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I THE MEASUREMENT OF SMALL, COMMERCIAL-FREQUENCY,

ALTERNATING POTENTIALS.

ABSTRACT

A mechanical rectifier for use at commercial frequencies has
been constructed. Accidental electromotive forces have been so
far eliminated that it can be used with a sensitive direct current
galvanometer as a detecting instrument. Four galvanometers have
been tried and the results are described. With the most sensitive
galvanometers used, the sensitivities of the system at 50 cycles
were 0.05 microvolts (without the critical damping resistance) and
0.00004 microamperes. ‘

The use of a vibration galvanometer and of the mechanical
rectifier with a low-frequency vacuum-tube amplifier has been
investigated. An input potential 0.001 of that corresponding to
the noise level of the amplifier can be detected. This combination
is then about 100 times as sensitlve as an amplifier with the same

noise level used with a telephone receiver,
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§1 1Introduction. The Measurement of Small Alternating Potentisals.

Measurements of direct currents of the order of 10'10 amperes
of direct potentials of the order of 10'7 volts, and of commercial
frequency alternating currents of the order of 10-8 amperes are
now made in ordinary laboratory practice with relatively simple
apparatus now on the market. Current measurements may be pushed
to far greater sensitivity by the use of certain recently devel-
oped vacuum tubes.

In contrast to this, measurements of alternating potentials
are limited to about 107¢ volts in ordinary practice. Many mech-
anlcal systems should theoretically give rise to such potentials,
the study of which is often of considerable interest. As an aid
to the investigation of such problems, we have attempted to increase
the sensitivity of measurements of alternating potentials.

Two lines of attack have been followed: (a) a mechanical
rectifier for use with an alternating current input and feeding
into a direct current galvanometer has been designed, and (b) a
vacuum~-tube amplifier operating into a tuned detecting instrument
has been studiled.

§2 lMechanical Rectifiers.

Mechanical rectifiers of the general type of synchronous
commutators have long been used in commercial practice. There
are, however, two Inherent difficulties in design which have
prevented their laboratory use.

The first of these is due to the friction and varying resis-
tance of the brushes. This gives rise to varying and unknown
electromotive forces in the commutator itself in addition to
fluctuations in the current being rectified. As it 1is well
known that the frictional electromotive forces producted by

closing a knife switch produce large deflections in a sensitive
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galvanometer, it is evident that this type of rectifier is not
well suited to use with such instruments.

The second difficulty 1s due to the potential difference
between the two ends of a commutator bar when that bar is moving
so as to cut the earth's magnetic field.

Although Dannatt and Holt® have described an improved
commutator with special brushes which was used successfully with
a milliammeter, this type of rectifier did not seem, on prelim-
inary investigation, as promising as the following type.

The general idea involved 1s that a set of contact points,
operated by a cam on the shaft of a synchronous motor and making
contact with another set of points as does a galvanometer key,
without slipping, should be free from potentials or varying
resistances due to such slipping. By mounting the contacts on a
face plate rotatable about the shaft, phase adjustment may be
secured.

Sharp and Crawford” designed and tested such a synchronous
reversing key wlth which they were able to use a microammeter.
The movable contacts were mounted on the free end of a flexible
strip which was moved by a follower mounted on 1t and bearing on
a cam turned by a synchronous motor. The fixed contacts and

ixed end of the flexible strip were mounted on a disk rotatable
about the cam. The contacts were platinum. Neither description
nor photographs were explicit enough to permit duplication of
their apparatus or a discussion of possible defects, but the
difficulties inherent in the commutator type are evidently
absent.

In the first model désigned for this investigation, the
contact points were all mounted on a Bakelite disk, each movable

point being individually actuated by an attached wedge pressed
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against a cam by a spiral spring. This arrangement was unsatis-
factory because of the severe frictlon and heating at the cam, and
had also various minor defects.

In the final form adopted (Fig. 1 and 2) the cam turns in
a bushing, which, of course, moves in a circle. The normal compon-
ents are resolved by two sets of slides at right angles. The
movable contact points are mounted on the outer sliding block which
moves linearly .

83 Description of the Rectifier Used.

The face plate, stand, base and other similar parts are of
brass. In all bearing surfaces, one member is Tobin bronze, the
other, drill rod. All parts of the electrical circult are copper,
the insulating bushings are Redmanol, and the insulating washers,
mice.

