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Condensation 

The first chapter of this thesis is devoted to a complete 

deseription of lattiees and semi-ordered spaces. A general classi­

fication is carried out and is illustrated by a copious collection 

of specific examples of lattices. 

The second chapter is devoted to an exposition of the 

Kantorovitch theory of semi-ordered "function-spaces". It represents 

a digest of the material contained in a large number of scattered 

papers by Kantorovitch. 

The third c~apter is an historical introduction to the liter­

ature on lattices. It is meant to be encyclopaedic in scope; a 

serious effort is ma.de to list and discuss the important contributions 

and their relations with algebra, geometry, the theory of operators 

and the theory of combinatorial topology. 

In the remainder of the thesis the theory of linear transforma­

tions between a Banach and a Kantorovitch and between two Kantorovitch 

spaces is developed. The Helly theory of linear equations as extended 

by Hahn is further extended to the cases in question . 

.Among Other original contributions is the definition of a 

differential in the most general linear limit-space, having all the 

desired properties with regard to composition, transformation and 

integration (which had to be developed separately). By the aid of a 

real-number function intrinsic in the original space and defined over 

a set of points having only one limit-point, it is possible to obtain 



an extension of the notion of topological order of completely 

continuous transformations and their differentials. An extension 

of the Riesz theory is presented. 



We consider a set S of objects or elements)forming an Abelian 

group under the operation of addition. That. is, if we denote the 

elements of the set by Latin letters a,b,c,••• x,y,z, there exists a 

correspondence associating to each ordered pair of objects a,b (a and 

. bare not necessarily different) of San object a+ b of s, called 

the sum of a and b, and subject to the following postulates, where 

equality is taken to mean logical identity. 

I~ 1.) If a and bare in S, then a+ b is ins. 

2.) a+ b = b + a for every pair of elements a, bins. 

3.) a+ (b + e) =(a+ b) + c for every three elements a,b,c 

(not necessarily different) of s. 

4.) There exists an element, denoted by O, in S, such that 

a+ 0 = a for every element a ins. 

5.) To each element a, there exists an element -a, such that 

a+ (-a)= O. 

The element 01 called the null-element in 3.) easily may be 

shown to be unique, as can the element -a called the inverse of a in 

4.), for a fixed element a. For these and other properties of Abelian 

groups, see van der Waerden I 1 B, page 15. For a+ a+ •••+a, (n 

terms) we write na; for b + (-a) we write b - a; for -a - a - •· -a 

(n terms) we write -na. The following rules easily can be proved. 

Q is the class of negative, positive and zero integers. 
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I'• 1.) n(a + b) = na + nb far all a,b in Sand every n in Q,. 

2.) (n1 + ¾)a= n1a + ¾a for all n1, ¾ in Q,, and every a 

ins. 

3.) n1 (n2 a) = (n1n2 )a f0r all n1 ,¾ in Q, and every a in S. 

Sis assumed to be a partially ordered group, that is for 

certain elements y in S, the relation y> 0 is defined subject to 

the following postulates: 

II. 1.) If y > O, then y is not equal to O. 

2. ) If Yl > 0 and y 2 ':? 0, then Yl + y 2 -;;:,- 0. 

3.) To every element yin S, there exists an element (y}+, such 

that 

a.) (y}+ > O 

b.) (y}+ - y ~ 0 

c.) If y* is another element having the properties of 

a) and b), then y* - (y)+ ~ O. 

See p. 3 0 for II 4) . 

Definition o. Partially ordered group. Any s et of elements satisfying 

postulates I and II will be called a partially ordered group. 

Definition 1:.. of greater. y1 is said to be greater than y2 , that is 

Yl -;;,, Y2, if Yl •";' Y2:;;,, 0 • 

Definition 2. Yl is said to be smaller than y2 , that is Y1 < Y2 , if 

Y2 > Yl• 
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Definition 3. y is said to be positive if y> O, and negative if 

y ,< o. 

Definition 4, of positive part. (y)+, see axiom II 3, is said to be 

the positive part of y. 

Definition E_, of negative part. (-y)+ is said to be the negative part 

of y. It is denoted by (y)_. 

Definition 6, of absolute value. The absolute value of y is the 

element /Y/ = (y)+ + (y)_. 

It is to be noticed that, unlike the group of real numbers, it 

is not necessarily true that one of the relations, y > 0, y = O, y L 0 

must hold for every element yin S, as will be clear in examples to 

follow. Clearly, by definition, (y)+ and (y)_, and consequently /y/ 

are unique. The absolute value, }Y / is in this case an element of s, 

and not necessarily a real number. Thus j y / is not a proper metric; 

nevertheless a topology and theory of limits very similar to the case 

of the real numbers may be defined by means of it. 

Theorem 1 

a.) If Y1 > y
2 

and Y
2 

~ y
3 

then Y1 >- Y
3

• 

Proof. Yl - y 2 7 0 and y 2 - y 3 > 0 or else y 2 - y 3 = 0 . 

Adding and using postulate II 2 and the group postulates 

Yl - Y2 + (Y2 - Ys) ? 0 or Yl - Y
3

,? 0 or Yl >- Y
3 

• 

b.) If Y1 < y2 and y2 ? y3 then Y1 < y3 • 

Proof. Similar to a.). 
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c.) If Yl..::::.. y 2 , then -Y1 > -y2 • 

Proof. y 2 - Yl ;::,,- 0 by Def. 1. Add -y2 1fon both sides 

and use Def. 1 again and a.) above: -y1 > -y2 • 

d. ) If Yl ~ y 2 then Yl + y ~ y 2 + y for every y in S. 

Proof. Yl - y2 ~ 0 by Def. 1. 

That is y1 + y - (y2 + y) ;o by adding and subtract­

ing y and using properties of Abelian groups. But 

this says that 

Y1 + Y ;y2 + Y by Def. 1. 

e.) If Y1? Y2 and y3 ,:;; Y4, then Yf + Y3 ~ Y2 + Y4• 

Proof. Yl - y 2 ;;' O, y3 - y 4 ;"Oby Def. 1. 

Adding and using Postulate II 2 

Y 1 + Y s - ( Y 2 + Y 4) ; O or Y 1 + Y s -?; Y 2 + Y 4 • 

Theorem 2 

a.) (y) - ~ 0 

Proof. From Def. 5 and Postulate :er~. 

b.) ( -y) - = (y)+ 

Proof. From Def. 5. 

C •) (y)+; Y, (y) - ;;; -y 

Proof. Postulate II 3. 

d.) (y) + - (y) - = y 

Proof. y + (y)_ - y ~ O, also y + (y)_ = (-y)+ - (-y) ~ 0 

by Postulate II 3 and Def. 1. But these two relations 
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state that y + (y)_ satisfies the conditions of 

Postulates II 3 a and II 3 b. Therefore 

Y + (y) _ ;; (y)+. Replace y by -y and get 

-y + (-y)_-; (-y)+, or -y + (y)+;; (y)_, that is, 

(y)+ ~ (y)_ + y; this together with y + (y)_; (y)+ 

yields y + (y)_ = (y)+ by virtue of Postulate I 1, 

or y = (y)+ - (y)_. 

e.) (yl + Y2)+ ~ (y1)+ + (y2)+ and (Y1 + Y2)- ';;" (y1)- + (y2)-

Theorem 3 

Proof. (y1)+; y1 and (y2 )+ ~ y2 . Then 

(y1)+ + {y2 )+ ~Yl + Y2 by 11heorem 1 e . .Also 

(y1)+ + (y2 )+ ~ 0. Therefore (y1)+ + (y2 )+;;; (yl + y2 )+ 

by Axiom II 3. The other result follows from 

a.) [Y/ ~o 

Proof. /y/ = (y)+ + (y)_ ;'°Oby Postulate Jf2. 

Proof. 

C • ) /-y j = / y I 
Proof. J-y / = (-Yl+ + (-y)_ = (y)_ + (y)+ = /y / 

d.) If y = 0 then (y)+ = 0 and (y)_ = 0 = /Y/• 

Proof. Def. 4 and Postulate II 3. 

e.) If y ,J O then / y / > 0 
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Proof. Either (y)+ >O or {y)_> o since 

y = (y) + - {y) -· Then y = (y)+ + (y)_>o. 

f.) /Y1 + Y2/ ~ /Y1/ + /Y2) 

Proof. / Y1 + Y2 / = (yl + Y2)+ + (yl + Y2)_ ";° 

(y1)+ + (y2)+ + (y1)- + {y2)- = / Y1 / + I Y2 / 

The results stated in Theorem 3, especially a.) I Y( -;;' 0 

C •) /-Y/ = /y/ , d and e.) I YI = O if and only if y = O, 

f.) / Y1 + Y2 L~ /Y1 / + / Y2 / make very striking the formal resem-

blance between this "absolute valuett, which, we recall, is an element 

of the space Sand the ordinary absolute value of ordinary Euclidean 

vector analysis, which is a real positive number and not a vector, see 

Sierpinski IV 1 B page 75 or Kuratowski IV 1 B page 82. 

Definition']_ of upper bound. 

An element y* is called an upper bound of the set of elements 

y* ? y 1 for i = 1, • • • n. 

Definition 8 of lower bound. 

An element y* is called a lower bound of the set of elements 

y* <;; y i for i = 1, • • • , n. 

Theorem 4. If y is an upper bound of the set Y1, ••• Yn then -y is 

a lower bound of the set -Y1, •·• -Yr,r• 
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Proof. Theorem 1 c. 

Theorem 5. Every set of elements y1 , • • • , Yn, where n is a finite 

positive integer has at least one upper bound and at least one lower 

bound. 

Proof. By Postulate II 3, to each element Y:i! there exists 

an element ( y i )+ , such that 

(yi)+ ?' 0, (Y1l+ .:;- Yi• Then 

(y1)+ + (y2 )+ + •·• + (Ynl+ is an upper bound. 

A lower bound may be found by considering the upper bound 

of the set -y1,-Y2 , ••• , -Yn· 

Definition 9 of lub and glb. 

The lub (least upper bound) of any set of elements in Sis an 

upper bound y* such that for every other upper bound y', y' - y* i: O. 

The definition of glb (greatest lower bound) is similar. 

Neither the lub nor the glb has been shown to exist for every 

set, but if it exists, it is necessarily unique from the definition. 

'!'he following theorem guarantees for finite sets a glb and lub that 

are independent of the ordering of the elements. 

Theorem 6. Every set with a finite number of elements (Y1, • • • ,Ynl 

has a lub. 

Proof. 

a) n = 2. Let Y1,Y2 be any two elements ins. Put 



y* = Y1 + (y2 - Y1)+. Then y* is the lub. For 

y* ~ Yl and (y2 ... Yl)+ ? y2 - Y1, so that y* = 

8 

Yl + (y2 - Y1)+ i;; y2 • Now suppose that y' is another 

upper bound. Then y' - Yl ~ 0 and Y' - Yl ~ Y2 - Yl, 

consequently y' - Yl ~ (y2 - Y1)+ and therefore 

Y'? Yl + (y2 - Y1)+ = y*. Therefore y* is the lub. 

b) Assume the theorem proved for n elements. To prove it 

for n + 1. Put y* = lub (lub (y1, ·•· ,Yn), Yn+1). 

Then y* = lub (Yl, • • • ,Yn;), For y* ~ Yn+l, 

lub (Y1,Y2 , • • • Yn) by a) and if Y' ';;° Y1,Y2 ,··:,Yn,Yn+l 

then Y' ;;:- lub (Y1, ••• Yn), Yn+l consequently y' ?;y* 

and y* is the lub. 

Theorem 7. l!..'very set with a finite number of elements Y1,Y2 , • • • 
1

Yn 

Proof. Use Theorem 4. 

Theorem 8. 

a) (y}+ = lub (O,y}; (y)_ = lub (0,-y) 

Proof. See Def. 4 and Postulate II 3. 

Proof. Theorem 6. 

c) lub (y1+ Y,Y2 + Y, • •• ,Yn + y) = Y + lub (Y1,Y2 , •••,Yn) 

Proof. y + lub (Y1,Y2 , ••• ,Yn) ~y + Yi (i = l,2,•• 1 n) 

Also lub(y + Yl, • • • ,Y + Yn) ~ Y + Yi (i = 1, • -- n) 
) 



Theorem. 9. 

Theorem 10. 

Theorem 11. 
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that is lub(y + Y1, • • ·, y + Yn) - y-;;- lub(y1, • • ·Yn) 

or (3) 1 lub(y + Y1, • • • ,Y + Yn) ~ y + lub(Y1, • • ·Ynl 

From o( ) and (3 ) the theorem follows. 

d) j 2y / = 2 lub (y J - y) 

e) 

Proof. jzy/ = (2y)+ + (2y)_ = lub{2y~O) + lub(-2y1 0) 

= -y + lub(2y,O) + y + lub(-2y,O} 

If' y{ > y.· 
l = J. 

= lub(y,. - y) + lub(-y,y) = 2 lub(y,-y) 
) 

(i = 1,, .. ,n) then 

Proof. The left s:ide ? y 1 ? y i for all i. 

a) lub [1ub(y1, • • • ,Yn), lub(Yn+l1 • • • ,Yn+mU = 

lub [Y1, • • • Yn+m} 

b) [ lub(Y1,y2 )J + = lub [(Y1l+, (y;;JJ 

Proof. lub[(y1 )·+,(y2 ),..] = lub [1ub(y1,0),lub(y2 ,0U 

= lub(y1 ,y2 ,0) = lub [ lub(y1 ,Y2 ) ,0] 

= [1ub(Y1,Y2 )j + 

lub(a,b) + glb(-a,-b) = 0 

Proof. lub(a,b) + glb(-a,-b) = lub(a,b) - lub(a,b) 

from Theorem 4. 

lub(a,b) + glb(a,b) =a+ b 

Proof. From Theorem 8 c 

glb(-a,-b) +a+ b = glb(b,a) or 

a+ b = glb(b,a) - glb(-a,-b). Use Theorem 10. 
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Theorem 12. Distributive Law. glb Llub(a,b)fj = lub[glb(a,c),glb(b,c}] 

lub [ glb(a,b) ,c] = glb [lub(a,c) ,lub(b,c)]. 

Proof 1) lub~ub{glb{a,b),c},~ = lub[glb(a,b},b,c] 

= lub[lub{glb(a,b ) ,b},c] = lub[lub(b.c),b] 

~ lub [b,glb{a,lub(b,c}]J. Also 

2) glb[b,lub{c,glb(a,b)JJ-; glb[b,glb(a,b)] = 

glb [glb(a,b) ,glb{b,c)] = glb [ b,glb{a,lub(b,c}}J 

~dd inequalities 1) and 2) together and use Theorem 11. 

3) lub [ c,glb(a,b)] > glb [1ub(b,c) ,a] . Interchange 

a and band get lub[c,glb(a,bU ~ glb[b,lub(a,c)] . 

lub L c,glb(a,b)J ~ c, glb [t,lub(a,cU, therefore 

lub [c, glb(a,b)] ~ lub [c,glb(b,lub [a,cil U :;-
glb Llub(a,c),lub(b,c~. This last step follows from 

3) with lub (a,c) instead of a. Also 

lub [glb(a,b),c]~ lubKa,c~1 lub~b,cD. Therefore 

lub [g1b(a,b) ,c] ;;- glb [1ub(a,c) ,lub(b,c)] • 

From this and the result above follows the first state­

ment of the theorem. The second statement follows 

similarly. 

Theorem 13. lub [glb(a,b) ,c]? glb [a,lub(b,c)] 

Proof. See 3) in Theorem 12. 

Theorem 14. lub(a + c,b -: + . c) ~ lub(a,c) + glb(b,c) or 

lub(a,b) ~ (a)+ - (b)_ 

Proof. a+ c ~a+ glb(b,c); a+ c - glb(b,c ) ::;;- a 
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lub[a + c - glb(b,c),lub(b,c)] ~ lub(a,c). Add glb(b,c) 

to both sides, use Theorem 8 c and 

lub [a+ c,lub (b,c) + glb(b,c)] ~ lub(a,c) + glb(b,c) 

Use Theorem 11 and the left hand side is seen to be 

lub(a + c,b + c). The second statement of Theorem 14 

follows if c = 0 in the first statement. 

Up to now, we have been concerned with an Abelian group with a 

partial-ordering relation. Now we assume that there exists an operation 

of multiplication of the elements of this group by real numbers, obeying 

the usual laws of algebra. This is stated in the form of the following 

set of postulates. 

III 

1.) If y is in S and ~ is in the space R of real numbers, then 

A y is in s. 

2.) (~1 + ~2 )y = l'iy + A.zy for all \, \ (not necessarily 

different) in R; and every y in S. 

3.) (~1 ~2 )y = ~1(A2 y) for all 1\A2 (not necessarily different) 
) 

in Rand every yin S. 

4.) A (Y1 + y2 ) = AY1 + Ay2 for every in R and all Y1,Y2 

(not necessarily different) ins. 

5. ) 1 • y = y for every y in S. 

6,) If y :>' O, A"70, then A y > O, where y is in S and A is 

in R. 
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We have already explicitly defined a multiplication of the 

elements by integers, positive, negative or zero. 'I'.b.e operation of 

multiplication by real numbers is taken as an undefined notion. The 

significance of this operation will vary with the particular example 

of space considered . .i:\.11 that we require of it is that it satisfy the 

postulates III :(1 - 6). The postulates III (1 - 5) assure that it 

will be consistent with the defined operation governed by the rules I' 

(1 - 3). That is, by an obvious application of the postulates III 

(1 - 5) we can prove that if~ is an integer, positive, negative or 

zero, the defined multiplication and the undefined multiplication by,,\ 

must coincide. 

Definition 10 of partially ordered system. A set of elements satisfy-

ing postulates I - III will be called a partially ordered system. 

Theorem 15. 

a) If A < 0 and y > 0, then ).. y < 0. 

Proof. -(}. y) = (-).. )y > 0. Therefore A y < 0 from 

Theorem 1 c. 

b) If A> o and Y<- O, then).. y< o.f~ -(A y) = A (-l·y) = 

/I (-y) > 0 since if y < 0, -y;:,, o. Therefore -AY ::;:,- 0 and 

)...y<::..O. 

c) If ,A~ 0 and y <.. O, then)\ y > o. -( A y) = (-~)y < 0 

from b) . Therefore A y ~ 0. 

Theorem 16. 

a) If fi;:::,- O, thenlub(~Yl,AY2 , ••• ,AYn) = /llub(y1,•••Yn)• 



Proof. lub(Yi,Y2 , ••• ,Yn)?° 'Yi (i = 1,2, ••• ,n) 

Multiply both sides of the inequality by A > 0 

and use postulate III 6. 

~lub(y1, ••• ,Ynl ~AYi, (i = 1, •·• ,n). 
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Therefore (1) ~lub(y1, •·• ,Yn) ~ /,ttj,(.kv1, •·• ,~Yn) 

Substitute 1/). for A and A Yi for Yi., then 

t lub( A Yl, • • • , A Yn) ?lub(y1, • • • ,Yn). Multiply 

both sides by A and get 

(2) lub( ~ Yl, • • • , ~ Yn) ~ A lub(Y1, • • • ,Yn). This 

together with (1), gives the equality. 

b) If~< O, then lub( A Y1, • • • , A Yn) = ).. glb(y1, • • • Yn) 

Proof. lub(-Xy1, ···,Ayn)= lub(-/>.I Yl, ···, - />./yn) = 

- glb( [>,/ Yl, • • • , (>,f yn) by 'I'heorem 4 = -{>./ glb(y1, • • Yn)= 

~ glb(y1, •·• ,YnJ by extension of a). 

c) If A;::,- 0 then (AY)+ = A (y)+ and(;\ y)_ = A (y)_ 

Proof. (.A Yl+ = lub(O,A y) = Alub(O,y) = A (y)+ 

(A y)_ = lub(O,-A y) = A lub(O,-y) = A (y)_ by Theorem 8 a) 

d) ,~YI = =/~!YI 

Proof. If A > 0, then / >.. y I = ( A y) + + ( A y) _ = 

A (Yl+ + A (y)_ = )[(Y)+ + (y)_J =IA/r~ 
If A ..:::: 0 then 

and above. 



Proof. /2y/ = 2 lub(y,-y) by 'I'heorem 8 d. 

= 2 jy{ by d) above. 

Multiply both sides by 1/2. 
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A useful concept is that of a "structure", see Hausdorff 

IV 1 B, p. 139 or Ore, I, 2 which we define as a set of elements 

y, with an ordering relation :; existing between some pairs of 

elements x,y, subject to the following postulates, where x ;; y 

means y ~ x. 

IV. 1) x ~ x 

2) If x ~ y and y ::;;- z then x ~ z. 

3) If x and y are any two elements there is an element 

x f7 y such t ha t x r1 y -:; y; x 17 y "? x and x I} y?; ari..y 

element z such t hat z ~ y, x. x () y is called the cross­

cut of x -a.I\~ . y. 

4) If x and y are any t wo elements, there is an element x U y 

such that xU y ~ x,y and x Uy? any z such that z ~ x,y. 

xU y is called t he union of x and y. 

This set need not be an Abelian group. 1e see, however, that 

any partially ordere d group sat isfies axioms IV. Some examples of 

partially ordered sets that are especially important are as follovrn . 

If x ,:: y but x f y then we write x >- y. 

Example 1. Sub-classes of a class. 

Consider any class of well-defined elements. Consider now 
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the class whose elements are sets ~f elements of the given class 

and in fact is made up of the totality of such sets (the given 

class is now considered as fixed). If the given class consists of 

the numbers 1, 2, 3, then the class of sub-sets is composed of o, 

(1), (2), (3), (1,2), (1,3), (2,3), (l,2,3). Each one of these 

brackets, , regarded as entity is an element of the new class. The 

number 0, written at the first of the above sequence represents the 

null-class, a mathematical fiction which has been created for conven­

ience, and means the class without any members. The symbol (1) means 

the class with one member, namely the integer 1. 11he symbol (1,2) is 

the class with the two members 1 and 2. Remember that the numbers 1, 

2 are elements of the given class. Notice that we include the given 

class itself as a sub-set of itself (called an improper sub-set). 

Also notice that no attention is paid to order in sets. This is an 

example wherein the initial set is finite. In the case of an infinite 

set, the procedure is similar. 

Example 1· Our structure will consist of the set of sub-sets A, B, etc., 

where A ~ B, read, 11A includes B", if every element of the original set 

occurring in B also occurs in A. A l1 Bis the set of elements of the 

original set occurring in both A and B. A U Bis the set of elements 

of the original set occurring in eithe r A or B, or both. In most 

treatises on the theory of point sets, A ~ B is written for A ~ B and 

A ::, B ii written for A > B. 
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Example 2, Positive integers. 

The set is that of the positive integers, where a ~ b 

means that .E. is an integer, i.e. a divides b, a U bis the least 
a 

common multiple of a and b, called the l,c,m. and is the smallest 

(in the ordinary sense) integer that is a multiple of both a and 

b. a /l b is the greatest common divisor called the g .c.m. and is 

by definition the greatest (in the ordinary sense) integer that 

divides both a and b. Both t hese numbers exist, see the al gorithm 

of division, Dickson I lB, pp. 1-2, 

Example 3. Set of polynomials. 

The set is that of all polynomials such as anxn + •·· + a0 

in a single unknown x, and real numbers as coefficients. A lJ B is 

the least cormnon multiple of the two polynomials, that is the poly­

nomial of smallest (in the ordinary sense) de gree such that it = fA 

and=gB1where f and g are polynomials in x. A t) Bis the greatest 

common divisor of the two polynomials, defined as the polynomial of 

greatest degree (in the ordinary sense) that will yield a polynomial 

quotient, when A and Bare divided by it. These always can be found, 

see van der Waerden I 1 B vol. I pp. 52-53 and Konig I 1 B. A > B 

if A/Bis a polynomial ; that is if B divides A with no remainder. 

Example 4. Linear sub-spaces of a linear space. 

A linear space is an Abelian group with number rnul tiphers 

satisfying postulates I (1 - 5) and III (1 - 5). A linear sub-space 
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of a space is a set of elements of the given space that themselves 

form a linear space. One element is considered as being a linear 

space, degenerately. If we consider the set of all linear sub-spaces 

of a linear space, these form a partially ordered set, where A ;::::,- B 

is defined as in example 1. The cross-cut of two linear-sub spaces 

is automatically a linear sub-space. However A U Bis defined as the 

smallest lineaT space containing A and B, and is got by taking all 

possible linear combinations, with real number coefficients, of elements 

in A and B, see van der Waerden I 1 B. 

A finite dimensional linear sub-space is one composed of all 

possible linear combinations, with real number multipliers, of elements 

of the space selected from a certain fixed set of eleme nts, finite in 

number Y1,Y2 , •·· Yn• Notice now that the totality of 1~nite-dimensional 

linear sub-spaces of a given linear space form a structure, which is 

a sub-structure of the first-mentioned structure. 

Example 5. Ordered sets. 

An ordered set is defined as a set of elements a, b, etc. with 

an ordering relation 7 such that for every pair a,b of elements 

either a > b, b < a, or a = b, where a = b is taken as identity, and 

there is no fourth possibility. Moreover, the three possibilities 

are considered as mutually exclusive. Obviously, given the pair a,b, 

the union of a and bis either a orb according as a > b or 4 < b ; 

in case a= b then a U b =a= b. a /l b is either a orb according 
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as b > a or a ;::::,- b, etc. Examples of ordered sets are: the set of 

real numbers; the set of positive integers; any set of cardinal 

numbers (for a definition of cardinal numbers and a proof of this 

staten~nt, see Hausdorff IV 2 B, pp, 25-77 or Kamke IV 1 B, or 

Pierpont IV 1 B, vol, II, pp, 276-323); a set of ordinal numbers; 

the set of all circles with centers at the origin and lying in the 

Euclidean plane) ordered according to length of radius. 

Example 6. Hereditary and additive families. 

Consider a class P of sets X,Y, •·· , of objects. This class, 

or family is called additive if, for any t ~o sets X,Y in the family P , 

X + Y is a set in P, (X + Y is defined as the point-set sum, see 

example 1). It is called hereditary if X in P and Y < X, in the 

sense of example 1, together imply that Y is in P (is a member of 

the family P). This structure can be considered a gene ralization and 

abstraction of example 1. See Kuratowski, IV l B, pp. 29-32. 

Examples 7 - 11 are spe cial cases of this type of family. 

Examnle 7. Sub-groups of a group. 

A group is a set of objects a,b, •·· , such that to each 

ordered pair a, b of' objects (not necessarily distinc't) there is 

associated an object of the g roup designated by ab, and called the 

product ab. The products ab and ba may or may not happen to be 

distinct. The product aa exists and is aga in an obje ct of the group. 
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When an operation (such as this product} always yields an object of 

a given set when applied to every possible pair of objects (or 

elements) in the set, we say that the set is closed under this opera­

tion. We require fur t her of a group G, that the objects satisfy the 

following axioms, see van der Waerden r ; 1 B, p. 15 

V. 1.) To each order pair a,b of objects in G there is an object 

ab in G, 

2.) a(bc) = (ab)c for every triple a,b,c (not necessarily 

different} in G. 

3.) There exi.sts an element 1 in G, such that for every element 

a in G 

a•l = l•a = a 

4.) To each element a, there exists an element a-1 in G such that 

a-1a = 1 = aa-1 . 

A sub.group H of G is any set of elements of G that themselves form a 

group. The class of all sub-groups (themselves considered as elements) 

A,B, • • • of a given group is a structure if we define A/1 B as the 

cross-section (in the point-set sense) of A and Band A l) Bas the 

smallest sub-group of G containing both A and B! .A ~ B is defined as 

point-set inclusion, example 1. See van der Waerden I l B, Chap, 2, 

vol. I. 
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Exaraple 8. Sub-rings of a ring. 

A ring is defined as a set of elements with two different 

operations, sum and product, each of which assi§; ns to each ordered 

pair of elements another el ement, a + b and ab resp. 'rhe ring is 

an Abelian group with respect to the swn operation, see postulates I 

and furt~er, the product operation obeys the associative law: 

a(bc) = (ab)c 

for all elements (not necessarily different) in G. .Also we have the 

distributive laws: 

VI. 1.) a(b + c) =ab+ ac 

2. ) ( b + c) a = ba + ca 

If in addition, ab= ba for all elements then the set is known as a 

connnutative ring. A sub-ring is any sub-set of elements of a ring 

that themselves, as a totality, form a ring. 

The class of all sub-rings A,B,··· of a ring is a structure 

if by A f) B we mean the cross-cut, in the point-set sense, of A and 

B. Obviously A /l B is a sub-ring. A U B is the smallest ring K 

that includes A and B, in the point-set sense. When we say the small­

est ring , we mean that if we omit a si!)£le element a from K, then 

either a is in A or B or both; or in case a is not in A or B, the sat 

resulting from the omission of the element a is not a ring. 
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Exampl e 9. Ideals of a ring, left or right. 

A left (right) ideal of a ring R, is a sub-ring H such that 

rh, (hr) is in the sub-ring H whenever h is in H and r is any element 

of R. The class of all left-ideals of a given ring R forms a structure, 

as does the class of all right ideals. A/) B is taken to be the cross­

cut in the point-set sense. A U Bis the smallest ideal containing 

the union in the point-set sense; A > B if A includes B in the point-

set sense. 

Example 10. Sub-fields of a field, 

A field is a set of objects with two operations sum and product; 

a + b and ab r esp ., such that it is an .Ab·elian group with respect to 

the sum and a group with respect to the product and it satisfies the 

distributive laws VI. Thus a field i s simply a ring whose product 

is uniquely solvable and that contains a unit element. A sub-field 

i s a set of elements of t he given f i el d , t hat f orm a field. The class 

of all sub-fi elds A,B,··· of a given field is a structure if we 

de f ine A > B as point-set inclus ion and a /J B, A V B similarly to 

exampl es 7 and 8 . 

Example 11. 'l'he ideals of a field. 

See example 9. 

Example 12. Hasse diagr.ams 

The Hasse diagram is often used by algebraists to represent 

structures with a finite number of el ements. They study these diagrams 
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and work out certain theorems by a synthetic graphical method and 

then write up their results using proofs that are simply analytical 

verifications of the theorems and are non-informative as to the origin 

of the idea. Then they pretend that it was all an inspiration sent 

from heaven. In the Hasse diagram, each element of the structure is 

represented by a point in the plane A<- Bi~- they-coordinate of B 

is greater than that of A. If A < Band there is no element X such 

that A < X < B and X. is different from A and B, then A and B are to 

be joined by a straight line segment. Every connected plane complex 

of lines and points is to be regarded as a structure if it obeys the 

postulates IV. 

8 
E 

Example 13. Boolean algebras. 

A Boolean algebra, in the classical sense, is an algebra of 

logic in which the elements are propositions A,B • • • . A < B mea..ris, 

the proposition B implies the proposition A. A U B is the disjunction 

and means either A is true or B is true or both are true. At) B means 

both A and Bare true. A' is the negation of A (to be used later). 

N is the identically false proposition, 0 is the identically true 

proposition. 
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Example 14. The structure of equivalence relations. See Birdrhoff I 8. 

L€t C be any class of objects and let x and y be equivalence 

relations on C. An equivalence relation is a relation that is either 

true or not true for each pair of elements a, b of c. 

1.) ax a 

2.) If ax b, then bx a 

3.) If a x b and b x c then a x c. 

We define the cross-cut (Of meet) x () y of the equivalence relation x 

and y as the relation won C such that: 

aw b if and only if ax band a y b. 

By the union ( join) x U y of x and y is the equivalence relation z with 

the property that ax b or a y b implies a z b. The union and cross-cut 

are obviously eg_ui valence relations. x ~ y if x () y = y and x § y if 

X U Y = y. 

We shall consider a few specific exarn.plos of spaces satisfying 

postulat ,, s I & II. Postulate III can be s ho rn to be inch1ded i n I. 

Zxanrple :f:f. n-di mensional vector space , n ( u). 

Its el eme nts are ord.ered sets a = (a1, • • • au) of n real nu.mbeI's. 

It is composed of the totality of such sets. The sum, a+ b of the 

vectors a= (a1 , •·· ,an) and b = (b1 , •··, bn) is defined as tbe vector 

a+ b = (a1 + b1, ••• , an+ bu). The element y = (Y1, ·• • ,Yul is > 0 if 

Yi ~ 0 fol' i = l, • • • ,n, and at least one Yi > O. (y)+ = lub(O,y) is 

defined as the vector (max(y1 ,o), • • • ,max(yn,O)), where max(l,m) means 
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the greater oft~~ t wo numbers l,m. Thus /Y/ is the vector 

( /Y1 / , /y2 / , • •. , / Yn / ) and lub(y,z) is the vector (max{:l,r1 ,z1), • • • 

max(yn, Zn)). The vector \ y, where A is a real number and y is a vector 

is defined as ( A y1 , , Ayn) . Thus for n = 1 we have the space of 

real numbers. For n = 2 we have the sJ ace of complex numbers. 

\Example 16.. Space of n-by-m rectangular matrices. Real numbers. 

This space is composed of the totality of rectangular matrices 

with m rows and n columns, the components, aiT, of the matrix being real 

numbers, and m and n being fixed f or the particular space. A rectangular 

matrix is an array of el ements arranged in the fo llowing form of m rows 

and n columns. 

= A 

This is one natural generalization of a vector. The sum A + B of two 

matrices is defined as the w.at rix, each of wnose components is the sum 

of the two similarly place d components in t he matri ces A,B. That is, A+ B 

is the matrix 

a11 + bu a12 + b12 ... .. a1n + bln 

a21 + b21 a22 + b22 azn + bzn 

= A+ B . . . . . . . . . . 
6ml + b.mi 8m2 + brn.2 8mn + bran 
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The matrix A is said to be -;::::, 0 if every one of its components is ~ 0 

and at least one of its- components is 7 0. The matrix (A)+ is the matrix 

max(a11 ,o) ma:;c(a1 2 ,o) 

max(a21 ,o) • • 

' .. - .... . . 
max(am1 ,o) 

max(a1n,O) 

max (a 2n,0) 

The matrix A~, where ~ is a real number , is the matrix, each of whose 

elements is equal to the pr oduct of A and the similarly placed element in 

A. 

Example 1'7. Matrices with components not real numbers. 

