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ABSTRACT

Despite advances in climate modeling, the spread in equilibrium climate sensitivity
estimates has remained largely unchanged over generations of modeling, mainly
due to uncertainties in cloud feedback mechanisms arising from subgrid-scale tur-
bulence, convection, clouds, and the resulting cloud-radiation interactions. Mis-
representations of these processes affect both long-term climate projections and
the simulation of short-term atmospheric phenomena, such as the diurnal cycle of
precipitation. These limitations are most pronounced in regimes like stratocumu-
lus clouds and their transition to cumulus over ocean basins—areas where climate
models have the largest cloud biases in the historical record. This thesis aims to
constrain the critical subgrid-scale physics of turbulence and convection by devel-
oping and calibrating a hybrid physics–machine learning parameterization using the
Eddy-diffusivity Mass-flux (EDMF) framework. By integrating machine learning
components into the EDMF and employing data assimilation techniques for on-
line learning, we attempt to directly target some of the processes responsible for
uncertainties in cloud feedbacks.

In this thesis, we employ ensemble Kalman inversion within a single-column setup
to simultaneously perform online calibration of parameters in empirical closures and
embedded neural networks, targeting large-eddy simulations as ground truth. The
online learning framework ensures stability and physical consistency, as machine
learning components are trained within the context of the full model dynamics. By
directly targeting poorly constrained processes like lateral entrainment/detrainment
and turbulent mixing lengths, we improve the representation of subgrid-scale fluxes
and resulting cloud properties across various atmospheric regimes. We uncover lim-
itations of traditional semi-empirical closures, providing insights for future model
development. The calibrated hybrid parameterization outperforms existing schemes,
particularly in regions where climate models have historically underperformed, and
maintains accuracy in out-of-sample forcings from a warmer climate. This work
demonstrates that integrating machine learning with physics-based parameteriza-
tions through data assimilation offers a systematic and robust approach for reducing
biases in climate models and understanding the physics of elusive subgrid-scale
closures.
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C h a p t e r 1

INTRODUCTION

1.1 Forward
Since Earth’s coalescence over 4.5 billion years ago, our planet has experienced
a myriad of climates—from global glaciations known as “Snowball Earth," where
ice sheets reached the equator, to hothouse periods devoid of polar ice caps. These
dramatic variations eventually led to a climate hospitable to human life. Soon
after, the most curious among us began meticulously observing the sky. Around
2,400 years ago, figures like Aristotle, one of the earliest meteorologists, began
systematically attempting to explain the atmospheric patterns he observed. The term
"climate" itself is derived from the Greek word 𝜅𝜆𝜄𝜇𝛼 (klima), meaning "inclination"
or "slope," reflecting the ancient understanding of how the sun’s angle influenced
regional weather patterns and created distinct climatic zones.

The same species that once gave names to the systematically varying skies and
began to describe them with rudimentary rules have, through rapid technological
development, become powerful enough to unnaturally influence the climate at an
unprecedented rate. Today, the word "climate" has taken on a completely new
meaning. Through technological innovations in computing power and better process
understanding, we now have the power to predict aspects of future weather and
climate at a global scale, allowing us to take actions to prepare for or avoid potential
realities—a scenario unimaginable to the Oracles of Delphi. Today, we live in a
world where approximations of entire simulated Earth systems can be generated
on computers, playing out atmospheric realities that may or may not happen. The
usefulness of these models, however, hinges on their fidelity and ability to generalize.
As the complexity of processes in these models surpasses our ability to precisely
measure and constrain them with traditional techniques and measurements, we
face new challenges. Paradigm shifts are occurring that favor using AI techniques
largely as black boxes, but these tools and their evaluation must be approached
systematically and carefully, given the complexity of the Earth system and the large-
scale decision making that results from the predictions of climate models. While
Aristotle’s theories of the atmosphere loosely fit what he could observe in the sky
above him, many aspects of his broader reasoning of weather and climate turned out
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to be incorrect—and failed to predict characteristics of global weather he did not
directly observe.

