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Condensation

The first chapter of this thesis is devoted to a complete
deseription of lattices and semi-ordered spaces. A general classi-
fication is carried out and is illustrated by a copious collection
of specific examples of lattices.

The second chapter is devoted to an exposition of the
Kantorovitch theory of semi-ordered "function-spaces". It represents
a digest of the material contained in a large number of scattered
papers by Kantorovitch.

The third chapter is an historical introduction to the liter-
ature on lattices. It is meant to be encyelopaedic in scope; a
serious effort is made to list and discuss the important contributions
and their relations with algebra, geometry, the theory of operators
and the theory of combinatorial topology.

In the remainder of the thesis the theory of linear transforma-
tions between a Banach and a Kantorovitch and between two Kantorovitch
spaces is developed. The Helly theory of linear equations as extended
by Hehn is further extended to the cases in question.

Among other originel contributions is the definition of a
differential in the mos+t general linear limit-space, having all the
desired properties with regard to composition, transformation and
integration (which had to be developed separately). By the aig of a
real-number function intrinsic in the original space and defined over

a set of points having only one limit-point, it is possible to obtain



an extension of the notion of topological order of completely
continuous transformetions and their differentials. An extension

of the Riesz theory is presented.



We consider a set S of objects or elements,forming an Abelian
group under the operation of addition. That is, if we denote the
elements of the set by Latin letters a,b,c,*+* x,y,z, there exists a
correspondence associating to each ordered pair of objects a,b (& and
b are not necessarily different) of S an object a + b of S, called
the sum of a and b, and subject to the following postulates, where
equality is taken to mean logical identity.

I. 1.) If aand b are in S, then a + b is in S.
2.) a+b="5b+ a for every pair of elements a, b in S.
3.) a+ (b+ec¢)=(a+Db)+e¢ for every three elements a,b,c
(not necessarily different) of S.
4.) There exists an element, denoted by 0, in S, such that
a +0=a for every element a in S.
5.) To each element a, there exists an element -a, such that

a+ (-a) = 0.

The element O)Galled the null-element in 3.) easily may be
shown to be unique, as can the element -a called the inverse of a in
4.), for a fixed element a. For these and other properties of Abelian
groups, see van der Waerden I 1 B, page 15. For & + a + <++ + a, (n
terms) we write na; for b + (-a) we write b - a; for -a - a - «« -a
(n terms) we write -na. The following rules easily can be proved.

Q is the elass of negative, positive and zero integers.



I'. 1.) n(a + b) = na + nb for all a,b in S and every n in Q.
2.) (n3 + ny)a= nja + npa for all n,n, in Q, and every a
in S,

5.) ny(nga) = (njny)a for all ny,n, in Q and every a in S.

S is assumed to be a partially ordered group, that is for
certain elements y in S, the relation y> 0 is defined subject to

the following postulates:

II. 1.) Ify >0, theny is not equal to O.
2.) Ify1> 0 and y5> O, thenyj + y, > O.
3.) To every element y in S, there exists an element (y)., such

that

¢.) If y* is another element having the properties of
a) and b), then y* - (y),. = O.

See p, 30 for IT 4).

Definition O. Partially ordered group. Any set of elements satisfying

postulates I and II will be called a partially ordered group.
Definition 1 of greater. y; is said to be greater than y,, that is
Y1 > Y¥s, £y 572> O.
Definition 2. yy is said to be smaller than y,, that is y3 < ¥,, if

J2 > V1.



Definition 3. y is said to be positive if y > 0, and negative if
y< 0.

Definition 4, of positive part. (y)., see axiom II 3, is said to be

the positive part of y.

Definition 5, of negative part. (-y), is said to be the negative part

of y. It is denoted by (y)._.

Definition &, of absolute value. The absolute value of y is the

element [y/ = (y)+ + (y)-.

It is to be noticed that, unlike the group of real numbers, it
is not necessarily true that one of the relations, y >0, y =0, y< 0
must hold for every element y in S, as will be clear in examples to
follow., Clearly, by definition, (y), and (y)., and consequently }y]
are unique. The absolute value, }y} is in this case an element of S,
and not necessarily a real number. Thus ]y[ is not a proper metric;
nevertheless a topology and theory of limits very similar to the case

of the real numbers may be defined by means of it.

Theorem 1
a.) If y3> ye and y; 2 y5 then y; > ys.
Proof. y3 -y, > 0 and y, -y3 >0 orelse y, - yg = 0.
Adding and using postulate II 2 and the group postulates
V1 =32 + (y2 ~¥3) >0 o0ory) ~y3 >0ory >ys.
b.) If y1< ¥, and y, £ vy then y1< yg.

Proof. Similar to a.).



If y9< y,, then -y; > -y..

Proof. ¥, - y3> 0 by Def. 1. 4add -y, ton both sides
and use Def. 1 again and a.) above: -y1 > “Va-

If y1 2y, thenyy + y 2y, +y for every y in S.

Proof. yj -y, Z O by Def. 1.
That is yy + ¥y = (yz + ¥) Z 0 by adding and subtract-
ing y and using properties of Abelian groups. But
this says that

YL * ¥ Z¥e + ¥ by Def. 1.
If y1 Z ¥, and yg Z ¥4, then Y, * Vs Z V2 * Vg
Proof. y1 -y2 20, y3 - ¥g = O by Def, 1.

Adding and using Postulate II 2

Y1 +¥s = (yg +¥yg) Z0 0T y; +y3 Z T + Tgo

Proof. TFrom Def. 5 and Postulate ITi.

(=y). = ()4

Proof. From Def. 5.

¥+ Zy, N-Z -y

Proof. Postulate IT 3.

Ve - o=y

Proof. y+ (y).-vy20,alsoy + (y).= (-y), - (-y) ZO

by Postulate II 3 and Def. 1. But these two relations



state that y + (y)_ satisfies the conditions of
Postulates II 3 a and ITI 3 b. Therefore
y+ (¥). Z(y)4. Replace y by -y and get
-y + (=y)oZ (=y)4, or =y + (v)4 Z (y)_, that is,
(y)y 2 (y)- + y; this together with y + (y). Z (¥),
yvields y + (y)- = (y), by virtue of Postulate I 1,
ory = (y), = (¥)-.

6.) (y1 +¥2)se T (v1)4+ + (y2)s and (y1 + ¥v2)o T (y1)- + (¥2)o

Proof. (y1)s Z vy @nd (yp)y Z¥z. Then

(y1)+ + (y2)4 Z 91 + yo by Theorem 1 e. Also
(y1)+ * (y2)s 2 0. Therefore (y1)y + (¥2)u 2 (¥ + ¥els

by Axiom IT 3., The other result follows from

(=y)_- = (y),
Theorem 3
a.) ]y/ Zo
Proof. |y| = (¥)s+ + (y)- = 0 by Postulate I 2.

b.) iy} =¥, ¥y Z-¥.

Proof. vy =@++ -2 (y)sZv.
c.) [v] = [v]
Proof. }-yl = (-y)s * (=y)_ = (y)_ + (Y)+ = /YJ

d.) Ify =0 then (y), =0 and (y)_ =0 = /y/.
Proof. Def. 4 and Postulate II 3.

e.) Ify # O then [y/ > 0



Proof. Either (y); >0 or (y)_> 0 since
y=(y)e = (y)oe Then y = (y), + (y)->0O.

£ ) /yl'fyz/é [ri] + [vel

Proof. [y + Ve = (y1 + ¥e)y + (51 + ¥2) <

(vi)s + )y + )+ )= [va] + |5

The results stated in Theorem %, especially a.) /y/ =0
c.) /-y[ = /y[,dande.) |y| =0 if and only if y = O,
) Iyl + Vo [g} lyl ( + /yzl meke very striking the formel resem-
blance between this "absolute value", which, we recall, is an element
of the space S and the ordinary absolute value of ordinary Euclidean
vector analysis, which is a real positive number and not a vector, see

Sierpinski IV 1 B page 75 or Kuratowski IV 1 B page 82.

Definition 7 of upper bound.
An element y* is called an upper bound of the set of elements
Y1s¥z *** ¥p if
y*Zyy fori=1, ¢+* n.

Definition 8 of lower bound.

An element y* is called a lower bound of the set of elements
Y1:Vg **° ¥y if
y*<y; fori=1,c-, n.
Theorem 4. If y is an upper bound of the set y;, ¢+ y, then -y is

a lower bound of the set -yi, <+ ~¥,.



Proof. Theofem 1l e,
Theorem 5. Every set of elements Y1s *** » ¥, Where n is a finite
positive integer has at least one upper bound and at least one lower
bound.

Proof. By Postulate II 3, to each element ¥y there exists

an element (yji)+, such that
(Y1)+ £ 0, (Yi)+ = ¥i. Then
(y1)+ + (v2)a * eoo + ()4 is an upper bound.
A lower bound may be found by considering the upper bound

of the set -yj,-yz, *** , =¥n.

Definition 9 of lub and glb.

The lub (least upper bound) of any set of elements in S is an
upper bound y* such that for every other upper bound y', y' - y* Z 0.
The definition of glb (greatest lower bound) is similar.

Neither the lub nor the glb has been shown to exist for every
set, but if it exists, it is necessarily unique from the definition.
The following theorem guarantees for finite sets a glb and lub that
are independent of the ordering of the elements.

Eyeorem 6. Every set with a finite number of elements (y3, e¢++ ,¥p)

has a lub.
Proof.

a) n=2. Let y,y, be any two elements in S. Put



y¥* =y + (y2 - y1)4. Then y* is the lub. TFor

y*Z y1 end (yp = y1)+ 2 Ve - ¥1, so that y* =

¥y1 * (yo = y1)+ Z y2. Now suppose that y' is another

upper bound. Then y' =y Z0 and y' = y3 Z ¥z = ¥1,»

consequently y' = y1 Z (¥z - y1)+ and therefore

y' Z2y1 + (y2 - y1)+ = y*. Therefore y* is the lub.

- b) Assume the theorem proved for n elements. To prove it
for n + 1. Put y* = lub (lub (y1, *** ,¥n), ¥n+1)-
Then y* = lub (y1, *+* ,¥n). For y* = yn+1,

-

lub (y1,¥2, ** ¥n) by &) and if y' Z ¥1,¥5,,¥n,¥n+l
then y' Z lub (y1, *** ¥n), Yn+1 consequently y* Z y*

and y* is the lub.

Theorem 7. Lvery set with a finite number of elements y31,¥z, ***,¥n
has a glb and glb (¥y1,¥g, *** ,¥p) = = 1ub (=y1,=¥a, *** ,=¥n).
Proof. Use Theorem 4.
Theorem 8.
a) (y)+ = 1lub (0,y); (y)- = 1lub (0,-y)
Proof. See Def. 4 and Postulate II 3.
b lub (¥1,¥z, ++* ¥n,¥1) = 1udb (¥1,¥2, *+* ¥n)
Proof. Theorem 6.
¢) lub (y1* ¥,¥g *+ ¥y ¢+ »¥n + ¥) =¥ + 1ub (y1,¥zs *+*»¥n)
Proof. y + lub (y1,¥s, *++ »¥n) Ty + yi (i=1,2,..,n)
Thus X ) y + 1lub(¥y1,¥gs +++ ¥n) T 1ub(y + y1,+++,¥ + ¥n

Also lub(y + y1, *+* ;¥ +¥yp) Ty *+yi (1 =1,---n)



that is lub(y + yy, «--, y + y,) = ¥ = 1ub{yy,«--yy)
or 3),lubly + y1, +++ ,¥ *+ yy) Ty + Lublyy, - ¥p)
From X ) and ) the theorem follows.

a) Jay/ =21w (y,-y)

\

(2yl+ + (2y). = 1lub(2y,0) + lub(-2y,0)

]

Proof. |2y]
= «y + 1lub(2y,0) + y + lub(-2y,0)
= lub(y,,, -y * lub(-y,y) = 2 lub(y,=-y)
e) If Y{2 n (i=1,... ,n) then
1ub(y{, «++ ,¥f) 2 1ublyy, +++ ,¥,)
Proof. The left side Z y] £y; for all i.
Theorem 9.
a) lub }:1ub(yl, e 3¥p), lub(ypey, oo ,ymm)] =
lub [yl, Yn+m]-
b) [lub(yl,yz)L = lub [(y1)+,(y2)J

Proof. lub[(yl)‘,,,}(yg).,] lub ):lub(yl,O),lub(yz,O)]

1]

lub(YlQY2yo) = lub [lub(yl’YQ)’O ]

[100(71,2)]

Theorem 10.  lub(a,b) + glb(-a,=-b) = 0

-+

Proof. 1lub(a,b) + glb(-a,-b) = lub(a,b) = lub(a,b)
from Theorem 4.
Theorem 11.  lub(a,b) + glb(a,b) = a + b
Proof. From Theorem 8 ¢
glb(-a,=b) + a + b = glb(b,a) or

a+ b= glb(b,a) - glb(-a,-b). Use Theorem 10.
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Theorem 12. Distributive Law. glb ).lub(a,b))c] = lub [glb(a,c),glb(b,C)]

lub [glb(a,b),c] = glb ):lub(a,c),lub(b,c)].

Proof 1) 1ub'ﬁ.ub{g1b(a,b) ,¢),0

2)

]

lub[glb(a,b) ,b,c]
lubIlub{glb(a,b),b},c] 1ub [1ub(b.c),b |

1lub [b,glb a,lub(b,c.)}]. Also

ny

glb[b,lub{c,glb(a,b)}‘] Zz glb[b,glb(a,b)] -

glb [glb(a,b),glb(b,c)] = glb [b,glb{a,lub(b,c)}]

Add inequalities 1) and 2) together and use Theorem 11.
lub [c,glb(a,b)] Ed glb [lub(b,c),a:] . Interchange

a and b and get lub[c,glb(a,bﬂ e glb[b,lub(a,c)j "

lub [c,g,lb(a,b)]>= e, glb [b,lub(a,c)] , therefore

lub };c,glb(a,b)} Z 1ub [c,glb(b,lub Ja,c) )] =

glb [1ub(a,c),1ub(b,cﬂ. This last step follows from
3) with lub (a,c) instead of a. Also

lub [glb(a,b),c]f lubﬁa,cﬂ)lubkb,c)]. Therefore |

1ub [elb(a,b), ] < elb [1ub(a,c),1ub(b,c)] -

From this and the result above follows the first state-
ment of the theorem. The second statement follows

similarly.

Theorem 13. lub [glb(a,b) ,c] = glb a,lub(b,c)]

Proof.

See 3) in Theorem 12.

Theorem 14. lub(a + e,be+ ¢) Z lub(a,c) + glb(b,c) or

lub(a,b) Z (a)+ - (b)-

Proof.

nw

a+cZa+ glb(b,e); a+ ¢ - glb(b,c) Z a
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lub[% +c - glb(b,c),lub(b,c’] Z lub(a,ec). 4dd glb(b,c)
t0 both sides, use Theorem 8 ¢ and

lub):a + ¢,lub(b,c) + glb(b,c)]Z lub(a,c) + elb(b,c)
Use Theorem 11 and the left hand side is seen to be
lub(a + e,b + ¢). The second statement of Theorem 14

follows if ¢ = 0 in the first statement.

Up to now, we have been concerned with an Abelian group with a

partial-ordering relation. Now we assume that there exists an operation

of multiplication of the elements of this group by real numbers, obeying

the usual laws of algebra. This is stated in the form of the following

set of postulates.

IIT

Liad

If y is in S and X is in the space R of real numbers, then
Ay is in S.

(%l * %z)y = Aly + )zy for all >1,)b (not necessarily
different) in 3/and every y in S.

(Al ﬁﬂy‘= kl(Azy) for all Alj; (not necessarily different)
in R and every y in S.

Myy +yz) = Myp +Ay, for every in R and all yp,¥,
(not necessarily different) in S,

ley =y for every y in S.

If y >0, A>0, then Ay >0, where y is in S and A is

in R.
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We have already explicitly defined a multiplication of the .
elements by integers, positive, negative or zero. The operation of

multiplication by real numbers is taken as an undefined notion. The

significance of this operation will vary with the particular example
of space considered. All that we require of it is that it satisfy the
postulates IIT {1 - 6). The postulates III (1 - 5) assure that it
will be consistent with the defined operation governed by the rules I
(L - 3). That is, by an obvious application of the postulates III

(1 - 5) we can prove that if )\ is an integer, positive, negative or
zero, the defined multiplication and the undefined multiplication by A

must coincide.

Definition 10 of partially ordered system. A set of elements satisfy-

ing postulates I - III will be called a partially ordered system.
Theorem 15.
a) If A< 0 and y >0, then \y <O.
Proof. =-(Ay) = (-A)y >0. Therefore Ay < O from
Theorem 1 c.
b) If A >0 and y< 0, then Ay < 0.Fm-(Ay) = A (-1-y) =
Al=y) > 0 since if y <0, =y > 0. Therefore -Ay >0 and

Ay<O0.

¢) If A< O andy <0, then Ay >0. =(Ay)

]

(-Xy <o
from b). Therefore Ay > 0.
Theorem 16.

A lub(y1,«-+¥n) .

a) If A> O, then lub{Ay1, AVs, +++ , A¥n)
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Proof. 1lub(yy,¥e, ¢+« s¥p)= ¥i (i =1,2, «+o ,n)
iultiply both sides of the inequality by A > O
and use postulate III 6.
Alub(yy, «-« ,¥n) ZTA¥i, (L =1, «ev ,n),
Therefore (1) Alub(yy, «++ ,yp) = Mb{)qu, cee AV

Substitute 1/4 for A and A y; for yj, then

1
A

both sides by)\ and get

lub(Ayy, *+- ,Ayn) Zlub(yy, *++ ,yn). Multiply

(2) 1ub(Ayy, »-+ ,Ayp) Z Alub(yy, +-+ ,yy). This
together with (1), gives the equality.
b) If A< 0, then 1ub(Ayy, -+ ,Ayy) = A glblyy, +- ¥p)
Proof. 1lub(Ayy, **+,Ayn) = 1ub(~ Ay, ==+, = [N yn) =
- avo{ M vy, -ee [Myq) by Theorem 4 = - [A| glb(yy, .+ yg)=
A glb(y1, «+ ,¥n) by extension of a).
) If A= 0 then (Ay)y = A (v), and (Ay). = A(y)-

Proof. (Ay)s = lub(0,Ay) = A1ub(0,y) = A (¥)+

(A v)_ =1ub(0,-Ay) = A1ub(0,-y) = A (y)_ by Theorem 8 a)
a [yl o= Pl |
Proof. If A> 0, then |Ay| = (Ap)s + (Ay)_ =

M+ A= A+ 1) =P

If A <0 then

/kyl - /-,\y’ - /'”/3’/ = }X//Y/ by Theorem 3 c)
and above.

e) y = lub(yl)- )
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Proof. [2y[ = 2 lud(y,-y) by Theovem 8 4.

2 !Y{ by d) above.

Multiply both sides by 1/2.

A useful concept is that of a "structure", see Hausdorff
IV 1B, p. 139 or Ore, I, 2 which we define as a set of elements
'y, with an ordering relation Z existing between some pairs of
elements x,y, subject to the following postulates, where x = y

means y = X.

Iv. 1) ==

2) IfxZyendyZ z then x Z z.

3) If x and y are any two elements there is an element
x/1y such that x 1 y<y; xNy<xand xAyZ any
element z such that z Sy, x. =x/) y is called the cross-

cut of x and.Yy,
4) If x and y are any two elements, there is an element x U y

such that xU y Z x,y and x )/ y & any z such that z = x,v.

xV v is called the union of x and y.

This set need not be an Abelian group. We see, however, that
any partially ordered group satisfies axioms IV. Some examples of
partially ordered sets that are especially important are as follows.
If x 2y but x #y then we write x> y.

Example 1. Sub-classes of a class.

