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ABSTRACT 

An expression for the energy of a lithium crystal 

is derived which involves an unknown parameter. The 

best value of the energy is obtained by making the en

ergy of the crystal a minimum with respect to this 

parameter according to the Ritz approximation method. 

The characteristic functions involved are similar to 

those which Bloch derived. I They differ from Bloch s 

in that a function containing the above mentioned un

known parameter takes the place of the atomic functions 

which he used. 

The value of the binding energy which is obtained 

for the lithium crystal is - .85 elec.-volts. The lat

tice constant is found to be 3.07 Angstroms, and a 

calculation of the compressibility gives 1ox10-12 

ergs/cm 3
• The energy is 50% too low, the lattice 

constant 12% too low and the compressibility 13% too 

high. 



Characteristic Functions and Energy of a 

Lithium Crystal 

The first electron theory of metals which involv

ed quantum mechanics was that of Sommerfeld1 which he 

published in 1928. The theories preceding Sommerfeld 1s 

theory were mainly due to Drud~ and Lorentz3 and were 

based on classical mechanics. However, Sommerfeld 's 

theory was still to a great extent a theory of free 

electrons. He applied the new quantum statistics of 

Fermi and Dirac but he did not attempt to solve the 

problem of the characteristic functions and energy of 

an electron in the periodic potential of a crystal lat

tice. 

The first attempt toward taking into consideration 

of the fields of force surrounding the atoms in a crys

tal was due to Dr. Houston4 who worked on the scatter

ing of the electrons by the crystal lattice. In order 

to calculate the scattering Dr . Houston made use of the 

wave properties of the electrons but did not actually 

solve for their characteristic functions. 

The first detailed investigation of the wave prop

erties of the electrons making use of the Schroedinger 

theory was made by Bloch 6 in 1928. The underlying as

sumptions of his work were 

a. Each electron moves in a periodic field of force 



due to all of the atoms in the crystal lattice. 

b. The mutual interaction of the electrons may be 

neglected. 

c. The boundary conditions may be taken care of 

by imposing the condition on the wave functions that 

they be periodic in the directions of the edges of the 

crystal with periods K1 , K2 , and Ka• 

The numbers K1, Ks, and Ka are taken large and 

2 

may be thought of as being the actual dimensions of the 

crystal whose properties are being investigated. 

Schroedinger's equation for this model has the form 

vs, + 8~(E - V) = O. 1 

Vis the electrostatic potential of the grating and must 

be a periodic function. If we introduce the vector 

where a, b, and care the fundamental vectors of the 

lattice, then V must satisfy the equation 

Bloch shows that the solution of(l) which satisfies 

the boundary condition of periodicity already mentioned 

is 
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( 2) 

The function u1mn(xyz) must be periodic with the periods 

a, b, c. For the free electron model u1mn is a constant 

and lmn are proportional to the components of momentum 

of the electron. In the general case it is difficult to 

obtain the form of u1mn(xyz) and, therefore, approximate 

solutions of (1) are used. If ulmn(xyz) is not a con

stant, then lmn are related, though no longer proportion

al, to the components of momentum of the electron. Each 

electron in the crystal is distinguished by a different 

set of numbers lmn which are the quantum numbers of that 

electron. However, ·ulmn(xyz) may also depend on other 

quantum numbers as well. 

To get a more useful form of the function Plmn 

Bloch treated the problem as a purturbation of the model 

for which each electron is bound to its own atom. The 

zero order approximation which he obtained for the char

actic functions is 

The numbers G1 , G2 , G
3 

are the numbers of atoms in the 

fundamental crystal in the directions a, b, c, respec-
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tively. Thus 

The notation u >-fl-,) indicates that u is a function of the 

distance measured from the ion situated aththe point 

;, f', t/, The summation over ;l, /-', ,t) is extended to all 

the ions of the fundamental crystal lattice. 

The quantum numbers 1, m, and n must take on a 

range of values such that each function Pimn will cor

respond to one and only one set of numbers 1, m, n, and 

such that all the possible functions plmn will be ac

counted for. In addition,since 1, m, n are related to 

the momentum of the electron, the range of values chos

en must be the lowest possible. Let 1, m, and n be 

the coordinates of a point in space, then the points 

corresponding to the possible values of 1, m, and n will 

fill a certain region. The region thus defined is the 

primary zone. 

The primary zone for the simple cubic lattice is a 

rectangular parallelopiped defined by 

For more complicated types of crystals a method due to 

Brillouin 6 must be used to determine the limits on 1, 
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m, and n. 

