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I

Introduction

1. Summary. The subject of lattice automorphisms has been
introduced by G. EBirkhoff in his paper "On the Structure of Abstract
Algebras" (Birkhoff [3] ). In this paper the subject has been pursued
further, Among the results are a necessary and sufficient condition
that a point lattice with n points have the symmetfic group on

n letters as its group of automorphisms, and the construction of
a lattice with a given arbitrary abelian automorphism group. A few
results are added vwhich are not directly connected with the study of
automorphisms. OFf these is a test for modularity of g lattice in
terms of bonds (coverings) which is useful.

For his many helpful suggestions during the course of this

investigetion I am indebted to Professor Morgan Ward.



2. DXNotation and terminology. We shall generally denote a lattice

by a script ,( and its elements by capitels A, B, ¢, X, ¥. A ekl
means A is an element of £ . We write A D B (A ¢ C) for

A contsins B (A contained in C). When A D B and A C 3B,
we write A = B, A covers B (A is covered by C) is written

L > B(A < C). AA3B and (A, B) indicate the join and meet
respectively, of A and B . Let 91 represent a set of elements of

i:Al,Aa,"‘,An,

. n
; we write A’”I= A Ai =AN Ay
1 .

n
A A, and AM= AL = (A, g v s by ). T = AL
i
and M = Ai will répresent the join and meet respectively of all

elements of the lattice. We call N €€  a node if A € T -or

¥ C A for every A G;ﬁ . The elements covering M are called
points and those covered by J dual points. Dedekind or modular
lattices will be represented by B and distributive lattices by @
Sublattices will be indicated by ’ui . The automorphism group will be
denoted by /9 and a subgroup by 7«/3._ . The symmetric group on A Aw
letters is denoted by Xn . New notetions will be introduced when

needed,



Bias

The Group of Automorphisms of a Lattice

%. Definition. An automorphism of a lattice L. is a one-to-one

correspondence between the elements of af, and themselves which is
preserved under the two fundamental operations of join and meet in af, .
We denote the auvtomorphisms of 56 by small Greek letters.
If o 1is an automorphism of £ , we dencte the element corresponding
to A Dby A% and write:
w A <—» A"
We call A% an "image" of A.
By definition:
(A n B~ A A B”

B)* = %, 3%

for all A , B of o‘ﬁ « By an essy induction we get:

. Q. r (¢4
(AAi) = A4
1 3
n o n
( a4)% = a4l

1 1 1

We can further generalize the application of the definition to get the
image under o of a function of a set of elements of 56,, consisting
of successive Jjoins and meets of these elements, equal to the same
function of the respective images of the elements,
The iCentity automorphism L 1is given by:
L: A <—>» A
for every A € . o Thus At = A,

If a and B are two automorphisms of - , we write

(ACI')B = 498 By the product of we mean the result of applying



o, followed by B acting on the elements of JC., and we write:
B A <« 4%
By the inverse o of a we mean:
@t AT —> 1
for all A & of; . DIEvidently oo = o = s
We close this section with the fundamental
THEOREM 3%.1. The set J@ of all the automorphisms o« of a lattice
j& form a group, the automorphism group of the lattice.

The theorem is easily verified and the proof is omitted.

4, PFundamental properties of automorphigms, In this section

we shall state a number of lemmas most of which are obvious from the
definition of an automorphism of a lattice. We omit the proofs,

IEMMA 4.1, An automorphism o preserves the relations D and C .

IEMMA 4.2. OChains are preserved by a .

IEMMA 4.3, The elements M and J and the nodes Ni of &&. ,
vhen they exist, are invariant under every o of gfl . |

IEMMA 4.4, The Dedekind property is preserved by every o .

IEMMA ﬁ.ﬁ; The distributive property is preserved by every o .

LEMMA 4.6. Complemented elements are carried into complemented
elements by every o .

LEMMA 4.7. An automorphism o preserves the covering relations
> and .

LEMMA 4,8, Descending and ascending chein conditions are preserved

by e .



LEMMA M.g. If an element is expressible as the join of points,
so too is its image under o .

We note that if A contains only the n points X;, X5, « « - , X
then A% contains only the n points X?, X%, LI Xﬁ . This
important fact is clear from the 1-1 ordering imposed by a .

TEMMA 4,10, In a finite lattice with rank function defined, rank
is preserved by o . |

Notation. For the following lemma we adopt a new notation,

Let Uy be the number of elements covering the element X and

dX be the number of elements covered by X . Then, Uy and dX
denote the number of bonds emanating upward and downward, respectively
from X in the lattice diagram, If Uy = 5 and dX = 7, we shall
call X a (5 - 7) element. M is then an (n - Q) element, where n
is the number of points; J is a (0, m) element. We shall use this
notation again later on,

IEMMA 4,11, An (r - s) element is carried into an (r - s)
element by an auvtomorphism of Z o

We conclude this section with the proof of the simple but important

THEOREM 4,1. An automorphism o carries sublattices into sub-
lattices of like kind; i.e., distributive sublattices go into
distributive sublattices, point sublattices are cgrried into point
sublattices, and so on.