1.2 Overview
A variety of aggregate metrics may be used to evaluate the physical realism of
atmospheric simulations and track the accuracy of their predictions. There is no
universally agreed upon metric for identifying the quality of a weather or climate
model, as stakeholders utilizing their predictions and researchers analyzing their
output are interested in accuracy of different aspects. For climate, perhaps among
the most consequential and generally informative metric is equilibrium climate sen-
sitivity (ECS), which measures the average, equilibrium increase in global-mean
surface temperature in response to a doubling of CO2 (Meehl et al., 2020). The
spread in ECS among climate models has remained largely unchanged since initial
estimates with simpler models in 1979, despite rapid growth in the complexity of
climate models (Charney, J. G. et al., 1979). The uncertainty of climate models in
their prediction of ECS, as indicated by the large spread in climate model ensem-
bles, has been largely traced to limitations in how cloud properties respond to their
environment, and the changes in these interactions brought about by a changing cli-
mate. The term "cloud feedbacks" is used to describe the response of cloud radiative
properties to climate change (Stephens, 2005). It is well-established that tropical
low clouds dominate uncertainties in Earth’s global cloud feedback through short-
wave interactions (Bony & Dufresne, Jean-Louis, 2005; Ceppi et al., 2017; Klein
et al., 2017). The misrepresentation of cloud feedbacks stems from inaccuracies
of subgrid-scale physics, namely turbulence, convection, clouds, radiation, and the
interaction between them (Bretherton et al., 2013; Gettelman & Sherwood, 2016).

The objective of this thesis is to constrain the subgrid-scale physics that is known
to link short-term atmospheric variability to long-term climate prediction uncer-
tainty, namely the processes responsible for dictating cloud feedbacks. Building
upon the initial work of Lopez-Gomez et al. (2022) and utilizing the calibration
and uncertainty quantification framework of CliMA (Schneider et al., 2017), in
conjunction with model improvements, this thesis aims to inform representations
of the subgrid phenomena, namely those dictating turbulence and convection. Per-
haps the largest contribution of this thesis is pushing data assimilation frameworks,
frequently published with simplified or idealized problems, towards use in more re-
alistic climate modeling settings, where numerous challenges arise. If the promise
of these methods is to make a difference in climate models, these challenges must
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be addressed systematically and one-by-one. We specifically target regimes where
state-of-the-art climate models broadly struggle to capture cloud properties, even in
the historical record—stratocumulus clouds and their transition to cumulus regimes
in ocean basins (Vignesh et al., 2020).

Numerous emergent constraints have been identified, establishing potential links
between observable geophysical variables in the present climate to future climate
outcomes (Klein & Hall, 2015). Proposed emergent constraints span various as-
pects of the present-day climate, including the depth of tropical low clouds (Brient
& Schneider, 2016), the strength of the double-ITCZ bias (Tian & Dong, 2020),
and the degree of vertical convective mixing (Sherwood et al., 2014), among others.
The Coupled Model Intercomparison Project (CMIP) consists of a large ensemble
of climate models run by institutions and modeling agencies all around the world. It
is noted that many proposed emergent constraints derived for CMIP5 show consider-
able decrease in their skill when applied to CMIP6 (Schlund et al., 2020). Chapter 2
contains published work outlining an observed correlation between oceanic diurnal
precipitation characteristics and ECS. However, the physical mechanism responsible
for the correlation remains elusive. This chapter also highlights the shortcomings
of the latest generations of climate models, CMIP5 and CMIP6, in simulating the
diurnal cycle of precipitation (Christopoulos & Schneider, 2021). It is hypothesized
that subgrid-scale physics surrounding cloud microphysics and entrainment that
manifests locally and on daily timescales, through the diurnal precipitation cycle,
may also impact the mean climate. Stated differently, diurnal cycle biases and ECS
variations in CMIP models may have common causes, without the diurnal cycle
biases directly causing ECS variations. While several hypotheses are laid out for the
relationship surrounding cloud depth and radiative effects, the claims are ultimately
unfalsifiable without a controlled modeling study utilizing a subgrid-scale parame-
terization. Although numerous biases in climate models have been documented and
categorized across generations of CMIP models (Wang et al., 2014), the remainder
of the thesis aims to tackle these problems at their source.

To that end, Chapters 3 and 4 focus on improving and calibrating a unified subgrid-
scale parameterization of turbulence, convection, and clouds, known as the Eddy-
diffusivity Mass-flux (EDMF) parameterization. The EDMF represents transport
from coherent updrafts and environmental turbulence in a unified manner across
a variety of convective and turbulent regimes (Tan et al., 2018; Thuburn et al.,
2022). When coupled to a global climate model (GCM), the scheme accounts for
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the effect of subgrid-scale processes and predicts vertical subgrid-scale fluxes and
cloud properties as a function of large-scale forcings. The primary contribution of
these chapters is to utilize data-driven models and data assimilation techniques to
target uncertain processes within the EDMF, using data from large-eddy simulations
for training. The concept of a "hybrid" EDMF is introduced, where semi-empirical
closures are replaced with expressive and data-driven models. In contrast to emerg-
ing approaches that replace subgrid-scale parameterizations entirely with machine
learning (ML) methods (Rasp et al., 2018; Yuval & O’Gorman, 2020), this research
adopts a physics-first approach that incorporates ML methods at a low level while
retaining well-established physical equations of motion (Schneider et al., 2024). In
this way, learned relationships can be more directly analyzed, distilled, and reasoned
about. The approach is especially pertinent for cloud mixing, where closures are
numerous and diverse in climate models (de Rooy et al., 2013; Gregory, 2001).
Chapter 4 pushes the setup to even further realism, accounting for interactions with
radiation and surface fluxes and using coarse vertical resolution typical of climate
models. Whereas Chapter 3 focuses on the dynamics of convection, Chapter 4 turns
to the representation of turbulence in the EDMF. We find that data-driven mappings
for turbulent mixing length can be distilled into relatively simple, interpretable, and
predictive expressions.