A method of determining the primary zone which 

is applicable to crystals which are describable in 

terms of three mutually perpendicular fundamental vec

tors is as follows 

Let the numbers A,p,t/ take on fractional as well 

as integral values so that every point occupied by an 

ion in the lattice can be specified in terms of the 

three fundamental vectors a, b, c. In order to make 

the treatment specific let us confine ourselves to the 

body centered lattice which will be of particular in

terest later, then (3) may be rewritten in the form, 

Qi_~Qa 
2 2 2 
~ ( 2rri( 1) 

P1mn = L___( e G1 

+ e 
l}m,n in fegra/ 

To find the limits on 1, m, n, we must set 

= , m+m, n+n 

( 4) 

and determine the values of 1, m, n which satisfy 

this equation. In order for (5) to be satisfied both 

of the following equations must be satisfied simul-
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taneously. 

t~ + §:' + J[J/ --4!- integer 
G; z G, 

( 6) 

In order that the first equation of (6) be true for all 

values of } , µ , .tJ we must have l/G1 , m;G2 , n.j'G3 equal to 

integers. The second equation will then be true pro

vided 

even integer. (7) 

= n 1/G3 • Then, to con

struct the primary zone, first locate the nearest points 

x, y, z which give the same~ function as the origin. 

In this case the points for which this is true are, 

,:t.2, 0, 0 

O, ±2, 0 

0, 0, .:!:2 

.±1, ±1, 0 

±.1, .:to, ±1 

o, .±1, .±.1• 

Next construct the planes which are normal to each of 

the lines connecting the origin to the above points and 

which bisect these lines. These planes enclose the pri

mary zone. This is true because a shift in the values 

of L, m, n sufficient to carry a point on one side of 
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the primary zone thus constructed to the opposite side 

leaves the function p unchanged. For the body centered 

cube the primary zone is the dodecahedron of volume 2 

built upon the unit cube. 

Slater7 by a method slightly different from that 

of Bloch has built up characteristic functions for the 

·.electrons in a crystal lattice which he has used for the 

calculation of the energy, compressibility and lattice 

constant of the alkali crystals. He also has shown that 

Bloch1 s functions are a close approximation to the true 

functions for a compressed crystal and that some functions 

developed by Heisenberg are a good approximation for the 

extended lattice. 

Dr. Epstein8 using Slater's form of the secular e

quations for the first order perturbation of a system of 

identical atoms has built up a theory which is able to 

account for the basic facts of magnetism. His expres

sion for the individual terms of the energy is similiar 

to Bloch1s but to get the total energy he sums this ex

pression differently from the way Bloch does. 

Derivation of the Expression for the Energy 

of a Lithium Crystal 

Dr. Houston9 has shown that a wave function for the 



crystal as a whole can be constructed out of the Bloch 

type functions which will approach the exact solution 

of the ground state provided that a function is chosen 

which makes the energy a minimum according to the Ritz 

perturbation method. 

8 

The model which he considers is essentially the 

same as that of Bloch, namely, a crystal which consists 

of centers of positive charge arrang ed in the form of 

the known crystal lattice of the metal to be treated. 

Each center is surrounded by a spherically symmetrical 

field, which, in the application of the method to be 

discussed later, is approximated by a Coulomb fiel d . 

The remaining electrons then move in the field of these 

nuclei and are subject to their own mutual repulsions. 

The magnetic interaction of the spins are neglected. 

The Schroedinger equation which describes this 

model is 

where N is the number of electrons in the fundamental 

crystal. 
1<:>.-

Uhas the same significance as the potential 

already discussed in connection with the functions of 

Bloch. 
e;l. 

If the interaction term 2 -r.· is neglected then ( 8) 
• L -<.II 

.Alj 7l., 
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becomes a sum of equations of the type of (1) and there

fore is seperable. The solutions of the separate parts 

will be the Bloch type functions already discussed, i. 

e.' 

The only difference between , this equation and equation 

(3) is that a normalizing constant, Cp,lmn, is included 

and that the dependence on other quantum numbers 1, m, n 

is specifically shown by the s·ubscript p. 

In order that a product of the functions Pp,lmn be 

a solution of (8) it is necessary that they satisfy the 

boundary conditions (which ean be seen by inspection to 

be the case), that they form an orthogonal set and that 

they make the energy matrix diagonal. 

We may prove that . they are orthogonal to eachother 

as follows 
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In the last part of (10) the substitution~ r =Ar-~ , 

s = µ 1-fa , t = tJ1 
- J) , have been made. Since the 

I 

integration does not depend on the positions of the 

atoms ) ; j!/P/and ,\ji;P but only on their separation, 

we may rewrite (10) thus 

L 
Zlfl.,·ft1-z'l/+ (m-m'!f' f- (ll-17'/Pl 

( 1- = e f G, e,~ c, J 
J fJ ;7,'J'm 1111 [I~ 1mn dv-

A rf 'J/1 

The first sum is independent of the second and is the 

sum of the roots of unity. It is, therefore, equal to 

zero unless 

2 = 2 1 , m = ~ , n = n1 
• 
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Hence 

The functions p 1 thus form an orthogonal set P, mn 
if the functions ¢p,lmn are orthogonal for different 

values of p. 