Let ztb be a sublattice of L, , and 1L§ be the set of

elements of JC. corresponding under o to the elements of Z(b .



on

If A and B are any elements of ZLO, A A B = anB)” &>
a o a 5

AN 3B € ’L(b . Hence A™NN\ B~ €& ’u'o « Similarly

>, 2 & ’uz' . ug“ is a sublattice of i , since it is

. .. - o
closed with respect to join and meet. That u and 'LLO are
. b

sublattices of like kind follows immediately from the preceding lemmas.

ke f’ermutation properties, The automorphism group 17 of a
lattice ct is & permutation group on its elements. If B = A
is the image of A wunder some a of & , we call A and B
conjugate elements agd write A ~ B . The relation of conjugacy is
clearly an equivalence relation., It enables us to divide i into
classes 7711, 74{2, 7’)’(3, « + ¢, of conjugate elements where
the set 7’}‘[i consists of all images of some Ai € o'C + These
classes are then the transitive systems of /;j vien it is represented
as a permutation group on the elements of 56 .

Consider a class 7?’( of equ\ivalent (conjugate) elements
Agy By = v 8 An + From well known theorems* of group theory we
get the next four theorems.

THEOREM 5K.1. If the transpositions (A;4,), (A,45), *© ° °, (AlAn)

are all elements of /é » then the symmetric group '.Jn is a subgroup
of é .

THEOREM 5.2. If the cycles (A;A543), (A5404,), - « (AlAzAn)
are all elements of Ag , then the alternating group 4 is a sub-

n
group of Ié .

THEOREM H.3. The set of all automorphisms leaving an element A,

Carmichael "Introduction to the Theory of Groups of Finite Order,™
Corollary to Theorem II, p. 8; Corollary to Theorem I¥, p. 11;



unaltered forms a subgroup of ,é; . The index of this subgroup is
the number n of images of 4,.

If‘/é; has prime order p , this subgroup must be the identity
element ( of index p or /69 itself of index one. Hence we have

COROLLARY 5.3. If the automorphism group 19 of & nas prime

order » , every element is either invariant or has exactly p images,
including itself.

Hence, when the order of‘)g is a prime p , the classes 4h1£
of conjugate elements of JC, consist of p elements or one element
each., The elements of each class of order p may be so ordered that
an automorphism o will be the same permutation on each class.

Bither o will permute all elements of each class or a = L .
Furthermore if o # L , it is a cyclic permutation on all the A,

of a class., Otherwise we could write « as a product of cyclic
permutations on the Ai no two of which have a letter in common,¥

Then the order of o would be the least common multiple of the degrees
of the cyclic permutations which compose it.** This is a contradiction,
since the order of « 1is p , a prime,

The remaining elements of _)9 can be written as powers of a,
since & group of vrime order is cyclic and is generated by any element
other than the identity. Hence we can write ,29 = [(AlAg- ' ¥ Ap)k ]
wvhere k has one of the values 1, 2, - + - (p - 1).

Now consider the automorphism.group’.éy of a point lattice ¢zz "

Since covering is preserved, the points are permuted among themselves

*

Ibid. Theorem I, p. 7.
ok

Ivid, Theorem V, p. 11.



and may be divided into classes of conjugate elements. That every

o :,ﬁ L will permute points is clear from the definition of a point

lattice and the fact that chains are preserved, Hence we have
THEOREM 5.4. The automorphism group of a point lattice is a

permutation group on its points,

COROLIARY 5.4, The automorphism group of a point lattice of

n points 1s a subgroup of the symmetric group Jn .

6. Invarient sublattices and subgroups. We state here = theorem

of Birkhoff.* Its proof is left to the reader.

THEOREM 6.1. The set of elements of i invariant under o
form & sublattice. This sublattice is called the centralization of
o . More generally, to a subgroup 71‘ of the automorphism group ,«9
corresponds a sublattice ZL consisting of all elements invariant
under every a of W——the centralization of Z‘. I }i{ =
Mod A D 2K =1t ,amiir U, U - . U,
are the centralizations corresponding to Z‘o’ Mo, oo o, #n
respectively, then Z(OC Z(J.C - C Z{n= 56 with
’u,i o sublattice of ﬂi L1 =0,1,2 .-+, (n-1),

The analogue of this theorem is the following theorem for
which we shall have use later.

THEORZM 6.2. Tue set of all automorphisms of j@ leaving a
given element A wunaltered forms a subgroup of ﬁ . More generally,
to a sublattice 2(/ of oC correspond a subgroup A of _ﬁ vihhich

leaves it absolutely unaltered,

Birkhoff (3) --"On the Structure of Abstract Algebras," p. U35,
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The first part of the theorem is merely a restatement of Theorem
5 o B

We note that the subgroup 7)‘ that leaves a sublattice w
absolutely unaltered is a subgroup of a larger subgroup 240 which
leaves u/ unaltered merely as a sublattice.

THROREM 6.3. Let A and B be two invariant elements of of ,
with A D B . Then the quotient lattice —% is invariant as a
sublattice of i .

This theorem is an immediate consequence of Lemma L,2.