Parameterizations in Earth System Models have always been fundamental in dis-
tilling our physical understanding of subgrid-scale processes. Thus, improving
parameterizations refines our physical understanding and sheds light on the limits of
parameterizations to represent even presently observable metrics. Where and how
to replace physical closures in hybrid subgrid-scale parameterization remains an
open and challenging question, with guidance provided by the experiments detailed
in Chapters 3 and 4. The result of this thesis is ultimately a framework that can
address biases, like those laid out in Chapter 2, at the closure level in a systematic
and universal way. While not addressed in this thesis, the framework opens a va-
riety of avenues for addressing limitations of additional critical closures (such as
microphysics) and allows for the use of global, space-based, or sparse surface obser-
vations to fine-tune models to match measurements. In this way, we may constrain
subgrid-scale closures of varying complexities indirectly. As the climate modeling
enterprise continues to rapidly adopt ML methods to emulate processes in the Earth
System Models, it is important to offer physically-motivated and scientifically-sound
paradigms which avoid black boxes. Balancing accuracy with interpretability and
generalizability are the core tenets of this work.
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C h a p t e r 2

ASSESSING BIASES AND CLIMATE IMPLICATIONS OF THE
DIURNAL PRECIPITATION CYCLE IN CLIMATE MODELS

2.1 Abstract
The diurnal cycle is a common benchmark for evaluating the performance of weather
and climate models on short timescales. For decades, capturing the timing of peak
precipitation during the day has remained a challenge for climate models. In this
study, the phase and amplitude of the diurnal precipitation cycle in Coupled Model
Intercomparison Project (CMIP) models are compared to satellite data. While
some improvements align CMIP6 models closer to satellite observations, significant
biases in the timing of peak precipitation remain, especially over land. Notably,
precipitation over land in CMIP6 models still occurs ∼5.4 hours too early; the
diurnal cycle amplitude is ∼0.81 mm day−1 too small over the oceans. Further,
the diurnal phase of oceanic precipitation correlates weakly with the equilibrium
climate sensitivity in CMIP6 models: models with a later precipitation peak over
oceans tend to exhibit a higher climate sensitivity. However, it is unclear whether
this relationship is robust.
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2.2 Introduction
The diurnal cycle of precipitation is among the fastest modes of variability in
the climate system. Simulating diurnal variations of fundamental variables such
as cloud cover and precipitation has been a long-standing issue for weather and
climate models (Dai & Trenberth, 2004). Disagreements at short timescales indicate
fundamental processes are misrepresented, even when seasonal and longer model
averages agree with observations. Simulating the diurnal cycle of precipitation
with fidelity requires correct accounting of surface-atmosphere interactions, cloud-
radiative feedbacks, boundary layer dynamics, and cloud microphysics (Bechtold et
al., 2004). Diurnal precipitation variability is multifaceted, and many mechanisms
operate across a range of scales to control its behavior, making it an important
benchmark for atmospheric models.

The diurnal cycle of precipitation has been characterized extensively in surface
observations (Dai et al., 1999), satellite observations (Bowman et al., 2005; Dai et al.,
2007; Kikuchi & Wang, 2008; Tan et al., 2019; Yang & Slingo, 2001) and in weather
and climate models (Bechtold et al., 2004; Covey et al., 2016; Dai, 2006; DeMott et
al., 2007; Lee et al., 2008; Pritchard & Somerville, 2009). The physical mechanisms
governing the diurnal cycle over land and ocean are distinct (Dai, 2001; Ruppert &
Hohenegger, 2018), leading to fundamentally different characteristics between these
regions. Oceanic precipitation tends to peak in the early morning hours (Bowman
et al., 2005; Sorooshian et al., 2002). Warm-season precipitation often peaks in the
late afternoon to early evening over land areas, with the central U.S. and a few other
regions peaking around midnight to early morning (Dai, 2001; Dai et al., 1999, 2007;
Lin et al., 2000). The diurnal characteristics of precipitation in climate models differ
from observations, most notably in terms of diurnal timing. Simulated precipitation
tends to peak too early over land (Collier & Bowman, 2004; Covey et al., 2016;
Dai, 2006). Over oceans, the diurnal precipitation amplitude has been noted to be
weak in some climate models, possibly as a result of weak temperature variations
in the ocean boundary layer and low atmosphere-ocean coupling frequency (Dai &
Trenberth, 2004; Randall et al., 1991).