The 1/4" steel shaft turning in a bronze bushing terminates
in a bronze circular cam 1/2" in diameter by 9/32" thick set 0.015"
off center and balanced. The cam accurately fits the hole in a
5/8" gsquare steel slider with grooved edges. This steel slider,
which takes up the sideways motion of the cam, moves in a rect-
angular hole in a second, bronze slider 13/16" by 1" by 1/4"
thick which moves vertically. Four contact points are carried on
the horizontal, 15/16“, faces of the bronze slider. There are
four 1/4" square lugs on its ends which have holes fitting the
1/8" steel rods supported by brass blocks pinn\ed and screwed to
the face plate. No play can be felt 1In this chalin of bearings.

The contacts are 9/32" by 9/32" hollow copper cylinders
into which Redmanol has been pressed. A steel rod is screwed
into the Redmanol for fastening and a mica washer insulates the
copper from the bronze.

The second set of four contact points, similarly constructed,
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are mounted on the ends of 1/8" steel rods 1/2" long which slide
without play in bronze bushings. The other ends of the rods are
enlarged so that they come to definite positlons against the
bushings. These bushings screw through brass blocks, split and
provided with a screw for tightening, which are screwed and pinned
to the face plate. Against the enlarged ends of the rods, steel
spiral springs set in holes in another block push.

Connection to the contact points 1s made by soldering a
copper spiral to a copper rod driven into a #60 hole in the side
of each contact point near the surface of contact. The other
end of the spiral 1s soldered to the end of a copper binding post
projecting through a Redmanol plug pressed into a hole in the face
plate.

The face plate, 4 7/32" diameter by 5/16" thick, has a 1 5/8"
projecting boss on the back which provides a long bearing turning
on a taper supported by the upright. Set screws through the boss
prevent the face plate's turning except when desired.

The 1/4 horsepower synchronous motor (much larger than neccess-
ary) turns 3000 revolutions per minute on 50 cycle current. Lt is
encleosed in a shield made of 18 alternate layers of 0.018 Armco
iron and sheet copper, the iron beling brought out and bolted to
give a continuous magnetic circuilt.

A flexible coupling with a fiber disk insulates the motor from
the rectifier.

§4 Adjustment of the Rectifier.

By screwing the bushings in which the rods carrying the outer
contact points slide, the apparatus is adjusted visually and
tactually until contact seems to occur in the middle of the stroke.
A constant error of not to exceed 5% may be expected from this

setting. If greater precision is desired, a dry cell may be so
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connected that the alternating current output feeds into a
millivoltmeter, and the contacts then adjusted to give zero
deflection. The contact points must be cleaned occasionally
with alcohol.

To make the phase adjustment, alternating current is fed
in and the face plate rotated until zero deflection 1s obtained.
The face plate is then set normal to this position.

§5 Behavior of the Rectifier with Various Galvanometers.

The behavior of the rectifier with four galvanometers of
different characteristics has been investigated. Both circuilt
and face plate are grounded when in use.

With a Leeds and Northrup pointer galvanometer 2320-d, coll
resistance 1000 ohms, period 3 seconds, direct current sensitivity
O.Smicroamperes per millimeter scale division, the alternating
current sensitivity is 0.6 microamperes per millimeter scale
division. It was measured by taking 2 volts from a transformer
and stepping down through a potential divider. The deflections
are linear with the current, steady, and reverse accurately if the
face plate 1s turned through 180 degrees. The motor shield is
unnecessary with this galvanometer.

With a Leeds and Northrup type P reflecting galvanometer
2239-a, coll resistance 124 ohms, period 10 seconds, direct current
sensitivity 0.011 microamperes per millimeter deflection at one
meter, the alternating current sensitiviiy is 0.018 microamperes
per millimeter. It was measured by stepping 110 volts down through
a potential divider. A transformer in the vicinity caused
considerable disturbance. The deflections are linear with the
current, steady, and reverse accurately if the face plate is
turned through 180 degrees. Without the motor shield, the zero

shifts about 3 millimeters when the face plate 1s rotated.
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With a Leeds and Northrup type HS reflecting galvanometer
2285-a, coll resistance 18.4 ohms, period 8.3 seconds, direct
current sensitivity without critical damping resistance 0.033
microvolts per millimeter, the alternating current sensitivity
is 0.048 microvolts per millimeter, measured as in the previous
case. The deflections are approximately linear with the current
and are steady to about 1 millimeter. The motor shields are
essentlal and even with them, the shift of zero point is about
5 millimeters when the face plate is rotated. Both the HS
galvanometers are easlily disturbed if a line, even of twisted
wire, carrying an ampere or so gets near the input leads. Part
of the zero deflection may be due to other things in the vicinity
rather than to the motor.