Consider any class of well-defined elements. Consider now
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the class whose elements are sets Of elements of the given class

and in fact is made up of the totality of such sets (the given

class is now considered as fixed). If the given class consists of
the numbers 1, 2, 3, then the class of sub-sets is composed of 0,

(1), (2), (3), (1,2), (1,3), (2,3), (1,2,3). ZEach one of these
brackets, regarded as entity is an element of the new class. The
number 0, written at the first of the above sequence represents the
null-class, a mathematical fiction which has been created for conven-
ience, and means the class without any members. The symbol (1) means
the class with one member, namely the integer 1. The symbol (1,2) is
the class with the two members 1 and 2. Remember that the numbers 1,
2 are elements of the given class. Notice that we include the given
class itself as a sub-set of itself (called an improper sub-set).
Also notice that no attention is paid to order in sets. This is an
example wherein the initial set is finite. In the case of an infinite
set, the procedure is similar.

C e

xample I. Our structure will consist of the set of sub-sets A, B, etc.,
where A Z B, read, "A includes B", if every element of the original set
oceurring in B also occurs in A. A/) B is the set of elements of the
original set occurring in both A and B. AU B is the set of elements
of the original set occurring in either 4 or B, or both. In most

treatises on the theory of point sets, A2 B is written for A Z B and

A DB ig written for & > B.



16

Exemple 2. Positive integers.

The set is that of the positive integers, where a< b
means that-z is an integer, i.e. é divides b. a U b is the least
common multiple of a and b, called the l.c.m. and is the smallest
(in the ordinary sense) integer that is a multiple of both a and
b. a(1 b is the greatest common divisor called the g.c.m. and is
by definition the greatest (in the ordinary sense) integer that
divides both a and b. Both these numbers exist, see the algorithm
of division, Dickson I 1B, pp. 1-2.

Zxample 3. Set of polynomials.

The set is that of all polynomials such as apx™ + <.« + ag
in a single unknown x, and real numbers as coefficients. AU B is
the least common multiple of the two polynomials, that is the poly-
nomial of smallest (in the ordinary sense) degree such that it = fA
and:gB/where f and g are polynomials in x. A /) B is the greatest
common divisor of the two polynomials, defined as the polynomial of
greatest degree (in the ordinary sense) that will yield a polynomial
quotient. when A and B are divided by it. These always can be found,
see van der Waerden I 1 B wol.I pp. 52-53 and Kénig I 1 B, A> B
if A/B is a polynomial}that is if B divides A with no remainder.
Exemple 4. Linear sub-spaces of a linear space.

A linear space is an Abelian group with number multiplieys

satisfying postulates I (1 - 5) and III (1 - 5). A linear sub-space
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of a space is a set of elements of the given space that themselves

fofm a linear space. One element is considered as being a linear

space, degenerateiy. If we consider the set of all linear sub-spaces

of a linear space, these form a partially ordered set, where A> B

is defined as in example 1. The cross-cut of two linear-sub spaces

is automatically a linear sub-space. However AU B is defined as the
smallest linear space containing A and B, and is got by taking all
possible linear combinations, with real number coefficients, of elements
in A and B, see van der Waerden I 1 B.

A finite dimensional linear sub-space is 5ne composed of all
possible linear combinations, with real number multipliers, of elements
of the space selected from a certain fixed set of elements, finite in
number yi,¥g, <°° Yp. Notice now that the totality of finite-dimensional
linear sub-spaces of a given linear space form a structure, which is
a sub-structure of the first-mentioned structure.

Ixample 5. Ordered sets.

An ordered set is defined as a set of elements a, b, etc. with
an ordering relation = such that for every pair a,b of elements
either a >b, b <a, or a = b, where a = b is taken as identity, and
there is no fourth possibility. lioreover, the three possibilities
are considered as mutually exclusive. Obviously, given the pair e,b,
the union of a and b is either a or b according as a >b or & < b;

in case a = b thenal/ b=a=b., a/lb is either a or b according
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as b>a or a> b, ete., Examples of ordered sets are: the set of
real numbers; the set of positive integers; any set of cardinal
numbers (for a definition of cardinal numbers and a proof of this
statement, see Hausdorff IV 2 B, pp. 25-77 or Kemke IV 1 B, or
Pierpont IV 1 B, vol. II, pp. 276-323); a set of ordinal numbers;
the set of all circles with centers at the origin and lying in the
Euclidean plane)ordered according to length of radius.

Example 8. Hereditary and additive families.

Consider a class P of sets X,Y, ¢+« , of objects. This class,
or family is called additive if, for any two sets X,Y in the family P,
X+ Y is a set in P, (X + Y is defined as the point-set sum, see
example 1). It is called hereditary if X in P and Y<<X, in the
sense of exemple 1, together imply that Y is in P (is a member of
the family P). This structure can be considered a generalization and
abstraction of example 1. See Kuratowski, IV 1 B, pp. 29-32.
Exemples 7 - 11 are speciel cases of this type of family.

Example 7. Sub-groups of a group.

A group is a set of objects a,b, <« , such that to each
ordered pair a,b of objects (not necessarily distinct) there is
associated an object of the group desigznated by ab, and called the
product ab. The products ab and ba may or may not happen to be

distinct. The product aa exists and is again an object of the group.



19

When an operation (such as this product) always yields an object of
a given set when applied to every possible pair of objects (or
elements) in the set, we say that the set is closed under this opera-
tion. We require further of a group G, that the objects satisfy the

following axioms, see van der Waerden I, 1 B, p. 15

V. 1l.) To each order pair a,b of objects in G there is an object
ab in G.
2.) a(be) = (ab)e for every triple a,b,c (not necessarily
different) in G.
3.) There exists an element 1 in G, such that for every element

a in G

A sub-group H of G is any set of elements of G that themselves form a
group. The class of all sub-groups (themselves considered as elements)
A,B,++« of a given group is a structure if we define A7 B as the
cross-section (in the point-set sense) of A and B and A/ B as the
smellest sub-group of G containing both A and B, A > B is defined as
point-set inclusion, example 1. See van der Waerden I 1 B, Chap., 2,

¥ol. Is
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Example 8. Sub-rings of a ring.

A ring is defined as a set of elements with two different
operations, sum and product, each of which assigns to each ordered
pair of elements another element, a + b and &b resp. The ring is
an Abelian group with respect to the sum operation, see postulatesl
and further, the product operation obeys the associative law:

a(be) = (ab)e
for all elements (not necessarily different) in G. Also we have the

distributive laws:

VI. 1.) a(b + ¢)

I

ab + ac
2.) (b + c)a = ba + ca

If in addition, ab ba for all elements then the set is known as a

commutative ring. A sub-ring is any sub-set of elements of a ring
that themselves, as a totality, form a ring.

The class of all sub-rings A,B,e-+ of & ring is a structure
if by A/) B we mean the cross-cut, in the point-set sense, of A and
B, Obviously A/)B is a sub-ring. AU B is the smallest ring K
that includes A and B, in fhe point-set sense. When we say the small-
- est ring, we mean that if we omit a single element a from XK, then
cither a is in A or B or both; or in case a is not in A or B, the set

resulting from the omission of the element a is not a ring.



21

fxeample 9. Ideals of a ring, left or right.

A left (right) ideal of a ring R, is a sub-ring H such that
rh, (hr) is in the sub-ring H whenever h is in H and r is any element
of R. The class of all left-ideels of a given ring R forms a structure,
as does the class of all right ideals. A/ B is taken to be the cross-
cut in the point-set sense. A U B is the smallest ideal containing
the union in the point-set sense; A > B if A includes B in the point-
set sense,
Example 10. Sub-fields of a field.

A Tield is a set of objects with two operations sum and product;
a + b and ab resp., such that it is an Abelian group with respect to
the sum and a group with respect to the product and it satisfies the
distributive laws VI. Thus a field is simply a ring whose product
is uniquely solvable and that contains a unit element. A sub-field
is a set of elements of the given field, that form a field. The class
of all sub-fieclds A,B,««« 0f a given field is a structure if we
define A> B as point-set inclusion and 477 B, A (/ B similarly to
examples 7 and 8.
Example 11. The ideals of a field.

See example 2.
Example 12. Hasse diagrems

| The Hasse diagram is often used by algebréists to represent

structures with a finite number of elements. They study these diagrams
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and work out certain theorems by a synthetic graphical method and
then write up their results using proofs that are simply analytical
verifications of the theorems and are non-informative as to the origin
of the idea. Then they pretend that it was all an inspirstion sent
from heaven. In the Hasse diagram, each element of the structure is
represented by a point in the plane A << B iff the y-coordinate of B

is greater than thet of A. If A< B and there is no element X such
that A< X < B and ¥ is different from A and B, then A and B are to

be joined by a straight line segment. Every connected plane complex
of lines and points is to be regarded as a structure if it obeys the

postulates IV.

Example 13. Boolean algebras.

A Boolean algebra, in the classical sense, is an algebra of
logic in which the elements are propositions A,B <+« . A< B means,
the proposition B implies the proposition A. AUB is the disjunction
and means either A is true or B is true or both are true. A/)B means
both A and B are true. A! is the negation of A (to be used later).

N is the identically false proposition, O is the identically true

proposition.
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Exemple 14. The structure of equivalence relations. See Bird{(hoff I 8.
Iet C be any class of objects and let x and y be equivalence
relations on C., An equivalence relation is a relation that is either
true or not true for each pair of elements a, b of C.
1.} axa
2.) Ifaxb, thenb x a
3.5 If a2 x b and b x ¢ then a x c.
We define the cross-cut (o: meet] x/) y of the equivalence relation x

and y as the relation w on C such that:

awb if and only if a x b and a y b.

o
¢

€

By the union (join) xU v of x and y is the equivalence relation z with
the property that a x b or a y b implies a z b. The union and cross-cut
are obviously equivelence relations. x=2y if x/Ny =y and x €y if
xUy=y.

We shall consider a few specific examples of spaces satisfying
postulates I & II. Postulate III can be shown to be included in I.
Sxample 5. n-dimensional vecfor space, rln),

Its elements are ordered sets a = (a, +++ ay) of n real numbers.
It is composed of the totality of such sets. The sum, a + b of the
vectors a = (&1, +++ ,8,) and b = (by, ---,b,) is defined as the vector
a+ b= (a] + by, *++yay + by). The element y = (y1,*** ,¥p) is > 0 if
y; £20 for i =1, ««+ ,n, and at least one y3 > 0. (v)4 = 1ub(0,y) is

defined as the vector (max(yy,0), o« ,max(yn,oﬁ, where max(l,m) means
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the greater of the two numbers 1l,m. Thus lyl is the vector

()yl{, /yal, S%W ¢ /yn,) and lub(y,z) is the vector (mex(yy,zy), *** ,
max(ypn,2n)). The vector Ay, where A is a real number and y is & vector
is defined as (Ayy, +-+ ,Ay,). Thus for n = 1 we have the space of
real numbers. TFor n = 2 we have the space of complex numbers.

5Exam£1e 16. ©Space of n-by-m rectangular matrices. Real numbers.

This space is composed of the totality of rectengular matrices
with m rows and n columns, the components, CERT of the matrix being real
numbers, and m and n being fixed for the particular space. A rectangular
matrix is an array of elements arranged in the following form of m rows

and n columns.

all alZ ee oo am

o1 823 *°°°* 8gpy

-~ L0 6000800 00 o WP

aTﬂl anlz e o000 a:mn

This is one natural generalization of a vector. The sum A + B of two
matrices is defined as the matrix, each of whose components is the sum
of the two similarly placed components in the matrices 4A,B. Thet is, A + B

is the matrix

a1 *t by gt byp ettt agy + Diy
agy + bgy agp *+ bgg ccccc agy + bgp

@n1 * byl &m2 * bPpg ccccc agp + byp
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The matrix 4 is said to be >0 if every one of its components is 2 O

and at least one of its components is > 0. The matrix (A)+ is the matrix

max(ayq,0) max(a;p,0) «-- max(a;,,0)
max(agy,0) + e+ s« «  max(as,,0)

max(ay; ,0) A max(am,n,o)

The matrix A.A, where A is a real number, is the matrix, each of whose
elements is equal to the product of‘A and the similarly placed element in
A,
Exemple 17. Matrices with components not real numbers.

Let us consider the space of all matrices with m rows and n
columns, m and n fixed, whose components are themselves elements of some

partially-ordered space satisfying postulates I - III. All the necessary

definitions are simply paraphrases of those in example 2. This represents
a very considerable generalization of examples 1 end 2.
Example 18. Integer functions,

The space S is here the totality of functions f(t) with real-
number values, where t varies in the whole closed interval of real numbers
(0,1). The sum and difference of two functions are defined as usual.

The element (of S), v is defined as > 0 if the corresponding function

)
y(t) is = 0 for all t in (0,1) and y(%;) > O for at least one %, in (0,1).

Yultiplication by real numbers is defined as usual.
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Example 19. Functions on abstract sets.

The space S is here the set of all numerically-valued functions
defined on an abstract set, T, of elements, t. That is, a correspondence
is set up between each member t of the class T of abstract elements, and
a real number, so that a unique real number is assigned to each such
member. Such a correspondence is known as a function f£(t) defined on T.
Our space is simply the totality of all possible such correspondences
defined over a fixed set T. The various definitions are analogous to
those of example 4.

Zxample 20. Polynomials according to Bernstein.

The space S is the totality of polynomials y(t) defined in the

interval (0,1), of degree up to and including n. We define y >0 if in

the corresponding polynomial y(t), expressed in the Bernstein normal form

n
y{t) = ZE: cg $(1 - ¢)BK Sk, n

the coefficients Sk,nfi 0 for all X< n and, in addition y(t) #E 0.

This space is isomorphic to the space R(n+l) see Bernstein IT1.

Bxample 2X. Classical Hilbert space.

The space consists of the totality of infinite vectors
v = (y1, *** ¥n, *+*) where the "components", yi, *** ¥p, *** , are
complex numbers. The various notions are defined just es in example l,‘
with slight modifications. Formally, this is e slight generalization.

Actually it is considerable.
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Example 2@. Positive linear functionals.,
The space S is taken to be the totality of linear functionals
NE?) defined on the class of continuous functions f£(t) where 0 =+ < 1.
We define a functional over a certain class of functions f(t), as a
correspondence that assigns to each member f£(t) of the class, a unique
real number F)called the value. It is a positive functional if Fp 2O
for every f of the given class such that £(t) 20, 0£ t £ 1, and Fp> 0
for at least one function of the class; that is, the value of the functional
is positive or zero for every non-necgative function in the given class.

It is an additive functional if
Fpeg = Fp + Fgo

It is a continuous functional if for any sequence of functions fn(t) in
the given class such thet 1lim f,(t) = £(t) e function also in the

n - 00 )
class, we have

lim Fp = F
n>oo £

In the definition we do not state what lim fn(t) means. It
n—>

depends to some extent on choice and on the particular class of functions

£(¢). Ordinarily, for convenience, in the case of the class of continuous

functions we say that it has the meaning of uniform convergence; that is

SEf l%? fn(t) = £(t) then to any € > 0 we can find a positive number
n—> o

N( € ) such that [£(t) = f£,(t)|=< € for n> N(&) regardless of t; in

other words, an N can be found that will make the inequality valid for
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any t whatsocever. The N will depend only on the € , and in genersl will
be larger the smaller is € . A functional that is additive and continuous
over a particular class of functions is called linear over that class.
See Banach IV 1 B, pp. 16 and 23,

Now we define the functional ¥ to be > O if it is positive in

the above defined sense. F + G is an element defined by the equation

(7 + G)f = Ff + Gf.

The null-element is the funcbional that is identically zero: it assigns
the value 0 to every function of the class. The element A F is defined
by the equation

()‘ F)f = A (E)

P
s

Ve shall have occasion to consider this example latter in greater detail.
An example of_ a linear functional is the Riemann integral of a function

1s€e Ff = £(t)dt. That this is continuous for the set of continuous

0
functions considered above is a theorem of the elementary theory of

real variables, see Titchmarsh IV 1 B, p. 386 or Townsend IV 1 B, p. 373.
This is obviously a positive functional and linear by very elementary
theorems.

We shall develop the theory of convergence by means of the notion
of uppe® and lower bounds of‘sequeuces. A postulate will be added assur-
ing the existence of the. exact upper and lower bounds for certain infinite

sets not necessarily denumerable. (4 set is called denumerable if there
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exists & one to one correspondence between the members of the set and
the positive integers). 4fter that a topology of "Cauchy seguences”
(see Theorem 32) will be developed in a form sufficient for our later
needs. A "topology" is a theory of limits and convergence developed in
connexiodn. with the theory of transformationsdefined on the given set
of elements.

Definition 11 of bounded above. A set E (infinite or otherwise) of

elements in S is said to be bounded above if there exists an

element y of 3 such that y 2 z for every z in E. v is called
an upper bound.

Definition 12 of bounded below.

The dual of definition 11.
Definition 13 of bounded. 4 set I of elements in S is said to be
bounded if it is bounded above and bounded below.
Definition 14 of lub and glb. If an element y of S exists so that for
every z in EC S
l.] #2528
2.) for every upper bound w of E wZ y:
then y is said to be the lub E. A similar definition holds
for glb.
Note .{y} igs a short notation for the set of all elements of

which & typical one is y.

Theorem ;é& If the set B = {y} is bounded, then so is also the set
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Ey = {}yt} , the elements of which are the absolute values of
the corresponding elements of E.
Proof. By Definition 13 there exist ¥y, and y,, such that
y1$y<ys for ally inE.
Therefore

21

(y)+‘f (¥t (3] yl)_ by Definitions 4 and 5 and

postulate II 3.

Put yo = (y2)s * (¥1)= then 0 /yl = ¥o for all y

in E. That is, {/y[} is bounded.
Notation. If the set E is provided with indices of any sort (not necess-
arily integers)

E - {yES __ then the lub and glb of this set
tdn -

will be written
lub 2 = 1ub ¥y
§inf5:

glb E = glb Ty
TinE

In case the set & is a sequence y ,yg, +++ ¥ , e+« then lub E = lub.{yn3=
3 n
lub (¥ s¥es **° Yn: «ee) ete.
We now introduce an axiom that enables us to obtain a developient
of the theory of sequences similar to those of Cantor and Dedekind.

Postulate TT:

1T 4,) Every set bounded above has an lub. The set may be infinite

or otherwise.
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Theorem 17. The postulates I, II, III are not independent. II 3

follows from the rest.

Proof. See Kantorovitech II 13, p. 129, Satz 13.

Theorem 18. If the set E = {yg,} is bounded below, then the
gin =
glb E exists, and
glb E=- 1w [y
fin =

Then -yo =< -y 3

sfor‘gin—— A

consequently every lower bound y, of {ysy is such that

.

Proof. ILet ¥ be a lower bound of E , Vo ol ;

-Yo is upper bound of {- yqﬁ . By postulate II 4, the
set »{— ygj , being bounded above by -y, has a
lub {"Y;B = -Vo» Therefore y, Z - lub {-—y,} for every
lower bound y, and -lub ,{- %'S = glb {y,;l]
Theorem 19. The space S has no greatest and no least element.
Proof. Suppose y is the greatest element and y; is an element
# 0. Theny + ’yll7 y. Contradiction.
Definition 15 of +® , -00.
+00 and =-oo are two fictitious ideal elements with the properties
a) ~o0oLy<L +00 for all y in S.