Overall, the diurnal phase and amplitude of convection remain a challenge to properly
simulate in CMIP6 climate models. We find that only marginal improvements in
diurnal precipitation phase and amplitude have been made since CMIP5, and, by
some metrics, CMIP6 models on the whole perform worse. We further uncover
a tenuous relationship between diurnal cycle metrics and the equilibrium climate
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sensitivity (ECS), reinforcing the need to correctly capture the diurnal cycle in global
climate models. The relationship is found to be strongest over oceans in CMIP6
models, with a negligible relationship over land. Physical hypotheses are laid out
for why such a relationship may emerge in the models, but the relationship should be
further explored in future research. Studies aimed at constraining climate sensitivity
typically rely on indices and variability computed on seasonal, annual, and decadal
timescales. Because the diurnal cycle occurs on sub-daily timescales, statistics can
be generated over a relatively short time period relative to other emergent constraints.

While numerous studies have documented and quantified the diurnal precipitation
cycle and its biases in global climate models, as outlined above, less research
has been devoted to investigating its broader relationship to aggregate measures
of climate change such as ECS and TCR. Diurnal variability may affect the mean
climate through timescale feedbacks, as demonstrated by idealized cloud-resolving
modeling of cumulus clouds (Ruppert, 2015). Literature surrounding diurnal cycle
biases in CMIP6 is still sparse. A recent study looked at the diurnal cycle in 3
CMIP6 models (Watters et al., 2021), but the present study considers 21 CMIP5 and
26 CMIP6 models. The present paper complements existing studies of diurnal cycle
biases in climate models while also exploring the relationship between the diurnal
precipitation cycle and climate sensitivity.

2.3 Methods
To determine the phase and amplitude of the 24-hour precipitation composite, we
perform a 2-mode cosine transform fit to the precipitation rate for a given gridcell,
season, and CMIP model. More specifically, a function containing a diurnal (24
hour) and semi-diurnal (12 hour) component is fit after Universal Coordinated Time
is transformed to local solar time [LST] in each gridcell, and precipitation rate means
for each time bin are computed over the analysis period. The daily mean is subtracted
such that the amplitude represents a deviation from the daily mean. The periods
of the cosine functions are fixed, and the resulting phase [hours] and amplitude
[mm day−1] of the 24-hour mode are used for the analysis laid out in later sections.
The Levenberg-Marquardt algorithm is employed for performing the non-linear co-
sine fit. To perform comparisons between model output and satellite observations at
different grid resolutions, calculations of diurnal phase and amplitude are performed
on the native CMIP model grid before regridding diurnal parameters to a common
analysis grid. A common analysis grid is needed to appropriately account for differ-
ing grid resolutions, both among models in CMIP and between models and satellite
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observations. The analysis grid resolution is chosen as an intermediate resolution
between CMIP output and IMERG observations. Nearest-neighbor regridding is
employed to interpolate the derived parameters to a 0.5◦ × 0.5◦ analysis grid, which
avoids issues with the cyclic discontinuity at midnight for phase. Otherwise, circu-
lar statistics are used when aggregating phase in space or time. Polar regions are
excluded by only including latitudes in the range [60◦S, 60◦N].