Let us consider the space of all matrices with m rows and n 

columns, m and n fixed, whose components are themselves elements of some 

partially-ordered space satisfying postulates I - III. All the necessary 

definitions are simply paraphrases of those in example 2. This represents 

a very considerable generalization of examples 1 end 2. 

Example 18 . Integer functions. 

The space S is here the totality of functions f( t) with real-

number values, where t varies in the whole closed interval of real numbers · 

(0,1). The sum and difference of t wo functions are defined as usual. 

The element ( of S)) y is defined as > 0 if the corresponding function 

y(t) is :.:;- O for all t in (0,1) and y(t1 ) > 0 for at least one \, in (0,1). 

I1fultiplication by real numbers is defined as usual. 
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Exarnple 19. Functions on abstract sets. 

The space Sis here the set of all numerically-valued functions 

defined on an abstract set, T, of elements, t. That is, a correspondence 

is set up be t v!een each member t of the class T of abstract elements, and 

a real number, so that a unique real number is assigned to each such 

member. Such a correspondence is known as a function f(t) defined on T. 

Our space is simply the totality of all possible such correspondences 

defined over a fixed set T. 'rhe various definitions are analogous to 

those of example 4. 

Example 20. Polynomials according to Bernstein. 

The space Sis the totality of polynomials y{t) defined in the 

interval (0,1), of degree up to and including n. We define y > O if in 

the corresponding polynomial y(t), expressed in the Bernstein normal forrn 

n 

Y ( t) = 2 ck tk ( 1 - t) n-k S n k,n' 
k=O 

the coefficients sk,n :;;- 0 for all k ";'" n and, in addition y(t) ~ O. 

This space is isomorphic to the space R(n+l) see Bernstein :0- 1. 

Example 2::t. Classical Hilbert space. 

The space consists of the totality of infinite vectors 

y = (Y1, • • • Yn, •· ,) where the "components" , Yl, • • • Yn, are 

complex numbers. The various notions are defined just as in example 1, 

with slight modifications. Formally, t h is is a slight generalization. 

Actually it is considerable. 
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Example 2~. Positive linear functionals. 

The space Sis taken to be the totality of linear functionals 

:i'f l.' 1 defined on the class of continuous functions f(t) where O ? t ? 1. 

We define a functional over a certain class of functions f(t), as a 

correspondence that assigns to each member f(t) of the class, a unique 

real number F) called the value. It is a positive functional if Fr ~ O 

for every f of the given class such that f(t) s 0, 0 ~ t; 1, and Fr > O 

for at least one function of the class; that is, the value of the functional 

is positive or zero for every non-ne gative function in the given class. 

It is an additive functional if 

It is a continuous functional if for any sequence of functions fn{t) in 

the given class such that 

cl·ass, we have 

lim fn( t) = 
n ---;> OO 

lim 
n ➔ OO 

f(t) a function also in the 
) 

In the definition we do not state what lim fn(t) means. It 
n ➔ oo 

depends to some extent on choi ce and on the particular class of functions 

f(t). Ordinarily, for convenience, in the case of the class of continuous 

functions we say that it has the meaning of uniform conver gence; that is 

if lim fn(t) = f(t) then to any € > O we can find a positive number 
n -) oo 

N( €- ) such that /f( t) - fn ( t) j < f:- for n :::,- N( E- ) regardless of t; in 

other words, an N can be found that will make the inequality valid for 
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any t whatsoever. '.i:he N will depend only on the E- , and in general will 

be larger the smaller is E . A functional that is additive and continuous 

over a particular class of functions is called linear over that class. 

See Banach IV 1 B, pp. 16 and 23. 

Now we define ths functional F to be > 0 i f it is positive in 

the above defined sense. :B' + G is an el ement defined by the equation 

(F' + G) 
f 

The null-elemGnt is the f unctional tha t is identically zero: it assigns 

the value O to every function of the class. The element A I!' is defined 

by the equation 

He shall have occasion to consider this example latter in greater detail. 

An example of a linear functional is the Riemann integral of' a function J f ( t) d t. 'r'na t t his is continuous for the set of continuous 

0 
functions considered above is a theorem of t he el ementary theory of 

real variables, se e 7'i tchmarsh IV 1 B, p . 36 or Townsend IV 1 B, p. 373. 

This is obviously a :o osi tive functional and linear by very el ement ary 

theorems. 

\fe shall devel op t he theory of convergence by means of the notion 

of uppea? and lower bounds of sequences. A postulate will be added assur­

ing the existence of the . exact upper and lower bounds for certain infinite 

sets not necessai·ily denumerable . (ii. set is called denu:merable if there 
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exists a one to one correspondence between the members of the se t and 

the posi tive integers). After that a topology of "Cauchy sequences 11 

(see Theorem 32) will be develope d in a form sufficient for our later 

ne eds. A 11 t o:pology!t is a theory of limits and converge nce developed in 

conneti6n,1 with the theory of transformations defined on the given set 

of el ements. 

Definition 11 of bounded above. A set E (infinite or otherwise) of 

elements in Sis said to be bounded above if the r e exists an 

element y of S such that y ? z for every z inf . y is called 

an upper bound. 

Definition 12 of bounded below. 

The dual of definition 11. 

Definition 13 of bounded. A set E of el ements in S is said to be 

bounde d if it is bounded above and bounde d below. 

Definition 14 of lub and glb. If an e l ement y of S exists so that for 

every z in E C S 

1.} y -:; z 

2.} for every upper bound w of E w -;: y: 

then y is said to be the lub E . A sirnilar definition holds 

for glb. 

Note { y } is a short notation for the set of all elements of 

which a typical one is y. 

Theorem~ If the set E = { YJ is bounded, then so is also the set 
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E1 = {J y/] , the elements of whi ch are the absolute values of 

the corresponding elements of E. 

Proof. By Definition 13 there exist y1 and y2 , such that 

L <:::'. Yl = Y = Y2 for all y in E. 

Therefore 

(y)+ ':' (y2 )+, (y)_ ~ (y1 )_ by Definitions 4 and 5 and 

postulate II 3. 

Put Yo= (yz )+ + (y1)- then O = / y / = Yo for ally 

in E. '11hat is, {/ y/J is bounded. 

Notation. I f the set E is provided with indices of any sort (not necess-

arily integers) 

will be written 

E = { y 1 then the lub and glb of this set Ii\ in -:: 

lub E = lub yli 
~in ~ 

glb E = glb y~ 
, in ~ 

In case the set E is a sequence y ,y2 , ••• y , . -•• then lub E = l~b { Yn) = 

Yn, • • •) etc. 

We now introduce an axiom that enables us to obtain a development 

of the theory of sequences simil ar to those of Cantor and Dedekind. 

Postulate IT 

II. 4.) Every set bounded above has an lub. The set may be infinite 

or otherwise. 
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Theorem l?. The postulates I, II, III are not independent. II 3 

follows from the rest. 

Proof. See Kantorovitch II 13 , p. 129, Satz 13. 

Theorem 18 . If the set E = {yr) is bounded below, then the 
~in-=-

glb E exists, and 

Proof. 

glb E = - lub f_ y 1 
t' -l. \J ..,in~ 

Then -y0 ~ -y ; 
Let y

0 
be a lower bound of E y ~ y for w in -=-

J O - 'J f -· 

consequently ever y lower bound y 0 of -/_y
1

) is such that 

-y0 is upper bound of f- y~ J . By postulate II 4, the 

set {- y~ J , being bounded above by -y0 has a 

lub {-Yi;) = -y 0 • Therefore y0 ? - lub { -y,) for every 

lower bound y O and -lub {-Y,) = glb { y~ J 
Theorem 19. The space S has no greatest and no least element. 

Proof. Suppose y is the greatest element and y1 is an element 

i O. Then y + /Y1j? y. Contradiction. 

Definition 15 of +CD , -oo . 

+oo and -oo are t wo fie ti tious ideal elements with the properties 

a) -oo L. y < +oo for ally in S . 

b) +oo + y = +oo " 11 ti ti II 

-oo + y = -oo II ti 

" 
I! II 

c) +oo + 00 = +oo 

-oo + (-oo) = -oo 

-oo + oo has no meaning. 
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d) -( +oo) = -00 ; -(-oo) = +co 

e) If /-70 then " ( +co ) = +oo; /\(-ClD) = -oo 

,\ <- o then A ( +oo) = -oo; rd-oo) = +oo 

Notation lub E = +co means E is not bounded above. 

glb E = -oo means E is not bounded below. 

Theorem 20. Every set is bounded (bounds include ~co as possibilities). 

Theorem 21. 

a.) If E f O, ( the null-set) then lub E ~ glb E 

Proof. See Theorem 8 c. 

d.) If E = L E"l, where the point-set sum is meant, then 
1'"'- ){ 

lub E = ~ub {1ub E~J 
11n H 

Proof. E = "!fl½ E1. Then l ub E ~ lub El') ) ~ in H, by b) 

(1) Therefore lub E ~ jl1t { lub E, J 
Also lub { lub EJ ;;' lub E')i, ~ in H 

i,.;. k i I 

or lub { lub E~ 1 ? y, for yin any E . 
~,.;.II I J "1 

Therefore lub J lub E~] =;- y, for y in E. 
"I,.;. II \ 

(2) or 7 lub E. (1) and ( 2) 

together yiell..d the result. 

e.) Suppose t wo sets E1 and E2 such that for every Y1 in E1 

and every y2 in E2 Then lub E1 and glb E2 both 



33 

exist _and lub E1 ~ gl b E;a • 

Er.22.£. Under the hy-potheses Jany y2 is an upper bound 

for E1 and Y2 ~ lub E1 for every y2 in E;a • There­

fore lub Eis a lower bound for Ez and therefore 

> glb Ez = lub E1 . 

f.) If y 'f o, then the set{n Y) )n = 1,2,3, •·· is not bounded. 

Proof. y =/ O. Therefore either (y)+ or (y)_ is :j. 0 by 

Theorem 3 e. Assume (y)+ / O. Now assume ny ~ y0 

for n = 1,2, lub{ny} = (n + l)y for all n 

lub (ny) - y = ny. Therefore lub {ny} - y = lub -{nyj 

and -y = O. Or y ~ 0 and by Definition 4 (Y)+ = O. 

Note. This last sub-theorem corresponds to a kind of 11Archimedeann 

axiom. The Archimede.an axiom is; that to any two elements a, b
1
> 0 there 

exists an integer n such that na> b. The result f) above is definitely 

weaker than this. Actually the Archimedean axiom does not hold in the 

space S, as the simple example shows: 

Using the notation of Example 15 and the space R( 2), (1,0) > O 

and (1,1) > O, but there is no integer n, such that 

(n,O);;,, (m,n) 

Theorem 22. Let E1 and E;a be t wo sets, such that E1 consists of all 

the elements of S that are smaller than all the elements of the 
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set E2/ and ¼ consists of all the elements of S that are 

larger than all the elements of E1. Then there exists an 

element y0 , giving the cut. It may belong either to E1 or 

to E2 • We have: 

E1 = the set of y< y0 , 

E1 = the set of y~ y
0

, 

Ez = the set of y ~Yo 

E.a = the set pf y > y 
0 

Proof. Put y0 = lub E1. Then there are two cases. 

1) y0 in E.a. Then 

y O > y for all y in E1 

Yo~ y for all y in Ez 

if y0 in Ez 
~ot 

if y'J1in Ez 

because y-,,= lub E1 and every yin Ez is an upper bound 

for E1 . In this case 

E1 = the set of y-C:::.. y 0 

Ez = the set of y ?' y 0 

2): y O not in Ez. Then y O <'.'.'. y for all elements y in Ez. 

and therefore y
0 

is in E1 . In this case 

E1 = the set of y i y 0 , 

Ez = the set of y > y O • 

This last theorem gives as a. theorem,the meat of the Dedekind 

theory of cuts as applied to ordinary real numbers, see Bohnenblust IV 

1 B. p. 4, or Osgood 1 B, pp. 34 - 61. The element Yo is sometimes 
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knoii'm as the cut determined by the two classes E1 and Ez. The class 

E1 is the L-class of Dedekind a.l'ld the class Ez is the R-class. We are 

now able to introduce a notion of limit of a sequence of elements and 

all the consequent apparatus of convergence, almost precisely analogous 

to the case of real nwnbers . 

. Definition 16 of upper limit and lower limit of sequences. 

Let Yn be a sequence of elements of S. 

We define 

lli Y,,,_ = glb { lub (Yn,Yn+l, ••. ) } , called the 
n ➔oo n 

upper limit of the sequence { Yn). 

lim Yn = lub glb (yn,Yn+l' .•. ) , called the lower 
n➔oo n 

limit of the sequence { Yn). ± oois included as a possible 

value for either the upper or the lower limit. 

Definition 17 of limit of a sequence. 

If lim Yn = .lim Yn then we say that the sequence has 
n➔oo n~oo 

a limit and we write lim Yn for the common value of the left 
n ➔ m 

and right-hand sides. See Pringsheim1lB.+ m and - oo · are 

included as possible values in the above equality. 

Definit,ion 18 of upper and lower limits of a double sequence. 

I f we have a double sequence Ynm , that is;a set of 

elements of S such that to each ordered pair of positive integers 
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n,m there corresponds a unique el ement Yn,m, then we define 

lim Ymn = glbr lub (Ymn)] 
m,n➔ oo s Lm,n ~ s 

lim Yran = 
m,n➔oo 

lubf glb (ymn)] 
sLm,n?s 

Definition 19 of limit ofa double sequence Ymn 

In case 

we call the common value lim ( y mn) and we say that the limit 
m,m➔ crl--

of the double sequence exists. 

Convention. When we 1:vrite lim Yn, we mean that the limit exists. 

Theorem 23 

a) l 1nu.b{ Yn J ~ lim 
n-")CO 

Even in case lim Yn does not exist, we have the r est of 

the inequality satisfied i f those members exist. 

Proof . 

Theref ore, from Theorem 21 e we have the result. 

b) lim (Yn + y) = y + lim Yn 
n-> oo n ➔ oo 
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Proof. lim (yn + y) = gnlb [ lub(yn + Y,Yn+l + y, ••• )] 
n --;,oo 

= g~b [y + lub(yn,Yn+i,···)] by Theorem 2if., c , 

= y + gnlb [1ub(yn, Yn+l' ••• )] = y + lTln Yn• 
U-,>OO 

c) lim Yn = - lim (-yn) 

Theorem 24. 

a) 

n ➔ oo n-::,oo 

Proof. From Theorem 18, 

lim Yn = lub [ gl b (yn,Yn+l, • • • )] = 
n-,,oo n 

= - glb[ lub(-Yn,-Yn~1,··•)l lim 
n -> oo 

If Yi ? Y2 ? .. • then 

lim Yn = lub(y1 ,y2 , ••• ) exists in the sense that there 
n ~oo 

is either a finite el ement y with the properties of 

Definition 17 and the above equality holds or else +m 

has the properties of Defini:t,ion 17. Si milarl y for a ) 

Proof. We demonstrat e b). Put 

lub(y1, Yz,•• •) = y, where y i s a proper 

element of S if Yn is bounded above, and is +oo 

other wise. Then by definit ion and the hypothesis: 
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lim yn = glb [1ub(yn,Yn+1,•••)] = y 
n ➔oo n 

ri~~ Yn = l~b [glb(yn,Yn+l' • .. )] = l~b {Yn) = y 

Therefore lim Yn = lim y = y = lim 
n ➔oo n~oo n n ➔ oo 

Theorem 25. For any sequence Yn 

Theorem 26. 

lim Yn = 
n➔oo 

Proof. Put lub(yn,'Yn+l' • • •) = Yu, then (Yn} is a non­

;increasing sequence. Apply Theorem 24 and obtain 

lim Yn = glb(½;½, .... ) or, substituting back 
n ➔ oo 

I f ··y- ;> y ::> y' 
n = n = n and lim Yn = lim Yri = y then 

n➔ cn n co 
lim Yn = y exists. 

n➔ co 

Proof. Use Theorem 21 e. 

Theorem 27. If lim Yn = y and lim y-li_ = y 1 them lim(yn + y:i_) = 

lim Yn + lim YA. Use Theorem 23 b) and thus consider only 

sequences for which y 1 = 0 = y. {lb prove that lim(yn + Y-A) = 0 

if lim Yn = 0 = lim YA· 



Theorem 28. 

Proof. Put Yn = lub(yn,Yn+i,···) 

yri = lub(yri,Yri+1,•·•) 
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The sequences Yn and Yti are non-increasing 

and so, by Theorem 24, 

lim Yn = 0 = lim YA= glb Yn = glb YA. 
n 

Also the sequence Yn + YA is non-decreasing and 

But this is true for every n, thus 

lim(Yn +YA)~ glb Yn = O. Transcribing this 
n 

back we have lim (yn + Yfi) ";" lim (Yn + Yri) = 0. 

n➔m n co 

Now substitute -Yn and -yJ 

lim(-Yn - YiJ.) ;; 0, that is lim(yn + YA) -;" 0. 

This together with the above yield, lim(yn + Yri_) = O. 

If lim Yn = y then lim(Jfo)+ = Y+ and lim(yn) _ ~ (y)_. 

Proof . To prove lim(yn)+ = lim Liub(O, Yn)J 

= lub(O,y) 
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Yn ? Yn ~ ·yn and lim Y = lim Yn = y by Theorem 24, since 

Yn is a non-increasing function of integer n and Yn is a 

non- decreasing function of integer n. 

The sequence (Yn)+ is non decreasing and so 

lim (Yn)+ = Y exists. Y ~ (Yn)+, therefore Y ; Yn and 

so Y ~ l~b Yn = lim Yn = y. But Y ~ O. Therefore Y ~ (Y)+. 

Moreover y ;Yn therefore (y)+ ~ (Yn)+ and (y)+? lub(Yn)+ = 

The sequence -Yn is non-decreasing, therefore lim(Yn)- = 
Then from Theorem 28, 

lim (Yn)+ = lim fYn + (Yn)-l = Y + (y)_ = (y)+. 
n➔m 

- -
But (Y;;)+ '; (yn)+ ~ ~)+, so t h~t lim (yn)+ = (y)+ and 

from this lim (yn)_ = lim (-Yn)+ = (-y)+ = y_ 

Theorem 29. lim / Yn / = jy/ 

Proof. }Yn/ = (yn)+ + (yn)_. Use Theorems 27 and 28. 

Theorem 30. lim (lub [Yn,Yli] ) = lub (y ,Y') 

lim l glb (Yn,YA)] = glb (y,y '), if lim Yn = y, lim yJ = y 1 • 

Proof. lub (Yn, YA) = Yn + lub (O, yJ - Yn) 

lim (y~ - yn) = y' - y. Use Theorem 28 and 29 and get 

lirn [ lub (yn,YA)] = y + lub (0, y ' - y) = lub (y,y1) 

lim [ glb(yn,Yf)] = - lim [ lub(-Yn,-YJ)] = - lub(-y ,-y') 

= glb (y,y 1 ). 
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Theorem 31. The necessary a._~d sufficient condition that lim Yn = 0 is 

lim [1ub ( /y n~ • • • /Ym J ) = 0 
m,n ➔ oo 

Proof. 

a) Necessity. 

Use Theorem 29 and lim / Yn / = 0. Therefore 

lim [1ub( /Ynl, /Yn+l/ ,···U = O, using Theorem 25. 
n-> <D 

Therefore lim [1ub /Ynl,~n+1J,·•,/ytn0= 0 m,n-,m · lj 

J= 
lim flub lub( /Ynl, /Yn+l], • • •, 
s ➔ rolll}rl? s 

= 

lim I lub (/Ys/, /Ys+ll , ••• )7 = O. 
S-yO)L ~ 

This next to 

the last relation is proved just as in Theorem 25. 

Also, by definition 

Therefore the limit exists and is equal to zero. 

b) Sufficiency. 

Assume lim t lub( jYn j, Vn+l\, , .. J IYm \ ) ] = O. 
m,n ➔ ~ 

Put m = n in particular so that lim /Yn I = 0 and 
n ➔ m 

so lim (-J Yn l ) = O. But -/Ynl = Yn = }Yn j, 

therefore by Theorem 26. 
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Theorem 32. Fundamental Theorem. Generalized Cauchy Theorem. 

The necessary and sufficient condition that the sequence { Yn) 

have a finite limit is lim Jyn - y j = O. 
m,n ➔ oo m 

Proof. 

a) Necessity. Assume lim Yn = y. 

J Yn - Ym / ~ / Yn - Y / + /Ym - :I} , so 

iim }Yn - Ym/ ~ lim /Yn - y/ + lim lym - y/ = 0. 
m,n-" oo n -'> oo m ➔ cd 

b) Sufficiency. Assume lim JYn-Ym/=o. 
m,n ➔ oo 

Put Ys = lub /Yn - Ymi• Then lim Ys = O. 
m,n ~ s 

lub (Yn,Yn+1,•·•,Ym) - glb (Ym,Ym+1,•••,Ym) = 
lub (yn,Yn+1,•••,Ym) + lub (-yn,-Yn+l'•••-Ym) = 

lub ~n + lub (-Yn,-Yn+i,··,-~; Yn+l + lub (-Yn,·•• 

,-Ym) /" • •; Ym + lub (-Yn, • • • ,-YmJ • This 

last step is got by putting lub (-Yn,-Yn+l,···) = Y 

in Theorem 21 c. Then the equation cantinues 

= :tu.-,b [1ub (0,Yn - Yn+l' • • • ,Yn - Ym, lub (Yn+i,-Yn,O, • • • 

Yn+l - Ym), ···, lub (ym - Yn,Ym - Yn+1, ··•,o)] ~ 

~ _ lut jyi - Yk j -;- Yn. This is true for all m, 
m = 1,k= n 

thus true for limit, : T Ii: k.' 
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b) 

Theorem 54. If 
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Therefore O ~ lim Yn - lim lf,_ = lim ~ub(yn,Yn+1, • • .;J 
n ➔oo n -)'OJ n-;::,, oo 

Therefore lim Yn = 0 and so exists. 

>. < 0 implies lub { A y') = A glb { y 'i J ~ I¼.-=-

A -;,, 0 implies ~u!:_ {A y;~J = A lub { y y} 
• lj lh. =-

Proof. lub {Yi) ~ y~ , in~ • .And 

~ lub {Yli ~ ; ,A y'1 , in~ , that is 

~ lub { Y'f 1 ~ lub { A y, J . Replace A by f 
and y l by A y' and get the inequality reading 

the other way. If A <. 0 then by the above 

and Theorem 18 we have 

lub f >. Y, ~ = lub {- /A/ y7} = /1\ / lub {- Yi;} = 

- I" \ gl b { y ~ 1 = A glb 1 y, 1 . 
{A~) 1 \ in ===. is a transfinite sequence of real 

numbers and y> 0 then 

lub 1 A~ y) = y lub A j ) where now lub ~ ,,\ ~ ) is 

taken in the ordinary sense (see Bohnenblust IV B; or simply use 

the foregoing theory on the certainly (partially) ordered set of 

real numbers). 

Proof. Put lub A~= A ~ in-=-. Then 

)i"? A ~ 
- fi; y ~ \ y in --=-, and 

therefore Y. = lut{\ , Y) ~ ~y. Then for any 
I 
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real number f 7 0 ( A - E- )y ~ Y1 ~ /\ Yn 

But, using Theorem 21 f), this implies y1 = A y. 

Theorem 35. a) If A> o, then lim j 
Yn = " lim Yn 

n ➔ oo ,iq_➔ OO 

b) If 
"' 

<. o, then lim I'- Yn = Alim Yn 
n ➔ ()(ii) m➔ OO 

c) For any real A , lim A Yn = 
n-+co 

Proof. ')-. 7 O. lim A Yn = glb [1ub( AYn, /\Yn+1,· • -~ = 
n ~ oo n 

= glb [ ~ lub(yn,Yn+l, •• -~ 
n 

= \ g~b [1ub(yn,Yn+i, • • • ~ 

= 

= ~ lim Yn• 
n->OO 

If 'r-- <: o 7have an analogous proof. If lim Yn exi s ts , 
n~oo 

then by application of the two taken together 

we have c). 

Theorem 36. a) If Yn is a bounded sequence and limAn = O, where 
n->00 

{,An) is an ordinary real number sequence, then 

lim .An Yn = O. 
n ➔ oo , 

Proof. By hypothesis, there is a y such that 

{ Yn/~ y from Theorem 16. Then 

lim A n y n --; lim { .A n \ y = y iim { An j = 0 
/h. -I> a, ,n. ~o, "' ➔ 00 

lim ~ n Yn ~ lim (-/A nl y) = - lim / Anl y = 0 
-?t➔ a, n->OO 

Also, by Theorem 23 lim{An Yn)? limi/\n YnJ= 0 
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Therefore iim {~n YnJ = 0 and by a similar 

argument, lim fn Yn) = 0 and so lim{An Yn) 

exists and = O. 

b) If lim A n = A and lim y n = y then lim A n y n = A y. 
l?\~o, IJ..➔ ()0 11< ➔ (lo 

Proof. An Yn - A y = ( An - A )Yn + A (yn - y) 

The first term has zero as limit by a) above. 

The second t er m has zero as limit by Theorem 

55 c). The sum, as a consequence, has zero 

as limit by Theorem 27. 

c) If Yl is an element with the property that y > Yl implies 

y 7' 0, then Y1 ~ 0. 

Proof. Assume the contrary: that (y1)_ f O (that Yl 

has a non-zero negative part, see Postulate II 

3, and Definition 51of negative part). From 

Theorem 21 ~.· we can find a positive integer n 

such that n(y:i,l --f (y1)+, (where 4 is the 

negation of< ) . Also we can choo se n large 

enough so that 

(1) (y1)+ - (1 - ¼)(y1)_ ={> O, for other­

wise (y1)+ - (1 - ½) (y1) _ > 0 for all n, and 

.by Theorem 23 and the fact that the limits of 

both sides of the inequality exist, by Theorem 

56 b) we should have 
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Y1 = (y1)+ - (y1) _ ~ 0 contrary to the hypo­

thesis. Now put y = (y1)+ - (1 - 1.)(y1)_ then 
n 

Y - Yl = 1 Y1:::> 0 by the assumption. Therefore 
n 

y is a suitable y for the hypothesis of the 

theorem and it should follow that y O according 

to the same hypothesis (above just after c)). 

This contradiction proves the theorem. 

The Postulates of Regularit;y II 5 

a) Let En be a sequence of subsets of S (each one bounded above) 

such that a finite or infinite limit lim [1ub En]= y 
n~ ro 

exists. Then . from each set En, a finite subset EA C En 

of elements of Scan be chosen so that 

lim [ lub E~] = y 
n ➔ co 

b) The postulate will be said to hold in the 11 broad sense" if 

the following condition also holds. If En are sets for which 

lub En=+ cq then there are finite subsets Eli_ CE such that 

l~b [ lub ~] = + m 

Definition 20 of regular space. 

A space S that satisfies axioms I 1-5, II 1-5, III 1-6 shall be 

called regular. 

Theorem 37. If En C S and the limit lim f glb Eu 7 exists, then there 
n~coL 1:J 
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exist finite subsets E~ C En such that 

Let E➔~ be the set of elements y, for which -y is. 1 l'1. 
n 

E . Then lub Et = -glb En by Theorem 18 and t he 

limit exists: 

- lim [ glb En]= lim [1ub EtJ 
m. ➔ cxi n ➔ co .· 

Now by Postulate II 5, there exist finite subsets 

E 1 ➔<· such that n 

lim [1ub EA* J = lim l1ub ~j = - lim 1glb Eu l 
n ~ co n ~ a:J-: n ➔ co~ 

Let E~ be the set of elements y, such that -y LS. 11\ 

E'*· Then E}i_ is a finite subset of Ezi and also 

glb E~ = - lub E~* and finally 

lim ~lb EA]= - lim L_lub EA·*] = lim [1ub Eu] 
n-➔ oo n ~ oo n~oo 

Note. The theory of transfinite induction will be used in the following 

t wo theorems, both in the enunciation and the proof. For an account in 

English sufficient for our needs, see Pierpont IV B, vol. II, or 

Sierpinski IV B, appendix. Kamke IV B has probably the clearest succinct 

account (in German) to be found in a book. 

Theorem 38. For any set EC S, one can find a countable sub-set (that 
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is, a sub-set that can be put into one-to-one correspondence 

vii.th the positive integers) E~A- C E, such that 

lub E* = lub E; glb E* = glb E. 

Proof. In Postulate II 5, let every Eu= E for every n. 

Then we can find, by the same postulate , finite sub­

sets E* C E such that n 

lim [1ub Et]= lim [1ub Enj = lub E. 
n -:> oo n ~ oo 

By Theorem 37, we can find finite subsets 

E-~H!- C E = E, such that n n 

lim lg;lb EiPA-] = glb E 
n -:::, oo n 

00 

Put E 1 = 

n=l 

Then this is a suitable E1 to satisfy the conditions 

of the theorem. For E I C E and E I is countable 

this follows from the well-known theorem that a 

countable set of countable . sets of elements is itself 

countable, when considered as made up of the l ast­

mentioned elements. Also 
00 

lub E ? lub E' ~ lub ( 2_. E,ip ~ lub(lub E~) ~ 
n=l n 

~ lim llub E➔~J = lub E. Thi s implies lub E1 = lub E. 
n ➔ oo n 

Similarly, glb E1 = glb E. In case lub E = + ~ 
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( or glb E = - co } the proof can be carried through 

by means of Postulate II 5 in the broad sense. 

Theorem 39. A well-ordered monotonically increasing sequence of elements 

of Sis unconditionally countable (see Sierpinski IV B 2). That 

is if 

..,::: ~y ~Y, C::::.y L.. Y1 = Y2 = 3 • • • = w = (()+ 1 = 

then there is an o< of the first or second number-class such that 

beginning with o< , we have 

Theorem 40. 

Proof. 

y c;,( = Yo<+l = 

Let Ebe the set of all yo<. (1 ~o< ~--'1.). From 

a) there eY..ists a countable .subset E 1 , such that 
I 

lub E 1 = lub E. Leto( be the number, of the first 

or second number-class, that comes immediately after 

all those 0\ 1 s for which y.,_ in E 1 • Then y ~ y-<' 

for every y in E 1 , and so lub E 1 ~ yo<. _ lub E. 

But lub E1 = lub E. Therefore lub E = v and ,Jo(I 

= yo( , 
f-J 

= ... 

If lim yfk) = Yi, for i = 1,2, 
k ➔ en 

and lim Yi= y, 
i ➔ en 

then there exists an infinite sequence of indices k1, k2 , 

(k1 < k2 < • • •) such that 

lim yfki) 
i ➔ (X) 

= y 



by Theorem 23; and 

[ (k) k+l J glb lub(y. ,y. , ... ) 
k J. i 

Now write 

Then 

(k) 
z i 

w . (k) '.:: glb (y~k) ,Y~k+ 1)' . •.) 
l 1 1 

glb (z (k))= lub (w (k))= y. and 
k i / k i ) i 

(1) lim Yi = lim [glb 
i ➔ oo i~oo 
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Before proceeding with the proof, let us remark that if we pick 

1 2 any finite set of elements out of the sequence z_., z;_. , • • • 
1 ]. that the 

glb of this set will actually lie in the set, for, a.s in Theorem 18 b 

(k) 
Z i is a monotonically decreasing sequence (considering i fixed) 

and so the element, in the above sequence, whose upper index is greatest 

will be the glb. Similar considerations apply to lub of a finite number 
(k) 

of w. , (i fixed). 
1 

By Theorem 37 and Postulate II 5, we can (from (1)) pick a finite 
(k) 

set Ei of the z i for each i such that 

) 

where E➔J- is a set of ~ with similar properties. 
1 l 

Using the above remark, 

we can pick~ element zii out of Ei and one element wi out of E➔S- such 
l 
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that y = lim [glb Z. i] = lim [lub w_i). Nmv pick a 'k-. > li,mi so . ]. . ]. .J. 
]. -;7 CX) ]. -"> (D 

that the ki form an increasing sequence. Then we have 

and hence, by Theorem 18 c 

lim ~i = y and thus 

k· lim Yi1 , by Theorem 18 b. 
i~ 

Finally then 

This last theorem enables us to enunciate a principle that is to 

be found in most topologies of point-sets. If first, we define a "lirrd.t­

point11 of a set E of elements to be an element of S (not necessarily of 

E) that can be expressed as the limit, in our sense, of a con~ergent 

sequence of elements Yi (all different) in E. The set of limit points 

of Eis denoted by 11E111 • Now we can consider the limit-points of E1 , 

that is, Ett. The above theorem states that all the points in E11 can be 

expressed as limits of points in §_. That is, are automatically points 

of E 1 • If a set contains all its limit-points , we say it is "closed 

under the limiting-process 11 or simply 11 closed11 • It i s seen that E' is 

clo sed for any set E of points in S. For spaces in which this is not 

al ways true, see Frechet IV. 
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Theorem 41. A necessary and sufficient condition that the set E C: S 

be bounded is that the following condition hold. 

For every sequence of real numbers {An J such that 

lim ~n = O, and every sequence { Yn} of elements in E we shall 

have 

lim An Yn = 0 

Proof. a) Necessity. This follows from Theorem 18 d). 

b) Sufficiency . Assume the contrary , tba t Eis not 

bounded above. Then lub E = + co . Let En be the 

set of elements y for which ny in E. Then 

lub En=+ co and from Postulate II 5, in the broad 

sense, there eximt finite subsets EA C En such that 

lub (lub H' t) = lim (lub w') - + co Let the ,n, ""n n ~ co =n - • 

element s (finite in number) of E{ be 

Now put 

+nk-1 + s = k ~ s and 

\ n1 +n2+ 

'l'he n y n and ,\ are determined for every n. Since 

k • -" • "' Ys in ~k , every Yn in ~ . 

