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ABSTRACT

An expression for the energy of a lithium crystal
is derived which involves an unknown parameter. The
best value of the energy is obtained by making the en-
ergy of the crystal a minimum with respect to this
parameter according to the Ritz approximation method.
The characteristic functions involved are similar to
those which Bloch derived. They differ from Bloch'’s
in that a function contalning the above mentioned un-
known parameter takes the place of the atomic functions
which he used.

The value of the binding energy which is obtained
for the lithium crystal is -.85 elec.-volts. The lat-
tice constant is found to be 3.07 Angstroms, and a
calculation of the compressibility gives 10x10-*#®
ergs/cm®. The energy is 50% too low, the lattice
constant 12% too low and the compressibility 13% toco

highe



Characteristic Functions and Energy of a

Lithium Crystal

The first electron theory of metals which involv-
ed quantum mechanics was that of Sommerfeld®* which he
published in 1928. The theories preceding Sommerfeld’s
theory were mainly due to Drud& and Lorentz® and were
based on classical mechanics. However, Sommerfeld‘s
theory was still to a great extent a theory of free
electrons. He applied the new quantum statistics of
Fermi and Dirac but he d4id not attempt to solve the
problem of the characteristic functions and energy of
an electron in the periodic potential of a crystal lat-
tice.

The first attempt toward taking into consideration
of the fields of force surrounding the atoms in a crys-
tal was due to Dr. Houston?® who worked on the secatter-
ing of the electrons by the crystal lattice. In order
to calculate the scattering Dr. Houston made use of the
wave properties of the electrons but did not actually
solve for their characteristic functions.

The first detailed investigation of the wave prop-
erties of the electrons making use of the Schroedinger
theory was made by Bloch® in 1928. The underlying as-
gumptions of his work were

a. Bach electron moves in a periodic field of force



due to all of the atoms 1in the crystal lattice.

b. The mutual interaction of the electrons may be
neglected.

¢. The boundary conditions may be taken care of
by imposing the condition on the wave functions that
they be periodic in the directions of the edges of the
crystal with perilods K3, Kz, and Kg.

The numbers Ky, Kg, and Kg are taken large and
may be thought of as being the actual dimensions of the
crystal whose properties are being investlgated.

Schroedinger 's equation for this model has the form

V*¢+§§}_‘(E-v) = b 1

V is the electrostatic potential of the grating and must

be a periodic function. If we introduce the vector
}-',\/u,, = A% +/u'6 +2'¢c /\;/Léﬂz whole num.

where a, b, and ¢ are the fundamental vectors of the

lattice, then V must satisfy the equation
W(F) = V(T + Tour ).

Bloch shows that the solution of (1) which satisfies
the boundary condition of periodicity already mentioned

is
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¢lmn = B Ke 3 ulmn( XYZ) ( 2 )

The function uq, (xyz) must be periodic with the periods
a, b, c. For the free electron model ujp, 1s a constant
and lmn are proportional to the components of momentum
of the electron. In the general case 1t is difficult to
obtain the form of ujpn(xyz) and, therefore, approximate
solutions of (1) are used. If u;_(xyz) is not a con-
stant, then lmn are related, though no longer proportion-
al, to the components of momentum of the electron. Each
electron in the erystal is distinguished by a different
set of numbers 1lmn which are the quantum numbers of that
electron. However, ujp,(xyz) may also depend on other
quantum numbers as well.

To get a more useful form of the function ﬁlmn
Bloch treated the problem as a purtufbation of the model
for which each electron is bound to 1ts own atom. The

zero order approximation which he obtained for the char-

actic functions is

Z eerri(%il + -%f‘-s- %‘f)
MY

The numbers Gy G

frmn = Ypu s (3)

2 Ga are the numbers of atoms in the

fundamental crystal in the directions a, b, ¢, respec-



tively. Thus

The notation u ,)1ndicates that u is a function of the

M
distance measured from the ion situated aththe point
A{/V,ZVC The summation over A,//Q 7 is extended to all
the ions of the fundamental crystal lattice.

The quantum numbers 1, m, and n must take on a
range of values such that each function g, . Will cor-
respond to one and only one set of numbers 1, m, n, and
such that all the possible functlons ﬁlmn will be ac-
counted for. In addition,since 1, m, n are related to
the momentum of the electron, the range of wvalues chos-
en must be the lowest possible. ILet 1, m, and n be
the coordinates of a point in space, then the points
corresponding to the possible values of 1, m, and n will
i1l a certain region. The region thus defined 1s the
primary zone.

The primary zone for the simple cubic lattice is a

rectangular parallelopiped defined by

=Gy /2< 4Gy /2, -Ga/2<m<Gg/2, -Gg/2<n<Gg/2.

For more complicated types of crystals a method due to

Brillouin ® must be used to determine the 1limits on 1,



m, and n.

A method of determining the primary zone which
is applicable to crystals which are describable in
terms of three mutually perpendicular fundamental vec-
tors 1s as follows

Let the numbers A,//,ZV take on fractional as well
as integral values so that every point occupied by an
ion in the lattice can be specified in terms of the
three fundamental vectors a, b, ¢. In order to make
the treatment specific let us confine ourselves to the

body centered lattice which will be of particular in-

terest later, then (3) may be rewritten in the form,

Gy, Gg Ga
2 2 2
( 2171(314 + g&,&l+ -31’3
Arum = Z (e 7 TETe Wyy (4)
=.G1 _Ge _Gs
2 2 2
oy A+R)1 IW*-Z»)m + Y+
+ e Gy Ge Ga uy
L,mn inny/a/ 5%

To find the limits on 1, m, n, we must set

Bimm = P11 , m+m , n+n (5)

and determine the values of 1 , m , n which satisfy
this equation. In order for (5) to be satisfied both

of the following equations must be satisfied simul-



taneously.

/ » ;
—ZéA + gf -+ Gﬁ;ﬂ = integer
(6)

2 M n
G_/(/I+A+ G_.z,(/“/z)-'— G—g(ﬂf&) = integer

In order that the first equation of (6) be true for all
values oflj,/l,i/we must have IVGI, m/G,, n/G, equal to
integers. The second equation will then be true pro-

vided

/
/ /
é— + %: -+ g; = even integer. (7)

Let x =(?7G1, y = n//G,, z = n’/Gg. Then, to con-
struct the primary zone, first locate the nearest points
X, ¥, 2z which give the same ¢ function as the origin.