A standard practice in the diurnal cycle literature is to mask out grid cells where the
diurnal cycle is weak and ill-defined, which reduces noise and improves the validity
of satellite-model comparisons. The masking is often performed by removing cells
with either low precipitation or low diurnal cycle amplitude ratio, as determined
by the ratio of diurnal amplitude to mean precipitation (Covey et al., 2016). A
more objective approach, employed here, is to find a parameter distribution of di-
urnal amplitude and exclude grid cells that contain 0 mm day−1 within 3 standard
deviations of the estimated amplitude (i.e., cells that include 0 in the 99.7% confi-
dence interval when the number of degrees of freedom in the estimate is large and
statistics are normal). The remaining cells thus have a robustly detectable diurnal
cycle amplitude. To build the parameter distribution, we use stationary bootstrap-
ping (Politis & Romano, 1994). Briefly, the method entails continually sampling,
with replacement, blocks of variable length from the full timeseries to build an
ensemble of bootstrap samples, each representing a resampled version of the full
dataset. Diurnal analysis is performed separately on each bootstrap sample, and
the set of derived diurnal amplitudes forms a parameter distribution that quantifies
uncertainty. For this analysis, 200 bootstrap samples with a size of 3 years are
generated from the full IMERG timeseries. Block sizes are an integer number of
days in length and follow a geometric distribution with a mean length of 10 days.
The mask obtained by excluding cells outside 3 standard deviations is then applied
to model output, such that only regions with a robust diurnal cycle in observations
are analyzed. However, our results are insensitive to whether and how precisely this
masking is carried out.

2.4 Data
Observational data
To assess the fidelity of simulated diurnal precipitation cycles, parameters estimated
using an identical methodology are computed for NASA’s Integrated Multi-satellite
Retrievals for GPM (IMERG) V06B data product (Huffman et al., 2019). Briefly,
the IMERG dataset combines estimates of precipitation from several passive mi-
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crowave sounders aboard satellites in the GPM constellation. The “final” satellite
product is inter-calibrated and regridded to a 0.1◦ grid before undergoing a series of
advanced interpolation, re-calibration, assimilation, and correction procedures. The
aforementioned processing steps are performed by NASA to produce the IMERG
data product. Satellite-based rainfall products infer surface precipitation indirectly
from emitted cloud top infrared radiation or the detection of hydrometers with mi-
crowave sounders, leading to diurnal phase biases of 2–4 hours with respect to rain
gauge observations (Dai et al., 2007). However, IMERG V06 has been shown to
reliably capture details of the diurnal phase with a smaller bias of around +0.6
hours compared to surface-based estimates, albeit the validation was only done for
the Southeast U.S. (Tan et al., 2019). Estimates of precipitation rate are provided
at 30-minute time intervals for the IMERG product. The IMERG V06 satellite
product is reliably available starting June 2000. For this study, diurnal parameters
are computed using data in the 15-year period spanning June 2000 to May 2015 for
latitudes between 60◦S and 60◦N.

Climate Simulations
The analysis includes all historical CMIP runs with 3-hourly precipitation flux output
available on the Earth System Grid Federation (ESGF) data server (https://esgf-
node.llnl.gov/), including 26 models for CMIP6 and 21 models for CMIP5 (Eyring
et al., 2016; Taylor et al., 2012). Because model realization and initialization are
not expected to affect the fundamental representation of the diurnal cycle, a single
ensemble member is used for each model. The latest 30-year period for each CMIP
iteration is used. The analysis period spans 1976–2005 for CMIP5 and 1985–2014
for CMIP6. Estimates of the transient climate response (TCR) and equilibrium
climate sensitivity come from Meehl et al. (2020), which uses the Gregory method
to compute climate sensitivity. It is noted the Gregory method has been recently
shown to underestimate the true ECS by 10% on average, and up to 25% for models
with an ECS over 3 K (Dai et al., 2020). Not all models from ESGF with 3-hourly
precipitation output have a reported climate sensitivity by Meehl and colleagues, so
comparisons between diurnal parameters and climate sensitivity are made using the
21 overlapping CMIP6 models and 17 CMIP5 models.
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Figure 2.1: Probability density functions of diurnal precipitation phase (local solar
time in hours of maximum) in IMERG observations (top, for 6/2000–5/2015 mean)
and all-forcing historical simulations from 26 CMIP6 (middle, for 1985–2014 mean)
and 21 CMIP5 (bottom, for 1976–2005 mean) models for land (orange) and water
(blue) grid boxes between 60◦S and 60◦N on a common analysis grid. The diurnal
phase is estimated using the diurnal component of a sinusoidal fit with diurnal (24
hour) and semi-diurnal (12 hour) modes. Grid cells for which 0 mm day−1 lies
within 3 standard deviations of the diurnal amplitude are masked out.

