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INTRODUCTION AND SUMMARY

The purpose of this paper is to comstruct postulate sets for certain
mathematical systems, establish their complete independence, and, in cases
where other postulate sets are already known, to show their equivalence to
QUTSs

In Part I groups and Abeliasn groups are defined in terms of a triadic
relation. The existence of an equiéalence relation is not assumed, as is
the usual method, but proved by actual construction. The complete inde~
pendence of the postulates and their equivalence to conventional group
postulates is established.

In Part II a completely independent set of postulates for rings is
exhibited differing from the usual sets (for example, see Van Der Waerden,

Moderne Algebrs, page 35) only in that the closure of addition is not ex~

plicitly assumed, since it can be deduced from the other postulates. With
this definition of the containing ring a completely independent set of
postulates for an idesl can then be given.

Part III contains the most novel results of the paper., A definition
of divisibility was sought, with properties entirely analagous to arith-
metic divisibility but not depending on the existence of a multiplication
operation. The postulates for a Division System as defined in this section
give the properties of certain classes called principal ideals, which are
functionsg of elements of the system. By means of these classes an equiv-
alence relation and a relation of divisibility are defined, the latter
having all the imporitant characteristics of arithmetic divisibility.

Host important, the existence of an L,C.M. of any finite set and the
G.C.De of any set whatever in the system is established.
I wish to thank Prof, E. T. Bell for the suggestions which led to the

writing of this paper.



THE NOTION OF COMPLETE INDEPENDENCE

The motion of complete independence was first introduced
into mathematics by E. H. Moore in 1915. ("Introduction to a Form of

General Analysis,® by E. H. Moore, &

1915, page 82.) A thorough discussion of its significance is given
in the article by E. V. Huntington, ITrans
Mathematical Society, Volume 20, page 277. We might briefly mention

that complete independence carries with it both consistency and

ordinary independence., It further dewmands that no relations of
implication whatever exist among the postulates.

The proof of complete independence is established by an
extension of the method used for ordinary independence., Examples
ere exhibited in which all the postulates are true, examples in
which they asre contradicted one at a time, two at a time, and so om
until finally an example is produced for which all are false. It

takes 28 examples to establish the complete independence of n
| postulates. |

The notation used ig best explained by an illustration.
The charecter (+ — - + =) is used to designate an example in which
the first and fourth postulate of a given set hold, while the second,
third and fifth do nut.

ii



0.1 Definition. We consider a class K of undefined
elements &, b, .. and an undefined binary triadic relation R such
that for any ordered triple (a,b,c) of elements of K we can elther
say R{abe) (a, b, and ¢ stand, in that order, in the relation R)
or K(abe) (a, b, ¢ do not, in that order, stand in the relation R).
The class K and relation R form together a system G when they are

subject to the postulates below.

0.2 Definition. Two elements a, a! of K are said to be
equivalent (a® a') if and only if all the following conditions

are simulianeously satisfied:

(1) R(axy) implies R(a'xy) and coaversely for every x,y ¢ K.
(2) R(xay) implies R(xa'y) and conversely for every X,y ¢ K.

(3) R(xya) implies R(xya!) and conversely for every x,y ¢ K.

0.3 Pogtulate I. 3 x in K for each b,c ¢ K such that
R(xbe) .
0.4 Postilate II. 3y in K for each a,d ¢ K such that

R{ayd).

¥The first definition of a group by means of a triadic relation is
that of E. V. Huntington (Transac Ame al
Society, Vol. 6, 1905, p. 192), though the idea wes suggested earlier
by M. Bocher. Huntlngton's first set of postulates is similar to
ours and formed the basis for it. Huntington's postulates are not
independent, however, as theorem 2.1 shows. Moreover, they neglect
the consideration of the equivalence relation.
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0,5 Postulate IIT. R(aBS ), B(S ¥ W), R(B ¥¢€), and
R(e € ¥) simultaneously holding imply/st ® 9 provided o, B,§ , ¥, Moo

6 "D are inK.

0.6 HNotation. Since the only elements considered are in

K, the phrase, for every a of K;will usually be omitted.

1.1 Theorem. a® a for every a in K.

Proofs Obvious from 0.2.

1.2 Theorem. a ®b implies b® a and conversely for every
a,b in K.

Proof's Qbvious from 0.2.

1.3 Theorem, If a®@b and b&®c¢c, a ®ec,
Proof: Since a® b, R(axy) implies R(bxy) for all

x and y by 0.2. Since b® ¢, (R(bxy) impiies R(cxy) for all x and y.

(1) R(axy) implies R{exy) for all x and y. Since c@ b by 1.2,
R(exy) implies R{bxy) and since b ® a R(bxy) implies R{axy) for all
x and y, then

(2) R{cxy) implies R{axy) for all x and y.
(1) and (2) of this proof together satisfy coﬁdition (1) of Definition
Qs2. Conditioms (2) 2nd (3) can be shown to be fulfilled by exactly

analagous proof so that 1.3 follows.

1.4 Remark. The relation ® is an equivalence relation.
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2.1 'Thcorem . For each pair a,b of eleménts of K there
exists an element of K such that Rabe).
Proof:

(1) F¥or each a, J i, such that R(igaz) by 0.3.