In this case the points for which this is true are,

2, 0, 0O %1, *1, o©
0, ¥2, o #, 20, *1
o, 0, ¥ 0, X1, *1-»

Next construct the planes which are normal to each of
the lines connecting the origin to the above points and
which bisect these lines. These planes enclose the pri-
mary zone. This is true because a shift in the values

of L, m, n sufficient to carry a point on one side of
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the primary zone thus constructed to the opposite side
leaves the function g unchanged. For the body centered
cube the primary zone 1s the dodecahédron of volume 2
built upon the unit cube.

Slater” by a method slightly different from that
of Bloch has built up characteristic functions for the
-electrons in a crystal lattice which he has used for the
calculation of the energy, compressibility and lattice
constent of the alkali crystals. He also has shown that
Bloch/ s functions are a close approximation to the true
functions for a compressed crystal and that some functions
developed by Helsenberg are a good approximation for the
extended lattice.

Dr. Epstein® using Slaters form of the secular e-
quations for the first order parturbation of a system of
identical atoms has built up a theory which is able to
account for the basic facts of magnetism. His expres-
sion for the individual terms of the energy is similiar
to Bloch’s but to get the total energy he sums this ex-

pression differently from the way Bloch does.

Derivation of the Expression for the Energy

of o Lithium Crystal

Dr. Houston® has shown that a wave function for the
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crystal as a whole can be constructed out of the Bloch
type functions which will approach the exact solution
of the ground state provided that a function is chosen
which makes the energy a minimum according to the Ritz
perturbation method.

The model which he considers is essentially the
same as that of Bloch, namely, a crystal which consists
of centers of positive charge arranged in the form of
the known crystal lattice of the metal to be treated.
Each center 1s surrounded by a spherically symmetrical
field, which, in the epplication of the method to be
discussed later, is approximated by a Coulomb field.
The remaining electrons then move in the field of these
nuclei and are subject to their own mutual repulsions.
The magnetic interaction of the spins are neglected.

The Schroedinger equation which describes this

model is
// 2
e i e s
v -5 T Uil s

where N is the number of electrons in the fundamental

crystal. U has the same significance as the potential
RS

already discussed in connection with the functions of
Bloch.

If the interaction term z;—— is neglected then (8)

“h
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becomes a sum of equations of the type of (1) and there-
fore is seperable. The solutions of the separate parts
will be the Bloch type functions already discussed, i.

e.,

(L m 7,
Gimn = C,zmzezm(é{f* = 3 2

Gs
i Upiu?  (9)

The only difference between this equation and equation
(3) is that a normalizing constant, Cp,lmn’ igs ineluded
and that the dependence on other quantum numbers 1, m, n
is specifically shown by the subsecript p.

In order that a product of the functions ﬁp,lmn be
a solution of (8) it is necessary that they satisfy the
boundary conditions (which can be seen by inspection to
be the case), that they form an orthogonal set and that
they make the energy matrix diagonal.

We may prove that they are orthogonal to eachother

as follows

#
/ ¢/b;l?n’/7’ ¢p,imﬂ qdy =

. {ZA—M’+ 1L /71/477/}

2L
G, G, G
, 7 /(jff”,l;l/'ﬂ’%l//ﬂd g
A WW /f//ﬂ
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_ SN L mpend) L)
CZ’”{ R A ”%;ﬂ/f

A/V’ J /V
/ / -
p ,,,‘{(Z /. (mG-m’)/{’_ (-0 }
G, 2 G 3
*—

In the last part of (10) the substitutions, r = A'= 4 ,
s = WU /../L( s b= 27 s have been made. Since the
integration does not depend on the positions of the
atoms X;/U,///,/and /‘//L()// but only on their separation,

we may rewrite (10) thus

009" tm-mt . (-0
272{<; + G +

G
;.- . 3
/¢ﬁ')}7z'/ﬂ ,@(g yon OV = ; <
Yz
X G/ GL G;
e o
e a/»}ﬁsf%uo dU’(ll)

The first sum is independent of the second and is the
sum of the roots of unity. It 1s, therefore, equal to

zero unless

/ :2/, m=mo, n=n,



by 3

Hence

1_&
L - (G G e
/}éz Yoy’ )/p,,O/(/“ /yzz n m/xsf //”#%mdu/(m

The functions ¢ thus form an orthogonal set
p,lmn

if the functions ¢p,1mn are orthogonal for different

values of p.

The elements of the energy matrix for the # func-

tions are given by
/%, A Z
()i, —- # 2
<@y
_ z 2 778 U V7 7 m/mf
= - ém{ ¢ 76T G/
A

)/'ll'ﬂ' }4/// /«’;’

o Ut 12)

Since the potential function %;;fer- is summed over all
atoms of the crystal, it looks the same from any atom
and, therefore, the last integral of (13) is only a
function of the distance of the ¢247//point from the
4/€¢/ point. Consequently we can rewrite (13) in the

form

5m_+{n

0 _an (& +
/f)hr'n Lo = Jn’ jmm' J/m’ Zé’ <6’ %

X / ‘rst an/u Vi Z (-%;7}(55’; aIV(

d(y}/
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where as before r = A - A, ete.

If now the functions u are so determined that (14)
is zero for p/ # p, then the functions 4 will be a
solution of the differential equation. The u function
for the ground state may be determined by the Ritz per-
turbation method.