But it is not true that 

if it were we should have 

Obviously lim An= O. 
n~ CD 

lim. An Yn = 0. ]'or 
n-co 
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= lim (lub (- Yn +n + .. +nk-1 + 1) ••• 
k➔c:o k 1 2 

= _ lim (lub Ek) = + m and a contradiction. 
k ➔ 00 
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Theorem 42. I:f {Yo} is a sequence of elements for which 

lim Yn = O, then there exists a sequence of real numbers 

An, such that lim ,An = + ro and lim An Yn = O. 
n ➔ oo n-rro 

Proof. Put Zn= lub (/Yn/, {Yn+ll, ), then lim Zn= 0 
n CD 

from Theorems 19 c) and 18 b) . The Zn fo::cm a 

monotonically- decreasing sequence J ( z1 ~ Z2 ~ • • , ) • 

Put Ek = { k Zn} ) n = 1, 2, • • • Then 

glb (Eic) = 0 and so 

Now apply Theorem '37. 

lim (glb Eic) = 0. 
k-700 

There is then a finite 

set Ek C ~ for each k such that lim (lub ~) = 
k 

lim (lub EK). Since Zn is monotonically decreas­
k 

ing , lub Ek i s a member Yn of E'. Therefore 
k 

lim (kZN ) = 0 where without loss of 
k➔ oo k 

generality, Nk is an increasing infinite 

sequence of suffixes. Now put An = k in case 

Nk ~ N < Nk+l· Then lim An=+ oo and 

lim An Zn = lim k ~ = 0 and therefore lim finYn=O. 
n-:?> ro l"fk 
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Theorem 43. The necessary and sufficient condition that we shall 

have lim Yn = y 
n ➔ co 

for a sequence {Yn}, is that there 

exist an element Zin S with the property t hat to any positive 

real number e we can find a positive integer Ne such that 

/ Yn - y / <( e Z for every n ~ Ne. 

Proof. Necessity. Assume lim / Yp. - y / = 0. Then from 

Theorem 42 we can find a sequence of real positive 

numbers ln such that 

lim ln = + CD and lim ln / Yn - y / = 0. This 
n ➔ oo 

limit is finite, so the sequence must be bounded, by 

the definition of limit. Therefore the sequence has 

a lub, z, and this is the required Z. For let e be a 

positive number, then we can find a Ne, such that for 

lln < e and consequently 

j Yn - Y / < ( < e Z. 

Sufficiency. Let en be the smallest real number for 

which 
jYn - y/~ en Z. en exists for each n, 

because the class of real numbers en satisfying the 

inequality is bounded below. Now according to the 

hypothesis, lim en= O. Then 
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0 ~ lim / y n - y / ~ lim { y n - y/ ~ lim en Z = 0. 
n➔ oo ,.,....,oo "'~a, 

Therefore 

lim Yn - y = lim I Yn - y / = 0 = lim • ) Yn - y j . 
n~oo /11. ➔ co '?'l.➔ «J 

Therefore, by the fundamental theorem lim Yn = y. 

Theorem 44. If lim yf = Yi then a Zin Scan be found such that to 
/{~ 0) 

any pilisitive real number e we can find a K! such that 

Proof. From Theorem 43, we can find a Z1 to each i, 

Lemme. 1- If 

such that 

/ yf - Yi/~ e zi for k ?K(e,i). But 

lim 1 zi = 0 for each i, so we can choose ni 
n-;;>mn 

so that lim l zr = O, by the following lemma 
i ➔ ooni 

1. Thus, by Theorem 41, the elements -1.. zi form 
ni 

a bounded sequence. Take its lub and it will 

be the required Z. 

1 . 
lim - yl = o 

n-rCD n 
for every i then we can find a 

1 . 
sequence of integers ni, such that lim - y1 = O. 

i -;:,oo ni 

Proof. Let Y~ = 1 yi. Then lim yi = yi = O and so n n n~ m 
,. 

lim yi = O. Therefore, by Theorem 40 , we can 
i-7 oo 

pick out a sequence 

= 0 = lim i 
I 

yi such that 
in 



Note to Chapter fil. 

It will be found convenient and in fact almost indispensable, 

to write '}. •x, where A is a real number and x an element of the 

Kantorovitch space S, in the form x•A or simply xA. The striking 

analogies between these theories and the classical ones can be 

brought out more clearly by the use of this notation. If need cause 

no confusion, since Greek letters are used exclusively for real 

• numbers with the exceptions of positive integer suffixes, when n, m, J" , 

k are used. As before latin letters mean elenents of abstract spaces. 
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Chapter II 

Introduction 

In this chapter we shall examine the consequences of the 

postulates of a partially-ordered set (not necessarily an Abelian 

group), as we shall need son:e thing of this theory in the later work 

on transformations. The branch of mathematics dealing with partially­

ordered sets is comparatively new, so that there are no systematic 

developments available in textbooks. The following historical sketch 

is necessarily brief. For completeness and convenience mention is 

made of certain applications in finite algebra, theory of groups and 

mathematical logic, subjects that will not concern us directly in 

what is to follow, but which actually may influence the turn that the 

research shall talce. 

Dedekind seems to have been the first to study abstractly the 

properties of the partially-ordered set as such. He used the tel'lll'. 

"dual group" to describe a set of objects with the following posiiula.tes, 

see Dedekind I B, p. 493, I 1, 2,3. We call this set a ttstructure". M. 

VI. 1.) To every ordered pair of elements a, b (not necessarily 

different) there corresponds an uniquely determined 

element aiJ b of M, called the union of a and b. 

2.) To every ordered pair of elements a,b (not necessarily 

different) there corresponds an uniquely determined 

element a 11 b of M, called the cross-cut of a and b. 
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For all a,b,c (not necessarily different) in M we have: 

3.) 

4.) 

5.) 

a U b = b,U a 

a Ll(blJ c) = (aUb)Uc, 

aU(a/1 b) = a, 

Definition 21 o f null element 

al\ b=brl a 

a11(bl1 c) = (all b)/lc 

a /1 (a L) b ) = a 

A null-eleme nt, if it exists, is an eleme nt E0 such that 

E0 f\ .A = E0 for every element A of the structure. A null-element 

does not necessarily exist for every structure. 

Definition 22 of all element - --------
An all-e l ement, if i t exis t s , i s an e lement O0 such that 

00 U A = Oo for every eleme nt A of the structure . An all-eleme nt does 

not necessarily exist for· every structure. 

1~ese axioms are Dedekind's. Ore I 3 showed that they are 

equivalent to our axioms V if we define a"; b when a U b = b or 

a() b = a ( these two conditions are equivalent as can b e se en by 

putting the first into 51 above) . Ore I 3 speaks of a "structure"; 

Birkhoff I 1, 2 of a "lattice"; Kantorovi tch II 13 of a '''halb­

geordneter Raum" or of an "espace semi-ordonn~ 11
; Hausdorff IV 1 B of 

a 11 teilweise ge ordnete Menge"; Glive.nko II 1 of a 11 chose 11
; Tucker IV 1 

of a tt cell-space t1 ; Weisner I 1 of an "hierarchy" ; Car i/J.theodory II 1 

of a irsoma11 
• .A name f or structure some times encountered in German 

literature is 11Ding". T'ne term "partially-ordered set " is some times 

used in a broader sense; it is required only t hat if a~ b and b--;- c 
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then a? c. Birkhoff IV 5 has used the idea of a "directed set 11 ; 

a directed set of points Xa where Xa. are in some topological space 

Xis a set of points that are ordered by means of the subscripts a 

of a class A (not necessarily in X). The class A is partially 

ordered, and in addition to each pair of elements a, b of A there is 

an element c > a,b. This c need not be unique. The set A is distinctlS 

more general than the set satisfying the axioms ,n. 

Bennett I 1 has given a postulational treatment of what he 

calls 11 semi-serial order 11
, which in our notation is essentially the 

partial order charac terizing a structure. 

E. l!'oradori II 1 has considered a theory of the abstract 

dornaii1, a member of which need not be a point-set in t he classical 

sense , but may be any one of a very much wi der collect ion of entities. 

He t akes as fundamental a cer tain abstraction of a "sub-set tt relation, 

AC B. He postulates that either .AC B or else A is not C B, for each 

pair of 11members" A,B. Further AC A for every A and AC B, B c.. C 

togethe r Dnply AC.. C. Ne ither the union nor the cross cut is postulated, 

but if they both exist, they are of course unig_ue and the laws hold: 

(A r1 B) U (A 11 C) C A fl (B V C) 

(A U B) 11 (A V C) C A U (B /) C). 

He defines the "residue" of B with respect to A. First let A and B 

be elements such that AC B. Then AB will represent any elements of 

the domain that satisfy ( f or A fixed) : 
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B C A U .AB• 

The elements AB are called complements of A in B. Now if there 

exists an AB that is contained in every AB, it is called the residue 

of B with respect to A. The residue may not exi st. It is designated 

by B-A. It can be proved to be unique and that B-AC B. Also 

A U (B-A) = B where X = Y simply means X CY and Y C X, and no more. 

He proves, moreover, that if A UB, (AU B) - C, A - C, B - c, 

(A - C) V (B - C) exist, then (AU B) - C = (A - C) U (B - C). It 

is seen that t his 11res idue 11 anticipates to in a certain measure t he 

generalized r es idual of "i7ard and Dilworth, see below. The ir r es i dual 

i s in one way more general, but it occurs in a structure , which is a 

less general system than the domain of Foradori. 

Finally he defines a 11Schachtelung11 or ttnested domain", a 

domain S such that for each pair of elements .A.,B, at least one of the 

relations holds 

A C B, BC .A. 

We shall return to this theory later in the section on topology. 

• The cla ssfication of the recent resear ches in structure theory is 

necessarily based on the classification of the subjects to which they 

are applied. Even this is difficult, owing to the multifold inter­

dependence of subjects that at first glance seem quite unrelated. 

Roughly we can divide structure theory into the purely algebraic, the 

topological, the analytical, that branch dealing with probability and 
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the geometrical. It is difficult to make sharp distinctions, but 

we shall follow t his classification throughout. 

Section 1. Structures in Connexion with Algebra. 

Perhaps the most striking examples of structures occur in 

group theory, number theory and ideal theory. We may study a group 

by directly examining the relations between the individual elements 

and tabulate properties according to the behavior of one element with 

respect to another. Thus we may study the properties of a left-unit 

element, that is an e, such that ea= a for all elements a of the 

group. Or we may study the properties of the left-inverse or right­

inverse of an element. (In the case of a group, each of these is 

unique ) . On the other hand, we may study the properties of subsets 

of a group, regarding t hese subsets~ entities and never mentioning 

their elements directly. we can speak of t he class of subgroups of 

a given group and can define operations defined over t his class. 

Usually the groups of any certain class of subgroups are, in the final 

analysis, groups that are characterized by the behavior of their 

individual elements; an exa.~ple is the class of all subgroups each of 

which is composed only of powers of a single element (a cyclic group). 

However, in many cases the characterizing property may be abstracted 

and re-expressed in terms of the behavior of the subgroups themselves 

with respect to certain operat ions. As was pointed out in the last 

chapter (see example 7) the class of all subgroups of a given group 
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for.ms a structure under t he operat ions of union and cross-cut . I t 

is t r.J. s structure a nd t he se operat i ons t hat are so i mporte.nt in 

n:.oa_e r n algebra . 

.Definition 2:3 of modular stru.ctu:r e . -------
I,. s tructure is said t o be modula r i f A ";'- C i mplies 

The modular structure is some t i mes known as a Dedek i nd s tructure . 

Dedekind I 3 used the condition in the form, f or every triple a ,b,c: 

[ .A /I (B l) c~ u ( B f\ C ) ;:: [11. u ( B l) c )J () B u C . Another 

e quival ent condition is (see Ore I 2i 

C ~ C, C tf D ;:: C U D, C (1 D = C 11 D i mply C ;:: C. 

If we draw t his s ame concl usion from jus·t t he l ast t wo of t he 

rela tions t hen we have a mor e spe ci al structure called a n ari t hme tic 

structure. Dedek ind has shown t ha t for any structure G ~ H i mplies 

(E u C) /1 G ~ H u (e n C) 

see Dedek ind I 3. 

De f inition 24 of isomorph i sm. 

Two structures are said to be i s omorphic i f there is a one - to-

one corresp ondence between t he i r e l ements, p r ese rving union and c1·oss -

cut of ever y pa i r of el eme nts . 

Definition 25 .:?._f. quot i ent o:f' e l eme nt s. 

By t he qu.otient A/B of t wo e l en1ents 1\. , B such t hat .A B, is 

me a nt t he totali t y of e l eme nt s Z such t hat ? / A = X ;:: B . 



62 

Definition 26 of pri m~ q_uotient . 

.A q_uotie nt A/ B is call ed prime i f there is no el ement X such 

t hat A> X > B. 

One of t he most i mport ant t heorer,IB of group t heory i s what is 

called t he first theorem of i s omorph i sm, see va n der Tfaerde n I 1 B. .fl 

normal subgroup H of a group G is a group such that th e group product 

g.~ can be put in the form n1g whe never g is in G and n is in N, and 

where n1 is in N. 'I'wo group s G and Gare said to be isomorphic if 

there is a one-t o-one corresponde nce between their elements such that 

a b and ab correspond to one anothe r; where a and b represent in turn 

every pair in one group and a and bin turn every pair in the other 

group. 

If we have a correspondence a➔ a between two groups (single­

valued in one direction, but not necessarily so in the other) that pre­

serves all products, then it can be prove d t hat all the eleme nts of the 

group G tbat correspond to the unit of G f orm a normal subgr oup N in . G. 

Further-more if we exa."lline the cla ss of sets gN , where gN means the 

set of products, g n ( g fixed and n r epresenting in turn every element 
_,I 

of N), we can prove that each element of G lies in exactly one of them 

and that if we consider each of these sets as an enttty, the class 

will form a group, where the product (aN)(bN) is (ab )N. Thus this 

group, which we call the factor group G/N of G wi th respect to N can 

be shown to be isomorphic to G. The first theorem of isomorphism 
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states that if N is a normal sub f.::roup in G a nd H is a normal SUQgroup 

of G, the n the set of elements contained in both H a nd N , i. e . E N, 

form a normal subgroup and 

is i s omorph1' c to HhT /) W I -- - ' 

where H N is define d as the smallest subgroup of G containing H and 

i,r. So far we actually have been oper ating y; i th propertie s of indi vi du.al 

eler,1e nts. TIJ.is theorem nee d not be stated t hus. 

Let us conside1· a modular structur·e, and the quotient H/ (E r\ N), 

that is, the totality of X such that 

and the quotie nt (N LJ H) / N composed of the X' s uch that 

N V H ~ X ' ~ N 

Now l et us try X' = N iJ X, the n N" = N V (H /1 N) ~ N U X -;; N U H, from 

the above, a nd because A ';' B i mplies A U C '; B U C and A /) C ;; B ;- C. 

This X' is indeed in (N U H) / N. I\Ioreover 

X' /1 H = (:X: V N) !l H = X U (N (\ H) = X, so the ordering 

betwee n X and X' is one-to - one. Also Xj_ U ~ = (N U X ) U (N U X.z) = 

(WU N) \J (X1U ~)=N V (X1 U X:z) and 

X1 /"\ ~ = (H /1 Xf ) ;1 (H 11 X~ ) = H /) (Xf f1 ' so t 11at the 

correspondei1ce j_s a str ucture iso1norpht srn. J-Jo-:·.; i:~· ':-re int erp re t l'T , Ii , 

X, X' as noTmal subr;roups of a g roup G- o.n.0. ~ , V , 11 as in the exa;:nple 

on grou1'J theory at t he end of Chapter I, t hen we have simply the first 

theorem of isomorph i sm . 
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Def'ini t ion :?!!._ of _similar si,uotients . 

The quotients c/D and C'' /D a re ca lled similar if the re exist 

relations expressing two of these elements say K, L in terms of the 

other t wo say A,B, by means of the operat ions Uand (\ , such that 

(A U B) /A is isomorphic to B/ (A/1 B). 

A composition se:ries is a sequence G :J G1 ~ G2 ) • • • :::> C of 

subgroups of G (C i s the group composed of the unit element of G) such 

that Gi+l is a normal subgroup of Gi for all i, and such that f or no 

value of i can we find a subgroup R bet\'leen Gi+l and Gi with the 

property that His normal in Gi and Gi+l is normal in H. 

1'he principal theorem on composition series is that of Jordan­

Holder ( see van Waerden I 1 B) ; it states that between each pair of 

composition series of a given group t he r e e xi sts ·a one - t o-one corres-

pondence such that the fa.ctor t;roup Gi+1/Gi i s i s omorph ic to the factor 

::.·rou·o ,.., • -'-1/ G • 0 , -~ U-J' J for all i and j. Expressed in the l ant;uage of modul ar 

structures this is stated as follows: If between t wo elements A,B of 

a modular structure there is an ordered chain 

of e l ements Ai 

such that o.11 the q_uoti ents Ai+1/Ai ar e pri me and the Ai are f j_ni te i n 

munber, the n every other similarly defined chain between A and B has 

the same l ength and its prime q_uotients are similar, in some order , to 

the prime quoti ents Ai+l/Ai. 

Ore has , in a series of papers, developed the t heory of 
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structure s with the object of abstracting and generalizing the theorem 

of Jordan-H8lder to other than series of normal subgroups. He con­

siders structures in which the elements are themselves quotients of 

a given structure, (A/B) 11 (A1/B1) 

(A/B) <J (A1/B1) as(A V Al$ V Bi). 

is defined as (Al) A~ fl B1) and 

A/B is defined~ A1/B1 if A,:; A1 

and B ~ B1, If the original structure has a null element E0 such that 

A 17 E0 = E0 then the substru cture (of the associated quotient-structure ) 

composed of the eleme nts A/E0 is obviously isomorphic to the original 

structure . .A. quoti ent A/B is called prime o:ver a quotie nt C/ D i f the 

dement .. A i s prime over C and B = D, or if A = C a nd B i s prime ove r 

D. 'l'he quo t i en t s A/ A a re calle d unit quoti ents. Two quotients A/ B 

and C/D are called r el ati ve l y prime if (A/B)ll (C/D) i s a unit quotient . 

A product( A/1;)X~/ c) i s define d as A/ C. Let us denote quot:l_ents by 

small letters. Instead of a)( b = c we write b = a-1 Xe and a= c xb-1 . 

The transformed of a = A/B by c = c/B ( they must have the same denomin­

ators) is defined as the element ca c-1 ;:: (aUc) )( c = (.AV C)/c. 

If a a.nd c are relatively prime, then al = c a c-1 is called similar 

to a. Now we are ready to state the theorem of Jordan-H8lder in a 

still more suggestive form. We state the hypothesis as follows: if 

A/B = Pl X p2 X • • X Pr where p are e.11 prime quoti ents, then every 

other representation of A/Bas a product of prime quotients has the 

same number of factors, which are similar to the given factors ta.ken 

in some order. Moreover (in a modular structure) t wo equal products 
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can be furt her factored so that the same number of factors are on 

both sides and they are similar, taken in some order. 11his is a 

generalization of the lemma of Schreier on the refinements of normal 

series 
I 

see van der Waerden I 1 B, p . 139 or Zassenhaus I 1. By 

defining a semi-normal e l ement Ore , I 5 has been abl 0 to prove that 

chains of el ements, of wh ich each i s semi - normal in the preceeding 

satisf'IJ a theorem analogo~s , t o that of Jordan-Schreier. 

Kurosch I 2 and Birkhoff I have each considered generalizations 

of the Jordan-Holder theorem to the case of transfinite well-ordered 

chains. Kurosch considers that the members of the chains are each 

normal subgroups in the member immediately following . By suitably defin­

ing a composition series, he shows that each t wo composition series are 

isomorphic. Birkhoff considers chains of T-invariant subgroups, where 

Tis any automorphism group containing all the inner automorphisms of 

the given group. For definitions see van der Waerden I 1 B. 

Closely connected with the above theory is that of tbe decom­

position of groups and structures into direct factors (with respect to 

union or cross-cut). Kurosch I 1 has shown that in modular structures 

there is a factorization theory for the elements. If the element a can 

be represented as the cross-cut of the different elements k,i, i = 1, • • ,m. 

and as tbe cross-cut of the different element s Bj, j = 1, • • ,m and if 

these representations are minLmal (that is, A is not contained in 
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• • • A1-111 ;£\-i+l 11 • • • 11 ;An, got by omitting an /Ai from the 

sequence, and similarly f or the bj) then n = m, and every Ai can be 

repl aced by a proper bj' in a one-to - one manner. The dual theorem 

(with respect to union) can be prove d easily frorn this result. IQein 

I 14 has defined an "independent set" of elements of a modul ar structure. 

A set of element X1, , Xm is called independent if and only if 

, n. He proves that the definition 

is synnnetric in the Xir and that if Y1,· · · , Yk are unions of disjoint 

subsets of t he Xi, then the Yi are indepe nde nt ( thus any subset of an 

independent set is independe nt) . For further abstract tre a t ments of 

linear dependence, see Menger I I 1, Bergmann II 1, r,fo nger II 5, 

Mac Lane II 1, Nakasawa II 1 (also under the section on projective 

geometry) and Whitney I 1. 

Ore I 3, 4 ,7 has built up a very pretentious theory of tbe decom­

position of quotients. Let a = a1LJ a2 U· • • LJ ar be a quoti ent 

expressed as the union of a number of quotients wi t h the same denominator$ j 

a is said to be '.~ :factored11 • The factorizati on is said'. t.o be ·proper 

if no fa ctor ai is contained ( is §-) :in itscompl ement 

ai = a 1 U U ai -1 U ai-t,. . • U ar . '11he component with respect to ai 

of any factor b of a is a~ = ai r1 (b V ai). He proves that 

b c bUc 
:E'rom this he deduces that i f a1U • • • Uar:::: ai U a :::: a i see Ore I 3. a :::: 

b ·; a1 
b1 U •• • () bs and if aij = J bji = bj then ai = auU ... Uais, ai ' 

Uars, aij can be replaced by bji• 
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The g_uotient a = A/ A0 is called red.ucible if' there exist t wo e l eme nts 

B, C such t hat .A0 < B < A, A0 < C < A a nd A = B UC, and ~ i s then 

the union of B/ Ao a nd 0/ A0 • Otherwise a is c alled irreducible . '11he 

quotient is called of f inite l ength i f between A a nd A0 there is a 

composition serie s,that is a series such as is used in the general ized 

theorem of Jordan -Holder. It can be s hown that i f A/ Ao is irr·educible, 

the n every composit ion series A0 < Ai ~ An-1.:::::: A possesse s the 

s ame An-1 a nd A/A0 i s said to be l ong to the prime quotient A/An-l· 

Ore proves f or quo t i e nts a the orem simil ar to the one above of Kurosch: 

i f A;A0 is a g_uot i ent of f i nite l e n6th of a modular structure , then it 

may be r epresen-t ed. as a minirnal union of a f j_nite numbe r oi' irreducibl e 

g_uo t i ents. 'Lwo such r epres entations have the s@ne number of fa c t ors , 

whi ch belong to s i milar pri me g_uotients t a.1<:e n i n proper order, that 

is)the r e is a Ci t hat i s re l atively prime to ai and b1 (the factors in 

the t wo r espect i ve factorizations) such that ci a i c;i:1 = ci bi c:? . 

Bach !i i n the f irs t factorization can be r epl a ce d by a s ui tabl e bj 

from the se con::l one. He fur ther invest i gates the possibility of carry -

i ng over the t Leorer:i to t he case of quo ti ents not ne cessarily of 

f i nite l ength . Ee s h ows that i t will be true on the conditions t hat 

the descendi ng chain conch t ion hol ds in the structure, ( the des cend i ng 

chain condition reg_uires that every cha in A1 ;> ~ •· · of decreas ing 

e l eme nts be f inite) and that from t wo dire ct decoro:pos i t i ons k = a LJ b = 

cU d ( that is when a , b and c, d ar e r espe c t ively relat ively pr i me) 
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one can deduce the t wo, k = c U b = a U d. Ee proves a nwnber of 

r esul ts on 11 compl e t ely r educ i bl e n structures. A compl e t ely reducible 

structure is one with a null el ement E0 and such that .A > B '7 E0 

i mplies the existence of at least one C -i= A such t hat A = B U C. 

Further, he defines an n- f old component and f inds certain invariants 

of t h i s process that will not concern us here. 

Kle in has examined wha t he calls "Birkhof'f structures 1' , wh ich 

are t hose in ·which one of the f ollowing "one di re ctional n forms of 

the modul ar condi t ion holds, (see Birkhoff I 1 p . 445), 

a) If A and B cover C and A ,j B then AlJB covers A and B. 

b ) If C covers A and B, a nd A 'f B, then A and B cover Afl B. 

An element T is said to "cover11 an element ,~ if T > Q, T -/: Q, and there 

is no eleme nt P such that T :::> P '7 Q, , P /, T, Q, . He shows that when 

both Birkhoff conditions hold)the modular condition holds. Klein also 

shows that any structure with more than 6 elements has a substructure 

with six elements. 

Definition 28 of distributive structure. 

A structure is called aistributi ve i f for every triple of 

eleme nts (not necessarily different) A,B , C we have 

A U (B () C) = (A U B) /1 (A U C) 

and 

A /1 (B V C) = (A /1 B) U (A /) C). 

It can be proved tha t either of these conditions is a conse­

quence of the other, see Dedekind I 2. 
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It may be proved that every distributive structure is 

modular see Birkhoff I 1. It is not true t hat every modular structure 

is distributive, for examine the following diagram(ror erplanation 

see the Hasse diagrruns of Chapter I). 

A 

AU (B /1 C) = A U N = A, but (A U B) (1 (A L) C) = 9, /) 0
0 

= 0
0

• This 

structure is easily seen to be modular. However, Birkhoff I 2 and 

Klein I 7 have shown t hat every modular non-distributive structure has 

a sub-structure that is distributive. 

Furthermore, IG.ein I 7, Birkhoff I 1 and Ore I 3 have s hown 

that for any structure 

(A U B) n (A U C) ~ A U (B f1 C) 

A fl (B U C) ,::: (A fl B) V (A ft C) for any three 

elements A, B, C of the structure. Dedekind has priority see p . 61. 

'l'he structure of the ideals of a finite al gebraic nwnber field 

(that is, a field with a finite number of eleme nts, composed of sums 

quotients, products and differences of algebraic numbers) is distribu­

tive. This follows from the theorem on the unique representation by 

prime ideals see van der Waerden I 1 B vol. II, pp. 36-38. The 
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structure f ormed of the ideals of a commutative ring is ctn:ot4·j_4n Lc:!.M1. 

A divisorless ideal is one that is contained in no other i deal then 

the comple te ring itself . A prime ideal is one t hat is different 

from the ring itself and such that whenever it contains the product 

ab, it contains at least one of the factors a, b. As an illustration - - -
of structure theory we s hall prove that a divisorless prime ideal t hat 

contains (is greater than ) All B, contains at least one factor. For, 

by hypothesis PU (A() B) = P and so, using the distributivli:ty, 

(P U A) /] (PU B) = P. But P is divisorless and so P U A 

and PUB can be only equal to Porto O (the ring itself) . Thus at 

least one must be equal to P . 

The set-structures see example 1 l ast chapter are distri­

butive. Birkhoff I 1 has proved the converse, that every distributive 

structure is isomorphic, in the structure sense, to a set-structure. 

We shall discuss t his example more in detail in the sections on logic 

and topology . It mi ght be mentioned that a finite distributive 

structure with a composit ion series of maximal l ength~ is isomorphic 

to a structure of the sub-sets of a class of n elerm nts and so he 

proves t hat the nuraber of structurall y different possible such structures 

as t here are ways of part i ally orde ri ng a set of Q. el ements, see 

Birkhoff I I 6. By means of set-representations he s hows tha t a modular 

structure with the fini te chain condition (ascending) is distributive 

i f and only i f each one of its el emsnts can be uniquely r epresented as 
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a minimal cross-cut (see above under Kurosch 's work). He proves also 

that the r e are as iilany inequivalent point-set r epresentations of a 

structure with a null-element and all-element as there are functions 

whose ar guraenfs describe all the prime-ideals of Rand which posse ss 

arbitrary cardinal number s as values. Furthermore, by t hese methods , 

he proves that if R is a finit e distributive structure and n < a1 ... < ar =o 

is a composition series, then the totality of x with (ai-1 U x)rJ ai = ai-1 

form a prime ideal in R and all prime ideals can be got thus. 

Klein I 9 has shown that the axiom of distributivity may be 

expressed as (AU B) I) (B UC)/) (C U .A) = (A I) B) U (B 11 C) U (Ct) A). 

He also proves that a structure of higher order than 5 is modular or 

distributive respectively if and only if all substructures of order 5 

are modular or distributive respectively. 

Klein I 4 has proved that in a distributive structure with a 

null element and such that every element contains only a finite number 

of elements there exists for each element A at most one representation 

of the form 
• • • U Pn 7 

where the Pi are "primary elements" over certain "prime elen1ents1
t . 

A "prime" element is one that contains no other elements with the 

possible exception of the null element of the structure (if it exist). 

The element Q, is called t1primary" over P if P is the only prime element 

contained in Q, . Furthermore i f i t is assumed that every not-pr imary 

element A -/ Eo f a ctors (,7i t h r espe ct to tJ) ·into two different eleme nts 
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then he has proved that there exists at l east one representat ion of 

the above form for every element of the structure. Klein I 12 has 

shown that the elements of a distr i butive structure have unique 

representations as unions of prime elements. Klein I 11 examines 

the solut ions X of the s ~r stem of equations 

A=B U X , C = B fl X. 

in various structures. The existence of at most one solution is shown 

to be characterist i c of dj_s tributive structures. I';]_ein I 3 defi nes a 

"characteristic mappingn, which is a one-to-one cor::::·es~9ondence between 

the e l eme nts A,B, • • • of the structure and tbe e l ei~1ents a,·b, .. , of 

an ) .. belian group or a subset of an Abelian group, satisfying the 

following condition: 

.A. u 3 + A /'l B = A + B , where A is the correspond­

ent ( the group el ement) of A ( the structure element) . 'I'he + is the 

group operat ion. Examples of such a mapping are: A is the number of 

el ements in the set A; A is the sum of the divisors of the integer A, 

where/) and U are the g .c. d. and the l.c,m.; A is the nwnber of 

di visors of the integer A with L) and /] defined as above. In both the 

l ast exampl es multiplication is taken as tbe group o:9eration. .fl 

generalized condition may be deduced from the one given abov-e for a 

characteristic mapping , and in t his form gives the " sieve of 

Eratosthenes" see also E. J. S. Smith I 1 and Brun I 1. Klein I s 

formula is 
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Al(.; • • • lJ Ari = "v A1 + 'v' A1/1 ¾ll ¾ + • • • 
n n 

where .;{ A1 /) •. • /) Ai means(A1 , 1 ¾ . /, • • • ' A1) + A117 l½zt1 •• /lAi+l + • • • 

etc. that is where A1, • • • , An are t aken i a t a time and all different. 

Birkhoff I 1 defined a "rank functiontt for finite structures. 

If L is any finite structure satisfy ing either of the one-directional 

forms of the modular condition and•Q; is the all-element a nd E6 is the 

null-e l ement (these both exist in finite structures ) than it can be 

proved that a maximal chain connecting o; and ~ exists and t hat any 

other such chain has the srune l ength n. This number is calle d the rank 

f (1) of the structur·e L. The length of a maximal chain connecting E0 

with a give n el e;ne nt A i s the ran..1<: of A, f (A) . Ee pr ove s t hat the one ­

directional moclula1· conditions a ) and b) imply 

f (A LI B) - f (B) ~ f (A) - f (.A /1 B) 

f (A) - f (A /'I B) ~ f (A V B) - f (B) 

respectively and if' both a) and b ) hold then 

f (A) + f (B) = f (A U B) + f (.A f) B). 

T'nis rank function j_s simply an extension of the dimens ion function, 

see tlenger II l, and the section on :pro j e ctive geometry and continuous 

geometry. 

Kl e in I 8 studied 11ausgeglichene"' structures. These are 

structures in which all chains A 7 A1 > ... ,:::,,.An ?" B connecting every 
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given pair of elements A,B, are finite and of the sarae length. He 

defined a rank function [A,B], which for two dependent elements A,B 

(thes e are elements such t hat either A "7 B or A< B) is simply the 

length of the chain connecting them. He defines a bridge as a 

sequence of el ements A1, • • • , .Arri such that for each pair Ai+l, Ai 

at least one of the relati ons Ai+l '7 Ai Ai+l < Ai hol ds. He proves 
) 

that for .any such bridge 

= [ A1,A1 U Am] + [ A1 U Am,AmJ 

= [ A1,.A.1() Am] + [ A1/11\m,.A,:n ] 

He defines the symbol [ A, B ] for any pair of el ements A,B. 

m-1 
[ A,B J = ~ [ Ai,Ai+lJ where A1, • • • ,.Am is a bridge 

i=l 

connecting A and B. He proves t hat for any three elements A,B,C 

[ A,B 1 + [ B, CJ = [ A, C 1. 
He designates K(A) as the set of all X f or which [ X,A ] = 

s.nd proves that K(.A) and K(B) are e i ther identical or without co:arrnon 

elements, so that the structure is the point-set union of all the 

classes K(A), K(B), etc. 

A host of' scattered resul t s on f inite structures have been 

found by Klein and Birkhoff. Klein I 7 showed that th~ll'e are 

1,1,2, 5 ,15 kinds respe ctively of structures with 2,3,4,5,6 elements 

respectively. All the structtrr'es of order up to and including 4 are 
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distributive, one is modular but not distributive and one is not 

modular. He shows that a structure of order n contains a substructure 

of order n - 1 for 2 ~ n ~ 7, but not for n = 8. A structure of 

higher than order k contains a substructure of order k fork= 5, but 

in general not for k = 7. Most of the proofs are dependent on the 

representations as Hasse diagrams. 

Birkhoff has treated of the "free" structure which is a structure 

in which every element can be represented as the result of applying 

the operations of cross-cut and union a finite number of times to 

elements selected from a certain fixed finite set of elements. One 

can also say that the structure is "generated" by a certain fixed "basis 11 

of elements, under the operations of union and cross-cut. Birkhoff I 8 

proves that the free structure generated by 3 elements is infinite (if 

not modular, distributive, etc). The most general modular structure 

generated by 3 elements possesses 28 elements and was mentioned by 

Dedekind I 3. Birkhoff I 1 proves that the most general modular 

structure generated by 4 elements is infinite; on the contrary that 

every distributive structure generated by a finite number of elements 

is finite. 

