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I 

Introduction 

1. Summa ry. The s~bj ect of lattice automorphisms ha s been 

introducecl by G. Eirkhoff in his paper 11 011 the Structure of Abstract 

Algebre,s 11 (Eirkhoff [3) ) . In this paper t he subject ha s been pursuect 

further. Among the resul ts are a nece s sary and sufficient condition 

that a point lattice with n points have the symmetr:i.c group on 

n letters a s its group of automorphisms, and. the construction of 

a lattice with a given arbitrary abelian automorphi sm group. A few 

r e sults are added which are not directly connected with the stua.y of 

automorphisms . Of the se is a test for modula.rity of a lattice in 

terms of bonds (coverings) which is u seful. 

For hi s many helpful suggestions during the course of this 

investigation I am indebted to Professor Morgan Ward. 
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2. Notation ancl terminolo&t. We shall generally d.enote a lattice 

by a script J:.. and its elements by capitals A, B, C, X, Y. AG~ 

means A is an element of .I:,,. We write A :> E (A < C) for 

A contc1.ins ] (A conta.ined in C). When A ? :S and A C J3, 

we write A= E. A covers B (A is covered. by C) is written 

A ;> :B (A < C). A I'\ B and (A, E) indicate the join and meet 

respectively, of A and :B Let ~ represent a set of elements of 
n 

l\~= cl.. . Ai , Az' A ; we write 4 A. = Ai I'\ Az /\ . 
' n 1, 
n i 

/\ A and b. 1n = b. A. = (Ai , Az, . . . 
' An ) . J = At:, n i 1, 

and M = t. i.,, will represent the join and. meet respectively of all 

elements of the l attice. We call lir E £, a node if A C N • or 

N C A for every A E J::... The elements covering M are ca lled 

points and those covered by J dual :points. Dedekind or modul a.r 

lattices will be represented. by d.3 and. distributive lattices by (!.. 

Sublattices 1,rill be in<Hcated by 1<.. . The automorphism group will be 
1, 

denoted by ,h and a subgroup by ?+. . The symmetric grou.p on /W 
1, 

letters is denoted by J . New note,tions wil l be introducecl when 
11 

need.ea_, 
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The Group of Automorphisms of a Lattice 

3. Definition. An automorphism of a lattice£ is a one-to-one 

correspondence between the elements of£, and themselves which is 

preserved under the two fundamental operations of join and meet in £. 

We denote the automorphisms of £_ by small Greek letters. 

If a is an automorphism of £ , we denote the element corresponding 

to A by Aa and write: 

a.: A 

i,r,e call A. a i, • 11 f , .r:~ an unage o 

By definition: 

> 
A. 

(A /\ B)a, = Aa, A Ba. 

(A B)a = (Aa,, Ba,) 

fo1• all A ' B of £., . By an e2,sy induction ,;e get: 

n n 
( A A.)a = A A◊: 

l l l l 

n n 
( t:, A. )a = t:, A◊: 

l l l l 

We can further generalize the application of the definition to get the 

iw~ge under a. of a function of a set of el ement~ of ii:..,, consisting 

of successive joins ana. meets of these elements, eq_ual to the same 

function of the respective i mages of the elements. 

The ic3.entity automorphism l, is given by: 

l, A ~ A 

for every A €: ~ Thus A<. = A. 

If a and ~ are t wo automorphisms of L , we write 

(11.a) ~ = Aex,~ . By the product O'.~ we mean the result of applying 
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ex,, fo llowed by S acting on the elements of £ , and ,..,e write: 

aS A -< .. ,,, Aa.S 

:By the inverse -l 
of CX, CX, we mean: 

-l A a, (; ~ A CX, 

for all A E~ Evidently 
-l -l 

a, a, = (JJ1, -· L . 
We close this section with the fundamental 

THEOREM 3.1. The set .i, of all the automorphi sms CX, of a lattice 

-;/!.,. form a group, the automorphism group of the lattice. 

The theorem is easily verified and the proof is omit ted. 

4. nmd.amental properties of automo rphi sms. In thi s section 

we shall state a number of lemmas most of which are obvious from the 

definition of an automorphism of a lattice. We omit the proofs . 

LEM~IA. 4.1. An automorphism a, preserves t he relations ) and ( . 

LEMMA 4.2. Chains are preserved by a, . 

The element s M and J and the nodes 

when they exist, are inva riant under every a, of ;J:.,,.. 

N. 
1. 

of £.. , 

LEMViA. 4.1-~. The Dedekind. propert y is preserved. by every a, • 

LEMMA ~- .i::;. The a.istribut ive property i s preserved by every a, • 

LEMMA 4.6. Complement ed elements are carrie,l in~o complemented. 

elements by every a, . 

LE}~i.A. 4.7 . .An automor-9hism a, preserves the covering rela tions 

:;:,, and < . 
LEMMA 4.8. Descend.ing and ascending cha in cono_i tions are preserved. 

b;y a, • 
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LEMM.A. 4.9. If an element is expressible as the join of points, 

so too is its image under a,. 

We note that if A contains only the n points X1 , X2 , • • 

contains only the n points T'nis 

important fact is clear from the 1-1 ordering imposed by a,. 

LEMMA 4.10. In a finite lattice with rank function defined, rank 

is preserved by a, • 

Notation. For the following lemma we adopt a new notation. 

Let ~ be the number of elements covering the element X and 

°-x be the number of elements covered by X • Then, and °-x 
denote the number of bonds emanating upward and downward, respectively 

from X in the lattice diagram. 

call X a (5 7) element. M 

If ~ = 5 and °-x = 7, we shall 

is then an (n - 0) element, where 

is the number of points; J is a (0, m) element. We shall use this 

notation again later on. 