The solution of the differential equation (8) when
the interaction is neglected 1is best written in the
form of a determinant. This method of writing the solu-

tion of a separable equation is due to Slater. Thus

Y(a-an) =_{7§‘77 glar)dar) - - ey
P y) Jlory) -+ - Plakn)

4

dax)pnny - - - POx) | (15)

The letter a is written in place of all of the quantum
numbers p, l,m,m and O which enter into the function.
o is the spin quantum number which must be taken into

account because of Pauli’s exclusion principle.
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It has been shown that (15) is the solution of (8)
when the interactioh terms are neglected. To prove
that it is also a solution when these interaction terms
are taken into consideration we must be able to show
that the non-diagonal terms of the energy matrix H are
zero where H 1s the energy operator corresponding to
the entire differential equation (8). These non-diag-

onal terms are

*.
Ha{/‘..a’;a/".a'ﬂz/¢(a;’OOa,IY)H¢ar ..a/y)dv/’"‘dv/y (16)

Because of (14) all of the non-diagonal terms of (16)
vanish except the parts which depend upon the inter-
action terms of He If we represent the interaction

terms by I we have

10 28y By o 08y,

z / 2
e
Lofesealapeegy = %7(&,‘- . .a})}#( Bf o o8y )Y oAV, (17)

i=k

Since it has been proved that the g functions are or-
thogonal, the interaction terms will vanish if more than
two of the a’,s are different from the a,s. Two cases
then must be discussed. First, the case where only one
a ‘1is different from the corresponding a and second,
where two are different.

a. @ # a. All other primed states equal to un-
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primed states. In Iaf..,a;al,,,a”there will appear, for

each 1 # k, N! terms of the type

*
%T/ykéz(xz)ﬁai(Xﬁ>§§i¢ak(X1)¢ai(xe)dv1dvz

If the spin of ay 1s equal to that of ay,then there will

also appear for each 1 # k N! terms of the type
+ # ) '
; %r// AAERI A ER T I R VAN ER TR
9 18

But if the spins of ay and a pare different, then no terms

of the last type will appear. Therefore

I,
alctoa,ya/ Oooaly

/ fé (X:. )ﬁai( Xe ﬁak(xi)ﬂﬁai dv,.dv
1(#k

// Bl x)B (x, __..;5ak(xg Byl Javyav,  (18)
1(;£k

/| spin

Let us discuss one term of the type under the sum-
mation signs in (18)s If we substitute for the g func-

tions their expressions from (9) we obtain

/é7;ak ¢alox -——¢ak ) 5 (g)av, av,
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Z, " _/A/
E 2/7(—1 2’
‘G 'CA Cfr Gs
5//‘5‘;”
/L(Af/pr

. -2//'1(116%‘/+’gf * ”—éf”'lezi( C';/‘#—%}?V— %’—’/’/62/// c s %jl’-’_ %az

//xh/a DAL //(/a/,n /,ﬁ/u(/// Jﬂ/(udydy

(19)

Let g , ,
A= As+ 7y /‘z'= Mi+ s, 7= 7, + t
A= A4+ R, /%’: /“L'+S , //{/z 7
/Q/,: )(- +/o’ /Lé(:‘/(/"*'f, //f:/é."'?:(Qo)

then

// Aol %6, (g 554, (58, (xa)av, avg

= —-276 AI_(_Z[[/;&\/}_,_ val‘ /{A”/(I- 2
Ze ’ { G G el /
-

A
L V)
\1“* %,

Z/’/(f/r Vi +/ét ZW<!L_+”Z:5 gGLT
7 1 3

€
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Z/fz +—"—+—”—
(@ﬁ /Cc'/ZCk*Ck

/ﬁ(gsr (X/}U;{—ﬁx"(&/,",’—e;é{or'f([l///aao Cﬁ/d/&”/ ddz

(21)

It can be seen that the sum of,l/% “involves

only the term

7 L' l) " /M//?ﬁri/f/ﬁ/ L+ Hn-md
6 G/ 2 GB

and since this is a root of unity, the result of the

first sum in (21) is zero unless

/ / / _
L =l mg = mg, i = ny.

Therefore there are no non-diagonial terms for which
only one of the a/...a/ differs from the corresponding
number of the a, ...ay. |

b. ay # a;, af # ap. All other primed states
equal the corresponding unprimed states. Since in this
case we have the aj fixed as well as the ay, the result
ig the same as (18) with the sum over i removed and the

first a; under each integral sign replaced by aj.
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Thus

!
Ig,/«.capa,...apy

- / Bt x)Bafl xe) L
i

-/// %;k(xi) B4 xg ———ﬁak(xa)ﬁai )av, av, (22)

18

Bax(xa )B4 (xg )avy dvy

The first integral of (22) is zero unless the spin of
the a{ = gpin of a4 and spin of a£'= spin of ay. The
second integral is zero unless spin of ak/z spin of aj
and spin of aétz spin of aj.

Again substituting for the g functions from (9)
and making the substitutions of (20), we obtain in

place of (22) the equation

#*
Ia; e 0 .a,y/a/ ° e ca/y = Cl’{ckcgci
Z;% *'

(IO'S-)‘;},

_ori i (14 {1 diem 1) ,al(mk+mk-mi mi ) ng+nf-ni-ni)
. Gy Ga G,

: m S 7
_-2mi( “‘4——4-; = "') A }”f e %I) ami (& -

Z7ﬁﬁn”(xl)umr (Xa)—:zufrr(xx)uooo(xe)dVidVa

//ﬁnsr(x Yurs, (x, )"’" £t % Vool %y ) AV, 4V, (22a)

Again the sum over/ﬁ/ﬂfffinvolves only the exponential,

so that
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LY
21«:“' Zi = Zk"' & mﬁ+m5’_ = my+m;, n1§+ni’ = my+ng (23)

Since the diagonal term energy increases with an
increase in ¢, m, n, it will be possible to satisfy
this condition only by considering terms with a higher
diagonal energy. Hence the correction to the energy
will be of the second order in these non-diagonal terms
and will be such as to lower the calculated energy.
This effect will be neglected here although its magni-
tude cannot be properly saild to be negligible.

Dr. Houston therefore concludes that (15) is a
good approximate solution of (8) for the ground state
provided the functions dg ¢my(x ) are made orthogonal
to the fllled states, and then so chosen that the en-
ergy is a minimum.