2.5 Results
Diurnal Precipitation Cycle Biases
We compare models to satellite observations using probability density functions
(PDF), spatial maps of phase and amplitude, and radial plots. PDFs highlight
how characteristics of the phase distribution across space, time, and models differ
from the phase distribution across space and time in satellite estimates. Figure 1
shows annual-mean PDFs of the diurnal precipitation phase. The GLDAS land
mask, which includes large inland lakes, is used to identify grid cells over land
and water. The spatial variance of precipitation phase over water is much larger
in IMERG observations relative to both iterations of CMIP, although the model
phase distribution includes variations across models. While spatial variance of
the precipitation phase over land is comparable to satellite estimates, mean phase
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remains ∼ 5.4 hours too early in CMIP6 and ∼ 5.2 hours too early hours in CMIP5.
The CMIP5 biases are largely in line with the 6-10 hour phases biases found in
(Covey et al., 2016) relative to TRMM satellite observations, although that study
uses a different masking method and looks at warm-season diurnal cycles. Using
the mode of the PDF instead of the mean, the land phase is ∼ 5.1 hours too early
in CMIP6 and ∼ 4.5 hours too early in CMIP5. A notable outlier in land phase is
FGOALs, which has a peak around 1.6 LST (FGOALS-g3 in CMIP6) and 0.8 LST
(FGOALS-g2 in CMIP5).

The regional manifestations of the aforementioned biases over land and water be-
come clearer in spatial plots of diurnal amplitude and phase. Figure 2 shows the
annual-mean phase and amplitude, where the CMIP simulations are averaged across
all models in each experiment after regridding to a common grid. Grid cells for
which 0 mm day−1 lies within 3 standard deviations of the diurnal amplitude in
satellite observations are masked out. Using 2 standard deviations retains much of
the noisy signals in the extratropics (Fig. S1). The most striking difference globally
is the early triggering of precipitation over land in climate models, a well known
problem that remains an issue in CMIP6. The diurnal phase over extratropical
continents has shifted earlier from CMIP5 to CMIP6, further from observations,
notably over northern Asia and North America. Previous studies have noted issues
with simulating nocturnal precipitation peaks associated with eastward-propagating
mesoscale convective systems during summer (Liang et al., 2004; Trenberth et
al., 2003), especially over the central U.S. (Jiang et al., 2006). The characteris-
tic signature of these systems is a convective phase that smoothly transitions from
early morning just east of the Rockies to late afternoon towards the southeastern
U.S. CMIP6 models that robustly demonstrate this signal in northern hemisphere
summer include MRI-ESM2-0, EC-Earth3, and EC-Earth3-Veg-LR. Diurnal phase
over the rainiest ocean regions in the Intertropical Convergence Zone (ITCZ) is
systematically a couple hours too early in both CMIP iterations.

While significant issues in phase remain, several improvements in the diurnal am-
plitude are noted. A more realistic diurnal amplitude (∼ 7 mm day−1) is observed
over land in the Maritime Continent and South America for CMIP6. This may
result from higher-resolution outputs in CMIP6 models, which better capture the
localized nature of convection instead of spreading out the signal across a larger
gridcell. Studies employing cloud-resolving models have revealed better agreement
of diurnal amplitude and phase with satellite estimates with increases in horizontal
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Figure 2.2: Annual-mean diurnal precipitation amplitude (deviation from daily mean
in mm day−1, right column) and phase (local solar time in hours of the maximum, left
column) in IMERG observations (top row, for 6/2000–5/2015 mean) and averaged
across 26 CMIP6 models (middle row, for 1985–2014 mean) and 21 CMIP5 models
(bottom row, for 1976–2005 mean). The amplitude and phase are estimated using
the diurnal component of a sinusoidal fit with diurnal (24 hour) and semi-diurnal
(12 hour) modes. Grid cells for which 0 mm day−1 lies within 3 standard deviations
of the diurnal amplitude are masked out.

resolution (Dirmeyer et al., 2012; Sato et al., 2009). A slight improvement in the
diurnal cycle amplitude over the South Pacific Convergence Zone (SPCZ) brings
the models more in line with observations, but the double-ITCZ bias still exists in
CMIP6 (Tian & Dong, 2020).

To quantify the ability of models to simulate the spatial structure of the phase,
correlations between model and satellite parameters are computed for each model
across gridcells and are averaged in space. The sine of phase is used because local
solar time is a circular quantity. The phase correlation is slightly higher in CMIP6
over oceans (0.30 and 0.35 for CMIP5 and CMIP6, respectively) and land (0.23
and 0.29). The slight, but insignificant, improvement in the spatial correlations
over land from CMIP5 to CMIP6 is largely attributable to regions influenced by
topography, notably east of the Andes mountains in South America, the periphery
of the Tibetan Plateau, and over the Central Plains of the U.S. In CMIP6, the phase
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Figure 2.3: Mean diurnal phase and amplitude averaged over 60°S–60°N land
(green) and water (blue) for 21 CMIP5 (left) and 26 CMIP6 (right) models and
satellite-derived estimates (IMERG as stars). Grid cells for which 0 mm day−1 lies
within 3 standard deviations of the diurnal amplitude are masked out. The radius
from the center represents the mean diurnal amplitude (deviation from daily mean)
and the angular position represents the mean phase (LST in hours of the maximum).
The dashed concentric circles (representing diurnal amplitude) are spaced at 0.5
mm day−1.

in these regions shifts earlier by 1–2 hours. Over the oceans, no discernible regional
pattern is noticeable outside the ITCZ; in the ITCZ, the phase of precipitation is
shifted 0–1 hours earlier in CMIP6 models.