With a Leeds and Northrup type HS reflecting galvanometer
2285-f, coll resistance 915 olms, period 21.1 seconds, direct
current sensitivity 2.8 x 10—5 microamperes per millimeter, the
alternating current sensitivity is 3.3 x 10’5 microamperes per
millimeter, measured as im the two preceding cases. The deflec-
tions are approximately linear with the current, and as steady
as in direct current measurements. There is a zero shift of some
5 centimeters when the face plate is rotated, which appears to
be affected by the room lights and similar disturbances, with the
motor shielded. Measurements with this instrument were difficult
because of the long period and severe over-damping.

§56 Discussion.

This rectifier has the advantages over the vibration galvan-
ometer of greater sensitivity and automatic tuning to the proper
frequency, but requires a power source, either mechanical or
electrical, of the same frequency as the effect to be measured.

Over the alternating current galvanometer, there are the advantages
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of independence of the circuit constants (except insofar as they
affect the damping), of the possibility of using mechanical rather
than electrical power, and of using an auxiliary with a standard
instrument, rather than an expensive, separate one. lNeasurements
of phase are impossible with the vibration galvanometer alone,
and are difficult with the ;lternating current galvanometer, but
are quite simple with this rectifier.

§7 Limitations on Voltage Amplification at Commercial Frequencies.

The problem may be put in the form, what is the smallest
potential which may be impressed on the input of an amplifier and
yet cause an observable effect in the output of that amplifier.
When a telephone receiver 1is used as the detecting instrument, one
hears, after a certaln amount of amplification has been used, noise
in the receiver even though there 1s no input at all. The smallest
detectable input 1s then that which when amplified is just observ-
able against the background of noise already present.

The noise present in amplifiers is due to a variety of causes.
First, there are disturbances due to external conditions, e.g.,
microphonic noises and pick-up from light circuits. Second, there
are those originating in the circuits external to the tubes, due
to oscillating circuits, leaks across condensers or resistances,
etc. These two may be eliminated by proper design and location
of the amplifier, although it frequently requires some study to
accomplish this in a particular case. Finally, noise originates
within the tubes themselves because of leaks across insulation,
production of positive ions in the residual gas, and certain other
effects, most serious of which is the particulate nature of the
electrons. By reason of this particulate nature, electricity
passes through the tube as individual particles, and hence statis-

tically, rather than as a continuous fluid. The statistical
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fluctuations in the flow are fluctuations of current and, with
sufficient amplification, appear as noise. All other internal
tube noises can be reduced to imperceptible amounts, but this
effect, belng dependent on the nature of electricity itself,
cannot be reduced. It can be partlally avoided by the use of very
high amplification in the first tube, but there are stability
limits for such amplification, and moreover, the conditions for
attaining it are incompatible with those for eliminating other
tube noises. TUntil a way out of this difficulty is found, the
limit of detectable input is the order of this irreducible noise,
about 10'6 volts. If an amplifier could be constructed without
a first stage, the problem might be solved, but so far, no progress
has been made in this direction.

Since the nolse is distributed over all frequencies, the

e
w

probable energy in any particular frequency band at any time
itself infinitesimal 1f the frequency band is. If the input is
monofrequentic, and other noise frequencies are filtered out, it
should be possible to detect inputs much smaller than 1076 volts.
However, 1t seems that as the sensitivity of a detecting device 1is
increased, so also is its period of response. If we integrate the
noise over an infinite period, it attains iInfinite amplitude at
every frequency. Hence the period, and the sensitivity, of the
detecting instrument cannot be extended indefinitely, for a new
limiting phenomenon has appeared.

§8 Description of the Amplifier.

