinetic inductance, which
could lead to feedline impedance mismatches and thus transmission non-idealities. Furthermore,
previous experience from Cornell (2018) had indicated that the fabrication yield of 30 nm niobium
feedlines was poor. The volume of niobium thus decreased from 8,570,000 µm3 to 530,000 µm3.

We also changed the resonant frequency of the Al KID from 4 to 5 GHz to better match the
high-gain, low-TN band of kinetic inductance traveling wave parametric amplifiers; see Figure 4 of
Faramarzi et al. (2024) and the discussion in Section 7.9. To increase the resonant frequency, the
inductor height was changed from 720 µm to 420 µm.

Experimental setup
The Cahill B101 Oxford Kelvinox 25 at Caltech possessed an LED calibration setup similar

to the one in NEXUS at Fermilab; see Figure 8.8. The fiber running from 300 K to 4 K has connector
breaks at two places, coinciding with two of the blackbody blocker disks in the dilution refrigerator
access tube. The connector breaks were put in to prevent blackbody radiation from leaking through
the holes through which the fiber passes.3 There is a fiber break at the 4 K stage to allow the optical
path to pass through an IR filter. The wavelength of the LED is 475 nm, which corresponds to
2.6 eV. As stated previously, this energy is well above the silicon bandgap, so these photons are
efficiently absorbed in silicon (aside from the 30% interface reflectance due to index mismatch).

3Two other blocker disks do just have pass-through holes for the fiber.
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Page 2 – Revised 08/2020 

          300K down to 4K: 
 

 
 

  

300K vacuum flange (coax) 

300K vacuum flange (fiber) 

Blackbody disk blockers + 
coax/fiber support bracing 

Fiber mounting at 4K  Coax mounting at 4K  

Figure 8.8: Optical fiber and coax cable setup from 300 K to 4 K in the Cahill B101
Oxford Kelvinox 25 from July 2021 installation. Left: schematic of six coax cables and one
optical fiber routed from room temperature to the 4 K stage, with photos for certain components
along the chain. Right: legend that depicts the breakdown of the optical fiber and coax components.

The same noise cleaning and pulsing procedure described in the previous section for the
NEXUS measurement was also used for this measurement. Since the time constants of the pulses
were much shorter (almost two orders of magnitude!), a faster pulse repetition rate was used for the
B240103 measurement at Caltech: 100 Hz instead of 5 Hz as was used at NEXUS.

The coax readout chain includes three stages of intentional attenuation: 20 dB@4 K–10 dB@1 K–
10 dB@100 mK, in accord with the noise calculation from Section 7.4. We used HEMT 266D, the
details for which are provided in Siegel (2016). An unfortunate flaw in the Kelvinox 25 RF readout
chain for this particular measurement was that the cables between 300 K and 4 K included 43”
coaxes with stainless steel center conductors, adding an unnecessary ∼10 dB additional loss after
the HEMT (and on the input side). A beryllium-copper center conductor would have been a better
choice.4

4Stainless steel shields for such long cryogenic cables are usually fine because of the larger cross-sectional area.
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Figure 8.9: LED pulses in B240103. Left: B240103 averaged pulse shapes S21(t; fr) with the
S21(f) resonator VNA response and δfr/fr–βt coordinates overlaid. The pulse first rises on the
curve of higher βt then falls along the curve of lower βt. The rise of the pulse does not follow the
expected trajectory of fixed βt because the rise occurs during the resonator ring-up time. Right:
B240103 averaged pulse timestreams.

RF readout was performed with an Ettus X310 USRP. The data-taking procedure was nearly
identical to that used for OW200127 in NEXUS (see Section 8.3).

Pulse shapes
The response to 1 µs LED pulses is shown in Figure 8.9. Each orange curve is composed of

4000 pulses averaged together. In the complex S21 plot on the left, the pulses have been overlaid on
the δfr/fr–βt coordinate system and converted into δfr/fr units following Equation 6.41. Pulses in
δfr/fr are then converted into absorbed energy Eabs, using the multiplicative factor Vind∆/αγκ2.

The use of the nonlinear pulse model for extracting δfr/fr was critical for the range of
photon energies that was used in this analysis. Figure 8.9 Left shows how discrepant the pulses are
from the linear approximation: for the largest energy pulse in this data set, the nonlinear model
finds a δfr/fr value of 9× 10−6 whereas the linear model would yield a value closer to 6× 10−6.

In addition, it is visible that the pulse shapes on the falling edge tend to follow a constant
βt, which means that the ratio between the instantaneous δfr/fr and δ(1/Qi) is roughly constant
over the course of the pulse. The edge, which follows a higher value of βt and then transitions to
the nominal value, should be ignored in this plot because the resonator response is modified during
the resonator ring-up time.