In addition to model-satellite correlations, spatially-averaged phase and amplitude
over land and water are used as a summary metric to systematically and objectively
assess changes between CMIP iterations. Figure 3 demonstrates the spatially-
averaged phase and amplitude on a clock-like radial plot, where the distance from
the center corresponds to diurnal amplitude and the azimuth angle to diurnal phase.
The spread in mean diurnal amplitude and phase among models is larger over land
in both iterations of CMIP. The spread over land, as measured by the standard
deviation, decreases slightly from 2.4 in CMIP5 to 2.2 hours in CMIP6. The spread
in amplitude increases from 0.64 to 0.76 mm day−1, although there are more models
in CMIP6 . Over water, the standard deviation of phase increases slightly from 1.2
in CMIP5 to 1.3 hours in CMIP6, and the spread in amplitude increases from 0.44
to 0.51 mm day−1. When spatially averaged, CMIP6 models have a larger bias than
CMIP5 over both land and water for diurnal phase but a reduced bias for diurnal
amplitude. The spread in diurnal parameters remains large in both CMIP iterations.
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Figure 2.4: Scatter plot of ECS against mean diurnal cycle phase over global oceans
between 60S and 60N for 26 CMIP6 (Corr = 0.51) and 21 CMIP5 (Corr = -0.26)
models. Grid cells for which 0 mm day−1 lies within 3 standard deviations of the
diurnal amplitude are masked out. Satellite-based estimate of diurnal phase from
IMERG shown as red dashed line.

ECS Relationship and Potential Physical Mechanisms
To assess broader climate implications of the diurnal precipitation cycle, mean
phase and amplitude over both land and water are regressed against ECS and TCR.
We also broke down the regressions by season and hemisphere (Table S1); the
robust relationships that emerged are summarized in what follows. A weak but
persistent relationship between precipitation phase over oceans and ECS is found
across hemispheres in the annual mean and in individual seasons. The strongest
relationship exists in northern hemisphere winter over the oceans (Corr = 0.63),
with a comparable correlation in southern hemisphere winter (Corr = 0.62). In
the global and annual mean, the ECS-phase correlation over oceans in CIMP6 is
0.51, while the correlation is only −0.26 in CMIP5. To illustrate the relationship,
scatter plots of the ECS–phase relationships are shown in Figure 4, together with the
observed oceanic phase. Weighting the ocean phase by annual-mean precipitation or
subselecting regions by mean precipitation has a minor impact on this relationship.
Correlations between ECS/TCR and diurnal parameters over land are negligible.
The correlation between ECS and TCR for the available CMIP6 models is 0.7,
which is comparable to the ECS–phase relationship over oceans in winter months.

Previous studies have pointed to the potential for using short-term variability such as
diurnal and seasonal cycles to characterize a climate model’s sensitivity (Brient &
Schneider, 2016; Covey et al., 2000; Williams et al., 2020). However, it is important
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to understand the physical mechanism that accounts for any such relationship. These
are several possible mechanisms for why such a relationship between diurnal phase
and ECS may exist in CMIP6 models:

• A reflection of entrainment ECS is strongly sensitive to the selected cumulus
parameterization, specifically to the bulk detrainment efficiency and details
of how cumulus cloud droplets are converted to precipitation (Zhao et al.,
2016). The diurnal cycle is also sensitive to cumulus parameterization, as
noted by Liang et al. (2004). For instance, diurnal studies employing the
Community Atmosphere Model (CAM) have revealed that the entrainment rate
in the cumulus parameterization affects both the diurnal timing and intensity
of precipitation significantly (DeMott et al., 2007). Similarly, modifying
cumulus mixing through entrainment/detrainment rates in GCMs has also
been shown to influence the phase and amplitude of oceanic precipitation,
with little impact on mean precipitation amounts (Hohenegger & Stevens,
2013). That is, subgrid-scale physics surrounding cloud microphysics and
mixing that manifests itself locally and on daily timescales through the diurnal
precipitation cycle may also impact the mean climate. In other words, the
diurnal cycle biases and ECS variations may have common causes, without
the diurnal cycle biases directly causing ECS variations.