LEMMA. 4.11. An (r - s) element is carried into an (r - s) 

element by an automorphism of ,;l . 

n 

X 
n 

We conclude t}).is section with the proof of the simple but important 

THEOREM 4.1. An automorphism a, carries sublattices into sub

lattices of like kind; i.e., distributive sublattices go into 

distributive sublattices, point sublattices are carried into point 
"' 

sublattices, and so on. 

-J:, , and 
a, 

Let uo be a sublattice of uo be the set of 

elements of L corresponding under a, to the elements of Uo . 



If A and :s are any elements of 

U . Hence 
0 

6 

= 

Similarly 

€: '1,.(. ~ • U CL 
0 

is a sublattice of , since it is 

closed with respect to join and meet. Th8,t 'u,
0 

and. .,, J a., 
'-1., are 

0 

sublattices of like kind follows i mmedi R-tely from the precedine; ler:imas. 

5. Permutation uro-oerties. The automorphism group .1J of a 

lattice £.. is a permutation group on its elements. If :S = Aa., 

is the image of A under some a, of /J , we call A and B 

conjugate elements and write A rv B The relation of conjugacy is 
V\ 

clearly an equivalence relation. It enables us to divide ,t_ into 

classes of conjugate elements where 

the set 111.i consists of all im1",ge s of some Ai E ~ . These 

classes a :ce then the transitive systems of ,,b vm.en it is represented 

as a permutation group on the elements of L . 
Con sider a class 1n_ of eq_ui valent ( conj ugate) elements 

' A • n 
From well kno,vn theorems* of group theory we 

get the next four theorems. 

THEOREM 5.1. 

are a ll elements of 

of J . 

are a ll elements of 

group of ~ 
JJ 

, then the symmetric group 

, then t~e a lternating group 

(A1A3 ), • • ·, (A1A ) 
n 

! n is a subgroup 

is a sul)-

THEOREM 5. 3. T~rn set of all automor-_phi sms leaving an element .A1 

Carmichael 11 Introcluction to the Theory of Groups of Finite .Order, 11 

Corollary to Theorem II, p. 8; Corollary to Theorer.i IV, p. 11; 
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unaltered forms a subgroup of .iJ The index of this subgroup is 

the number n of images of A1 • 

If h has pri:ne orde p , this subgroup must be the identi t;? 

element l, of index p or ,k itself of index one. Hence we have 

COROLLARY 5.3. If the automorphism gro1.,p b of ~ has prime 

order p , ever-J element is either invariant or has exactly p iimages, 

including itself. 

Hence, when the order of ..iJ is a prime p , the c l asses 1r{i 

of conjuga te elements of £ consist of p element s or one element 

each . The e l ements of ea.ch class of order p may be so ordered that 

an automorphism a, will be the same permutation on each class. 

Either a, will permute a ll element s of ea ch class or a, = L 

Furthermore if a =/: ~ , it i s a cyclic permutation on all the 

of a cla ss. Otherwise we could write a, as a product of cyclic 

permutat iom on the A . no t wo of which have a letter in co:m.mon.* 
1. 

A. 
1. 

Then the order o: a, would. ·be the least common multiple of the degrees 

of the cycl i c permut ations which com:9ose it.** This is a contradiction, 

since the order of a is p , a prime . 

The remaining elements of J!t ca n be written as powers of .a,, 

since a group of ::;iri:ne order is cyclic ancl is generated by a ny e l ement 

other than the i dent ity. Hence we can wri te ~ = 

where k has one of the val ues 1 , 2, (:p - 1 ). 

Now consider the automorphism groc:p J.t of a point lattice ;/:, • 

Since covering is preserved, the points are perrmt ed amone; themselves 

Ibid. Theorem I, p. 7. 
Ibid. Theorem V, p. 11. 
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and may be divided into classes of conjugate elements. Tha t ever_x 

a., =/=- l, will permute po ints is clear from the defi nition of a :p,aint 

lattice and the fact that cha ins a re p reserved.. Hence we have 

THEOREM 5.4. The automorphism. group of a point l att i ce is a 

permutation group on its points. 

COROLLA.RY 5.4. The automoryhism group of a point lattice of 

n Jloint s is a subgroup of the symmetric group 1 
- .4 n • 

6. I nvariant sublattices a nd subgrou:ps. We state here a theorem 

of Birkhoff. * Its proof is left to the reader. 

THEOREM 6.1. The set of el ements of cf. invariant under a., 

form a sublattice. This sublattice is ca lled the centralization of 

a., • More generally, to a subgroup J.I. of the automorphism group .J/ 
co r responcts a sublattice 1A_. consisting of a ll elements invariant 

under every a., of 1/--the centrali zation of ~ . 

•• )){. = 
n l , ano. if U

0
, 

a re t he centralizations corre ~ponding to J.f
0

, Jf1 , 

C Un = respectively, then 

11.,i a sublattice of Ui + l (i = 0, 1, 2, • • 

If k = 

1f l ' 

. . . lfn 
£. with 

' (n - 1)) . 

The analogue of this theorem is the following theorem for 

which we shall have use l a t er . 

TIDJOREM 6.::>. Tue set of all automorphisms of ./.J leavi ng a 

Z{,_[l 

gi ven element A unaltered forms a subgrou-p of .!J . More generally, 

to a sublattice U of £, correspond a subgroup JI.- of ~ v,h ich 

l eave s it absolutely unaltered. 