The pulse fall times in Figure 8.9 Right are much shorter than the ms fall times observed in
the OW200127 device at NEXUS, shown in Figure 8.5 Right. It is believed that the colder dilution
refrigerator (∼10 mK versus ∼100 mK) and more stringent blackbody and RF shielding, both in
free space and along the coaxial cable, contribute to the higher lifetime in NEXUS.

Building an optimal filter for energy reconstruction
There are two main components to the optimal filter: the signal template and the noise

PSD. The peak-normalized signal templates are shown in Figure 8.10 Top Left. The inset of the
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Figure 8.10: B240103 optimal filter components. Top Left: peak normalized pulses s(t) with an
inset to illustrate the different fall times for the different pulse heights. Right: squared magnitudes
of the Fourier transform |s̃(f)|2 with an inset to illustrate the different levels of low frequency
amplitudes, a consequence of the different fall times. Bottom Left: noise power spectral density
J(f) for timestreams converted to units of Eabs in eV.

plot illustrates how the pulses corresponding to the largest energy depositions (blue, orange, green,
etc.) are the pulses with the fastest fall times. All fall times are around 40 µs.

The Fourier coefficients |s̃(f)|2 of these pulses are shown in Figure 8.10 Right. As was done
in the time domain, the inset at low frequencies illustrates the longer pulse fall times for the higher
energy pulses. The difference in |s̃(f)|2 motivates the use of different signal templates for each
pulse height. If, say, only the signal template derived from the largest energy pulse is used for
amplitude estimation of the smaller energy pulses, then the OF algorithm tends to progressively
overestimate the pulse heights as the fall times increase for progressively smaller pulse heights. The
overestimation occurs because the individual pulse instances ṽ(fn) for smaller pulses exhibit larger
Fourier coefficients at low frequencies than those of the high energy template.

The noise on the pulse template at high frequencies is significant for the lower energy pulses,
so, at high frequencies, we only use the highest energy pulse for all signal templates. The high
frequency s̃(fn) from the highest energy pulse has been stitched together with the low frequency
information for each pulse. The highest energy pulse has the best signal-to-noise ratio at higher
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frequencies, and the signal shape is not expected to be different at these higher frequencies, which
corresponds to the rise time of the pulse.

The noise PSDs J(fn) demonstrate good stability over the course of the data-taking as seen
in Figure 8.10 Bottom Left. The noise is white due to the much worse Qr that was observed for
this resonator, increasing the relative contribution of amplifier noise compared to OW200127, the
noise of which was dominated by TLS noise. An arbitrary PSD is chosen for the construction of the
optimal filter, shown in black.

Energy histograms and resolution modeling
In this data set, there are 16 different pulse amplitudes. At each pulse amplitude, 4000

pulses are used to populate a histogram. The histograms display visible broadening with energy in
Figure 8.11 Top. There are three expected causes.
• Different OF baseline resolutions as a result of the different pulse fall times and consequent

signal templates. We express the energy dependence of the baseline resolution as σ0(Eabs). We
use a linear model to describe σ0(Eabs); see purple line in Figure 8.11 Bottom.

• The reduction of the S21 response to δfr/fr for larger δfr/fr. The resolution degradation takes
the following form from Chapter 6:

σδfr/fr,0 =
∣∣∣∣∣1 + Qr,0

δfr

fr,0

( 1
βt
− 2i

)∣∣∣∣∣
2

σδfr/fr,0

∣∣∣
fr=fr,0

. (6.45 revisited)

Conversion to absorbed energy units produces the following:

σ∗
Eabs(Eabs) =

∣∣∣∣∣1 + Qr,0
δfr

fr,0
(Eabs)

( 1
βt
− 2i

)∣∣∣∣∣
2

σ0(Eabs). (8.6)

σ∗
Eabs

is the energy resolution to a monochromatic energy deposition. The term in | · |2 is shown
in brown in Figure 8.11 Bottom. The entire expression is shown in red. A time-averaged value
of βt is used since βt is roughly constant over the fall time of the pulses, as shown in Figure 8.9
Left.

• Photon shot noise results in different amounts of deposited energy for each pulse (LED pulses
are not monochromatic) and is added in quadrature:

σEabs(Eabs) =
√

σ∗2
Eabs

(Eabs) + Eabsηph. (8.7)

Note that, when we work in units of absorbed energy, the responsivity factor r from Equation 8.3
is equal to ηph, i.e., ηph converts the deposited energy into the absorbed energy.