The elements of the energy matrix for the p func

tions are given by 

Since the potential function Lu.,,.,..,... is summed over all "'re,,.. r-

atoms of the crystal, it looks the same from any atom 

and, therefore, the last integral of (13) is only a 

function of the distance of the p,'fJ/ point from the 

J;fi-~ point. Consequently we can rewrite (13) in the 

form 
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where as before r = J\- 1 
- A , etc. 

I f now the functions u are so determined thatC~4) 

is zero for p f ~ p, then the functions~ will be a 

solution of the differential equation. The u function 

for the ground state may be determined by the Ritz per

turbation method. 

The solution of the differential equation (8) when 

the interaction is neglec ted is best written in the 

form of a determinant. This method of writing the solu

tion of a separable equation is due t o Slater. Thus 

{jl(Q, a.; = -jf{r p{t1,r,N(q,,r,J . 

¢(a.z Xi) rj (a Xi) 

• /(o:,~11) 

• / (c/~ Xiv) 

The l e tter a is written in place of all of the quantum 

numbers p, l,m,m and er which enter into the function. 

u is the spin quantum number which must be taken into 

account because of Pauli's exclusion princ iple. 



13 

It has been shown that (15) is the solution of (8) 

when the interaction terms are neglected. To prove 

that it is also a solution when these interaction terms 

are taken into consideration we must be able to show 

that the non-diagonal terms of the energy matrix Hare 

zero where His the energy operator correspo:riding to 

the entire differential equation (8). These non-diag

onal terms are 

Hal···a'a a= &.~a' at)Htha a )dv.,.· .,.dV,v (16) 
I 1'I 'I' • • M )'I"' t• • • 'IV 't" r • • ,-Y •• 

Because of (14) all of the non-diagonal terms of (16) 

vanish except the parts which depend upon the inter

action terms of H. If we represent the interaction 

terms by I , , we have ar . . a;y a,. • . a,v 

Since it has been proved that the¢ functions are or

thogonal, the interaction terms will vanish if more than 

two of the a/,s are different from the a,s. Two cases 

then must be discussed. First, the case where only one 

a I is different from the corresponding a and second, 

where two are different. 

a. a{ f ak. All other primed states equal to un-
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primed states. In Iai .. 0 a~a1 ••• a~there will appea~ for 

each ii k, N! terms of the type 

If the spin of ai is equal to that of ak,then there will 

also appear for each ii k Ni terms of the type 

But if the spins of ai and a kare different, then no terms 

of the last type will appear. Therefore 

( 18) 

Let us discuss one term of the type under the sum

mation signs in ( 18). If we substitute for the /> func

tions their expressions from (9) we obtain 



Let I 

)/ = )/ + r' 

)/= )i, + R, 

)It= ,,{( + f°' 

then 

/ 

fi= ~i+ s, 

/(;/= j-<-t' +S , 

A=f<--t' + ~, 

A~~-+ t 

Pf/= -t/i· + T 
71r= ~-+ I. 

15 

( 19) 

( 20) 
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( 21) 

It can be seen that the sum of A rj,t, ·,£!t· involves 

only the term 

and since this is a root of unity, the result of the 

first sum in (01) is zero unless 

Therefore there are no non-diagonial terms for which 

only one of the a/ ... a; differs from the corresponding 

number of the a, ... a~. 

b. a{f a1 , ak f ak. All other primed states 

equal the corresponding unprimed states. Since in this 

case we have the ai fixed as well as the ak, the result 

is the same as (18) with the sum over i removed and the 

first a 1 under each integral sign replaced by a{. 
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Thus 

The first integral of (22) is zero unless the spin of 

the a{= spin of a 1 and spin of a{= spin of ak. The 

second integral is zero unless spin of a(= spin of ai 

and spin of a{= spin of ai. 

Again substituting for the p functions from (9) 

and making the substitutions of (20), we obtain in 

place of (22) the equation 

Again the sum over)1p,·l1·1nvolves only the exponential, 

so that 
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Since the diagonal term energy increases with an 

increase in 2, m, n, it will be possible to satisfy 

this condition only by considering terms with a higher 

diagonal energy. Hence the correction to the energy 

will be of the second order in these non-diagonal terms 

and will be such as to lower the calculated energy. 

This effect will be neglected here although its magni

tude cannot be properly said to be negligible. 