+00 143 1o 1w

b) +00 + ¥y
T "

-0 +y=_m i " on

¢) +00 + 00 = +0O

+

-0 (=0) = =00

-0 + 00 has no meaning.
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d) =(+00) = -0 ; =(=00) = +o0

e) If A>0 then A(+oo)

+0; N(-m)

"
1
8

A< 0 then A(+00) = =00; A(-00) = +00
Notation 1lub E = +00 means E is not bounded above.
glb E = -0 means E is not bounded below.
Theorem 20. Every set is bounded (bounds include xco as possibilities).
Theorem 21.
a.) If E # 0, (the null-set) then lub E= glb E
b.) If E;2 B, then lub E Z lub E,

c.) 1lub {y + y} =y + 1lub '{Y L
$in= Yin =

Proof. See Theorem 8 c.

d.] I R=F E,.], where the point-set sum is meant, then
Yin X :
lub B = 1lub {lub E,,Ilj
min H

=S E,. Then EZ lub E o
Proof. E —q_zu By« Then lub E Z lub Ly, g nin H, by b)

(1) Therefore lub E Z lub }
garl
Also lub { lub E Zluw B, 4inH
4 K l 4?
or lub {4 lub E"ITJ Zy, fory in any E .
UEY %
Therefore 1lub lub Eﬁl’ < y, for y in E.
"V.H
(2) or ~Z lub E. (1) and (2)
together yield the result.
e.) Suppose two sets 'El and E; such that for every ¥y in ﬁ‘l

and every y, in B, y15y,. Then lub E, and glb E; both



exist and lub B € glb Bs. N
Proof. Under the hypotheses/any Yz is an upper bound

for E; and yz Z lub E; for every yo in E,. There~

fore lub E is a lower bound for E; and therefore
glb E, Z 1ub By.

f.) If y # 0, then the set,{n y})n =1,2,3, <+« is not bounded.
Proof. y ¥ 0. Therefore either (y)+ of (y)_ is # O by
Theorem 3 e. Assume (y); # 0. Now assume ny < y,
for n = 1,2, «.- lub {ny} = (n+ 1)y for all n
lub (ny) — y = ny. Therefore lub {ny} - ¥ = lub a(ny}
and =y = 0. Or y £0 and by Definition 4 (y)4 = O.
Note. This last sub-theorem corresponds to a kind of "Archimedéan'!
axiom. The Archimedéen axiom is ,that to any two elements a,b> 0 there
exists an integer n such that na > b. The result f) above is definitely
weaker than this. Actually the Archimedgéan axiom does not hold in the
space S, as the simple example shows:
Using the notation of Example 15 and the space R(?), (1,0)> 0
and (1,1) > 0, but there is no integer n, such that

(n,0) = (a,n)

Theorem 22. Let E; and E; be two sets, such thet E; consists of all

the elements of S thet are smeller than all the elements of the
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set Eg/ and E; consists of all the elemente of S that are
larger then all the elements of Ej. Then there exists an
element y,, giving the cut. It may belong either to By or

to Es. We have:

By

I
il

the set of y<y,, Ez the set of y Z ¥ AL ¥y in By

not
the set of y > y, if yo/’in i

Eq = the set of y < y,,

&
I

Proof. Put y, = lub Eq. Then there are two cases.
1) yo in E;. Then
Yoy for all y in Eq
Yo =y for all y in B,
because y, = lub E; and every y in E: is an upper bound
for Eq. Ih this case

]

1

the set of y< y,

i

E; = the set of y 2 y,
R) ¥, not in Ep. Then y < y for all elements y in Ep

and therefore y, is in E;. In this case

E; = the set of y € y,,

Il

Es the set of y > y,.

This last theorem gives as a theorem,the meat of the Dedekind
theory of cuts as applied to ordinary real numbers, see Bohnenblust IV

1 B. p. 4, or Osgood 1 B, pp. 34 - 61l. The element y, is sometimes
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known as the cut determined by the two classes Ej and Ez. The class
By is the L-class of Dedekind and the class E; is the R-class. We are
now able to introduce a notion of limit of a sequence of elements and
all the consequent apparatus of convergence, almost precisely analogous
to the case of real numbers.
.Definition 16 of upper limit and lower 1limit of sequences.
Let yp be a sequence of elements of S.
We define

lim y = glb’{lub (FpsTna1s =+ )} , called the
n ~»oo n

upper limit of the sequence,(yha.

lim y, = lub glb(y,,¥p+1s +++) » called the lower
n->00 n

limit of the sequence-(yny. + cois included as a possible
value for either the upper or the lower limit.
Definition 17 of limit of a sequence.

If 1im Yn = 1im ¥y, then we say that the sequence has
n->00 n- o

a limit and we write 1lim y, for the common value of the left
n~¥ 00

and right-hand sides. See PringsheimN6+ mand - oo are
included as possible values in the above equality.
Definition 18 of upper and lower limits of a double sequence.

If we have a double sequence ,'that is,a set of

Tnm

elements of S such that to each ordered pair of positive integers



n,m there corresponds e unique element y, ,, then we define
s

!

Tim Yan = €1b| lub (V)
m,n-> s /mnZs '

lim y,, = lubl g1b  (yp,)
m,n->co S Im,n e

Definition 19 of limit of a double sequence yu,

|

In case
Clim (y,.mb = 1im ( - >
m,n ~> Co m,n—> @ '

we call the common value lim ymn) end we say that the 1imit
m,m—>
of the double sequence exists.

Convention. When we write lim y,, we mean that the limit exists.

Theorem 23
a) lub{yn}§ lim {yn's = 1im {ynlj £ ling E 20 '{Yng
n n- o n- o n_ n

Bven in case 1im y, does not exist, we have the rest of
the inequality satisfied if those members exist.
Proof.
1ub(y1,¥z5+++) Z 1ab(Tns¥utls+-+) T 810(Tns¥nslse+e) =
glb(y,¥25+2) -
Therefore, from Theorem 21 e we have the result.

v —

b) lim {y,+y) =y + lim vy
n—> o n—->w
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Theorem 24.

a)
b)

37

Proof. 1lim (yn +y) = glb [1ub(yn * Folgyy * y,...):l
n - n

I}

glb [y + 1ub(yp,yps e ):[ by Theoren 2} o,
n

¥y + glb [lub(yl'pyn+l)"’)] =¥ ¥ 1im -

n n->owo
lim y, = - lim (-yp)
n-» o n ~ o

Proof. From Theorem 18,

lim y, = lub [glb(y'n,yn-{-]_" "):] = lub ['lub(“ ns~In+ls "‘)]
nSm n n
= -glb [1ub(—yn,—yn+l,---)} =~ lin (-y,)
: n~> o
I ¥y Zy2 2 -+ then 1lim y, = glb(yl,Y2--- )
n~> o
yl_‘—_yzé... then

lim y, = lub(y,y2,-+.) exists in the sense that there
n-~> o

is either a finite element y with the properties of
Definition 17 and the above equality holds or else +®
has the properties of Definition 17. Similarly for a)
Proof. We demonstrate b). Put
lub(yy,¥2,++) = ¥, where y is a propér
element of § if y, is bounded above, and is +m

otherwise. Then by definition and the hypothesis:
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Iub(yy,p41s0++) = F5 810(VnsTpe1se-e) = In

lim y = glb [lub(yn,ynﬂ,--.)] =y
n —>00 n
lim =lub[lb ...]:]_ub{ "
Hn 3, = 1ub | lb(y,Tyy,ee)) = Wb fyf =y
Therefore 1lim ¥ = lim ¥y =y= 1imn ¥
n->m n>0 n>m B

Theorem 25. For any sequence - 8

Iim Yo = Llim Y_J.ub(yn,yn_,_l, oo ﬂ
n~rwo n—>w
Proof. Put lub(yn,yn+1,. o) =3{1, then {yr;} is a non-

increasing sequence, Apply Theorem 24 and obtain

lin ¥, = g1b(¥1,¥as--..) or, substituting back
n->aw

1im ):lub(yn,yn+l, .o )] = glb [lub(yn,yn,,_l, .o .)J
n—-—->w n

Theorem 26. If ¥, 2y, Zy! and lim y, = 1lim y! = y then
precissas n=+vJnEJn o "B f e M

lim y, = y exists,

n->0

Proof, Use Theorem 21 e.

Theorem 27. If limy, =y and lim y} = y' them lim(y, + y}) =
lim y, + 1im y} . Use Theorem 23 b) and thus consider only
sequences for which y' = 0 = y. b prove that lim(yn +y4) =0

if lim y, = 0 = lim y}.
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Proof. Put Yn

1l

lub(yn,yn+l, ves)

Yr’l lub(yl!pyﬁ-;_l: ces)

1

The sequences Y, and Y}, are non-increasing

and so, by Theorem 24,
limY¥, =0=1in Y} = g%an=glbY' .
Also the sequence Y, + Y} is non-decreasing and
lim(Y, + Y4) = glb(¥, + Ty Tper + Tlags- .s)

< elb(¥n + Yl, Ty + Thyqseer)

=
=TIy g}lb(yﬁ’yr'wl’ ) =1,

But this is true for every n, thus
lim(Y, + Y}) € glb y, = 0. Transcribing this
n

back we have 1im (g + ) < linm (X, + T1) = 0.
n-=>® n oo

Now substitute -y, end -y}

lim(-y, - v§) € 0, that is lim(y, + y}) Z O.

This together with the above yieldslim(y, + yr'l) = 0.

Theorem 28. If lim y, = y then lim(y,)s = vy end lim(y,)_ = (y)_.

I

lim Llub (0, yn)]

1ub(0,y)

Proof. To prove lim(y,)s+

Put Y, = 1ub(yy,,¥pq1s+++) a0d Yy = glb(yy,¥7p475+++). Then
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Y, 2y, 2 Y, end 1im ¥ = lim ¥, = y by Theorem 24, since
Y, is a non-increasing function of integer n and Y, is a

non-decreasing function of integer n.

The sequence (Y,), is non decreasing and so

lim (Y,), =Y exists. YZ (Y,)4, therefore Y Z Y, end

lgb Y, =1lin ¥, = y. But Y Z 0. Therefore Y Z (¥) 4

SO?

ny

lioreover y Z?{l therefore (y); Z (Y_n)+ and (y); Z 1ub(Y,), =
= lim (Yy)+ = Y. And so finally, {y)y =T = lim (T;)4.
The sequence -Y, is non-decreasing, therefore lim(¥,)_ =
lim (-Y,)4 = (-y)3+ =y~ . Then from Theorem 28,
Lin ()4 = Lin [T, + (5) | =5 + (7)_ = ()
But (Y_;l)+ < (yp)+ £ @) 4, so thet 1lim (y,)4 = (y)4 and
from this 1lim (y,)_ = lim (-y,); = (-¥)4 = ¥_

Theorem 29. 1im[yn[ = |y]

Proof. }yn’ = (yp)4 + (yp)_. Use Theorems 27 and 28.

Lin |3, | = 1 [ + O] = @y + ) = |v]
Theorenm 30. 1im (lub [yn,y}l]) = 1ub (y,y')
lim lglb (yn,yr'l)] = glb (y,y'), if limy, = ¥, lin y} = y'.
Proof. 1lub (y,,y}) = vy, + lub (0,7} - ¥p)
lim (yr'l - yn) = y' — y. Use Theorem 28 and 29 and get
lim flub (098] = v + Lub (0,5 - ¥) = lub (y,5")

lim [glb(yn,yr'l)] = - lim[lub(-yn,—y;l)]

- lub(-y,-y")
glb (y,y').
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Theorem 31. The necessary and sufficient condition that lim y, = 0 is

Proof,

a)

b)

I
(@)

lin [lub (/.V nl’ /yml )
m,n > ®

Necessity.

Use Theorem 29 and lim Iynl 0. Therefore

nlg_rélo Lub( /ynl, /yn+l' ] = 0, using Theorem 25.

Therefore m,%j;?oo lub Jynl ’tynﬂ.l TR /ymﬂ =

For | T [ 1ub([5ul » [smeal oo [l ))°

lim | lub ([ysl, jys-l-l] ,):'] = 0. This next to
s >

the last relation is proved just as in Theorem 25.

Also, by definition

lim Eup (|yn]> fyn+l'.l""’ (7] >]

m,n > o

Therefore the limit exists and is equal to zero.

Sufficiency.
Assume  1lim (l’lub( Iyn‘ ]yﬂﬂ_\, )lyml )]
m,n —>»
Put m = n in particular so that 1im !yn( = 0 and
n->o

so lim (-jynl ) = 0. But —[yn| =¥y = jynj,

therefore by Theorem 26.
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Theorem 32. Fundamental Theorem. Generalized Cauchy Theoren.
The necessary and sufficient condition that the sequence { yn}

have a finite limit is _lim [y -y, |= 0.
m,n-> o m

Proof.

a) Necessity. Assume lim y, = y.

}yn—ym[‘é[yn—'\ |+ -], so
-j-:j—.r_n}yn—ymlim !yn-y[+—1—i—i1ym—y/=0.
m,n=? oo n-> m->

b) Sufficiency. Assume lim lyn - yml = Q.
- m,n -~ o

Put Yg = lub /yn - yml. Then 1im Yg = O.
m,n 2 8

Tub (Yps¥pipsesesVm) = 810 (FpoVpsioessVm) =

lub (yn,yn+l,...',ym) + lub (_yn"yﬁ-l-l""—ym) =

lub Ern + 1ub (=Yp>=Tpi1s++o=%) Tpep + 1ub (=yps-ee
:"Ym)/-- “+3 Tm + 1ub (=yp,.- .,-ymﬂ . This

last step is got by putting lub (-yn,=¥ntlse++) = ¥

in Theorem 21 c¢. Then the equation centinues

= tub |1ub (0,5, - Ynt1s***s¥n = Imo 10P (Fnt15-Yns0ye e

Yo#l = Tm)oeees 1ub (yp = yyo¥y - yn+l"“’o)] -

ub |ly; - ¥ l‘;y. This is true for 21l m
mzi,kin{l - ’

thus true for limit, Th k& . .-

lub (yn,yH+l} -..) - glb (yn’ynﬂ_’ o) = Yps
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Therefore 0 € 1lim Yo - lim yp- lim []_ub(yn,ym_l,...)]
e n >w n— o ’

- glb (yn,yn+1,---)] < linY, =0

Therefore lim yn = O and so exists.

Theorem 33 a) A <0 implies lub{)\ y'i—s = A\ glb {y ,,.} &5 =
b) A>0 impliesq%llg {A y,ilj = )\ lub {y?}
Proof. 1lub {y‘E]J = Yy £ in= . And

A lub {v.} ZAyy §in= , that is
)\lub{yg’ﬁ Z 1lub {/\y\i} . Replace A by ’A/‘
and T by A vy and get the inequelity reading
the other way, If )\ < 0 then by the above
and Theorem 18 we have
lub {)\ y,'s = Jib {-—/” y;} = }/\/ Lub {—y,;} &
- M e {ry= A e {77 -
Theorem 34, If {Aﬁlj , 5in — is a transfinite sequence of real
numbers and y > 0 then
lub 4)\5 y} = y lub /\§ ; where now 1ub‘;)‘§§ is
taken in the ordinary sense (see Bohnenblust IV B; or simply use
the foregoing theory on the certainly (partially) ordered set of
real numbers).
Proof. Put lub )\3 = }\ & in=. Then
)\gé'/\ E s = )\sy‘é)‘y and

therefore y = lub()\g y} . Ay. Then for any
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real number € = 0 (A - €)yEy1 = AW
But, using Theorem 21 f), this implies yj = Ay,

Theorem 35. a) If A >0, then Iim o= N Imy,

n-?»0o00 W20

b) If A< 0, then lim Ny, = A Lmy,
n-> o ARG

c) For eny real A, lim A\ y, = lim y,
n-—>mw n-e

Proof. A > 0. Iim )\yn=glb Llub(}\yn,)\ym_l,...ﬂ =
n—w n

l

I

gile [ A 1ub(¥psTn+1s ﬂ

N glb [lub(yn,yml,---ﬁ

H
i

A lin y,.
n->w

If A < o have an analogous proof. If lim y, exists,
/ n—»00

then by application of the two taken together
we have c).

Theorem 36. a) If y, is a bounded sequence and lim >\n = 0, where
n->00

{ An} is an ordinary real number seguence, then

lim A Yn = O.
n—->w B \

Proof. By hypothesis, there is a y such that

Iynléz y from Theorem 16. Then

m~> 0

1in /\n Fn = ?E%Mn\y = y;i}g “n] ol

Lin ApyazLin (A9 = - T [Moly = 0
n-> n->w

Also, by Theorem 23 "1”1}5{)\ " anJ 2 :_L;rg{/\n yn8= 0
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0 and by e similar

argument, lim {/\n yn/s = 0 and so lim{)\n yn}

exists and = 0.

I

Therefore 1im {/\n yns

b) Iflim Ap= A end lim y, = y then 1inA_ y, = A 3.
m>0 > 00 m>0
Proof. Ay vy - A7 = (g = Myp + Ay - )
The first term has zero as limit by a) above.
The second term has zero as limit by Theorem
35 ¢). The sum, as a congequence, has zero
as limit by Theorem 27.
¢) If y; is an element with the property that y > y; implies
y 7 0, then y; Z O.
Proof. Assume the contrary: that (y;)_ # O (that yp
has a non-zero negative part, see Postulate II
5, and Definition 5,0f negative part). From
Theorem 21 f we can find a positive integer n
such that n(yy) 4}11 (y1) 4, (where <]E is the
negation of < ). Also we can choose n large

enough so that
1) (v - (- %) (yl)_4> 0, for other-
“wise ()4 - (1 - 2)(yy)_> 0 for ell n, end

by Theorem 23 and the fact that the limits of
both sides of the inequality exist, by Theorem

36 b) we should have
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v1 = (y1)+ - (y1)_ = 0 contrary to the hypo-
thesis. Now put y = (y7), - (1 - %)(yl)_ then
y=¥1 = % y17> O by the assumption. Therefore
y is a suitable y for the hypothesis of the
theorem and it should follow that y 0 according
to the same hypothesis (above just after c)).

Thie contradiction proves the theorem.

The Postulates of Regularity II 5

a) Let E, be a sequence of subsets of S (each one bounded above)

b)

euch that o finite or infinite limit lin [lub Ey|=y
n—-
exists. Then . from each set E,, a finite subset E} < E,

of elements of S ean be chosen so that

lin | 1ub Er'l] =y
n-—->u

The postulate will be said to hold in the "broad sense" if
the following condition also holds. If E, are sets for which

lub E, = + ag then there are finite subsets E} C E such that

lub [lub Eﬁ] =+ ®
n

Definition 20 of regular space.

A space S thet satisfies axioms I 1-5, IT 1-5, ITI 1-6 shall be

called regular.

Theorem 37.

If B, C S and the linit lin |glb B, | exists, then there
n—=>a
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exist finite subsets EI'1 C En such ‘that

1im iglb Egl] = 1im [glb En]

n-—->oo n—>am

Proof. Let E§ be the se£ of elements y, for which -y is 1n
E . Then lub Ef = -glb E,, by Theorem 18 and the
1imit exists:

- 1im [ glhb En‘} = 1lim [lub Eﬁ:{
m->00 n—>w .
Now by Postulate IT 5, there exist finite subsets

Eﬁ% such that

lim {lub En*) L 1ub Bt = - lin 1o &, |

n— n->m
Let Eﬁ be the set of elements y, such that -y {S In
E'%. Then E} is a finite subset of E, and also

gib Bt = - lub Eﬁ* and finally
llm (élb E! ] = - llm I;ub Enm] lim [;ub En]
n—>0o

Note. The theory of transfinite induetion will be used in the following
two theorems, both in the enunciation and the proof. For an account in
English sufficient for our needs, see Pierpont IV B, vol. II, or
Sierpinski IV B, appendix. Kamke IV B haé probably the cleerest succinct
account (in German) to be found in a book.

Theorem 38. For any set E C S, one cen find a countable sub-get (that
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is, a sub-set that can be put into one-to-one correspondence

with the positive integers) B¢ < E, such that
lub E% = lub E; glb B¢ = glb E.

Proof. In Postulate II 5, let every E, = E for every n.

Then we cen find, by the same postulete, finite sub-

sets Eﬁ C E such that

1im [iub Eﬁt}= lim [iub En] = lub E.
n—>am n—>oo

By Theorem 37, we can find finite subsets

Ett C E =T, such that

nl_i;noo[_glb Bpt] = glb B

@
Put B! = > (B + Exx)

n=1
Then this is a suitable E' to satisfy the conditions
of the theorem. For E' C E and E' is countable
this follows from the well-known theorem that a
countable set of countable sets of elements is itself
countable, when considered as made up of the last-
mentioned elements. Also

(e 0]
1ub B Z ub B! Z lub ( > E¢) = lub(lub E¥) =
= = n

lub E. This implies lub E!' = 1lub E.