Birkhoff (3) -- 11 011 the Structure of Ab stract Al gebra s, 11 p . 435. 
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The first part of the theorem is merely a restatement of Theorem 

We note that the subgroup Jf t hat leave s a su·bla ttice Zl. 

absolutely lLQaltered is a subgroup of a l a rger subgroup ;¥, which 
0 

leaves U u.11.e,lterea. merely as a sub l a tti ce. 

TIDlOBEM 6.3. Let A and B be t wo invariant elements of £. , 
with A :J B Then the q_uot ient lattice 

sublattice of £. . 

A 
B is invariant a s a 

This theorem is an i mmediate conseq_uence of Lemma 4.2. 

COROLLA.RY 6. 3. 

• . , A 
n 

Let ?'J1. 
of L 

be e, cl ass of conjugate elements 

Then = 
A A. h l 

!::,. ·\ 
i s 

invaria nt as a sub l att ice of al . l 

n n 
.tor Ll. A. and !::,. A. are invariant under every automorphi sm. 

i l i l 

We need not restrict Theorem 6. 3 and. its corollary to the who l e 

automorphism group ./t . We can consider q_uot i ent latti ces invariant 

u.11.der a subgroup ft of .!J . 
is the following: If 

A ) B ".nd Aa ..., T:,a t' o .,, .o , nen 

Definition. Le t Ni, N2 , 

~ . with J ':) N :, N 
- 1 r r 

J 
N 

lattices 
r 

) ) • . . N N 
r r - 1 

A more general re sult than Theorem 6.3 

:> 
Nz 

m1der rt, , with 

• N be the nodes of a lattice , r 

::, Ni :) M . The quo tient 

~ ca lled the nrinciual ,-) a re 
Ni M 

sublatt ices (Ha up tu:at erve rbande) of cl 
.n·om Lemma 4.3 and Theorem 6.3 re ge t i mmeclia tely 

THEORZ'v! 6.4. The principa l sublattices of L, are invari ant 

as sublattices under the aut omorphisms of 
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The aut omorphisms of any one pri ncipal subl a ttice a re certainly 

independent of those of the other principa l subl a ttices. We therefore 

conclude 

'l1illlOREM 6 . 5 . The automo rphi sm grou;_o 1J of a l a ttice ;f_ with 

one or more nodes i s the di rect product of the groups of its principa l 

subla ttices . 

.!from t his it is seen t ha t i n the study of l a ttice automorph ism 

groups we can conf ine ourselves to h .ttices without nodes. 

We shall make use of this -important theorem l a t er on . 

7. Point l at tice with the symmetric group. In this section i s 

given a ne ce ssary and. sufficient condit ion that a :point l attice with 

n points have the symmetric automorphism group J n . 

Definition. Le t £, be a n Archimaed_ian lattice in which all 

chains between an arbi tra.ry :pair of depend.ent elements are of eq_u.al 

length . We shall call £ an equal -chain l atti ce (a.usgeglichener 

Verba.no. ). 

Notation. We shall denote the points of a po int lattice by 

numbern 1, 2, • • •, n. Since each element i s the join of a ll the 

points it contains , we shal l incorpore,te thi s i d.ea in our not a tion . 

If an element conta.ins 1, 2, 4 and 7 a nd no other points, we shall 

wri t e 12~-7 i nstead of 1 1\ 2 /'\ l+ /\ 7 . Then by the properties of 

a po int l attice tee j oin of 12479 and 2589 is 1245789 . We use 

this notation in 

THEOREM 7.1. Let J_ be an eq_ual chain po i nt l attice of r ank f 

with • .j. n p o::..nc s . Let each rank consist of a.11 the combinat ions of the 

n points taken k at a ti!cle, k obvio'l."csly inc1·er~sing with the ro,nk r . 
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Then, as r takes in the succes s ive values l, 2, 2)' 

< P - 1). e k t,-,.kes on t he successive va lue s , l, 2, ! p - 2)' 

( p - 1), n r espectively. In other words M is of rank zero, the 

uoints 1, 2, •' n are of r a p.k 1 those of re.nk 2 a re the 

c: elements 12, 13, • • • 1 n, 23, • , (n - 1) n ; and so on 

till ,,,e have the elenent R of rcmk p - 1 consisting of the n _:Points 

taken f - 1 a t a time; then k juinps to the value n for r = p 
and we get J a lone of rank f . 

If k skipped. an integr2.l vah.e except between the rank p - 1 

ana_ rank ~ we would not have m1iq_ue join of elements. This is 

best illustra.ted by the example of Fi6ure 1. 

M 

Figure 1. 

Th5.s is not the cliagram of a lattice because the join, se.y, of 1 and. 

2 is !10 t 1.miq_ue. 
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THEOREM 7.2. A ~o oint l a ttice £ with n po ints has the 

symmetric group , as its automorphism .o:ro ,·_p if and. onlv if it 
.,<) ~1 - "' .; 

is an eq_ual-chain point l attice with each rank consisting of all the 

C~ combinations of the n points taken k at a time, k constsnt 

for each re.nk, hence if ardonly if £ is of tl:e form given in 

Theorem 7 .1. 

Suppo se Jn is the group of automorphisms of £ Let the 

po i nts conta ined in an arbitrary element A be 1, 2, • • • r . 

Then in our notation A = 123 • • • r . = (123 • • ·r )ex, 

Since ex, ranges ove r all pe rmutations of the n 

points, ve see that Aex, ranges over all the en 
r 

elements represented 

by te..king the n points r at a time . Thus el.. consists c f a number 

of such sets with different r . It is clear that each set is of 

con::.ta.nt rank so that ~ i s a n eq_ual -chain point lattice . The 

remaino.er of t he :proof of the necessity follows i mmecliatel y from 

Theorem 7.1. 