Skolem I 1 claims to have discovered di.stributive structures 

but the date (1913) to whi ch he attaches his claim is later than that 

of Dedekind. He defined canonical forms for free distributive structures 

and defined direct products of structures. The direct product of two 
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structures with elements A1,B1, •· and ¾,B2 , •· respectively is 

t he structure of ordered pairs (A1 ,¾) where union and cross-cut are 

defined by: 

(A1,¾) l) (B1,B2 ) = (A1 U B1, Az U B2 ) 

(A1,A:z)/l (B1, B2 ) = (A1/l B1, A:z/l BJ. 

Ward I 1 and 2 has introduced a new operation, corresponding 

roughly to a quotient, called the residual. It is an abstraction of 

the residual, or ideal quotient used in ordinary ideal theory see 

van der Waerden I 1 B vol. II p. 29. By the ideal quotient A:B where 

A is an ideal and Bis not necessarily such (A and B are both sets of 

elements of a commutative ring 0 ) we understand the totality of 

elements c of the ring O for which c • b is in the ideal A whenever the 

element b is in the set B. If B and A are ideals t hen B. (A:B) CA, 

by definition, ( the ideal-product A•B is the i deal t ha t consists of all 
n 

t he sums o f t he form L- aibi where ai i s in A a nd bi is in B) . 
i=l 

Ward I 2 considers an abstract structure in which there is defined a 

cormnutati ve and associative multiplica tion A•B, such t hat t he distri­

butiue law A• (B Uc) = (A·B) \) (A•C) holds. If O is the all eleme nt 

of the stTucture t hen i t is a ssuJne d that O •A = A f or ever·y e lement .A 

of the structure . Ee t he n prove s t he exi s t ence of t he r es i dual A:B 

(a s ort of i nve r s e of multiplicat ion) and de duces many of the usual 

pr·ope r t i es of the i deal q_uo·c i ent . ~le shows t hat the structur e i s 

ne cessarily distri but i ve i n t he usual sense i f the c oncli t i on i s added : 
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i f A -::> B then there exists a P f or whi ch A= B:P. ( 1111e 

r e l ation 
Vi : (A I) B) = (LI :A) LJ {L :B) 

i s equival ent t o the a bove added condition ). 

He proves t hat t hi s relation implie s that 

(A :B) U (B :A) = 0 

(A U B) :Iv1 = (A: :!'li) U (B :r/i ) 

A•B = (A U B) •( A I) B). 

Dilworth I 1 has ca rried t hrough a postul a tional treat,:1.ent of 

the resi dual defined ove r a s tructur e . Eis postulates concerning the 

residual itsel f are 

VII 1.) A :A = 0 

2 .) (~.\ :B) : C = (A:C) :B 

3 .) A : (Brl C) = (A: B)ll(t:c) 

4.) (AU B) :C = (A :C) U (B :C ) 

5 .) If A:B = B :A = O, then A = B. 

He considers a separate set of pos tulates t hat are got f rom the above 

by i nterchanging union and cross-cut and i nterchanging O s.nd E0 • 

Ward and Dilworth I 3 give the f ollowing suffic i e nt condi tion 

that t he i deal t heory of E . Noether I 3 , (see a l s o Noether and 

Schme idler I 1) appl y to a residuated. structure 

1. ) The structure is modul ar 

2 .) Amil Bil ~ A B for everJ"I_ A and B and suitable expone nts 

f or each pair. 
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There are a few systems that have been developed from time 

to time under other names than structures, but that are actually 

structures. Whitney I l has considered sets of elements called 

"matroidsn, which are eq_ui valent to the Birkhoff structures of finite 

order admitting a 11 rank11 function, see Klein I 10. Whitney indicates 

four eq_uivalent ways in which to construct a 11matroid", using in turn 

the ideas of rank of a subset of the given set M; of a set of independ­

ent elements; of a basis and of a circuit. He uses the investigation 

of various systems of axioms to obtain results on matrices the elements 

of which are integers (mod 2). 

Weisner I 1,2 has investigated a system of elements with a 

relation x/y called "hierarchy11
• There are six postulates 

1.) Reflexivity x/x. 

2.) Asymmetry x/y and y/x imply x ::: y . 

3 . ) x/ y and y / z imply x/ z . 
I 

4.) Existence of a greatest common di visor of two elements 

(if x/ y is read x divides y). 

5.) Exi stence of the least common mul t i pl e of every t wo 

elements. 

6,) There is only a f inite number of el ements x such that 

a/x/b for a fixed pair of el ements a,b. 

It is seen without difficulty that this system is a certain kind of 

structure. He uses the system to obtain an excellent generalization 
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of the Dedekind inversion formula for finite series, see Bell I 1 B. 

In a paper following Weisner I 2 applies this t he ory of inversion to 

t he theory of prime-power groups. 11his reference and its si gnif icance 

were pointed out to me by tir . R. P. Dilworth. 

We have given here only the barest ske tch of the theory of 

structures as connected with algebra and have stressed only the most 

obvious connexions. The entire development of modern, and indeed 

present-day algebra has been dominated implicitly or explicitly, by the 

notiora that are classed under the heading of structure theory. Many 

closely related results may be found in the papers of Fitting I 1-4, 

Remak I, P. H'alll I 1, M. Hall I 1, Noether, etc. Results of a somewhat 

different nature were secured quite early by Daniell II (1917) (see 

the section on topology), and Menger 1922 ( see geometry). A compara­

tively early paper of Grell I 1 (1926) deals with algebraic problems in 

an exceedingly structure-theoretic manner. Krull I 2 has developed a 

dimension-theocy -, in special types of rings. 
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Section 2 'I'he structures connected with logic 

Definition 29 of complemented structure. 

A structure with an all element and a null element is called 

complemented if to each A there is at least one At such that 

It can be proved t hat (A')' = A and that A ? B i mplie s B' 7A' 

f or distributive complemented structures. 

Definition 30 of Boolean algebra 

A distributive complemented structure is known as a Boolean 

algebra see Boole I 1 B, 2 B. The significance of t h is algebra in 

logic is described in example (13) of Chapter I. 

We shall give a comparativel y ful l account of the r esearches 

of Stone on the connexions of Boolean algebras, structures, Boolean 

rings and Boolean spaces. A mention of some of the outstanding contri­

butions of other men will follow. 

Stone I 2 introduces a multiplication and addition into a 

Boolean alge bra by means of the eQuation 

A + B = (All B ') U (At/1 B) 

AB = A f\B 

and thus there results a ri ng with a pr incipal unit element O - an 

eleme nt such that AO = A for all A of the ring - , and the null eleme nt 

E
0 

- an el ement for which A + 
.,.,, 
l!.a = 

0 
A f or all A in the ring . Every 

el ement A is i dempotent -rt.. •A = A. .Also A + A = E0 for every A. 



82 

Definition 31 of Bool ean ri~~ (or generalized Boolean ring) 

A Boolea n ring is a ring in which ever y el ement is idE@potent 

and whi ch does not necessarily contain a unit element. 

Definition 32 of Boolean ring ~ith unit. 

A Boolean ring with unit is a Boolean ring in which a principal 

unit . element Eo exists and in which A + A = 00 for all A. 

We may go from a Boolean ring with unit to a Boolean algebra 

by defining union and cross-cut in terms of the addition and multipli­

cation as follows 

A UB = A + B + AB 

A/1B=AB 

Thus Boolean algebras are identified with Boolean rings with uni ts. 

This idea of goi ng from a ring to a Boolean algebra is not new, see 

Gegalkine I 1, and Daniell II I, but Stone has made it the starting­

point of his extensive theory of generalized Boolean algebras. In the 

theory of sets of po ints, (A/) B') U (.A'/1 B) is somet i me s known as 

the symmetric difference of A and Band has also been use d freQuently 

in combinatorial topology. Stone I 3 extends the theories of sub­

algebras, congruence relations, and ideal s to Boolean algeb ras (Boolean 

rings , on transformat ion). 

He defines the subsystems of a generalized Boolean ring A, with 

elements~,.£,,, .• , as the subcl asses of A that contain ab and. a+ b 

VThenever th0y contai:ij a a nd b. rie proves that the subsystems of A 
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a r e actually generalize d Boolean rings . He defines the sum B Uc of 

t wo subsystems B,C of A as simply the subsystem generated by the 

point set sum of B and C, and the produ,et Br) C or BC as simply the 

point-set produc.t. An ideal of A is a non-void sub-class that contains 

a + b wheneve r it contains a and E._, and that contains c whenever c < a 

(~ is said to be l ess than§:. if ac = c ) . It is shown that the sub­

s ystems: fio:r:m a structure, a substruc ture of which is for me d by the 

class (J") of ideals of the given generalized Boolean ring. A(a) is 

defined as the class of ~lements b of A such that ab = b, (a fixed). 

A(a) is shown to be an ideal. If A is a subset of A then A' is 

defined as the set of elements a' . such that a' ,a = e f or every element 

a in A. A' is called t he orthocomplement of A in .A , and it is proved 

that A' is an ideal (regardless of whether A is or not) and A'/1 i.\. = E.,. 

and A' contains every subclass P of A such that Arl P = E
0

(A and Pare 

said to be orthogonal ) . It is shown that AC A", if A is an ideal. 

An ideal is said to principal (P) if A= A(a) for some eleme nt~; semi­

principal (P*) if A = A(a) or A = .A' (a) for some element a; simple (S*) 

if .A U A'= A; normal( N)if A= A". He s hows that the respective 

classes of elements (P), (P*), (S*), (N) satisfy the inclusion relations 

(P) C (P*) C (S*) C (N) C (.T) , where the elements of the class(N), for 

example, are t hose ideals satisfying the cond ition of normality. He 

proves t hat (N) = (s>l' ) i f and only if products of arb itrarily many 

elements are defined in A; (s*) = (P) i f and only if A has a "uni tu o 
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for which o.•x = x•o = x for all x; (l-J ) = (P) .if and only if A 

corresponds to a complete Boolean algebra, see Lewis-Lqngmuir I 1 B, 

p. 350 ; (J) = (P) if and only if the algebra is finite. This 

last follows from the fact that either the ascending or descending 

chain condition implies finiteness see Birkhoff I 1. 

Tarski I 1 has set forth a notion of atomic element in a Boolean 

ring . In our notation an atomic element a is a non-null element such ,_ 

that a 7b implies b = a or else b = e, or equivalently ab= 0 or ab= a 
- ) 

for every .E_ in the Boolean ring. It is actually a prime element with 

respect to the operat ion of the Boolean ring. He shows that the 

assumption that every element conte.ins an atomic element is equivalent 

to the proposition that every element is equal to the sum of all its 

atomic elements. A class S of atomic elements is said to form a complete 

atomic system if b = 0 is the only element such that ba = 0 foT every 

a in s. Stone I 4 has investigated atomic elements and atomic bases 

q_uite exhaustively. Stone I 4 defines a barrier ideal as an ideal 

,, 

B ,/ A such that B' = E
0

and such that there exist normal ideals C and 

D for which A = CUD and Cf} D = CD = E.,- He proves that in a countable 

Boolean algebra every prime ideal is normal or else a barr i er ideal. 

Ee defines c:. prime ideal just as in ordi nary ideal tr..eory . 

,Stone was t he first to make a complete and sys tema tic study of 

the relation between rings and Boolean algebras, but others, notably 

B. A. Bernstein, had previously announced many scattered results 
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bearing on this subject. For example B. A. Bernstein I 2 showed that 

a ring with a finite number of elernents, all of which are idempotent, 

can be represented as the direct sum of a finite number of prime fields 

of characteristic 2. Radokovic I 1, in 1929, considered a logical 

system of "basic11 propositions A, B, C, such that each of these 

is either true or false. The system contains the tautology T (the 

identically true proposition) and the contradiction K (the identically 

:fl:d.se proposition)• ' · ,.Now· a set .o:f "genellalized" propositions is constructed 

from these by applying the operation of union A+ B (the proposition 

that is false whenever .A and Bare false, otherwise true) and cross-cut 

A B ( true when A and B are both true, otherwise false) . A numerically­

valued dimension function d(A) is defined as having the value k for all 

the basic true propositions and the value t for all the basic false 

propositions. It obeys the law d(A) + d(B) = d(A + B) + d(A•B). Both 

the distributive laws hold i.e., 

.A + (B•C) = (A + B) • (A + C) 

A·(B (~ C) = A•B +. A•C 

and the union and cross-cut are each associative and commutative. ilso 

A+ R = A 

A· T = A 

He shows that his system satisfies the axiom of Mel!ger-Be:i:-gmann for 

n-dimensional projective geometries. Even in the case of a finite set 

of propositions, he is able to define a non-trivial dimension function. 
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Stone systematically applies ring-theory to Boolean algebras, 

and wherever possible, group-theory. B. A. Bernstein I 1 had long 

before shown that a Boolean algebra could be represented as a group. 

Ivfoisil has given an extended treatment somewhat resembling that of 

Stone. He considers a system of element s with two operations, each 

associat~ve and commUJtative separately and such that 

a + a = a, a • a = a 

He examines the case in which the two distributive laws hold, the case 

in which the two laws 

a + a• b = a, a• (b + a) = a 

holdGhe case of semi-serial logic, or structure,)and finally, the 

case in which they both hold (the case of a Boolean algebr~. He finds 

that
1
of_,the systemsgenerated by two elements, the distributive system 

contains 6 elements and the semi-serial one 4 elements, while if there 

are 3 generators, there result 33 elements and 31 elements, respectively. 

He defines a subset M to be a subsystem of the system L if it is closed 

under the operations+ and•; Mis an invariant subsystem i~in addition 1 

for each a in M and p in L, a + p is in Iv.I; it is normal if for each a 

in IvI and x in L, a + x in IvI implies x in M; it is an ideal if it is 

normal and invariant. He proves the result found by Birkhoff I 1 that 

a distributive system with null and all elements is semi-serial (that 

is, a structure). He considers systems in which an operation (not 

relation) of i mplication ::, is defined, with the pro~ rties 
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He proves, if pis a fixed element of a distributive logic L, then 

the tra.11sformation a -..;> ~ is an automorphism, where a = a:;, p; 

furthermore the system consisting of the residue-classes with respect 

to a family of automorphisms T, T2
, T3

, ••• is a structure. 

Moisi,l I 2 in a later paper makes use of systems in which an 

"equivalence operation" and a symmetric difference operation are defined. 

He defines, for 11 ideals 11 in this system a 11deducibility 11 , . .!?. is said to 

be deducible from~ with respect to an ideal M of a distributive system 

if and only if .!?. belongs to every ideal that includes M and ~- He 

states a well-known result of Gentzen in the form: if£. is deducible 

from a and from b (both with respect to the same i deal M) and a+ bis - - -

in M, then c is in M. 

R. Va±dyanathaswamy I 1 has also investigated representations 

of Boolean algebras as groups. Duthie I 1 has made use of the symmetric 

difference of two elements of a Boolean algebra t,o define a (Boolean) 

function of bounded variation. He proves that the complement of a 

function of bounded variation is a functi9n of bounded variation; that 

the complement of a function not of bounded variation is a function not 

of bounded variation; if f(x) is a function of bounded variation then 

so is f(x1). He extends the definition and some results to functions 

of t wo variables. 
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Birkhoff and von Neu."!Jlann, see Birkhoff I 1, have put forth 

a logic that they consider meets the needs of the quantum mechanics. 

The basic ideas are a unary operation of priming, yielding~, from~, 

and a relation a C. b. The axioms are in substance as follows 

1.) a Cb and b C c together imply a C c. 

2. ) a C.. b implies b I C a 1 • 

3.) a C (a 1 ) 1 and (a 1 ) 1 C a. 

4.) To every pair of propositions x and y there is a proposi­

tion x ft y such that (x fl y) C. x, (x 11 y) c.. y and z c x 

and z c y together imply z C (x fl y). 

5.) aC a 1 implies a C. x for every~-

a =bis defined as meaning the two relations a? band b 7 a tal(en 

together. From 5) it follows that there is a proposition~ such that 

e C x for every x. From 1) and 3) follows a ca. The proposition e 1 

has . the property that xC e 1 for every~- It can be proved that there 

ex.i.sts a proposition x U y, = (x' 17 y') 1·, such that x C x U y and 

y C x U y and x C z, y c z taken together imply x U y C. z. From 

this we see that this logic is a structure. It can be proved to be 

modular if a numerically valued "dimension function" d(a) is intvoduced, 

with the following properties 

a.) a. c b and a f- b implies d(a) < d(b). 

b.) d(a) + d(b) = d(a 11 b) + d(a vb). 

Now if we simply assume axioms 1 - 5 and distributivci.ty and introduce 
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the following two conditions 

c.) There is a finite upper bound for the length n of any 

chain connecting the null element with the all element 

d.) The structure is irreducible, that is, there is no 

"neutral" element x f ~, o, such that 

(all x) U (a 11 x 1 ) = a for all a and x fixed. 

we can say that the structure is isomorphic to a projective geometry 

over a non-commutative field. For definitions of projective geometries 

see the section below on geometries. 

This logic arose from the opinion that 11 one can reasonably 

expect to find a calculus of propositions that is formally indistinguis­

able from the calculus of linear subspaces with respect to set products, 

linear sums and orthogonal complements, and resembles the usual calculus 

of propositions with respect to and, £!:, and not. 11 (See Birkhoff and 

von Neumann I 4). A phase-space in the quantum mechanics is a mathemati­

cal idea defined as follows. Any physical system S is at each i_-r1stant 

hypothetically associated with a 11 point 11 E in a fixed "phase-space" P. 

The point Eis supposed to represent mathematically the 11 state11 of S 

and the 11 state11 of Sis supposed to be ascertainable by "maximal 

observations". The reader unfamiliar with these notions can find ample 

discussion _in von Neumann's book on the quantum mechanics, see von 

Neumann I B 1. Moreover, ever:y point Eo associated with Sat a time 1o 
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together with a prescribed mathematical "law of propagation", fix the 

point .12:t associated with Sat any later time i• 

In electrodynrunics the points of P can only be specified after 

certain functions - such as the electrostatic and electromagnetic 

potentia::1:-are lmown; P is in this case a space with an infinitude of 
I 

dimensions. The law of propagation is contained in Maxwell's equations. 

In quantum theory, the points of P correspond to the "wave function" 

and so Pis a function-space usually assumed to be Hilbert space. In 

this case the law of propagation is contained in Schrodinger's equations. 

To establish the correspondence to the experimental, or obser­

vation space S, we let the mathema.tical representative of a subset s1 

of the observation space (determined by compatible observations 

~, ,~· ,~) for a quantum-mechanical system, be the set of all 

points of the phase-space that are linearly determined by proper 

functions fk satisfying O)_ fk = ¢1 fk, ... , o<n fk = ¢n fk, where 

(¢1, ... , ¢n) is a point of S1. It can be shown by quantum-mechanical 

methods that there exists, then, a set of mutually orthogonal closed 

linear subspaces Pi of P (which corresponds to the families of proper 

function f, satisfying oS_ f = ¢il f, ••• o<n f = Pin f) such that 

every point (or function) f of P can be represented uniquely in the 

form .f = c1 r1 + c2 f 2 + • . . , (fi in Pi). It can be shovm that the 

mathematical representative of any experimental proposition is a closed 

linear subspace of Hilbert space. From the fact that all operators of 
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quantum mechanics are Hermitian it can be deduced that the mathemati­

cal representative of the negative of any experimental proposition is 

the orthogonal complement of the mathematical representative of the 

proposition itself. If the following postulate is added to the usual 

ones of the quantum mechanics, then a suitable correspondence will 

result. 

(A) The set-theoretical product of any two mathematical 

representatives of experimental propositions concerning 

a quantum-mechanical system is itself the mathematical 

representative of an experimental proposition. 

From this postulate, together with the other deductions, it 

follows that the set-theoretical product and closed linear sum of any 

two, and the orthogonal complement of any one closed linear subspace 

of Hilbert space representing mathematically an experimental proposition 

concerning a quantum-mecganicel system S, itself represents an experi­

mental proposition concerning S. 

In classical physics with this sort of logic of propositions, 

the distributive law holds. In ordinary Hilbert space the modular 

axiom holds only when the modul-sum of two subspaces representing 

propositions, is always closed. 

It is not my intention to even sketch the full subject of 

mathematical logic. I have attempted only to indicate a few of the inter­

dependences between the mathematical logics and the abstract structures. 

An entertaining and elementary treatment of some of the chief theories 

of mathematical logic is to be found in Frink I 1. 
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Section.£• Structures connected with probability. 

In the theory of probability there is an ample field for the 

application of structure theory. The application comes usually by 

way of Boolean algebras. We shall pause here long enough to indicate 

a few of the best ·treatises. Boole I 1,2,3,4 and Poretski I 5 were 

among the first to treat probability by means of logic. Venn in his 

11Logic of Chance" presented one of the first extended treatments. 

KeyneS' in "A Treatise on Probability" and Reichenbach nwcii.rscheislich­

keitslehre11 , .treat the modern problems fully, and give complete biblio­

graphies. 

Those familiar with :ergodic theory will probably be acquainted 

with the possibilities associated with the introduction of structure 

theory. Birkhoff I 9 has begun a study of probability from the modern 

point of view especially as connected with ergodic theory. We shall 

not go into this further, but shall consider a most instructive example 

due to Markoff I 1. 

Markoff considers the space of space-time points x,y, etc and 

defines between some pairs x,y the relation 11 precedes11 • x ~ y means 

x precedes y. The axioms concerning this relation are similar to 

those for structures. 

A. If x C: y, then y does not C. x. 

B. If X < y and y C z then X ~ z. 

C. A chain x = z0 ~ z1 •. • C, Zn = y between two given 
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points x and y is limited in the number of terms. 

D. To each pair of points x,y there is a point u and a 

point v, for which 

x,y C: u; vc x,y. 

Axiom C is a sort of '!finite chain condition". .Axiom Dis consider-

ably weaker than the axioms that guarantee the existence of a lub and 

a glb see Postulates VI 1,2. By the point x, we shall mean the 

ordered set (x0 ,x1,x2 ,x3 ). Now the relation xG y can be established 
3 

by Xo < Yo, (Yo - Xo) 2 
- L 

i=l 

2 
(xi - Yi) €; 1, and it satisfies 

all the above axioms. Conclusions about relations of the metric 

defined by these conditions and the usual metrics of relativity are 

deduced by Markoff. 
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Section 4. Structures connected with projective geometries. 

Many of the methods used in projective geometry since its 

origin h_ave _been structure-theoretic in essence, but the connexions 

with structure-theory were greatly obscured by the presence of ma.~y 

kinds of elements - points, lines, planes, etc. - each of which seemed 

to have its own separate identity. Although projective geometry had 

long been knovm as the geometry of projection and section (union and 

cross-cut, respectively) because of the commanding position these two 

ideas assumed, still there were few efforts to try to develop abstractly 

the general theory of n-dimensional projective geometry using the ideas 

of union and cross-cut as the fundamental primary notion. 

In his theory of casts, von Staudt II 1, II 2 B, touched the 

idea. Veblen and Young II l came very near and mor~over, without 

abstracting the idea of a dimension function they proved that if dim L 

represents the dimension of the linear sub-spaced L then 

ili.m L + dim M = dim (L U M) + dim (L () M) 

(see pp. 52-53, vol. I, theorems Sn2 and Sn5). 

Menger II 4 formally stated the postulates of the ordinary n­

dimensional projective geometry in terms of union and cross-cut. He 

started with a structure with ·all ~ and nulJ.-elements etc .. ,· and 

first postulated a transitive, symmetric m1d reflexive equivalence 

relation, 11=11 , such that A.= B or A f B for every pair of objects. 

To these postulates he added a "subtraction" postulate: if A + S = S 
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then there exists a B such that A+ B =Sand AB= null element; and 

a "dimension" axiom: to each element A there is associated an integer 

dim A such that 

a.) if every element properly contained in A has dimension 

~ n - 1 then dim A .§ n. 

b.) if a proper element of A has dimension ~ n ··~ l, then 

dim AS n. 

c.) dim A + dim B = dim (A U B) + dim (A It B). 

Points are defined as elements of dimension zero, lines as elements of 

dimension 1, etc. If we take the structure as an n-dimensional number­

space, A aand Bas linear sub-spaces, Alt Bas the greatest linear 

sub-space contained in A and B, AU Bas the least linear sub-space 

containing A and B, then we have the postulates of n-dimensional 

projective geometry. 

Bergmann II 1, took a slightly altered set of postulates in 

which both distributive laws hold. Then both operations were proved 

to be uniquely reversible. Instead of the "dimension postulate" he 

took further conditions on the operations.and proved the existence of 

a proper dimension-filllction. He showed that if we take dim of the null­

element = -1 and the dimension postulate of Menger with the exception 

of dim A + dim B = dim A U B + dim A I\ B, we can prove dim A + dim B ~ 

dim A U B + dim A 17 B. He II 2 made further critical studmes of 

systems of postulates, some involving the formation of complements as 
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the fundamental idea. Een.ger II 7 shov1ed that if the subtraction 

axiom be further sharpened to require uniqueness, then his s ys tern 

of postulates describe a structure isomorphic with tll:n.e structure of 

all subsets of a set, this havin§; the power of the diL1e nsion of the 

all-element. 

·llald ( see Menger II 8 ) investi gated the effect of requiring 

the unique reversibility of the operation of union. Schre iber II 1 

investi gated the effect on the structure of substituting various 

axioms on betweenness and on congruence relations. He bases his 

investigations on the observation that in t he plane the group of 

sirailarity transformations rnay be defined as a certain cross-cut of 

the group of the projective transformation with that of the transforma-

tions of the form x' + iy' = __ a __ 
JC+ iy 

Schreiber 

has studied the effect of substituting postulates concerning the 

relation of an element to three other given elerrents. 

Garrett Birkhoff II 3 shows that if we start frorn any n­

dirnensional vector space with coordinates in a number field the set 

of vector subspaces of the given space will form a complemented modular 

structure. If these elements are taken as the 11elernents ·1 of a projec­

tive geometry, taking an 11element" of dimension 1 as a point, an element 

of dimension 2 as a line, etc. then according to classical n-dimensional 

projective geome try , 

P1 Two distinct points are contained in one and only one line. 
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P2 If A,B,C are points not all on the same line, and D,E 

(D f E) are points such that B,C,D are on a line, then 

there is a point F such that A,B,F are on a line and 

also D,E,F are on a line. 

P3 Every line contains at least three points. 

P4 The points on lines through an K-dirD..ensional element and • 

a fixed point not on the element are a (k -;. 1) -dimensional 

element, and every (k + 1)-dimensional element can be 

defined in this way. 

He proves that any set of elements satisfying P1 to P4 with a dimension 

function, defined for every element and such that there is a finite 

upper bound to the dimensions of the elements, can 'be~ defined as a --pro­

jecti ve georretry. Birkhoff proves that any projective geometry is a 

complemented modular structure, if intersections are defined as cross­

cuts and conjunct ions as unions. This structure also has the finite 

chain conditions and has of course an all element and a null element. 

Conversely he proves that any modular complemented structure with the 

condition that every sequence of decreasing elements a1 > a2 > a3 

has at most n tenns, satisfies postulates P1 to P4, where union and 

cross-cut are defined as before, and the diroo nsion of an element is 

the length of the decreasing chain that starts with it. The dimension 

of the structure is the dimension of its all element. He proves that 

every complemented modular structure of finite dimensions is isomorphic 
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with the direct product of a finite Boolean algebra and a finite 

number of projective geometries and conversely that any direct 

product of a finite Boolean algebra and a finite number of projective 

geometries i s a complemented modular structure of finite dimensions. 

Menger II ibO (see also below) has proved a similar result in some­

what different form. 

Birkhoff and von Neumann II 4 have studied the problem of 

determining which projective geometries may be complemented in such 

a fashion that to any element there corresponds an A' such that 

(A') ' - A and A";; B implies B' <;-A'. They express the result by 

saying that the number-field used in forming tbe projective geometry 

must have an involutory - anti-isomorphism ( that is, a transformation 

a ➔ a such that a-ry'a and ab-7ba) to which there is associated a 
n 

definite Herr.mi tean diagonal form L xi gi xi with gi - gi (which 
1 

vanishes only for x1 - :z;z - • • • = xn = 0). Some of the theory of 

such an isomorphism may be got from Albert I 1 B. 

We have seen ( see the sect ion on algebra, Whitney) how the 

idea of linear dependence may arise in connexion with the theory of 

structures. Birkhoff II 1 has considered a matroid M (in the sense 

61' Whitney) in which all sets consisting of at most two elements are 

independent ( in the matroid sense). Now let L(M) be the set of all 

linearly closed sets, that is, all subsets A of M such that every 

element of M that. depends linearly on A belongs to A. Then L(M) forms 
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a structure ,vi th respect to the union and cross-cut defined in L(M). 

The nature of the matroid M is uniquely determined by the nature of 

the structure L(M), since the rank of a linearly closed set A is 

exactly the length of the longest ascending chain of linearly closed 

subsets of A. For further work of Birkhoff II 2, showing the connex­

ion between the "discrete spaces" of Alexandroff and n-dimensional 

projective geometries see the discussion of Alexandroff in the section 

below on topology. 

Nakasawa II 1 has tre.ated axiomatically linear dependence in 

n-dimensional projective spaces, using a calculus due to G. Thomsen II 1: 

certain sequences of element of elements of an abstract space are 

designated as "cyclesn with a product de f ined and an equivalence rela­

tion known as "to be valid", a1a2 •··as= 0 or for short a1a2 •·· as; 

or not to be valid a1a2 •·· as f 0. 'Th.ere are associated the following 

axioms 

a.) aa 

b.) a1 

c.) a1 

as implies a1 ••• asx; s = 1,2,••· 

ai •·· as i mplies ai •·· a1 •·· as; s = 2,3, 

i = 2, • •• s. 

d . ) a 1 -/: 0 , • • • as f O , xa1 • • • as , a 1 • • • asY imply 

xa1 ... asYi s = 1,2, 

: 1To be valid!! is the same as 11 to be linearl y dependent 11
• El ements can 

be taken as points . 'I'he totality of eleme nts x that satisfy the relation 
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a1 •·• aux where a1,a2 , •·· ,an is a fixed set of elements and 

a1 ¾ •·· an i 0, is defined as a linear space Rn generated by the 

"basis" a1 • • • an, and n is the rank of the space. The notion of 

basis and rank are then extended to any set M of elements of the given 

space. 

Menger II 10 examines the notion of linear dependence in a 

generalized projective geometry. He defines m points P1 ,P2 , •·• ,Pm 

of a projective geometry as independent if 

1\: /) (P1U •. • U 1\:-1 U Pk+l U Pm) = null element 

fork= 1,2, •·•,m. 

An hyperplane is defined as an .element that is contained only in itself 

and the all-element. m hyperplanes H1,R:a, •·• ,Hm are calle~ independ­

ent if Hk V (H1 fl H2 fl•· ./)Hk-117 Hk+l /l , • • /) Hm) = all element for 

k = 1,2, •·· ,m. Certain necessary and sufficient conditions for linear 

dependence are stated. The dimension of an element is defined as the 

number of independent points whose union is equal to the element. If 

the finite chain oondition holds, then every element will have a finite 

dimension dim V = -1 where V is the null element. dim A 

1 + max (dim A') for all A' contained in A. As before dim A + dim B = 

dim (AU B) + dim (A() B). Ee proves the t heorem ( see Birkhoff above) 

on the deconrposi tion of a projective geometry into a direct product, by 

n~ans of the notion of generalized s implex. He defines parallelism in 

terms of' union and cross -cut and linear dependence. 
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MacLane II 1 has studied abstract linear dependence in proje c­

ti ve geometry by means of a 11 k dimensional schematic fi gure" , and has 

shown the relation to the matroids of Whitney. He defines a schematic 

plane fi gure as a system of a finite number of 11points'' and certain 

sets of these points, called "lines" and satisfying the axioms: 

1.) Any pair of points belongs to one and only one line. 

2.) Every line contains at least t wo points. 

3.) No line contains all the points. 

4.) There are at least t wo points. 

It is not necessary that t his schematic fi gure correspond to any actual 

figure in the plane. A schematic thre e-dimensional fi6ure is a set of 

"points", • 11lines 11
, planes sat isfying 

1.) Every triple of points belong to no one line belongs to 

one and only one plane. 

2.) Every plane contains three points not on a line. 

3.) No plane contains all the points. 

4.) If a plane contains t wo points of a line, it contains all 

t he points of that line. 

The definition of a k-dimensional schematic fi gur e is similar. He sets 

up a one-to-one correspondence between the schematic n-dimensional 

fi gures and the matroids of rank n + 1, where th e rank of a set of points 

A is defined as the smalles t r such t ha t all points of A are contained 

in some (r - 1) pl a ne. Ee pr oves t l;a t a s chematic n-dimensi onal fi gure 
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is completely determined if its (n - 1) planes are given, moreover, if 

a set of "pointsH and certain subsets of' this set are given, these sub­

sets will be (n - 1) planes of so.me figure if' and only if there are 

circuit compleme nts of' a matroid IE* , that is, if these subsets satisfy 

the axioms Cf, c:, while their complements satisfy V/hi tney 's axioms c1 

and C2 f or circuits. 

C* 1· Every element is omitted from at least one ci:rcui t complement. 

For every pair of elements e1,e2 there is a circuit comple­

ment containing e1 but not e
2

• 

C1. No proper subset of a circuit is a circuit. 

C
2

• If P1 and P
2 

are circuits, if e1 is in both P1 and P
2

, and 

if e
2 

is in P1 but not in P
2

, then there is a circuit P
3 

in P1 + P2 containing e2 but not e1. 

1Turther• he give s examples of matroids that are not representable as the 

set of colwnns of a matr ix, but proves that if a matroid t I is representable 

in ihis way by a matrix of' complex numbers, then E can also be re presented 

by a matrix v; ith eler:2ents from an algebraic field of finite degree. Ee 

indicates the relation, in certain cases, between the non-representabili ty 

of a matroid by a matr ix, and the degeneracy of' the associated schemat ic 

fi gure. 

ivienge r II 1:2 and II 13 has defined parallelism and the generalized 

parallelism and non-parallelism of Loba ts chews '.cy and Bolyai by means of 

union and cross-cut, and has developed the theory of' non-Euclidean 

geometry axiomatically from the struct ure-theoretic point of view. 
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Se ction 5. :Jtructu.re s connecte d. wi th continuous geometries 

Von Neumann II 2 has invented a most remarkabl e kind of 

geometry, one in which there are no points; t hat i s a geometry in which 

there are no non-va cuuous elements of least dimension. A. cont inuous 

ge ometry is defined as a structure L, defined by means o f a partial-

ordering relat ion, such that for the two postulates on the existence of 

a greatest lower bound and a least upper bound of any pair of elements 

(the cross-cut and the union) we have instead the postulates 

(U} To each set S of elements S , there exists an eleme nt Nis 

such that S ";; IVI3 for all S in S and for any element M' 

with the same property, M' ; M. 