The baseline energy resolution σEabs(0) = σ0(0) is 23 eV. It is extracted from the y-intercept
of the energy-dependent OF resolutions. The resolution is worse for B240103 than for OW200127
as a result of the lower quality factor and shorter pulse lifetime.

We fit σEabs versus Eabs to Equation 8.7 with one free parameter, ηph. The error bars from
Figure 8.11 Bottom are constructed from statistical uncertainties: simply the measured σEabs of the
histogram divided by

√
4000. To estimate the goodness of fit, we compare the χ2 of the best fit

model to the χ2 distribution for 15 degrees of freedom (the number of data points less the single fit
parameter). The computed χ2 is greater than 98.6% of χ2 values.

The final reported collection efficiency is 2.7%±0.63%. The uncertainty was calculated by
finding the collection efficiencies that would increase χ2 by 1 from its best-fit value. Because the
poor goodness-of-fit calls into question the validity of estimating the uncertainty in this way, one
should only think of it as giving a general sense of the uncertainty. The curve for ηph = 30% is
shown for comparison.
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Figure 8.11: B240103 pulse histograms and resolution modeling. Top: histograms of the
LED pulses in B240103 in both linear and logarithmic y-axes along with fits to each histogram in
grey. Bottom: σEabs versus the mean pulse height as extracted from each histogram. The energy-
dependent OF baseline σEabs is also plotted; the dependence arises from the different low-frequency,
long-time behavior of the different energy pulses. The plotted curves are the different contributions
to the total energy-dependent resolution and various combinations thereof: the changing baseline
resolution, the resolution degradation due to the nonlinearity of the pulse, and photon shot noise.
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Figure 8.12: Three KIPM detector designs used to build a model for ηph.

8.5 Phonon collection efficiency modeling
In this section, we attempt to build a model to describe the phonon collection efficiencies of

three different KIPM detectors for which ηph has been measured. They are shown in Figure 8.12.
The design of OW200127 attempted to boost the phonon collection efficiency by fashioning all dead
metal out of higher-gap material, including the capacitor of the sensing resonator. The collection
efficiency, averaged over the two measurements, was 0.78%±0.07%. B240103 removed most of the
niobium by having a thinner niobium feedline and no auxiliary resonators and not including a
niobium capping layer on the capacitor. The collection efficiency using the nonlinear pulse shape
function was measured to be 2.7%±0.63%.

For DMLE2, the phonon collection efficiency of all 20 resonators was 7.0%±1.1%. In order
to put this device on the same footing as OW200127 and B240103, only one resonator is examined.
What this means is a scaling of the collection efficiency to just the closest resonator to a particular
event. Using the nearest resonator is appropriate because, in the OW200127 and B240103 tests,
the photons were deposited in the detector right under the single resonator. Using the plots from
Figures 1 and 2 from Moore et al. (2012), we estimate that the closest resonator to the event
absorbs approximately 1/7 of the total KID-absorbed energy. The estimate of the phonon collection
efficiency of just a single resonator is 1.4%±0.25%, the error bar for which comes from taking the
error bar of the 20-resonator collection efficiency and dividing by

√
20.

These three detectors are particularly useful for building such a model because their mounting
schemes are the same and because the film thicknesses are almost the same: 25 nm for DMLE2 and
30 nm for the other two.

Pair-breaking efficiency ηpb
In this model, an initial event’s energy is fully converted into phonon energy E. The

pair-breaking efficiency ηpb, also known as the quasiparticle generation efficiency, puts an upper
limit on the fraction of E that is detectable. This factor comes into play during any pair-breaking
event, be it from phonons or photons, and is due to the fact that quasiparticles shed phonons until
they approach the gap energy.

We estimate that ηpb ranges from 0.32 to 0.6. The lower bound comes from a measurement
of a 40 nm thick aluminum KID used to detect single 25 µm photons; see Day et al. (2024). These
photons were 12.1 THz (50 meV), approximately a factor of 10 higher in frequency and energy
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Volume-scaling model inputs
VAl (µm3) Vind (µm3) ηph

ηpb
ηph

Vind − VAl (µm3) VNb (µm3)
DMLE2 800,000 505,000 7.0% ± 1.1% 6,420,000 0

DMLE2, one
resonator 800,000 25,300 1.1%±0.25% 266,000 0

OW200127 21,000 21,000 0.78%±0.07% 2,690,000 1,230,000
B240103 21,900 11,900 2.7%±0.63% 685,000 180,000

Table 8.2: Volume-scaling model inputs.

than the ∼1 THz phonons (4 meV) that are absorbed by KIDs in a phonon-mediated detector
(see Section 3.2). Lower energy pair-breaking events are expected to more efficiently generate
quasiparticles, so the lower bound is set by this measurement even though the 40 nm film is thicker
than the films under study in this model.5

The upper bound of 0.6 comes from Guruswamy et al. (2014) and is expected to be reached
for low energy pair-breaking events. Figure 7 in Guruswamy et al. (2014) estimates ηpb → 0.6 for
3.6 meV (740 GHz) pair-breaking quanta in the thick film limit. With the Guruswamy et al. (2014)
framework, the pair-breaking efficiency in our thin 25 nm to 30 nm aluminum films must be less
than 0.6. For the sake of model building, we focus on a benchmark value of ηpb = 0.46, the average
of the upper and lower bounds.