Dr. Houston therefore concludes that (15) is a 

good approximate solution of (8) for the ground state 

provided the functions Pf',,,,,, ( x ) are made orthogonal 

to the filled states, and then so chosen that the en

ergy is a minimum. 

In that which follows the above theory will be 

used to calculate the energy and lattice constant of 

the lithium crystal. It is not possible to carry out 

the necessary integrations for a general crystal since 

the explicit expression forVPJiµ,Jis needed. It is for 

this reason that the calculations are restricted to 

lithium. 
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If the crystal lattice of lithium were very large 

the U, function would simply be the 2s function of the 

isolated lithium atom. It would therefore seem rea

sonable to take as a first trial function, one that is 

similiar to this 2s function of lithium. Slater / s10 

approximation to this function is 

( 23a) 

Equation (23a), however, is not orthogonal to 

the ls state of lithium. Slater1 s approximation to 

the ls state is C
1
e-r/~ wheret3 has the value .1851 

and C1 = l//rr~ 5 • In order to get a trial function 

that is orthogonal to the ls state let us assume 

( 24) 

Then 

Therefore 

In order that / u 2 dlY = 1, we must have 

= ✓1 
1 (27) 
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This g ives the required form for u and in order 

that it g ive a good approximation to the correct u, t:t

must be fixed at the value which makes the energy of 

the lattice a minimum. 

This form for u makes equation (12) zero also 

because the integral of a ls function on one atom 

times a 2s function on another atom is negligible for 

lithium. 

The energy of the electrons in the field of the 

nuclei and of each other is given by the diagonal term 

of the matrix of the energy operator introduced in 

equation (16). That is 

Ha( ... a Nru. ••• a,,- = / ¢1 a{ ••• a,{)H ¢ ( a,_ ••• aN ) dv1 ••• dv,. 

(28) 

To this must be added the energy NPgof interaction of 

the ions of the grating. Thus the total energy of the 

crystal is 

[ :a 

~'~ E = 2 /01( 
i=l 
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The upper limit, N/2, is obtained for the sums over 

i and~ on the assumption that only half of the possible 

states are filled btrt. that each filled state contains two 

electrons corresponding to positive and negative spins. 

This also accounts for the factor of 2 which appears in 

two places in (29) The factor of (2) is not placed in 

front of the exchange integral because there are only 

half as many of these terms as of the others. 

The expression for H0 may be written 

[ E1 + L Urs t) u)flP 
r~t- I/ 
--/,A~r 

Substitution of this into (29) along with 

(30) 
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,it/- ) = R, JI '-? = s, Y -Y= T 

c'.X - ). = r, ~-µ = s, 7 -P= t ( 32) 

d
1- A r; (31-jl / 7

1-P = l. = = s, 

leads to 

i=l k=l 

It is necessary to carry through a separate dis

cussion for the two parts of the electron interaction 

terms above. We will get the biggest terms of the first 

part of the tripie sum over RST, rst, and r 1 s I t' , by 

setting r 1 = r/ s 1 = s, t: = t. The biggest contribu

tion to the second part of this triple sum-will be ob

tained by setting R = r, S = s, T = t and r 1= s / = t / = o. 

Then (33) becomes 
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f NE ti 1r /~ 1,mfR2r"+ 3mt"+- Tn,J E ::==, J -f (vi Le l-Gr Gz. G 3 

l" = t AST 

The double integrals of (33) decrease with in

creasing rst and r 1st1 roughly in the same way that the 

normalizing constants Ci and Ck decrease with in

creasing i and k. Therefore in order to partially 

account for the approximations made in the first part 

of the electron interaction which eliminated the sum 

over r 1s1tf set , 

1/2 

and to account for the elimination of two sums in the 
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second part, set 

where 

and 

I~sT = II 
If we assume that functions for the K shell do not 

overlap, then we may write for the expression for Pg 

( 38) 

where dRs; is the distance between the atom at 000 and 
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the atom at RST. Thus all the terms in (35) except NE1 

may be written as a sum over RST . The terms in this 

sum get smaller as RST gets larger and for RST very 

large the negative and positive parts cancel each other. 

That ls , when two atoms are far apart the distance be

tween each atom and its electron is negligible in com

parison to the distance between the t wo atoms,and the 

positive nuclear charge and the negative charge of the 

electron are practically at the same point. Therefore , 

if the sum over RST is carried out far enough the re

maining terms are negligible. For purposes of compu

tation here, the sums will be taken over only the first 

fourteen neighboring atoms. 