= nl_i;n@[lub Evﬁ]

Similarly, glb E' = glb E. 1In case lub E = + m



49

(or glb E = - @) the proof can be carried through
by means of Postulate II 5 in the broad sense.
Theorem 39. A well-ordered monotonically increasing sequence of elements
of S is unconditionally countable (see Sierpinski IV B 2). That
is if

V1€ V2 < Vs ...ﬁywiyw+1{_:~ éyo({__-...

then there is an X of the first or second number-cless such that

beginning with X , we have

Ix 41 T
'f_;;qpi. Let E be the set of all y, (L £ X £.42). From
a) there exists a countable subset E'!', such that
lub E' = 1ub E. Let &' be Ehe number, of the first
or second number-class, that comes immediately after
all those X 's for which y, in E'. Then y = Y
for évery y in B!, and so lub E'Ty, _ lub E.

But lub E' = lub E. Therefore lub E =y, and

y," = yv(,f' = e @
Theorem 40. If 1lim y:(Lk) =y, for i = 1,2, and lim y; =7,
k - o i@

then there exists an infinite sequence of indices kj, ka, ««-

(k< k< +-+) such that

lim y:(Lki) = vy
i—>o
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Proof. lub (ygk) s yl;+l, cee) z .Vi = glb(Y§_k) 2Y§_k+l) s eee)

by Theorem 23; and

e [1n(r$) 9542, = 1§b[g1b(y§k) o, )= 5,

i 1 1

Now write

Z i(k).E lub (yﬁk),y§k+l), pnn)

W i(k) = glb (ygk),y§k+l), P

Then glb (Z (k)) ]_ub (k)) y. and
k i -

(1) lin y; = ln[gld 2 “"J lin [1ub w ikﬂ
i—=>o0 i—s00 1 ~> o

Before proceeding with the proof, let us remark that if we pick
any finite set of elements out of the sequence Z %,Zﬁi y = that the

glb of this set will actually lie in the set, for, as in Theorem 18 b

,

is a monotonically decreasing sequence (considering i fixed)
and so the element, in the above sequence, whose upper index is greatest

will be the glb. Similar considerations apply to lub of a finite number

&
of w i (i fixed).

By Theorem 37 and Postulate II 5, we can (from (1)) pick a finite

(k)
set Ei of the 7 i for each i such that

v = lim [glb Ey|= lm fuub E]
i—

where E? is a set of w? with similar properties. Using the above remark,

we can pick one element Zil out of Ej and one element w; out of E¥ such
S St
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that y = Lim glb z.i]z lin [1ub w1}, Now pick a ky > 1;,m; so
. i " A ik i |
i—>o i>w

that the k; form an increasing sequence. Then we have

71> Zl_{i 2 Wl,{i = e
i=91 =% =%

and hence, by Theorem 18 c

lim Z%i = 1lim w?i =y and thus

i—>o
fiiﬁ y?i = lim |lub (y?i,y§i+l, ﬂ:=
i—>mw i—> o
lim glb (y?i,y§i+l, ese) = lim y?i , by Theorem 18 b.
i— o e
Finally then lim y%i = Y.
=00

This last theorem enables us to enunciete a principle that is to
be found in most topologies of point-sets. If first, we define a "limit-
point" of a set E of elements to be an element of S (not necessarily of
E) that cen be expressed as the limit, in our sense, of a comfergent
sequence of elements y; (211 different) in E. The set of limit points
of E is denoted by "E!'", Now we can consider the 1imit—pbints of Et,
that is, E", The above theorem states that all the points in E" can be
expressed as limits of points in E. That is, are automaticelly points
of E'. If a set contains gll its limit-points, we say it is "closed
under the limiting-process" or simply "elosed". It is seen that E' is
closed for any set E of points in S. For spaces in which this is not

always true, see Frechet IV.
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Tﬁeorem.gi. A necessary and sufficient condition that the set E&< S
be bounded is that the following condition hold.
For every sequence of real numbers(}lé}such that
lim An = 0, and every sequence {Tyn} of elements in E we shall

have
lim Ay yg = 0

Proof. a) Necessity. This follows from Theorem 18 d).

b) Sufficiency. Assume the contrary, that  is not
bounded above. Then lub E =+ oco. Iet Ep be the
set of elements y for which ny in &. Then
lub By, = + o0 and from Postulate II 5, in the broad
sense, there exist finite subsets By C B, such that
lub (lub E) = nfgn-oo(lub BY) = + 0. Iet the
elements (finite in number) of Ll be

k 1
Y1 yg, s &® yﬁk. Now put

1=
\a = *
Ynytng+ ¢t fng-qt s kyg and
A =L for1<s<n
Dy*hgt o Ty + 8 Kk = TR

then ypn and An are determined for every n. Since

vS in E, every y, in E. Obviously lim Ay, = O.
" ’ n—wo -

But it is not true that n%iybo An Yp = 0. For

if it were we should have
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Tin Ayyn = lim (Lub (An¥nr Mpsg Tyels o)) =

N~ n—> oo
L k Unptngt e d4mp g nytng+ .. oy

= Tim (lub E!) =+ ® and a contradiction.
k= o k

Theorem 42. If {yn} is a sequence of elements for which
lim yp = 0, then there exists a sequence of real numbers

>‘n’ such that lim /\n =+ o and lim )\nyn = 0,
n— o n —>

Proof. Put Z, = lub (!yn[, [Yn+ll s ese ), then lim b, = 0
n

from Theorems 19 ¢) and 18 b). The Z, form a
monotonically decreasing sequence )<Z1 2B 2 evv)e
Put Ey = {k Zn} yn = L, €5 »»» Then
glb (B.) = 0 and so lim (glb = 0.

By e Ey)
Now apply Theorem 37. There is then a finite
set hl'{C E for each k such that ll:tm (1ub Ll'{) &=

lim (lub E/t) . Since Z, is monotonically decreas-

ing, lub El'{ is a member ynk of E'. Therefore

lim (kZN ) = 0 where without loss of
k— o0 ke

generality, N, is an increasing infinite
seguence of suffixes, Now put )‘n = k in case
Nk§N<Nk+l. Then lim /\n= + @ and

lim )\n Zp = 1lim k %‘ = 0 end therefore lim )\nyn:().
n-—>0o
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Theorem 45. The necessary and sufficient condition that we shall

have

n%éfzoyh =y for a sequence {jh} , is that there

exist an element Z in S with the property that to any positive

real number e we can find a positive integer Ng such that

Proof.

/yh " y/ < e Z for every n Z Ng.

Necessity. Assume lim {yn - y! = 0. Then from
Theorem 42 we can find a sequence of real positive

numbers 1, such that

lin 1y = + @ and lim 1, ’yh -y|=0. This
I ~=» 00

limit is finite, so the sequence must be bounded, by
the definition of limit. Therefore the sequence has
a lub, Z, and this is the required Z. TFor let e be a
positive number, then we can find a Ng, such that for

8 Nay
1
i;‘ < e and consequently

} I = 3 L< fi‘ < eZ.

Sufficiency. Let e, be the smallest real number for

which
ée

]yh.— y[ n Z. e, exists for each n,
because the class of real numbers ey satisfying the
ineguality is bounded below. Now according to the

hypothesis, 1lim e, = O. Then



55

0% _Lin [y, = yfé Tim {yn - y[£ Tim en 2 = 0.
n—> 00 ~ 00 m >
Therefore
lim y, -y = lim ‘Yn - yl =0 = 1lim )Yn - yl.
n— 00 n 00 n-> 0
Therefore, by the fundementel theorem lim y, = y.

Theorem 44. If 1im y% = y; then a Z in S can be found such that to
K— o

any positive real number e we can find a Ké such that
= i
[y? - yi/ 22 E for ki B

Proof. From Theorem 43, we can find a Z' to each i,

such that
/yli{ = yifé e 7% for k >K(e,i). But

lim L Z% = 0 for each i, so we can choose nj
n»>wo

gso that lim j? Z' = 0, by the following lemma
i-> o
1. Thus, by Theorem 41, the elements iL 71 form
:
a bounded sequence. Take its lub and it will

be the required Z.

Lemme 1. If lim 7L =0 for every i then we cen find a

nvyo B
sequence of integers n;, such that 1lim QL-yl = 0.
i-woo B4

Proof. Let Yi = % yi. Then lim Yi = Y* =0 and so
n— o

lim ¥ = o. Therefore, by Theoremwéo, we can
1=y
pick out a sequence Yi such that

n
lim Y' =0 = lim
= oo -In

—_‘“,_.l



Note to Chapter III.

It will be found convenient and in fact almost indispensable,
to write )-x, where ,X is a real number and x an element of the
Kantoroviteh space S, in the form xe\ or simply x)\ . The striking
analogies between these theories and the classical ones can be
brought out more clearly by the use of this notation. It need cause
no confusion, since Greek letters are used exclusively for real
nunbers with the exceptions of positive integer suffixes, when n, m, j,

k are used. As before latin letters mean elements of abstract spaces.
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Chapter II

Introduction

In this chapter we shall examine the consequences of the
postulates of a partially-ordered set (not necessarily an Abelian
group), as we shall need something of this theory in the later work
on transformations. The branch of mathematics dealing with partially-
ordered sets is comparatively new, so that there are no systematic
developments available in textbooks. The following historical sketch
is necessarily brief. F¥or completeness and convenience mention is
made of certain applications in finite algebra, theory of groups and
mathematical logzic, subjects that will not concern us directly in
what is to follow, but which actuaelly may influence the turn that the
research shall take.

Dedekind seems to have been the first to study abstractly the
properties of the partially-ordered set as such. He used the term:
"dual group™" to describe a set of objects with the following postulates,

see Dedekind I B, p. 493, I 1, 2,3. We call this set a "structure”. M.

VI. 1.) To every ordered pair of elements a, b (not necessarily
different) there corresponds an uniquely determined
element al/ b of M, called the union of a and b.
2.) To every ordered pair of elements &,b (not necessarily
different) there corresponds an uniquely determined

element a/) b of I, called the cross-cut of a and b.



Tor all a,b,c (not necessarily different) in M we have:

3.) alUv=»bpl) a aN b=b"N a
4.) aU(bU e) = (aUb)Ue, al(bA c) = (anN d)ec
5.) al(a/Nb) = a, ann(aUV b) = g

Definition 2l of null element

A null-element, if it exists, is an element Ey such that
Eo/N\ A = Ey for every element A of the structure. A4 null-element
does not necessarily exist for every structure.

An all-element, if it exists, is an slement O,such that
o,U A = 0,for every element 4 of the structure. An all-element does
not necessarily exist for every structure.

These axioms are Dedekind's. Ore I 3 showed that they are
equivalent to our axioms V if we define a<bwhenalUbs=>bor
a/\b = a (these two conditions are equivalent as can be seen by
putting the first into 59 above). Ore I 3 speaks of a "structure';
Birkhoff I 1,2 of a "lattice"; Kantorovitch II 13 of a "halb-
geordneter Raum" or of an "espace seini—ordonné“; Hausdorff IV 1 B of
a "teilweise geordnete kienge'; Glivenko IT 1 of a "chosé‘"; Tucker IV 1
of a "ecell-space'; Weisner I 1 of an "hierarchy"; Cardtheodory II 1
of a "soma®, A name for structure sometimes encountered in German
literature is "Ding". The term "partially-ordered set” is sometimes

used in a broader sense; it is required only that if a < b and b< ¢
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.then a = c¢. Birkhoff IV 5 has used the idea of a "directed set';

a directed set of points x, where x, are in some topological space

X is a set of points that are ordered by means of the subscripts a

of a class A (not necessarily in X). The class A is partially

ordered, and in addition to each pair of elements a,b of A there is

an element ¢ > a,b. * This ¢ need not be unique. The set A is distinetly
more general than the set satisfying the axioms VI.

Bennett I 1 has given a postulational treatment of what he
calls "semi-serial order", which in our notation is essentially the
partial order characterizing a structure.

E. Foradori II 1 has considered a theory of the abstract
domain, a member of which need not be a point-set in the classical
sense; but may be any one of a very much wider collection of entities.
He takes as fundsmental a certain abstraction of a "sub-set' relation,

AC B, EHe postulates thet either AL B or else A is not € B, for each

pair of "members® A,B. Turther AC A for every Aand ACB, B C
together imply A< C. Neither the union nor the cross cut is postulated,
but if they both exist, they are of course unigue and the laws hold:
(ANB)U (ANGC) C AN (BY C)
(ALUB)N (AUC) ¢ A U(BN C).
He defines the "residue' of B with respect to A, TFirst let A and B
be elements such that AC B, Then Ag will represent any elements of

the domain that satisfy (for A fixed):
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BC AU ag.

The elements Ap are called complements of A in B. Now if there
exists an 4Ap that is contained in every Ap, it is called the residue
of B with respect to A. The residue may not exist. It is designated
by B-A. It can be proved to be unique and that B-AC B. Also

AU (B-A) = Bwhere X = Y simply means X Y and YC X, end no more..
He proves, moreover, that if AUB, (AUB) -C, 4 -C, B - ¢,
(A-C)U (B -¢C) exist, then (AUB) -C= (4 -C) U(B-2C). It

is seen that this "residue' anticipates to in a certain measure the
generalized residual of Ward and Dilworth, see below. Their residual
is in one way more general, but it ocecurs in a structure, which is a
less general system than the domain of Foradori.

Finally he defines a M"Schachtelung®” or "nested domain", a
domain S such that for each pair of elements A,B, at least one of the
relations holds

A C B, BC A,
We shall return to this theory later in the section on topology.

The classficetion of the recent résearches in structure theory is
necessarily based on the classification of the subjects to which they
are applied. ZEven this is difficult, owing to the multifold infer—
dependence of subjects that at first glance seem quite unrelated,
Roughly we can divide structure theory into the purely algebraic, the

topological, the analytical, that branch dealing with probability and
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the geometrical. It is difficult to make sharp distinetions, but

we shall follow this classification throughout.,

Section 1. Structures in Connexion with Algebra.

Perhaps the most striking examples of structures occur in

group theory, number theory and ideal theory. We may study a group
by direectly examining the relations between the individual elements
and tabulate properties according to the behavior of one element with
respect to another. Thus we may study the properties of a left-unit
element, that is an e, such that e a = a for all elements a of the
group. Or we may study the properties of the left-inverse or right-
inverse of an element. (In the case of a group, each of these is
unique). On the other hand, we may study the properties of subsets

of a group, regarding these subsets as entities and never mentioning

their elements directly. We can speak of the class of subgroups of

a given group and can define operations defined over this class.
Usually the groups of any certain class of subgroups are, in the final
analysis, groups that are characterized by the behavior of their
individual elements; an example is the class of all subgroups each of
which is composed only of powers of a single element (a cyelic group).
However, in many cases the characterizing property may be abstracted
and re-expressed in terms of the behavior of the subgroups themselves
with respect to certain operations. As was pointed out in the last

chapter (see example 7 ) the class of all subgroups of a given group
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forms a structure under the operations of union and cross-cubt. It

is this structure and these operations that are so imporiant in

L2 0

modern algebra.

Definition £3 of modular structurec.

A structure is said to be moduler if A S C implies
sUBNe = @wus)Ne.

The modular structure is sometimes known aé a Dedekind structure.
Dedekind I 3 used the condition in the form, for every triple a,b,c:

[3/\ (BUCﬂU (8N C)=[AU(B/\ C)]/\ BU C . Another
equivalent condition is (see Ore I 2)

¢z 0, c¥D=CUD, cND=CAND imply C = C.

If we draw this same conclusion from just the last two of the
relations then we have a more special structure called an arithmetic
structure. Dedekind has shown that for any structure GZ H implies

(BEUCN ¢ZHEU (6N ©)
see Dedekind I 3. |
Definition 24 of isomorphism.

Two structures are said to be isomorphic if there is a one-to-
one correspondence between their elements, preserving union and cross-
cut of every pair of elements.

Definition 25 of quotient of elements.

By the quotient A/B of two elements 4,B such that & B, is

meant the totality of elements X such that AJZ X:Z B.
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Definition_@g_gi prime guotient.

A quotient A/B is called prime if there is no element X such
that A > X > B.

One of the most important theorems of group theory is what is
called the first theorem of isomorphism, see van der Waerden I 1 B. A
normel subgroup I of a group G is a group such that the group product
gn can be put in the form neg whenever g is in G and n is in N, and
where ny is in N. Two groups G and G are said to be isomorphic if
there is a one-to-one correspondence between their elements such that
ab and ab correspond to one another/where a and b represent in turn
every pair in one group and & and b in turn every pair in the other
group.

If we have a correspondence a~> a between two groups (single-
valued in one direction, but not necessarily so in the other) that pre-
serves all products, then it can be proved that all the elements of the
group G that cofrespond to the unit of G form a normal subgroup N in.G.
Furthermore if we examine the class of sets gN, where gN means the
set of products gn (g fixed and n representing in turn every element
of N), we can prove that each element of G lies in exactly one of them
and that if we consider each of these sets as an entity, the class
will form & group, where the product (al)(bH) is (eb)N. Thus this
group, which we call the fagtor group G/N of G with respect to N can

be shown to be isomorphic to G. The first theorem of isomorphiem
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states that if N is a normal subgroup in G and H is a normal subgroup
of G, then the set of elements contained in both H and 2, i.e. ¥ N,
form a normal subgroun and
E N/N is isomorphic to H/H/) W,
where © N is defined as the smallest subgroup of G containing H and
¥, So far we actually have been operating with properties of individual
elements. This theorem need not be stated thus.
Let us consider a modular structure, and the quotient H/(EAN N),

that is>thc—> totality of X such that

EZXZHEAR
and the quotient (WU H)/N composed of the X' such that

NUBZX'ZUN

<

Now let us try X' = N UK, then N = ¥ U (EN N) NU XEXN v I, from
the above, eand because A< B implies AUCES BUCeand 4NC S BZcC.
This X' is indeed in (WU H)/N. lMoreover
XNV E= (XVUNN =X U ((NNEH) =X, so the ordering
between X and X' is onme-to-ome. Also XU X! = (WU X )U (NVUX) =
UM UV x) =tV (v %) and
1gﬂ L=(HNAIN (ENZX) =H /1 (X1 N %) ,s0 thet the

-

correspondence is a structure isomorphism. Now if we interpret IU,H,

roup G and Z, U, /) as in the example

o)
o~ i

X,X* as normal subgroups of a
on group theory at the end of Chapter I, then we have simply the first

theorem of isomorphism.
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Definition 27 of similar quotients.

The guotients C/D and C’/D are called similar if there exist
relations expressing two of these elements say X,L in terms of the
other two say A,B, by means of the operatiéns\)and/q , such that
(4 U B)/4 is isomorphic to B/ (A B).

A composition series is a sequence G 2 Gy D Gg D e 2 § of
subgroups of G (C is the group composed of the unit element of &) such
that Gi+1 is a normal subgroup of Gy for all i, and such that for no
value of i can we Tind a subgroup H between Gi+1 and Gi with the
property that H is normel in G4 and Gi+] is normal in H,

The principal theorem on composition series is that of Jordan-

FHolder (see van Waerden I 1 B); it states that between each pair of

composition series of a given group there exists & one-to-one corres-

@

pondence such that the fector group Gi+1/Gi is isomorphic to the factor
group Gj+1/Gj for all i and j. ZIxpressed in the language of modular
%

structures this is stated as follows: If between two elements A,B of

a modular structure there an ordered chain

=)
(]

Ao = AL Ay cvv < An1 <Ap =B  of elements iy

5
d

such that all the quotients Ai4+1/A3 are prime and the Ai are finite in
number, then every other similarly defined chain between A and B has
the same length and its prime quotients are similar, in some order, to

the prime quotients Ai+1/hi.