The sufficienc~r is evia_ent from the symr.1e tr·ical way in which the 

elements are represented in terms of the n point s . 

When e = n in this type of lattice we have the :Boolean algebra 

consisting of all subsets of n points. (See Theorem 24.2 , Birkhoff 

(1)). This l att ice is the distributive lattice generated. by n 

point s . The c.iagram of the Boolean a lgebra with n = 5 i s given 

in the fi gure on the next page . 
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Fig,11.re 2 

When p = n - k, the lattice of Theorems 7 .1 and 7 .2 is 

obtained from the Boolean algebra of n points by omitting the 

elements of rank n - k, n - k + 1, • • • , n - 1. A simple case 

for which f = 3 and n = 5 is illustrated below. 

M 

Figure 3 

13 
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This type lattice is seen to be a Birkh0ff lattice in which the ~ 

cond.ition holds.* The condition fails for the elements covered 

by J except for the ce.se f' = 2 

In the latter case the lattice is modula r, but is distributive 

only when n = 
,.., 
c:. • A cl.ie,gram of this c;:i._se is given in Figure l.~. • 

I 

Fi gure 4 

The Boolean algebra is the most interesting c~se of this type 

of lattice. Every distributive lattice of rank n is a sublsttice 

of the Boolean algebra of n points. From this follows 

THEOREM 7.3. The automorphism group of a distributive lattice of 

rank n is a subgroup of the symmetric group ,J n . 

In the next three sections we shall be concerned with the auto-

morphism groups of distribution lc.ttices. 

* ]irkhoff (1)-- 11 Cn the Combinc.tions of Suba l gebras, 11 p. l.i.45. 



8. Notation for distributive lattices. The notation we now 

develop for the elements of a distributive l att ice e will be 

useful in studying its automorphism group . We m,e Theorems 17.2 

and 17.3 of BirF~_off 1 s paper.* 

The genen).tors are 12.beled in order of r ap_k . The n point 

generators are repr esented by t he integers l, 2, 3, • · • • n 

These I of course, generc,te the Boolean a l gebr a e of r a nk n of 
n 

Sect i on 7. Then, "by Theorem 17. 2 ment ioned 2.bove each el ement of 

½i is identified with a subset cf the n points i n such a way 

that the join of two elements X and. Y i s identified with the 

l ogi ca l swu of the subsets of X and. Y anc, the meet with their 

common part . Now consider the generators of r ank 2 antl 

suppose there are p of them . If they cover, say, 1, 4 , 7, • • • 

15 

(n - 3 ) , ( n - 1) respectivel y we denote them by l( n + 1) , 4 (n + 2 ), 

7( n + 3), • (n - 3)(n + p - 1) , and (n - l)(n + p ) respectively. 

The element s generatecl by these new elements 2.na_ those of /f are 
\..,n 

t:otten by taking the logical sum as the j oin and the common part c:ts 

the meet . We obtain the representation of the generators of third. 

and_ higher orders in the same manner, 2nd ge t the r esulting generated 

elements as before by taking l ogic8.l sum anfl~ comr:ion part . for join 

and meet re s,e ct i vel y. Thus if' the rth generator covers 

135789 we designate . ,_ bv 135789.tt . Also 135739 I\ 1468 = l t, ., 

13456789 ancl (135789 ,1468) = 18 . It must be re:oembered that 

the number of the gener~tors is e~ual to the rank of the distributive 

lattice . 

Birkhoff (1) --"0n the Combination of Subalgeoras, 11 pp . 451.i--456. 
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To illustrate this notation the diagram of a lattice of rank 

10 is given below. Its generators, enclosed by squares, are 1, 2, 3 

of rank 1; 124, 125 covering 12 and 236, 237 covering 23 all of rank 

3; 12345678 of rank 8; and 123456789, 12345678tl of rank 9. 

M 

Figure 5 



17 

The group of this l attice is the direct product of the four groups 

{, . (9t)} , {L, (12)(47)(56)} , {L , (45) J , and {L, (67)} . It is 

therefore of orcler 16. It is noted that the four generators 124, 125, 

236, 237 form a sinrply transitive system with the two sets 124, 125 and 

236, 237 as systems of imprimitivity. 

This notation h~s several inrportant useful properties. The rank of an 

element is merely the number of digits or letters in its representation. 

Furthermore, we can tell at a glance which genera.tors are contained in a 

particular element. 

Now the structure of a distributive lattice is determined uniquely 

by the manner in which transitivity is ascribed to the generators. An 

automorphism will then permute certain generators of the same rank, since 

the genera.tors determine absolutely the coinIJlete structure of the lattice. 

Using the notation here developed, an automorphism a, will then be a 

permutation on the end digits of the representations of the generators . 

.Applying this permutation to the representation of a.n element .A we get 

automatically the image Ao, of A. 

9. Direct product ,of linear lattices. The direct procl.uct of t wo 

linear lattices of rank m and n respectively, is represented by 

a rectangular checkerboard diagram. We show the diagram of the direct 

product of the linear lattices of rank 3 and 5 in Figure 6. 
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.E'igu.re 6 

The direct product of n linear lattices of rank f1 , 

respectively, is represented by the projection upon two dime~sions of a 

Pn 

generalized rectangular network structure of n dimensions. A lattice of 

this type is a g.c.d.-1.c.m. lattice. The elements are factors of the 
ri f2 Pn 

positive integer n where n = P1 P2 . . . Pn The 

join of two elements is ta.ken to be the l.c.m. cf the elements, while 

their meet is their g.c.a. The generators are Pl, Pl 2 , • • • , 

e1 
p '2, 

P2 , • 
e2 . . . . .. 