(P} To each set S of elements S there exists an element D such 

that D-;- S for all S in S and such that for any element D' 

with the same property, D' ';;' D. 

Dis designated by P(fil 
sins 

and M is designated by U(S}. 
s :in.S-

over, let L be modular, complemented and irreducible, and let the 

operations of union and cross cut be continuous, that is 

More-

( C} Let ....fl be any aleph, Ao<. be a transfinite sequence defined · 

for all ordinal numbers o< < _fL . Then 

a.) If Ac><.. "';" B
13 

for 

b.) If A(S ~ A"" for o<. < (3 <. JL then 

J (A~l)B) = [!(A.JJ f\ B. 
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Now he has shown that a dimension function can be defined over 

the structure L such that 

1.) 0 ~ d( A) i 1 

2.) d(N) = 0, d(q,) = 1 where N and 00 are the null-element and 

the all-element respectively. 

3.) d(A U B) + d(A~ B) = d(A) + d(B). 

Further he shows that for the set of values of d(A) as A goes over the 

structure, there are only two cases possible. In the first case this 

set of values consists of the numbers 0, 1-.. , .e. , • • • 1, for some fixed 
n n 

E:, characteristic of the particular structure. In this case, the 

structure L can be shown to be an abstract projective geometry in the 

sense of Birkhoff (see above). The only other possible case is that in 

which the set of values of the dimension-function consists of all the 

real numbers between 0 and 1. This is the proper continuous geometry 

and it may be considered as a limiting case of a projective geometry of 

dimension n ( in the sense of Birkhoff), as E: approaches infinity. 

Von Neurnann II 3 defines a metric, a generalized distance between 

two elements as (A,B) = d(A U B) - d(A /l B). This ill3 tric satisfies 

the conditions 

1.) (A,A) = 0; (A,B)7 0 for A -:f B. 

2.) (A,B) = (B,A). 

3.) (A,C)? (A,B) + (B,C) 

Since the set of values for the metric are, in the case of a projective 
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geometry, a finite discrete set, no significant topology arises there 

by its introduction. In the case of a continuous geometry proper, 

there results an important non-trivial topology. The geometry is com­

plete and connected with respect to this metric. 

He (see II 4) seeks to algebraize the continuous geometry, and 

shows that it is structure-isomorphic, with respect to union and cross­

cut (defined in the usual manner for ideals), with the structure of all 

principal right ideals of an unique (within ring-isomorphism) irreducible 

regular ring. A ring is defined as regular if it has an unit and if. to 

each element A in tre ring, there is an element Y, such that A YA= A 

(this condition can also be stated that in the structure of the ideals 

of the ring, every principal ideal has a complement). It is shown that 

this ideal-structure_ need not be a continuous georretry and is indeed 

merely a complemented modular structure, in general. Ee ( see II 1) 

proves that the centrum of the ring , as a consequence of the irreduci­

bility, is a commutative division algebra. This divi s ion al gebra i s not 

itsel f always sufficient to cha1°acterize t he or i ginal continuous geometrJ. 

In the special case that the continuous geometry is improper, that is, 

a projective geometry , the examples can be given in which two distinct 

projective geometries are associated with the same division algebra. 

In seeking to characterize the continuous rings, which are those 

re gular rings for which the principal ri ght ideal structure is a contin­

uous geometry, von Neumann II 5 is led to the notion of a "rank ring11
• 
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A rank ring is a irreducible regular ring in which a numerically­

valued rank function, R(a), is defined for all elements a of the 

ring such that 

1.) a --;, R( a) ";' 1 

2.) R(a) = 0 if and only if a= 0 

3.) R(l) = 1 

4.) R(ab) <; R(a); R(ab) ';" R(b) 

5.) For e2 2 = e, f = f, ef = fe = 

R(e + f) = R(e) + R(f) 

O, we have 

He shows that R(a + b) ";" R(a) + R(b) and sets up R(a - b) as a metric 

distance, calls it the 11rank metric ''. Now the principal right-ideal 

structure of a regular irreduc ible ring is proved to be a continuous 

ring only i f' i t is a rank rins , complete according to the topology 

induced by t he rank metric. Conversely if i t is a complete rank ring 

then it is either an nth order matrix algebra over a suitable division 

algebra, or else it is a proper continuous ring. In an extension and 

consolidation of algebraic results concerning rank rings he considers 

algebraici ty of ring elem:, nts with respect to the centrum of the ring, 

and algebraic numbers, defined as lim.i ts of seq_uences of 11algebraic 

integers" ( in a certain generalized sense) . 

hlac Lane I has worked ,v i th "continuous structures" ( structures 

in which postulates (U) and (P) are valid) and has defined an "exchange 

structure 11 L satisfying the conditions 
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(E} I~e exchange postulate. 

I f a is in Land p and q are elements prime over 

zero, then a L. a Up~ au q implies q--;- a p. 

(Z) Existence of' prime elements. 

If b <:::. a are in L then there exis t s a prime element 

p in L such that b <. b U p ~ a. 

(F) Finite ness of dependence. 

If n is a s e t of elements prime ove r zero and p is ~, 

an element prime over zero such that 1) <'... 
~ = D(U ' then the re 

exis t s a fini te s e t of el eme nts prime over zero 

He has use d these structures to investi gat e transcendel'\..ce. degrees and 

p - bases. It mi 2)it be mentioned in passing t hat as early as 1887 Kemj)e 

( s ee II 1, i~ , 3 ) had a t t empted to cor r e l a t e ge ome try 2,nd the calculus of 

propositions by i ntrod1.:cj_ ng a t ernary func t i. 0 11 -tL&t could be inter pr e ted 

in t er n s oi' betweenne s ,s, in spe ci al cases. 
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Se ction 6. Structures connected with topology 

There a1·e, roughly, two weys in which structures mey be used 

in colli'lexion with topology. :Ve r,iay study a e;iven topological space 

by means o:f structure-theoretical methods, or we may start with a 

structure e:.nd observe the results of endovring it nith a. to,ology. 

The f'ir,3t 0:c1 ay is commonly found in cor;1binational topoloc./, L-md. the 

second is found. in the general tb eory of sets of :points. 

Borel II l B (seep. 18) started -withe. set of points in which 

the idea of subset was defined, and then introduced the notion of the 

limit superior tensemble limite complet n) of a sequence of such sub­

sets, and 
11

)he 

restreinte /. 

limit inferior of a similar sequence('ensemble lirn.i te 

The first is defined as the class of elem.ents such that 

each one is in an infinite number of the sets of the given sequence. 

The second is defined as the class of elements such that each one is 

in all but a finite number. He derives the formulas, 

... ) 

where+ and• are just the union and cross-cut for set theory(see 

Chapter I, example~- C. de la Vallee Poussin IV 1 and IV 1 B treated 

the same question by means of characteristic functions)see also 

Hausdorff IV 2 B. The sequence is said to have a limit if 

Daniell II 1 investigated the limit sets by means of the 



109 

symmetric difference. He puts /A - B / = A'B + A.B' and calls it 

the ttmodular difference". Some of the properties of this modular 

difference are 

I A - B j = I B ,- A / 

jA - B) = II - BI 

If )A - BI = 0 then A= Band conversely 

IA - BI C A + B 

/A - CI C /A - BI + I B - CI 

I ,\ ~"'- -c/•/B-c/CjA- c/ + /B - CI 

/A - B\ + /A - c/ + ••• + ( A - N/ = (A + B + C + ••• + N) - ABC•• • N 

Incidentally he notes that the standard type of equation in symbolic 

logic, having a unique solution, is of the form XA' + X'A =Band 

that the solution may be expressed X = jB - A). 

He defines a sequence of classes Ai,¾,··· 11 ••• 
' ~""Il, as having 

a limit ii. if a set A exists with the property } A - An / C Sn for 

all n, where Sn is the nth term of a sequence such that Sn:) Sn-1 

and there is no point common to all the Sn (i.e. lim Sn= 0). Ee 

shows that this definition is equivalent to the..t of Borel 2.nd further-

more that the Cauchy condition for sequences holds, that the necessary 

and sufficient condition that the sequence An have a limit is that 

} An - An+p / C Sn for some decreasing null-sequence 
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Niac Neille starts simply with a set of elements~'~'~' 

partially ordered by a transitive and reflexive but not necessarily 

symmetric relation C . If a partially ordered set K is closed under 

certain operations, then a set L is defined as an extension of K if 

Lis a partially ordered set closed under a certain class of operations> 

such that we can set up an one-to-one correspondence between the 

operations of Kand a sub-class of those of Land such that there 
) 

exists an one-to-one correspondence between the elements of Kand a 

sub-set of L, preserving the partial order, and preserving correspond­

ing operations. Furthermore Lis to be the smallest such set. He 

defines the ·cross-cut and union for each subset of Kand postulates 

their existence for a complete K. Ee defines several kinds of exten­

sions. The first extension is an adjunct ion of the uni ts with respect 

to cross-cut and union. The second extension is the embedding of an 

arbitrary partially-ordered set K with units in a complete structure 

L, by means of "cuts 11
• A cut (A,B) of K consists of two subsets A 

and B of K such that aC b for every a in A and every b in 3, aC x 

for every .§. in A implies x in B, y C b :ror every }?_ in B implies y in 

A. Ee partially orders the cuts by putting (A,B) C (C,D) if every 

element of A is an element of C. The system L of the cuts will be a 

structure and will be complete (in terms of union and cross-cut). 

A third extension embeds an arbitrary multiplicative partially-ordered 

system K in a distributive structure L. The elements of L are the 
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subsets A,B, etc. of K. A C B by definition if, for every ai in A, 

a i = ~ jai bj whe r e the SUJll is taken over every bj in B, and 
j 

~ jai bj is distributive . 2. 
J Pj is said to be distributive if 

t o every element .!_ such that 2. Pj .::J x t here exists a sum 2 Qi= x 

where f or each qi there is a Pi m. th Pi:) x. Then L is a distribut ive 

structure such that each of its subsets has an union in L, which 

union is dj_stributive in L. Moreover any such structure that has a 

subset isomorphic to K, has a subset isomorphi c to a subset of L. A 

fourth extension eLlbeds an arbitrary distri butive structure K with 

uni ts in a Bool ean algebra L. K' is the set of ordered pairs 

ai b j C aj . Now apply the third extension to K' and we get L. 

Foradori, i n his theory of inclusion (see the introduct ion to 

Chapter II for the notation) has set up a very gene ral theory of limits 

and l imi ting sets by means of his essentially structure-theoretic 

methods . He calls a "domain11 K an F-dornain (C-efu.gJ), i f every pair 

of elements contain a common element of K. A domain G is called an 

R-domain ('Gerust 11
) if there exists a "sub-domain11 A with the property 

that to every element h of H t here is an F- domain Kh, whose cross-cut 

is h . H is called a basis f or G, its elements ar e called basiselements 

and the ],- domains Kh the bas is domains . If' ~,.E.,.2. are elements of a 

domain B, and K is an F-domain in B then c is said to connect a and b 

by means of K if c is the cross-cut of the eleme nts of K and every 
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member of K contains at least one element contained in a and at 

least one element contained in b. If G is an R-domain in the domain 

B then an element s of B is said to be connected in G if to each pair 

of elements .E_,SL in B such that p U q_ == s there is a t l east one basis­

element g of G that i s contained in s a nd connects p and q by means 

of G. Let, as before , s be an element of B, & a basiselement of G 

then.§. is a cluster-eleme nt of~ if ~ is the cross-cut of all elements 

of Kg (the F-domain associated with 1£) that properly contain .fi, and 

if every member of Kg that contains g properly always contains a sub-

element of~ different from&· By a subel ement of s vre mean an 

element contained ins. sis said to be closed in the R-domain G if 

it contains all its cluster elements. sis said to be continuous 

( 11 stetig11 ) in G if' it is connected and closed in G. A "nested domain" 

(see Chapter II introduction) Sis said to be 11unbroken11 ("kontinuier­

lich11 ) if every member i of S is the cross-cut of all the members of 

S that contain~ properly, if there is contained in S the cross-cut 

of the elements of each nested · subdomain T of S and finally i f the 

cross-cut of all the elements of S is in S. Novr an element k of the 

domain B is said to be a continuum if every nested domain all of whose 

elements are contained ink is a nested subdomain of an "unbroken" 

nested domain all of whose elements are contained ink. 

Let a and b be t,,10 element s of a domain B; then a and b are 

said to be isomorphic or of similar structure, if the elements contained 
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in~ can be made to correspond in an one-to-one manner to the 

elements contained in b so that that the inclusion or partial order 

is preserved. Now he proves that if k and _! are t wo isomorphic 

elements of a domain, and if k is a continuum., then _! is a continuum. 

The property of being a continuwn is thus a structural property. It 

can be s.hovrn, however , that t he :pror)erty of· b 0i n e. con-cinuous set 

is not a structural property. 

Ee applies these results to work out an enormously mo re general 

theory of measure than any :previous one, see II 3. He is able to 

reduce Lebesque and Caratheodory measure to special cases of his 

measU1'e . He works out a general Borel-Lebess,ue theorem. 

Let us pause a moment to notice a few of the connexions 

between this theory and the commoner topologi es. A very good repre­

sentative of the classical topologies is that of Eausdor•ff. For 

convenience in the later work of th is t hesis we shall note down the 

postulates of Hausdorff (see IT 1 Band 2 B). In a set E of elements 

we label certain sub-sets nei?hborhoods and i mpose on them the follow­

ing postulates: 

VII 1. ) To each element~ corresponds at least one of its 

nei ghborhoods; every neighborhood contains~-

2.) If V1 and V2 are t wo nei ,:;;hborhoods of ~' t he re exists 

a neighborhood V of' ~ such that V C Vi/) V2 • 

3.) To each element b contained in a nei ghborhood V of an 
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element~, there exists a neighborhood W of b such 

that WC V. 

4.) To each pair of different elements~,£ there exists 

a neighborhood Vi of~ and a neighborhood V2 of b 

without common elements. 

An element (or point)~ is said to be a cluster point of a given sub­

set S if every neighborhood of~ contains elements of the set. The 

set Sis said to be closed if it contains all its cluster-points. It 

is open if there is a disjoint closed set such that the union of the 

two is the whole space. The closure of a set is defined as the union 

of the set with the set of its cluster-points. It is said to be 

connected if it is impossible to ex-press it as the point-set sum of 

two sets without common points and without common cluster-points. 

Now it can be shown that if we take the inclusion relation and the 

cross-cut and union just as in the classical point-set theory (see 

example 1, Chapter I), then we get a domain of Foradori, and it can 

be shown easily that the ordinary topological notions of connected 

set, closed set, etc. are identical in this case, with the correspond­

ing ones of Foradori. However, his definitions are not simple 

generalizations of the point-set definitions as he shows quite 

clearly. Moreover, a set of sets can be partially ordered in an 

indefinite number of ways, none of which is equivalent in any respect 

to the ordinary point-set manner. His theory includes all of these, 



115 

and produces some striking new results. 

Perhaps t he most highly developed theory of structures with 

regard to their direct connexion with Hausdorff topological spaces 

has been set f orth by Stone II 1,2, 3 . ]'or the nomenclature involved 

in the f ollowing des cription, t he reader is r ef erred t o the f irs t 

part of the se ct ion on logic. As the ideas of homomorphism and iso-

morphism are important in the sequel, we shall recall the fundamental 

theorem of homomorphism, which applies, of course, to a Boolean ring. 

In order that a Boolean ring B be homomorphic to a given Boolean ring 

A, it is necessary and suf ficient that there exist an ideal A in A 

such that the quotient ring A/A be isomorphic to B. Now regarding 

the symbols l), + and •, ( 11 is re garded as identical with • according 

to the equation at the first of the section on logic) if an algebraic 

system Bis homomorphic to a Boolean ring A with respect to the pair 

of operations+,• or with respect to t he :pair V and•, then Bis 

homomorphic to A with respect to all three of the operations, and Bis 

a Boolean ring. If the al gebraic system Bis homomorphic to a Boolean 

ring A with unit -wt th respect to the pair of opera tions tJ and 
/ 

or 

with respec t to the pair of operations \J and • , then B is homomorphic 

to A with respect to all four of t he oper a tions+, ti, •, and 

is a Boolean ring wi t h a unit. 

I 
and B ) • 

As a first step in establishing the connexions between a 

Boolean ring and a Hausdorff to:polor:ical space ,S tone II 1, 2 proves tha t 
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every algebra of classes with more than one element is isomorphic 

to a reduced algebra of classes by virtue of an element-to-eleme nt 

correspondence of the basic classes. A reduced algebra of classes 

is a Boolean ring A with elements that are sub-classes of a fixed 

class E.A with elements e1r such that every element e,1; in EA is con- , 

tained in some element of A and is the only element of E common to all 

the elements of A containing it. Moreover it can be proved that if A 

is actually an algebra of sub classes of a class E, A is an arbitrary 

ideal in A and E(A) is the union of all those subclasses of E that are 

elements of the ideal A, then the correspondence A~ E(A) defines an 

homomorphism of the system of all ideals in A, with unrestricted 

addition and finite multiplication as operations, to the system of all 

classes E(A) ·, with the operations of forming arbitrary unions and 

finite intersections in accordance with the rules 

E(A) = E( SA), 
AtA.B 

-.-;--

I L E(A) -:) E ( p A) 
A;... B 4.,. B 

for A in a non-vacuous class of ideals in A. L and_/_l_are union 

and cross-cut in A, Sand Pare union and cross-cut in the ideal 

structure associated ·with A. The algebra I of subclasses of the class 

Eis said to be perfect if this homorphism is an isomorphism. From 

this result he proves that the necessary and sufficient condition for 

an abstract Boolean ring B to be isomorphic to the algebra of all sub­

classes of some class E, is that every normal ideal in B be principal 
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and that B contain a complete atomic system. The definitions of these 

terms have been given in the section on logic. 

Nov, l et A be a Boolean ring wi t h e lement s ..§;.,E_ ,~, C(a) the 

class of all prime ideals of A that are not divisors (do not contain 

in the point-set sense) of the principal ideal A(a)J and B(A) the 

algebraic system wi th the classes C(a) as el ements and t he operations 

of forming finite unions sy;.1uue tric differences and finite interse ct ions. 

Then B(A) is a Boolean ring or algebra of classes and is isomorphic to 

A in the following way 

C(a) ~ a 

C(a + b) = C(a) + C(b) (symmetric difference) 

C(a U b) = C(a) U C(b) (union) 

C{ab ) = C{a) C(b) (cross-cut) 

Moreover t his is a :perfect representation. In justification of' the 

correspondence between a and C(a) it can be shown by transfinite 

induction that this does indeed exist and is one-to-one. 

Now i f in connexion wi th the pr i me ideal A of A we consider 

the clas s C(A) of all prime ideal s of A tha t are not divisor s (in the 

above sense) of A, then (see Stone I 3) the class C of all prime 

ideal s A in A will be a topological space if we consider the ideals A 

as points of that space, and each C(.A) as a neighborhood of every 

element it contains (in the point-set sense ) . An equivalent topology 
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is yielded by taking the neighborhood" as the C(a). C then is a 

totally disconnected, locally bicompact Hausdorff space. The c1asses 

C(A) are characterized as the open sets in C. The classes C(a) are 

characterized as the bicompact open sets in C. The space is actually 

bi compact if and only if A is a Boolean ring with an unit. We recall 

that an Eausdorff s:pace is bi compact by definition if from any class 

of open sets such that every point in the space belongs to at least 

one of the sets, we can select a finite class of them with the same 

property. It i s se,id to be totally disconnected if every pair of 

points of it can be contained in t wo disjoint closed sets having the 

entire space as their union. It is locally bicompact if for each 

point there exists a nei 2;;hborhood of this point whose closure is bi­

compact. 

The converse is provable, that if S is a totally-disconnected, 

locally bicompact Hausdorff space, then the bicompact open subsets of 

of S consti t ute a Boolean ring A, Now if we proceed to topologize 

this A by the preceding paragraph, it can be shown that we arrive back 

to a space topologically equivalent to s. Moreover, it can be shown 

that a necessary and suffici snt condition that a set be both open and 

closed is that it be a set C(a) described in the preceding paragraphs. 

Now certain of these results can be generalized by establish­

ing a certain type of mapping function of an Hausdorff space into a 

Boolean space and a complete mathematical equivalence is established 
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betvreen the theory of Hausdor ff spaces and the theory of Boolean 

a l s ebras by t he r esul t that the theory of a rbitrary spa ces is equiva­

lent to the theory of densely distributed classe s of mutually disjunct 

closed sets in Boolean spaces, see Stone II 1,3. 

11his theory produces definitely new results in the theory of 

approximation of polynomials and bounded continuous functionals. 

Applications are also made to the Brouwer-Menger-Urysohn theory of 

dimension. 

Wallman has extended the connexions of the above type · to the 

case of general bicompact Hausdorff spaces and a type of distributive 

structure. Let us t ake a distributive structure L with elements ~,.E_, ••• 

and null- and all-elements. .A collection G of eleme nts of L is called 

a 11point 11 if the cross-cut of any finite number of t he elements of the 

collection is not zero and G is a proper subset of no such collection. 

With each element a of L is associated a "basic ~-set 11 of "point",$" 

consisting of all the :9oints that have the give n e l ·eraent as one of 

their coordinates. The coordinates of a 11point 11 are simply tbe elements 

that go to form the point. A closed set of "points " is defined as the 

11point"-set intersect ion of a finite, or infinite numbe r of basic sets. 

Nov; it can be shown that the set of all 11points t1 with this definition 

of closed set f orms a bicompact Ti-space. A Ti-space is a topological 

space satisfying t he axiom of Hausdorff except f or the fourth,, separa­

tion axiom (see above). This axiom is replaced by :B'rechet's axiom: 
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for every pair of points, each point possesses a neighborhood not 

containing the other. Moreover, there is a bas is f'or the closed sets 

of S that is a structure-homomorphic i mage of L. 'I'his homomorphism 

is an isomorphism if and only if L has the property that if ~ and .E. 

are different elements of L, t here exists an el ement C of L such tha t 

one of ac and be is null a nd t he other is not null. If L is comple­

mented, then we simply ge t Stone's theory. 

If we start with L as the distributive struc t ure (with null­

element and all-element) of the closed sets of a Ti-space R where the 

union and cross-cut are simply those of ordinary point-set t heory and 

if we define an "ordinary point 11 of the associa ted spa ce S as a 11point" 

of S determined by the collection of all close d se ts of R containing 

a given point of R, then the correspondence between the original space 

R and the space of "ordinary points" of S is an homeomor phism. An 

homeomorphism between t wo topological spaces is an one-to-one trans­

formation that trans f orms open sets into open sets and such that open 

sets are the transforms of open sets. Furthermore, if R is bicompact, 

then every "point" of S i s ordinary. He proves t hat t he homology 

'-
theory of Cech is identical in the cases of Rand S , a nd dim R =dims . 

IG.i ne II 1 has studied set-structures , both complemented and 

other\'! i se, with re gard to limiting relations and their transf orms. 

Extending the i dea , first enunciated care f ully by Menger, of 

considering spaces whe r e in t ho elements are of various types
1
wi t hin t he 
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same space ,and of different dimensions, 'lucker as early as 1933 

see II 1 formulated an abstract approach to arbitrary topological 

manifolds. A cell_! of a combinatorial complex (for these defini­

tions, see Seifert and Threlfall IV 1 B) K is said to include a cell 

y if and only i f tbe closure of_! contains Ji· The cells of K form 

then, a partially ordered set in which incidence relations, closure 

and boundary can be defined in terms of inclusion, such that the 

boundary of any boundary is void. Generalizing this idea, he calls 

certain partially ordered sets 11 cell-spaces 11 see II 3. 

Alexandroff II 1 has considered discrete spaces ( "espaces 

discrets: r1 ). .A set E of any elements form a topological space if 

certain subsets (including always the vacuous set and E) are called 

closed, and the cross-cut a nd union (point-set) of any munber of closed 

sets are themselves closed. The complements of closed sets are called 

open sets and are the neighborhoods of theix elements. ('Ihis is 

essentially reversing t he procedure above under Eausdorff spa ces). 

Novr Eis called discrete D if the union as well as the cross-cut of 

a. finite or infinite nwnber of closed sets is closed. Every element 

p of Dis in a smallest closed set p and in a smallest open set Op. 

The sets p, Op, the vacuous set, and Dare called elementary sets. 

By means of the introduction of a dimension function and certain basic 

axioms for the corners, or elements of dimension O, he studies the 

honeomorphy of a discrete space composed of a finite number of elements 
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with a discrete space consisting of polyhedra of an Euclidean space. 

Garrett Birkhoff II 2 has studied Alexandroff discrete spaces. 

He shows that the discrete spaces with the multiplication a,"tiom "the 

cross-cut of a finite or infinite number of elementary sets is an 

elementary set", is identical with a structure. He shows the relation 

between a finite dimensional discrete space and the direct sum of a 

finite number of projective geometries and a finite number of isolated 

points. He proves that a structure is n-dimensional and distributive 

if and only if it is isomorphic to the structure of the closed point­

sets of a discrete space consisting of n points. 

Kodaira II 1 has also written on the relation of cell-spaces 

with combinatorial analysis situs. 

H. Cartan has considered a system, closely connected with 

structures, called a 11 filter 11 • A filter of sets of a class J is a family 

F that includes all oversets of any one, and the product of any t wo of 

its members. A 11 basis 11 of Fis a subfamily B such that any two subsets 

of B have a common subset in B, and such t hat the oversets include all 

sets in F. The system is essentially an abstraction of a topological 

space I, where Fis the class of all sets vrhose interiors contain a fixed 

point p and Bis a neighborhood system equivalent topologically to F. A 

neighborhood system is said to be equivalent to another if every neighborhood 

of one include , in the point-set sense, at least one neighborhood of the 
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other and conversely. 

Xurepa II 3 has applied generalizations and extensions of' the 

Cantor theory of transfinite numbers to the study of families of sets. 

He defines a ramified class as a system of non-vacuous sets X such 

that for each pair of such sets, either they are disjoint, or else one 

is a subset of the other. A well-11 amified system F, or ramified table 

is one such that to every subsystem ]'' '-;; ]' there is an initial system 

Ro(F') <,;= ] '' such that every set of F' is a subset of a set of R0 (F '). 

He applies these no·cions to an analysis and some · novel restatements of 

the problem of Souslin: is a linearly ordered set without gaps or jumps 

in which every set of intervals without common inner -ooints necessarily 

the linear continuum? 

He exa.."'llines correspondences between partially ordered spaces 

E1 to E2 and defines such a correspondence as an increasing function,fuf 

it is single-valued and a1 < b1 implies f(a1) < f(b1) where ~ ,.P.. are 

in E1 . It is called a real increasing function if E2 is sindlar, in 

the sense of Cantor, to a linear set. He proves that every non­

denumerable ramified table in which there is defined a real increasing 

function has the same transfinite r1ower as one of its subsets composed 

of elements that are pairwise independent, that is nei:t,her of a < b, 

a > b hol o.s :~·or e o.ch pair. i:i.lso that fo r any non-dem.m1s ra ble ran i f i e d 

table T of open sets and clo sed s e ts ·i; a~<:e n from a spa ce V t ha t i. s 

:perfectly separable, '11 has the sar,ie transfinite pov,er as one of its sub-
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familie s of pa.in-ii se disjoint close d. se t s (se e II lOj. ]further, in 

II 11 he proves t bat 

( 
..• , T' -·•) ,,- E < 

2 
,.)nax(peE,pdE) 

max Pe~, Pd~, Ps ~ '-= P = Ps~ 

where pE is the power of che partially-ordered set E, Pe E is the upper 

of 
bound for the powersAsubsets of E, Pd Eis the upper bound for the 

powers of subsets well ordered in both directions and Ps E is the upper 

bound for the powers of subsets consisting of pairwise independent ele-

men ts. .:... set is called partially well-ordered if every one of· its 

ordered subsets is well-ordered. Ee uses this idea and the hypothesis 

of the continuum to obtain an hypothesis eq_uivalent to that of Souslin. 

The idea of pseudo-set is due to Shirai II 1. Let certain rela­

tions e, ~ and II be defined between the elements of a set X and certain 

objects of any form than a g iven object IvI called a pseudo-set with 

reference to X i f f or all eleme nts x of X we have x e J.,1 , x e M a nd x I/ M. 

Eq_uality, ineq_uality, sum and product of pseudo-sets can be introduced. 
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Section 7. Structures connected with function-spaces. 

Ne start with a discussion of certain questions that are usually 

r egarded as algebraic, but which are actually connected with analysis 

in their applications. Loevzy II l ,as early as 1906,considered differ­

ential equations from the al gebraic point of view. He considers a 

linear homogeneous differential expression of order n, 

where the A's are r ational expressions in x, with coefficients in some 

fi e ld. I'he assoc iated differential equation is got by equating the 

expression t o zero. 'I'h is equation is called irreducible if H has no 

integral in common with a similar linear homogeneous differential equa-

tion of lower order, otherwise it is called reducible. Now according to 

a theorem of Kronecker, a linear homogeneous differential equa_tion, like 

those above, that is satisfied by one solution of an irreducible linear 

homogeneous differential ec1uation, is satisfie d by all the solutions of 

that irreducible equation. Now a linear homogeneous differential equa­

tion is called completely reducible if one can find a finite number of 

different irreducible linear homogeneous differential eQuations J1 = 0, 

J2 = 0;">Jg = 0, such that the order of the given equation is equal to 

the sum of the orders of the f2. preceding equations and the given equation 

is the equation ,of lowest order among all those that are satisfied by 

the totality of the inte gr als of J1 = 0, J 2 = 0, etc. 'I'he given equation 
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is called the least common multiple of the J's. This can be shown to 

exist. He proves without use of the Picard-Vessiot theory of the 

rationality-group that every completely reducible differential equation 

is representable either uniquely, or in an infinite nu:.mber of ways as 

the least common mutliple of a set of irreducible differential equations. 

The necessary and sufficient condition for the second possibility is 

that at least two of the set have simultaneously the same property as 

the given equation. Moreover the necessary and sufficient condition 

that a linear homogeneous differential equation be satisfied by the 

integrals of an infinite number of different irreducible linear homogen­

eous differentis.l equations is that the given eq_uation be representable 

in an infinitude of ways as the least common multiple of sets of the 

irreducible linear homo,-;;:eneous differential equations. The works of 

Mc Coy II 1 and Raudenbush II 1 have carried this on further, but from 

the point of view of ring theory, rather than structure-theory, except 

insofar as they considered ideals. One of Ore's first contributions to 

the theory of structures was his paper on non-commutative polynomials, 

essentially a theory of differential expressions. The "multiplication" 

of tvro differential expressions J1(y) and J 2 (y) is defined as J1(J2 (y)) 

or J2 (Ji(y)) respectively. 'l1his 11multiplication11 is not commutative. 

For the intricacies of notation and concept, the reader is referred to 

Ore's papers II 1 - 4. 

Perhaps the first systematic use of a partial ordering of real 
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functions of an abstract variable was used by P. J". Daniell (1917) 

see II 2. Re defines the cross-cut of two functions f1(x), f 2 (x} 

just as we have in example 2 2... , Chapter I, and similarly for the union. 

'l'he sum of f1 ( x) and f 2 ( x) is the function with tbe real values 

f1(x} + f 2 (x). he studied various classes of numerically-valued 

functional-operators U(f) on the given function-space to itself (see 

the last ex&~ple of Chapter I). Among these were the class of linear 

operations and the class (r~n of operations M( f ) such that when f ~ g, 

then M( f) ~ I;I( g} e.nd U( f) <. Iv~( f ) for all ope r ati ons U of the class 

(M). He defined an I integral (inferior inte gral ) as any operation that 

is linear and positive (see example 22). He defined an S-integral 

(superior integral ) as any operation that is linear and belongs to the 

class (M) . .A principal integral is an operation satisfying the condition 

of an I-integral and an S-integral simultaneously. It can be extended 

to the case of limit -functions of the first class if t hey are all 

bounded by a common upper bounding number. He gives examples in a lateY 

paper II 3. 

Riesz II 1 made use of part i al ordering of functions to secure 

theorems on the decomposition of linear numerically-valued functionals. 

First we know that for any such funct ional defined over the space of 

functions of one var iable continuous on the closed interval (a, b ) , 

f-1.i..r/ < M, maJll I f(x} I where M is a positive real number not 
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depending on f(x). .According to a theorem of Riesz III 1 every linear. 

functional operation can be expressed as a Stieltjes integral 

"r = j f ( x) cf.. o<. (x), where o(( x) is a function of bounde d 
a 

variation depending only on the operation A and determined by it, 

essent i ally. Frechet III 1 studied a decomposition of (x) into three 

parts 
o<. (x) = o<,(x) + 0\. 2 {x) + o<3 (x), where 0\

1
(x ) is the 

absolutely continuous part ( t lc i s is the inde finit e integral of o<. '(x) ) ; 

o<k. (x) is the function o:f' singularitie s, a continuous function of bounded 

var i e:cion whose derivat ive vani shes al most everywhe r e ; o<. 3 (x ) is the 

function of jumps. Wow Hiesz was abl e to secure this de co:nrpos i t ion by 

a method involving the theory of partial ordering of opera t ions. 'l'he 

operation A is said to be great~r than the operation B if the operation 

A - Bis a positive operat ion, that is, Af - Br-? 0 for every non­

ne gat ive function f{x). Ee prove s that a set of ope rations that is 

bounded in the above sense, has a leas t upper bound, by decomposing f(x) 

into a ny nwnbe r of functions of the san1e type continuous and non-negative, 

and applying to each one of them any one of the operations A belonging 

to the given set and finally adding the values. Then the lub of the 

set is defined as the least up:per- bound of all these sums. 