COROLIARY 6.3. Let 7 be o class of conjugate elements

Ais By o0 ey A S S Then .“igm = 3 is
invariant as a sublattice of ai . 4
n n :
For A Ai and A Ai are invariant under every automorphism,
b1 1

We need not restrict Theorem 6.3 and its corollary to the whole
automorphism group & . We can consider quotient lattices invariant

under a subgroup 71‘ of /9 " A more general result than Theorem 6,3

is the following: If A <= A% and B 4> B under o , with
(4 lod A o~ A%
A D B and A7 D B, then S = 5 -

Definition. ZLet Ny, N, = < -, '\Tr be the nodes of a lattice

L, with J JN ND>¥, ;D -+ DN DMN. Te quotient
T

N N
lattices NJ ) T . y ey —If ) FI-L are called the principal
r r -

sublattices (Hauptunterverbinde) of o'C .
srom Lemma 4.3 and Theorem 6.3 we get immediately
THRORTZM 6.4. The principal sublattices of L are invariant

as sublattices under the sutomorphisms of of .



The automorphisms of any one principal sublattice are certeinly
independent of those of the other principal sublattices. We therefore
conclude

THEQOREM 6.5. The automorphism group ,29 of a2 lattice Jf with
one or more nodes is the direct product of the groups of its principal
sublattices.

from this it is seen that in the study of lattice automorphism
groups we can confine ourselves to lattices without nodes.

We shall make use of this important theorem later on.,

. Point lattice with the symmetric group. In this section is
1 o

given & necessary and sufficient condition that a voint lattice with
n points have the symmetric automorphism group Afn_.

Definition, Let JC be an Archimaedian lattice in which gll
chains between an arbitrary pair of dependent elements are of equal

length. We shall call JC. an equal-chain lattice (ausgeglichener

Verband).

Notation. We shall denote the points of a point lattice by
numbers 1, 2, * ¢ +, n . Since each element is the Jjoin of all the
points it contains, we shall incorporate this idea in our notation.

If an element contains 1, 2, 4 and 7 and no other points, we shall
write 1247 instead of 1A 2L AT . Then by the properties of
a point lattice the join of 12479 and 2539 is 1245789 . We use
this notation in

THEOREM 7.1l. Let ;t.be an equal chain point lattice of rank f9
with n points. Let each rank consist of all the combinations of the

n points teken k at a time, k obviously increazsing with the rank r .
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Then, as r tekes in the successive values 1, 2, « « + , ( P - B}
( P - iy I8 e , k tszkes on the successive values, 1, 2, = « « , ( P -2),
(@P-1), n respectively. In other words M 1is of rank zero, the

nts 1, 2, * ¢ ¢,n are of rank 1 ; those of rank 2 are the

e

n
Cl jole}

n ]
C. elements 12, 13, = ¢ », 1 n, 23, « « « , (n - 1) n; and so on

%

till we have the elements of renk P - 1 consisting of the n points
taken p- 1l at a time; then k Jjumps to the value n for r = p
and we get J alone of rank P .

If k ckipped an integral value except between the rank P -1
and rank e we would not have unique join of elgments. This isg

best illustrated by the example of Pigure 1.

1234

NV Y7
oY

Figure 1 .

This is not the diagram of a lattice because the Jjoin, say, of 1 and

2 is not uvnique,



THEOREM 7.2. A point lattice éti with n »points has the
symmetric group ”!n. as ite automorphism group if and only if it
is an equal-chain point lattice with each rank consisting of all the

C,. combinations of the n points teken k at a time, k constent

n
k
for each rank, hence if amonly if JC, ig of the form given in
Theorem T.1l.

Surpose 4f; ig the group of automorphisms of &ﬁ o Let the
points contained in an arbitrary element A be 1, 2, o ¢ ¢, 1 ,

. - o a
Then in our notation A = 123 « » ¢« v, A~ = (123 ¢ ¢ r )~ =
(o Ao s :
1~2 3& e« %, Since a ranges over all permutetions of the n

2 o n
points, we see that A~ ranges over all the Cr elements represented

by teking the n points r at a time. Thus Jt consists cf a number

D

of such sets with different r . It is clear that each set is of
constant rank so that Jﬁ. is an equal-chain point lattice, The
remainder of the proof éf the necessity follows immediately from
Theorem 7.1,

dent from the symmetrical way in which the

o

The sufficiency is ev
elements are represented in terms of the n pointe.

When e = n in this type of lattice we have the Boolean algebra
consisting of all subsets of n points. (See Theorem o, 2, Rirkhoff
(1)). This lattice is the distributive lattice generated by n

points. The diagram of the Boolean algebra with n = 5 1isg given

in the figure on the next page.
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A
K
ol
(w% ,o.

i
/Ez

(234§

)
\

\

Figure 2
n - k, the lattice of Theorems 7.l and 7.2 is

sy
s

A ' .
)

i \,.»N
L

" )
P

When P
obtained from the Boolean algebra of n points by omitting the

»n -1, A simple case

elements of rank n -k, n «k + 1, o ¢ o

= K 1is illustrated below.

for vhich () =73 and n

Figure 3
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This type lattice is seen to be a Birkhoff lattice in which the g

}
condition holds,* The § condition fails for the elements covered
by J except for the case P =2 .,

In the latter case the lattice is modular, but ig distributive

only vhen n = 2 . A disgram of this case is given in Figure .,
123456
/ 6
M
Figure U

The Boolean algebra is the most interesting case of this type
" of lattice. Every distributive lattice of rank n is a sublattice
of the Boolean algebra of n points. From this follows
THEOREM 7.3. The automorphism group of a distributive lattice of
rank n is a subgroup of the symmetric group ‘Xn .
In the next three sections we shall be concerned with the auto-

norphism groups of distribution lattices.