In that which follows the above theory will be
used to calculate the energy and lattice constant of
the lithium crystal. It is not possible to carry out
the necessary integrations for a general crystal since
the explicit expression forQ@&uflis needed. It is for
thlis reason that the calculations are restricted to

lithium.
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If the crystal lattice of lithium were very large

the & function would simply be the 2s function of the
isolated lithium atom. It would therefore seem rea-

gonable to take as a first trial function, one that 1is
similiar to this 2s function of lithium. Slater/s®

approximation to this function is
A = Care‘rﬁx (23a)

Equation (23&), however, is not orthogonal to
the 1s state of lithium. Slater’s approximation to
the 1ls state is Cle‘r/ia where & has the value .1854
and C, = 1//mg®. In order to get a trial function

that is orthogonal to the 1ls state let us assume

H = alcle'r/(e + aacere‘rﬁb (24)
Then
//ialcle-rdé + 250sre~T/?% )0, e-r/@ av= 0 (25)
Therefore

a, = - %% :x+(3 4 8g = - Aag (26)

In order that‘//ggdv’ = 1, we must have

2

= e (27)
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This gives the required form for u and in order
that it give a good approximation to the correct u, &
must be fixed at the wvalue which makes the energy of
the lattice a minimum.

This form for u makes equation (12) zero also
because the integral of a ls functilon on one atom
times a 2s function on another atom is negligible for
lithium.

The energy of the electrons in the field of the
nuclel and of each other 1s given by the diagonal term
of the matrix of the energy operator introduced in

equation (16). That is

e
Ha{i..a”ax...a” 5/42'(a{...aJ)Hfé(al-..a”)dvi...dvg
(28)
To this must be added the energy NPgof interaction of

the ions of the grating. Thus the total energy of the

crystal 1is

B = 2 IC:'J .Zﬂi{ ngg-dlh_m_% -A‘_)/
=1 e
4 N/2

v )}/ufi/,“'f’ﬁou&”ﬁd" *e [cal ® [or[®

i,k=1
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(02l A=t L (@ -p) +nk(7//
2 g &
E u// 1)@%9/(2)

- uﬂ/(,!(E Ui (1}—~ X/U,(l)q,(m,(ﬂdvldvz + NB, (29)

The upper limit, N/2, is obtained for the sums over
i1 and k on the assumption that only half of the possible
states are filled but that each filled state contains two
electrons corresponding to positive and negative spins.
This also accounts for the factor of 2 which appears in
two places in (29) The factor of (2) is not placed in
front of the exchange integral because there are only
half as many of these terms as of the others.

The expression for H®° may be written

/° P
73y

and this operating on uLﬂ¢/gives

HC u)/u,,._ {E;, +* ZUrst} u/(/u/ (31)
l‘st
FAMY

Substitution of this into (29) along with



22

/‘):R, L/:S,%-%T
A-A=z, G-U =5, Pt (32)
A“p =v] @M =s] 7=
leads to
N/2
2”5 __ZE M.f—rﬂ‘/
E = NE; + 2N 5 /(3:[
=1 RST N/2 N/2
% g E Upgtlooodv + N E E [c]® |c)®
/ ngfo rs - ’

§ LRZ, S, Tng , (r-r')x, (5-5) -t
Z;”LG, G. "G " & @*Ga}

rse¢
rist’

* *x % L <
%u%r (1) Upgreh 2) U (2) b lf/% Uuooll)uy;,(2) dvadve
+ NP

g (33)

It is necessary to carry through a separate dis-
cussion for the two parts of the electron interaction
terms above. We will get the bilggest terms of the first
part of the triple sum over RST, rst, and r's’t , by
setting r/ = r, 8’ = s, t = t. The biggest contribu-
tion to the second part of this triple sum will be ob-
tained by setting R =r, S=s8, T = t and r’= /= t'= 0.

Then (33) becomes
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v
o NE S CFS el )

L=r  RST

Nz

{Z/uRST Zursg(/oaoal])' + - ? //Z “RST(///

ooe /1//2
K U (2) 5 oo (//amm/dwc/u%-f/y 7 |G/ f/ Cl”

(B ), Strtm), 71%/7
Zz/z{ﬂ%—l/ o %/m/z/moo or

AST

C/oao(///é//‘st(i/dd/ﬂ/l}z . 3 NPJ (34)

The double integrals of (33) decrease with in-
creasing rst and.r/é%/roughly in the same way that the
normalizing constante C; and Cyp decrease with in-
creasing 1 and k. Therefore in order to partially
account for the approximations made in the first part
of the electron interaction which eliminated the sum
1l

over r , set

Iokls = 1/2
k=1

and to account for the elimination of two sums in the
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second part, set

Cy = —%— and Cy = —%e. Then
¢ ém Tn
+
E = /YE/ +N> ICII > Z/TI(G/ )BA’.S‘T
L=/ RST
/Y y o [/?ST (35)
YWY /S

where

Basr = 2Vasr *+ Kast (36)
and

Vasr = ? }lnrr Upsg Ugoe AV

’;gooo

Krsr = Z/ﬁnsr( 1) ur'sg )

rsct

* * °
IﬂST = // uRST( Q)U-oga(l)';?—‘uooo(1)uR$T(2)dV1dV2

12

uaoo ( l)u"Sf( 2)dV1 dvg 37)

If we assume that functions for the K shell do not

overlap, then we may write for the expression for Pg

p. = 1 e® - 1¢6° 1 (38)
g~z dasr 2 4 JRE*5PT TR
T ST

RS

where dggsy 1s the distance between the atom at 000 and
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the atom at RST. Thus all the terms in (35) except NE1
may be written as a sum over RST. The terms in this
sum get smaller as RST gets larger and for RST very
large the negative and positive parts cancel each other.
That 1s, when two atoms are far apart the distance be-
tween each atom and its electron is negligible in com-
parison to the distance between the two atoms,and the
positive nuclear charge and the negative charge of the
electron are practically at the same point. Therefore,
if the sum over RST is carried out far enough the re-
maining terms are negligible. For purposes of compu=-
tation here, the sums will be taken over only the first
fourteen neighboring atoms.