For an investigation of this sort, it is not necessary to
use the somewhat troublesome circults and tubes used to reduce the
noise as far as possible, for any noise level will do as well.
The amplifier used consisted of as many Western Electric 102-D

tubes as could be used in the particular test, resistance coupled
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with 1 microfarad coupling condensers, 200,000 ohm coupling resis-
tances, 270 volt B batteries and 500,000 ohm grid leaks. 0.015
microfarad filter condensers shunted each coupling resistance.
The amplifier and B batteries were enclosed in a l6-gauge sheet-
iron box. The noise level corresponded to an input of about
5 x 1077 volts.

A special output transformer designed to operate betwmen a
Western Electric 102-D tube and a 1000 ohm galvanometer was loaned
us by the Seismological Laboratory and was used in this work.

§9 Use of the Amplifier with Tuned Instruments.

At commercial frequencies, electrical tuning 1s not practicable
and the only device of this sort used was the filter condensers
shunting the coupling resistances. These serve to remove any
high-frequency disturbances.

If the output from an amplifier be fed into a vibration galvan-
ometer, and the light beam from that galvanometer be allowed to so
impinge on a photoelectric cell attached to the input that the
width of the light beam on the cell changes with a small change in
the position of the galvanometer mirror, then any signal given the
amplifier will be regenerated by this optical system. Such an
optical system was tried, but was unsatisfactory because of the
great effect of very slight Jars and the like which set the
galvanometer to vibrating.

A Leeds and Northrup alternating current galvanometer 2470
was also tried, current for actuating the field and potential for
the input both being taken from a 110-volt line. With such a
galvanometer, it is necessary that the inductive reactance of the
circult of which its coll is a part predominate over the capacitive
reactance if the instrument is to be stable. DBut it is also

necessary that the total reactance be nearly zero if 1t is to be
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sensitive. The reactance was a function of the primary circuilt of
the output transformer, 1l.e.,of an amplifier delivering a heavy
and fluctuating current, and was therefore not constant. If, then,
enough capacity were included in the circuit to give the instrument
satisfactory sensitivity, it shortly became unstable. Because of
this difficulty, no further work was done with this type of
galvanometer,

A Leeds and Northrup vibration galvanometer 2350-a was tried,
using a 20-cycle, 0.005-volt input from an earth inductor coil,
stepped down, when necessary, through a potential divider. VWith
two stages of amplification, the galvanometer was perfectly steady
and gave 1 millimeter deflection at 1 meter for an input of 6 'x 10_6
volts. When two more stages were added, the fluctuations became
serious. An input of 2 x 107 volts could be detected, but only
by immediate comparison with the zero position. The deflectlons
were nearly linear with any number of stages, but the system is not
suitable for, in general, other than null measurements, because of
the inconstant sensitivity.

Very similar results were obtained with a Leeds and Northrup
type P galvanometer 2239-a in conjunction with the rectifier
described in the first part of this thesls. ¥ith one stage of
amplification, the galvanometer was steady and the system had a
sensitivity of 7.5 x 1078 volts input per millimeter deflection.
With three stages of amplification, this galvanometer was so
unsteady that only about 2 x 1077 volts input could be detected.

If the type P galvanometer were replaced by a type HS 2285-a,
the same limit was reached, but with only two stages of amplifi-
cation. In all cases, if higher amplification than that noted
above were used, either the amplifier blocked, or the galvanometer

became too unsteady to read. Vith any number of tubes, the



(11)
unsteadyness observed remained both qualitatively and quanti-
tatively the same 1f no input was used, and hence appears to have
been due solely to disturbances generated within the amplifier.

§10 Discussion.

From these data, 1t appears that the use of tuned instruments
makes 1t possible to read easlly a voltage 0.01 of that corres-
ponding to the noise level of the amplifier, and to detect 0.001
of that voltage. It will be noticed that there is no gain in
sensitivity when the amplifier is such as we have used, over the
sensitivity of the galvanometers used directly, but, even here,
there is the advantage of requiring very little power. Such a
system could be used directly, e.g., on polarizable cells.

We may extrapolate these results and predict that with an
amplifier whose noise level is that corresponding to 10’6 volts,

it should be possible to detect at least 10~ 2 volts.
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Ll THE NORMAL FREQUENCIES OF VIBRATION FUR

'SYSTEMS OF PULNT PARTICLES HAVLING

TETRAHEDRAL AND OCTAHEDRAL SYNMMETRY.