J 1 

Pn 
P P 2 . 
n' n ' 

The automorphism group of this lattice is easily seen to be the direct 

product of symmetric groups: 

X • • • X 

where 

(i) r. is the number of p j equal to i 
J. 

(ii) the Jr. are deleted when r. = 1 
l J. 

( iii) r1 = 2r2 + 3r3 +• • • + kr = k p = f 1 + p 2 + • • • + 

A special case of this type of lattice is the :Boolean Algebra e._ n 

e n· 

of rank n of Section 7. This lattice is the direct product of n linear 
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lattices of rank 1. Hence r 1 = n and O = r 2 = r 3 = • • • so that 

}J = ..J n , as we ha.ve alre~:;,dy seen. 

Suppose we have given the direct product e of k such Boolean 

algebras e. of rank n1, n2, . . . ~ respectively. Since each e. 
1 

is the a_irect product of ni linear lattices of rank 1, e, 
product of • + ~ linear lattices of rank 1 

k 
is the Boolean algebra of rank ~ ni with group 

I 

1 

is the direct 

and therefore 

J~n .. 
:_ I 1 

This example illustrates the fact that the direct product of the 

groups of several lattices is merely a subgroup of the group of the direct 

product of these lattices. The simplest case is given below. 

J [!,3] [2,l] 

I I 

&,ril) 
A 

r1 

}J = ( L ,(n.)) h = (L} [M>M) J., -:; ,,13 

Figure 7 

10. Lattice with given group. In the preceding sections we have 

dealt with a few of the aspects of the problem of finding the group @fa 

given lattice. Finding fille group of a lattice is a separate problem 

for each lattice in the most general case. We can establish significant 
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theorems on the group of a lattice only for well-behaved types such as 

equal-chain lattices and distributive lattices. 

In this section we shall be concerned with the converse problem, the 

construction of a lattice naving a given group for its automorphism group. 
f i,-,it• 

The problem has been solved for the case of"abelian groups. We state 

this result now in 
li11ite. 

THEOREM 10.l. Given an arbitrary"abelian group J . There exists 

a distributive lattice £ with }J as its automorphism group. 
f it1,t.e 

Any abelian group is the direct product of cyclic groups.* Theorem 
/\ 

6.5 states that the group of a lattice with nodes i s the direct product 

of the groups of the principal sublattices. Our problem is therefore 

reduced to constructing the principal sublat t ices having the cyclic 

groups for automorphism groups. 

We do this using the notation developed for distributive lattices 

in Section 8. Let n be the order of the cyclic group. 

Case n = 2. We take~the Boolean Al gebra of rank 2. (See Figure 7). 

We omit the cases n = 3 and n = 4 for the time being. 

Case n = 5. We take as generators the set of five points, 1, 2, 

3, 4, 5, the set of rank three 12a3, 23a
4

, 34a
5

, 45a
1

, 5la
2

, and the set 

of rank seven 1234a3a
4

b
5 

, 2345a
4

a
5

b
1

, 3451a
5

a
1

b
2

, 4512a
1

a
2

b3 , 5123a
2

a3b
4

• 

Let a be the permutation (12345)(a1a 2a 3a 4a 5 )(b1b2b3b4b 6 ). On account of 

the cyclic manner in which we have defined the generators, a., and its powers 

ak (k = 2, 3, 4. 5 with a5 = i ) are automorphisms of the distributive 

lattice which we shall denote by 

permuted cyclically by a.,. 

(! 5 • Each set of generators is 

Carmichael-- 11 Introduction to the Theory of Groups of l!.,inite Order, 11 

p. 66, Theorems XIV and XV. 
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We must now show that there are no other automorphisms of 

The five powers of a beginning with the first carry the points 1 and 

2 into the ordered pairs 2,3; 3,4; 4,5; 5,1; 1,2 respectively. We now 

show from consideration of the second and third sets of genera.tors that 

only these powers of a ce.n do this. Since the three sets of generators 

must be permuted among themselves, it is evident from the second set that 

consecutive integers must be carried into consecutive integers. If ~ 

exists carrying 1 and 2 into 3 and 2, 4 and 3, or 5 and 4 respectively, 

-1 20-l 3 -l then a$ , a~ , or a~ will transpose 1 and 2. In any event 

we need consider only the existence of an automorphism transposing 1 and 

2 . If one exists 12a3 is invariant, 23a4 ~ 15a2 so that 3 ~ 5 

get the permutation 

images of the b. 
1 

To determine the 

we consider the third set of generators. We find 

that 1234a.3a 4b 5 ---+- 4512a2 a 3b • But there is no such genera.tor for u 

any value of u. Hence there are no other automorphisms than those of 

the cyclic group a , and we have completed. the case n = 5. 

For the case n ::> 5 we apply the same argument to the analogous 

sets of generators 1, 2, • • • , (n - 2)(n - l)a n 

This method of choosing generators breaks do,~1 for the case n = 4. 
'7 

To get a distributive lattice ~ 4 with the cyclic group of order 4 

as automorphism group we take for generators the following four sets: 

1, 2, 3, 4; 12a3 , 23a4 , 34a1 , 4la2 ; 12b3 , 23b4 , 34b1 , 4lb2 ; and 

123a
3

b
4

c
1

, 234a
4

b
1

c
2

, 34la
1

b
2

c
3

, 412a
2

b
3

c
4

. The four powers of 
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Furthermore, from the second set of generators we see tha t a pair of 

cyclically consecutive members of 1, 2, 3, 4 (as elements or subscripts 

of elements) must go into a pair of consecutive numbers in the same or 

inverse order. If a pair goes into a pair in the same order, it is easily 

seen that the resulting automorphisip. must be a power of a,. If the pair goes 

into a pair in reverse era.er, we need. consider, as we did in case n = 5, 

only the possibility of a transposition of 1 and 2. If one exists we get 

the permutation upon consideration 

of the second and third sets of generators. :But this means that 

123a3b4 c1 ~ 412a3 b2 c which does not exist for any value of u . u 

Hence the powers of a, are the only automol1)hisms of this lattice. 