To this order of approximation, if we represent
them by NE,, the terms in (35) involving Bgs+ may be

written in the following form

N/2

_ 2 i Ty, 0

NE, = N |csl {E%oa+83%%AGos-aicosG;icosﬁgi
=1
2T 4, . 2emmy, 21Tn4
+ 2By, (cos G TeosSg, .cos---———-'l-Gra ) (39)
This is possible because,
B.rs7 = Brs7 = Bgsy = Bn-s.70 Ot

By definition
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: ZZ m{zj(,(a}zx’) + m;%ﬁhnjcrgga-ﬂ@f

1
[Caf ®
AWMLY IV
/“ *
%/ u)I/‘IpIU.)/‘VdV
Rgs . Smy . Tny
R ol s Ga)
RST
ILet a = /uy,;{y‘uo.. dv and b :"-/U.loo UooedV,
then
l-c—}_—a =N {1 + 8a cosTlicosMigoeii
l G 0%, C%a,
+ 2 b(cos2_”£i + cogelmi 4 cosgﬂ-rli) (41)
G, G, G,
Therefore,
N/2 ) =
e g He
NE = Baao+8B14g¢,cos""Q,cos%‘cos ‘6“ _ s .
8 ~ 1+8acos Z% cos "Micos A2 420 cos M e 4o co i)
G, G G3 G, Gz Gz
i=1
:ZZ/‘ z[m- :Ez'
+ 2Bj0p (cos "G, + cos ’Ej' 4 cosz 5‘7; )
1+8acos X4 cos TMicos 742 cosi,_!.+cosz__@4~cos’m6 5
, ’ 2 3 t Gz £
(42)

If we assume that By, /B//,%%’is approximately
%
equal to b/a then

¥Sece page 51.
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NE, = ——AMB'E /+ + (Booo . BAAK)SN (43)
a a
where
N/2
g = .l . .
N 1+8acos£_%’cos’%”i‘cos’%’;‘+2b( cosi.’é-f-‘_+cos’_’é%’"+cos‘?ﬁ?)
it (44)
Let NE; equal the terms of (35) involving Izgt
then
N/2
M il il
E, = T {I,,,+8§&4Kcosagli+2k)cosaimi+mk)
i R=1

cosd(ni+ny) + 2506 {cosgﬁ(zi+1k) + ...} (45)
G, G

In the appendix it is shown that the approximate
value of Ea is

Eg = 1/4 Iogo + -1—T2-r-§ 4% 4% (46)

The complete expression for the energy becomes
NB4 4 4 Bxyy N
E = NE, + ~ZAhE 4 (Booo - ALBSN + 3 Tooo

4 1;2;? NIgqy+ NPg (47)
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Analytical Expregssions for the Functions

Appearing in E

The derivation of the formulas which are listed
here have been placed in an Appendix which will be
found at the end of the thesis.

The constants

d = grating constant
A= 2
A

and the functions

%
- B X =/§__ at
e T

Fo(1,4) =-f%(l + % + %g + %; i’)

appear in a number of places below.

oA
8 = gErToaE)(A**5-TT35A%+26.66TA®+69.2824+80)  (48)

-A
b= 2-}—5-?—1:7&?7(/14 + 5% + 20A% + 457 + 45) (49)

: -3
Vooo = -%{15'2374_%‘,{2—5(/13+2@/1+6/U 8,;3)
2n

TS + A%+ A ) (50)
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-/3A
Keoo = %{15 2374 .5A/(1-4%) - 157(1-4°) % -(—gel-ia )®

(1.0045%103A7+.01218A%+ .08437 A8+ . 4060 7%
+1.395A%+3.309 \%+4 . 910A+3 . 464)

_2A
~riogeye( 2.381x10 2A7+.0251%+. 1545+ .6250*

+1.860A%4+3 .820/134-4.910/14-5)} (51)

g¥ & -z
Vng = 37/_—,4:)'&2.876”,{:1/2-3 /160 e ' - 2a//3

[6( ~Ei(-1.1547/34/2))+3( -E3( -1.633/34/2))

pe
+(=E4(=/3A) )+3( -E1(2.0696/34/2)) /‘%e_?-1547~§/1

((2.1547)23A% /443/3( 2. 1547 )A+ A /4+18)

e’2'63}@((2.633)82/{8+3/3(2.633 ),\4—’}; +18)

e'ééz/l(sz/éulz + 9/3 A+ A®/4 + 18)

B ok

N

Rt 5348”-?& 3.0696 )?E/ls-r}/%( 3.0696 )/h-A%»f 18 )}
(52)

e""a/'-e"[é/l
Kyt = = Vs +oxosgayeg(A +4.6189° -5 7528457 . 32734



- '/_A 30
T-(A%+11.547A%+58 . 3534°

Wl
]
+148.83A+158.83 ) Sy S et

e’a/_e
- 59.563) T

( «07428)8+ .9406 A5

+6 s 181 A% +34 .05 X3+56 . T2AP+65.295A+39 « 375)
/’)‘
- ea e i 6 5 - ad a
EE(_‘TFE( 1.09842°+8 .8781AP+41 .01 A*+131.5A

1-A
/19
+ 139.2A% 4+ 102.30A + 39.375) = __6_(___eaa e_—g,x
° ° e 9 l-AB )B

{ +38275)%43.6880A8+20.31 )%+ 77 .64 3+97.97A%

35

2
+85.814A+30. 375) -gZi—r—AgT—d%’z,\%B 2497/3)49)

2
(53)
]
Toso = 2y = 112K ’afe o)
/3A

2

%y = &_ 2 -'-“____ . 817 ” 64, 5
At = o { T3 ﬁg‘; (1.005x10\3A7+.01218A%+ .08437A

+U4060A%+1 . 395 4%+3 .309,12+4.910,l+3.464)} (55)

=z s 4 /B ]
s - |- ol (SRR ()% STl 63T ) 1

1 + 8a + 6b

(56)
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. 4a + b) a + 4b
X= T48a+6b 63‘ (1+8a+6D) (57)

E, = 3.87'3((-1+11xf¢gAg 5;«‘3: 1))~ eai 1+2A3/i2€—2)) (58)
é=g
Eﬁ = 15.2374§i (59)

Calculation of the Energy of a Lithium

Crystal

The total energy of the lattice, when expressed
in the above form, is a function of both & and d. For
a fixed 4, the best value of the energy is its minimum
value, considered as a function of &.

The energy, thus obtained, 1s a function of 4 only.
It also should have a minimum for a value of 4 equal to
the lattice constant, and this final minimum value for
the energy should be the total energy of the atom in
the crystal.