A volume-scaling model
We now model how the ηpbE of collectable phonon energy is absorbed in three places: the

aluminum, the niobium, or the mounting. By conservation of energy, we write

ηpbE = ξAlVAl + ξNbVNb + Eloss (8.8)

where ξ is the efficiency with which either the aluminum or the niobium absorbs the collectable
phonon energy. Eloss encompasses loss to the mounting or phonon down-conversion at the bare
polished surfaces, the bare diced surfaces, and the surface-mount interface. Down-conversion at
bare polished surfaces is expected to be subdominant.

We define the phonon collection efficiency as

ηph = ξAlVind
E

. (8.9)

We care about how much of the initial energy is collected in the inductor. We assume that all of the
energy collected in the aluminum is then down-converted and thereafter rendered uncollectible, i.e.,
phonon recycling from quasiparticle recombination is not taken into account.

Combining Equation 8.8 and 8.9,

E = ξAlVind
ηph

ξAlVAl + ξNbVNb + Eloss
ηpb

= ξAlVind
ηph

5Thicker films are expected to have higher ηpb because the time for phonons to escape the film is longer than for a
thinner film.
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Figure 8.13: ηph volume-scaling modeling. Left: the results of fitting Equation 8.10 with the
three available data points. Right: re-expression of the fit results in terms of measured ηph versus
modeled ηph.

ξNb
ξAl

VNb + Eloss
ξAl

= ηpb
ηph

Vind − VAl. (8.10)

We now build a linear model where ξNb/ξAl is the slope and Eloss/ξAl is the y-intercept. ξNb/ξAl is
the relative efficiency with which niobium and aluminum absorb phonon energy, and Eloss/ξAl is
the equivalent amount of dead aluminum that Eloss mimics.

The relevant inputs into the model are shown in Table 8.2, including material volume,
collection efficiency, and the right-hand side of Equation 8.10. ηph/Vind may be interpreted as
the efficiency per unit volume of the phonon sensor. This expression dominates the value for
(ηpb/ηph)Vind − VAl. The average DMLE2 resonator is less efficient per unit volume than the
B240103 resonator, likely due to position dependence; resonators that are far from the event are
less efficient at collecting the event’s energy. The “one resonator” data is derived from the closest
resonator to the event and shows a more comparable efficiency per unit volume.

The fit of the model to the data is shown in Figure 8.13 Left. The discrepancy between the
“DMLE2, all resonators” point and the other two points in the model motivated the investigation
of the phonon collection efficiency for a single resonator of DMLE2. The fitted model parameters
show that (1) niobium is about 1/8 as efficient in absorbing and down-converting phonons per unit
volume than aluminum and (2) the generic Eloss is effectively 118,000 µm3 of dead aluminum, which
is 5 to 10 times larger than the phonon-absorbing inductors with volume Vind.

The fit parameters ξNb/ξAl and Eloss/ξAl (and by combination ξNb/Eloss) can be used to
calculate ηph, ηdAl, ηNb, and ηloss, which are the absorption efficiencies in the phonon sensor, the
dead aluminum, the niobium, and the unknown losses, for each device.

ηph = ξAlVind
N

= ξAlVind
ξAlVAl + ξNbVNb + Eloss

= Vind
VAl + (ξNb/ξAl)VNb + Eloss/ξAl

(8.11)

ηdAl = ξAl(VAl − Vind)
N

= ξAl(VAl − Vind)
ξAlVAl + ξNbVNb + Eloss

= VAl − Vind
VAl + (ξNb/ξAl)VNb + Eloss/ξAl

(8.12)

ηNb = ξNbVNb
N

= ξNbVNb
ξAlVAl + ξNbVNb + Eloss

= VNb
(ξAl/ξNb)VAl + VNb + (Eloss/ξAl)(ξAl/ξNb)

(8.13)
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Figure 8.14: Pie charts of phonon losses.

ηloss = Eloss
N

= Eloss
ξAlVAl + ξNbVNb + Eloss

= 1
(ξAl/Eloss)VAl + (ξNb/ξAl)(ξAl/Eloss)VNb + 1 .