A and Bare called disjoint i f their cross-cut ( greatest lower 

bound) is the zero-operator ( called simply zero). The operation If 

is defined as / ~(x)dx. A singular operation is one disjoint with I. 

a 
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Three classes of operations are defined and it is shown that in each 

of them a finite or infinite number of opera ti ans possess an. lub in 

the respective class. These classes are (1) the re gular operations, 

those operators that are disjoint with all singular operations)(2) the 

continuous operations, cons is ting of the singular operat ions "i:;hat are 

disjoint to all operations of the type Af = f(x0 )j (3) the purely dis­

continuous operations consisting of the singular operations that are 

disjoint with all continuous operations. He proves t hat every linear 

operation can be decomposed into a sum of three operations, one from 

each of the above classes and that more over this de composition yields 

exactly the decomposition ofo( (x) due to Frechet. 'i'he decomposition 

of the operation is accomplisijed by purely lattice theoretic methods. 

Kantorovitch has give n the first comple te theory of partially 

ordered function-s paces. 'l'he th eory given in Chapter I is a direct 

exposition of t is wo r k see II 13 . 

:Freudenthal II 1, 2 , 3 has conside red part i ally orde r e d function 

s paces much a fter the manner of Kantorovi tch . :-le has considered 

elm;10 nts of' a n arbitrary f i el d as mul t i plie rs f or the e l ements, instead 

of r eal numbers , as we have. J:Ie repres e nts cer tain el e.r.1ents as 

I.ebe s Que-Stie ltjes integr s l s f Yde, where the Y is a r eal variabl e 

and ey is a mont onic function of Y , v:i t h val ues in a certain Boolean 

al:;ebru :;;; ~ L, where L is the par t i ally -orde r ed space. }?or more 

de tails, s ee belo,l under Stein. Furthe rmore , he cha:cac te rizes his 
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partia lly ordered. space as the direct s um of s:paces of t wo types. 

2 
'.I'.he f irst s pace i s a n L space composed of f uncti ons on t he inte rv:al 

(0 ,1) s u ch t ha t / f (x)/ 
2 

i s Lebe sg_ue -inte gr·abl e , where f ?' O if 

f(x) ~ 0 a l Los t e ve r ywhe r e . '1.he s ec ond t ype i s a Hilber t space (or 

in s pe ci al ca s e , :Sucli dean s pace ) with the parti al-01·dering give n 

above. 

Gli venk o II 1, 2 ha s considered an Ol'dina ry structure with a 

d imension function s uch t ha t d (O) = 0/'vhere the ze ro on t he left is t h e 

null-element of t he structur e , a nd such that a< b i mplie s d(a) < d( b) . 

Ee pr·ove s that / x - y /:: d(.x U y) - d(x f\ y) is a me tric , fol lowing 

~ .. . 
the work of von Neumann see the section on continuous geometry. Con-

versely, the dimension function and the choice of null - element can be 

made to determine t he algebra of the structure. Ee co nsiders a general 

metric space with a distance function (a , b) a nd de f ine s tre element c 

to be betv1e en t he e l ements a a nd b i f (a,b) = (a,c) + (c,b ) , Ee gives 

a necessa ry a nd sufficient condition, in terms of partial ordering that 

a partially ordered metric s pace be completely ordered. 

S t een II 1 has use d partia lly-ordered operator~rings in connex­

ion with an axiomatisation of spectral theory . \71 th respect to the 

operation of addition , the elements of the space behave just as do the 

elements of the space considered in detail in Chapter I. 7i i th respect 

to the ring-multiplication he has A 7 0 and B >- 0 together imply AB ? 0, 

If At O then A2 '7 O~there exi sts a n e l ement C such that CA= 0 i mpl i es 



131 

' 
A = 0 for every A. Also he has the axiom A f B implies A + D .t B + D. 

Also A+ and A_ are such that A+ • A_ = 0. For every element P ~ 0 there 

is defined an nth root pl/n. 

B 7 0 such that B1i P. Now 

It is the lub (K) where K is the set of all 

lim Al/n =Eis proved where E has the 
n➔oo 

properties A+ E = 0 and A_ E = A. It i s called a projection element. If 

we consider the class of all projection elements F with .P.+ F = 0 for a 

fixed A, then lub (F) = E_ exists and is itself a projection element with 

A+ E_ = O, A_ E_ = A_. It can be proved that t here exists an element I 

such that A= I·A for all A. Obviously this has the propertie s of the 11 C11 

above. The spectral family E.A associated with A is obta.ined by equating 

E) 
0 

to the particular E_ associated with A - ~i by the process above. 

< Suppose Ax is defined for a ~ x ~ b, - oo ~ a < b ~ oo ; t hat Ax, = Ax
2 

for 

x, < x2 ; that Bx is defined for a ~ x ~ b; that Hk 2 Bx~ Kk for x in the 

glb (Bx), Kk = lub (Bx); that 
X...;. (x,., :X~.,) ,c ""0-,,., -t',v,.) +m 

Hl = L Hk(xk+l - xk)A]( and K.L = 
k= -oo 

+co 

k= -oo 

lim 
.e➔ (} 

H,, = lim K1 , where f = the greatest of the interv2.ls ~k+l - xk . 
.c: i➔ o 

b 
Then he calls 

b 

their common value j Bx dAx and if B = f(x) •I we write 

j f(x) 
a 

a 

He proves only by means of thi s abstre.ct theory the funda­

+ro 

mental t heorem of Hilbert spaces mid spectra.l theory, that A = f A 
-ro 

dE 
). 

If these elements are interpreted as permutable self-adjoint transfonnatims _i.h 
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Hilbert space, then we have the usual theory. A'? 0 means that A is 

positive definite, that is (Af , f) ~ 0 for all f, and not always eq_ual 

to zero. ( , ) is the inner product function. A + B, AB mean closed 

linear extensions of the transformat ions ordinarily rep r esente d as 

sum and product, respectively . .A= B means tha t A a nd B are i dentical. 

A2 7 0 is true if A is self adjoint. Now in the above fundamental 

2 
theorem we can add conditions on EA , namely E,,\ = EA ; EA E,,._ = E/t-

as E- ➔ O+. 'l.1his theory is very much similar to that of Freudenthal 

on the same subject. He proves fur t he r II 2 t ha t for all functions F (A) 

that can be constructe d f r om the ope r at ion .b. and other operators B,C, · 

••• , by finite a ddi t ion and multipl i cation of oper ators a nd proce ed-

ing to limits by means of uniformly convergent sequences, there is a 

representation a s an int e gral. 
+ID 

F (A) = f :f ( A ) a.::;>- • 

-(X) 

If J? ( A ) ~ F ( A ) as n 
"" 

for each A in the interval A, i )\ ~ ~ 'L- then Fn( A ) __,,_, F ( A ) 

00 

uniformly in \ 
1 
~ }, -:; ~,., of s i ven E :> 0 , there i s an ope rat or K with 

0 < K~ E such that 

F ( ~) K - K.2 ~ z ( A) K ';; F ( ~) K + K-2 for n "7 no (H), 

where n 0 (H) is independent of ,A 

:Mae da II 1 has also written on structure-theory as connected 

with the theory of orthogonal systems in Eilbert space. 
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Chapter III 

The Theory of Derivatives and Differentials 

Section 1 Functions of real variables 

We return now to the space S of Kantorovitch exposed 

in Chapter I, especially from page 28 onward to the end of 

that chapter . .. 
Definition 1 of function of real variable. 

f(p) is said to be a function of the real variable 

I in the interval Pl~ I ~ p2 , where Pl and p2 are two fixed 

real numbers, if to each value of pin that interval, there 

is assigned one and only one element y = f(p) in the space S. 

The function is defined similarly if the domain of values of 

I is not an interval~ 

Definition _g of limit of function. 

If the sequence of elements f(/1), f(p2 ) ;·,f(/n), • • • 

approaches the limit (see definition 17, Chapter I)~ (a 

fixed element throughout), for each sequence Pl, /2,•·• In,•·•, 

approaching the same fixed number ¢0 , the f(p) is said to 

approach the limit Z as/ approaches / 0 and one writes 

lim f(/) = Z. 
I-> lo 

Theorem l If lim f(¢) = Z exists, then there is an element 
l ➔ lo 
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Yo with the property that to each real number G '7 O, there 

exists a real number ,r;;, 0 such that 

(1) } f(p) - zl < G Yo for all I such that O < /I - Po \ <if 

Proof By contradiction. Suppose that to each possible y0 

there is a G > 0 ru1d a point p 5UCh that (1) is not 

satisfied. Let {l. J be all such points ( of the real 

numbers). Let the glb ]lo - i l Now if )A- '7 O, 

ta..lrn O < 1T < f- and (1) is satisfied. If fl = o, 

let Ai be a monotonic sequence extracted from the set 

{ A } , and approaching 9.)0 as a limit (this is easily 

possible by the properties of the glb). Then, the 

sequence f( ~1), f{f 2), • • • f( ~n), ... does not converge 

to Z by Theorem 43, Chapter I. But from the definition 

of the limit of a function and the hypothesis of the 

present theorem, f(A 11) does approach a limit. Hence 

a contradiction. 

Definition 5 of limit of function. (2nd definition). 

The abstract function f(p) of the real variable/ 

is said to approach the limit Z asp approaches Po if there 

is an element y0 with the property that to any real number 
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Q > O, there is a 7T, > 0 such that 

/ f(p) - Z I <: Q Yo whenever O .C::. / I - p0 j < ,r, 

This definition is justified by Theorem 1. 

Definition 4 of left-limit of function (rieht limit) 

The abstract function f(p) of the real variable/ 

is said to approach the left-limit J as ef approaches p0 

if there is a fixed Yo such that to any real number Q ;,,- 0 

there is a real number 71'\> O, with the property that 

/ f (p) - f / < Q y O whenever O.:::: / / 0 - I I < 7f, a, h d 
0 <, '1>0 - 4 

A similar definition may be made for the right limit. In 

this case vre restrict I by: the inequality 

Definition 2 of continuous function at a point. 

A function f(I) of a real variable pis said to be 

continuous at the point IP if f(p) is defined throughout 

some interval of which¢ is an interior point, and if 

It is said to be left-continuous at Po if f(I) is 

defined throughout some interval of which Po is the right end-

point and 
left limit f(¢) = f(/0 ). 

I ➔ lo 
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Definition 3 of continuous function in interval. 

A function .f(ff) of a ~eal variable/ is said to be 

continuous in the interval Pl ~ / i p2 if it is continuous 

at every interior point of the interval and at the end-points 

the variable/ of definition 2 is assumed to take only values 

in the closed interval. 

Definition 4 of hypercontinuous function in the interval. 

f(p) is said to be hy-percontinuous on t he interval 

.¢'1 ~ / ~ / 2 if there eYJ.sts a y0 , such that to any real number 

~ > O, there is a real number J > 0 with 

/ f (/1) - f (/2) / <::: E y O whenever 

I P1 - /2 I < d 

Definition 5 of bounded function on the interva.l. 

f(/) is sai d to be a bounded function on the interval 

Pl~ I~ p2 , if the set of its values is bounded (above and 

below). 

We shall develop a short theory of "Riemann integration11 

for bounded functions of a real variable. The development will 

be pursued just as f ar as is needed for the later theory of 

functional differentiation. 

Let the bounded function f(/) be defined on the interval 

/ 1 i p ~ p2 • Let the symbol IT denote a partition of (/1 ,12 ) 
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into closed subintervals ~ i of lengths Ll i. The norm N7f 

of the partition is defined as the greatest of the quantities 

L'.) i, which are taken to be positive. Let A i be an 

arbitrary point of the closed subinterval ,1 i. Then if 

lim ? f( A i) L1 i exists (in a sense to be made precise 
N'tr ➔ 0 
in the neA't sentence) we say that F(p) is integrable on 

(,S1,,S2 ) and denote it by / 2 f(,S)dp. 

11 

To any sequence of partitions 7T (n) such that 

N 71 (n) ➔ 0 there is associated the corresponding sequence 

of sums 
("'> A("') = 2 f( A. ) D 1 . Every possible such ,... ... 

sequence must a.pproach the same limit, namely the integral. 

Theorem _g 

An hypercontinuous function has a definite integral 
~ 

f f(p)dp 
) 

where ( \ /.A- ) is the interval of hypercontinui ty. 

Proof. First let us notice that if1T is a partition such 

that when ) 1 and .A II belong to the same subinterval 

of lf we have 

f( A') - f( ,.\ 11 ) I~ G- Yo then upon the 

insertion of new points we have for the resulting 
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2 

/ 2 ~ 2 1
{ .C.. E ()' - A )y0 • For if in any 

given interval there be inserted one point we have 
I J.' 

the term f( A 1) 4 i = f( A 1) (.'1 1• + <l. ) before, 
- I - I ~ ~ 

a.i1d after ;we have f( ). ,·) j 'i + f( ~ ,- ) <l ,· and the 

difference is 

[r< Ll - rd ~JL! ~ + [r< >. il - r( A\~ L1 i < 

/r< .Ail - r( >-'1il t'.l 11 + / r(),1) - f( ,\ \>ILi \ < 
f YO L1 i. The case of ~he insertion of more than 

one point f ollovrn by induction and the entire theorem 

by the addition of contributions from all the sub­

intervals. 

Now let 7T (n) be any sequence of partitions 

such that N7f (n) ➔ O. Now we can find a J for 

which 

f( A') - f(). ")I< Yo 
2(b - a) 

when 

I A I - ~ It IL f Let n0 be a number for which 

N 7f (n) < f when n > n0 • Then if n1,n2 > ni, and 

A I A II are in the same subinterval of either Tf (n1) 
) 

or 7f (n2) 

/ f( ),') - f( ,\ ") /< 2(by~ a) • Nol, form 

the partition 1f formed by the subdivisions of 71(n1) 
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and 71 (n2). We have 

/2-
n1 -1 f Yo Yo 

'2_ < 2(b - a) (b - a) = 2 

/2 n2 -Z }< E Yo (b - a) Yo 
2(b - a) = 2 

And so, by the tri angular inequality, 

J
-, n1 n2 I 
L - 2 < f: y0 for n1,n2 > n0 • This, how-

ever, by Theorem .3 2 , guarantees the existence of a 

limit 2: for the sequence - (n) A sequence .,,,/ (n) 
0 ::z.. • L. 

would have the limit 2 ', corresponding to a sequence 
I o 

of partitions 7T (n). We have then elements Y0 , Z0 , 

for which 

! 2-
n1 L Il;a /c::: '- Yo for n1 ,n2 7 no 

I 
I I t' ,,., I 2 1>1, 2 a <E-Yo for n I n 12 / n' l' 0 

I__!_,._, 

2 - ro'; < E- z 
0 n' > n4 

/2~ - 2.. I < f: Yo n 7 ll3 

Consequently, by the remark at the first of the proof, 

- 2 -,,, -< G Yo / I I 
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.And 
_., I I 1 

2' 

I I 

Therel~ore 2 "• 2 a'" 2-approache s " . .:: a limit, 0 = 
_1 
2 

6 

and the integral is unique. 

Notice that the Yo in the above depended only on the 

function to be integrated, that E- depended only on ! and that 

neither depended directly on the particular sequence of partitions . 

.Also that, but the last equation above, y0 + Y0 serves as a suit­

able Z0 and hence does not depend on the particular se~~ence of 

partitions. 

Theorem 5 If f ( A) is a real function of a r eal variable) 

on ( A1, /1 2 ) that doesn't change si gn on that interval e..nd if 

r(A) )f<A)-/r<A)/ 

I;:·, lf(A ld~ L 

f (A) ;;-- o 

are integrable on ( A 1, ~ 2) 

fa .Al / r(), l / d A I 

"' 

then 

Proof. Assume 

(2, A, f <Ail r(Ail/ ~ 
Now proceed to the limits. In case 

t1 ,-f( A 1l /r( Ail 1 

f (A)~O 

for all ; in ( ~l, A2 ), then use f (A) and note 

the following lemma. 
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t 
Lemma J k f ( A ) r(A ) d A 

~, 
=k 

for any real k. 

Proof Immediate from properties of the limit and the defin-

ition of integral. 

Theorem .1, If + ( ~ ) is a real filllction of a real variable 

on ( J. 1, A 2 ), f( I)) f( A ) , y ( A ) are integrable on ( A 1, A 2 ) 

and f( A) is bounded. I.e., 

A, then 

Proof. Similar to that of Theorem 3. 

Corollary 

Theorem 5 Let not f ( ,\ ) change sign in ( .A 1, A 2 ) , let 

f (,A. )f(A ), f ( A) be integrable in (A 1, A2) and Many closed 

convex set containing the image of ( ,A 1, A 2 ) by means of the 

function f( A ) . Then there is in M an element X, such that 

l('}, )f( A )dA ~ X f; (A )d,\ 

>-., A, 
Proof 

2 Li i t (Ai) f C A i) 
___ . J ( ) belongs to the set M, 
2 Ll 1 1 )i . 
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owing to its convexity. Also, owing to the fact 

that Mis 

belongs to M. 

Corollacy 
A~ J f(A )d A = X(b - a) for some X in M. 

A, 
Definition 6 of derivative 

A fnnction f( A ) on ( A 1, A 2 ) to S is said to have a deriv­

lim 
)< ➔ 0 

f 1 ( A 3) where A 3 is an interior point of 

eY..ists. This limit 

is called the derivative. Left-hand and right-hand derivatives 

are defined in an obvious manner. 

Definition 7 of derivable over an interval. 

f( A) is said to be derivable over an interval, if it has 

a derivative at every point of the interval. 

Definition 8 of hyper-derivable function (over an interval). 

f( A ) is said to be hyperderivable over the interva.l ( A1, ~ 2 ) 

if it is derivable and if there exists a Yo such that 

I 
f( A) - f( ~ o) 

- f, (Ao) .,!_ €:- Yo for 
A - ,x o 
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Proof 

Theorem 7 
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If f( A) is derivable at A 0 , it is continuous at A 0 • 

or 

f( ,,\ ) - r( .Ao) 

r\ - A 0 

I f ( A ) - f ( "0) I 

for 

<: /f 1 (A 0 ) 1 ·IA-~o/ 

j J ~ ,\ D I< f A. 

f- E/A-~ol~t 

= ) A- ) , I · Yo where Y0 

is fixed for A O fixed, and A variable. 

If f(A ) is hyperderivable on the interval and its 

derivative is bounded over the interval, then it is hypercontinuous. 

Proof. Similarly to Theorem 6 we get 

Theorem 8 

Y, for / A - A o / < {A. 
but where now Y doesn't depend on A 0 • Now the 

result follows by classical arguments following the 

Heine-Borel theorem. 

If the function f(;\) on ( A 1, A2 ) to S is hyperderivable 

on ( A 1, /I 2 ) and that hyperderivative has an integral) then 
~~ 

• f( A,) - f( ,\ 1) = f fl ( ,\ )d A . A ,4~ 

A, 
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Proof Let f ;::,- 0 be arbitrary. Since r~ ().. ) is integrable, 

there exists O /' 0 such that for every partition If 

with N 1T < f , and. evers- choice of the A i in the 

closed intervals L1 i of 71 

(1) 
b J f' (,,\ )dA < C y0 

a 

where y0 doesn't depend on the particular partition. 

From the definition of hyperderivation there is, for 

each point r of ( A1, x2) a positive number o< i ~ J' 
with the property that for every point ) 1 of () 1, A2 ) 

subject to / A 1 - A / L... o( i and a fixed element y1 

of S we have 

The set of open intervals Ir:: ( A - o<.i..:::: .A' <A+ o<'i) 

cover the closed interval ( A 1, A 2). Since ( A 1, A z) 

is an inte!'llal (closed) of real numbers, we may use 

the Borel-Lebesque theorem and find that a finite 

aggregate of them Ii, . . . , In, with centers at 

f 1 ~ /2 < • • • < f n, respectively, cover it. 

Assume that none of the Ij completely contains any 

other. Now applying (2), above, to the interval Ij 
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( A is assumed to be in Ij). 

In the interval f j ~ ;\ = f j+ i, delete all end-

points of intervals Ik such that k f j. The remaining 

end-points, together with the / j determine a partition 

7r of ( Al, A 2 ) of norm -& I . Each interval 4 i of 

7f has at least one of the points f k as an end point. 

If there are two, we choose the left-hand one and denote 

the one chosen from Ji by f i. By ( 3) , we have 

Adding together all equations of type (4) and using (1) 

we have 

( 5) 

~ 1-

f ( A 2) - f( A1) - ff• (A )d,I) " 2 G 4 iYl + ~Yo 
), ' 

=f j)z - A1/ Y1 + Eyo 

The left side, however doesn't depend on J, while the 

right side can be made 11 arbitrarily small 11 for d small 

enough. Thus the theorem is proved. 

A function~ continuous on a closed interval is bounded 

on that interval. 
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Proof By contradiction. Suppose a sequence of values of 

f( ~) that are unbounded. Then the corresponding 

set of values for the ,,\ 1 s have a limit-point. 

Extract a sequence from this set approaching this 

limit. Then the values off for these A 1 s will form 

an unbounded sequence and hence a divergent one. But 

the continuity implies the converse. Hence a contra­

diction. 

Theorem 10 If f( A) is continuous at A and integrable, and 

A 

F(,\ ) = j f ( ), ) di, , then : = rU ) . 
A, At.A 

Proof F( ~ + f' ) - F( ,A ) = j f(¢)dp for I" small enough. 
A ~tA 

Also • F( A + f- ) - F( ~ ) - ;- f ( }, ) = J/J ( A ) - f (ii] di/ 

). 

Then IF( A + ,,U ) - F(,A ) - }{ f ( ). )I ~ y }f / by 

Theorem 4 above, where y = max / f( ,A ) - f(¢)/. (See 

Theorem 9) I F{ ), + I' j- F( A ) _ /' f(,I ) I = y 

Since f(¢) is continuous, y ➔ 0 as p ➔ ) (i.e. as)< ➔ 0). 

Theorem 11 The hyperderivative equation 

~ = f( A ) where f( A ) is hypercontinuous has an 

unique solution )aking the value zero for A = A l • 

It is F(A ) , 1 f( A )dt\ 

1\ I 



Proof Assume another F1(A) such that 

Theorem 12 

dF1 = f ( A ) . Then 
d) 

Fl(Al) -F( A1) =O 

d [ F1 ( A ) - F( A )] = O 

d A 
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and using Theoerm 8, 

If f( ~) has an integrable continuous hyperderivative 

f 1 (A), then 

The usual theorem on integration by parts can be stated 

with respect to hyperderivatives, as can Taylor theorems and 

existence theorems on derivative equations. _\\ e shall return l ater 

to such considerations. 

We shall press on now to the theory of abstract differ- · 

entials and their applications. 
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Section _g. Differentials end Functions of abstract vari ables. 

We shall frame the definition of the abstract dif­

ferential in terms of any 1*-space of elements x,y,z, etc., 

satisfying postulates I, III 1 - 5 of Chapter I. In addition, 

to each one of a certain class of preferred sequences, called 

"convergent sequences", there is associated an unique element 

of the space, called the 11limit11 of the sequence and subject 

to the following rules. 

(1➔~) 1. If lim Xn = x and lim Xn = y, then x = y. 
n-,, co n ➔ co 

2. If lim Xn = x and {ni} is any infinite sub­
n7 c:u> 

sequence of { n} , then lim 
i"7co 

Xn.= X. 
J_ 

3. If Xn = x for all~- then lim Xn = x. 
n-700 

4. If { Xn J is not a convergent . sequence then it 

contains (in the point-set sense) a subsequence 

{ Xni} such that no subsequence of this latter is 

convergent. 

5. I_f lim An= A for a. sequence of real numbers {An} 
and lim x11 = x for a sequence of elements, then 

lim ~ nXn = ~ x 
l, . l .f /,· ..,,,_ ::x,,. ., x. > / ,· 'fh ~ .. , p. , (t) f h e 'h. 

Let F(x) be a function on one 1* 

/ ,· 11'\ (:>c.,,_-+- jJ a 'Jt -f- "f 

space, 11 to another 

1➔!- space, 12 • Then this function is said to have a differential 

tt a point Xo in 11 if there exists a function F(x0 ;y) of two 

1 ii J If >) L ' -:¥ 
i/ote: F (7)' Cf e ft It e . 0 >t 11'-t e ·1..)'t s 
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variables on LI to 12 and a function E(x ,y,z) of three 

3 variables on 11 to L2 with properties as follows. 

1.) :.... .: F(x0 ;y) is linear in y, that is: 

_d.) F(x0 ;y + z) = F(Xo;Y) + F(Xo; z) for any 

two elements y,z of L1. (It is additive). 

b) lim F(x0 ;yn) = 0 for every sequence {Yn} 
n->oo 

such that lim Yn = O. (It is continuous 

in y at y = o.) 

2.) a) lim E(Xo,Yn,Yn) = 0 for every sequence 
n--7' CD 

{ Yn} such that lim Yn = 0. 
n-r m 

b) lim E(x0 ,Yn, z) = 0 for every sequence 
n ➔ oo 

{ Yn 1. such that lim Yn = 0. 
j ll ➔ CD 

c) E(Xo,Y, A z) = ~ E(Xo,y,z) for every real 

number; . 

From 1.) a) and b), it may be proved by classical 

methods that F(Xo; A y) = A F(Xo;Y) for every real number A . If 

this last equation is satisfied, F(x ;y) is said to be homogeneous 

in y. We note that, E(x ,y,z) is homogeneous in z, by 2) c). 

Theorem 1. If F(x) possesses a differential at x0 , then it is 

unique. 
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Proof F(x0 + An Ox) - F(x0 ) - F(Xo; An cf x) == 

E(Xo, Andx,Anf x), 

where {~ n J is a sequence of real numbers, 

,A n ➔ 0 as n ➔ co, and ~ n i- 0 for any n. 

Now divide both sides by A n 

F(>o + An/:) - F(>o) _ F(x,,; /x) 0 

E(Xo,Andx,dx) 

by property 2 c. Now lim A ndx == o, by the 

postulated property of the limit, end therefore 

lim E(:xo,A nd x, d x) == O, by property 2 b of 
n ➔ co 
the differential. 

Therefore lim F(Xo + An/ x) - F(:xo) - F(:xo; J x)==O 
n ➔ co An 

or lim F(Xo + ) n dx) - F(Xo) == F(:xo; J x) • 
n ➔ co n 

Now for a particular sequence, the limit on the 

left is unique. Thus for a particular sequence 

F(x ; dx) is unique. But F(:xo;/ x) evidently 

exhibits no explicit or i})\Plicit dependence on 

{;. n J , the ref ore the limit of the left-hand side 

doesn't depend on the part,icular sequence chosen, 

and F(x0 ; {x) is unique. 
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Theorem 2 Let w = / ·(x) be a function on L1 to L2 and 

y = g(w) be a function on 12 to 13 

where L1,L2 , 13 are all L* spaces of t he type described at 

the head of the chapter. Let further f'(x) be differentiable 

at Xe and g(w) be differentiable at w0 = f'(x.a). Then 

g(f(x)) is differentiable at x0 , and its differential is 

g(f(x0 );f(x0 ;{x)). 

Proof (1) g(w0 + d w) - g(w0 ) - g(w0 ; rf w) = E23 (w0 , d w, d w) 

where w0 + d w = f(x0 + d x) 

w0 = f(x0 ) 

Then f(x0 + d x) - f(Y-o) - f(Xo; f x) = E 12 (Xo, d x, ~ x) 

and the left-hand side of (1) is 

g(f(x0 + J x)) - g(f(x0 )1_- g(f(x0 );E12(<5, Jx, fx) 

+ r<Xo j t x)) = Ez3(w0 , i w, aw). 

(2) g(f(x0 + f x)) - g(f(x0 )) - g(f(Xo); f(x0 ; J x)) = 

E,~ 3 (w0 , d w, d w) + g(f(x0 ) ;Eiz (x0 , Jx, fx)). 

Now the right-hand side of (2) has two terms. Call 

g(f(m);EJ.z(m,n,p)) = E(m,n,p) and 

F,z 3 (w0 , dw, cfw) ~ Ez3(f(x0 ),f(x0 ; dx) + E12(x0 ,Jx,dx), 

f(Xo; dx) + E,2 (Xo, d x, d x)). 



E,a(m,n,p)) ~ F(m,n,p). 

(A) Then E(m,n,p) is homogeneous in p. 

E(m,n,p) ➔ 0 as n ➔ O, p,m fixed. 

E(m,n,!J) ➔ 0 as n -'7 0 

(B) F(m,n,p) is homogeneous in p 

F(m,n,p) ➔ 0 as n-'? O, m and p fixed 

F(m,n,n)-~ 0 as n ➔ 0 m fixed. 
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Now, put E 3 (m,n,p) = E(rn,n,p) + F(m,n,p) and it will 

have the desired properties; wherewith the theorem is 

proved. 

Definition 1 of continuous function 

A function Fa(x1) on L1 to La is said to be continuous 

at x1 if for every sequence{xi~l} such that lim xfn) = x1, 
n ➔ CD 

we have lim F2 (xfn)) = F2 (x1). 
n ~ ro 

Theorem 3 If F(x) on 11 to La has a differential at Xo, then 

it is continuous at XQ. 

Proof F(Xo + J x) - F(xo)
1 

= F(x
0

; J x) + E
12 

(x
0

, f x, f x) 

But the right-hand side has limit zero for limdx = 0 

(no matter what sequence is used). 

Therefore r lim f(x
0 

+ J x) = f(Xo). But Xo + J x 
ox➔ o 

can be any typical sem,ience with limit x0 • 
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Theorem 4 If f(x) on L1 to L2 has a differential f(x
0

; dx) 

at x0 , then o<. f(x) has the differential o<.. f(Xo; rfx) at Xo• 

Proof f(x
0 

+ tf x) - f(x
0

) - f(x
0

; rf x) == E, 2 (x
0

, cf x, J x) 

Multiply through by 0\ and c:,Z.E 12 has the desired 

properties. 

Theorem 5 If g(x) on L1 to 12 has a differential g(x0 ; J x) and 

f(x) on 11 to Lz a differential f(x0 ; d x) both at the point x0 , 

then .¢'(x) = f(x) + g(x) has a differential .¢(x
0

; rf x)= 

--:f(xo; ox) + g(xo; !x). 

Proof f(x
0 

+ dx) - f(x
0

) - f(x
0

; /x) == E, 2 (x
0

, ox, dx) 

g(Xo + dx) - g(x0 ) - g(x0 ; fx) == F12(x0 , rfx, ox) 

Add and call E12 (m,n,p) + F 12 (m,n,p) ~ C12 (m,n,p). 

f(x0 + Jx) + g(x0 + Ix) -[r(x0 ) + g(x.,J 

{j(x.,; dx) + g(x.,; dxi] = c, 2 ("o, dx, fx) 

Definition 2 of derivative of a function f ( A ) . 

f( A), a function on the real number segment ( ). , , A2 ) 

to L2 is said to have a derivative at ~ 0 if there exists 

a function f 1 ( A ) such that 

1J.• 1n f( Ao + ,A n) - f( Ao) = f' ( \ ) .co ~ ~or every sequence 
n ➔ oo An o 

{ A n)in ( A1, A2 ), and that )n 7 O, where f'( A0 ) doesn't 

depend on the particular sequence. 
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Theorem 6 If f' ( ~ 0 ) exists, it is unique. 

Proof. Obvious from tbe definition of a limit. 

Definition 3 of convex set. 

A set is said to be convex if for every pair of points 

Xl,X:a in the set, it is true that x1 + ex. (x2 - x1 ) is in the 

set for every real oL in the interval (0,1). 

Theorem 7 If f(x) on L1 to Lia has a differential at all points x 

of a convex set C CL1, then ¢(A)~ f(x1 + A (x2 - x11/, where 

x1 ,~ are in C, has a derivative ~l(A) for all A such that 

o~A~1. 

Proof. Let ~~ nJ be a sequence of real numbers such that 

An ➔ 

p( " + 

Oasn ➔ oo. 

\ 
= f(x1 + A (x2 - x1) + A n(x2 - x1) / - f(:x:1 + A (x2 - x1)) 

An 

f(x1 + A (x2 - x1) ; x2 - :x:i) • That is J the 

last quantity is a limit that exists if :x:1 + ,l. (x2 - :x:1) 

is in C, by hypothesis. But O i ~ ~ 1 and C is convex. 

• The theorem follows innnediately. 

Section 3 Mappings from Banach to semi-ordered spaces .. 

Notation a,b,c, etc. denote elements from the space B; x,y,z etc. 

those from the spaces. 
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Definition l of function. 

A function F(a) "on" B "to" S is a correspondence 

between a Banach space Band a semi-ordered space S, such that 

to each element of B corresponds exactly one element of s. 

Definition 2 of linear function on B to s. - -----------
F(a) on B to Sis said to be linear if it is 

1) Additive, i.e. F(a + b) = F(a) + ff(b) 

2) Continuous, i.e. to every sequence {an} from B 

such that an 4 ao we shall have F(an) ➔ F(ao) for 

a0 in 'B. The two limits are to be taken in the 

respective spaces. 

Theorem l If a function F( a) on B to S is linear, then it is homo-

geneous, i.e. F(A a)= A F(a) for real. 

Proof. F(a, + a2 ) = F(a,) + F(a2 ) in particular 

F(a + a) = 2F(a) and by induction 

F(na) = nF( a) Put A a = b, a = b/}.. for A an integer. 

i F(b) = ~,(}) 

F(JA-}) = )(- F(.E.) 
>-

= L F(b) 
~ 

> f J ).. integers. 

Now let a given irrational number A be tbe limit of a 

sequence of rationals{ An} then 

F( Xn a) = An F(a) _,, A F(a) 

F( )n a) ~ F(A 11.) owing to the continuity. 

~ F(a) = F(A a). 



156 

The following three theorems have been indicated with­

out proof by Kantorovitch II 3. 

Theorem 2. In order that an additive operation be continuous, it 

is necessary and sufficient that it be bounded in the sphere /la//= 1. 

Proof. Necessity, assume F(a) continuous. 