The following table givés the calculated values
of the energy as a function of & and d. The minimum
value of the energy for the atom 1n the crystal is
seen to be -5.24 elec.-volts. The minimum energy for

the isolated atom is =4.39 elec.-volts, which was
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obtained from the graph of equation (58). Therefore

the energy of the lattice binding is
- o 85 elec.-volts per atom.

This is to be compared with the observed value of

about - 1.89 elec.-volts per atom.

\\ ol 2.922 .018 «120 225
2\ 922 3 3 3

9125 -4.51
09430 —5023 -4.53
9740  =5.14  -5.24 =4.55

1.0060 -5.13 -5.24 -4.56
1.0400 =5.13 =523
1.0750 =5.11

TABLE. Dependence of E on & ang d, showing

position of minimum.

The observed value of the binding energy was ob-
tained by adding the heats of fusion and of vaporiza-
tion to the heat required to bring the crystal from
the zero point to the boiling point and substracting
from this 3kT/2 for the energy of the gas.

The grating constant of

3.07 Angstroms
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is to be compared with the observed value of 3.50 K.

A calculation of the compressibility on the basis

of the above data gives
10x107*® ergs/cm®.

The observed value is 8.9x107*® ergs/cm®. The compres-
sibility was obtalned by fitting a parabola to the
curve connecting the energy and d. Let the parabola

be

(E - E,) = 5(x - a)F

and substitute into this E, = -5.24 elec.-volts,

E = -5,23 elec.-volts, d = 3.07 A and x = 3.225% then

2x.01

= 155)eelec.-volts (A)®

= 1.3x10%* ergs/cm®.

The definition of compressibility is

2
1
<~
QWQJ
ol

but p = %%. Therefore, since V = x3/2, (vol. occupied by

one atom)

i DR o 9%3.07x10~8 3 -18 3
- - 2 ergs/cm®= 10x10 ergs/cm® .
Chl= A o= °res/ /
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The energy obtalned above is too high. This can
be accounted for in the following ways:

a. The Ritz approximation method should always
give an energy that is too large since it gives the
correct answer only when that form of the character-
istic function is found which makes the energy lower
than all other possible forms.

b. The contribution of the non-diagonal terms,
which have been neglected,would also lower the energy.
c. It is manifestly incorrect to use only s-
functions and tc leave out the p-functions entirely.

This 1s clearly indicated by the recent work of
0’Brien and Skinner*® on soft x-rays.

It is interesting to compare the above results
for lithium with those which Slater*® obtained for
sodium. Slater obtalins a value for the energy of
sodium which is 50% too large. The value obtained
here for lithium is 50% too small. Slater/s lattice
constant is roughly 30% too small, whereas the lattice
constant calculated here is 12% too small. And
finally, Slater says that his compressibility 1is 2
or 3 times too small if he considers only adjacent
pairs and is “much too great” when the next set of
atoms 1s considered. The compressibility calculated

here is about 13% too large.
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APPENDTIX

Evalusgtion of S

()]

et BL x, 21 = y and T = z. In the cube
G, r G
8
which represents half the octdhedron over which Zi!
_ & _G G _G m -G

my, and nj vary, we must have - lig =, —ZR L 1L 28

=g Ga -I o - I g i
and —53<n;< 32 or F5<4x<3, 34Ly<3 and SLaLy
This cube has a volume equal to m® and contains N/2
points. Therefore, to each point there is a volume
2m®/N. If we approximate the sum over the N/2 states
of lowest energy by an integral over a sphere of vol-

ume w2, then the radius of this sphere must be given

by

3 2 3
4?? =m® or R = (‘3%'-)/3

and equation (44) becomes

g = L 4rrr®ar (60)
= 2n° 1*8acosxco§ycosz+2(coszx+0082y+cos2a
0

Expand the cosines in terms of their arguments, then
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R
2 rfdr ;
5= (1+8a+6Db) -4 a+b)ra+af3@r*+4ﬁa—gﬂ?x3yg+y“z“+zax“" )

0
(61)

Since (a-b) ¢ a or b, the last term in the denominator

is negligible. Hence

R
- r®ar (62)
S = e 1 =" +ﬁ7r4’
0

where the substitutions

M =1+ 8a+ 6b

s 4(a+b)
A= "

/ a + 4b
A= =i

have been made.

In the region for which the minimum energy occurs,
s .5 and ﬁfa.l. The maximum value of Xt® - gr*
which occurs for r®-2.5 is of the order of .6. There-
fore the denominator of (62) may be raised to the .

minus one power leading to

Mrr

R
S =——g~s/ rsi l+d’r-’3-@&*4m'9r4-2d;9?6+@'8r3} ar  (63)
0 ,
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The result of integrating (63) is equation (56).

Evaluation of Es

Making the substitutions x3 = mli/G,, etc.in
equation (45) and replacing the sum over i and k by
integrations, leads to

@4 4{

E; = ﬁ%'g_ f oo {I,",+8;K%Acos(xl+ Xg )cos( y1+ye)
/A - IV

cos( z, +25 )+21,0, [COSQ(X1+X3)+0082(y1+ye)¥0082(ZL+228§

dxidy1dzydxedyedze (64)

The result of this integration is contained in equation

(46).

Evaluation of E4

Ey = "8—%:—/&/11 Veudiv - ea/l—;zdv (65)

Substituting the expression for u from (24), together
with

1
o= T [ ot

into (65), and carrying out the indicated integration,
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we obtain equation (58).

Evaluation of Equations (48) to (55)

By working out some of the 1integrals below using
the complete form for u contained in equation (24), it
was found that the results were approximately the same

as would have been obtained if only the 2s part, namely

u = Cyre~TA (66)

had been used, provided the factor 1/(1-A%®) was suit-
ably inserted. For this reason the integrals have
been carried through using only (66) and have then

been corrected to take care of 1/(1-4%).

1 - ThA4F Te00
= S’ T4syTooo © X dv
Let

r%%,p: k(u + V)

Togo = k(U = v)
where 2k :/V?/ah, then

av = 2mk3(u® -v®)dudv
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and
/
_ 1 2m 9 5 L .14
_GA

_ 980" (A% + %%,{3 + -%9,18 + %—Q/U 80)  (68)

This is the same as (48) when multiplied by 1/(1-A%)
2. Since the integral for b 1is the same function
of the points so0 and oee that a is of 44#nand coeo, Wwe

may get the expression for(49) by substituting A for
/Z3A/2 in(48).