To this order of approximation, if we represent 

them by NE2 , the terms in (35) involving BRs, may be 

written in the following form 

= N I/C•( 2 lB +8B.1,1v-Cos11 /ico8~m1cos11n; 1 oo~ 1~1a.1i. G G 
a. 2 a 

NE 2 

1=1 

This is possible because , 

B_R$1' = B~J7 

By definition 

B 
-It-ST 



LL f l1U -A
1
) + m~.,a~ + n-,Ctl-P~f 

2rri G1 Gr G3 
e 

J 'f '/11 lf" ¥ 

f j u!p11,u)f-JldV 

Let a = j uy.~r,u.,. dv and b =J u , •• u 000 dv, 

then 

N {1 + 8a cosrrhcosrrm1cosrrn1 
G3. G2 G3 

Therefore, 

~JLlt' ~,rm,· 
+ 2B,oo ( cos G, + cos c;- + 

1+8acos _,· cos ~ cos 1Thi+2b 
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( 41) 

. t;,,, ~~ G, z. '-6 

If we assume that Bi,00 /B ¼y.}(_is approximately 
it 

e qual to b/a then 

*see page 51. 

( 42) 



= NB¼t,;/a. + ( B ooo _ ~) SN 
2a a 

Let NE 3 equal the terms of (35) involving I Rs T 

then 

In the appendix it is shown that the approximate 

value of E
3 

is 

The complete expression for the energy becomes 

( 46) 



Analytical Expressions for the Functions 

Appearing in E 

The derivation of the formulas which are listed 

here have been placed in an Appendix which will be 

found at the end of the thesis. 

The constants 

d = grating constant 

and the functions 

Qi:, 

( \ 1 0-t - Ei -X, = .=:..._ dt 
X t 

F (l A)= _§_(l + 2 + 2 0 + 45 .4s) 
0 ' 15 ).. 7 x3" 7 

appear in a number of places below. 
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-13.tl 
a = sot 1-=.-A~) ( ti 4 * 5 • 1135~ 3 + 26 .661 tt2 +69. 2s ?.A+so ) c 4s) 

e2 f . 2e -0/4 s I 80 • 
Ve,00 = -er 15.2374-C l-A2 )(A +2/3A+6;l 3 ) 

2;1. 

-f~~A2,r1 3 + 3A2 
+ ~A + 3)} ( 50) 



(1.0045x10 - 3 A7 +.01218A6 +.o8437 A6+.4060A4 

+lo 395A3 +3 .309)..'i!.+4 .910).+3 .464) 

+1.860A3 +3.820.,A2 +4.910J +3) l 

s (. _ff"(z 
Vxf.r,,, = d(~/tJC2 .876a+ Aa/2- ~6 /160 e - 2a//3 

( 51) 

- ~e -l .534813('( 3 .0696).2il~ +3/3( 3 .0696);l~+l8 )} 
( 52) 



( .38275A6 +3.6880;\5 +20.31A4 +77.64 3 +97.97J 2 

.QA 
+85.814,_\+39.375) - 82 8 -

2 
(3~,A3 +3 2 +2/3;\+9) 96(1-A2

) d 2 

( 53) 

I - L2.L - _!__1_37,d_ l e2 
o~o - ff~p;-J ~s)a 

( 54) 

/3 ,A . 
2[ -I~~~ = ~ • ;,3~ --¾ ; · ( 1 .oo 5xl0""\3 A7 + .o 1218.A6 + .o84 37 A 6 

+~060~4 +1.395A3 +3.309~2 +4.910A+3.464)} (55) 

S = 1 - ~ ~~,-3s-~2
r;;'2 )(¥)2(s+.2fg(oe2 - ,0)(¥)1/3 

1 + a+ b 
( 56) 
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1 4{ a + b) 
ol= 1+8a+6b ' 

a+ 4b 
3( 1+8a+6b) 

Calculation of the Ener~y of a Lithium 

Crystal 

{ 57) 

( 58) 

The total energy of the lattice, when expressed 
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in the above form, is a function of both« and d. For 

a fixed d, the best value of the energy is its minimum 

value, considered as a function of«. 

The energy, thus obtained, is a function of d only . 

It also should have a minimum for a value of d equal to 

the lattice constant, and this final minimum value for 

the energy should be the total energy of the atom in 

the crystal. 

The following table gives the calculated values 

of the energy as a function of <X and d. The minimum 

value of the energy for the atom in the crystal is 

seen to be -5. 24 elec .-vol-ts. The minimum energy for 

the isolated atom is -4.39 elec.-volts, which was 



obtained from the graph of e quation (58). Therefore 

the energy of the lattice binding is 

- • 85 elec . -volts per atom . 

This is to be compared with the observed value of 

about - 1.89 elec.-volts per atom. 