(2) For each a, 3 a~l such that R(a~tai_) by Postulate I.

(3) For each b, 3 x such that R(z"1xb) by Postulate II.
Congider now an arbitrary fixed pair of elements a,b of K« Ve will
show that the element x of step (3) is the c demanded by the theorem
such that R{abe).

(4) 3 p such that R(apx) by Postulate II.

(5) 3 q such that R(i,qp) by Postulate II.

(6) 7 r such that H(arq) by Postulate II.

(7) p®q. This follows from Postulate III by putting e = 1,
p=f=a,85=r,6€ SH=q,V = p in steps (1), (6), (6) and (5).

(8) R(iapp) by steps (5) and (7) and def, 0.2.

(9) p©b by Post, IIIl witha=a -, p=a, § =1
€ =x, and? =D in steps (2), (8), (4), and (3).

(10) R(abx) by steps (4) and (9) and def. 0.2.

QeE.D,

*The method used in this proof was suggested by R. Garver's work on
group postulates. ( etin of the American Mathematic
Vol. 40, 1934, p. 698.)
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2.2 Theorem. If R{abc) and R(abe'), ¢ @ el.

Proof:
(1) R(abe)
by hypothesis
(2) R(abe!)
(3) 3Ix in K such that R(xab) by Post. I.
(4) Jy in K such that R(axy) by Th. 2.1.
(5) 32 in K such that R(yax) by Th. 2.1,
(6) 2® c by Post. III, puttinge=¥ =a, p=x, § =y, M=z
€ =b, and V= ¢ in steps (4), (5), (3), and (1).
(7) &imilarly, by symmetry, repeating steps (3) to (6) and using
(2) in ple:ce of (1),
z® ct

(8) c¢c®ect by The 1.2 and 1.3.
Q.E.D.

2.3 Remark. To every ordered pair of elements a,b, there
corresponds an element ¢, unique up to equivalence such that R(abe)

(from 2.1 and 2.2).
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3.0 Definition. By an abstract group we mean the well-
known mathematical system consisting of a class G(a,b,«..) subject
to the following postulates:

3.1 Postulate. There exists an equivalence relation,

binary, reflexive, symmeiric, and transitive throughout G. This

relation holding between a and b is symbolized, a & b.

3.2 Postulate. To each pair of elements a;b ¢ G there

corregponds a unique element ab€ G,

3s3 Postulate. For every a;bse € G

(ab)e = a(be)

344 Postulate. For each a and b ¢ G there exists a cor-

respoading x ¢ G such that
ax = b

3.5 Postulate. For each a,b ¢ G there exists a cor-

responding y ¢ G such that
ya=b

3.6 Theorem, The class K(0.1 -~ 0.5) is an abstract group.
Proof: For our equivalence relation we choose that defined in 0.2,
is@4y a = Db if and only if a & b. Then by L.l to 1.4, 2.1 is satisfied,

By 2.1 for each a,b ¢ K there will exist a corresponding z ¢ K such
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that R(abc). Designate z by ab. Let ¢ be such that R(ebc). Then

by 2.2

ab® c or ab = ¢

The element ab may be regarded as a representotive of the class of
equivalent elements z for which R{abz). The element ¢ = &b is thus
uniquely specified (up to equivalence) by a and b, so 3.2 holds.
Take a, B, i any elements of K and let

(1) Szaﬁ,,uz{a y €<= BY , and V = a¢
Then

(2) R(ep§ ), R(S ) BBre), and R(e €7 ).
Therefore by 0.5

(3)/&A @YV or p =7,
Substituting from (1) in accordance with Th. 1.3

(4) (oB)s (Br).

By postulates 0.3 and 0.4 we can find an x such that R(axb) and a

i

y such that R(yab) corresponding to each a,b ¢ K. Then
(5) ax=band ya=b
are solvable and all the postulates are satisfied.

QtEOD'

3.7 Theorem. Every abstract group G satisfies the
postulates 043, 0.4, 0.5 for K,
Proof: We shell say that R(abe) if and only if ab = ¢. R so defined
satisfies 0.3, 0.4 since by 3.4 and 3.5 we can always find an x and y

such that ax = b and ya = b and consequently such that R(axb) and
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R(yab), Let a = a', Then ax = y implies ax' = y, xa = y implies xa!
and Xy = a implies xy = a' and conversely for all x,y ¢ G. Therefore
a = a! implies a® a', Finully, letting J_zas,/Ler , €=B7,

) ZGE , we have/(— =27 by 3.3, Then K =7 and Post. 0.5 holds,

3.8 Remark. The postulate set 0.3, 044, and 0.5 is equiv~
alent to the set 3.1, 3.2, 3.3, 3.4, and 3.5, since each implies the
other by the preceding theorems. Consequently the former set will

serve as well as the latter for the definition of an sbstract group.

=T
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41 Theorem. The postulates 0.3, 0.4, 0.5 form a com-
pletely independent set.
The proof is by the usual method of examples, all of which

are in this case self-explanatory.