If { an J be any sequence such that /I an II = 1 for all 

n, then 

\
F(an) \ ➔ 0 as n-, oo, where Pn is any 

Pn 
infinite subsequence of the natural numbers. Now 

suppose F(an) unbounded. That means that to any 

element y of s, we can find a subsequence { allp} of 

{an} such that 

jF(anp) / 4 n y. Divide ~ sides by n. 

IF(~)\ { y. But There fore by 

Theorem 43, page 54, there exists a y such that 

I F ( e.:P) J < e y for n )' Ne. 

Contradiction. 

Sufficiency. Retrace the steps above, remembering that the 

last inequality is necessary and sufficient for conver­

gence and that by Theorem 4 below, if F(a) is discon­

tinuous anywhere, it will be discontinuous at zero. 

Theorem 3. If y = F(a) on B to Sis linear, then there exists an 

element ) Fl B of S slich that jF(a) / S /F/ B • /laflfor all a in B, 

/F/B = lub {F(a)} 
I a11 =l 
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Proof. By contradiction. Suppose ~ a // / 1 and 

/F(a) \ f: / F { B • /(al( Divide by // a// Then 

I 
F(-a) I 4_ IF f B • I = U // _!LIi , since // _!LIi = 1 

/I a// t // h a// 4 It a/J 

But .in the above hypothesis / F / B was defined so that 

/ F(b) I ~ / F I B when J b // = 1. Contradiction. 

Definition 3 of norm. The norm of F(a) is the above /F/ B· 

Theorem 4. If F(a) is an additive function of 2- and it is contin­

uous at the point 8.o (i.e. F(Bn) -;> F(a0) for every sequence { ¾ J 
such that an~ a0), then it is continuous at every other point of 

the space B. • 

Proof. Let bn ➔ b where bn, b are all in B. Then 

(bn - b + ao)7 ao and F(bn - b + ao) -P F(a ) . 

Rewriting, F(bn) - F(b) + F(ao) -> F(a ) , owing to the 

additivity or E(bn) ~ F(b), subtracting. 

Theorem 5. Let G be a linear subspace of Band b0 an element of 

B not in G. Let G1 be the set composed of the totality of elements 

of the form a + o<.. b0 (a i'?\ G, o( real). Let f(a) be a linear functional 

defined on G to S. Then there exists a linear function F(a) on G1 

to S such that 

a) F(a) = f(a) a in G 

b) / F j G' = I f I G 
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Proof For a1 and a2 in G, 

f(a2 - a1) ? /f(a2 - a1) \ "3 /rlG· /la2 - a11/ = 

/ f I G • // a2 + bo - bo - a1 fl ~ 

y'J / a2 + bo // + // a1 + bo // J If l G 

and so 

(1) -//a1 + b0 //· {r/G - f(a1) f/(a2 + b0 // / f/G - f(a2) 

Now the elements ( of S), - // a1 + b0 // • / f/ G - f( a1) 

(2) 

are boW1ded above (by any one of the elements on the 

left side of inequaltty (1)) and so by Postulate II 4, 

( p. 50) , there exists an exact upper bound of the set) 

say !!>and similarly there exists an exact lower boW1d, 

say~, of the set of elements (of S) II a2 + bo II · r f( G -f(a2) • 

Now let~ be any element (of S) such that 

Now put 

If oZ "f O, 

and so 

.::.. < 
U = V = W. 

F(a + o( b0) = f(a) + cJ... v; a in G, o< real. 

- f(Jl.) 
C\ 
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and finally 

or 

above, this means that 

J F(c) / ;: / f I O }/ c_ /j , c in a•. 

This last equation says that / F I G' is at the greatest 

equal to / f \ G; but F(x) = f(x) when x is in G, there­

f ore j FIG' is at least equal to / f j G· 

If G is a linear subspace of Band f(a) is a linear 

function defined on G, there exists a linear function F(a) defined 

in B, such that 

F( a) = f( a) and / F j B = If I G for a in G. 

Proof. By transfinite induction. Suppose (which is legitimate) 

that the set E - G is well ordered ( see Kamke IV B). 

Now we apply the previous theorem, immediately above, 

to the successive elements of E - G, in order. Assume 

the above F(a) to be defined for all ordinal numbers 

~ < f 0 • Then if T0 is not a limit-ordinal, the 
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F(a) can easily be defined in one step by the above 

theorem for the set with suffixes up to and including 

? . If f 0 is a limit-ordinal, we see from the 
" 

equation 

in G11 

(where G11 is the set of elements of G plus those 

of the set E - G with suffixes less than j O ) that 

lim F(C1 ) exists and that 
t~ t., 

This completes the proof by transfinite induction. 

Theorem 7. A linear function from B to Smay be defined that does 

not vanish identically. 

Proof. Let a0 be an element of B not equal to O. The elements 

o( a0 compose a linear subspace G of B. Put f(o<. a0 ) = 

( f) (of...) /( a0 {{ , where f is any non-zero element of S. 

This function is obviously linear. Now apply the 

theorem immediately above. 

Theorem 8. Given { an J a sequence of B, { xn J a sequence of 

elements of Sand X ?O an element of S. The necessary and suffi­

cient condition for the existence of a linear function f(a) such 

that 
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f(an) = Xn for all n, and / f IB 
,:;:: 

X is that = 

1.t ~x1 It X • ; !,~~i ai fr 

Proof. Necessit;y. If f(x) e!Xists, then 

/J .. :. (.t Ai ~ = ~ ~ i f(ai) I =I 
, 1 ~ 1 i.) ,., 

/ f / B /( ~ 1 Ai ai I/ and the Xis in this case 

Sufficiency. Let G be the linear subspace of B com­
,z. 

posed of the totality of elements of the form 2. Ai ai• 
A- 1·; I 

Define f( a) as follows: if a = -~ ..Ai ai then put 
- f - ' 

"-

f ( a) = ,?;, ~ iXi· Then jf(a) \? X // a// by hypothesis 

and by the above theorems the required linear function 

may be defined over B. 

Definition 4 of distance from point to set. 

If Eis a set of points of Band a.a is an element (point) 

of B, then the g.l. b. of all the numbers of the form }/ a - a0 I/ 

where.§: is in Eis called the distance of the point a0 from the 

set E. 

Theorem 9. Given G; a linear subspace of Band a0 an element of B 

whose distance from G is d > 0 and an element X 7'" 0 of s, then 
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there exists a linear function F(a) on B to S such that 

1. F(a) = 0 a in G 

2. F(a0 ) = X 

3. IF I B = 
X 

r 
Proof. Call G' the linear subspace formed by the elements 

b = a + o<.. a0 where §. is in G, and define 

f(b) ~ cl.. X. Then for o<. 'f 0 

// b I/ = // a + d.. a0 /I = 

-1 element ;z- a belongs to G since it is a linear sub-

space and }( J + a0 /( is the dista..11ce between ao and 

this element; this distance is less than or equal to/. 

Therefore }/ b I/ :=; /a". { · rf or / o< j ~ /bJ_t 
r 

and I f(b) I = ) « X \ ~ f/.7.lf X since X = / X / 

(owing to the fact that X>- 0). Now it follows immed­

iately, by the definition of the norm of a function, 

that 

l f \ 4- ..!_ Now for a in G, 
G' = cf • 

X ;' j f / G 1 • / / a + ao I/ "'; f / ( a + a0 ( / • The last 

inequality follows immediately from the above by 

multiplication with the factor (numerical) ll x + y//. 
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The first inequaltty follows from the fact that 

f(a + y0 ) = X (fro\n the definition of f(b)). Since 

the distance from a0 to G is , there exists a 

sequence of elements { an 1 such that 

Finding the limits in 

accordance with this, in the above double inequalities, 

we get 

X = j r\G, • f ~ X. Therefore 

/ f / G 1 = j . Now we may apply the 

Theorem 5" on extensions of linear functions, and 

extend the values throughout the space B. 

Corollary If a linear subspace G has the property that every 

linear function F(a) taking values zero over G necessarily 

is zero for all§:., then G is identical with B. 

Theorem 10. Given a function p(a) on B to S such that 

p(a + b) ~ p(a) + p(b) 

p( ~ a) = >-. p( a) ~ real and~ O. 

Then there exists an additive function f(a) on B to S such that 

-p(-a) ~ f(a) ~ p(a) a in B. 

Proof. (Inductive). Let f(a) be an additive function defined 

on a linear subspace G of Band such that f(a) ~ p(a). 
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Now consider an element a0 of B not in G. For a 

and_£ in G we have 

p(a + a0 ) + p(b - a0 ) and so 

let x be the lub of the bounded (above) set 

-p(b - a0 ) + f(b) for all bin G. Let X be the glb 

of the set p(a + a0 ) - f(a) for all a in G. The 

< above inequality shews that x = X. 

Now take any element (of S) z, such that x ~ Z ~ X. 

Let C be any element of the form a+ A a0 , (~ in G, 

any real number). Define F(C) by: 

Obviously F(C) = f(C) if C is in G, and furthermore 

F(C) is additive. 

Now, multiplying inequality (1) by A ~ 0 

Define b ~ A a and b + ~ a0 :::: C and get 

f(b) +AZ ~p(b + .A a0 ), or 

F(C) ~ p(C). But if ~ fO, multiply through 

by - A and get 
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-p(- ,Ab+ /\ a0 ) + f(- ~ b) t - AZ. Define - Ab= a 

and a+ AZ= C, then the last inequality yields 

f(a) + f. Z ~ p(C), that is 

F(C)? p(C). Thus we have been able to extend 

the domain of definition of the function, retaining its 

additivity, and maintaining the desired inequalities. 

This assumed it possible in the first place to define 

a function f(a). We now shew it is possible to define 

such a function on some linear subspace of B. Let the 

space B be supposed well-ordered, and in such a way 

that a1 = 0 is the first element. Put f(O) = O, so 

that in this case f(a1) ~ p(a1); in fact f(a1) = p(a1) = 0. 

Now extend the domain of definition of f(a) by the above 

inductive process, utilizing transfinite induction in 

this case. 

Definition 5 of upper limit of transfinite sequence. 

Let ff be a transfinite limi t~ordinal number. Let { x~} 

be a transfinite sequence ( of ordinal type ,S. ) of elements of 

S, and let them be bounded, as a totality, that isJlet 

} x , ) L for all 5 such that 1 "§- t4 9, . Now let K be 

the g.l.b. of all £he elements of S such that c, i K~ for 

. Now we define lirn C 
~-1;,$- '; 

as the g.l.b. of all 
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elements~ . 

Theorem 11 llin (C ) + 1· d 
t.~.. • ~ 'r ,-,= r-,111' 

Proof. Obvious from the definition of Jim. 

Theorem 11 a If A ~ 0 then 

lim (>. C') = ~ lim {C') v...,'° 
Proof. Follows directly from definition of lim. 

Theorem ub Let { f ~ {a)} be a transfinite sequence of linear 

functions of ordinal type ,3- , such that \ f) \ f M for 1 ~ f < ~ 
Then there exists a fixed linear function f(a) such that for every~, 

lim fc (a) 1 f(a) t lim f~ (a) 
t...,,$. T f_.,.$1. 

Proof. Put p(a) = 1 im f'1 (a), then p(-x) = -lim fl (a) 
r ... J. r-} ,J. 

Now 

p(a + b) {_ p(a) + p{b), since from Theorem 11 

above, lim f, (a + b) = lim [f ~ (a) + fr (b)] ~ 

~ lim f~ (a)+ lim fy(b). 

Therefote, by Theorem 10, there exists an additive 

function f{a) such that 

-p(-a) f f(a) ~ p(a). Also / p(a) J ~ M • // a I( 

so / f( a)I '€ M· 11 a II and f( a) is linear, obviously. 

Definition 6 of hyperlinear function on S to S. 

A function F(x) defined on the Kantorovitch space S to 

the space S is said to be hyperlinear if it is linear and if there 

exists a real number F such that 
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) F(x) I 
Definition 7 of norm of hyperlinear function. 

The norm of F(x)·is defined as the greatest lower bound 

of the ~i'F is in definition 6 . 

Definition 8 of 11 to span11 • 

A set (A) of elements is said to 11 span11 a linear sub­

space L0 of the given linear space L if Lo is composed solely 

of linear combinations of finite sets of elements of (A) and 

limits of such linear combinations. 

Theorem 12. Given (A), a set of elements of a Kantorovi tch space L 

end 10 , the linear subspace spanned by (A). Given a function fa(x) 

defined on (A) to L. The necessary and sufficient condition that 

there exist an hyperlinear function f(x) on L0 to L, with norm)'-', 

talcing values in (A) identical with the corresponding ones of fa(x), 

is that for every finite linear combination .A1x1 + A2x2 + • • • + Anxn 

of elements of (A) we shall have: 

(1), I ~, fa(x1) + A 2fa(x2) + • .. + ~ nfa(xn) I £'.: 

~ / A,x1 + ) 2X2 + • • • + ~nXn l 
Proof. Sufficiency. Assume the above inequality. Then if 

~ 1x1 + .A 2 x2 + ••• + ~nXn = O, we have 

~ if (x1) + A 2f (x2) + • • • + ~nf (:&:n) == 0. a a 
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It follows, then, that if 

~ lxl + A 2Xz + ••• + ~ nXn = ~ ixl + .A J ~ + • • • 

+ } , x• 
p P' we have 

}i 1 f (x1) + A2 f (x2 ) + · .. + ~ n f (Xzi) = a a 
( 

~ 'p )1 fa(xj_) + >.. '-i..ra<Xl) + ... + fa(xp) 

Therefore, we may define f(}, 1 x1 + ,A 2x2 + • • + A :rfn) 

point of 10 that may be represented as a linear combin­

ation of a finite number of elements of (A). Consider 

now any point Z of 1 0 , and { x,v) a sequence of such 

linear combinations of elements of (A) such that 

x ~ Z. Now from 
V 

But x -) z, therefore the elements w :: f(x1J of L 
V V 

form a Cauchy sequence and so have a limit, by Theorem 

52, Chapter I (p. 42). We define f(Z) as lim f(xv). 

Obviously, from the fact that lim (w,., + w'") = 
lim w-v + lim w~ if the two latter exist we see that 

f(Z) is additive. From the fact that ).i lim wv = 
lim ( ~ w,.,) for ).. a real number, we see easily that 

f( ~ Z) = A f(Z). That f(x) is hyperlinear follows from 
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the fact that 

I f(x") I ~ ,, 
( X .J I and so in the limit, 

I f(Z) I L I-- I z r 

Definition 94.,of com2lete s2ace 

Lo, a linear subspace of a Kantorovitch space is said 

to be complete if Theorem 32, Chapter I (p. 52) is valid in 

it, considered as a semi-ordered space. 

Theorem 13. Given L0 a complete linear subspace of Land f 0 (x) an 

hyperlinear function on L0 to L, with norm f--. Then there exists 

an hyperlinear function on L to L , with norm f', and taking values 

identical with those of f 0 (x) in the corresponding points of 10 • 

Consider any well-ordered set L, of linear subspaces 

of L, starting with L0 and ending with L, and such 

that each one include all the preceding ones. Assume 

that for an ordinal number 7 we have defined all those 
/;) 

preceding. If ~ 0 is not a limit number then considering 

and any point ~ not in L we shall define L t, r. -, 
as the space spanned by~ together with the elements of 

In case f is a limit number, we simply define 
<> 

as the space spanned by the union of all the L l 

such that f < f . . Since, by the well-ordering 

hypothesis, L can be regarded as well-ordered the fore­

going inductive process can not go beyond a certain 

ordinal. 
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Now let us prove tre given theorem by an inductive 

process . .Assum.e that for all of the subspaces Lt , J° < 'f. 

f(x) ha; been defined. In case f O is not a limit-

ordinal, consider the linear subspace L and the point 
t. -, 

Z of Lfb, used above. Now 

fo(X - x) ~ /ro(X - rr:Jt:)[1 rlx -x/ = ,)x - z - (x - z)[~ 

p-/x - Z J + p [ x - Z / 

and so 

(2) ro(x) - y/x - z/ ~ rlx - z I + ro(x) for every pair of 

elements :x:,x of L . Take the least upper bound~ of 
'T d 

( 3) 

the set fo(x) - ylx - Z \, (this exists by axiom II 4, 

p. 30, Chapter I, since the set f 0 (:x:) - Jlx - zl is 

bounded above, by inequality ( 2)). Take th:l greatest 

lower bound)_ of the set +f0 (:x:) - J fx - zl, (this exists 

by similar considerations). Then 

Choose any element e of L such that 

Now any element x' of L can be represented, by definition, 

as a linear combination x + A e of the element e and an 

element x of L~ Vie define - ,.,, . 
f(x') =. f(x + f Z) = f 0 (x) + A e, that is f 0 (x) 

has been extended to an additive homogeneous function f(x) 
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and f(Z) = e. 'lb see that it is hyperlinear with norm 

µ, we notice that - ~ is a point of L,. and so by 
r A 1

6
-t 

inequalities (2) and (3): 

-r ( :) - r f1 -z I ~ r(z) -;; - f (j) + 1 j )x _ z j 

Therefore 

and get 

r(z) + f 0 (f) ~ J {; + z/ 

1 [r + z) ~ f(Z) + fo(f) 

/ r( z) + ~ ( f) / i f / ~ + z~ 

therefore 

Multiply through by{A/ 

/~r(Z) +f0 (x)jt y{x+~z}. Or, by the 

definition above, 

\ f(x') \ = /r(x + A z)/ '§- y/x + A z} = y- /x/_ • 

In case t is a limit-ordinal, L was defined as space ,. ., 
spanned by the union (A) of all spaces Lt . f or which f < f o 

Assume that f(x) is defined for all L , . If 

A1x1 + A 2 ¼ + • • • + AnXn is a finite linear combination 

of points of (A) , then each Xi belongs to some L~ . ( ri < t ) . 
I • 

Lettre largest of the ordinals f bet , then all the xi 
1· 

will belong to L
1
,. But, by the inductive assumption f(x) 

is defined on Lt' and has a norm J· Therefore 

I ~ 1f(x1) + A 2 f('.¼) + • • • + ~ nf(xn) / = 

[ f( ~ 1x1 + A 2¼ + • • • + Anxn) / ~ 
f l ~ l xi + ) 2X2 + • • • + ~ nXn / • Now the 
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hypotheses of Theorem 12 are satisfied. Therefore Theorem 

12 is true and f(x) may be defined, with the desired 

properties, over Lt,, . 

Consider now the set S of all linear functions f(a) on B 

to S. 
.;(, f,.hOitY 

Definition 9....-of absolute value of a function. 

The absolute value of',a function f(a) on B to S is defined 

as tre norm / f \ B of the function. This exists by Theorem 3 
· a Jr l . f /'t-S and is in s. 0).c@ s u f{/x (B w i If fi,_~ 011u'itt, i,1 ' 1i.P.:: lri<'l}}, JJ {£4("Y 'fff,d:f_; .. 

Theorem 14. The absolute value / f I B of f(a) on B to S has the 

properties 

1.- /fl B~ O and /f / B = O if and only if f(a) is identi-

cally zero. 

2. I~ fl= ,A Ir I 
3. If + g I .:::. Ir/ + I g I = 

Proof. 

1. Obvious 

2. Obvious 

3. } f(a) /-; /r/ ·//a//; / g(a){ ~ /s { /(al/ 

I g(a) + f(a)/ ~ /g(a)/ + {f(al =i/gj + (f/} · l/al/ 

Let us, for convenience, designate the value of the 

linear function u(a) at the point a by B(u,a). Then 

)B(u,a)l;/ul-/(a!J • 
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Definition 9c of F+(a), F_(a). 

If F(a) is a function, linear or otherwise, on B to s, 

we define the values of F+(a) and F_(a) for each value of~ by 

the equations 

F+(a) = lub (o, F(a) 

F_(a) = lub (0,-F(a)) 

Theorem 14a F+(a) - F_(a) = F(a) 

F+(a) + F_(a) = /F(a) I 
F+(a) ~ O; F_(a) ? O. 

Proof. Obvious. 

Theorem 15. If F(a) is linear on B to S, there exist 11 moduli 11 F+ 

and F _ such that F+(a) ~ F+ l\a\\ 

and 

F_(a) ~ F_ l\a I\ 

F+ < \Fl ; F_ ~ IF( -
IF I < F+ + F_ L: 2 \F\ 

Proof. We see that 

F+(a) S F(a)+ + F_(a) = jF(a)j f /Fl. {lall 

F_(a) < F+(a) + F_(a) = !F(a) I ~ lF \ • II a IJ 

and so (1) F+(a) ~ [Fl /la{/ 

{2) F_(a) ~\Fl lla\l. 

Let F+ be the glb of all the elements having the property of 

the F in equation (1). Similarly, let F_ be the glb of all 



the elements having the property of j Fj in 2. Thus 

F+ cg !Fl 
F_ f )FI 

F_(a) ~ F_ Ila II and so adding, 

F+(a) +F_(a) = \F(a)\~ 1F+ +F_} /lall 

Also F+ + F_ i 2 /Fj 
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It is then evident that F_ + F+? /Ft, from the definition 

of F and the last e4uation. 

Definition 10a of star-modulus. --

Theorem 15a a) }F) * = 0 if and only if F(a) ~ 0 

b) )F + GI* ~!Fl*+ /Gj* 

c) jF - GI*~ I IFI* - jGl*I 

d) l~F\* = ,~1. JF/* 

Proof. a) Obvious. 

b) From Theorem 2e , Cha pt er I, p. 5 

{F(a) + G(a)}+ ~~F(a)}+ + {_G(a)}+ 3\F+ + G+) • I/all 

(F + G)+, being the gl.b of all elements having the 

property of F+ + G+ above satisfies the inequality 

(F + G) + < F+ + G+. Similarly 

(F + G) _ S: F_ + G_. Adding 

/F + G/* ; !Fl*+ jG/*, by definition of the star 

modulus. 



c) In b) put F + G = H, F = G - H 

IHI* ~ 10 - HI*+ [GI*• 

(1) JG - HI* ? IHI* - IG[* 

(2) )H - o/* s JHI* - /GI*• 

But {-K(a)}_ a K+(a) has modulus K+ 

{-K(a)} + = K..(a) has modulus K.. 
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and so adding -K( a) has modulus / K /* thus 

/-K}* = jKj. Hence from (1) and (2) 

jG - HI* ;? I /HI* - /GI*/. 
d) It A '::> O from Theorem 16c, Chapter I, p. 13, 

<~F(a)}+ = .AF+(a} 

{>.F(a)}- = 1\ F_(a) 

It follows easily that A F+(a) has modulus AF+ 

and ~ F_(a) has modulus ).. F_, so that adding, we see 

that )~Fl*= ~ \Fl* for A:;;,, O. To extend the 

result to the case of A<: 0, notice the remark at. the 

end of the proof of c). We shall have 

three simple sorts of convergence : 
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defined for sequences of functions, one will be called 

modular convergence, the other star-modular convergence 

and the third, weak convergence. 

Definition 10c of modular convergence. 

1'he sequence of linear functions F(a) is said to converge 

modularly to the linear function F( a) if j Fn - F I converges to O. 

Definition 10d of star-modular convergence. 

11he sequence of linear functions Fn(a) is said to converge 

to the linear function F(a) star-modularly if /Fn - F/* converges 

to O. 

Definition 10 e of weak convergence. 

A sequence of functions Fn(a) is said to converge weakly to 

the linear function F(a) if Fn(a) -t F(a) for each a in B. 

Theorem 15b, If a sequence of linear functions converges modularly 

to a linear function it converges star-modularly and vice versa. 

Proof. If Fn( a) ---t" :E' (a) star modularly, 

\Fn - F\ ~ (Fn .. - F )+ + (Fn - F)_ = /Fn - F/* <ey0 

for n :::> Ne 

Thus )Fn - F ) C::::. ~ y
0 

for n 7 Ne and T!'n(a) ~ F(a) 

modularly. Sirnilarly for the converse, use the inequality 

) F n - F / * ~ 2 ):B'n - F I . 
Theorem 15c. If a sequence of linear functions converges to a linear 
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function modularly, it converges weakly. 

Proof. Suppose Fn(a)~ F(a} modularly, Then 

IF n - FI < 6y O, n ;,,- Nf-

J F n ( a) - F(a)/ ~ /Fn - F/ ·/Ia/I< & //a// Yo 

and so for each a, Fn(a) converges to F(a). 

Theorem 15d, The space S of functions on B to Sis a semi-ordered 

space of Kantorovitch (not necessarily regular) satisfying Postulates 

I l - 5, II 1 - 4, III l - 6. It is complete with the amt:l 1. l @a.l 

topology imposed by the modular convergence. 

Proof. By definition F17 F2 , where F1 and F2 represent the 
) 

functions F1(a) and F2 (a)
1

considered as elements of the 

sets S if 
' 

F1 (a) ~ F2 (a) for all a and 

what is equivalent 

~
,,., 
""I - FJ+ f 0 

i
.,.,, - "7 } = 0 l.' ..L,:,. 

I 
,_ -

The latter part of the theorem follows from Theorem 158 . 

Theorem 16. R(u,a0 ), a0 a fixed element of R) is an hyperlinear 

function with norm // a0 //· 

Proof. Since 

/R(u,ao)j ~ ~ a 0 (\ • lu\, it follows that there 

is a least number (real) f"-- such that/ R(u,ao) I if /u/ 
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Jc is certainly less than or equal to // a0 // • We now 

proceed to shew that we can find a function u (a) that 

actually takes the value / u / - // ao 1/ for a = a0 • Now 

by Theorem 9, we can find a f'u.nction u(a) that takes the 

value k in a
0 

and such that k u =---
JJao)J 

. Then 

llao /1 = u II ao// 

Thus //a 0 /} is the smallest possible value for j), . 

Theorem 17. The totality of linear transformations R(u,a) where a is 

a parameter on B lies in a Banach space. 

Proof. The norm of an element is simply // a /I , etc. 

Let us now consider a family T of linear transformations 

belonging to s. Let a typical one be uy(a), where y varies over a 

set with the same cardinal number as T. Let Cy be elements of S, 

We shall examine the set of equations 

Definition 11 of regular system of equations. 

If each linear function f(u) on T0 , the space spanned by the 

totality of the above uy, is of the form R(u,a0 ) for a0 in B, the 

system above is said to be regular. 

Definition 12 of regular Banach space B. 

The Banach space Bis said to be regular if every linear 

function f(u) defined on the associated apace Sis of the form 
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'lb.eorem 18. 'lb.e necessary and sufficient condition that there exists 

a point ~o of B satisfying Uy-(aa) = Cy is that there exist a number iJ, 

such that for every finite linear combination ~1uy
1 

+ A2Uy
2 

+ ··• 

+ AnUyn of the above U'S, the following ineq_uali ty shall exist. 

/A1cy1 + >-2cyn + •• + ~nCynJ ~ ? [ A1Uy1 + ~2Uy2 + ••• 

Proof. Necessity. Let a., be a solution. Then 

A1Uyl{ao) + A2Uy2(ao) + ·•• + Anuyn(ao) = ll1Cyn + •• 

and 

/ A 1 Cyl + • • • + A n Cy n / = I A1 Uyl { ao) + ••• . + t\ n Uy n ( ao) / ~ 

// ao // • ( ~l Uyl + • • • + Al\ Uyn l 
This last follows from the regularity of the space and the 

fact that ~ 1uy
1
(a) + •· • + AnUyn(a) is a linear function. 

Sufficiency. Assume the inequality of the hypothesis. Then 

by Theorem 12 there is an hyperlinear function f(u) on T0 , 

with norm u, and for which f(Uy) = Cy. Owing to the regular-

ity there is a point a 0 , such that f(u) = B(u,a0 ). So 
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Definition 12 of minimal solution. 

a 0 is said to be a minimal solution of Uy(a) = Cy if for 

any solution a', 

Theorem 19. If B is regular and if there is a~ such that 

/ Ai Cyl + • • • + f n Cy n / i )1 / A 1 Uyl + • • • + A n Uy n / 

for every finite linear combination of the U'S, then the system 

Uy( a) = Cy has a minimal solution a 0 

Proof. Let.,.. be the smallest possible. Then certainly every linear 

function f(a) on T0 , taking the value Cy has a norm at least 

equal to J· By the preceding theorem, there exists at least 

one a0 for which R(Uy,a0 ) = ey. The norm of this hyperlinear 

function is I/ a0 // and so JI ao // :;; )1• But by Theorem 12 

there exists an hyperlinear function with normf, taking the 

value Cy for L4 at the point ~~. Owing to the regularity it 

is of the form R(u,a' 0 ). So JI a'oll = J and this together 

with the inequality // a0 /I ~ f for every solution of the 

system gives the result that a' 0 is a minimal solution. 

Now it is possible to extend the original Banach space B to 

a Banach space B1 in such a way that the system of equations 

of Definition 11 is regular in B1. Let the totality of hyper­

linear functions W = f(u) on S to S be the space S1. From 

Theorem 16 it follows that the set of functions of the form 
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R(u,a0 )J is a sub-set 01' s1. 

Theorem 20. The space s1 is a complete Banach space using the hyper­

norm as the Banach norm. It is also a semi-ordered space. 

Proof. Suppose Wn ~ fn(u} is a sequence of hyperlinear functions 

such that 

f'or n,n' ~ N<=-

this means that 

)tn(u) -f'nt(u)I < E• u 

limit exists: 

~us for each u, the 

lim f'n(u) = f'(u). Owing to the additi~L homogen-
n➔ OO 

eous properties of the limit operation, t(u} is additive 

and homogeneous. But owing to the fact that the f'n :t'orm 

a Cauchy sequence, they are bounded in the norm from the 

ordinary theory of Banach spaces, see Banach rvb, 1, p. 137 

Theorem~. Thus 

JI rn II < " } f'n(u} / L " I u/ • :::,. 

I r{u) I --5 ,A ju/ and the hyperlinearity of' f(u) 

follows easily by taking as its hypernorm the glb of all 

J\ 's satisfying the last inequality. The remainder of the 

axioms for a Banach space are easily verified. The semi­

orderi:n.g is accomplished by a process similar to that of' 

Theorem 15d. 
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Now if W = f(u) is an hyperlinear :function of the type 

R(u,a) where a is a suitable element of B then we shall define// w/1 

as Jla//. Thus we have an one-to-one correspondence between the 

elerll3nts of B and the elements of S1 of the form R(u,a). Now we shall 

identify R(u, a), considered as an element of S with a of B. Further, 

we shall add to Ball the other hyperlinear :functions W = f(u) as new 

points. The extended space we shall call B1 . /( W / / is simply 

defined as the hypernorm of the function W = f(u). 

If U'(a) is a linear function on B to S, define U(a) at the 

point b
0
of B by the convention: U(b0 ) is the value that b0 = f 0 (u) 

(hyperlinear :t'unction) takes at the point U of s. 

Theorem l / The modulus / u/ Bl of the linear function U(b) in B1 is the 

same as lulB in B. 

Proof. Since B ~ Bi, we have 

/ulB ~ I ulB· But 
I 

U(b
0

) = f
0

(Ufb)). The modulus of f
0

(u) is. // b
0 

// 

/ U(b0 ) j ~ / uj · // b0 (/ • Therefore in Bi, 

/u/B1 -=;- /u/B• Andsofinally, 

ju)B1 = Ju/B 

Let now U(b) be a linear :function on B1 to Sand let 

R(u,b) be the value that U(b) takes at the point b of B1. 

Then every linear function f 0 (U) on S to Sis got from 

R(u,b) by choosing a suitable b from Bi. For, f
0

(u) 
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defines a point b0 of B and f 0 (u) = U(b 0 ) = R(u,b0 ). 

Thus every system of linear equations of the type of Defini­

tion 11 is regular and the space S1 is identified with the 

space B1. 
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Chapter IV 

We now eY .. runine the consequences of the additional postulate, 

·which I shall call postulate IV. Remembering that if a sequence Yn 

approaches a limit (necessarily unique) then the sequence is bounded 

above and below, we frame it as follows: 

(IV) If Yn ➔ 0 then for any y such that /Yn/ ~ y;all n, it is true 

that / Yn I < f y for n > N~. 

Theorem 1. If Yn ➔ z and / y11 /? y, then / Yn - z /-§- €- y for all n 7 NE-. 

Proof. The first part is just a restatement of Theorem 36 band 

Theorem 41. The second part follows immediately from the 

fact that (Yn - z) ---:> 0 and that if / Yn/ ~ y for all n, 

then I lim Yn / '§- y and so I Yn - z / '§ / Yn / + / z / ~ 2y. 

This postulate is valid in all the common applications, 

such as in the space of functions bounded almost everywhere, 

as we shall see later. It enables us to introduce a numer­

ically-valued function which we shall call the weak metric 

on a sequence. 

Definition 1 of the weak metric on a sequence. 

When Yn ➔ O, we fix a~ as in postulate (IV) and then define 

/} Yn// y as the smallest E-n such that { Yn} '!§ EnY • We can define 

the norm HxH of any element~ in the space, with regard to this 

fixed y, as the smallest positive real number J1 .such that 

l xi ~ -µ y if it exists. 
- I ) 
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// x/1 = glb f such that / x/ £-- f y. It must be pointed 

out that the norm of an arbitrary element does not always exist. 

It follows easily that 

Theorem _g • . If // x// y exists and // z{{ y exists then // x + z// y exists 

and. 

II X + z [( y ~ II X /I y + {( z II y 

I {( X //y - II z// y / ? a X - z II y 

Proof. 

( XI -§ 

l z I § 

J x + z 1~ 1 x/ + r z/ 

/(x/ly Y 

/I z //y , y 

L {/lx/ly + /( zr/y J , y 

Considering the first and last terms of this inequality 

we see that }Ix + z /ly exists and is less than or equal to 

j{x/{y + /{ z{(y. By writing x - z for x in this formula, 

we get the second formula. 

Theorem .§.. If /{ x{{y exists, then // x/{y = 0 if and only if x = O, 

where y is arbitrary but fixed. 

Proof. Obvious from definition. 

Theorem !• If Xn ➔ x then if j/ xn/( y all exist except for a finite 

number of n, // x// y will exist and // xn/( y ~,r x/( y • 

Proof. The first statement follows from Theorem 1. The second 

statement follows from the fact that 

/ xn - x f ~ €: y for n ~ NE-



and // Xn - x / I ~ E- for n 

But I I Xn // - // x II I ~ // Xn -

so that // Xn {I ---4> // x ({. 