Ore has, in a series of papers, developed the theory of



structures with the object of abstracting and generalizing the theorem
of Jordan-Hb6lder to other than series of normal subgroups. He con-
siders structures in which the elements are themselves quotients of

a given structure, (4/B)/) (4;/B1) is defined as(A/1 A;ﬂ§/1 Bl> and
(4/B) U (&4;/B1) as(A. v A?/é v Bl). A/B is defined = Ay/By if &AZ Aq

and B Z By. If the original structure has a null element £, such that
A/qlEo = By then the substructure (of the associated quotient-structure)
composed of the elements 4/Ey is obviously isomorphic to the original
structure. A quotient A/B is called prime over a quotient C/D if the
element Ais prime over C and B =D, or if A = C and B is prime over
D. The quotients A/A are called unit quotients. Two gquotients A/B

and C/D are called relatively prime if (4/B)/) (C/D) is a unit quotient.
A product<A/@)Kéﬁ%Qis defined as 4/C. Iet us denote guotients by
smell letters. Instesd of a X b = ¢ we write b = a™> X c and a = ¢ X b™L.
The trensformed of a = A/B by ¢ = C/B (they must have the same denomin-
ators) is defined as the element ca ¢+ = (aUe) X e = (AV g} fe.

If & and ¢ are relatively prime, then al = ¢ a ¢l is called similar

to a. Now we are ready to state the theorem of JordanJHglder in a
still more sugeestive form. We state the hypothesis as follows: if

A/B = p1 X ps X ++ X pp where p are all prime gquotients, then every
other representation of A/B as a product of prime quotients has the

same number of factors, which are similar to the given factors taken

in some order. lioreover (in a modular structure) two equal products



a] X 8z X ¢+ X apr = by X ++¢ X bg
can be further factored so that the same number of factors are on
both sides and they are similar, taken in some order. This is a
generalization of the lemma of Schreier on the refinements of normal
series) see van der Waerden I 1 B, p. 139 or Zassenhaus I 1. By
defining a semi-~normal element Ore, I 5 has been able to prove that
chains of elements, of which each is semi-normal in the preceeding
satisfy a theorem analogous  to that of Jorden-Schreier.

RKurosch I 2 and Birkhoff I have each considered generalizations
of the Jordan-Holder theorem to the case of transfinite well-ordered
chains., Kurosch considers that the members of the chains are each
normal subgroups in the member immediately following. By suitably defin-
ing a composition series, he shows that each two composition series are
isomorphic. Birkhoff considers chains of T-invariant subgroups, where
T is any automorphism group containing all the inner automorphisms of
the given group. For definitions see van der Waerden I 1 B.

Closely connected with the above theory is that of the decom-
position of groups and structures into direct factors (with respect to‘
union or cross-cut). Kurosch I 1 has shown that in modular structures

there is a factorization theory for the elements. If the element a can

be represented as the cross-cut of the different elements Aj, 1 = 1,-+,n
and as the cross-cut of the different elements Bj, j=1, «« ,m and if

these representations are minimal (that is, 4 is not contained in
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M/ be  eee A3/ Aj41 N eeo/1d,, g0t by omitting an d4 from the
sequence, and similarly for the bj) then n = m, and every #A; can be
replaced by a proper bj in a one-to-one manner. The dual theoren

(with respect to union) can be proved easily from this result. Klein

I 14 has defined an "independent set" of elements of a modular structure.
A set of element Xy, +«. , X, is called independent if amd only if
(X3V +e UXy-1) 1 X3 = 0 for i = 8, , n. He proves that the definition
is symmetric in the X and that if Yyp,.-. , Yy are unions of disjoint
subsets of the Xj, then the Yj are independent (thus any subset of an
independent set is independent). For further abstract treatments of

linear dependence, see lenger II 1, Bergmann II 1, llenger II 5,
Mac Lane ITI 1, Nekasawa II 1 (also under the section on projective
geometry) and Whitney I 1.

Ore I 3,4,7 has built up a very pretentious theory of the decom-

position of quotients. Let a = ajU ayU..+ Uay be a quotient

expressed as the union of a number of guotients with the same denominatorS}

a is said to be "factored™. The factorization is said to be proper

if no factor aj is contained (is =) in itscomplement
a3 = al .. Uaj-1U aj,... Uap. The comporent with respect to aj
of any factor b of a is a?

v
a? L/ac = a? & see Ore I 3. TIrom this he deduces that if a = alU cee Jap=

aj/1 (b VU ay). He proves that

ok ai
by ) =+ (/bg and if aj j aiJ, bji = bj then a; = ajil/ .o Uayg,

bj = bjiU <+« J bjr and in a = a”U--- (Jars, 8ij can be replaced by bjji.
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The quotient a = A/Ay is called reducible if there exist two elements
B, C such that 45 <B< 4, A;,<C <A and 4 =BUC, and a is then
the union of B/Ag and C/AO. Otherwise & is called irreducible. The
guotient is called of finite length if between A and A, there is a
composition series,that is a series such as is used in the generalized
theorem of Jordan-Holder. It can be shown that if A/As is irreducible,
then every composition series Lg < A3 eeer Lian_1 < A possesses the
same An_q and 4/45 is sald to belong to the prime quotient A/An_l.
Cre proves for guotients a theorem similar to the one above of Kurosch:
if A/Ay 1s a quotient of finite length of a modular structure, then it
may be represcnted as a minimal union of a finite number of irreducible
|
gquotients. TIwo such representations have the same number of factors,
which belong to similar prime quotients taken in proper order, that
ig,there is a c¢i that is relatively prime to'ai and by (the factors in
/)
the two respective factorizations) such that cj a3 c{l = ¢y by c{l.
Zach a4y in the first factorization can be replaced'by a sultable bj
from the second one. He fTurther investigates the possibility of ecarry-
ing over the theorem to the case of quotients not necessarily of
finite length. He shows that it will be truec on the conditions that
the descending chain condition holds in the structure, (the descending
chain condition requires that every chain &1 > Ay «o+ of decreasing
elements be finite) and that from two direct decompositions k = aUb =

clUa (that is when a,b and c¢,d are respectively relatively prime)



one can deduce the two, ¥ = ¢cUb = alUd. e proves a number of
results on "completely reducible™ structures. A completely reducible
structure is one with a null element E, and such that 4> B > X,
implies the existence of at least one C # 4 such that 4 = BUC,
Further, he defines an n-fold component and finds certain invarisnts
of this process that will not councern us here.

Klein has examined what he calls "Birkhoff struetureé", which
are those in which one of the following “one directional? forms of
the modular condition holds, (see Birkhoff I 1 p. 445),

a) If A end B cover C and A # B then AUB covers 4 and B.

b) If C covers A and B, and A # B, then A and B cover AN B,
An element T is said to "cover" an element Q if T>Q, T # @ and there
is no element P such that T>P>Q, P % T, &. He shows that when
both Birkhoff conditions hold7the modular condition holds. - Klein also
shows that any structure with more than 6 elements has a substructure
with six elements.

Definition 28 of distributive structure.

A structure is called distributive if for every triple of

elements (not necessarily different) A,B,C we have

AU (BNGC)=(aAaUB) A (U C)
and
An(BuC)=(aNnB)U (41 C).

It can be proved that either of these conditions is a conse-

quence of the other, see Dedekind I 2.
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It may be proved that every distributive structure is
modular see Birkhoff I 1. It is not true that every modular structure
is distributive, for examine the following diagram(}or explanation

see the Hasse diagrams of Chapter i).

64

AU(BNGC) =AUN=A4, but (AUB)N (AU/C) =0/10,=0. This
structure is easily seen 1o be modular. FHowever, Birkhoff I 2 and
Klein I 7 have shown that every modular non-distributive structure has
a sub-structure that is distributive.

Furthermore, Xlein I 7, Birkhoff I 1 and Ore I 3 have shown
that for any structure

(AUB)N (AVC)Z4aU (BN Q)
A N(BU C)=Z (A /\B)u (AN ¢) for any three

elements A, B, C of the structure. Dedekind has priority see p. 61.

The structure of the ideals of a finite algebraic number field
(that is, a field with a finite number of elements, composed of sums
quotients, products and differences of algebraic numbers) is distribu-
tive. This follows from the theorem on the unique representation by

prime ideals see van der Waerdem I 1 B vol. II, pp. 36-38. The
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structure formed of the ideals of & commutative ring is dn&&dﬁuﬂléﬁé.
A divisorless ideal is one that is contained in no other ideal then
the camplete ring itself. A prime ideal is one that is different
from the ring itself and such that whenever it contains the product
gp, it contains at least one of the factors a, b. &s an illustration
of structure theory we shall prove that a divisorless prime ideal that
contains (is greater than) A/) B, conteins at least one factor. For,
by hypothesis P U (4/) B) = P and so, using the distributivity,

(PUA) /1(PUB) = P. But P is divisorless and so PU A
and P U B can be only equal to P or to O (the ring itself). Thus at
least one must be equal to P.

The set-structures see example 1 1ast chapter are distri-
butive. Birkhoff I 1 has proved the converse, that every distributive
structure is isomorphic, in the structure sense, to a set-structure.
fe shall discuss this example more in detail in the sections on logic
and topology. It might be mentioned that a finite distributive
structure with a composition series of maximal length n is isomorphic
to a structure of the sub-sets of a class of n elements and so he
proves that the number of structurally different possible such structures
as there are ways of partially ordering a set of n elements, see
Birkhoff II 6. By means of set-representations he shows that a modular
structure with the finite chain condition (ascending) is distributive

if and only if each one of its slements can be uniquely represented as
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& minimal cross-cut (see above under Xurosch's work). He proves also
that there are as many inequivalent point-set represenbtations of a
structure with & null-element and all-element és there are functions
whose arguments describe all the prime-ideals of R and which possess
arbitrary cardinal numbers as values. . ZFurthermore, by these methods,
he proves that if R is a finite distributive structure and n <aj ees K870
is a composition series, then the totality of x with (aj_1V x)n aj = aj-1
form a prime ideal in R and all prime ideals can be got thus.

Xlein I 9 has shown that the axiom of distributivity may be
expressed as (AUB)) (BUC)N (cVA) = (a1B)U (BAC) U (cN 4).
He also proves that = stfucture of higher order than 5 is modular or
distributive respectively if and only if all substructures of order 5
are modular or distributive respectively.

Klein I 4 has proved that in a distributive structure with a
null element and such that every element contains only a finite number
of elements there exists for each element A at most one representation

of the form

A=PUBU «.. UPy |

where the Pi are "primary elements™ over certéin prime elements”,

A "prime" element is one that contains no other elements with the
possible exception of the null element of the structure (if it exist).
The element Q is called "primary" over P if P is the only prime element
conteined in Q. TFurthermore if it is assumed that every not-primary

element A % Eo factors {with respect to {/) into two different elements
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then he has proved that there exists at least one representation of
the above form for every element of the structure. Xlein I 12 has
shown that the elements of a distributive structure have unigque
representations as unions.of prime elements., Klein I 11 examines

the solutions X of the system of equations

A=BUZ ¢=BNZX A >8>0,

in various structures. The existence of at most one solution is shoqn
to be characteristic of distributive structures. Xlein I 3 defines a
echaracteristic mapping”, which is a one-to-one correspondence between
the elements 4,3,.-« of the structure and the clements a,b,... of
an abelian group or a subset of an aAbelian group, satisfying the

following condition:

AUB + £AB = 4 + B, where A is the correspond-
ent (the group element) of A (the structure element). The + is the
group operation. Ixamples of such a mapping are: A is the number of
elements in the set A A is the sum of thé divisors of the integer 4,
where /1 and U are the g.c.d. and the l.c.md;'X is the number of
divisors of the integzer A with U and /] defined as above. In both the

blast examples multiplication is taken as the group operation. A
generalized condition may be deduced from the one given above for a
vcharacteristic mapping, and in this form gives the “sieve of
Eratosthenes” see also H. J. S. Smith I 1 and Brun I 1. Klein's

formuls is
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LU Vi =V i+ VEAEANE + «o0 - VAN &
n n n

- ZAJ_/]AQ/LJ'%/)AQ - e

where ,,Y RN means(fs.l A, e EA'_-L)-t- A/ TA N ee Mag g + v
etec. that is where Ay, ..+ , Ay are teken i at a time and all different.
’ Birkhoff I 1 defined a "rank function” for finite structures.
If T is any finite structure satisfying either of the one-directional
forms of the modular condition and (, is the all-element and Ij is the
null-element (these both exist in finite structures) than it can be
- proved that a maximal chain connecting (y and By exists and that any
other such chain has the sé.me length n, This number is called the rank
/0(_3:) of the structure L. The length of a maximal chain comnecting Eo
with a given element 4& is the rank of A, /’(A) . e proves that the one-
directional modular conditions a) and b) imply

Plavs; - pE) € Pla) - plan 3]

pla) - Plan Bj€ f(aUB) - f(B)
respectively and if both a) and b) hold then

/O(A) + /0(13) = P(AUB) + f(an3B].
This rank function j.s simply an extension of the dimension funciion,
see llenger IT 1, and the section on projective geometry and contvinuous
geome try .

Klein I 8 studied "ausgeglichene" structures. These are

structures in which all chains A > A1 > ...~A, > B connecting every
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given pair of elements A,B, are finite and of the same length. He
defined a rank function [A,B], which for two dependent elements A,B
(these are elements such that either A > B or A< B) is simply the
length of the chain connecting them. He defines a bridge as a
sequence of elements Aj, ... , Ay such that for each pair A;.7, Ay

at least one of the relations Ai+l;7'Ai)-Ai+l<<-Ai holds. He proves

that for.any such bridge

m=1

A, A5+

[Al,fa.l v -ém] + [Al U Am»fimj

- [42,80 in | o+ [80) b

He defines the symbol.[A,B:]for any pair of elements 4,B.

m-1
[A,BJ = Z [Ai,Ai+11 where Ay, +-+ ,Ap is a bridge
i=1
connectiﬁg A and B, He proves that for any three elements A,B,C
[A,B]_ * [B,C] = [A,C].
He designates K(4) as the set of all X for which [’{A] - [bx\.] = @
and proves that K(A) and K(B) are either identical or without common
elements, so that the structure is the point-set union of all the
classes K(4), X(B), etec.
A host of scattered results on finite structures have been
found by Klein and Birkhoff. Xlein I 7 showed that theze are
1,1,2,5,15 kinds respectively of structures with 2,3,4,5,6 elements

respectively. All the structures of order up to and including 4 are
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distributive, one is modular but not distributive and one is not
modular. He shows that a structure of order n contains a substructure
of order n - 1 for 2< n‘§'7, but not for n = 8, A structure of
higher than order k contains a substructure of order k for k = 5, but
in general not for k = 7. Liost of the proofs are dependent on the
representations as Hasse diagrams.

Birkhoff has treated of the "free' structure which is'a structure
in which every element can be represented as the result of applying
the operations of cross-cut and union a finite number of times 1o
elements selected from a certain fixed finite set of elements. One
can also say that the structure is "generated" by a certain fixed "basis"®
of elements, under the operations of union and cross=-cut. Birkhoff I 8
proves that‘the free structure generated by 3 elements is infinite (if
not modular, distributive, ete). The most general modular structure
generated by 3 elements possesses 28 elements and was mentioned by
Dedekind I 3. Birkhoff I 1 proves that the most general modular
structure generated by 4 elements is infinite; on the contrary that
every distributive structure generated by a finite number of elements
is finite.

Skolem I 1 claims to have discovered distributive structures
but the date (1913) to which he attaches his claim is later than that
of Dedekind. He defined canonical forms for free distributive structures

and defined direct products of structures. The direct product of two
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structures with elements 43,B;,++ and 4,,B,,-- respectively is
the structure of ordered pairs (A ,4,) where union and cross-cut are

defined by:

(41,4,) U (B1,B5) = (43U By, 4, U B,)

]

Ward I 1 and 2 has introduced a new operation, corresponding
roughly to a quotient, called the residual. It is an abstraction of
the residual, or ideal quotient used in ordinary ideal theory see
van der Waerden I 1 B vol. II p. 29. By the ideal quotient A:B where
A is an ideal and B is not necessarily such (A and B are both sets of
elements of a commutative ring 0) we understand the totality of
elements ¢ of the ring O for which c+b is in the ideal A whenever the
element b is in the set B. If B and A are ideals then B.(A:B)C A4,
by definition, (the ideal-product A+«B is the ideal that consists of all

n
the sums of the Torm :EE:‘ ajbi Wwhere aj is in 4 and b3 is in B).

i=1
Ward I 2 considers an abstract structure in which there is defined a
commutative and associative multiplicetion A<B, such that the distri-
butive lew A+(BUC) = (4:B) U (A:C) holds. If O is the all element
of the structure then it is assumed that C<A = A for every element A
of the structure. e then proves the existence of the residual A:B
(a sort of inverse of multiplication) and deduces many of the usual
properties of the ideal gquotient. Ile shows that the structure is

necessarily distributive in the usual sense if the condition is added :



78

if A2 B then there exists a P for which A = B:P. (The

relation
M:(AN B) = (M:A) U (Li:B)

is equivalent to the above added condition.).
He proves that this relation implies that

0

(4:B) U (B:a)

(A UB):M = (4:0) U (B:)

A<B

I

(AU B)«(4) B).
Dilworth I 1 has carried through a postulational treatment of

the residual defined over a structure. Iis postulates concerning the

regidual itself are
VII 1.) A = @

2.) (A:B):C = (A:C):B
(2:3n(a:c)

(A:C) U (B:C)

3.) A:(BNC)

4.) (AUB):C

5.) If 4B = BiA = 0, then A = B.
FEe considers a separate set of postulates that are got from the above
by interchanging union and cross-cut and interchanging O and Eg.

Ward and Dilworth I 3 give the following sufficient condition
that the ideal theory of E. Noether I 3, (see also Noether and
Schmeidler I 1) apply to0 a residuated structure

1.) The structure is modular

2.) AR/YBL =4 B for every A and B and suitable exponents

for each pair.
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There are a few systems that have been developed from time
to time under other names than structures, but that are actually
structures. Whitney I 1 has considered sets of elements called
"matroids”, which are equivalent to the Birkhoff structures of finite
order admitting a "rank™ function, see Klein I 10. Whitney indicates
four equivalent ways in which to construct a "matroid", using in turn
the ideas of rank of a subset of the given set M; of a set of independ-
ent elements; of a basis and of a circuit. He uses the investigation
of various systems of axioms to obtain results on matrices the elements
of which are integers (mod 2).
Weisner I 1,2 has investigated a system of elements with a
relation x/y called "hierarchy™. There are six postulates
1.) Reflexivity x/x.
2.) Asymmetry x/y and y/x imply x = y.
2:) x/y and y/z imply x/z.
4,) Existence of a greatest common divisor of Two eleménts
(if x/y is read x divides y).
5.) Hxistence of the least common multinle of every two
elements.,
6.) There is only a finite number of eclements x such that
a/x/o for a fixed pair of elements a,b.
It is seen without difficulty that this system is a certain kind of

structure. He uses the system to obtain an excellent generalization
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of the Dedekind inversion formula for finite series, see Bell I 1 B.
In a paper following Weisner I 2 applies this theory of inversion to
the theory of prime—powef groups. This reference and its significance
were pointed out to me by Mr. R. P. Dilworth.

We have given here only the barest sketch of the theory of
structures as connected with algebra and have stressed only the most
obvious connexions. The entire dévelopment of modern, and indeed
present-day algebra has been dominated implicitly or explicitly, by the
notiorm that are classed under the heading of structure theory. Many
closely related results may be found in the papers of Fitting I 1-4,
Remak I, P, Hagll I 1, M., Hall I 1, Noether, ete. Results of a somewhat
different nature were secured quite early by Daniell ITI (1917) (see
the section on topology,), and llenger 1922 (see geometry). A compara-
tively early paper of Grell I1 (1926) deals with algebraic problems in
an exceedingly structure-theoretic manner. Xrull I 2 has developed a

dimension-theory: in special types of rings.
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Section 2 The structures connected with logic

Definition 29 of complemented structure.