Character Class, K(asbees) Relation, R(asbe) if

(+ + +) A1l rational integers ath = ¢

(++ =) A1l rational integers 1/2(atb) = ¢

(+ - +) Positive rational integers a=c¢

(= + +) Positive rational integers b=c¢

(+ -« =) Positive rationsl integers a-b = ¢

(- +-) Positive rational integers b-a = ¢

(= - +) Positive rationsl integers ath = ¢

(= = =) Positive rational integers 2(atb) = ¢
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ABELIAN GROUPS

Consider a class K subject to postulates II and III (0.4,

0.5) but with I replaced by the following:
5.1 Postulate IV. If R(abe), then R(bac) for every a,b,c ¢ K,

5.2 Theorem. Postulates II and IV imply I.
Proof: Let é,bé K. By 1I, there exists & ysuch that R(ayb).
By IV, R{yab)
since a,b were any two elements, there will always be an x ¢ X such

that R(xab) if we take x to be y.

5.3 Theorem. A class K subject to postulates II, III, and
IV forms an Abelian group.
Proofs By the preceding theorem and theorem 3.6 it forms a group with

ab = ¢ if R(abe). Let R(abe). Then R(bac) by IV and consequently

ba = ¢ = ab by 3.1 and K is Abelian,
5.4 Theorem. Every Abelian group G satisfies postulates II,

Proof:s By theorem 3.7 G satisfies III and IV. Let ab = ¢ in G. Then
R(abe)., But ba = ¢ since G is Abelian., Therefore R(bac) and II is

satisfied since a and b were arbitrary.

5¢5 Remark. II, III, and IV may be taken as the postulates

for an Abelian group.
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5.6 Theorem. The postulates II, III, and IV are com-

pletely independent.

Character Class K(a,bees) Relation, R(abe) if
(+ ++) 411 rational integers atb = ¢
(+ + =) * Positive rational integers b=c¢
(+ - +) All rational integers 1/2(a#b) = ¢
(= + +) Positive rational integers ath = ¢
(+ - =) All rational integers Rath = ¢
(- +-) A1l rational integers a=c¢
(= = +) A1l rational integers 2(at+b) = ¢

(- = =) A1l rational integers at?b = ¢



PART IT

RINGS AND IDEAL

1.0 Definition. A ring is the well-kunown mathematical

system defined as follows: it counsists of

(1) A class K of elements &, b, +ss

(2) &n equivalence relation written ¢=), which is binary,
reflexive, symmetric, snd transitive throughout K.

(3) An operation, addition ( + ), defining a one-valued funce
tion of two variables. That is to every ordered pair a,b € K there
corresponds an element (a + b) unique up to equivalence.

(4) A second operation, multiplication, indicated by sb. Thus,
to every ordered pair a,b ¢ K there corresponds an element ab unique
up to equivalence.,

(5) The following postulates hold in K:

1.1 Posgtulete I. For each a,b K there exists a cor-

responding x € K such that
a+x=b
1.2 Postulate ITI. If a, b, a+ b, b+ a ¢ K, then
a+b=b+a

1.3 Postulate III. If a, b, c, a+ b, b+ c, a+ (b + e),

(a+b) +c €K, then

a+(bt+tec)=(a+b)+ec
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1.4 Postulate I + 1If &’b ¢ K, then ab ¢ K
1.5 Postulate ¥. If a, b, ¢, ab, be, (ab)e, a(be) ¢ K, then
a(be) = (ab)ec

1.6 Postulate VI. If a, b, ¢, b + ¢, a(b + ¢), &b, sac,
ab + ac ¢ K, then

a(b + ¢) = ab + ac
1.7 Postulate VII. If a, b, ¢, a + b, (a + b)e, ac, be,
ac + be € K, then
(a + b)e = ac + be

2.0 Remark. In the postulates for a ring given in the above
section, it was not explicitly assumed that the set closed with respect
to addition. A postulate to this effect is ordinarily included in the
definition of a ring. This is unnecessary as the following theorem

shows, and its inclusion destroys the independence of the postulates.

2.1 Theorem. The elements of a ring form an Abelian group
with respect to addition.
Proof: If we take R(abc) if and only if a + b = ¢, the postulates for
an Abelizn group, O.4, 0.5, and 5.1 of Part I of this paper are clearly
satisfied.

2.2 Corollary. A ring is closed with respect to addition.
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3.1 Theorem. The postulates I through VII form a completely

independent set.

(The equivalence relation in the following table is taken as

ordinary equality for rational or integral examples while (a,b) = (¢,d) if

a=c¢ and b = d for number couples.

let a = (ay,a,),

b= (bl:bg)o)

In the case of number couples we shall

13

Character Class Operations
K{a,b500+) iddition: a® b = Multiplication: acb =

(+ + ++ + + +) Integers a+b ab
(+ + + + + + =) Integers a+hb b
(+ + + + + - +) Integers a * b a
(+ + + + = + +) Integer couples (al+bl,32*b2) (alb2+a2b2’albl+a2bl)
(+ + + - + + +) Rational numbers a+b ab

r such that 2r is

an integer
{(+ + =+ + + +) Integers -a—-—*'z:-ﬁ ab
(+ =+ + + + 4) Integers b ab
(-++++ ++) Positive integers a + b ab
(+ +++ + - =) Integers a+b l+a+b
(+ ++ + - + =) Integers a+b 2b
(+ ++ -+ + =) Integers a+b If b is evens b