Birkhoff (1)--"Cn the Combinztions of Subalgebras," p. UU5,
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8. Notation for distridbutive lattices. The notation we now

develop for the elements of a distributive lattice c will be
useful in studying its automorphism group. We use Theorems 17.2
and 17.3 of Birkhoff'g paper.*

The generators are labeled in order of rank, The n vpoint
generators are represented by the integers 1, 2, 3, °* * , n .
These, of course, generate the Boolean algebra @n of rank n of
Section 7. Then, by Theorem 17.2 menticned ebove each element of
C; ig identified with a subset c¢f the n points in such a way
that the Join of two elements X and Y ig identified with the
logical sum of the subsets of X and Y and the meet with their
common part. Now consider the generators of rank 2 and
suppose there are p of them. If they cover, say, 1, 15, Is = &%
(o - 3), (n - 1) respectively we denote them by 1(n + 1), 4(n + 2),
T(a+32), +«+ (n-3)(n*+tp-1), and (n - 1)(n + p) respectively.

The elements generzted by these new elements and those of C; are

fo1]

gotten by taking the logical sum as the join and the common part as
the meet, We obtain the representation of the generators of third
and higher orders in the same msnner, and get the resulting generated
elements as before by taking logicai sum and common part. for join
and meet resnectively. Thus if the rth generator covers

175789 we designate it by 1357894 . Also 135789 »\ 1468 =
13456789 and (135789,1468) = 18 . It rust he remembered that

the number of the generztors is equal to the rank of the distributive

lattice.

Birkhoff (1)--"On the Combination of Subalgebras," pp. U5U-L5



To illustrate this notation the diagram of a lattice of rank
10 is given below, Its generators, enclosed by squares, are 1, 2, 3
of rank 1 ; 124, 125 covering 12 and 236, 237 covering 23 all of rank

3 ;3 12345678 of rank &; and 123456789, 1234K678% of rank 9 .

1234§42%7C

723454789 a‘a 133956)5¢

N 123945%7%

&

— ( . mm
< >\ >

12418 . 15

23 ST 234 Y 237
i I /3 3
/t

Figure 5

s
W
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The group of this lattice is the direct product of the four groups
fe. o0} . {6, caemee ), {t 9], ma {, (6D}, 16
therefore of order 16 . It is noted that the four generators 124, 125,
236, 237 form a simply transitive system with the two sets 124, 125 and
236, 237 as systems of imprimitivity.

This notation has several important useful properties. The rank of an
element is merely the number of digits or letters in its representation,
Furthermore, we can tell at a glance which generators are contained in a
particular element.

Now the structure of a distributive lattice ig determined unigquely
by the manner in which transitivity is ascribed to the generators. An
automorphism will then permute certain generators of the same rank, since
the generators determine absolutely the complete structure of the lattice.
Using the notation here developed, an automorphism o will then be a
permutetion on the end digits of the representations of the generators,
Applying this permutation to the representation of an element A we get

automatically the image A% of &,

9. Direct product of linear lattices. The direct product of two

linear lattices of rank m and n respectively, is represented by
a rectangular checkerboard diagram, We show the diagram of the direct

product of the linear lattices of rank 3 and 5 in Figure 6.
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The direct product of n linear lattices of rank ¢,, gz, » - o,

respectively, is represented by the projection upon two dimensions of o

Pn

generalized rectangular network structure of n dimensions., A lattice of

this type is a g.c.d.-l.c.m, lattice. The elements are factors of the

(& {2 Pn

positive integer n where n = p; P2 s s o D

&

n . The

join of two elements is taken to be the l.c.m. ¢f the elements, while
their meet is their g.c.d. The generators are p,, piz, e o o
f1 P2 fn

2 2 ° e o o*
Y ,Pz'Pz»“ s P2 ) ,Pn-Pnza'°°aPn °

The automorphism group of this lattice is easily seen to be the direct
product of symmetric groups:

}; = xfr; x Ajrz X+ X /yrk

where

e

{4} r, is the number of Pj equal to

(ii) the ,.Xri are deleted vhen r, = 1

(111) = 2rp + 3rg +* * * +ky = P

i p1+ ?24--00"'