A structure with an ell element and a null element is called
complemented if to each A there is at least one A' such that
AN A" = Eg and AU A = Q,

It can be proved that (A')! = A and that 4 < B implies B! < 4!

for distributive complemented structures.

Definition 30 of Boolean algebra

A distributive complemented structure is known as a Boolean
algebra see Boole I 1 B, 2 B. The significance of this algebra in
logic is described in example (13) of Chapter I.

We shall give a comparatively full account of the researches
of Stone on the connexions of Boolean algebras, structures, Boolean
rings and Boolean spaces. A mention of some of the outstanding contri-
butions of other men will follow.

Stone I 2 introduces a multiplication end addition into a
Boolean algebra by means of the equation

A+ B=(ANB'")U (&' B)

AB=ANB

and thus there results a ring with a principal unit element O - an

element such that A0 = A for all A of the ring - , and the null element

E,- an element for which A + E_= A for all A in the ring. Zvery

element A 1is idempotent-j)A-A = A. Also A + 4 = B for every 4.
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Definition 31 of Boolean ring, (or generalized Boolean ring)

A& Boolean ring is a ring in which every element is idempotent
and which does not necessarily contain 2 unit element,

Definition 32 of Boclean ring with unit.

A Boolean ring with unit is a Boolean ring in which a principal
unit element Egexists and in which A + A = Qyfor all A.

e may go from é Boolean ring with unit to a Boolean algebra
by defining union and cross-cut in terms of the addition and multipli-
cation as follows

AUB =4+ B+ AB

1]

A/) B = AB
Thus Boolean algebras a#e identified with Boolean rings with units.
This idea of going from a ring 0 a Boolean algebra is not new, see
Gegalkine I 1, and Daniell II|, but Stone has made it the starting-
point of his extensive theory of generalized Boolean algebras. In the
theory of sets of ﬁoints, (4 BY) L’(A'/ﬂ B) is sometimes known as
the symmetric difference.of A and B and has also been used frequently
in combinatorial tbpology. Stone I 3 extends the theories of sub-
algebras, congruence relations, and ideals to Boolean algebras (Boolean
rings, on transformation).

Hé defines the subsystems of a generalized Boolean ring‘z, with

.

elements &,b,c¢ , as the subclasses of A that conbtain ab and a + b

da oL

whenever thsy contain a and b. Iie proves that the subsystems of A



are actually generalized Boolean rings. He defines the sum BUC of

two subsystems B,C of A as simply the subsystem generated by the

point set sum of B and‘C? and the produet B/) C or BC as simply the
point-set product. An ideal of A is a non-void sub-class that contains
& + b whenever 1t contains a and b, and that contains ¢ whenever ¢ < a
(¢ is said to be less then @ if ac = ¢). It is shown that the sub-
systems: form a structure, a substructure of which is formed by the
class (J) of ideals of the given generalized Boolean ring. A(a) is
defined as the class of elements E.of.zfsuch that ab = b, (a fized).
A(a) is shown to be an ideal. If A is a subset of 4 then A' is
defined as the set of elements a'.such that a*.a = e for every element
a in A, A' is called the orthocomplement of A in.K, and it is proved
that A' is an ideal (regardless of whether A is or not) and A'/] A = B,
and A' contains every subelass P of A such that 4/ P = Ea(ﬁ and P are
said to be orthogonal). It is shown that AC A", if A is an ideal.

4in ideal is said to principal (P) if A = A(a) for some element a; semi-
principal (P*) if A = A(a) or A = A'(a) for some element a; simple (S¥)
if AU A' = 4; normal(N)if A = A", He shows that the respective
classes of elements (P), (P*), (8*), (N) satisfy the inclusion relations
(P) C (P*) C (8*%) C (N) C (7) , where the elements of the class(l), for
example, are those ideals satisfying the condition of normality. He
proves fhat (1) = (S*) if and only if products of arbitrarily many

elements are defined in A; (S*) = (P) if and only if A has a "unit" o
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for which osx = x+0 = x for all x; (N) = (P) if and only if a
corresponds to a complete Boolean algebra, see Lewis-Langmuir I 1 B,
p. 350 ; (J) = (P) if and only if the algebra is finite. This
last follows from the fact that either theAascending or descending
chain condition implies finiteness see Birkhoff I 1.

Tarski I 1 has set férth a notion of atomic element in a Boolean
ring. In our notation an atomic element a is a non-null element such
that a >b implies b = a or else b = e, or equivalent%z)ab =0 or ab = a
for every b in the Boolean ring. It is actually a prime element with
respect to the operation of the Boolean ring. He shows that the
assumption that every element contains an atomic element is equivalent
to the proposition that every element is equal to the sum of all its
atomic elements. A class S of atomic elements is said to form a complete
atomic system if b = 0 is the only element such that ba = 0 for every

" i

& in S. Stone 174 has investigated atomic elements and atomic bases
quite exhaustively. Stone I 4 defines a barrier ideal as an ideal
B %ll such that B' = Z,and such that there exist normal ideals C and
D for which A = CUD and CND = CD = B, He profes that in a countable
Boolean algebra every prime ideal is normal or else a barrier ideal.
“e defines a prime ideal Jjust as in ordinary ideal theqry.

Stone was the first to make a complete and systematic study of

the relation between rings and Boolean algebras, but others, notably

B. A, Bernstein, had previously announced many scattered results
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bearing on this subject. For example B. A. Bernstein I 2 showed that
a ring with a finite number of elements, all of which are idempotent,
can be represented as the direct sum of a finite number of prime fields
of characteristic 2. Radokoviec I 1, in 1929, considered a logical
system of "basic"™ propositions A, B, C, .«¢ such that each of these
is either true or false. The system contains the teutology T (the
identically true proposition) and the contradiction K (the identically
talse proposition). -Now a set of "generalized" propositions is constructed
from these by applying the operation of union A + B {the proposition
that is false whenever A and B are false, otherwise true) and cross-cut
A B (true when A and B are both true, otherwise false). A numerically-
valued dimension funection d(4) is defined as having the value k for all
the basic true propositions and the value t for all the basic false
propositions. It obeys the law d(A) + d(B) = d(A + B) + d(A-B). Both
the distributive laws hold i.e.,

A+ (BeC) = (A + B)«(A + C)

A*(Bi 4% C) = A*B + A°C

and the union and cross-cut are each associative and commutative. Also
| A+ R=A

A-T=4
He shows that his system satisfies the axiom of Menger-Be;gmann for
n-dimensional projective geometries. Even in the case of a fin;te set

of propositions, he is able to define a non-trivial dimension function.
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Stone systematically applies ring-theory to Boolean algebras,
and wherever possible, group-theory. B. A. Bernstein I 1 had long
before shown that a Boolean algebra could be represented as a group.
Moisil has given an extended treatment somewhat resembling that of
Stone. He considers a system of elements with two operations, each
associative and commutetive separately and such that

a+a=a, a-+a=a

He examines the case in which the two distributive laws hold, the case
in which the two laws

a+ ab=a, a-(b+a)=a
hold(;he case of semi-serial logic, or structure,)and finally, the
case in which they both hold (ﬁhe case of a Boolean algebral. He finds
that ,of :the systemsgenerated by two elements, the distributive system
contains 6 elements and the semi-serial one 4 elements, while if there
are 3 generators, there result 33 elements and 31 elements, respectively.
He defines a subset M to be a subsystem of the system L if it is closed
under the operations + and +; M is an invariant subsystem if in addition,
for each a in M and p in L, a + p is in M; it is normal if for each a
in M and x in L, a + x in M implies x in iI; it is an ideal if it is
normal and invariant. He proves the result found by Birkhoff I 1 that
a distributive system with null and all elements is semi-serial (that
is, a structure). He considers systems in which an operation (not

relation) of implication D is defined, with the properties
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]

(a+b)Dec=(ade)-(bDe)

a+ (a>h)

Il

a.b

He proves, if p is a fixed element of a distributive logiec L, then
the transformation a — & is an anfomorphism, where a = a > ps
furthermore the system consisting of the residue-classes with respect
to a family of automorphisms T, T%, T%,... is a structure.

Moisil I 2 in a later paper makes use of systems in which an
"equivalence operation" and a symmetric difference operation are defined.
He defines, for "ideals" in this system a "deducibility". . b is said to
be deducible from a with respect to an ideal M of a distributive system
if and only if b belongs to every ideal that includes M and a. He
states a well-known result of Gentzen in the form: if ¢ is deducible
from a and from b (both with respect to the same ideal M) and a + b is
in M, then ¢ is in M.

R. Vaidyanathaswamy I 1 has also investigated representations
of Boolean algebras as groups. Duthie I 1 has made use of the symmetric
difference of two elements of a Boolean algebra to define a (Boolean)
function of bounded variation. He proves that the complementhof a
function of bounded variation is a function of bounded variation; that
the complement of a function not of bounded variation is a function not
of bounded variation; if f(x) is a function of bounded variation then
‘8o is £(x'). .He extends the definition and some results to functions

of two variables.
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Birkhoff and von Neumann, see Birkhoff I 1, have put forth
a logic that they consider meets the needs of the quantum mechanics.
The basic ideas are a unary operation of priming, yielding a' from a,
and a relation a C b. The axioms are in substance as follows

1.) 2C Db and b< ¢ together imply a C c.

2.) a Cb implies b'<C at.

3.) acC(a')! and (a')'C a.

4,) To every pair>of propositions X and y there is a proposi-

tion x Ny such that (x1Ny)C %, (xNy)<C yand z¢< x
and z € y together imply z € (xN1 y).

5.) aC a' implies a < x for every X.
a = b is defined as meaning the two relations a 2 b and b > a teken
together. From 5) it follows that there is a proposition e such that
e C x for every x. From 1) and 3) follows a c a. The proposition e!
has the property that x C e' for every x. It can be proved that there
exists a proposition x Uy, = (x'N y')"", such that xC x U y and
y<CxUy and xC 2z, yC z taken together imply x U y C z. From
this we see that this logic is a structure. It can be proved to be
modular if a numerieally valued "dimension function" d(a) is intwoduced,
with the following properties

a.) aCband a#b implies d(a) < d(bv).

b.) d(a) + d(b) = d(an b) + d(a V b).

Now if we simply assume axioms 1 - 5§ and distributivdty and introduce
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the following two conditions
c.) There is a finite upper bound for the length n of any
chain connecting the null element with the all element
e,= a5 < ay cee <ap = o0
d.) The structure is irreducible, that is, there is no
"neutral® element x # e, o, such that
(an x) U (an x') = a for all a and x fixed.
we can say that the structure is isomorphic to a projective geometry
over a non-commutative field. For definitions of projective geometries
see the section below on geometries.

This logic arose from the opinion that "one can reasonably
expect to find a calculus of propositions that is formally indistinguis-
able from the cealculus of linear subspaces with respect to set products,
linear sums and orthogonal complements, and resembles the usuel ecalculus
of propositions with respect to and, or, and not." (See Birkhoff and
von Neumann I 4), A phase-spece in the quantum mechanics ié a méthemati—
cal idea defined as follows. Any physical system S is at each instant
hypothetically associated with a "point" p in a fixed "phase-space" P,
The point p is supposed to represent mathematically the "state" of S
and the "gstate" of S is supposed to be ascertainable by "maximal
observations". The reader unfamiliar with these notions can find ample
discussion in von Neumann's book on the quantum mechanics, see von

-

Heumenn I B 1. Moreover, every point po associated with S at a time 1o
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together with a prescribed mathematical "law of propogation®, fix the

point pt associated with S at any later time t.

In electrodynamics the points of P can only be specified after
certain functions - such as the electrostatic and electromagnetic
potential-are knowm; P is in this case a space with an infinitude of
dimensions. The law of propagation is contained in Maxwell's equations.
In guantum theory, the points of P correspond to the "wave function!
and so P is a function-space usually assumed to be Hilbert space. In
this case the law of propagation is contained in Schrodinger's eqguations.

To establish the correspondence to the experimental, or obser-
vation space S, we let the mathemetical representative of a subset S¢
of the observation space (determined by compatible observations
s 22+ 3%)  for a quantum-mechanical system, be the set of all
points of the phase-space that are linearly determined by proper
functions fj satisfying O fi = #1 fi, - » Xn fx = #n Tk, where
(81, +++ 5 Pn) is a point of S7. It can be shown by quantum-mechsnical
methods that there exists, then, a set of mutually orthogonal closed
linear subspeces P; of P (which corresponds to the families of proper
function f, satisfying 9 £ =gi1 £, +se O £ = gfin £) such that
every point (or function) f of P can be represented uniquely in the
form f=¢) f7 + ¢z fp + «oo , (fj in P;). It can be shown that the
methematical representative of any experimental proposition is a cloéed

linear subspace of Hilbert space. From the fact that all operators of
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quantum mechanics are Hermitian it can be deduced that the mathemati-
cal representative of the negative of any experimental proposition is
the orthogonal complement of the mathematical representative of the
proposition itself., If the following postulate is added to the usual
ones of the quantum mechanics, then a suitable correspondence will
result.

(A) The set-theoretical product of any two mathematical

representatives of experimental propositions concerning
a quantum-mechenical system is itself the methematical
representative of an experimental proposition.

From this postulate, together with the other deductions, it
follows that the set-theoretical product and closed linear sum of any
two, and the orthogonal complement of any one closed linear subspace
of Hilbert space representing mathematically an experimental proposition
concerning a quantum-mechanicsl system S, itself represents an experi-
mental proposition concerning S.

In classical physics with this sort of logic of propositions,
the distributive law holds. In ordihary Hilbert space the modular
axiom holds only when the modul-sum of two subspaces representing
propositions, is always closed.

It is not my intention to even sketch the full subject of
mathematical logic. I have attempted only to indicate a few of the inter-

dependences between the mathematical logics and the abstract structures.
An entertaining and elementary treatment of some of the chief theories

of mathematical logic is to be found in Frink I 1.
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Section 3. Structures connected with probability.

In the theory of probability there is asn ample field for the
application of structure theory. The application comes usually by
way of Boolean algebras. We shall pause here long enough to indicate
a few of the best treatises. Boole I 1,2,3,4 and Poretski I 3 were
among the first to treat probability by means of logic. Venn in his
"Logic of Chance" presented one of the first extended treatments.
Keyaes in "A Treatise on Probability" and Reichenbach '"Wehrscheislich-
keitslehre", treat the modern problems fully, and give complete biblio-
graphies,

Those familiar with ergodic theory will probably be acquainted
with the possibilities associated with the introduction of structure
theory. Birkhoff I 9 has begun a study of probability from the modern
point of view especially as connected with ergodic theory. We shall
not go into this further, but shall consider a most instructive example
due to Markoff I 1.

Markoff considers the space of space-time points x,y, etc and
defines between some pairs x,y the relation "precedes"., x & y means
x precedes y. The axioms concerning this relation are similar to
those for structures.

A. If xC y, then y does not C x.

B. If x< y and y C z then x < z.

C. A chain x = 25C& 277 «es G2y = y between two given
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points x and y is limited in the number of terms.
D. To each pair of points X,y there is a point u and a
point v, for which
Ry lE Ny VL XY
Axiom C is a sort of "inite chain condition". Axiom D is consider-
ably weeker than the axioms that guarantee the existence of a lub and
a glb see Postulates VI 1,2. By the point x, we shall mean the
ordered set (Xg,X],Xz2,%X3). Now the relation x & y can be established
by X0 < Yos (Yo - %0)® - f_ (x5 - yi)2 Z 1, and it satisfies
i=1
all the above axioms. Conclusions sbout relations of the metric
defined by these conditions and the usual metrics of relativity are

deduced by Markoff.
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Section 4. Structures connected with projective geometries.

Many of the methods used in projective geometry since its
origin have been structure-theoretic in essence, but the connexions
with structure-theory were greatly obscured by the presence of many
kinds of elements - points, lines, planes, etc. - each of which seemed
to have its own separate identity. Although projective geometry had
long been known as the geometry of projection and section (union and
cross—-cut, respectively) because of the commending position these two
ideas assumed, still there were few efforts to try to develop abstractly
the general theory of n-dimensional projective geometry using the ideas
of union and cross-cut as the fundamental primary notion.

In his theory of casts, von Staudt II 1, II 2 B, touched the
idea. Veblen and Young II 1 came very near and moreover, without
abstracting the idea of a dimension function they proved that if dim L
represents the dimension of the linear sub-spaced L then

dimL + gim M = dim (LU M) + dim (LN M)
(see pp. 32-33, vol. I, theorems Sp2 and Sp3).

Menger II 4 formally stated the postulates of the ordinary n-
dimensional projective geometry in terms of union end cross-cut. He
started with a structure with all - and null-elements ete., - and
first postulated a transitive, symmetric and reflexive equivalence
relation, "=", such that A = B or A # B for every pair of objects.

To these postulates he added a "subtraction" postulate: if A+ S =9
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then there exists a B éuch that A+ B = S and AB = null element; and
a "dimension" axiom: to each element A there is associated an integer
dim A such that
a.) 1if every element properly contained in A has dimension
< n -~ 1 then dim A = n.
b.) if a proéer element of A has dimension Zn =1, then
dim A Z n.

¢.) dim A + dim B = dim (A UB) + dim (AN B).

Points are defined as elements of dimension zefo, lines as elements of
dimension 1, etc. If we take the structure as an n-dimensional number-
space, A zand B as linear sub-spaces, A/) B as the greatest linear
sub-gpace contained in A and B, AU B as the least linear sub-space
containing A and B, then we have the postulates of n-dimensional
projective geometry.

Bergmann II 1, took a slightly altered set of postulates ih
which both distributive laws hold. Then both operations were proved
to be uniquely reversible. 1Instead of the "dimension postulate" he
took further conditions on the operations and proved thé existence of
a proper dimension-function. He showed that if we take dim of the null-
element = -1 and the dimension postulate of Menger with thé exception
of dim A + dim B = dim A (/B + dim A/\ B, we can prove dim A + dim B =
dim A UB + dim A/1B. He II 2 made further critical studiés of

systems of postulates, some involving the formation of complements as
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-

the Tundamental idea. ILienzer II 7 showed that if the subtraction
axiom be further sharpened to require uniqueness, then his system
of postulates describe a structure isomorphic with the structure of
all subsets of a set, this having the power of the dimension of the
all-element.

Wald (see Menger II 8) investigated the effect of requiring
the unique reversibility of the operation of union. Schreiber II 1
investigated the effect on the structure of substituting various
axioms on betweenness and on congruence relations. He bases his
investigations on the observation that in the plane the group of
similarity transformations'may be defined as a certain cross-cut of
the group of the projective transformation with that of the transforma-

tions of the form x' + iy' = —2 x',y',%,7,2 all real. Schreiber

x + iy

has studied the effect of substituting postulates concerning the
relation of an element to three other given elements.