If b is odd: Db/2

(+ + -+ + + =) Integers 5—%}2 b
-ttt ) igi;ﬁ:e rational (albl+a2bl,alb2+a2b2) (bl’bz)
(= + 4+ ++ + ) Positive integers a+ b b
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Character Class Addition: 2 ® b = Multiplication: ach =
(+ + + + = = +) Integers a+b <a
(+ ot ot - +) Integers a+b s, if a is even
8/2, if 2 is odd
(#+ + =+ + - 4) Integers u; a
(+# =+ 4+ + - +) Positive rational (a b +a b, 8, bta0,) (& ,a- )
conies i S o 1982
(- + 4+ + - +) Positive integers a + b a
PR e 1 :
( ) Integer couples (a1+b1,az+b2) : ( _albzfazbz,&lbl-kazb;“ )
2 2
(+ + « + = + +) Rationsl couples (Zal**Zbl,Zag%‘?bg) (albg*azbz:albf&zbl) '
(+ =+ + = + +) Integers b a-b
Free-ed 52333?2? tategsr  (aybysagtby) (aybytazby,a) bytaghy )
(+ + = = + + +) Rationals r such &%t.DB &b
thet 2r is aa 2
integer
(+ =+ -+ + +) Rationals r such b ab
that 2r is an
integer
(« + + =+ + +) Ratlonals r such a+b ab
that 2r is an
integer
(+ = =+ + + +) Integers 2e + b &b
(= + -+ +++) Positive integers %—h ab
(= =+ 4 + + +) Integers a ab
(+ + + + -~ -~ =) Integers a+b a-b
(#+ 4 -t ) Integers a+b l’j’_%ﬂ if atb is even
1+etb if atb is odd
4
(+ + = + 4 = «) Integers £k l#a+h
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Charscter

Class

Addition: a®P b =

Multiplication: aecb =

-+ 4 4+ - ~ ) Positive

couples
Positive
Integers

Positive

© couples

Integers
Integers

Positive
couples

Positive

Integers
Positive

Positive
couples

Integers
Integers

Positive
couples

Integers
Integers

Positive
couples

rational

integers

rational

rational

integers

integers

integer

integer

rational

(alb +a alb ta, b

Zbl’
a+b

a+b

{a.b,+a

1Py %a, b +ta

by sa;btasb,)

a+b

ath
2

(albl+a2bl,alb2+a2b2)

a+b

2a + b

a+b
2

( 81131"’& zbl P &lb 2“"&2]0 2)

a+b

atb
2

(alb a,b; ,a,bta b, )

g+ b
a4+ b
2

( albl+&2bl ’ a1b2+a2b2)

(a)+b),25+D))
l+a+d

b/2

(b, % b,,b, b, b,)
2b

b, if b is even
b/2, if b is odd

(bjbz) forty a perfect
gquare

@/- b, ) forby not a

perfect square

b, for b even
b/2 for b odd

ab

2 2
() 48 8508, 48y 2)
2a

a, for a even
a/2, for a odd

(a1,ap) for & perfect sq.
0/_- ay) for & not a

perfect square
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fomd
o™

Character Class Additions a® b = Bultiplications asdb =
(= + + ~ + - +) Positive integers & + Db a/2 for a odd
a, for a even

(+ « = + + ~ +) Integers Ra + b a
(=4 -+ + - +) Positive integers &*%,b. a
(= =+ ++ ~+) Positive integer (&lbl+a2bl’a‘lb2+a2b2) (&lsﬂz)

couples
bt ==t 4+) Int &t & -5
( ) Integers --z-b- 5
(# = + - -+ +) Integers b g—?
(= + 4+ ~ -+ +) Positive integer a +b, ,a,+b aybatagho,aybytagb

1+by,85t0, b St il o

couples 2 2
(+ « =+ « + +) Integers 28 - b & ~b
(= + =+ =+ +) Positive integers %l’— 2a + b
(= =+ + « + +) Integers a a«~b
(# = = -+ + +) Integers 2a + b ab

pd

(< + « =+ + +) Rationals r such atb ab

that 2r is an 2

integer
(« ~ 4 -+ + +) Rationsls r such a ab

that 2r is an

integer
(== =+ +++) Positive integers =2a + b ab
(+ + + ~ -~ = =) Integers a+b a-b