ABSTRACT
By treating symmetrical systems of point particles as non-
holonomic systems, the work involved in solving for the normal
frequencies 1s lessened. The case of central forces is treated
for both XY, and XY,. The results obtained for XY, agree with

those of previous investigators, but those for XY, do not.
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§1 Introduction.

Recent texts on analytical dynamics in general treat non-
holonomic systems only sufficiently to show how they may be con-
verted into holonomic ones in special cases. The general equations
for non-holonomic systems are little more complicated than those
for holonomic, and may actuelly be easier to solve because of
higher symmetry. To attain this higher symmetry, it may be exped-
ient in some cases to put ordinarily holonomic systema into non-
holonomic form. Such is the case in the systems considered below.

§2 The Lagrangian Equations when the Number of Coordinates Exceeds

2,3

the Number of Degrees of Freedom.’

Since Hamilton's principle in its usual form
T2

6 L(QI"'q;nét"'éznt)dt=o (1)
(21
does not depend on the coordinates chosen for the discussion of
a problem, 1t will hold whether the system is holonomic or not.

The equation

tz
E3
oL d 2
[{E,(s‘ara'ﬁsa)sm} at =0 (2)
1

follows from equation (1) without regard to the interdependence of
the coordinates. If these coordinates are related by the m
equations of constraint

g, +- QuuE) =0 (j=1,2,---m) (3)
we may eliminate m coordinates and their derivetiwves from L, or
instead, we may formally remove their interdependence by multi-
plying the varistions of the equations of constraint (3) by

undetermined functions A; and adding these to equation(2) to give

ta 3n . v
3L 4 3L a,-f)
oL _ 4 o4 A; 9L . =
jt; {,Zi (3q& dt 94: ,ZZ‘ Y dq; Sq‘} ar=0 (4)
e may now, by the usual reasoning, write the 3n equations
d 3 3L _ z’" Qf .
3E 38 3 - A& Mg (i=1,8, «~~3n] (8)

which, together with the m equations of constraint (3) determine
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the values of the 3n coordinates and m undetermined multipliers.
In addition to the usual type of geometric conditions, any
known integrals of the equations of motion may be used as constraints.

S Infinitesimal Oscillations about Equilibrium for an Isolated

System of n Point Particles.

For such a system, L 1s not a function of the time and is
equal to T minus V, where T 1s the kinetlic and V the potential
energy.of the system. The six integrals of linear and angular
momentumz which will all be taken equal to zero in the cases we
shall consider, provide six equations of constraint. To describe
the system, we shall use n sets of rectangular Carteslian coordin-
ates, deriveble from one another by translation, with origins at
the positions of the n particles when the system 1s in an equil-
ibrium configuration.

The potential energy may be expanded in a Maclaurin's series
in én variables about this equilibrium configuration, where it will
be assigned the value zero. Third and higher powers will be
neglected. The condition that ¥,/dq; =0 in the equilibriunm config-
uration does not follow in general from the equations of motion (5)
for these partlasl derivatives are related, not to the total force
along the corresponding coordinate, but only to that part of it due
to reactions included in L as distinguished from reactions included
in the constraints. If, however, an equilibrium configuration of
the system remains an equilibrium configuration in the absence of
the constraints, or if the constraints exert no forces in the
equilibrium configuration, or again, if the constraints do not deter-
mine the equilibrium configuration, but only the permitted displace-

. 3 ; a . & . .
ments, then in that configuration bV/éqi:=O and these partial deriv-

atives are the negatives not only of that part of the forces due to
reactlons included in L, but also of the total forces along the cor-

responding coordinates. In the systems of interest, then, the



(14)
coefficients of the first powers in the laclaurin's series expan-
tion are individually zero and the potential energy is given by

3n 3n

2V=i§ ?;'-lbu Qi 95 (6)
The vanishing of the first powers can also be deduced by a
direct consideration of the forces. Consider any component of
force on the 1 th particle, say Qi. This will be the sum of com-
ponents of forces due to various internal and external reactions.
Each of these may be separately expanded in a Maclaurin's series
about the equilibrium position and these series added term by term.

3n
Then §Q; = Q;,‘*ZQij qj+-+-. Since the q's are zero in the equilibrium
J=1
configuration, Qi = Qie=0 there, and hence Qio=0 for all configur-
ations. If as is true in the systems of interest, the forces that
make up Q;, arise solely from reactions included in V, then
dV/8q; = 0.