A special case of this type of lattice is the Boolean Algebra éah

0

of rank n of Section 7. This lattice is the direct product of n 1linear
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lattices of rank 1, Hence Ty =n and O =1ry=1rg= -+ ¢ ¢ go that
’29 = Agn » &8 we have already seen,
Suppose we have given the direct product {Z of k such Boolean
algebras Ci of rank n,, ng, °* ° °, n,_ respectively, Since each Ca

is the direct product of n, linear lattices of rank 1, C: is the direct

i

product of ny *+ ng+ ¢ o c +n linear lattices of rank 1 and therefore

k

is the Boolean algebra of rank Z ng with group Jéni >
’ z 4

This example illustrates the fact that the direct product of the
groups of several lattices is merely a subgroup of the group of the direct

product of these lattices, The simplest case is given below.

z,3]

l2

7 [I)ﬂ { [2:3]

(7 (7]

/9 == (L)(‘z)) ,}57:" ((') ’ [MP\] ﬁ ::JJ

Pigure 7

10, lLattice with given group. In the preceding sections we have

dealt with a few of the aspects of the problem of finding the group of a
given lattice. Finding the group of a lattice is a separate problem

for each lattice in the most general case., We can establish significant
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theorems on the group of a lattice only for well-behaved types euch as
equal-chain lattices and distributive lattices,

In this section we shall be concerned with the converse problem, the
construction of a lattice having a given group for its automorphism group.
The problem has been solved.for the case ogiggzlian groups. We state
this result now in

finite
THEOREM 10,1, Given an arbitrary,abelian group 49 . There exists

a distributive lattice af: with A9 as its automorphism group.
Angiggilian group is the direct preoduct of cyclic groups.* Theorem
6.5 states that the group of a lattice with nodes is the direct product
of the groups of the principal sublattices. Our problem ié therefore
reduced to constructing the principal sublattices having the cyclic
groups for automorphism groups.
We do this using the notation develoved for distributive lattices
in Section &, Let n be the order of the cyclic group.
Case n =2 , We take~the Boolean Algebra of rank 2 . (See Figure 7).
We omit the cases n = 3 and n = 4 for the time being.
Case n =5, We take as generators the set of five points, 1, 2,
3, 4, 5, the set of rank three 1223, 23a,, 3ldag, 45a;, 5lay , and the set
of rank seven 1234aza,bs , 2345asasb,, 345laga,ba, 4512a,azbg, 5123azasbs.
Let o be the permutation (12345)(a;25233425) (D3bobgbsbs). On account of
the cyclic manner in which we have defined the generators, o and its powers
a (k =2, 3, 4, 5 with o = b ) are automorphisms of the distributive
lattice which we shall denote by (35 + XBach set of generators is

permuted cyclically by o .

Carmichael--"Introduction to the Theory of Groups of Finite Order,"
p. 66, Theorems XIV and XV.
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We must now show that there are no other automorphisms of (35 .
The five powers of a Deginning with the first carry the points 1 and
2 into the ordered pairs 2,3; 3,4; 4,5; 5,1; 1,2 respectively., We now
show from consideration of the second and third sets of generaztors that
only these powers of « cen do this., Since the three sets of generators
must be permuted among themselves, it is evident from the second set that
consecutive integers must be carried into consecutive integers. If B
exists carrying 1 and 2 into 3 and 2, 4 and 3, or 5 and Y respectively,
then o™ , o287, or a3 will transpose 1 and 2, In any event
we need consider only the existence of an automorphism transposing 1 and
2 . If one exists l2ag is invariant, 23%a, — 1bap so that 3 — 5

and a, —p 8z , 3bag —> 45a, and 4Ba; —> 3Iag . Out of this we

123’4‘58.1&23-32.43- Sblbzb sb 4b S )
2154 3aca 85000, 1

images of the 'bi we congider the third set of generators., We find

get the permutation ( To determine the
that 1234aga,bg —> N5l2a2a3bu . But there is no such generator for
any value of u . Hence there are no other automorphisms than those of
the cyclic group o , and we have completed the case n = 5,

For the case n > 5 we apply the same argument to the analogous
sets of generators 1, 2, * ¢ * , n; 1l2ag, 2334, * ¢ + , (n - 2)(n - l)an :
(n - 1)na;, nlay; and 123Uaza,bg, 2345asagbg, * * * , (n - 1)nl2aa5bs,
nl23asazbs.

This method of choosing generators breaks down for the case n = Y,
To get a distributive lattice (94 with the cyclic group of order 4
as automorphism group we take for generators the following four sets:

1, 2, 3, 4; 12as, 23a,, 3ba,, Ylas; 12bs, 23b,, 3Uby, Ulbgy; and

123azb,cy, 23U4asbycs, 3Ulasbscs, Ul2agbge,. The four powers of
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o = (1234) (2,25858,4) (Dybgbaby) (cycacac,) are obviously automorphisms.
Furthermore, from the second set of generators we see that a pair of
dyclically consecutive members of 1, 2, 3, U4 (as elements or subscripts

of elements) must go inte a pair of consecutive numbers in the same or

inverse order., If a pair goes into a pair in the same order, it is easily
seen that the resulting automorphism must be a power of o . If the pair goes
into a pair in reverse order, we need consider, as we did in case n = 5,

only the possibility of a transposition of 1 and 2, If one exists we get

123)+ala.2a3a4b1b2b3'b4c1 CoCaCy

the permutation (21h3a1a4asaeb1b4bsbz ?