P
(+ + = 4+ « - =) Integers ath a~b
3

(# -t d - - ) izigj’c—i\;ﬁ rational (albl""%bl#albz"’azbz) (al-bl,az»bg)
(= 4+ + 4 -« = =) Positive integers a + b 2a+ b
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Character Class Addition: a ® b=  Multiplications acb =
(+ + = =+ - =) Integers z.:g..?. l+atb if a+b is odd
li'.g_"‘:b_ if at+b is even
(+ - - - -) 1;081;1:& rational (albl+a2b1,alb2+azb2) (al+bl, 3.2+b2) if E)r‘f‘bl
oup..e is a perfect square
(Vay+by ,a,tbo) if aq+by
is not a perfect sq.
(=~ ++ =+ ~ - ) Positive integers a+ b li':gl"ﬂ if atb is even
l+a+b if atb is cdd
(#+ = = + 4+ « ~ ) Integers 2a + b l+a+b
(« + = 4+ + - ~ ) Positive integers .g_%_k ‘ l+a+bd
(- =+ 4 - =) iiﬁifile rational (albl+a2bl,a1b2+a2b2) (2;+by,a5b,)
(+ + = « = + =) Integers ath b/2
2
(# =+ - - + =) Positive rational (a;bytasby,ajbotasbs) (2L )
couples 2772
(-4 + - -+ =) Integers a+ b b/2
(+ = = + ~ + =) Integers 2a + b <b
(~ + - 4+ =+ ) Positive integers §~§~§ 2b
2 P
- - - - sitive integ + + + W
(- -+ + ) zgzgfzze integer (albl 8,b, ,a, by &2b2) (b1 b b,,b, ble)
(+ = = =+ + =) Integers 2a + b b/2 for b odd
b for b even
(= + = =+ + =) Positive integers &R b/2 for b odd
2 b for b even
(+ =+ -+ +-) Positive integer (aybytagby,aybatazbn)  (by,bo) if byis a
couples erfect square

(Vby,bo)if byis not a
perfect square
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Character Class Additions a® b = Multiplications aeh =
(« -~ =+++ ~) Positive integers 2a + b b
(+ + - = = - +) Integers 3-—-;——:9 a/2
. R &7
(+ -+ =-=4) zgzgi:e rational (alb1+a2b1’81b2“'&2b2) (“é“, a2)
(«++ - -~ 4) Positive integers a+ b 8/2
(+ ~ = + = = +) Integers 2a + b Py
(- + - + = - +) Positive integers -‘?'--'g—b- 28
X . 2 2
(= =+ 4+ =~ %) igzﬁ.:;e integer  (ajbytagby,ajbotaghby) (a3 +ajas,an +ajan)
(+ = = -+ - +) Integers 22 + b a/2 for a cdd
a for a even
(- + - -+ ~+) Positive integers .%..:E.E 8/2 for a odd
a for a even
(« =+ «+ ~+) Positive integer (aybytasby,aibotashs)  (ag,an) if a; is a
couples perfect square
Vepeg it a3
ot a perfect sq.
(- = =4+ - +) Positive integers a+ b a
(# = =« = =+ +) Integers Re. - b a'éb
(= + = - -+ +) Positive integers & "2' b 9——-‘5‘-9-
(- =+ - - ++4) Integers a . .é%...g..b.
(= = =4+ -+ #) zgi;;i:e integer (2a1+bl, 2a2+b2) (albl+a2bl,alb2+a2b2)
(= =~ «++ +) Positive integers 2a + b %—b-
(F+ == ) Integers athb a-b
3 2
. i ay~b
(+ =+ - - = =) Positive integer (ayby+asby ,a1batasbs) 12 L, ag~by)
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Character Class Addition: a® b = Multiplication: acbh =
(# = = + = = =) Integers 2a+ b & ~-b
(+# = ~ =+ - =) Integers 2a + b -Bﬁ'-g-—t;‘- if atb is even
atb+l if atb is odd
(# = = = =+ =) Integers 2a + b b/2
(4 we-ewew +) Integers 2a + b a/2
(- ++ - -~ ~) Positive integers a+ b é—g—h
(« + =+ « - =) Positive integers -‘?'-';-:-b- 22a + b
(- + ~ -+ « =) Positive integers & ; b 9—'—"% if atb is even
' atbtl if at+b is odd
- % = = =+ =) Pogitive integers =—
( ) Positive inte 3 “; b b/2
(- +=----+) Positive integers 2LB a/2
(-t % =) igzgi.:e integer (a1by+asby ya1botasbs) (al-bl,ag—bg)
(= =4 =+ =) Posiiive integer (albl+azbl,a1b2+a2b2) (al+bl,a2+b2) if al+1?l
Coupies is a perfect square
(Va;+bq yantbo)if ay+by
ia not a perfect sq.
, b
(= =+ = ~ + =) Positive integer (albl-baabl,albg*-azbg) (--14, b2)
couples _ 2
a
(= =+ - - -~ +) Positive integer ( +a,b. ,a. b *a b} (—-L, as)
b i 3Py taghy e borabol (T e
(= = =+ + ~ =) Positive integers 2a+ b a+b+ 1
(= - -+ -+ ) Positive integers 2a + b 2b
(= = =+ - - +) Positive integers Ra + b 28,
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Charactier Class Addition: a @ b = Multiplication: aob =
(= « -~ -4+ ~) Positive integers =Ra + b b/2 if b is odd
b 4if b is even
(= = =« 4+ « %) Positive integers =2a + b a/2 if a is odd
a if a is even
(= = = = =+ +) Positive integers Ra - Db & ; b
(+ ~ = = = = =) Integers 2 + b ~a-'-'-2‘-—-b-
(- + ~ ~ - - <) Positive integers 9‘-—;-:-32' 5—-—5——}3-
s > . a =
(= =+ = ~ -~ =) Positive integer (albl+a2bl,alb2+a2b2) (—L-Ela s 8o~bo)
couples
(+ « =% = - «) Positive integers =2a+ b a-Db
(- = =« =% ~ «) Positive integers 2a+ b Q"—'-g—% if atb is even
atb+l if atb is odd
o 5 = o + =) Positive integers 2a+ b b/2
(PP +) Positive integers =2a + b a/2
| (PR —— ) Positlve integers 2a + b .@-_:é..b.