Since the kinetlc energy of this system 1s the sum of the
kinetlic energies of the particles composing it, and since the
coordinates for each particle are orthogonal, no cross products
will appearﬁ Therefore

£4 -2
2T = z a; di (7)
=1
where the a's are constants.

The equations of constraint are, for the cases of interest,

homogeneous, linear functions of the coordinates.

in

£lay e tgn) =2 ifi i = 0 . (§j=1,2,--+8) (8)

The undetermined multipliers may be written as A; + (A
where  A; 1s the constant value of A; in the equilibrium config-
uration.

Since the equations of motion (5) must be satisfied when the
variables and their derivatives are all zero, the A's are all zero
and we have

a0 ’” ‘
aclir Bby 45 = Z Anfi (422,278
25 q =0 (=18, ~8)

i1
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To solve, let

t
,‘
ds =A;e
(10)
pt
1)‘1‘; -M; e
Then
3 3n 6
(ayp +bu)AL+j:zlbiin+Z £ M; =0 (i=1,2,-+<3n)
39 ¥ =3 (11)
2 A A =0 (r=1,2,---3n)

i=1
The condition for the coexistance of equations (11) is that

the determinant A of the coefficients of the A's and M's vanish.

A is a (3n+6)th order axisymmetric determinant with six rows and
six columns of constants and is of the (3n-—6)th degree in the
variable ,4% The vearisble 1s confined to the 3n non-zero elements
of the principle diagonal. In the systems we shall consider, the

symmetry is such that the terms of A may be arranged to form a

"block circulant”,

where E; F, and G are square arrays of the (n+2)th order. A may
then be factored into three determinants, each of the (n+2)th
order,by taking the sum of the k th rows of E, FF, and G to be the
k th row of one factor and the sum of the k th row of E, w times
the k th row of F, and w? times the k th row of G to be the other
two, where w is successively each of the two complex cube roots
of unity?

§4 DlNormal Frequencies for Systems of Type XYy in a Regular

Tetrahedron.

We locate the equilibrium positions of the five particles in
a set of rectangular Cartesian coordinates as follows: 1 at 000,
2 at aaa, 3 at 8da, 4 at a8d, 5 at @asd. Using five new sets of
coordinates obtained by translation as indicated in 83, the coor-
dinates after displacement of the particles from equilibrium are:

Xos Yo %0 for 1l; x4, v4, 24 for 2; etc. We denote the mass of 1 by
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m,, that of any peripheral particle by m,; the force constant
assoclated with a force between the central and any peripheral
particle along the line jJjoining them by k,,, that similarly
associated with a force between two peripheral particles by k,,;
the angle between the line from the center to a corner and any
edge to that corner by 8 (cos &=1//3), that between the projection
of an edge on a parallel coordinate plane and an axis in that
plane by ¢ (cos ?:1//5). We further denote the ratio of the
force due to the interactlion between the central and any periph-
eral particle when the system 1s in an equillibrium configuration,
to the distance between them in that configuration by b, and the
analogous ratio concerning two peripheral particles by h. (b=—4#h)
The kinetic and potential energies for infinitesimal displace-
ments and veloclties are then as given by the following equations.
BT = mo(X54F3422) vm (X 4F 427 + X 4504 - == 427)
2V = (k,,/5)[(x,+y,+z,-x,—y‘,-—zo)z'+(—xzj-y,_—z,_+x,-y,+z,)z
+(-x,-y,+z,+X.+y;-zo)z+(xy—yv—zy-x°4y°+z°f7
+(2b/5){[(x,-xo)z+(xk~x,)z+(X3-xo)k+(xq—xo)1*(yl-Vo)l+(y1-y.)z
H Yo7 )+ 5, =y ) 42, ~2.) 42 =2.) #(25-2,)% +( 2, -2, )zj
-[(X. ~xo) (¥, =¥, )4(%,-x,)(2,~2,)+(y,-y.)(2,-2,)
(X%, ) (¥ =Vo )+ (x,-%,)(2,~2,)+(y, -y, )(2,~2,) (12)
%=X, ) (7o =7, V¥ (xo-x, ) (2, -2, ) 4(¥. =3 ) (2,~-2,)
&(x4~x°)(yb-y1)+(x”—xo)(zo-zy)+(y5~y,)(z°-zy2}
+(k,z/2)l’:(x,s«z,-x;zb)k-r(x,fy,—x,-y,)z'+(y,+z,-y,—z,)x
+(yl-zl—y3+z3)‘+(xL—yL-x,+yy)‘+(X,—Z,-x7+zy)ﬂ
+(b/8){{(x,-z,-xlfzz)L+(x,-y,-x}+y3f'+(y,-z,-yq+zq)L
+(yL+zL-y,—zj);+(xtfyL-xq-y,)L+(x,+z,-xy-zy)j