) upon consideration
of the second and third sets of generators. But this means that
123agbscy —> MlZasbgqu vhich does not exist for any value of u .
Hence the powers of o are the only automorphisms of this lattice.

We must take even more complicated (comparatively) sets of generators
for a distributive lattice with automorphism group cyclic of order three,
The sets are 1, 2, 3; Y4, 5, 6; 7; 1lolags, 2352,, 316ay; and 1257bs, 2367Dby,
3147bs. Here o = (123)(L456)(a33223)(bybobs). Yow oy o2, a® = |
are automorphisms because of the cyclic order in which the letters appear
in the generators. If B exists carrying 1 into 5 then Ba® carries 1
into 4, or if B exists carrying 1 into 6, Ba carries 1 into 4. If an
automorphism exists carrying 1 into 4, then 124az — 124az; and
ag is invariant., We have two subcases: 4 —> 1 and 4 — 2,

Ifh — 1 then' 2 — 2, 23523 —> 2352y, and 3lbay — 23525,
The latter is impossible, since 1 — 4, If 4 — 2 then 2 — 1,
2352, —> 3lbag, and 31bay; —> 2352, . Again the latter is impossible

since 1 —» U4 ., We have excluded the possibility of an automorphism

carrying 1 into 4, 5 or 6 .



253

Similarly 2 and 3 éannot go into 4, 5 or 6, Hence 1, 2, 3 are
permuted among themselves and 4, 5, 6 among themselves, If 1 is
invariant and 2 and % are transposed, then 23%5a; and 5 are invariant and
4 and 6 are transposed from a consideration of the fourth set of
generators., But in the fifth set 1257bgy —> 1357bu which does not
exist for any value of u . Hence no automorphism leaves 1 invariant
wvhile transposing 2 and 3 . Similarly no automorphism transposes 3 and
1l or 1l and 2, On the other hand, the automorphisms that permute 1, 2, 3
cyclically are easily seen to be the three powers of o . Therefore,

a, a?, o® = L constitute the cyclic automorphism group of order three
of this lattice.

We have now completed the demonstration of the existence of distributive
1attice§ with cyclic automorphism groups of all orders. Given an
arbitraggrg%elian group, we express it as the direct product of cyclic
groups, We then construct a distributive lattice with nodes having for
its chief sublattices lattices with these cyclic groups as automorphism
groups., This distributive lattice is the one required by the theorem
and the proof is complete.

It should be emphasized that this method of construction is by no
means unique, We could have constructed lattices with cyclic groups
of order 4 or greater in the same manner as we constructed the one with
cyclic group of order 3., We chose a simpler set of generators for order
4 and a still simpler set for order 5 or greater. The theorem is merely
an existence theorem,

' The construction of lattices having various types of non;abelian

automorphism groups will be the subject of further investigation by

the author.
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1l. Two examples. The diagram of Figure & is that of the so-called

flsymmetrical equivalence lattice ot degree four ™ * ., This is a modular
point (and dual point) lattice. Its group has order 24. Ity fact
its group must ve isomorphic with the symmetric group 4!4 o ¥

The elements are listed in Table I,

Figure &
as  (14)(50) as (25)(1364) 1: (124)(356)2
L Q) B: (13)(u6) a: (25)(1463) 1: (124)3(356)
v: o (24)(35) b: (16)(2354) 2: (13n)(240)2
At (16)(34) ar (23)(u5) B: (16)(2453) 2: (135)2(246)
B: (25)(3W) B: (15)(26) c: (34)(1265) 33 (145)2(236)
C: (16)(25) y: (12)(56) et (34)(1562) 31 (L45)(236)2
4: (123)3(L56)
Ly (123)@56)’;

Table I

*
Birkhoff (3)--"On the Structure of Abstract Algebras," pp. 436-7 and /P18,

pp. UUT-8,
% Ibid, ‘Theorem 25, P. M49.
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The second example, given in Figure 9, is that of the smallest
non-trivial projective geometry. It is of rank 3, with seven points
and seven dual points, It is surprising that its automorphism group
turns out to be the smallest non-cyclic, non-alternating simple group.
Projective geometries and simple non-cyclic, non-alternating groups are
few in number, Whether or not there is a relation between them as hinted
by the example will be a subject of later investigation.

The automorphism group, as a permutation group on the points, ig
doubly transitive. It is generated by (1423576) and (23)(56). We list

the elements in Table II.