Garrett Birkhoff II 3 shows that if we start from any n-
dimensional veetor space with coordinates in a number field the set
of vector subspaces of the given space will form a complemented modular
structure. If these elements are taken as the "elements” of a projec-
tive geometry, teking an "element" of dimension 1 as a point, an element
of dimension 2 as a line, etc. then according to classical n-dimensionel
projective geome try,

P71 Two distinet points are contained in one and only one line.
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P, If A4,B,C are points not all on the same line, and D,D
(D # &) are points such that B,C,D are on a line, then
there is a point F such that A,B,¥ are on a line and
also D,E,¥ are on a line.
P, Zvery line contains at least three points.
P, The points on lines through an K-dimensional element and
a fixed point not on the element are a (k + 1)-dimensional
element, and every (k + 1)-dimensional element can be
defined in this way.
He proves that any set of elements satisfying P to P4 with a dimension
function, defined for every element and such that there is a finite
upper bound to the dimensions of the elements, can be defined as a pro-
jective geometry. Birkhoff proves that any projective geometry is a
complemented modular structure, if intersections are defined as cross-
cuts and conjunctions as unions. This structure also has the finite
chain conditions and has of course an all element and a null element.
Conversely he proves that any modular complemented structure with the
condition that every sequence of decreasing elements aj > a; > a4 A
has at most n terms, satisfies postulates P; to Py, where union and
cross-cut are defined as before, and the dimension of an element is
the length of the decreasing chain that starts with it. The dimension
of the structure is the dimension of its all element. He proves that

every complemented modular structure of finite dimensions is isomorphic



98

with the direct broduct of a finite Boolean algebra and a finite
number of projective geometries and conversely that any direct
product of a finite Boolean algebra and a finite number of projective
geometries is a complemented modular structure of finite dimensions.
lenger IT 20 (see also below) has proved a similar résult in some-
what different form.

Birkhoff and von Neuwmann II 4 have studied the problem of
détermining which projective geometries may be complemented in such
a fashion that to any element there corresponds an A' such that
(A')' = A and A< B implies B' < A'. They expresé the result by
saying that‘the number-field used in forming the projective geometry
must have an involutory anti-isomorphism (that is, a transformation
a~>a such that a—>a and ab—>ba) go which there is associated a
definite Hermitean diagonal form >  x; g x; with g§ = g; (which
vanishes only for Xx] = X, = e+ = xi = 0). Some of the theory of
such an isomorphism may be got from Albert I 1 B.

We have seen (see the section on algebra, Whitney) how the
idea of linear dependence may arise in connexion with the theory of
structures. Birkhoff II 1 has considered a matroid M (in the sense
6Ff Whitney) in which all sets consisting of at most two elements are
independent (in the matroid sense). Now let L(}) be the set of all
linearly closed sets, that is, all subsets A of M such that every

element of I that depends linearly on A belongs to A, Then L(M) forms
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a structure with réspect to the union and cross-cut defined in L(M).
The nature of the matroid M is uniquely determined by the nature of
the structure L(M), since the rank of a linearly closed set A is
exactly the length of the longest ascending chain of linearly closed
subsets of A. For further work of Birkhoff II 2, showing the connex-
ion between the "discrete spaces" of Alexandroff and n-dimensional
projective geometries see the discussion of Alexandroff in the section
below on topology.

Nekasawa II 1 has treated axiomatically linear dependence in
n-dimensional projective spaces, using a calculus due to G. Thomsen II 1:
certain sequences of element of elements of an abstract space are
designated as "cycles" with a product defined and an eguivalence rela-
tion knovn as ™o be valid®, aja, ++- ag = O or for short aja, .-+ ag;
or not to be valid ajap ---‘as # 0. There are associated the following
axioms

a.) aa

b.) a] +++ ag implies a1 --- agX; s = 1,2,

c.) @] - af +++ ag implies aj .-+ a1 -++ ag; S = 2,3,

i=2, «ve¢ 8.
d.) a3 #0, +++ ag #0, xay +++ ag, a] -+ gy imply
xaj »- 8g¥; S = 1,8, +--
“To pe valid® is the same as "to be linearly dependent’. Klements can

be teken as points. The totality of elements x that satisfy the relation
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&) *°+° 8pX where a8j,85, *** ,8y is a fixed set of elements and
a] @ <°* ap % 0, is defined as a linear space RM generated by the
‘ "basis" ay +++ ap, and n is the rank of the space. The motion of
basis and rank are then extended to any set M of elements of the given
space. |

Menger II 10 examines the notion of linear dependence in a
generalized projective geometry. He defines m points Pp,P,, <.+ ,Pp,
Qf a projective geometry as independent if

Pe/) (P oo U Pr-1 U Praa eee UPp) = null element

for k = 1,2, ++-,m. |
An hyperplane is defined as an element that is contained only in itself
and the all-element. m hyperplanes Hj,Hs, -+ ,H; are called independ-
ent if  H [/ (H1/ Hy N« NHeo3 /N Hewp /1 oo A Hy) = all element for
k=1,2, «¢¢ ,m, Cerfain necessary and sufficient conditions for linear
dependence are stated. The dimension of aﬁ element is defined as the
number of independent points whose union is equal to the element. If
the finite chain condition holds, then every element will have a finite
dimension dim V = =1 where V is the null element. dim 4 =
1 + max (dim A') for all A' contained in A, As before dim A + dim B =
dim (AU B) + dim (AN B). ©e proves the theorem (see Birkhoff above)
on the decomposition of a projective geometry into a direct: product, by
means of the notion of generalized simplex. He defines parallelism in

terms of union and cross-cut and linear dependence.
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MacLane II 1 has studied abstract linear dependence in projec-
tive geometry by means of a "k dimensionsl schematic figure", and has
shown the relation to the matroids of Whitney. He defines a schematic
plane figure as a system of a finite number of "points" and certain
sets of these points, called "lines" and satisfying the axioms:

1.) Any pair of points belongs to one and only one line.

2.) Bvery line contains at least two points.

3.) No line contains all the points.

4,) 'There are at least two points.

It is not necessary that this schematic figure correspond to any actual
figure in the plane. A schematic three-dimensional figure is a set of
"points", -"lines%, planes satisfying

1.) Every triple of points belong to no one line belongs to

| one and only one plane.

2.) ZEvery plane contains three points not on a line.

3.) No plane contains all the points.

4.,) If a plane contains two points of a line, it contains all

the points of that line.
The definition of a k-dimensional schematic figure is similar. He sets
up a one-to-one corresvondence between the schematic n-dimensional
fizures and the matroids of rank n + i, where the rank of a set of points
A is defined as the smallest r such that all points of A are contained

in some (r - 1) plane. Xe proves tiat a schematic n-dimensional figure
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is completely determined if its (n - 1) planes are given, moreover, if
a set of "points™ and certain subsets of this set are given, these sub-
sets will be (n - 1) planes of some figure if and only if there are
circuit complements of a matroid I*, that is, if these subsets satisfy
the axioms C¥,C%, while their complements satisfy Whitney's axioms €
and Gy for circuits.
CT. Every element is omitted from at least one circuit complement.
Cg. For every pair of elements ej,e, there is a circuit comple-
ment containing ey but not e..
C1. Wo proper subset of a circuit is a circuit.

Co. If Py and P, are circuits, if ey is in both P and P,, and

)

if e, is in P7 butv not in Py, then there is a circuit Py

in Py + P, containing e, but not ej.
fFurther he gives examples of matroids that are not repressntable as the
set of columné of a matrix, but proves that if a matroid M is reoresentable
in this way by a matrix of complex numbers, then i can also be represented
by a matrix with elements from an algebraic field of finite degree. Ee
indicates the relation, in certain cases, between the non-representability
of a matroid by a matriz, and the degeneracy of the associated schematic
figure.

lenger IT 12 and II 13 has definsd parallelism and the generalizéd

parallelism and non-parallelism of Lobaischewsky and Bolyai by means of
union and cross—cut,‘and has developed the theory of non-¥uclidean

geometry axiomstically from the structure-theoretic point of view.



section 5. Structures connected with continuous geometries

Von Neumann II 2 has invented a most remarksble kind of
geometry, one in which there are no points; that is a geometry in which
there are no non-vacuuous elements of least dimension. A conbinuous
geonetbry is defined as a structure L, defined by means of a partial-
orderingz relation, such that for the two postulates on the existence of
a greatest lower bound and a least upper bound of any pair of elements
(the cross-cut and the union) we have instead the postulates

~

(U) To each set S of elements S, there exists an element Mg

Ct

such that S < Mg for all S in S and for any element LI

o

with the same property, M' Z M.
(P) To each set S of elements S there exists an element D such
that D< S for all S in 5 and such that for any element D'
with the same proverty, D' < D.
D is designated by P(S) and M is designated by U(S). lore-
Sin S Sin&
over, let L be modular, complemented and irreducible, and let the
operations of union and cross cut be continuous, that is
(c) Let /L be any aleph, A°< be a transfinite sequence defined
for all ordinal numbers o < —/L . Then

a.) Iféxé Bﬂ for A <ﬂ<—/2-)then

Y (4 U B = [g(ad] U B
b.) IfA A for & <f < ST then

P (4 N B) = [5(%)} /\ B.

>

X
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Now he has shown that a dimension function can be defined over
the structure L such that

1.) 0<afa) 1

2.) a(N) =0, a(Q) = 1 where N and O,are the null-element and

the all-element respectively.

3.) a(AUB) + d(4 N B) = da(a) + d(B).
Further he shows that for the set of values of d(A) as A goes over the
structure, there are only two cases possible. In the first case this

1 2

set of values consists of the numbers O,-H,-— , *** 1, for some fixed

n

n, characteristic of the particular structure. In this case, the
structure L can be shown t0 be an absiract projective geometry in the
sense of Birkhoff (see above). The only other possibie case is that in
which the set of values of the dimension-function consists of all the
real numbers between O and 1. This is the proper continuous geometry
and it may be considered as a limiting case of a projective geometry of
dimension n (in the sense of Birkhoff), as n approaches infinity.

Von Neumann II 3 defines a metric, a generalized distance between
two elements as (4,B) = d(AU B) - d(A/]) B). This metric satisfies
the conditions

1.) (A,B) = 0; (A,B)> 0 for & # B.

2-) (AyB) = (B,A).
3.) (4,C) = (4,B) + (B,0)

Since the set of values for the metric are, in the case of a projective
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geometry, a finite discrete set, no significant topology arises there
by its introduction. In the case of a continuous geometry proper,
there reSults an important non-trivial topology. The geometry is com-
plete and connected with respect to this metrie.

He (see II 4) seeks to algebraize the continuous geometry, and
. shows that it is structure-isomorohic, with respect to union and cross-
cut (defined in the ususal manner for ideals), with the structure of all
principal right ideals of an unique (within ring-isomorphism) irreducible
regular ring. A ring is defined as regular if it has an unit and if to
each element A in the ring, there is an element Y, such that A Y A = A
(this condition can also be stated that in the structure of the ideals
of the ring, every principal ideal has a complement)., It is shown that
this ideal-structure need not be a continuous geometry and is indeed
merely a complemented modular structure, in general. He (see II 1)
proves that the centrum of the ring, as a consequence of the irreduci-
bility, is e commutative division algebra. This division algebra is not
itself always sufficient to characterize the orizinal continuous geometry.
In the special case that the continuous geometry is improper, that is,
a projective geometry, the examples can be given in which two distinct
projective geometries are associated with the same division algebra.

In seeking to characterize the continuous rings, which are those
regular rings for which the principal fight ideal structure is a contin-

uous geometry, von Neumann IT 5 is led to the notion of a "rank ring”.
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A rank ring is a irreducible regular ring in which a numerically-
valued renk function, R(a), is defined for all elements a of the
ring such that

1.) a<Ra)<1

2.) R(a) = 0 if and only if a = 0

3.} E(1l)} =1

4.) TR(ab) < R(a); R(ab) < R(b)

5.) For e =e, £° = £, ef = fe = 0, we have

R(e + £) = R(e) + R(f)

He shows that R(a + b) < R(a) + R(b) and sets up R(a - b) as a metric
distance, calls it the "rank metric”. Now the principal right-ideal
structure of a regular irredﬁciblc ring is proved to be a continuous
ring only if it is a rank ring, complete according to the topology
induced by the rank metric. Conversely if it is a complete rank ring

th order matrix algebra over a suitable division

then 1t is either an n
algebra, or else it is a proper continuous ring. In an extension and
consolidation of algebraic results concerning rank rings he considers
algebraicity of ring elements with respect to the centrum of the ring,
and algebraic numbers, defined as limits of seguences of "algebraic
integers™ (in a certain generalized sense).

lac Lane I has worked with "continuous structures™ (structures

in which postulates (U) and (P) are valid) and has defined an "exchange

structure L satisfying the conditions
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(E) The exchange postulate.
If a is in L and p and g are elements prime over
zero, then a < aUp € alq implies g< a  p.
(Z) Bxistence of prime elements.
If b < a are in L then there exists a prime element
D .in L such that b< bU p< a,
(F) Tiniteness of dependence.
If 2 is a set of elements prime over zero and p is
an element prime over zero such that p & U(%4), then there
exists a finite set of elements prime over zero
G1,9gs s+ Gy Of A Wwith pZE g U g U «.v Uagy.
He has used these structures to investigate transcendencédegrees and
p-bases. It might be nentioned in passing that as early as 1887 Kembpe
(see II 1,2,3) had attempted to correlate geometry snd the calculus of
propositions by introducing & ternary function that could be interpreted

in terms of betweenness, in special cases.
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Section 6. Structures comnected with topology

There are, roughly, two ways in which structures may be usad
in connexion with topology. e may study a given topological space
by mezns of siructure-thesoretical methods, or we may start with a
structurs &nd observe the results of endowing it with a topology
The first way is commonly found in combinatiohal topology, and the
second is found in the general theory of sets of points.

Borel II 1 B (see p. 18) started with a set of points in which
the idea of subset was defined, and then introduced the notion of the
limit superior (tnsemble limite complet®™) of a sequence of such sub-
sets, and the limit inferior of a similar sequence(hensemble limite

i '
restreinte). The first is defined as the class of elements such that
each one is in an infinite number of the sets of the given seguence.
The second is defined as the class of elements such that each one is
in all but a finite number. IHe derives the formulas,
lim By = (81 +

lim Ey

n
&
|l
Ié_:.
ml?i
4
L
1Y)
5
@
3
&5
W
&
(1S
+

where + and ¢ are just the union and cross-cut for set theory(éee
Chapter I, example ﬁ. C. de la Vallee Poussin IV 1 and IV 1 B treated
the same question by means of characteristic ﬂunctions)see also
Hausdorff IV 2 B. The sequence is said to have a limit if

lim £, = lim ..

Daniell II 1 investigated the limit sets by means of the
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symmetric difference. He puts ]A s BI = A'B + AB' and calls it
the "modular difference™. Some of the properties of this modular

difference are

|a-8] = Y
|4 -3B8] = ]I-El

If |4-B| = 0 then A= B and conversely
|A-B{CA+B

e
1

¢l <la-3] + [B-cf

& c{-{B-ClclA-c} + |B-c]

[ -8+ ]a-c] #eiw [A-n] = (A+B+Ctms W) - 4BOweT

Incidentally he notes that the standard type of equation in symbolic
logic, having a unique solution, is of the form XA' + X'A = B and
that the solution may be expressed X = }B - A).

He defines a sequence of classes Aj,A,,+++ , Ay,+++ as having
a limit A if a set 4 exists with the property )A - Ap ICZ S, for
2ll n, where Sp is the nb term of a sequence such that Sp O Sp-1
and there is no point common to all the Sp (i.e. 1lim Sy = 0). He
shows that this definition is eguivalent to that of Borel znd further-
more that the Cauchy condition for sequences holds, that the necessary

and sufficient condition that the sequence A, have a limit is that

Apg - An+p}<:_ Sy for some decreasing null-sequence



110

Mac Meille starts simply with a set of elements a,b,c,
partially ordered by a transitive and reflexive but not necessarily
symmetric relationC . If a partislly ordered set X is closed under
certain operations, then a set L is defined as an extensi§n of K if

L is a partially ordered set closed under a certain class of operations,
such that we can set up an one-to-one correspondence between the
operations of K and a sub-class of those of L)and such that there
exists an one~to-one correspondence between the elements of K and a
sub=-set of L, preserving the partiasl order, and preserving correspond-
Iing operations. Furthermore L is 1t0 be the smallest such set. FHe
defines the cross-cut and union for each subset of X and postulates
their existence for a complete XK. FHe defines several kinds of exten-
sions. The first extension is an adjunction of the units with respect
to cross-cut and union. The second extension is the embedding of an
arbitrary pertially-ordered set X with units in a complete structure
L, by means of "cuts". A cut (4,B) of K consists of two subsets A
and B of K such that aC b for every a in 4 and every b in 3, aC x
for every a in A implies x in B, yC b for every b in B implies y in
A. THe partially orders the cuts by putting (4,8) < (C,D) if every
element of A is an element of C. The system L of the cuts will be a
structure and will be complete (in terms of union and cross~-cut) .

A third extension embeds an arbitrary multiplicative partially-ordered

system X in a distributive structure L. The elements of L are the
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subsets 4,B, etec. of K. AC B by definition if, for every a; in A,

a; = ;; i bj where the sum is teken over every bj in B, and

j? jai bj is distributive. = Pj is said to be distributive if

to every element x such that o Pj 2 x there exists a sum Zgi=x
where for each qj there is a pj with pi-2 x. Then L is a distributive
structure such that each of its subsets has an union in I, which
‘union is distributive in L. DMoreover any such structure that has a
subset isomorphic to X, has a subset isomorphic to a subset of L. A4
fourth extension embeds an erbitrery distridbutive structure K with
units in a8 Boolean algebra L. X' is the set of ordered pairs

(ai,aj) of elements in X. (aj,aj) C (bj,by) if a3< aj + b and

aji bjcf aje. Now apply the third extension to X' and we get L.

TForadori, in his theory of inclusion (see the introduction to

Chaspter II for the notation) has set up a very general theory of limits
and limiting sets by means of his essentially structure-theoretic
methods. He calls a "domain® K an F-domain (@efﬁgg), if every pair
of elements contain a common element of K. A domain G is called an
R-domain {Gerust™) if there exists a "sub-domain” A with the property
that to every element h of H there is an F-domain Xy, whose cross-cut
is h. ¥ is called a basis for G, its elements are called basiselements
and the F-domains Xy the basis domains. If a,b,c are elements of a
domain B, and X is an F-domain in B then ¢ is said to connect a and b

by means of K if ¢ is the cross-cut of the elements of X and every
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member of K contains at least one element contained in a and at

least one element contained in b. If G is an R-domain in the domain
B then an element s of B is said to be connected in G if to each pair
of elements g,g in B such/that o) V) q = s there is at least one basis-
element g of G that is contained in s and connects p and g by means

of G. ILet, as before, s be an element of B, g a basiselement of G
then g is a cluster-element of s if g is the cross-cut of all elements
of Xg (the F-domain associated with g) that properly contain g, and
if every member of Kg that contains g properly always contains & sub-
element of s different from g. By a subelement of s we mean an
element contained in s. s is said to be closed in the R-domain G if
it contains all its cluster elements. s is said to be continuous
("stetig®) in G if it is connected and closed in G. A "nested domain"
(see Chapter II introduction) S is said to be "unbroken" ("kontinuier-
lich") if every member i of S is the cross-cut of all the members of
3 that contain i properly, if there is contained in S the cross-cut
of the elements of each nested subdomain T of S and finelly if the
cross-cut of all the elements of S is in S. Now an element k of the
domein B is said to be a continuum if every nested domain all of whose
elements are contained in k is a nested subdomain of an "unbroken”
nested domain all of whose elements are conbained in k.

Let a and b be two elements of a domain B; then a and b are

said to be isomorphic or of similar structure, if the elements contained
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in a can be made to correspond in an one-to-one manner to the
elements contained in b so that that the inclusion or partial order
is preserved. Now he proves that if k and 1 are two isomorphic
elements of a domain, and if k is a continuum, then 1 is a continuum.
The property of being a continuum is thus a structural property. It
can be shown, however, that the property of bein:s & continuous seb
is not a structural property.

e applies these results to work out an enormously more general
theory of measure than any vrevious one, see II 3. He is able to
reduce Lebesque and Caratheodory measure to special cases of his
measure. He works out a general Borel-Lebeﬁgue theoren,

Let us pause a moment\to notice a few of the connexions
between this theory and the commoner topologies. A very good repre-
sentative of the classical topologies is that of Hausdorff. Tor
convenience in the later work of this thesis we shall note down the
postulates of Fausdorff (see IV1 B and 2 B)., In a set F of elements
we label certain sub-sets neizhborhoods and impose on them the follow-
ing postulates:

VII 1l.) To each element & corresponds at least one of its
neizghborhoods; every neighborhood contalns a.
2.) If Vp and V, are two neighborhoods of a, there exists
a neighborhood V of a such that VC V3/1 V.

