Detection of DNA by Sequence Specific Fluorescent Polyamides

Thesis by

Victor Clay Rucker

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California

2003

(Defended May 8, 2003)

© 2003

Victor Clay Rucker

All Rights Reserved

Dedicated to Lily, My Parents, Pyrrhus, and Ludwig Boltzmann

Acknowledgements

Caltech for me has been a surreal experience bordering on a nightmare of reality surrounded by a dream of possibility.

I would like to thank several people. I must begin with Dr. Christian Melander, the savvy post-doc from Columbia who came to our lab after three short years of graduate study there. Christian taught me science, showed me how to deal with disappointment, how to ask the right questions, and how to throw my weight into the harness. He was inspiration incalculable on many a dismal day. Alex Dunn, my collaborator on Chapter 5, deserves many words of thanks. Alex had a magnetic intellect that attracted me to discuss science with him. Many great conversations about photochemistry were spent with Alex, and we ourselves made significant inroads into answering some photophysical questions discussed in Chapter 5. Tom Minehan, post-doc from the Kishi lab at Harvard, synthesizer of high-purity natural product, was an inspiration for all weary graduate students, a rallyer of the troops, and an excellent scientist. Bobby Arora, a quirky-guy-now-NYU-professor, was a wonderful person to have around. Practical and experienced, having come from Nowick's labs at UCI, Bobby always new which questions to ask and how to get the answers.

I cannot think of much I want to say about the senior graduate students who overlapped with me. Adam Urbach, Nick Wurtz, Doan Nguyen, Clay Wang, Ryan Bremer, John Trauger, Eldon Baird, Sue Swalley, Sarah White, Scott Carter, Jason Belitsky, Dave Herman, Aileen Chang, best wishes for your future careers. John Chevillet, Meridith Howard, Amanda Cashin, Shira Jacobsen, John Stellwagen, good luck to you also. The "younger" graduate students, Eric Fechter, Adam Kerstien, Michael Marques, Ray Doss, Tim Best, Cheyenne Brindle, Ben Edelson, J. Sanchez, and Ryan Stafford, keep up the good work! A special thanks goes to my classmate, Shane Foister, one of the nicest individuals in Dervana. It has been wonderful working with you.

I would like to thank Professor Dervan for teaching me how to have an eye for detail. It really does shine in the final product. Thanks to Professors Grubbs and Hsieh-Wilson for serving on my committee. A special thanks goes to Professor Harry Gray. Professor Gray is the finest professor I have met at Caltech, his genuine interest in the welfare of the graduate students really shows. Professor Gray, you have provided me much joy and comfort during many an unhappy ordeal. Thanks, also, for supporting my efforts with Alex to study spectroscopy.

I thank my parents for their support, both financial and emotional. I would also like to thank Lily Ackerman, my dear love, for her generosity, kindness, sharing her intellect with me, and her love. I love you, and I'm sorry for all that Caltech has put us through together. The best is yet to come, babe!

Abstract

This thesis covers the use of hairpin polyamides to achieve, most notably, HIV-1 LTR gene regulation and fluorescent detection of double stranded DNA. In Chapter 2 we discuss our collaboration with Professor David Margolis to study integrated HIV-1 latency in quiescent T-lymphocytes. Understanding latency in HIV-1 infection is of paramount importance for developing anti-HIV-1 therapeutics. Chapter 3 deals with the characterization of a special case of $2-\beta-2$ polyamide binding in the minor groove, and we discuss the use of (S)-2,4-diaminobutyric acid to influence polyamide specificity and orientation. In Chapter 4 we present data concerning the use of hairpin polyamides that, when unbound to DNA, quench the fluorescence of the xanthene fluorphore to which they are covalently attached. We cover experiments aimed at exploring the uses of this fluorescence phenomenon to optically detect double stranded DNA in a sequence specific manner, an issue of great importance as shown in the literature by the numerous denaturing assays for oligo detection by hybridization. In Chapter 5, the fruits of a collaboration with Alexander Dunn of Professor Gray's group, we attempt to define the mechanism whereby polyamides quench tetramethyl rhodamine fluorescence.

Table of Contents

Acknowledge	ements	iv
Abstract		V
Table of Contents		vi
List of Figure	es and Tables	vii
Chapter 1	Introduction	1
Chapter 2	Outgrowth of Human Immunodeficiency Virus Type I Induced by Hairpin Polyamides Targeted to the RCS of the LTR: A Potential Role for Host Transcription Factors LSF and YY1 in Regulating Latency	10
Chapter 3	A. Polyamide Orientation and Affinity at the Sites5'-GGTAG-3' and 5'-GATGG-3'; B. The Influence of(S)-2,4-diaminobutryic Acid on Orientation.	57
Chapter 4	Detection of DNA by Sequence Specific Fluorescent Polyamides	82
Chapter 5	Spectroscopic Investigation of Tetramethyl Rhodamine Quenching by N-methyl Imidazole, N-methyl Pyrrole, and β -alanine Linked Polyamides	115