(8.14)

In Figure 8.13 Right, we show the capacity of our model to predict ηph; the data show good agreement
with the model, but there is, of course, a warranted scrutiny for a model with two parameters and
three data points. We also provide a breakdown of the model-inferred ηph, ηdAl, ηNb, and ηloss in
each device, shown in Figure 8.14. Here are some observations of the results:
• Phonon losses in DMLE2 were dominated by the other resonators and dead metal on the surface.
• OW200127 was meant to remedy this issue by replacing the dead aluminum with niobium. This

remedy did not work; the niobium turned out to be more down-converting than expected.
• B240103 has much less niobium. The result is that the dominant loss mechanism is now the

generic loss term, which is currently modeled to be equivalent to approximately 118,000 µm3 of
dead aluminum, about 10 times the volume of active aluminum.

8.6 Summary and outlook toward sub-eV energy thresholds
Table 8.3 provides a summary of the performance of the three KIPM detector designs,

reporting σE , ηph, σEabs and the Q conditions and dominant noise source.
For the hypothetical single-resonator version of DMLE2, the intrinsic energy resolution is

limited by amplifier noise as a result of being overcoupled (Qc ≪ Qi) but is still respectable at
5.9 eV. The poor phonon collection efficiency results in a resolution on deposited energy much worse
than our eV-scale goal.

In OW200127, efforts to improve the phonon collection efficiency did not work, as described
in this section, but a better resolution on absorbed energy was achieved due to the long quasiparticle
lifetime that was observed. Improvements in the coupling of the resonator to the feedline in
combination with a respectable Qi > 105 led to a reduced contribution from the amplifier noise
but an uncovering of the TLS noise, which should limit σEabs of this design to 500 meV to 2 eV as
calculated in Section 7.3. The TLS noise is particularly harmful to noise performance because it
degrades the benefit of improved quasiparticle lifetime: σEabs ∝ τ

−1/4
qp for f−0.5 TLS noise instead

of σEabs ∝ τ
−1/2
qp for white noise.

Lastly, B240103 showed an improved phonon collection efficiency due to the removal of large
amounts of niobium, but the low RQ = aQ2

r/|Q̂c| compared to OW200127 increased the impact of
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Summary of KIPM detector performance
device σE ηph σEabs Q conditions and dominant noise

DMLE2, one
resonator* 540 eV 1.1% 5.9 eV amplifier

Qc ≪ Qi, Qc = 5× 103–5× 104

OW200127 320 eV 0.78% 2.1 eV TLS
Qr = 2.5× 105, Qi ≈ 0.6Qc

B240103 850 eV 2.7% 23 eV amplifier
Qi ≪ Qc, Qi = 2.9× 104

Table 8.3: Summary of KIPM detector performance. The different components of Equation 8.1
are shown, as well as a column for the Q conditions and dominant noise source to show how they
may play a role in the intrinsic energy resolution σEabs . The * indicates that all the values in that
row are not directly measured and are instead extrapolated from the provided data to a hypothetical
single resonator device.

amplifier noise. Qr ≈ Qi ≪ Qc is much more detrimental to noise performance than Qr ≈ Qc ≪ Qi

because Qc appears in the denominator of RQ; low Qc yields large S21 resonator circles.
The next most important step to improve the energy resolution of KIPM detectors is to bring

the phonon collection efficiency to the 30% level that has been observed by other phonon-mediated
detectors; see Ren et al. (2021), Romani et al. (2024), and TESSERACT Collaboration (2024). There
are two techniques that are currently being explored. First, the volume-scaling model described in
this section predicts a 26% energy loss to Eloss, shown in Figure 8.14. We are not sure whether Eloss
is dominated by the mounting, but it may be relatively straightforward to reduce Eloss by replacing
the current mounting with wirebond suspension (Anthony-Petersen et al., 2024).

A second option to improve the phonon collection efficiency is to separate the functions of
the phonon absorber and the sensitive element. The 600 nm aluminum fins that have been shown to
efficiently absorb phonons could then be used to increase the collection efficiency. The fins would
need to be connected to a lower Tc resonator. Hafnium resonators with Tc 140 to 200 mK are being
explored as an option (Li, 2024). Reduction of Tc should increase the yield of quasiparticles per
unit energy absorbed by decreasing the pair-breaking energy, but materials with a smaller gap may
require lower readout powers, increasing the relative contribution of amplifier noise.

Another benefit of incorporating a phonon-absorbing fin into the design is that the resonator
can now be made much smaller to increase its sensitivity. The current designs use large resonators
to provide sufficient volume and surface area coverage to collect phonons directly. With a separate
phonon absorber, the resonator does not need to play this dual role and can be optimized solely as
a sensitive element.

