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Abstract

This thesis covers the use of hairpin polyamides to achieve, most notably, HIV-1

LTR gene regulation and fluorescent detection of double stranded DNA.  In Chapter 2 we

discuss our collaboration with Professor David Margolis to study integrated HIV-1

latency in quiescent T-lymphocytes.  Understanding latency in HIV-1 infection is of

paramount importance for developing anti-HIV-1 therapeutics.   Chapter 3 deals with the

characterization of a special case of 2-b-2 polyamide binding in the minor groove, and

we discuss the use of (S)-2,4-diaminobutyric acid to influence polyamide specificity and

orientation.  In Chapter 4 we present data concerning the use of hairpin polyamides that,

when unbound to DNA, quench the fluorescence of the xanthene fluorphore to which

they are covalently attached.  We cover experiments aimed at exploring the uses of this

fluorescence phenomenon to optically detect double stranded DNA in a sequence specific

manner, an issue of great importance as shown in the literature by the numerous

denaturing assays for oligo detection by hybridization.  In Chapter 5, the fruits of a

collaboration with Alexander Dunn of Professor Gray’s group, we attempt to define the

mechanism whereby polyamides quench tetramethyl rhodamine fluorescence.
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