3 L
Vose = - Be® —iﬂLdV - 6e//f-iﬂldv (69)
A A Troo0

Both integrals of (69) are of the same type.
Let us work out the second integral and then the

first may be obtalned by substituting /34/2 forA and

/34/2 for 4.
£ 4 oAl utv)
u = Id dud
/r,"::d" 2:;:57//‘“*" R
RS s SURNPY RN PR3 (70)
=3 - %3
Thus

V, = - 15.2374e® 26° e~ 3?13+2/3 9+6A+813)
oo o a (l"Am{ 3



41

,
+ormy( A0+ 38 + LAk 3) (71)

Tran
508 | Wififiloce 5 _éﬂ{}l_eg_o_dv
Th-thHi. T-Uhh

The first integral of (72) is readily calculated

4.
Vgsn= - /// UKARL 000 gy ~6ei//;9%?ﬂﬁﬂﬂLdv
/700

as followss

l%%ﬁ%%?z_d‘ BWd J//;// (u=-v)(u®-v®)e dau

A‘Tﬁ—(ﬂ)«%z,\ﬁ Bywe)  (73)

The other four integrals involve distances from
three points and are therefore more difficult to
handle. The method of integrating these integrals
was suggested by Dr. H. Bateman. All are of the

following type

2 i

r,, rg and rg are the distances from three different
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points to the element of integration dv. Since r, appears
in the denominator only, this is the potentlal at the 3

point of the distribution of charge whose density 1s

— Dy*rg
& - &
(Oz BTeT_ro( rirge (75)

Therefore I, must satisfy Polsson’s eq uation
- Ri+Re

2RI, . d'z I, ., 4 & -
_5§§ + Er?% +'%?E§ 3525 e RyRg =0 (76)

where Xz, ys and zg are the coordinates of the 3 point
and Ry and Re are the distances from the 3 point to the
1 polnt and the 2 point respectively.

Let us express (76) in terms of the ellipsoidal

coordinates of 3 with respect to 1 and 2 defined by

O = St Be, - T o fa (78)

2k being the distance between the 1 point and the 2

point. The result of this transformation is

je{‘ea alf /‘{ /faf,j 80" 462" =0 (79)

where @ = 4e®x*/(3a° ) and A = 2k/x .

' 00
Assume I, = Z A,,(@)Pn}b() where P,,}IL) are

=0
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Legendre polynomials and An(GW are functions to be de-
termined so that (79) is satisfied.
Since Ap will be a function of A also, it will be
convient to show this by writing it Ap(@,A). After
substituting this assumed form for I, in (79), we ob-

tain as the new form of the equation

;P,,}u)[%é {(69-1)%%n} -n(n+1) A,,(B] +@(p /u. )2e

(80)
But the last part of this equation can be expanded in

a series of Legendre polynomials, thus

B(@48)% [/35 2ufi) + (4/7 - 4730%)2afp0)
@ - 2/30% + 1/5)1»0}&]

= ;E:an PQVL)
n

so that (80) can be rewritten

ZPn}LO RICLS ggnf-nmﬂmn(e,,x) + an] - o (81)

If (81) is to be true, then

%‘é{(eg 1)“} +@(0* - 2/36% + 1/5)e =g 0

o

%{(99-1)%%3} 64 + B(4/7 - 4/392)e A0 o
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4

i(ea_l)_d;_A.é}-QOA4+ @—%e-/le = 0 (82)

a_
ae de

It is not obvious from the above analysis that the
remaining functions A”(e,A) are zero, but nevertheless
it can be shown that this is the case.

The equations (82) are inhomogeneous Legendre dif-
ferential equations and are most easily solved by making

/

use of the appropriate Green’s function which is

g(6,X) = Qp(6)E,(x) 1< x< @
(83)
= QH(X)Pn(e) < x = 0o,
Hence
e co

A(GA) = p{%w% x*—%xz-h%)e-/\xdx+ZQo( ot x*-—%x3+%)e-/1§x ;
oo

e
- -Ax
£2(04) = {2 (e/m )(Adye)e™ Mg +Pa(9/c,),( TR dy}
/ @{g / x73xe X 93}{73}{9

o0
-AX X
2.0A) = G {0 @) Rutx) & ax + 2,0) [aulx) L ax
35
! e
(84)
Az(©,A) and A(O,A) are much smaller than Ac(G,A).
Furthermore, they not only enter into Vyusx but also into
Kgys,. The small error made in neglecting them here is
partially eliminated by leaving them out of Kyyyz also.

For this reason only the solution for Ao(@,A) will be

worked out here.
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The first integral of A(@,R) gives

6
-AX e g A%
(x*-%x+/p)e " ax = TFo(l’A)-TF°(6’A) (85)
/

Let the second integral in A (@,A) be represented

by Ro(@,A). Integration of 1t by parts gives

-AG
7o, A) = £-70(0,1)2(6) /Ea%—}&—*% -Ax a0 (86)
e h6°, 2012 2y @2k 4y 24 4 1 ,
Fo(e,)\> = 644-7—-!-62\';5' 3>+A—(}7—3)+~F-’§g+5 (87)

— 6% 8 2
=0% + c 0% + ¢0° + 16 + c

Performing the division under the integral sign of (86)

and integrating the part which 1s a simple integral, we

get
R(G,1) = -?-/-\iaFo(e,/\mo(e) %feaé;%%@
o
Yo

Breaking up the last integral by means of partilal

fractions, leads to

o0 o9
> -X
/(o,+ca)x+cg+c,g+1) '{de - %Fo(l,)\)e/l ex dx
(%4

x° - 1
A6
oo

- - %Fo(l,—},)e'/—-?; dx
AG+y
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= %—Fo(l,,\)e"‘{-mi[-/l(e-lﬂf - %Fo(l,-/\)e’\{-b}i[—/\(9+1ﬂ}

(89)