Incidental to the devising of the above examples, a number of inter-

esting elementary theorems were obtained, which greatly reduced the work,

3 .2 Theorem.

Let x® y = ax + by and %oy = nx + ny where x and y

are any real numbers and a, b, m, and n are fixed real mumbers. If a+ b =1,

then for 21l x, ¥y, 2.

(1) x(y®2z) =xy®xozand (xDy) 2= xy® x03

independently of m and n,

holds for all x, y, Z.

But, if a + b # 1, neither of the above equations (1)



(Part II)

Proof:
(2) }Ic(y @ z)

(3) Xoy ® Xo3

xo(ay + bz) = mx + n(ay + bz) = mx + any + bnz.

1]

i

a(mx + ny) + b(mx + nz) = (a2 + b) mx + any + bnz.
Thus the first equality of (1) holds identically in x, y, z if and only

if a+ b =1, The second follows by symmetry.

3.3 Theorem. Let x@® y be defined as in 3.2, Then
(4) x®(yD32) = (xPy) &z
holds for all x, y, zif and only if a=0Oora =1l and b= 0 or b
(5) x6 (y® 2)
(6} xey)@®z

]

1.

H

ax + blay + bz) = ax + aby + bez.

H

alax + by) +bz=a2x+ aby + baz.
If (4) is to hold, then ax + sby + bz = ax + aby + b®z and

(7) a®=a, b¥=b; a=0ora=1;b=0orb=1l.

3¢4 Corollary. x@y=x, x®y=y, x@y=0,x@y=x+y

are the only linear combinstions which make the operation @ associative.

3.5 Theorem. Let K(a,b,...) be any sbstract set ~in which an
operation @ and an operation (°) are defined between every pair a,be¢ K.
% 4

(1) a®b=a or a®b=b
for every a,b € K, then

(2) a:(b®c) =ab®ac and (a®blec=ac+ab
for every a,b K no matter how the multiplieatiom,(°), is defined.
Proof: Take the first definition in (1)

b® ¢

H

aob = asbhb ® aoc.

H

b-l EO(b@ C)

a®b

H

aocC = aec @ aob.

i

. (a ® b)oc
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If the second definition of (1) is taken instead, the proof follows by

symmetry from the above.

3.6 Theorem. In the set K of 3.5 let addition be defined in
any other way besides that of equation (1). Let multiplication be
defined as follows: either

(3a) acb = a or (3b) asb = b.
If definition (3a) is chosen, then for every a,b,e K
(4a) (2 ® b)ec = acc @ bec;
while if (3b) is chosen, then
(4b) as(b® ¢) = ab @ ae,
but (4a) will not hold for all a,b,c. Also, when (3a) is selected,
(4b) is false.
Proofs Choosing (3a), (a® b)ec = a® b = acc ® bec, but
as(b®c) =a# arb® arc=a® a since addition is not as in (1) of 3.5.

The rest follows by symmetry.

3.8 Theorem. In K let multiplication be defined so that

a*x = b (or yea = b) is solvable for all a,b ¢ K and such that

(5) a+(bec) = (a-b)-c
Moreover, let asb = £(b) (or a:b =0{@)) where f(b) indicates that acb
depends only on b, Then f(b) =b (@(a) = a) for every b (or a) ¢ K.
as(bec) = f(bee) = £ [£(c)] ; (asb)ec = £(c). From (5)

(6) £ [2(e) ] = £(e)
Let f(c) = d; then £(d) = d for every element d such that d = f(e) = uec

where u is any element of K. ue¢c = d is solveble in ¢ for any
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element, of K so that for all d
£(d) = d

The same method will prove @ (a) = a.
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IDEALS

440 Definition. Let I(a,b,...) be a subset of a ring R.
I is called an ldeal if and only if the following postulates are

satisfied.

4.1 Postulate I. For each a,b ¢ I there exists an x ¢ I such

that
(1) a+x=b
4.2 Pogtulate II. For every 2 € I and everyr ¢ Ry, r a¢ I
Ae3 Postulgte ITI, For everyae¢ L andeveryr ¢ R, are I
5.1 Theorem. The elements of an ideal form an additive Abelian
£XoUPe«

Proof: Since the elements of the ideal are in a ring the additicn is
associative and commutative. Solvability, both right and left, follows
from the commutativity and Postulate I. The remainder of the proof

follows the lines of Theorem 2.1 of this section.