"'2{(3(:'}{‘/) ~(x,-%g4) -(7,-Y2) -(ys-74) -(2,-2;) —(ZL—Z,,)J
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There are also the six equations of constraint obtained
from the integrals of linear and angular momentum.
mox°+m,(x,+xL+xg+x¢ =0
MoY o+t (Y, +7,+Y5+%) = O
MeZo+m,(2,+2,+2;+2) = O
Vi ¥Ta=Y3=Vy=2,%2:%23-24=0

Ke+X, =X =X, ~2,42,-2;+2, = 0

n

X, =X =Xg+Xy =Y, +Y> =y5 +yy =0

When the Lagrangian determinantal equation discussed In §2 is
set up and solved, we find four distinct roots. The corresponding
frequencies follow, the figure in parentheses being the multiplicity.

AR0)= (Ko, +4%,, ) /m,

412 @)=k . -b/4) /m,
(14)

'y (3 = %'{A /3 %nf'—( 4k, k,L-Sk,,b—Bk,zb—?b“'}

= iniél-‘t‘-lr:lo (ko,-2b "'k;m"b/lz +ko, /3

§5 Normal Frequencies for Systems of Type XYoin a Regular

Octahedron.

The general procedure i1s 1dentical with that of §4. The
particles are located as follows: 1 at 000, 2 at a0O, 3 at 0aO,
4 at 800, 5 at 080, 6 at 00a, and 7 at 00d. There is one additional
force constant, k,y, assoclated with a force between two opposite
peripheral particles, and an additional ratio, j, invelving the
reactions and distances of two opposite peripheral particles.
¥or this system, cos #=1/J/2, and b=-4h-2j.
| The kinetic and potential energies for infinitesimal

displacements and velocities are given by the following equations.



(18)
BT = m (x2ey2+22)4m, (xPeyFentexteyie oo -427)
2V = Yo, | (%, =%,) # (% ,-%5)  #(72-70 )54 (yu=Vo ) #(25-20)% +( 2,2, )ﬂ
#0 [(, =500 (350 )+ (KgmX o)* #(x =20 ) ¥ ¢ (7, =70 )% +(75 =70 )2
(5T ) #(To-70) #(2,-20)%4(2.-2,) +(2;-2.)% +( 2,-2. )z]
+(k,z/2)[(x,—y,-XL+y1)2+(x,-z,-x,+z,)z+(x,+y,—Xq-yq)i
(X, 42, -X, =2, ) 4(To=2.-Y 42, ) +(Xg#7y =X5=Y, )
(7,427,020 +(x,-2,-% 42, )7 #(X ;=75 =% 47 )
(X 92,-% 20 ) #7442 ~Ys-20) * 4y, -2, =7, 42, )]

+(h/2) :_(X, +V, “Xz—yl)l"'(xl‘zl-xb"'zc )L *(X-,"'Y, “Xyt+yy )L

P z LS (15"
+(X, 42, -X,~2,) +Hy,+2,-V5s-2,) +(X,=Jo~X;+7; )
+(yL-z,-y‘+z‘f'+(x3+za-x6—z¢)L+(x,+y,—x,-yy)b
+(X3-zs—x;+z,)>+(yy-zy-yy+z,)‘+(yy+zq—yb—z¢)j

~ g 2 2 2 2 2 2

Fh (x,-xs) +(x,-%y) +(x,-%.) +(x.-%,) +(y, -y )" +(y.-75)

2 2 z 2 z z

+Hy, =vs) *(ye-y,) #(2,-2,) +(z2.-2,) +(2z;-2,)"+(2,-3, )}

Koy | (%,-%;) #(72-74 ) +(20-2.)]