page

List of Figures and Tables

Chapter 1

Figure 1.1	DNA base pairs	2
Figure 1.2	Pairing rules for minor groove recognition	4
Chapter 2		
Figure 2.1	Graph of latency phenotype in HIV-1 infection	12
Figure 2.2	Model of how LSF and YY1 induce latency	13
Figure 2.3	Sequence of RCS	15
Figure 2.4	Chemical structure of polyamides targeted to RCS	16
Figure 2.5	Polyamide binding sites on RCS	17
Figure 2.6	Footprinting gels for compounds 1, 2, M1, and M2	18-19
Figure 2.7	Designed binding site for polyamide 5	20
Figure 2.8	Footprinting gel for 3	21
Figure 2.9	Affinity cleavage gel for compound 3E	22
Figure 2.10	4 constitutional isomers of 3	23
Figure 2.11	Footprinting gels for 4, 6, 7, and 8	24-25
Figure 2.12	MPE and affinity cleavage gel for 4 and 4E , respectively	26
Figure 2.13	Designed binding sites and isotherms for 9 and 10	27
Figure 2.14	Designed binding sites and affinities for 11	28
Figure 2.15	Footprinting gel for 11	29
Figure 2.16	Design of polyamides 12 and 13	30
Figure 2.17	Footprinting gel for 12 and 13	31
Figure 2.18	Affinity cleavage patterns and models for orientation of 13	32

Figure 2.19	EMSA of polyamides inhibiting LSF binding to RCS	36
Figure 2.20	ChIP of polyamides displacing LSF in vivo	37
Figure 2.21	LTR driven GFP expression in HUT78 cells	39
Figure 2.22	Polyamide induced HIV-1 outgrowth curves from quiescent HIV ⁺ CD4 ⁺ T-lymphocytes	42
Figure 2.23	Polyamides enter the nucleus of quiescent CD4 ⁺ T-cells	46
Figure 2.24	Our model for polyamide inhibition of LSF ₂ /YY1	49
Graph 2.1	Fold GFP expression over background induced by polyamdies	40
Table 2.1	Statistics for outgrowth from latent HIV-1 ⁺ CD4 ⁺ T-cells	44
Chapter 3		
Figure 3.1	DNA recognition by forward and reversed polyamides	60
Figure 3.2	Polyamides 1 – 4	61
Figure 3.3	Footprinting gels for 1, 2, and 4	62
Figure 3.4	Affinity cleavage gels for 1E, 2E, and 4E	64
Figure 3.5	Stereochemically derivatized polyamides	65
Figure 3.6	Rationalization of stereochemical influence	66
Figure 3.7	Footprinting gels on stereochemical derivatives	67
Figure 3.8	Affinity cleavage gels on stereochemical derivatives	69
Table 3.1	Association constants for $1 - 4$	63
Table 3.2	Association constants for stereochemical derivatives	68
Chapter 4		
Figure 4.1	Observation that polyamides quench fluorescein emission	84
Figure 4.2	Match DNA concentration dependent fluorescence rescue for polyamide 1	85

Figure 4.3	Conjugate 2	86
Figure 4.4	Design of optical scanner	87
Figure 4.5	54-well plate experiment with 1 and 2	88
Figure 4.6	Second generation conjugates $3 - 7$	89
Figure 4.7	Ball-and-stick models for $3 - 7$	90
Figure 4.8	3-7 exhibit increase in quantum yield when bound to match DNA	91
Figure 4.9	DMSO induces an increase in quantum yield	92
Figure 4.10A	54-well plate experiment with $3 - 7$	93
Figure 4.10B	Histograms for interaction with DNA for $3 - 7$	94
Figure 4.11	Design of pVRfluor and pJT8	96
Figure 4.12	Model for conjugate binding in the minor groove	98
Figure 4.13	Model for X/Y mismatch screen	99
Figure 4.14	Polyamide 8	100
Figure 4.15	Sugiyama-Wang-Lee model for G:T recognition	100
Figure 4.16	Results of parallel mismatch screen with 2, 5, & 6	101
Figure 4.17	Results of parallel mismatch screen with 8	102
Figure 4.18	Two X-ray structures for G:A mismatch	103
Figure 4.19	Strucutres of unliganded and liganded G:T mismatch	104
Figure 4.20	Synthesis of conjugates	107
Table 4.1	Normalized optical data for conjugates binding in the minor groove	95
Table 4.2A	Association constants for polyamides binding in the minor groove	97
Table 4.2B	Normalized association constants	97

Chapter 5

Figure 5.1	Chemical structures	117
Figure 5.2	Observed luminescence decay for conjugates	118
Figure 5.3	Maximum entropy fit of decay	119
Figure 5.4	Steady-state dillution experiments with conjugates	121
Figure 5.5	Absorption spectra of conjugates in the presence and absence of match DNA	123
Figure 5.6	Steady-state Stern-Volmer experiment (intermolecular)	124
Figure 5.7	Steady-state absorption spectra (intermolecular)	125
Figure 5.8	Model of hairpin-fluorophore conjugate bound in the minor groove	127
Figure 5.9	Electronic model for charge-transfer quenching	128
Table 5.1	$\Sigma P(k)$ for fast and slow phases of conjugate decay in the presence and absence of match DNA	119
Table 5.2	Time resolved $\Sigma P(k)$ data for dillution of conjugates	122
Table 5.3	Data from intermolecular Stern-Volmer experiments	126