Therefore the resulting expression for R(@,A)

pY- Y

)-_,a._e/l (e® +%€+%+;\1—§-)
+ —-Fo(l { -Ei[ -A(@ - 1_]}
) %Fo(l,-/\)e"{-Ei[ Alg + 1ﬂ} (90)

and that for A (6,A) is

A(0,4) = 52-3—;—’-15‘0(1,/\) [Qo(@) - -12-E1( -Ae - 1)2,

_g; Fo(l,-A Ei[-/\(@ﬂﬂ —-5—(93+ +/+/// )§

(91)
The integrals in Vy4y are obtained from Ay(@,A)

by substituting for A, ¥3A4/2, and for ©the values

o = Yol + g2 +7* '+ - } 2)24(g- 1/2)%+(77- 1/2)%®
) 2 \

Using (73) and (91) and inserting 1/(1-A%), we obtain
equation (52),

o= oot kA1) Ugeg (1) Usge(2)
5. Kygyn = 2e// o dvy dvy
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+ 6e8//._éu' Kﬁ(l)gére:a(l)uédw—g) dv, av,

K
N Be%u%m1)uaoo(l>u%~%1’»(2) dv, dv,

yz

2
. / et 1) uoeo (VU-pieneti (2) gy av,
Tie

//uz//.il uooo(llu-/w (2) dvy dvg (92)

1.2

The integration, in each of the above integrals,
over electron (2) is the same as that carried through
on pege 40 resulting in equation (70). If we let rwesr
be the distance from the pointzﬁgffto the volume of

integration dv, then

e
z (2) 1 2
/ S = g - S MR B (0

The first integral of Kgyycan be evaluated

explicitly
4781 ) Wooo ( 1) Uoge (2 e®
/// —ﬁ%ﬁi Aﬁf; °°° _)dV1dVg: 'gﬁiz/;%zﬂrboa
2/
_TysstToos - ==

& 1 - e—- r( l/’ozaeo ‘*“30(1%90 ""91"}2_

Yoo X Yoeoo

3)

}dr‘
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) _[g_,_l - ;5/1/¢( u-v)
= 322( d)//u -v*)%e © i]}dﬂ(u-v) 30(9

I:i%da(u--v)2 +3(i—’/;d( u=v) * 9.§. + %%m_dfiudv

2z /3 "[22\
- 8,3 _ 17.2 297.872, _ 33.504
S T A+ A0 - AT+ ST 5 *16)

1l

° —/E—e e (A*+11.54TA%+58.333)°% +148.83A+158.83)

(94)
The remaining integrals of Kgyx4 are all of the same

type, namely

/&//U/ (1)loos (%pﬂz dv,dvy = I

Tie
_YuntitTaco - 2Tupyr
_  &f s o < 1 e %
T S fhlateee Tkpr T3
2 2, 3B
(I‘My * 33@7“ + 45 r{,’)}dlﬂ (95)

The first term of this integral is I;. Let Iz be the
rest of the integral. It was necessary to approximate

I, in someway and the method used was as follows. Re-

place - LYU4 g‘l"l”,,o - 21"!{_4/’44/_/(
A 2 oL
Tynt Yooo € OIV by cryusy e av

and determine ¢ so that the integrals of the two ex-
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pressions are equale.

A oK oC

C I'%,%///‘/ e

_2Yyytete A Y
dV = rl‘l/‘ ytrago e dV

The integral on the left is just the normalizing integral
and therefore equals 3md®., The integral on the right is

equal to 3nmX®a. (See equation 67). This makes ¢ = a

and hence
-.g.(r‘yy +1”4 )
2 " = belat)or ik 2 o
Ig = "'%Fa‘(_s '-);7:'7:3 Yo%turic © (1;((,, +Zdl¢79r * %4
3
+ 2%y ay (96)

Using ellipsoidal coordinates with

k(u + v)

Yhetiit

and

Tiar = k(u = v)

this becomes

t oo -4ku
2
g%%ankj/://(u+v)ze - { u=v )R k2+30%k( u=-v)
-1 JI

- %a? + E?%gyjj(ue - v®)dudv

g -2 , . ; ’
- __a_cggg__(%,\e+l5%,\'s+15§ ,14+6o,\s+%§-5;(8+3%;5—‘/1+%—5) (97)

{,
where, in this integral, X' = dfy and d’equals the
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distance from the %#%% point to the pointeeo. There are

then in Kg4% 6 integrals of the form I, for which

4for which

and 3 for which
A'=12 .
Collecting together then into K, 44 the various in-

tegrals thus worked out, and inserting 1/(1-A%®) where

needed, we obtain equation (53).

6 1 e ol ( ES
000 = W I‘aoo e I‘ooa. L7 Yose +20(Yooo0

- 21”22 )

+.ﬁ_ + &
dv r e
Tooo >} 7 “5 [-]X ]

2T w4
3

1 e £ 8
{ry,y,y, 203 “’%;’.r,"ﬁdl}mﬁ go( %)fdv

—-2Togo [ _2Tvo0

6/ x 1 e X o
+ 3,”,“5 Tooo € -

i 47
00 Jol® “Ttee

+ 2000 *+ %«e + }gf—)fdv (98)
Ty00

The first integral above 1s also Ioevo and the

second 18 also Ix4#k,if the factor of (8) is omitted.
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The first integral is integrable without change
of variables. It leads to Igee Without difficulty.

The first term in each of the two last integrals
has already been worked out. The result is contained
in (70), page 40) The remaining term is of the same

form as I,, page 49, equatiors(96) and (97). Thus
_2( raog +I‘/gp_)_
2 o

e 2 P4
- B10C° < 3d3 Yoeo (r/oo +3d Y00 "'%dz %)dv

_ 6%e=2% 8 16 1216, 72 14u 18 16558.315, .31
= - S (Dedire 2, +60A°+122 #2229 +382)  (99)

Using then equations (70) and (99) and Isee , We

get equation (51) when 1/(1-A®) is inserted properly.

Comparison of Bx#%%/Beee With a/b

The minimum of the energy occurs for A = 3.1,

In the neighborhood of this value of A

B4%%/Booe = 1.26
and

a/b = 10160

The percent difference in these two figures is 8%.
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