:? N • 
e-

x // "'§ E-
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Theorem~- Any bounded set A can be metrized with respect to the 

bounding element. 

Proof. The preceding ·l!-trJtr theorems. 

Definition _g of weakly compact and weakly compact in itself. 

A set of elements is said to be compact if every infinite 

sub-set of different elements possesses a sub-sequence that converges 

to a limit element in Snot necessarily. The original set is said to 

be compact in itself if it always contains the mentioned limit-element. 

Definition~ of strongly compact and strongly compact in itself. 

A compact set is a bounded set such that every infinite 

sequence of elements in the set contains a sub-sequence converging to 

an element in S. This last element need not be in the given set. If 

it is without exception, then the given set is said to be compact in 

itself. 

Theorem..§.. If a set A is strongly compact then the set of all elements 

of A together with the limit-elements of all convergent sequences of 

such elements will form a complete metric space. 

Proof. Let G be any element such that / x/ = G for all x in A. 

Now metrize according to Theorem 5. The liwit-elements are 

of course metrizable by Theorem 4. 
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If we consider any element Xo not belonging to the closed, 

strongly corrr_pact set A of the above Theorem, then it will be at a 

distance 6 > 0 from the set, since Yo = lub {f Xo/, g J will be 

a bound for all elements concerned, and using the metric with respect 

to Yo, which obviously by Theorem 5 is equivalent to the metric with 

respect to g, we can apply the well-knovm metric theorems concerning 

the minimum distance of an exterior element from a closed compact set. 

See Sierpinski IV B p. 82. 

Theorem 1• If A is a closed) strongly compact set then to each f 7 0 

there is a set of elements x1,:x.-.a, • • • ,x11 of A, finite in number such 

that to each point x of A at least one of the elements satisfies the 

inequality 

bound of all x in A. 

~ 
2 

or 

t: 
2 g, where g is a fixed upper. 

Proof. By the preceding theorem the set A is metric and by the 

corresponding theorem in metric spaces (see Sierpinski IV 

B p. 81 Theorem 48) this theorem follows. 

Theorem ~. If A is a closed., strongly-compact set and f >- O, there 

exists a linear transformation T(x) of the set into an n-dimensional 

set such that 

j T (x) - x / < E-- g for all X in A. 

g is an upper bound of the x in A. The n and the E- are associated 
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as in the preceding theorem. 

Proof. Put· \ , .. 

~ }½_(x) :>~ 
T(x) = - - • • where Xi are the elements of 

2.; fi (x) 

the set of the preceding theorem and 

fi(x) 

fi(X) = 0 

= E: - Q- i if IX - Xi I< ~ g 

if (x - Xi ( f" E- g 

and Qi= glb ~ such that 

}x - Xi/ < ~ y. Then 

jT(x) - xi= l21P:i (x) xi 4 fi (x) x / 

'.2,- p-i( x) L, fi(x) 

~ I Li J.li ( x - ½) I , 2 Pi ) x - ½ / 

/ 2.-- fi<x) I 2. 

ffg. 

U· J. 

Definition i of completely continuous function. 

F(x) defined on a closed bounded set A in Stoa set Bin 

Sis said to be completely continuous with respect to A, if F(:A) = B 

is strongly coCTpact and F(x) is continuous . Usually if the set A is 

fixed for a particular problem we simply say that F(x) is completely 

continuous. 

Theorem 9. If F(x) defined on a closed bounded set A is completely con­

tinuous, then to any E > 0 we can find a corresponding treJ1sformation 

F (x) such that the range of values of F (x) is contained in a linear 
~ ~ 

finite-dimensional space En and such that F (x) approximates F(x) to 
(:, 
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an error of~, that is 

·/ FE- (x) - F(x) / < f g for x in A 

F (Al C E . 
fa = II,. 

Proof. The elements F(x) are contained in a strongly compact 

set Band so by Theorem 8, we can find a transforrmtion, 

T(w) (linear) of those elements into the En, i.e. 

F (x) ~ T(F(x)). 
(: 

We de~ote a spice to a review of the definition and properties 

of the degree of a single-valued function F(x) defined mn a bounded 

closed sub-set A of an n-dimensional Euclidean En space to a sub-set 

of the sarre space. For complete definitions of the terms used, see 

Ale:x:androff and Hopt IV B. If x1 is an element not on F( f( A) where 

tr(A) is the frontier of A)then degree of the function F(:x:) at the 

point x1 is defined by appro:x:imat·in,g to F{x) by the aid of a simplicial 

function F~(x). If the simplicial approximations are fine enough, then 

the number of positive simplexes containing :x:1 minus the number of 

negative ones containing x1 will be the same for all these latter 

f'unctions F (x). The degree, Y(F,A,x1) of the function F(x) at the 
e: 

point x1 is defined as this number. The properties of the degree 

(Cf. Leray and Schauder Ivd) are as follows 

1. If A1 and¾ are two closed bounded sets in En, 

without com:non points and x1 is not contained in 

F(fr(A1)), F(fr(A:a)), then Y(F,A1,x1) + Y(F,~,x1) = 

Y(F,A.1 U ~,x1). 



2. If Y (F,A,x1) ~ 0 then x1 is in {i(int A) where 

int A is the set A exclusive of its frontier 

points. 

3. Y (F,A,x1) is constant if the transformation 

F(x), the set A and the point x1 va:ry continuously, 

A, :x:1 and F being subject to the same restrictions 

as before. 

Let us state a lemma of Leray and Schauder (Ivd 1, p. 49) in 

a form suitable for our purposes. Consider a linear metric space 

En+p of n + p dimensions and a bounded closed set An_+p contained 

therein. If we consider a linear metric subspace En containing points 

of An+p and some given point x1 of En+p, then the common part An of 

the space En and the set An+p, being the intersection of two closed 

sets is necessarily closed and of course, bounded. Certainly 

fr(An) C fr(An+p). Now consider a function Fn+p(x) on An+p to a sub­

set of En+p and a point :x:1 not contained in Fn+p(fr A) and such that 

F(x) - x is an element in En whenever x is in An+p Gn this case the 

function F(x) is known as an n-translatio~. Then Fn+p(x) will trans­

form An into a set belonging to En. Let Fn(:x:) be defined only for x 

in An and let Fn(x) = Fn+p(x) when x is in An. The first lemma of 

I.eray and Schauder then states that 
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We shall now be occupied with functions of the form x - F(x) 

in which xis contained in a fundamental closed bounded set, F(x) is 

a completely continuous function defined on that set. There follow 

some preliminary theorems and lemmas. The proof of the following 

theorem does not depend on Postulate IV. A simpler proof can be 

given if that postulate is assumed. 

Theorem 10. A linear semi-ordered space of Kantorovitch, with a finite 

number n of dimensions is homeomorphic to an Euclidean space of n 

dimensions. 

Proof. According to the hypothesis there exists a linearly 

independent set of elements x1,X:2, .•• ,xn such that every 

element in the given space can be expressed as a linear 

combination of those elements (with real number coefficients ), 

i.e. for x arbitrary there exists a set of real numbers 

Let x ~ ( a½_, o<.2 , • • • , o<n) be the correspondenc,e between 

the two spaces. Then to prove that if x(i) = ~ .J.-(~) x~ 
j=l Cl ~ 

and if r7\, j) 7~ as i -> oo, then x(i) - > ti cij x1 and 

the converse, that if x(i) --) L c;,t...j-x!, then °"(~) ➔ o<j 

for each J. The: first part follo.vs easily from the 

theorems on the limit of sums, etc. Prove the second part 

for the s pe cial case x ( i) Suppose by 

contradiction that 
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does not converge to zero. Then pick a sub-sequence 

from x(i) (by re-numbering we can treat it as if it 

were the 

:x:( i) 

0(i) ➔ 
converge 

original sequence) with the property that 

o<(i) 
0 and furthermore the sequences-~-

\ ~ (i) 
to finite limits A 1, for each ~. This last 

tT (J (') 

is accomplished by noting that the sequences~() are 
(i) ~ i 

each bounded. From the first sequence o<.. (l) can be picked 
D\(in) ~ i 

a convergent subsequence say - (' ) , w:i:th indices in. Now 
(in) (} in 

from the sequence c;(... 2 , with indices in. Now from the 
cJ... ( in) 8 (in) 

sequence 2( ) can be picked a convergent sequence with p in 
indices in.., a subset of the indices in; if we continue this 

-.I:' ( i) / 

we arrive with an infinite sequence of process to o( ( i) 

indices whifh we shall, without loss of generality call{ 1}. 

1, we should have for i > N 

/oZ t1l I 

~ < 1 for 

contradiction since at least 

all ;J, but this gl. ves a 

o< :'l(i) 
one v must be equal to 

f ( i) 
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1 for every i. The proof for a non-zero limit follows 

now by subtraction. 

Theorem 11. If Ln is a linear manifold of dimension n contained in 

S, then Ln is a closed linear manifold. 

I _!!_ _ J (i) . 
Proof. Suppose that 2... <.A. . x • 

j=l J J - x I ➔ 0 where :x: is in s . 

Then by contradiction assume that x cannot be expressed 

as a linear combination of the x1 , •·· , Xn, that is if 

f 1 x1 + f 2:le:z + • • • + {? nXn + f-, x = 0 then 

(S / = 0 = /3 for ally. Then all possible linear combin­

ations of x1 , ... ,xn, x will form a linear manifold 1n+l 

in Sand by the preceding theorem if 

n ( i) 
~ 
/=1 p/.._J 

(i) 
x y - x ~ 0 the 11 ~ ~ O as i ~ oo and 

-1, -1, • • • -1··· as a sequence has a 
J 

false. This completes tm proof. 

zero limit, which is 

Lemma 1. If A is a closed, bounded set, then fr A, the frontier of A, 

is closed. 

Proof. The frontier of A is defined as An s - A, where A means 

the set A together with all its limit-points. S - A is 

the set of elenents of S not in A and S - A means the set 

of all limit points of S - A together with the points of 

S - A. But the part common to two closed sets is closed, 

obviously. 

Theorem 12. If f(x) = x - F(x) where F(x) is completely continuous 
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defined on a closed bounded set A and y is not on f(fr A) then there 

is no sequence { Xn } in fr A such that 

Xn - F(Xn_) 7 y. 

Proof. By contradiction. Suppose there does exist such a 

sequence. Then since the set { F(xn)} is strongly com­

pact, we can pick a convergent subsequence out of{F(xn)}, 

which without loss of generality can be assumed to be the 

same as {F(xn)} itself. Let F(xnl ➔ :x:0 • Then 

:x:n = [xn - F(xnl] + F(xn) ~ y + :x:0 

And so z = y + x0 will belong to fr A and so 

lim xn - F(xn) = y = z - F(z). But the last equality 
n ➔ oo 
says that y is on f(fr A). Contradiction. 

Theorem 13. Under the same hypothesis as the above theorem, y is at 

a distance c)--;,- O from f(fr A), where the cf is simply the distance 

according to the metric with respect to a certain element (arbitrary 

but fixed in a particular case) bounding y and the set A. 

Proof. The set A is bounded, as is the set F(A} and so is then 

the set x - F(x) where xis in A. The proof is now 

immediate in view of the remarks immediately preceding 

Theorem ? • 

We shall now define the degree at a pointy of a function 

f(x) = x - F(x) where F(x) is completely continuous on a closed 

bounded set A, and y is not on f(fr A). We first find a linear 
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function F!(:x:) on A to an n-dimensional sub-space of S such that 

II F{x) - ~ (:x:) I) < s where r is the distance of y from 

f(fr A) reckoned with the metric with regard to an element bounding 

y J the set F(A), and the set f (A). Now let En be a space containing 
0 

the (n-dimensional) set F0 (A), the pointy, and at least one point of 

A. Now the intersection, An
1

, of Enr with A will be non-vacuous, 

closed and bounded and will be, moreover, ni-qimensional. Also 

fr(AnJ ~ ~ fr(A). Thus y is at a· distance :;;: f' from fr(An ) . The 

function to on the set An is then a function on one set of a finite 
. 0 

dimensional space to another set of the same space. The degree of 

th~s function ~swell-defined at y and has the properties 1. - 3. on 

page / g-- ~ We now define 

Y[r(:x:) ,~,Y] ~ Y{ t (x) ,Au ,YJ • 

Tb.is definition is justified by the following -theorems. 

Theorem 14. Consider f(x) = :x: - F(x), F(x) completely continuous and 

defined on a bounded closed set A in an n1 dimensional sub-space of S 

and 
f I; (x) = x - F di (x) 

f O ~ (x) = x - F / 2 (:x:) be two functions in 

which FJ, (x), F / 2 {:x:) are both linear functions defined on the same 

closed bounded set A and whose ranges of values are both contained in 

the same linear sub-space En cf and such tha. t O .::::: f 1, ~ < J and 

let y be 

F(fr A). 

an element in En and at a distance greater than f from 
J 

F 
01 

(x), F ~ (:x:) satisfy the inequalities 
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/J F(x) - Ff, (x) /j ' f 

// F(x) - F0,1(x)// , f) x in A. 

Then the degrees of the functions fcf. and f 02 at y are the same. 
I 

Proof. Consider the function / f J, (x) + (1 -_7 )ff.. (x) where 

varies from Oto 1. Then 

/ 7 f J, (x) + (1 -1 )fif1- (x) - f(x) I= 
1, F cf, (x) + (1 -, )Fe( (x) - F(x) {= 

/ i(F(x) - Fr, (x)) + (1 - , )(F(x) - F f-i- (x)) / ~ 

1 /F(x) - Fr, (x) I + (1 -, ) ; F(x) - Fl .. (x)/ L (1 -~ +i) cJ= 6 

Thus by property 3 (seep. /10) of the degree of a function 

on one n-dimensional metric space to another, the theorem 

follows. 

This theorem justifies the definition of the degree of 

a function to the extent of shewing that it doesn't, depend 

on the choice of the approximating linear function if the 

En< ,Encr are the same for two linear functions ff, (x), 
0/ 2 I 

f ~ (x) for which 

/j f 4 (x) - f(x) ff = /jF(x) - F di (x) II <. d i = 1,2, 

The next theorem shews that these associated linear spaces 

need not be identical. 

Theorem 15. Using the above notation, if Eno, , EnJ1.. are different the 

respective degrees of the transformation f 0 (x), fO;a(x) are the same. 
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Proof. This reduces to the previous theorem if we consider En 

a finite-dimensional linear space containing the finite­

dimensional spaces Eno; eJld En Oz. Let A be the point­

set intersection of En and A. The two linear functions 

are both defined on the same set An and their values lie 

in the same linear n-dimensional space En• Also by the 

lemma of Leray and Schauder, see above, the degree of 

f cl. (x) on .An is the smne as that on An r • 
I OJ 

Now we shall prove that the three characteristic 

properties of the degree of a are valid in the case of 

the functions f(x) in Kantorovitch spaces. 

Theorem 16. If A and Bare t wo closed bounded sets without common 

interior points, then ff f,A,y] + Y[f ,B,yJ = 'o [f,A UB,y] 

where y is a point not on f(fr A) or f(fr B). 

Proof. In determining the degree the linear sub-space En 
I 

is 

made to contain points from both A and B. 

Theorem 17. If Y Ir,A,Yj :/ 0 then y is in f(A). 

Proof. Immediate. 

Definition 5 of continuous deformation of f(x). 

The function g(x) is said to be continuously deformable 

into the f(x), where 

g(x) = x - G(x) 

f(x) = x - F(x), G(x) and F(x) being completely 
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continuous and defined on the S8Jlle closed bounded set A, if there 

exist s a function F(x,). ) on S X R where S is a Kantorovttch space and 

R is the real number segment O -& A ~ / with the properties: 

1. F(x,o) = G(x), F(x,l) = F(x). 

2. There is a y in S such that to any €- > O, there exi sts 

a J > 0 independent of x, for which 

} F(x, 1\, ) - F(x, .>- 2 ) j < E- y for / \ - >--2 / < d 

3. F(x, !-- 0 ) , AO • fixed, is completely continuous on A. 

The following theorem is a generalization of one stated by 

Leray and Schauder and proved by Rothe IV 2 p. 301, Hilfssatz 2. 

Theorem 18. The totality of values of the function F(x, A) x in A, 

Ain [ 0,1] form a compact set. 

Proof. F(x, ,\ ) is a function continuous in the variables combined, 

that is there exists a Z such that to any E- '7 0 there 

exists a 0 > 0 and dz > 0 for which 

jF(x,A) -F(x0,1\ 0 )/ ~ f Z 

when / x - Xo I <:. /, g 

/ i\ - A0 [ < ~ 
1 

where g is a bounding metrizing 

element of A. This follows from the inequality 

}F(x,A) - F(x0 , A0 )/ = /F(x,'A) - F(x,A 0 ) + F(x,t- 0 ) 

- F(Y-o,/\ 0 )/..:=­

~IF(x,).) - F(x,A. 0 )/ + /F( x ,A 0 ) - F(Xo,;\ 0 )1 

E E -y+-yl 
2 2 l'o ~ 6- lub (y ,Y >-o). 
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Now to prove that from any sequence of pairs (xn, An) can 

be extracted a sequence (x~, A ni) for which lim F(xni, ~ni) 
i➔ co 

eY.ists. This may be-proved if we first prove that there exists a 

fixed w such that to any f. > 0 we can find a subsequence of pairs 

( xo/' ~ 11/.) for which 

/ F(xn,, ~"!) - F(x,,k, Auk) j < f w. 

The proof will then be completed by the diagonal method. 

Since the original sequenca{A nJis bounded, we can by the 

Bolzano-Weierstrass theorem e:i...'tract a convergent subsequence. Thus 

for simplicity that{An)already converges. From property 2 of Definition 

5, we can choose N1 so that 

and a suitable fixed y. Now pick a subsequence x11i from Xn so that 

the sequence F(x11i, AN1) converges. Then there is a number N2 for 

which 

whenever ni, ni' ~ N2 • Now delete from the sequence of integers ni 

all those less than N = max (N1,N2). Now for the resulting sequence 

(1) I F(xn., ~n.) - F ( Xn. ,, A n. y I ..-::. ::: 
l l l l 

I F ( x11 . , A n. ) - F(xni' ~N) / + 
l l I F ( Xn. , A N) - F ( x11 • , , 

l l 
+ 

[F(x11 , i' AN) - F(xn. 1 , ~n· ,) I 
l l ~ iy+!y\J+iy 
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But j F(xni, ~ 0 \ c;.. I F(xni, A k) - F(xni' AN) I + / F(xni' AN)/ 

~ y + y~ ni,k '7 N 

Y1 is the upper bound of the set F(xn.,~ N), n variable, which exists, 
l 

owing to the complete continuity of F(x,A) for fixed A, (=AN). 

Now let w = lub (y ,Yl,Y }. N). Thus: 

(l') 

Inequality (1 1 ) says what we started out to prove as a first 

step. Now if we select a null-sequence ~fn1then we can pick a sub-
(1) (1) ) 

sequence (xn , An ) such that 

I 
(1) (1) (1) (1) I 

F(xn , ~n ) - F(Xn1 , ~n' ) < f1 w 

Now consider this sub-sequence. We can fix a real integer P so large 

f 2 w for n, m ~ P 
3 

j 
(1) (1) / 

F(x,An) -F(x,Am) < 
f (1 ) l. 

and all x in the sequence ~ Xn J • Now we 

{ 
(1)] j (l)J (1) (1) 

Xni of\ Xn such that F(xni, A p) 

that 

can pick a sub-sequence 

is convergent, i.e. so that 

/ 
(1) (1) (1) \ (1) / Ez 

F(Xni , Ap ) - F(xni , /\ p ) C 5 w etc. 

Finally by steps similar to those above, we arrive at a subsequence of 

pairs { xi
2
), f ~2

) J for which 

I F(xi
2
), A~

2
)) - F(~7) ,A i7))/ < Cz w 

Notice that this is the same w. Now this process can be continued 

( (p) l (p) ) f ' . l indefinitely so that we have the sequence F Xn , ~n or wn1c1 
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I F(xn(p), ~n(p)) - F(xn(p), 1\n(Pl I /\ ') < ~ w. Now pick out 

the diagonal sequence { F(x~n), ,A ~n)) J. This sequence will then 

have the property that 

} F ( xl n) , A ~ n) ) - F ( ~ ~ 1 
) , A i ~ 1 

) ) { < EN W 

for all n,n•~ N. But this says that the sequence{F(~n), Jiin))Jis 

convergent. 

Theorem 19. Under the same hypotheses as those of the preceding 

theorem the set f(x, A ) is bounded. 

Proof. Consider f(x, A ) for aDY fixed x0 then 

/ f{x, 't-) j ~ / f(x, A) - f{x,od + { f(x,O) j 

The set f{x,O) is bounded for x in A, since 

f{x,O) = x - F(x,O) and F(x,O) is completely continuous. 

Let its bound be z. Now to shew that \ 1'(:x:, A) - f(x,O) \ 

is bounded for A and x variable . To a number f > 0 

we can find a [ > O such that 

/F(x,A) -F{x,)./)/ = /r(x,A) -1'{:x:,A'){< E- y for 

))... - )...
1 

/ < d . How in the interval O ~ A ~ 1, lay off 

lengths J", < rf ( {, fixed) with the first interval 
e.-{ i-VI-O 

starting~and the last interval or a fraction of it ending 

at 1. There will be k of these, say, with end-points 

0 = A,, ~2,··,~k+l = 1. 

Now if ~r+l ;' ~k ? "-r 



202 

j f(:x:, ~ ) - f(:x:,o)/ = / f(:x:,).. ) - f(x, Ar) + f(x, Ar) 

- i' ( :x:, f r-1) + • • • + f ( :x:, .,\ 2 ) - i' ( :x:, ~ 1) / ~ 

jf(:x:, A) - i'(x, Ar)/ + I f(:x:, Ar) - f(:x:, Ar-1)/ + ••• 

+ /f(:x:, A2 ) - f(x, A1)/ '? rEy ~ kE-y, where k is 

fixed for the time. Thus putting k E: = 1. 
j f(x, ,A)/-€ z + k€-y f lub(z,/y} = w0 , and w0 is 

independent of :x: and A . 
Theorem 20. The set x - F(x, A), where F, x, A are the same as in 

Definition 5, is closed. 

Proof. I.et g be an element such that xtl. - F(xn, ~ n) ~ g. Now 

we can assume that F(:x:n, An) is convergent by Theorem 18. 

(If it is not, renumber a suitable subsequence). Then 

F(:x:n, ~n) ~ b. Xn = [xn - F(:x:n,}.. n)J + F(:x:m, An) ➔ b + g. 

Thus :x:n is convergent. This means that the sequence of 

pairs { xn, ~n} is convergent to~ b + g, A
0
J, since ~ ~ n ~ 

can be assumed convergent by Theorem 18. Now F(~, Am), 

Theorem 18 is continuous in the variables:x:, ~ combined. 

'lherefore b = F(b + g, Ao) and 

g = b + g - b = lim [ Xn - F(x , 1-n)J 

= (b + g} - F(b + g, A0 ) 

is the value of f(x, ~) for :x: in A(= b + g} and ,A in [0,1]. 

Theorem 21. If g is an element not on the frontier of the set f(x,A) = 

:x: - F(x, ~), then it is at a distance d > 0 from that set. 
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Proof. The set in question, together with the element g can be 

metrized. Then Theorems 18-21 together with the remarks 

preceding Thearem 7 lead to the result. 

Theorem 22. If f1 (x),f2 (x) are defined on .A as above and 

/Jr1 (x) - f2 (x)II <:::: r < Ji, where /( g - fl (x)/1 > t;_ then 

Yu;_,A,g) = 'r(f2,A,g). Let the netric be as above. 

Proof. Define an approximation function (linear n-dimensional) 

ff such that 

(1) // 1'2 (x) - ff (x) f/ <. €:: < !,- fl 

Then 

II f~ (x) - f1 (x) II § IJ fe- (x) - f1 (x)// 

~ ~ -y+y= di 
which says '(°(f1 ,A,g) = Y(feA,g). But also 

/jg - f2(x)I/ ~ /fg - f1(x)// - //r1(x) - 1'2 (x)ll > J;-f-

which together with_inequality (1) says that 

Y(fE ,A,g) = Y(f2 ,A,g). Thus finally from the last two 

equations, 

Theorem 23. (Property 3). If F(x,A) varies by continuous deformation 

so that for each value of\ g is not on the set F(A,~ ), then 
) 

Y(f(x, ~ ) ,A,g) is indeperuient of A . 

Proof. By fueorem /3, g is at a distance O > 0 from the frontier of ihe 

set of elements x - F(x, A) x in A and O a~),.~ 1. Now 

if, as is possible, we choose I so small that 
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J 
2 

for 

Now divide the interval [ o., 1 l into sub,.;.mtervals each 

01' length i /2, starting at O and such that the last 

interval or fraction 01' interval ends at 1. Then by 

the preceding theorem the degrees of the set of functions 

for values of A in any sub-interval are the same. Also 

by the same theorem so are the degrees of functions 

corresponding to values of A in two adjacent sub-intervals. 

Thus step by step we may shew the degree independent of A . 
We now return to a consideration of the abstract differential 

and its connexion with the theory of the degree of the corresponding 

function, (seep. 149 for the definition and properties of the differ­

ential). We shall assume now in addition to the properties there 

listed that the function E(:ico,y,z) has the property 

4. If the sequence { zn ) is bounded then 

E(xo,xn,zn) ➔ 0 uniformly as Xn -?" O. 

'Ihat is there is a~., ~ 1 and aP }:1 such that 
I • ' • ~>It 

\E(:x:o,xn,Zn) \ < ~ gY;hwhen )xn j <:. c[ y and 

/Zn/ < h. 

Theorem 24. If A is a bounded set in Band F(a} is linear function 

defined on B to S, then F(A) is a bounded set, where F(A) means the 

set of all F{a) with a in A. 

Proof. 'Ihe necessary and sufficient condition that the set A be 

bounded is that for each countable set of elements { an) 
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in A, and every null-sequence ~An) of real numbers 

(1.e • .An -+ 0), we have .A nan ➔ 0, see Banach 

7v The necessary and sufficient condi-

tion that a set X in S be bounded is by Theorem 41 p !,- .2.. . 

the same as the above condition, simply replacing an by 

xn, an element in X. 

Now suppose by contradiction that we can pick a 

sequence (not necessarily convergent) °l an} .such that 

the sequence F(an) is unbounded. Now 

~nF(an) = F( Anau) ~ O for each null-sequence {>-.nj• 
But this simply means that F(an) is bounded and we have 

a contradiction. 

Definition of completely continuous differential. 

F(x) on S to Sis sai~ to have a completely continuous differ­

ential at the point _!o if it has a differential F(x0 ;dx) at Xo that is 

completely continuous, that is, such that if the dx are in a bounded 

set, the set F(XQ;dx), (x0 fixed and dx variable) will form a compact 

set. 

Definition of non-singular differential at a point. 

F(x) on S to S is said to have a non-singular differential 

at the point :x:0 if it has a differential F(x0 ;dx) with the property 

that for x0 fixed, 

F(x0 ;dx) = 0 if and only if dx = 0. 
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Definition of isolated solution. 

Yo is said to be an isolated solution of the equation 

G(x) = G(y0 ), where G(x) is defined over all of 

the space S, if there is no sequence ~ Xn ( such that Xn ~ Yo 

and 

Theorem 25. If the function F(x) on S to S has a completely contin­

uous differential at x0 and the function x - F(x) has a non singular 

differential at Xo then x0 is an isolated solution of the equation: 

Proof. By contradiction. Suppose a sequence { Xn j , Xn """7 x0 

such that xn - F(xn) = x0 - F(:xo), or 

Xn - x0 - [ F(xn) - F(x0;i = 0. But 

F(xn) - F(x
0

) = F(:xo;xn - x0 ) + E(:xo,xn - x
0

,xn - x
0

), 

owing to the existence of a differential. Thus 

Now since :x:n - :x:0 -J' O there is a y > 0 for which 

/ xn - x0 \ < 6.- y. Now metrize the sequence 

xn - x0 with respect toy and divide equation (1) by 

Xn - Xo . Xn - Xo I :x:o ll - F(x ,----) = E{x 
) :x:n - // Xn - x0 // 

Now as xn ➔ x0 , the Xn - Xo 
llxn - Xo/1 

are bounded (are all less 

than or equal toy except for a finite number of 
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preliminary terms) and so E(x0 ,xn - :x:0 , Xn - Xo ) --r o 
II Xn - Xoll 

owing to the restrictions on E. Tb.us 

Xn - Xo F fx ; Xn - Xo ) ➔ O. 
\ //Xn - Xo/1 

But since Xn - Xo 
II xn - Xo/1 II Xn - Xoll 

are bounded, the set F(x0 ; xn - Xo ) is compact. 
/IXn - Xo/1 

Extract a sequence approaching a limit-point g. Without 

loss of generality we can preserve the notation and take 

this subsequence as the original sequence. Tb.us 

// xn _ xo// . ~ g from equation (2), and g -:} O from 

Theorem 2, since its norm exists and is 1. But owing to 

the continuity of F(x0 ;z) in z, 

lim { xn - xo 

n ~ oo /I xn - X)/ 

lim Xn - Xo 

n->oo I/ Xn - xo/1 

- F(Xo; 1:: = ~} = 0 = 

lim F(:x:0 ; Xn - x) = 
n "7 00 // Xn - X 0 fl 

(3) g - F(x0 ;g) = O, and g f O. But the differential of 

x - F(x) at x
0 

is x - x
0 

- F(x
0

;x - x
0

) or, since x in the 

latter is arbitrary, u - F(:x:o;u). Equation (3) then says 

that this differential is singular, contrary to hypothesis. 

Now if the point x0 is an isolated point of the equation 

f(x) -::: x - F(x) = x0 - F(:x:0 ), then the function 

f(x) - f(x0 ) carries the point x0 into O, and any "sphere" 

j x - :x:0 \ ~ Ed g for a given g and small enough correspond­

ing E-, will not contain further points x1 such that 
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at the point O will be defined and furthermore for allf 

such that O ~ f ~ E--g the degree will be the same. This 

last can be proved by the use of approximating f'uncti ons 

in finite-dilp8nsional spaces. But, since the function F(x) 

has a completely continuous differential we have 

f(x) - f(x0 ) = x - F(:x:) - [ Xo - F(x0)] = x - x0 -

[F(x) - F(x0)] = 

or { \ / f(x) - f{x0 ) - x - x0 - dF(x0 ;:x: - x0 )} = 

IE ( Xo ' :x: - Xo ' :x: - Xo ) ! 
or 

/t(:x:) - f(x0 ) - df(x0 ;:x: - :x:0 ) \ = \E(x0 ,x - :x:0 ,x - x0 )! 

Now let Zg be the element bounding the sets f(:x:) and 

df(:x:0 ;x - x0 ) when xis in the "sphere" ):x: - x0 \ f fg g. 

Then we can write the eq_uali ty 

/j f(x) - f(:x:0 ) - df(:x:0 ;x - :x:0 ) // Zg = 

j/ E(xo,x - xo,:x: - xo) /j Zg 

Now for /{ :x: - :x:0 // small enough, we have 

I\ df(:x:0 ;x - X6) I[ > /( E(x0 ,x - x0 ,x - :x:o) I[ 

for by contradiction if 

// df(:x:o;xn - :ico) (( f /\E(:x:0 ,xn - :x:0 ,xn - x0 ) \\ 
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for a sequence { Xn - :x:0 ~ of different elements approach­

ing zero, then metrize this sequence according to the 

method on p . Divide the above inequality by /1:x:n, - x0 /I. 

Now as xn ➔ Xo the left-hand side does not approach 

zero, by the proof of Theorem 2...J-, (using now the additional 

restriction that Xn, be in the "sphere"), while the right­

hand side does. 

But ~ we consider the function (l - }., ) { :t'{x) - f(x0 )} 

+ A df(:x:0 ;x - Xe,), which for 'A = 0 is just f(x) - f(Xo) 

and for A = l is df(:x:0 ;:x: - :x:0 ). Now apply Theorem .2 3 

to this function and we see that the degree of the point Q_ 

with respect to the function f(x) - f(x0 ) on the set 

/ x - x0 \ i Eg g is the same as it is with respect to the 

function df(x0 ;x - x0 ) on the same set. 

To actually determine the degree of the function (linear), 

x - x
0 

- dF(x
0

;x - x
0

) = df (:x:o;x - x
0

) we shall have need of 

the Riesz theory of linear completely continuous functions 

see Riesz IV l. Suffice it to say that if we impose further 

restrictions on the space we can use his theory. Sufficient 

such restrictions are 

l) It shall be possible to norm any given linear 
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manifold consisting of the point set sum of an 

infinite increasing sequence of finite dimensional 

linear manifolds. The topology of this norm shall 

be equivalent to the original one. 

2) If the linear manifolds L1 and ~ have only the 

element O in common and if at least one is finite 

dimensional then they are simultaneously metrizable 

equivalently to the original topology so that for each 

element x1 in L1 and each element 42 in ~ 

¢ )/ x1 + ¼ /1 ~ /I x1 / I + /I :x:2 II for a ¢ determined 

only by the two spaces and not dependent on the parti­

cular choice of :x:1, 42 . 

The degree is then determined by considering the function 

x - Xo - A dF(x0 ;x - x 0 ), where O ~ ,A .::.. L 

The reader may refer to Leray and Schauder IV, 

p. 58 and to Goursat, Cours d'Analyse III, Chap. 31, part II. 
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Appendix 

Bibliography 

The bibliography is divided into four parts. 11he first 

part deals with the theory of structures as connected with algebraic 

questions such as the theory of numbers, the theory of groups and 

rings, mathematical logic, probability. These respective subdivi­

sional classifications are indicated by (N), (A), (L), (P) placed 

at the right of the reference. The second part deals with the 

theory of structures as connected with questions of geometry 

(projective and continuous), topology (point-set and combinatorial), 

function-spaces. These are indicated respec t ively by (G), (T), (F). 

The third part is devoted to the subject of abstract derivatives, 

differentials and integrals. The fourth part deals with pure topology 

and with theorems on fixed points of transformations. In each part 

the books are listed separately from the papers that appeared in 

periodicals, and a Bis attached to the respective Roman numeral to 

indicate this. 
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