~d 2.922 3.018 3.120 3.225 

.9125 -4.51 

.9430 -5-23 -4.53 

.9740 -5.14 -5-24 -4.55 

1.0060 -5.13 -5-24 -4.56 

1.0400 -5.13 -5.23 

1.0750 -5-11 

TABLE. Dependence of E on t:J. and d, showing 

position of minimum. 
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The observed value of the binding energy was ob

tained by adding the heats of fusion and of vaporiza

tion to the heat required to bring the crystal from 

the zero point to the boiling point and substracting 

from this 3kT/2 for the energy of the gas. 

The grating constant of 

3.07 Angstroms 
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is to be compared with the observed value of 3.50 1. 
A calculation of the compressibility on the basis 

of the above data gives 

The observed value is 8.9x10-12 ergs/cm3 • The compres

sibility was obtained by fitting a parabola to the 

curve connecting the energy and d. Let the parabola 

be 

and substitute into this E0 = -5.24 elec.-volts, 

E = -5,23 elec.-volts, d = 3.07 A and x = 3.22:,t then 

2x.Ol (Ao) 2 c = ( _155 ,~elec.-volts 

The definition of compressibility is 

4E but p = jV" Therefore, since V = x3 /2, (vol. occupied by 

one atom) 

;Q = 2.9:.... = 
~ 2c 
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The energy obtained above is too high. This can 

be accounted for in the following ways: 

a. The Ritz approximation method should always 

give an energy that is too large since it gives the 

correct answer only when that form of the character

istic function is found which makes the energy lower 

than all other possible forms. 

b. The contribution of the non-diagonal terms7 

which have bee n neglected, would also lower the energy. 

c. It is manifestly incorrect to use only s 

functions and to leave out the p - functions entirely. 

This is clearly indicated by the recent work of 

0 1Brien and Skinner11 on soft x-rays. 

It is interesting to compare the above results 

for lithium with those which Slater12 obtained for 

sodium. Slater obtains a value for the energy of 

sodium which is 50% too large. The value obtained 

here for lithium ls 50% too small. Slater ' s lattice 

constant is roughly 30% too small, whereas the lattice 

constant calculated here is 12% too small. And 

finally, Slater says that his compressibility is 2 

or 3 times too small if he considers only adjacent 
\\ I~ pairs and is much too great when the next set of 

atoms is considered. The compressibility calculated 

here is about 13% too larg~. 
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Let 7T{i = 
G 3,, 

APPENDIX 

Evaluation of S 

7TIDi x, 
Gs 

= y and TTni = z . 
Gs 

In the cube 

which represents half the octahedron over 

m1J and n1 vary, we must have - _?..(. l iL ?, 
which 21r 
_Qa / mi~ -Qa 

2 '- 2 • 

-~ TT -TT TT -TT TT or 2 <x<-2 , - <-Y ~- and -c:::_z~-. 2 2 . 2 2 

This cube has a~volume equal to TT 3 and contains N/2 

points. Therefore, to e.ach point there is a volume 

2rr3 /N. If we approximate the sum over the N/2 states 

of lowest energy by an integral over a sphere of vol

ume TT 3 , then the radius of this sphere must be given 

by 

4TTR 3 

3 
= rr 3 or R 

and equation {44) becomes 

1 JR 4TTr2 dr { 60) 
S = 2rr3 0 1 8 2( 2 2 ;:,"':i ~ acosxcosycosz+ cos x+cos y+cosa;. 

Expand the cosines in terms of their arguments, then 
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(61) 

Since (a-b) <. a orb, the last term in the denominator 

is neg ligible. Hence 

where the substitutions 

have been made. 

M = 1 + 8a + 6b 

a+ 4b 
3M 

( 62) 

In the region for which the minimum energy occurs, 
I I 

cl'-" • 5 and f i-, • 1. The maximum value of oer2 
- (31r 4 

which occurs for r 2 -2.5 is of the order of .6. There

f"ore the denominator of' ( 62) may be raised to the 

minus one power leading to 



The result of integrating (63) is equation (56). 

Evaluation of Es 

Making the substitutions x1 = rrli/G1 , etc. in 

equation (45) and replacing the sum over i and k by 

integrations, leads to 

'¼ 1% 
E3 = J< ~,r.f (, ,,, {r.,. +811.r.v,cos( xi+ x 2 ) cos( Yi +ys) 

}_,ri -'¾ 
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cos( zi +z2 )+2I,,., [ cos2( Xi +x,, )+cos2( Yi +y2 ).,cos2( zi +z2 jj 
(64) 

The result of this integration is contained in equation 

(46). 

Evaluation of E1 

( 65) 

Substituting the expression for u from (24), together 

into (65), and carrying out the indicated integration, 
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we obtain equation (58). 