5.2 Remark. An ideal is usually defined by Postulates II

and IIT and by the property that the elements form an Abelian group
with respect to addition. Our postulates sre equivalent to this as
theorem 5.1 shows, and moreover are completely independent as will be
showm. 8Still another definition demands that if a and b are in I,
a=-bé¢ I as well as Postulates I and II. This, of course, is also

implied by our definition, since it is a property of Abelian groups.
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The Postulates I, II, III for an ideal are completely

independent.
Character Ring Additions a + b =| Multiplication: a b = Ideal
(+ + +) |Integers a+b ab Even integers
(+ + =) |Linear set (a3+0y)1 + (agtby)§| (agtay)bii + (ajtay)byj ALl elements
of elements of form
a = ajitay] | (ayitanjli =
e (s tap)
over the 2
rational | iﬂ ;hj ig zit
integers l © tacals
| 80 Post.III
| is false.
(+ - +) |Same as (al+a2)i + (b1+b2)j' =i&;;-l;é}(bl+b2)i + az(bl-i-bz) j| 411 elements
(+ + =) of form
(~ + +) |Integers a+b ab Zerc and all
integers n
such that
inl> 5
(= = +) |Same as Seme as (+ - +) Same as (+ - +) A1l elements
(+ + =) aj where a is
an integer
such that
fal> 5 or
a=0
(- + =) |Same as Seme as Same as All elements
(+ + ~) L+ =) (+ + =) aj where a is
an integer
such that
lal > 5 or
a =0
(# - =) |Rationals |a+ Db ab Rationals r
such that 2r
is an integer
(- -~ =) |Integers a+b ab Positive even

integers
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DIVISION SYSTEMS

0,0 Definition. Suppose that to each element x of a class K
there corresponds a unique subclass Py ( K. K will be called a division

system if the Postulates I through V below hold for every element of K.

O;l Definition. The unique subclass corresponding to x is

called the principal ideal of x,

0.2 Definition. If there exists an element i in X such that

Pi‘—"-K, i is called a unit of K.

0.3 Postulate I. & ¢ Pa'
0.4 Postulate II. If a ¢ Py, then Py ( Py.

0.5 Postulate II1. Every subset 8 { K is contained in at

least one and at most a finite number of principal ldeals.

0.6 Postulate IV. For every a ¢ K there is an element b not
in Py such that PPy # P,.

0.7 Pogtulate V. The (logical) product of two principal

ideals is a principal ideal.

0.8 Theorem. The Postulates I through V are consistent and
independent.

Proof: By following examples:

26
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Character Class K Principal ideal of x, EX
(+ + + + +) Positive integers. A1) multiples of x by a positive
integer.
(+ ~) Positive integers with 6 A11 multiples of x by a positive

(+

(+

omltted.

Positive integers.

Integers > 1

1 and 811 fractions with
even denominators in lowest
terms.

Integer couples (a,b)
1¢ a¢ 1005 1 ¢ b ¢ 100,

Positive integers.

integer other than 6.
(Eg. PoP3 is not a primcipal
ideal.)

£11 integers y > x.

x and all its multiples by an
integer > l. (Eg. no principal
ideal contains the pair, (2,3).)

X and all its multiples by a
fraction with even demnominsator
in lowest terms. (Every element
belonges to an infinite nuwber of
ideals.,)

X = (xl,xz); P_ consists of all
couples (y,,¥y,) such that either
¥y is a mltiple of x or Yo is
a miltiple of xp where

1« yls 1005 1 ¢ Vo ¢ 100,

Pl = K; Px for x > 1 consists of
all integers y > x.

that given under (+ + + + +),

The simplest example is

Postulate I expresses the fact that

divisibility is a reflexive relation and II that it is transitive.

ITI insures the existence of a unit, and moreover adds the restriction

*Two examples are given, one in which a subset S may belong to no principal
ideal but at most belongs to & finite number; and a second in which S is
contained in at least one and not necessarily in a finite number of prin-
eipal ideals.

27



{Part III) 28

that every integer has at most a finite number of divisors. IV rules
out trivial systems such as totally ordered classes, which satisfy
all the other postulates. Postulate V states that among the common
multiples of & set there is always a least, i.e., one that divides
all the rest.

Another example is all the integers positive and negative
but not zero. This illustrates the more general situation that
equivalent elements, as the equivalence relation will be defined in
1.0, are not equal but merely assoclate. For instance by the definition
of 1.0, 1® -1 and in general n® -n, since both n and -n determine
the ssme set of multiples.

The positive Gaussian integers form a division system with
the principal ideals defined as usual., Equivalence again means dif-
fering only by a unit factor, eg., 2 © 21 since i is a unit, The
integers of an algebraic number field in general, however, do not form
a division system. Thus in the quadratic integers a + b JZE, where a
and b are rationsl integers, the common divisors of 9 and 3 - 6 ek
are ¥1, 3, (2 - /=5) no one of which is divisible by all the others;

so there exists no G.C.D,
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1.0 Definition. Ve define an equality in K as follows:

a=bifandonlyif?a=Pb

1.1 Remark. The correspondence between classes of equivalent

elements and principasl ideals is now one to one.
1.2 Theorem. a = a.
1.3 Theorem. If a=b, b= a.
1.4 Theorem. If a=Db and b = ¢, then a = ¢,

1.5 Remark. Fquality as defined in 1.0 is 2n eguivalence

relation.

1.6 Defimition. If b€ P, a is said to divide b, written a b.

1.7 Theorem. a}a (by Postulate I).

1.8 Theorem. If a|b and b e, then & |e.

F

Since a| b, b € P . By Postulate II, Py ¢ P,. Since ble,

¢ € Py ( Py so that ¢ ¢ P,. Therefore a|c.