A final technique for improving detector energy resolution involves the lengthening of
quasiparticle lifetimes, which is believed to be dominantly controlled by environmental blackbody
radiation energetic enough to break Cooper pairs in the superconducting sensor. As stated before,
energy resolution scales as τ

−1/2
qp to τ

−1/4
qp , depending on whether amplifier or TLS noise is dominant.

The 50 µs to 100 µs pulses that have been observed at Caltech are much shorter than the 6.5 ms
pulses observed in NEXUS at Fermilab, which is one of the main reasons for the much improved
σEabs for OW200127 (in addition to the higher Qs). The colder dilution refrigerator and more
aggressive inline filtering at NEXUS are believed to contribute to the improved quasiparticle lifetime.
Presently, upgrades are planned for the Caltech dilution refrigerator to improve blackbody radiation
shielding.
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Appendix A

Computing dynamic structure factors

In this Appendix, we follow Trickle et al. (2020) and explore how S(q⃗, ω) is computed for
free nuclear recoils and for single-phonon couplings when dark matter couples only to nucleons.
The regimes in which either calculation applies is also explored. As stated in Trickle et al. (2020),
the steps to compute S(q⃗, ω) are (1) parametrize |i⟩ and |f⟩ according to the excitation type and
(2) quantize FT (q⃗) such that it induces transitions |i⟩ → |f⟩.

Nuclear recoils
For nuclear recoils, |i⟩ and |f⟩ can be expressed as a direct product of momentum eigenstates

|⃗ki⟩J and |⃗kf ⟩J where J indexes over each nucleus. Only one nucleus receives momentum in its final
state. These eigenstates can be expressed in terms of creation operators:

|k⃗i⟩J = V − 1
2 b̂†

k⃗i
|0⟩J , |⃗kf ⟩J = V − 1

2 b̂†
k⃗f
|0⟩J . (A.1)

The creation and annihilation operators b̂† and b̂ follow the canonical commutation relations.
The target form factor, with some manipulation not shared here, can be expressed in terms

of a weighted average nucleon form factor fN ≡ fpZ + fn(A− Z), a nucleus form factor FN (q⃗), and
the nucleus number density ñN (−q⃗):

FT (q⃗) = fN

fn
FN (q⃗)ñN (−q⃗). (A.2)

The nucleus form factor FN (q⃗) is usually taken to be the Helm form factor. Note that Equation A.2
is referenced against the neutron form factor fn.

Quantization of FT (q⃗) involves expressing ñN (−q⃗) in terms of a number operator b̂†b̂.
In broad strokes, the matrix element ⟨k⃗f |ñN (−q⃗)|⃗ki⟩J takes the form ⟨0|b̂b̂†b̂b̂†|0⟩, which can be
calculated by sending the annihilation operators to the right so that they act on the ground state.
After applying commutation relations, the result is a delta function δ3(k⃗f − k⃗i − q⃗); momentum is
conserved. This delta function is evaluated when the sum over the final states f , i.e., the integral
over final momentum k⃗f , is performed.

Skipping the finer details of the calculation, we reproduce the expression for the dynamic
structure factor of nuclear recoils from Trickle et al. (2020):

S(q⃗, ω) = 2π
ρT

mN

f2
N

f2
n

F 2
N (q⃗)δ

(
ω − q2

2mN

)
, (A.3)
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where a sum over all target nuclei has been performed to compute the rate over the entire detector,
making the final result dependent on ρT /mN , the number density of target nuclei. Inserting
Equation A.3 into Equation 3.17, we get

dR

dω
= 1

mN

ρχ

mχ

2π2σn

µ2
Nχ

∫
d3vfχ(v⃗)

∫
d3q

(2π)3F
2
med(q)f2

N

f2
n

F 2
N (q⃗)δ

(
ω − q2

2mN

)
δ(ω − ωq⃗), (A.4)

which is a slightly modified reproduction of Equation 97 from Trickle et al. (2020). Equation A.4 is
used for comparison to the phonon production calculation in the following section.

Single phonons
For the production of a single phonon, the initial and final states take the following form:

|i⟩ = |0⟩, |f⟩ = |ν,⃗k⟩ = â†
ν,⃗k
|0⟩, (A.5)

where phonons are labeled by a branch index ν and a momentum vector k⃗ within the first Brillouin
zone. There are three branch indices for each atom or ion in a primitive cell. The creation and
annihilation operators â† and â follow the canonical commutation relations.