i F 2z = 2 2 2 l—}

;.JL(XJ_X") Hxo=x,) +(y,-y,) #(ys=-y) +(2,-2;) "'(Z.L'Z‘/)j

As in the preceding system, there are six equations of

constraint.
! MeXo#M, (X, +X,+X, +X,+X #X ) = O
“a MeYo+tm, (J, #7245 +J4 +Tst¥e ) = O
m,Zo+m, (2, +2,+2,+2,4Z+2, ) = O
(16)

V6-76-Z2+2¢= O
Xg=Xg~2g+23= 0O
Xg~Xg~Vgtyg=0
From these we ebtain, as in §4, the frequencies. In this case,

however, there are six distinct roots in the determinant.
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am*yta) = (x,, +4k .42k ,,)/m,

am*y™3) = (2k,,-2h)/m,

4™ (3) = (k. +h-23)/m, (17)
4’ (2) = (kg +k,, +2% ,,+3h) /m,

x %
47 %:(3) =;;’;;;’7{A ‘_":[Az-'o- m,yy;,‘(m,.u.m,)(-—'ﬁ’m-ﬁflz",,; %, ﬁ*zﬁ,j*“/{z'ﬂ*}'g{ﬂ’,z*f”}ﬂ }
A= Y";_,‘(””O"z"’"l) ol"'%“ﬂfm”lz',(w‘*"’m’){" - (o) f

86 Discussion.

Dennisons, Schaaferq, Radakovicm, and Urey and Bradley" have
investigated the former of the two systems discussed in this paper.
In all cases they set up the potential energy in terms of as many
coordinates as there are degrees of freedom. This requires the
the solution of a ningth degree ninth order determinantal equation
instead of the two seventh order third degree determinantal
equations used in this investigation. Since their ninth degree
equation has only four unequal roots, it could be solved by straight-
forward methods, but the labor involved is so great as to make
the use of specilal methods nescessary. The advantages of the method
here used are not very great in this case.

Equations 1¥ are in agreement with those obtained by the
above-mentioned WOrkers, but thelr interpretation of b as proportion-
al to aV/ari,where r; is the distance between the central and a
peripheral particle, in a certain system of coordinates, is incor-
rect, since by applying the analy§ls of §3, 1t may be shown that
these coefficlents are resultant forces which vanish, not forces
due to particular interactions which do not vanish.

Application of equations 1¥ to data on various molecules
supposed to have this structure has been made by the investigators
given above and by others. The agreement, better than one per cent
for the tetrachlorides of carbon, silicon, titanium, and tin, is

better than would be expected from the approximations made in
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applying this analysis to real molecules.

Redlich, Kurz, and Rosenfeld”have treated the octahedral
system, setting up the equations of motion from the standpoint
of forces rather than potentials. They have overlooked the
interaction due to changes in the angles of application of the
forces when the molecule is distorted. Equations 17 reduce to
theirs 1f b is set equal to zero.

There 1s at present insufficlent experimental data to permit
a test of equations 17. Lf only four frequencies were found
experimentally, k,y and J could be assumed zero to a first approx-
imation and the other three constants evaluated. k;zand h could
then be used to compute the constants of the itorse function and
kayand j obtained from it. New values of k,; and h could then

be calculated, and so on.

7 References.

1. E.J.Routh "Advanced Rigid Dynamics" llacmillan and Co.
4 th edition 1884 p.3l et seq.

2. Bolza "Lectures on the Calculus of Variations" G.E.Stechert
and Co. p.206 et seq.

3. P.Woronetz NMath. Ann. 29:421(1911)

4, E.T.@Whittaker "Analytical Dynamics” Cambridge University
Press 3 rd edition 1927 p.60.

5. See also ref.l pls4.

6. E.J.Routh "Dynamics of a Particle” Macmillan and Co.
1 st edition 1898 p.d24.

7. Muir and lMetzler "Theory of Determinants" privately

4
printed Albany, New York, 1930 p.485.



(21)
8. Dennison Astroph.J. 62:84(1925)
9. Schaefer Zeit.f.Phy. 60:586(1930)
10. Radakovic Wien. Ber. 139:107(1930) I have not seen
this paper.
11. TUrey and Bradley Phy. Rev. ser.2 38: (1931)
18. Kohlrausch "Der Smekal-Raman Effekt"” J.Springer, Berlin
edition of 1930 pp.49, 215

13. Redlich, Kurz, and Rosenfeld Zeit.f.Ph.Chem. abt.B
19:231(1932)