Figure 9
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23

23 —» 23 =, (56)(47), (57)(H6), (u5)(6T)
23 —p 32 (23)(47), (23)(56), (23)(L675), (23)(L576)
23 —» Uy (24) (37), (2437)(56), (2u5)(376), (246)(375)
23 —> Th (27)(34), (273W)(56), (275)(346), (276)(3L5)
23 —» hBb (25)(36), (2536)(L7), (254)(367), (257)(36L)
23 —» 65 (2635)(47), (26)(35), (267)(354), (264)(357)
23 — 13 (12)(45), (12)(u756), (12)(67), (12)(u657)
23 — 31 (123)(467), (123)(576), (123)(L75), (123)(L56)
23 —> U6 (1243657), (124)(367), (1245)(36), (1247536)
23 —» 6l (1263475), (126)(345), (1267)(34), (1265734)
23 —» 57 (1253746), (125)(376), (1254)(37), (1256437)
23 — 715 (127)(354), (1273%64), (1276)(35), (1274635)
23 — 12 (132) (465), (132)(L76), (132)(567), (132)(L5T7)
23 —» 21 (13)(L567), (13)(57), (13)(14-763), (13)(46)
23 — 4 (135)(2u6), (1352476), (135672L), (Ug?)(eh)
Sog G i
23 ~p 67 1375)(26), (1374526), (1372654), o6k
23 —p 76 (136g’+27>, (1364)(27), (1362745), (136)(275)
23 ~p 26 (147)(365), (14)(36), (1u45)(367), (1u36)(57)
g3 ~¥ 62 (1432675), (1457326), (14)(2653), (147)(263)
—> 35 (1467235), (1423576), (147)(235), (14)(2356)
23 —% 53 (14)(25), (1u47)(2%6), (1u25)(67), (146)(257)
23 -~ 17 (1452) (37), (1437562), (1465372), (142)(376)
23 ~—» 71 (1427653), (1463)(27), (1L43)(275), (1456273)
23 —p 16 (152)(267), (1574362), (1536L72), (1542)(36)
23 —3 61 (153) (26k4), (15u47263), (1526743), (1573)(26)
23 —3 27 (1537)(u6), (154)(376), (15)(37), (156)(374)
23 —F 72 (15)(2743), (156)(273), (1532764), (1546327)
23 —p 3h (15) (2347), (156)(234), (1523467), (1576234)
23 ~—» U3 (1521)(67), (157)(2h6), (15)(24), (156)(2h7)
25 =¥ 15 (1647352), (162)(354), (1672)(35), (16357u42)
23 —~2 51 (167M223). (163)(257), (1643)(25), (1625473)
23 —» oL (167)(3L5), (163W)(57), (165)(3h47), (16)(3H)
23 —» k2 (165)(2L3), (16)(2473), (1675324), (1632u57)
23 —p 37 (16Li5237), (1623754), (165)(237), (16)(237h)
23 —» 73 (165) (274), (16)(27), (16M)(275), (1627)(45)
23 —p 14 (1734652), (1762)(3k), (172)(345), (1756342)
23 —» 1 (1753)(2k), (172u563), (1765243), (173)(246)
23 — 25 (171) (3%6), (17)(35), (1735)(46), (176)(354)
23 ~—3 52 (1764325), (1732546), (17)(2563), (174)(253)
23 —» 36 (1754236), (1723645), (17)(2365), (174)(236)
23 —p 63 (174) (265), (17)(26), (1726)(L5), (175)(26L)

Table II
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Supplementary Theorems

12, Modular lattices., In this section will be given some supplementary

results not directly connected with automorphisms of lattices. We give
first a proof of a theorem of Birkhoff.* His proof appears incomplete
The proof given here is along a different line.

THEOREM 12.1. If X;, X5, ¢ = ¢, Xw are the points of a finite

modular lattice (B , and if Y.C/Y\, Xi’ then Y is the join of the Xi
which it contains,

To prove this theorem we make an induction on the rank, The theorenm
is true for elements of rank r = 1. Asgsume the theorem is true for

rank r=n ., Let Y be an arbitrary element of rank r =n + 1 contained

i

W
in A X, , and let Yy, Yp, ¢+ o, T e the elements (of rank r = n)
1

¥ P
covered by Y, Then, since Y, C Y C A Xi y YTg = Al Xga  vhere
k1 aT=

Xggp (T =1,2, -+ ) Mg) are the points contained in Y4 , (o

m
1,2, 9+ ,m. Y = A Yi = the join of the X4y contained in
1 ?
the Yi’ If Xo is any other point not included among the X g ’
m Pg
NN /A Xgg¢ = X N Y has rank n + 2 by the law of renk
° =1 r=1 -

in a modular lattice. Hence XO ¢ Y , T contains only the points X gg
and is the join of these points, Since Y was an arbitrary element of
rerk r = n + 1, the theorem holds for all elements of that rank
W
contained in A\ X, . The induction on r (r=1, 2, *** , %) is
: 1

now complete.

AR

M

W

lattice. If A Xi = J then Qg is a point lattice (and also a
‘ ()

COROLIARY 12,1 A, The quotient sublattice is a point

dual point lattice).

Birkhoff (1)--"On the Combination of Subalgebras," Theorem 11.%, p. L9,
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The statement of the parentheses is gotten merely by dualizing the
proof of the theorem,

COROLLARY 12.1 B, If F,, Fz, « - -, Fw are the elements covering

an element F in a finite modular lattice 03 » and if Y is an element

w

satisfying the relation A Fi > Y DO F, then Y is the join of the
* F

Fi which it contains. The quotient lattice = >~ isa point lattice

and is the dual of a point lattice.
In the following theorem we employ the notation introduced for
Lemma U4.11,

THEOREM 12,2, In 2 modular point (dusl point) lattice B the only

(1 - k) elements are the dual points (elements covered by J ) of B :
the only (k - 1) elements are the points of @B.