In the case of single phonon excitations arising from purely nucleon couplings, the target
form factor picks up a phase factor that depends on the displacements u⃗l of the lattice sites relative
to their equilibrium positions x⃗0

l :

FT (q⃗) =
∑

l

fN

fn
FN (q⃗)eiq⃗·(x⃗0

l +u⃗l) (A.6)

where l sums over all the primitive cells. We also assume that there is only one atom in the primitive
cell; otherwise, there would be an additional sum over each atom or ion in the primitive cell.

The critical next step in evaluating ⟨f |FT |i⟩ involves expressing the lattice displacements in
terms of phonon creation and annihilation operators:

u⃗l =
∑

ν

∑
k⃗∈1BZ

1√
2NmN ω

ν,⃗k

(
â

ν,⃗k
ϵ⃗
ν,⃗k

eik⃗·x⃗0
l + â†

ν,⃗k
ϵ⃗∗
ν,⃗k

e−ik⃗·x⃗0
l

)
, (A.7)

where ϵ⃗ are unit-normalized polarization vectors, also labeled by ν and k⃗, and N is the number of
primitive unit cells, which in this case is just the number of nucleons. In the limit where N →∞, k⃗
becomes continuous. To evaluate exp(iq⃗ · (x⃗0

l + u⃗l)), we must invoke the Baker-Campbell-Hausdorff
formula eX+Y = eXeY e− 1

2 [X,Y ] · · · for non-commuting operators X and Y (â and â† in this case).
Again skipping the details of the calculation, we reproduce the final result for the dynamic

structure factor, Equation 90 from Trickle et al. (2020), simplified in terms of this specific example:

S(q⃗, ω) = π

Ωe−2W (q⃗) f2
N

f2
n

F 2
N (q⃗)

∑
ν

∣∣∣q⃗ · ϵ⃗∗
ν,⃗k

∣∣∣2
mN ω

ν,⃗k

δ(ω − ω
ν,⃗k

), (A.8)

where Ω is the volume of the primitive cell, analogous to ρT /mN from Equation A.3. The sums over
k⃗ ∈ 1BZ and l from the previous equation conspire to enforce q⃗ = k⃗ + G⃗ in Equation A.3, where G⃗ is
the reciprocal lattice vector in the first Brillouin zone. The expression in the exponent W (q⃗) is known
as the Debye-Waller factor and arises from the commutation term of the Baker-Campbell-Hausdorff
expansion (the only commutation term that survives the expansion). Without producing the full
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expression from Trickle et al. (2020), we report that W (q⃗) ∼ q2/4mN ω. It is also notable that only
the conjugated polarization vector ϵ⃗∗ survives the calculation because the un-conjugated vector is
attached to the annihilation operator. We insert Equation A.8 into Equation 3.17 to get the energy
spectrum:

dR

dω
= 1

mN

ρχ

mχ

π2σn

µ2
nχ

∫
d3vfχ(v⃗)

∫
d3q

(2π)3Fmed(q)e−2W (q⃗) f2
N

f2
n

F 2
N (q⃗)

∑
ν

∣∣∣q⃗ · ϵ⃗∗
ν,⃗k

∣∣∣2
mN ω

ν,⃗k

δ(ω−ω
ν,⃗k

)δ(ω−ωq⃗).

(A.9)
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Appendix B

USRP noise timestream procedure

Procedure for taking noise data with an Ettus USRP using GPU_SDR

1. Before using the USRP, use a dedicated VNA to obtain rough values for resonant frequencies
and quality factors as well as a sense for the overall transmission of the readout chain.

2. Choose appropriate LOs, cleaning tones, and calibration tones for each resonator under study.
• Currently, LOs must be rounded to the nearest 50 MHz. There is 160 MHz bandwidth

around the LO.
• Cleaning tones should be separated by at least a few MHz.
• Calibration tones at a minimum should be taken roughly at fr ± fr/5Qr. More off-

resonance tones will improve later conversion of readout noise into the resonator basis.
3. Measure the cable delay for a particular LO. Presently, this step is automated within the

USRP code.
4. Measure S21(f) with a VNA scan over how ever many resonators are under study. The USRP

will automatically correct for the measured cable delay.
• It is important to make sure that the VNA scan is over an appropriate frequency range

and has appropriate frequency binning. A roughly sufficient frequency range in python 3
syntax may be numpy.linspace(fr-5*fr/Qr,fr+5*fr/Qr,1000), where fr and Qr are
estimates for the fr and Qr, so that there are 100 points between fr ± fr/2Qr, which
charts out half of the resonance circle, and so that most of the full resonance circle is
visible. For example, if fr = 5 GHz and Qr = 105, then the prescribed frequency bins
would be spaced by 500 Hz. A larger range beyond [fr-5*fr/Qr, fr+5*fr/Qr] may be
desired if well-measured off-resonance transmission is desired, but appropriate frequency
binning between fr ± fr/2Qr should be maintained.