We must take even more complicated (comparatively) sets of generators 

for a distributive lattice with automoriJhism group cyclic of order three. 

are automorphisms because of the cyclic order in which the l ette rs appear 

in the generators. If ~ exists carrying 1 into 5 then ~a,2 carries 1 

into 4, or if P exists carrying l into 6, ~a carries 1 into 4. If an 

automorphism exists carrying l into 4, then 124a3 ~ 124a3 and 

a 3 is invariant. We have two subcases: 4 ~ l and 4 --J- 2 . 

The latter is impossible, since 1 --t 4. If 4 ~ 2 then 2 ---, 1, 

235a1 ~ 316a2 , and 316a2 ~ 2358-1 • Again the latter is impossible 

since 1 --t 4 . We have excluded the possibility of an automorphi,sm 

carrying 1 into 4, 5 or 6. 



Similarly 2 and 3 dannot go into 4, 5 or 6. Hence 1, 2, 3 are 

permuted among themselves and 4, 5, 6 among themselves. If 1 is 

23 

inva riant and 2 and j are transposed, then 235a1 and 5 are invariant and 

4 and 6 are transposed from a consideration of the fourth set of 

generators. But in the fifth set 1257b3 ~ 1357b which does not u 

exist for any value of u. Hence no automorphism leaves 1 invariant 

while transposing 2 and 3. Similarly no automorphism transposes 3 and 

1 or 1 and 2. On t.he other hand, the automorphisms that permute 1, 2, 3 

cyclically are easily seen to be the three powers of a. Therefore, 

a, a 2 , a 3 = ~ constitute the cyclic automorphism group of order three 

of this lattice. 

We have now completed the demonstration of the existence of distributive 

lattices with cyclic automorphism groups of all orders. Given an 
f inite 

arbitrary" abelian group , we express it as the direct product of cyclic 

groups. We then construct a distributive lattice with nodes having for 

its chief sublattices lattices with these cyclic groups as automorphism 

groups. This distrioutive lattice is the one required by the theorem 

and the proof is complete. 

It should be emphasized that this method of construction is by no 

means unique. We could have constructed lattices with cyclic groups 

of order 4 or greater in the same manner as we constructed the one with 

cyclic group of order 3. We chose a simpler set of generators for order 

4 and a still simpler set for order 5 or greater. The theorem is merely 

an existence tneorem. 

Tne construction of lattices having various types of non-abelian 

automorphism groups will be the subject of further investigation by 

the author. 
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11. Two examples. The diagram of Figure 8 is tha t of the so-ca lled 

"symmetrica l equivalence lattice o! ct.egree four )l * . This is a modula r 

point (and dual point) lattice. Its group has order 24. Ih: f a ct 

its group must ue isomorphic with the symmetric group J 4 .** 

The elements are listed in Table I. 

Figure 8 

a,: (14) (jti) a: (25) (1364) 1: (124)(356) 2 

(,: () ra: (13)(46) -a: ( 25)(1463) 1: (124) 2 (356) 

Y: ( 24)(35) b: (16) (2354) 2: (1.3::,) (246) 2 

A: (16) (34) 
-'-
a,: (23)(45) b: (16)(2453) 2: (135) 2 (246) 

B: (25) (34) ra : ( 15)(26) c: (34 )(1265) 3: (145) 2 (236) 

(16)(25) 
- (12)(56) - (34)(1562) (14~)(236)2 C: y: c: 3: 

4: (123) 2 (456) 

4: (123) (456)1-

Table I 

* Birk:hoff (3)-- 11 0n the Structure of Abstract Algebras, 11 pp. 436- 7 and 11'18 , 
pp. 447-8. 

*"' Ibid. 'l'heor em 2j, p. 449. 



The second example, given in Figure 9, i s that of the smallest 

non-trivial projective geometry. It is of rank 3, with seven point s 

and seven d.ual points. It is surprising that its automorphism group 

25 

turns out to be the smallest non-cyclic, non-alternating simple group. 

Projective geometries and simple non-cyclic, non-alternating groups a re 

few in number. Whether or not there is a relation between them as hinted 

by the example will be a subject of later investigation. 

The automorphism group, as a permutation group on the points, is 

doubly transitive. It is generated by (1423576) and (23)(56). We list 

the elements in Table II. 

l'2. 3 31,7 

I 7 

M 

Figure 9 
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1 ---, 1 23 -t 23 = ' (56)(47), (57)(46), (45)(67) 
" ' 23 --t l2 (23)(47), (23)(56), (23)(4675), (23)(4576) 

23 _,. 7 (24)(37), (2437)(56), (245)(376), (246)(375) 
23 -+ 74 (27) (34), (2734)(56), (275)(346), (276)(345) 
23 -I' 56 (25)(36), (2536)(47), (254)(367), (257)(364) 
23 --t 65 (2635)(47), (26)(35), (267)(354), (264)(357) 