3.) To each element b contained in a neighborhood V of an
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element a, there exists a neighborhood W of b such
that WC V.
4.) To each pair of different elements a,b there exists

a neighborhood Vi of a and a neighborhood Vz of b

without common elements.
An element (or point) a is said to be a cluster point of a given sub-
set S if every neighborhood of & contains elements of the set. The
set S is said to be closed if it contains all its cluster-points. It
is open if there is a disjoint closed set such that the union of the
two is the whéle space. The closure of a set is defined as the union
of the set with the set of its cluster-points. It is said to be
connected if it is impossible to express it as the point-set sum of
two sets without common points and without common cluster-points.
Now it cen be shown that if we take the inclusion relstion and the
cross-cut and union just as in the classical point-set theory (see
example 1, Chabter I), then we get a domain of Foradori, and it can
be shown easily that the ordinary topologicel notions of connected
set, closed set, etc. are identical in this case, with the -correspond-
ing ones of Foradori. However, his definitions are not simple
generaiizations of the point-set definitions as he shows quite
clearly. Moreover, o set of sets can be partially ordered in an
indefinite number of ways, none of which is equivalent in any respect

to the ordinary point-set manner., His theory includes all of these,
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and produces some striking new results.
Perhaps the most highly developed theory of structures with
regard to their direct connexion with Hausdorff toovological spaces

b
I

has been set forth by Stone II 1,2,3. Tor the nomenclature involved

in the following description, the reader is referred to the first
part of the section on logiec. As the ideas of homowmorphism and iso-
morphism are important in the sequel, we shall recall the fundamental
theorem of homomorphism, which applies, of course, to a Boolean ring.
In order that a Boolean ring'§ be homomorphic to a given Boolean ring
X; it is necessary and sufficient that there exist an ideal A in &
such that the quotient ring E}A be isomorphic to B. Now regarding
the symbols ¥, + and «, (/N is regerded as identical with . according
to the equation at the first of the section on logie) if an algebraic
system B is homomorphic to a Boolean ring A with respect Lo the pair
of operations +, * or with respect to the pair U and ., then B is
homomorphic to A with respect to all three of the operations, and B is
a Boolean ring. If the algebreic system B is homomorphic to a Boolean
s

ring A with unit with respect to the pair of operations U and , or
with respect to the peir of operations U and ., then B is homomorphic
to A with respect to all four of the operations +, U, -, and /;and 3
is a Boolean ring with a unit.

As a first step in establishing the connexions between a

Boolean ring and a Hausdorff tovological space Stone II 1,2 proves that
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every algebra of clesses with more than one element is isomorphic

t0 a reduced algebra of classes by virtue of an element-to-elecment
correspondence of the basic classes. A reduced algebra of classes

is a Boolean ring A with elements that are sub-classes of a fixed
class Ez with elements e such that every element eq in Ep is con-
tained in some element of A and is the only elementlof H common to all
the elements of A containing it. Moreover it can be proved that if &
is actually an algebra of sub classes of a class B, A is an arbitrary
ideal in A and E(A) is the union of all those subclasses of I that are
elements of the ideal A, then the correspondence A —» E(A) defines an
homomorphism of the system of all ideals in'K, with unrestricted
addition and finite multiplication as operations, to the system of all
classes E(4A), with the operations of forming arbitrary unions and
finite intersections in accordance with the rules

— _

2. B(4) = EB( S 4), [ =@ Du(P a4
iaB AR AnB 4B
for A in a non-vacuous class of ideals in 4. 2 and /| are union

and cross-cut in'K, S and P are union and cross-cut in the ideal
structure associated with A. The algebra & of subclasses of the class
B is said to be perfect if this homorphism is an isomorphism. From
this result he proves that the necessary and sufficient condition for

an abstract Boolean ring B to be isomorphic to the algebra of all sub-

classes of some class'E, is that every normal ideal in B be principal
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and that B contain a complete atomic system. The definitions of these
terms have been given in the section on logic.

Now let A be & Boolean ring with elements a,b,c, C(a) the
class of all prime ideals of A that are not divisors (do not contain
in the point-set sense) of the principal ideal A(a))and B(A) the
algebraic system with the classes C(a) as elements and the operations
of forming finite unions symmetric differences and finite intersections.
Then B(4) is a Boolean ring or algebra of classes and is isomorphic to

L in the following way

Cla) > a

Cla + b) = C(a) + C(b) (symmetric difference)
ClaV b) = ¢(a)V C(b) (union)

C(ab) = C(a) C(b) (cross-cut)

Moreover this is a perfect representation. In justification of the
correspondence between a and C{a) it can be shown by transfinite
induction that this does indeed exist and is one-to-one.

Now if in connexion with the prime ideal A of A we consider
the class C(A) of all prime ideals of A that are not divisors (in the
above sense) of A, then (see Stone I 3) the class C of all prime
ideals A in A will be a topolosical space if we consider the ideals A

as points of that space, and each C(A) as a neighborhood of every

element it contains (in the point-set sense;. An equivalent topology
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is yielded by taking the neighborhoodsas the C(s). C then is a
totally disconnected, locally bicompact Hausdorff space. The classes
C(A) are characterized as the open sete in C. The classes C(a) are
characterized as the bicompact open sets in C. The space is actually
bicompact if and only if A is a Boolean ring with an unit. We recall
that an Fausdorff space is bicompact by definition if from any class
of open sets such that every point in the space belongs to at least
one of the sets, we can select a Tinite class of them with the same
property. It is said to be totally disconnected if every pair of
points of it can be contained in two disjoint closed sets having the
entire space as their union. It is locally bicompact if for each
point there exists a neighborhood of this point whose closure is bi-
compact.

The converse 1s provable, that if 5 is a totally-disconnected,
locally bicompact Hausdorff space, then the bicompact open subsets of
of S constitute a Boolean ring A. Now if we proceed to topologize
this A by the preceding paragraph, it can be shown that we arrive back
to a space topologically equivalent to S. Moreover, it can be shown
that a necessary and sufficient condition that a set be both open and
closed is that it be a set C(a) described in the preceding paragraphs.

Now certain of these results can be generalized by establish-
ing a certain type of mapping function of an Hausdorff space into a

Boolean space and a complete mathematical equivalence is established
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between the theory of Hausdorff spaces and the theory of Boolean
algebras by the result that the theory of arbitrary spaces is equiva-
lent to the theory of demsely distributed classes of mutually disjunct
closed sets in Boolean spaces, see Stone IT 1,3.

This theory produces definitely new results in the theory of
approximation of polynomials and bounded continuous funciionals.
Applications are also made to the Brouwer-llenger-Urysohn theory of
dimension.

Wallman has extended the comnexions of the above type to the
case of general bicompact Hausdorff spaces and a type of distributive
structure. Let us teke a distributive structure L with elements a,b, s«
and null- and all-elements. A collection G of elements of L is called
a "point”™ if the cross-cut of any finite number of the elemente of the
collection is not zero and G is a proper subset of no such collection.
With each element a of L is associated a "basic a-set" of "point"§
consisting of all the points that have the given element as one of
their cocrdinates. The coordinates of & "point" are simply the elements
that go to form the point. ‘A closed set of "points™ is defined as the
"point"-set intersection of a finite, or infinite number of basic sets.
Now it can be shown that the set of all "points" with this definition
of closed set forms a bicompact Ty-space. 4 Tj-space is a topological
space satisfying the axiom of Hausdorff exceopt for the fourth, separa-

tion axiom (see above). This axiom is replaced by Frechet's axiom:
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for every pair of points, each point possesses a neighborhood not
containing the other. Moreover, there is a basis for the closed sets
of S that is a structure-homomorphic image of L. This homomorphism
is an isomorphism if and only if L has the property that if a and b
are different elements of L, there exists an element C of L such that
one of ac¢ and be is null and the other is not null. If L is comple-
mented, then we simply get Stone's theory.

If we start with L as the distributive structure (with null-
element aﬁd all-element) of the closed sets of a Tq-space R where the
union and cross-cut are simply those of ordinary point-set theory and
if we define an "ordinary point" of the associated space S as a ‘"point"
of S determined by the collection of all closed sets of R containing
a given point of R, then the correspondence between the original space
R and the space of "ordinary points® of S is an homeomorphism. An
homeomorphism between two topological spaces is an one-to-one trans-
formation that transforms open sets into open sets and such that open
sets are the transforms of open sets. Furthermore, if R is bicompact,
then every "point"™ of S is ordinary. He proves that the homology
theory of Cech is identical in the cases of R and S, and dim R = dim S,

Kline IT 1 has studied set-structures, both complemented and
otherwise, with regard to limiting relations and their transforms.v

Extending the idea, first enunciated carefully by Menger, of

considering spaces wherein the elements are of various typeslwithin the
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same space,and of different dimensions, Tucker as early as 1933

see IT 1 formulated an abstract approach to arbitrary topological
manifolds. A cell x of a combinatorial complex (for these defini-
tions, see Seifert and Threlfall IV 1 B) K is said to include a cell
y if and only if the closure of x contains y. The cells of K fomm
then, a partially ordered set in which incidence relations, closure
and boundary can be defined in terms of inclusion, such that the
boundary of any boundary is void. Generalizing this idea, he calls
certain partially ordered sets "cell-spaces™ see II 3.

Alexandroff ITI 1 has considered discrete spaces (Mespaces
discrets™). A set Z of any elements form a topological space if
certain subsets (including always the vacuous set and E) are called
closed, and the cross-cut and union (point-set) of any number of closed
gsets are themselves closed. The complements of closed sets are called
open sets and are the neighborhoods of their elements. (This is
essentially reversing the procedure above under Fausdorff spaces).

Now B is called discrete D if the union as well as the cross-cut of

a finite or infinite number of closed sets is closed. IEvery element
p of D is in a smallest closed set'f and in a smallest open set Op.
The sets 5¥ Op, the vacuous set, and D are called elementary sets.

By means of the introduction of a dimension function and certain basic
axioms for the corners, or elements of dimension O, he studies the

homeomorphy of a discrete space composed of a finite number of elements
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with a discrete space consisting of polyhedra of an Euclidean space.

Gerrett Birkhoff IT £ has studied Alexandroff disérete spaces.

He shows that theidiscrete spaces with the multiplication axiom "the
cfoss—cut of a finite or infinite number of elementary sets is an
elementery set", is identical with a structure. He shows the relation
between a finite dimensional discrete space and the direct sum of a
finite number of projective geometries and a finite number of isolated
points. He proves that a structure is n-dimensional and distributive
if and only if it is isomorphic to the structure of the closed point-
sets of a discrete space consisting of n points.

Kodaira IIVl has olso written on the relstion of cell-gpaces
with combinatorial analysis situs.

H. Cartan has considered a system, closely connected with
structures, called a "filter". A filter of sets of a class J is a family
F that includes all oversets of any one, and the'product of any two of
its members. A "basis" of F is a subfamily B such that any two subsets
of B have a common subset in B, and such that the oversets include all
gets in F. The system is essentially an abstraction of a topological
space I, where F is the class of all sets whose interiors contain a fixed
point o and B is a neighborhood system equivelent bopologically to F. A
neighborhood system is said to be equivalent to another if every neighborhood

of one include, in the point-set sense, at least one neighborhood of the



other and conversely.

KXurepa IIL 3 has applied generalizations and extensions of the
Cantor theory of transfinite numbers to the study of families of sevs.
He defines a ramified class as a system of non-vacuous sets X such
that Tor each pair of such sets, either they are disjoint, or else one
is a subset of the other. A well-ramified system I, or ramitied table
is one such that to every subsysten F?ﬁEIF there is an initial system
Ro(F*) € ' such that every set of F' is a subset of a set of Ro(F').
He applies these notions to an analysis and some novel restatements of
the problem of Souslin: is a linearly ordered set without gaps or jumps
in which every set of intervals without common inner points necessarily
the linear conbtinuum?

He examines correspondences between partially ordered spaces
By to E; and defines such a correspondence as an increasing function if
it is single-valued and aj < by implies f(a;) < £(by) where a ,b are
in Ey. It is called a real increasing function if By, is similar, in
the sense of Cantor, to a linear set. He proves that every non-
denunerable ramified table in which there is defined a real increasing
function has the same transfinite power as one of its subsets composed
of elements that are pairwise independent, that is neither of a< D,
& >b holds 7or each pair. 4lso that for any non-denumerable ramified
table T of open sets and closed sets taken from a space V that is

perfectly separable, T has the same transfinite power as one of its sub-
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families of padrwise disjoint closed sets (see II 10). Further, in
IT 11 he proves that

e o s & Llax(pel B

max (pe Z, pg E, ps E) € pE S 2Psﬂl (pek, pak)

where pE is the power of the partially-ordered set I, pg £ is the upper

of B )
bound for the powers, subsets of I, pg E is the upper bound for the

v
1}

powers of subsets well ordered in both directions and pg E is the upper
bound for the powers of subsets consisting of pairwise indevendent ele-
ments. & set is called partially well-ordered if every one of its
ordercd subsets is well-ordered. Xe uses this idea and the hypothesis
of the continuum to obtain an hypothesis equivalent to that of Souslin.
The idea of pseudo-set is due to Shirai II 1. Let certain rela-
tions e, g'andli be defined between the elements of & set X and certain
objects of any form than a given object M called a pseudo-set with
reference to X if for all elements x of X we have x E'M, x e M and xl! M.

Equality, inequality, sum and product of pseudo-sets can be introduced.
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Section 7. Structures connected with function-spaces.

We start with a discussion of certain questions that are usually
regarded as algebraic, but which are actually connected with analysis
in their applications. ILoewy II 1 as early as 1906, considered differ-
ential equations from the algebraic point of view. He considers a

linear homogeneous differential expression of order n,

. dny . dn-ly )
Aolx) =L+ &g B J + *#* ¢+ §
olx) T * A4 ani-1

where the A's are rational expressions in x, with coefficients in some
field. 7The associlated differential equation is got by equating the
expression to zero. This eqguation is called irreducible if it has no
integral in common with a similar linear homogeneous differential equa-
tion of lower order, otherwise it is cailed reducible. Now according to
a theorem of Xronecker, a linear homogeneous differential equation, like
those above, that is satisfied by one solution of an irreducible linear
homogeneous differential equation, is satisfied by all the solutions of
that irreducible eguation. Now a linear homogeneous differential equa-
tion is called completely reducible if one can find a finite number of
different irreducible linear homogeneous differential equations J; = O,
Jp = 0y4Jg = O, such that the order of the given equation is equal to
the sum of the orders of the g preceding equations and the given equation

is the equation of lowest order among all those that are satisfied by

the totality of the integrals of J} = 0, J; = 0, etc. The given equation
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is called the least common multiple of the J's. This can be shown to
exist. He proves without use of the Picard-Vessiot theory of the
rationality-group that every completely reducible differential equation
is representable either unigquely, or in an infinite number of ways as
the least common mutliple of a set of irreducible differential equations.
The necessary and sufficient condition for the second possibility is
that at least two of the set have simultaneously the same property as
the given equation. NMoreover the necessary and sufficient condition
that a linear homogeneous differential equation be satisfied by the
integrals of an infinite number of different irreducible linear homogen~-
eous differentisl equations is that the given equation be representable
in an infinitude of ways as the least common multiple of sets of the
irreducible linear homogeneous differential equations. The works of

Me Coy II 1 and Raudenbush II 1 have carried this on further, but from
the point of view of ring theory, rather than structure-theory, except
insofar as they considered ideals. One of Ore's first contributions to
the theory of structures was his paper on non-commutative polynomials,
essentially a theory of differential expressions. The "multiplication"
of two differential expressions Ji(y) and J,(y) is defined as J3(Jz(y))
or J5(J1(y)) respectively. This "multiplication"” is not commutative.
For the intricacies of notation and concept, the reader is referred to
Ore's papers II 1 - 4.

Perhaps the first systematic use of a partial ordering of real
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functions of an abstract variable was used by P. J. Daniell (1917)

see IT 2. He defines the cross-cut of two functions fi(x), f(x)

just as we have in example 2 &, Chapter I, and similarly for the union.
The sum of f3(x) and fy(x) is the function with the real values

fl(x) + fz(x). tie studied various classes of numerically-valued

the last example of Chapter I). Among these were the class of linear
operations and the class (k) of operestions LI(f) such that when f < g,
then L(f) s (g) and U(f) S M( £ ) for all operations U of the class
(i) . Fe defined an I integral (inferior integral) as any operation that
is linear and positive (see example 22). He defined an S-integral
(superior integral) as any operation that is linear and belongs to the
class (). A principal integral is an operation satisfying the condition
of an I-integral and an S-integral simultaneously. It can be. extended
to the case of limit-functions of the first class if they are all
bounded by a common upper bounding number., Ke gives examples in a later
paper II 3.

Riesz II 1 made use of partial ordering of functions to secure
theorems on the decomposition of linear numerically-valued functionals.
First we know that for any such functional defined over the space of
functions of one variable continuous on the closed interval (a,b),

/Af[ < Memax lf(x)’ where I is a positive real number not
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depending on f(x). ALccording to a theorem of Riesz III 1 every linear.
functional operation can be expressed as a Stieltjes integral
b
Ap =“/r £(x) A{CK(X), where J{x) is a Tunction of bounded
a
variation depending only on the operation A and determined by it,

essentially. Trechet IITI 1 studied a decomposition of (x) into three

parts
K (x) = A(x) + Ag(x) + X (x), where C<7(X) is the

]

5 3

absolutely continuous part (this is the indefinite integral of X '(x));
c(g(x) is the function of singularities, a continuous function of bounded
variation whose derivative vanishes almost everywhere; X 5(x) is the
function of jumps. Now Riesz was able to secure this decomposiiion by

a method involving the theory of partial ordering of operations. The

operation A is said to be greatcr than the operation B if the operation

A - B is a positive operation, that is, 4f - Bf 2 O for every non-

Ly

negative function f{x). FKe proves that a set of operations that is
bounded in the sbove sense, has a least upper bound, by decomposing f(x)
into any number of functions of the same type continuous and non-negative,
and applying to each one of them any one of the operations A belonging
to the given set and finally adding the values. Then the lub of the
set is defined as the least upper bound of all these sums,

A and 3B are called disjoint if their cross-cut (greatest lover
bdund) is the zero-operator (called simply zero). The operation Is

is defined as f{x)dx. A singular operation is one disjoint with I.
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Three classes of operations are defined end it is shown that in each
of them a finite or infinite number of operations possess an lub in

the respective class. These classes are (1) the regular operations,

those operators that are disjoint with all singular operationg}(z) the
continuous operations, consisting of the singular operations that are
disjoint to all operations of the type Ar = f(xo))(B) the purely dis-
continuous operations consisting of the singular operations that are
disjoint with all continuous ovperations. Ie proves that every linear
operation can be decomposed into a sum of three operations, one from
each of the above classes and that moreover this decomposition yields
exactly the decomposition of X (x) due to Frechet. The decomposition
of the operation is accomplished by purely lattice theoretic methods.

Kantoroviteh has given the first complete theory of partially
ordered function-spaces. The theory given in Chapter I is a direct
exposition of his work see II 13.

Freudenthal II 1, 2, 3 has considered partially ordered function
spaces much after the manner of Kantorovitch. Ie has considered
elemcnts of en arbitrary field as multipliers for the elements, instead
of real numbers, as we have. Ie represents certain elements as
Iebesgue-3tieltjes integrals yde, —where the Y is e real variable
and Sy is & montonic function of X/, with velues in a certain Boolean
algebra 5< L, where L is the partially-ordered space. IYor more

L

details, see below under Stein. Furthermore, he characterizes his
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partially ordered space as the direct sum ol spaces of two types.

r : . 2 o | o . .
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