Evaluation of Equations (48) to C2.5l 

By working out some of the integrals below using 

the complete form for u contained in equation (24), it 

was found that the results were approximately the same 

as would have been obtained if only the 2s part, namely 

(66) 

had been used, provided the factor l/(l-A2
) was suit

ably inserted. For this reason the integrals have 

been carried through using only (66) and have then 

been corrected to take care of l/(l-A2). 

Let 
k( u + v) r~r.f2,, = 

r O O O = k( u - V ) 

where 2k =(13/$ , then 
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and 

/j). 

= e -T ( ) 4 + lO ,,t3 + 80 ) 2 + 120 ) + 80) (68) 
80 13 3 ✓3 /\ 

This is the same as (48) when multiplied by l/(l-A2 ) 

2. Since the integral for bis the same function 

of the points /"O and octJ that a is of ½1&Yz.and oo o , we 

may get the expression for(49) by substituting ;l for 

134'2 in (48/. 

Both integrals of (69) are of the same type. 

Let us work out the second integral and then the 

first may be obtained by substituting /5 ) /2 for A and 

0d/2 ford. 

-2~ 
= l - _e_( ).3 + 3).'~ + .2A +-2) (70) 

d 3d 2 4 

Thus 
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( 71 ) 

(72) 

The first integral of (72) is readily calculated 

as follows, 

The other four integrals involve distances from 

three points and are therefore more difficult to 

handle. The method of integrating these integrals · 

was suggested by Dr. H. Bateman. All are of the 

following type 

j 
,., -1--Y'z. 

2 --I = e r1 r2 :e o<.. dv 
I 3Trt)(.6 rs (74) 

ri, r 1 and r 3 are the distances from three different 
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points to the element of integration dv. Since r 3 appears 

in the denominator only, this is the potential at the~ 

point of the distribution of charge whose density is 

Therefore I 1 must satisfy Po1sson 1s equation 

R,+A£ 
daI~ + t•Ii + ~ + ~ e- °' 
a Xs Q Y 3 ~ Z 3 3TTO(. 

= 0 

( 75) 

( 76) 

where x3 , y3 and z3 are the coordinates of the 3 point 

and R1 and R2 are the distances from the 3 point to the 

1 point and the 2 point respectively. 

Let us express (76) in terms of the ellipsoidal 

coordinates of 3 with respect to 1 and 2 defined by 

0 _ Ri + Ra U- R1 - R2 
- 2k 'r-- 2k ( 78) 

2k being the distance between the 1 point and the 2 

point. The result of this transformation is 

!. s (eJ 2 -l )~l +!. f(1-ud)d_]_,j+A(6 2 f )2 e-,.t
8
=o (79) 

J0 l - Je J af - r Jfl r 

where (3 = 4e 2 k 4
/( 3c,._5

) and 11 = 2k/4x. • 

()0 

Assume Ii = LA11 (0)Pnf) where P,.,}U) 

1'1= 0 

are 



L~3 

Legendre polynomials and An(0) are functions to be de

termined so that (79) is satisfied. 

Since An will be a function of ,A also, it will be 

convient to show this by writing it An(f!J,).). After 

substituting this assumed form for I 1 in (79), we ob

tain as the new form of the equation 

But the last part of this equation can be expanded in 

a series of Legendre polynomials, thus 

f;(8 2 -/f) 2 t3[8/35 P 4 ~) + (4/7 - 4,13S 2 )P2fL) 

(8 4 
- 2/3 fJ 2 

+ l/5)P0;uj 

so that (80) can be rewritten 

If (81) is to be true, then 
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( 82) 

It is not obvious from the above analysis that the 

remaining functi ons An(e , A) are zero, but nevertheless 

it can be shown that this is the case. 

The equations (82 ) are inhomogeneous Legendre dif

ferential equations and are most easily solved by making 

use of the appropriate Green 1s function which is 

Hence 

= t9fClc,( 0' (,:._gx2 +1)e - .Axdx+ ( ~ x){ x 4 _gx•+1)e -AJx l l 1 \ 3 s "Je,Q 3 s ) 

= (-9 {G.a (01:.( x) ( f-~x 2 )e - },xdx+P2 (0 f ~ x ){ f ~x2 ),;"AX d1 

=@{'••<efo ( x) ~5e -;\x dx + P 4 (0) ,:( x) ~5e-Ax dxl 

( 84) 

A2 (6 ,;1) and A4 (0 , ;\) are much smaller than Ao(0 , il ). 

Furthermore, they not only enter into V¾½~ but also into 

K¼}if~ · The small error made in neglecting them here is 

partially eliminated by leaving them out of IfjffU.,;., also. 