1 ---+ 2 23 --t 13 (12) (45), (12)(4756), (12)(67), (12) (4657) 
23 --t 31 (12a)(467). (123)(576). (123)(475). (123)(456) 
23 -t 46 (12 3657), (124)(367), (1245)(36), (1247536) 
23 ~ 64 (1263475), (126)(345), (1267)(34), . (1265734) • 
23 --I) 57 (12537~6), (125)(376), (1254)(37), (1256437) 
23 ~ 75 (127)(354), (1273564), (1276)(35), (1274635) 

1 ----, 3 23 --> 12 (132)(465), (132)(476), (132)(567), (132)(457) 
23 --t 21 (13) (4567). (13)(a1>. (13) (lJ.76a). (13) (46) 
23 ~ 64 (135)(246). c1452 76). (135672 ). (1357)(24) -
23 --t (1342567). (13 )(257). (134762a>· (1346)(25) 
23 -t 67 (1375) ( 26), (1374526), (137265 ) , (137)( 264) 
23 ~ 76 (1365427), (1364) (27), (1362745), (136) (275} 

1 ---t 4 23 -t 26 (147)(365), (14)(36), (145)(367), (1436)(57) 
23 ~ 62 (1432675), (1457326), (14)(2653), (147)(263) 
23 ~ 35 (1467235), (1423576), (147)(235), {14)(2356) 
23 ➔ 53 (14) (25), (147)(256), (1425)(67), (146)(257) 
23 -t 17 (1452) (37), (1437562), (1465372) , (142) (376) 
23 -t 71 (1427653), (1463)(27), (143)(275)~ (1456273) 

1 ~ 5 23 ........ 16 (152)(367), (1574362) , (1536472), (1542) (36) 
23 ..-,. 6i (153)(264), (1547263), (1526743), (1573)(26) 
23 -+ 27 (1537)(46), (154)(376). (15)(37), {156)(374) 
23 -+ 72 (15)(2743), (156)(273), (1532764), (1546327) 
23 --f 34 (15)(2347), (156)(234), (1523467), (1576234) 
23 ➔ 43 (1524)(67), (157)(246), (15)(24), {156)(247) 

1 --, 6 23 _. 15 (1647352), (162) (354), (1672) (35), (16;3571+~) 
23 ~ 51 (1674253). (163)(257). (1643)(24>. (1625473) 
23 -, 24 (167)(345), (1634)(57), (165)(3 7), (16)(34) 
23 ~ 42 (165) (243), (16) (2473), (1675324), (1632457) 
23 ➔ 37 (1645237), (1623754), (165)(237), {16)(237~) 
23 -t 73 (165) (274), (16) (27), (164) (275), {1627) (45) 

1 ---t 7 23 -, 14 (1734652), (1-762)(34), (172)(345), (1756342) 
23 --+ 41 (1753)(24), (172ij563), (1765243), {173)(246) 
23 ~ 25 (174)(356), (17)(35), (1735)(46), (176)(354) 
23 --t 52 (1764325), (1732546), (17)(2563), (174)(253) 
23 -+ 36 (1754236), (17236ly5), (17)(2365), {174)(236) 
23 ---t 63 (174)(265), (17)(26), (1726)(45), (175)(264) 

Table II 
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Supplementary Theorems 

12. Modular lattices.. In this section will be given some supplementary 

results not directly connected with automor-_phisms of lattices. We give 

first a proof of a theorem of Birkhoff.* His proof appears incomplete 

The proof given here is along a different line. 

THEOREM 12.1. If X1 , X2 , • • • , X are the points of a finite 
w 

modular lattice 03 , and if 

which it contains. 

w 
y :_( A X. , then Y is the join of the X. 

l l. l. 

To prove this theorem we make an induction on the rank. The theorem 

is true for elements of rank r = 1. Assume the theorem is true for 

rank r = n. Let Y be an arbitrary element of rank r = n + 1 contained 
w 

in A X. and let Yi, Y2, . . . y be the elements (of rank r = n) 
l l. m 

w ,,., 
covered by Y. Then, since Y,r C y <: ~ 3E. ' y(f" = A X(T,r where 

l l. ,r= 1 

x~tr ( rr = 1, 2, . . • ) f'. <r ) are the points contained in Y,r ' 
( <T = 

m 
1, 2, . . . m). y = A Y. = the join of the Xtr,r contained in 

' l l. 

the Yi. If X is any other point not included among the x,, 
0 m }!otr 

XI\L\, A Xinr = X 0 /\ 
y has rank n + 2 by the law of rank 

0 <T= 1 tr= 1 
in a modular lattice. Hence X ¢ y , y contains only the points X <TIT 

0 

and is the join of these points. Since y was an arbitrary element of 

rank r = n + 1, the 
w 

contained in A X. 
l l. 

now complete. 

COROLLARY 12.1 A. 
w 

lattice. If L\. X. 
l l. 

dual point lattice). 

theorem holds for all elements of that rank 

The induction on r ( r = 1, 2, . . . w) is , 

The QUOtient sublattice is a point 

J then d!, is a point lat t ice (and also a 

Birkhoff (1)-- "0n the Combination of Subalgebras, 11 Theorem 11.).1-, p. 449. 
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The statement of the parentheses is gotten merely by dualizing the 

proof of the theorem. 

COROLLARY 12.1 ]. If F1 , F2 , • • •, F are the elements covering 
w 

an element F in a finite modular lattice (B, and if Y is an element 
w 

satisfying the relation L\ F. :, y :> F then y is the join of the 
l J. 1t F. 

F. which it contains. The quotient lattice J. 

F is a point lattice 
J. 

and is the dual of a point lattice. 

In the following theorem we employ the notation introduced for 

Lemma 4.11. 