1.9 Theorem. If a|b and bla, then a = b.

Eroof

By Postulate II, since alb, b ¢ P, and Py P,. Similarly P, & Pye

1.10 Definition. If a b, a is called a divisor of b, and b is
called a multiple of a.
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1.11 Theorem. There exists a unit in K,
Proofs By Postulate I1I, K is the principal ideal of some element i,

which is then a unit by definition.

1,12 Theorem. There exists only one unit i in K.
Proof: Suppose there were two units i; and ip. Then K = Pil = P12

& il = i,

by 1.0,
1.13 Theorem. The unit divides every element of K.

For a ¢ X =P, .. ila by 1.6.

1,14 Theorem. Every element of K has a finite number of
divisors.
Proof: Let a be any element of K. It has at least one divisor, since
a a. It has at most a finite number, since if x|(a, a ¢ Px and by

Postulate III a belongs to a finite number of prineipal ideals P,.

1,15 Theorem. Let a # 1. Then there exists an element b

such that & does not divide b and b does not divide a.

Progof: Direct from Postulate IV,

2.1 Definition. An element which is a multiple of every

element of a set S is a common multiple of S.

2.2 Tbeorem. The pr&duct of a finite number of principal
ideals is a principal ideal.
Proofs The theorem is trivial for oune principal ideal, and for two it

is a direct consequence of Postulate V. Assume it true for the n principal
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idealS. Pal’ Paz’ LAY ] Pano Tl’l@n ﬂleir product Pa _:‘:" P P s P

is & principal ideal., UNow consider the n + 1 principal ideals
Pal’ sy Pan+l' Their product is PalP32 o Panfl = Pa?an+l'
is a principsl ideal by Postulate V and the induction is complete.

This

2:3 Theorem. Every principal ideal contains at least one

element., For, if PX is any principal ldeal, x ¢ Py by Postulate I.
2+4 BRemark., The null class is not s principal ideal.

2.5 Theorem. Every finite set has at least one common multiple,
Let & be a set of elements &;, @, +vsy ap. The product P = PalPa2 ...Pan
of their principal ideals is a principal ideel by 2.2. It is non-empty
by 2.3. EBvery element of P is a comuon multiple of S by definitions

1010 and 2.1.

2.6 Definition. A common multiple of a set S which divides

every other common multiple is e least common multiple (L.C.M.) of S.

2,7 Theorem. Every finite set has a least common multiple

in Ko

Proof: Let 8 ( K be any finite set of elements ay, a5, «.v 8, Let
Pe 8 PalPal ves Pan. Pm is a principal ideal by 2.2. Consider the
element m of which P is the principal ideal, m is a multiple of each

of the elements a; ¢ 8, since m ¢ P, and Py is the class of all common

maltiples of S. Any other coumon multiple m' is thus also in P,.
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Therefore m! is a multiple of m or m divides m', and is the required

L,C.M. by 2.6,

2,8 Theorem, FEvery finite set has a unique L.C.M.
Proofs It has at least one by the previous theorem. If there were two,

say my and m,, my | By, and m, | my. Therefore my = my by 1.9,

3.1 Definition. An element which divides every member of

a set S is a common divisor of S.

3,2 Theorem. Every set 8 { K has at least one and at most a

finite number of common divigors.
Prooft By Postulate III £ is contained in at least one and at most a

finite number of principal ideals Pal, P,y ssey Pan. Then the elements

a

2
815 essy &, aTe Comuon divisors of S, since each one divides every element
of its principal ideal by 1.6. If there were any other common divisor a,

S {'Pa; so that P must be among the P,, and a among the 84

a

3.3 Definition. A common divisor of a set S which ig a
multiple of every other common divisor of S is the grestest common
div;ggr (GoC.Dn) Of So

3e4 Theorsm. Every set S ( K possesses a greatest common

divisor in K.
Proofs S possesses at least one common divisgor and at wmost a finite

number by 3.2. If D is the class of all common divisors of S, then D

32
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is finite and non-empty. Therefore it will possess a unique L.C.M., 4,
by 2.8. Ve shell show that d is a G.C.D. of S. Let a; be an arbitrary
element of S, BEvery element of D divides aj; so a; is a common multiple
of D by 1.10 and 2.1, Then d |a; since the L.C.M. of a set divides
all the other common multiples by 2.6. Since this is true for any a5

d is a comrmon divisor of 8, Let d' be any other common divisor. Then
d* € D. But d is a multiple of every element of D by 2.6 and 2.1.

d' ] 4 by 1.10. Therefore d is a G.C,D. of S from 3.3.

3.5 Theorem. Every set 5 {( K possesses a unique G.C.D. in K,
Proofs It has at least one by the previous theorem., If there were two,

d

, and 4o, dy | dy and dy| dy5 so 4y = dp by 1.9,

3.6 Theorem. The G.C.D. of a set S is the L.C.M. of the
common divisors of S.
(This is a direct consequence of the way the element d was

constructed in the proof of theorem 3.4.)

3.7 Remark. It is worthy of note that while only finite sets
possesgs an L.C,M., all sets possess a G.C.D. just as is the case in

arithmetic,
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