For this reason only the solution for A0 (0 ,A ) will be 

worked out here. 
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( 85) 

Let the second integral in Ao(0 , ~) be represented 

by R0 (0,A). Integration of it by parts g ives 
00 

RJe,,t) = ~ :).~o (e , }. ) Q.,(0) - ~£ F~~x~Akilx d0 ( 86) 

( 87 ) 

Performing the division under the integral sign of (86) 

and integrating the part which is a simple integral, we 

get 

( 88) 

Breaking up the last integral by means of partial 
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= ½Fa( 1,;.) e-'1{-Ef->.(e -1U/ - tFa( l,-A) e'
1
°[-E1[ - ,1(e +1if} 

( 89 ) 

Therefore the resulting expression for 1b(6,)) i s 

-J.9 -A8 
0 1)(9,,l) = TF0 (8 ,A )~(0 ) - 7,e2 + ~ + ~ + )~) 

+ ½Fo( 1,;.);;l[ -E1[ -,He - 1j} 

- ½Fa( 1 ,-,A)e -" f - E1[ -,He + i D} (90) 

and that for Ao(0 ,~) is 

Aa(0 , ,\) = ~i e: ,IFa(l,,\) [ Q,,(0) + ½E1 ( - )(0 - 1 J 

A ~8 l 
-~A F0 ( l,-}.)Ei( - i\(0 +l il - y-(02 +~+j+~z)~ 

(91) 

The integrals in V~½YL are obtained from Ao (e ,) ) 

by substituting for A, 13A/2, and for 0 the values 

Using (73) and (91) and inserting l/(l-A2 ), we obta in 

equation ( 52 ). 

5. Kit,{¼. = 2e-J/ u,a,4 1) u•~~: 1) u.:. ( 2) dv1 dv2 
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+ 

The integration, in each of the above integrals, 

over electron (2) is the same as that carried through 

on page 40 resulting in equation ( 70). If we let r"/f' ?-

be the distance from the point ar51" to the volume of 

integration dv1 then 

The first integral of K½¼¼can be evaluated 

explicitly 

ejj(/u«yJ_1)uooo(l)u~o(2Jd d _ r Vi Va-
l. 2 
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r 

- .aA!i< u-v ) 
e ~ 

The remaining integrals of K"riYJ.. are all of the same 

type, namely-

The first term of this integral is I 1 • Let I 3 be the 

rest of the integral. It was necessary to approximate 

I 3 in someway and the method used was as follows. Re

place 

dv 

and determine c so that the integrals of the t wo ex-



pressions are equal. 

The integral on the left is just the normalizing integral 

and therefore equals 3rrd6• The integral on the right is 

equal to 3rr()(~a. (See equation 67). This makes c = a 

and hence 

Using ellipsoidal coordinates with 

and 

r~?' = k( u - V) 

this becomes 

18 = 9~~:2rrki/ (:v)"e-4:.,u f< u-v) 2 k2 +y:1.J<( u-v) 

+ &i2 + (~ j ( u2 
- v 2 

) dudv 2 k u-v) 

I 

= ae 2 e-2X(.§_)'s 12_1, 6 72 1 ,4 60. l,3 165,ts -3¼2)' 3§5) 
- 288 351\, + 5" + 5 I\ + I'\ +: 2 /\ + I\+ 

where, in this integral, ).1 f I 
= d~ and d equals the 
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distance from the/4,~1-v" point to the pointooo. There are 

then in K~r.~6 integr als of the form 13 for which 

4for which 

and 3 for which 

'l/ - /IT 
/\. - T' 

Collecting together then into K~½~the various in

tegrals thus worked out, and inserting l/(l-A2 ) where 

needed, we obtain equation (53). 

6. 

( ry.}.,. + 3«'k,-.~+ ~• +;'.,$.,.J f dv 

+ 3~ifr-~- .-2!t•· [r:.. -

.AA· /00 ~ .,,, 
+ ✓-..Jr + q_,a + ~)f dv 

•/00 

_2r,oo 
e dt 

( 98) 

The first integral above is also Iooo and the 

second is also I¼r.f',..., i :f the f'actor of ( 8) is omitted. 



The first integral is integrable without change 

of variables. It leads to I~oo without difficulty. 
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The first term in each of the two last integrals 

has alre ady been worked out. The result is contained 

in {70),page 40) The remaining term is of the same 

form as I
3

, page 49, equatiora { 96) and ( 97). 
_ 2( rooi:, +r,,.S?-9. ) 

3~;f6 ;: 
Thus 

Using then equations (70) and (99) and Iooo, we 

get equation (51) when l/(l-A2 ) is inserted properly. 

Comparison of B~¼rJBooo with a/b 

The minimum of the energy occurs for .,l = 3.1. 

In the neighborhood of this value of .A 

and 

a/b = 1 .16. 

The percent difference in these two figures is 8%. 
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