THEOREM 12.2. In a modular point (dual point) lattice (1.3 the only 

(1 - k) elements are the du.al points (elements covered by J ) of d3 ; 
the only (k - 1) elements are the points of (8. 

Let Y be a (1 - k) element. Y is the join of the points which it 

contains by Theorem 12.1. :By the law of rank the elements Y. = Y /\ X. , 
J. J. 

where Xi ranges over all points not contained in · Y, all cover Y. 

They must then all be equal to an element, say Z. Since Z contains 

all the points it is J so that Y is a dual point. We note in ~assing 

that there can then be only one X. 
J. 

not contained in y . The second 

part of the theorem is merely the dual of the first part, since a modular 

point lattice is its own du.al. 

COROLLARY 12.2. A modul ar point (dual point) lattice has (1 - 1) 

elements if and only if it is of rank two. 

The following theorem is a useful test for the modularity of a lattice 

when the lattice diagram is given. We employ the notation of Lemma 4.11. 

THEOREM 12.3. Let Y be a (u - d) element in a finite modular 

lattice CB . Let • • X • d be the elements covered by Y 
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2.nd Yi, Y2 , • • • , Y be the elements covering Y. Then 
d u u 

Dy = L ( '1x - 1) = 2. ( dy - 1) :: Uy • 
O'"= 1 d' ,,r= 1 /f" 

This theorem stat es that in the lattice diagram the sum of all the 

bonds emanating downward from the elements covering Y diminished by the 

ntunber of these elements is equal to the number of bonds emanating upward 

from the elements covered by Y diminished by the number of these elements. 

Let xi = Y x2 
(I' ' tr 

'1x X tr (J" be the '1x"" elements covering X6 • 

Y, Y., 

Figure 10 

icr 
These X tT are all distinct for every o and i #: 1 . Otherwise there 

woulcl be no unique join of t wo X f1 covered by a common X~ ( "'F Y) as 

indicated in Figure 11. Now in a modular lattice when A and B each 

cover (A, B), then A I'"\ B covers both 

Xot 

Figure 11 

Y - x' -x' - I( - ~ 
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itr 
A and ] . Hence the elements X I' f\ Y (id" =I: 1) cover Y and 

are among the These (1½(.,. - 1) elements = 2, 3 t • • • 

'1ccr ) then account for all the (1½(0- - 1) bonds emanating upward. from the 

and - 1) bonds emanating downward from the Ylf" excluding 

in each case bonds emanating from Y 

inequality 

Summing on (f" we have the 

u 
2. - 1) . 

Dualizing the argument we 

Dy -
and the theorem is 

We note that 

d 
2. 

<T= l 

proved. 

D = y 

tr= 1 

get Uy < Dy • Hence 

u 

('½ca- - 1) = z:. (~ - 1) :::: Uy 
rr= 1 rr 

Uy represents the number of elements other 

than Y which are covered by elements covering Y and that these elements 

are elements other than Y covering the elements covered by Y. 

13. Conclusion. Several of the results of this paper will be 

further developed in a later investigation. The problem of determining 

the group of a distributive lattice will be carried further. Also the 

problem of constructing a lattice, given its automorphism group), will be 

extended to certain non-abelian gro-o.ps. Another problem will be the 

investigation of the relation of normal divisors of the automor:ohism group 

to the structure of the lattice and rela ted ideas. The further study of 

the automorphisms of lattices will he confined to distributive and other 

specia l types of lattices where results are more likely to be significant. 



31 

REFEREi'JCES 

A. A. Albert 

1. Modern Higher Algebra, The University of Chicago Press, Chicago, 1937. 

G. Birkhoff 

1. On the combination of subalgebras, Cambridge Phil. Proc., vol. 29 

(1933), pp. 441-464. 

2. Anulica tions of lattice algebra, Cambridge Phil. Proc., vol. 30 

(1934), pp. 115-122. 

3. On the structure of abstract algebras, Cambridge Phil. Proc., 

vol. 31, (1935), pp. 433-454. 

R. D. Carmichael 

1. Introduction.!£ the Theory of Grou~s of Finite Order, Boston 1937. 

R. Dedekind 

1. Uber die von drei Modula erzeugte Dualgru.ppe, Ges. Werke II (1931), 

Abh. XXX pp. 236-271. 

F. Klein-Barmen) 

1. Beitrage zu.r Theorie der Verbande, Math. Zeitschr. 39 (1934), 

pp. 227-239. 

2. Gru.ndzuge der Theorie der Verbande, Math. Annalen 111 (1935), pp. 

596-621. 

3. Uber ausgeglichene Verbande, Math. Annalen 112 (1936), pp . 411-18. 

4. Dedekindsche und distributive Verbande , Math, Zeitschr. 41 (1936), 

pp. 261-280. 

5. Birkhoffsche und harmonische Verbande, Math. Zeitschr. 42 (1936), 



32 

A. Kurosch 

1. Durchschnitts Darstellungen mit irred.uziitleKomponenten in Ringen 

~ in sogennanten Dualgruppen, Trans. Moscow Math. Soc., 

vol. 42 (1935), pp. 613-616. 

E. Netto 

1. Theory of Sub sti tut ions, ( translated by F. n. Cole), The Inland 

Press, Ann Arbor, Michigan. 

0 . Ore 

1. On the Foundation of abstract algebra.!_, Annals of Math., 

vol. 36 (1935), pp. 406-437. 

B. L. van der Waerden 

1. Moderne Algebra l, Berlin 1930. 

H. Weber 

1. Lehrbuch der Algebra, vol. II, Braunschweig ,18.99. • 