• The appropriate amount of averaging or measurement time per frequency point (otherwise
known as the IF bandwidth) can be determined empirically but in principle can be
estimated by the amount of noise that is anticipated for a given readout chain and a
particular resonator’s RF responsivity.

5. Fit for the resonant frequencies fr and quality factors Qr with Equation 6.30
6. Measure S21(t; fr) at each resonator’s fr. The length of the timestream and the sampling rate

are the key parameters to control here. The USRP can stream up to 200 MHz depending on
GPU performance. Frequency information beyond 1 MHz is generally not needed for current
KIPM detector designs, so decimation down to 1 MHz is somewhat of a default setting. The
length of the timestream as well as the desired amount of averaging in Fourier space will
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control the lowest frequency bin available to a Fourier transform. If there is no averaging in
frequency space, the lowest frequency bin is simply the 1/(length of timestream).

7. It is generally desired to perform steps 3–5 at range of readout powers so as to provide enough
context for these measurements. As demonstrated in Section 7.8, amplifier white noise is
expected to dominate at low readout powers and would become sub-dominant to TLS noise at
some elevated readout power since the white noise contribution to resonator basis noise will
go as P −1

g and the TLS noise contribution in the resonator basis will go as P
−1/2
g .

8. For calibration of S21(t; fr) into quasiparticle units, a temperature sweep of fr is required.
See Section 6.6.
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Appendix C

KID debugging

I don’t see a resonator! What do I do?
There are a few sanity checks to perform before concluding that the resonator is simply not

alive. These checks also apply to resonators whose Qi are simply lower than expected.
• Is the transmission about what you expect? When operating an RF readout system, it is helpful

to have an expectation for what the throughput of the readout chain will be, by accounting for
the intentional attenuation placed on the input line, the expected gains of the output amplifiers
from HEMTs or warm amplifiers, and whatever components in between, including cables between
temperature stages, filters, and warm SMA cables. If the transmission is not what you expect,
then there may be a broken component that has developed during or before the cooldown.

• Are you confident that the temperature on the chip is as cold as the mixing chamber thermometer
says it is? Before any cooldown, it is of course important to ensure that all elements that are
attached to the mixing chamber are thermally well sunk. Some generally good practices for
thermal sinking are listed here.

– Use both lock washers and flat washers between every screw-surface interface. The lock
washer is important to maintain tension even when the components undergo thermal
contraction. The flat washer is important to spread the pressure from the screw over a
larger area.

– Gold plate or passivate with citric acid all components that are intended to be ther-
mally linked at the mixing chamber to promote thermal conductivity. Beware of nickel
under-plating; nickel is magnetic and would be deleterious toward the performance of
superconducting resonators.

– Copper braids can be used as a last-minute fix for thermal linking.
• Could the resonator be loaded in some other way?

– If there is an optical fiber mounted toward the KIPM detector, it is possible for blackbody
radiation to travel down the optical fiber and radiate pair-breaking photons into the
resonator. The lower the superconducting gap of the material of the resonator, the more
sensitive the resonator is expected to be to these photons.

– Parasitic loading along the RF transmission line is also possible. HEMTs or other amplifiers
may radiate pair-breaking radiation backwards along the line; isolators, in-line IR filters,
or generic RF low pass filters are potential ways to mitigate this radiation.
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I don’t see pulses! What do I do?
Here are some things to consider when you have found a resonator but are struggling to see

pulses in a KIPM detector.
• Are you sure that light is entering the fridge? Check that the LED or laser is indeed shining

light by flashing it at your palm
• Are the pulses being obscured by noise? If the sampling rate is in great excess of the signal

band high frequency white noise, the small signals we seek may not visible. A low-pass filter
or some rolling averaging on the timestreams could also remove this noise. There may also be
low-frequency phase noise from the USRP that is obscuring these timestreams and cannot be
removed by averaging. At lower readout powers, this noise is not so bad. What might not be
visible at 1 MHz bandwidth could be visible post-LPF/averaging/cleaning.

• Are you using a wet dilution refrigerator? In the Cahill B101 Oxford Kelvinox 25, we observed
a dependence of pulse height on time from the start of the cooldown. Essentially, we discovered
that superfluid helium films would form around the surface of the detector and degrade its
performance. In principle, the sorb should be able to remove all the helium in the inner vacuum
chamber. We decided to add an additional pumping step to the cooling process, ideally between
4 K and 10 K and targeted a leak rate below around 10−8 mbar · liter/s to ensure adequate
evacuation of helium from the inner vacuum chamber.
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