Iet Y bea (1 - k) element, Y is the join of the points which it
contains by Theorem 12.1, By the law of rank the elements Yi =T N IXi .
where Xi ranges over all points not contained in Y , all cover Y.
They must then all be equal to an element, say Z . Since Z contains
all the points it is J so that Y is a dual point. We note in passing
that there can then be only one Xi not contained in Y ., The second
part of the theorem is merely the dual of the first part, since a modular
point lattice is its own dual.

CORCLIARY 12.2. A modular point (dual point) lattice has (1 - 1)

elements if and only if it is of rank two.
The following theorem is a useful test for the modularity of a lattice
vhen the lattice diagram is given. We employ the notation of Lemma 4.11.

THEOREM 12.3. Let Y be a (u -~ d) element in a finite modular

lattice (B ., ILet Xy, X5, * * ¢+, X, be the elements covered by Y

d
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ahd Yyy Ygy * * ¢ Yu be the elements covering Y . Then
d u
= = = - —
s S (g - = X (4 -1 =T

=1 =1

This theorem states that in the lattice diagram the sum of all the
bonds emanating downward from the elements covering Y diminished Dy the
number of these elements is equal to the number of bonds emanating upward
from the elements covered by Y diminished by the number of these elements.

X

Let X} =Y, Xﬁ‘ LT 7 be the UXJ elements covering X, .

Figure 10

ir
These X ; are all distinct for everyg and i # 1 . Otherwise there

would be no unique join of two X g covered by a common Xy (# Y) as

indicated in Figure 11, Now in a modular lattice when A and B each

cover (A, B), then A A B covers both

X =Xy Y=Xy =Xg

Xot Xg

Figure 11
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= g '
A and B ., Hence the elements X g N Y (iyj # 1) cover Y and
is
are among the Y, . These (uXd~ - 1) elements X T (i = 2, 3, ¢ o °

uX ) then account for all the (uX - 1) bonds emanating upward from the
a , a
Xy and (uX - 1) bonds emanating downwerd from the Y, excluding
s
in each case bonds emanating from Y ., Summing on g we have the

inequality

I

d u
- _q) < -
Dy = cé:l (“Xa L& U, ﬂgl (6 -1).

Dualizing the argument we get I)Y = DY . Hence
2% u
D, = ( -1) = ( -1) = U
and the theorem is proved.
We note that DY = ()Y represents the number of elements other

than T which are covered by elements covering Y and that these elements

are elements other than Y covering the elements covered by Y .

13. Conclusion, Several of the results of this paper will be
further developed in a later investigation.‘ The problem of determining
the group of a distributive lattice will be carried further. Also the
problem of constructing a lattice, given its automorphism group, will be
extended to certain non-abelian groups., Another problem will be the
investigation of‘the relation of normal divisors of the automorphism group
to the structure of the lattice and related ideas., The further study of
the automorphisms of lattices will be confined to distributive and other

special types of lattices where results are more likely to be significant,



31

REFERENCES

A, A, Albert

1. Modern Higher Algebra, The University of Chicago Press, Chicago, 1937.

G. Birkhoff

1. On the combination of subslgebras, Cambridge Phil, Proc.,, vol. 29

(1933), vp. 441-46L.

2. Applications of lattice algebra, Cambridge Phil. Proc., vol. 30

(1934), pp. 115-122.

3. On the structure of abstract algebras, Cambridge Phil. Proc.,

vol., 31, (1935), po. 433-45hL,
R. D. Carmichael

1. Introduction to the Theory of Groups of Finite Order, Boston 1937.

R. Dedekind

1, Uber die von drei Modula er,eugte Dualgruppe, Ges. Werke II (1931),

Abh, XXX pp. 236-271.
F. Xlein-Barmen)

1, Beitrage zur Theorie der Verbinde, Math. Zeitschr. 39 (1934),

pp. 227-239.

2. Grundziige der Theorie der Verbande, Math. Annalen 111 (1935), op.

596-621,

3, Uber ausgeglichene Verbinde, Math, Annalen 112 (1936), po. 411-18,

4, Dedekindsche und distributive VerbSnde , Math, Zeitschr., 41 (1936),
pp. 261-280.

5. Birkhoffsche und harmonische Verbande, Math. Zeitschr, b2 (1936),

pp. 58-81,



32

A, Xurosch
1. Durchschnitts Darstellungen mit irreduzibleKomponenten in Ringen
und in sogennanten Dualgruppen, Trans, Moscow Math. Soc.,
vol., 42 (1935), pp. 613-616.
E, Netto
1. Theory of Substitutions, (translated by F. N, Cole), The Inland
Press, Ann Arbor, Michigan.
C. Ore
1. On the Foundation of abstract algebra I, Annals of lMath.,
vol. 36 (1935), pp. L06-437.
B. L. van der Waerden

Ho

1. Moderne Algebra I, Berlin 1930.

Weber

1. Lehrbuch der Algebra, vol. II, Braunschweig 1899.