• A proxy for tropical low cloud amount or depth The depth of tropical low
clouds in subsidence regions has been identified as correlating with climate
sensitivity, owing to competing effects of how convective drying and turbulent
moistening are parameterized in models (Brient et al., 2016). The diurnal
phase may also depend on cloud depth or cloud amount and reflect the well-
known uncertainties associated with low clouds in GCMs. If we posit a
relationship between cloud depth and the diurnal precipitation cycle, models
with deeper clouds may have a more robust diurnal cycle.

• A proxy for cloud radiative effects Presuming a later precipitation peak in
the early morning hours corresponds to a later minimum of precipitation in
the afternoon, the observed relationship may reflect how clouds interact with
shortwave radiation during the day. We expect shortwave reflection to depend
both on cloud properties as well as on the solar zenith angle. For instance,
maximum cloudiness that occurs at midday (small solar zenith angle) would
result in more shortwave reflection than maximum cloudiness at night or early
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morning, even for the same daily mean cloud cover. Nevertheless, such an
effect does not fully explain a relationship to ECS.

In an attempt to falsify some of the mechanisms suggested above, we assess whether
either deep convective or shallow cloud regions are contributing disproportionately
to the ECS-phase relationship. The analysis is repeated by correlating the mean
diurnal phase in both low precipitation (< 1.5mm day−1) and high precipitation
(> 5mm day−1) regions against ECS, in both cases without the observational mask
(Table S2). Low precipitation regions are found to have a marginally higher correla-
tion (Corr = 0.52) than high precipitation regions (Corr = 0.47), meaning the source
of the relationship may involve mechanisms operating in both regions or involve a
combination of the hypotheses listed above. However, further work is needed to
elucidate the mechanisms involved—if the relation between diurnal cycle phase and
ECS in CMIP6 in fact turns out to be significant.

2.6 Conclusions
This study quantified diurnal precipitation biases in a consistent manner in CMIP5
and CMIP6 and highlights that biases in diurnal parameters improve marginally
between these CMIP iterations. In particular, the mean diurnal precipitation
phase remains ∼5.4 hours too early over land, and the diurnal amplitude remains
∼0.81 mm day−1 too small over the oceans. While comparisons of aggregate statis-
tics such a spatial means and correlations with satellite-based observations reveal
no significant improvements, more realistic characteristics of the diurnal cycle are
noted in CMIP6. Improvements include the more robust simulation in several
CMIP6 models of diurnal cycle characteristics that appear to be shaped by noctur-
nal mesoscale convective systems, and a more realistic diurnal amplitude over the
Maritime Continent.

A secondary aim of this study was to assess the broader importance of the diurnal
precipitation cycle by regressing diurnal-cycle parameters against ECS. Climate
models with a later precipitation phase over the oceans tend to have a higher climate
sensitivity in CMIP6; however, this relationship is not evident in CMIP5, calling
into question its robustness.
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Figure 2.5: Annual-mean diurnal precipitation amplitude (deviation from daily mean
in mm day−1, right column) and phase (local solar time in hours of the maximum, left
column) in IMERG observations (top row, for 6/2000 – 5/2015 mean) and averaged
across 26 CMIP6 models (middle row, for 1985–2014 mean) and 21 CMIP5 models
(bottom row, for 1976–2005 mean). The amplitude and phase are estimated using
the diurnal component of a sinusoidal fit with diurnal (24 hour) and semi-diurnal
(12 hour) modes. Grid cells for which 0 mm day −1 lies within 2 standard deviations
of the diurnal amplitude are masked out.

2.7 Supporting Information
Table S1 Correlation coefficient between spatial mean of diurnal precipitation phase
over oceans against (a) ECS and (b) TCR for 26 CMIP6 models. Correlations are
broken down by season (row) and hemisphere (column). Grid cells for which 0
mm day −1 lies within 3 standard deviations of the diurnal amplitude are masked
out.

a

CMIP6 Oceanic Phase–ECS Correlations

Season Northern Hemisphere Southern Hemisphere
DJF 0.63 0.49
MAM 0.46 0.55
JJA 0.41 0.62
SON 0.45 0.47
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b

CMIP6 Oceanic Phase–TCR Correlations

Season Northern Hemisphere Southern Hemisphere
DJF 0.32 0.25
MAM 0.25 0.25
JJA 0.23 0.34
SON 0.24 0.27

Table S2 Correlation coefficient between spatial mean of diurnal precipitation phase
over oceans and ECS in low-precipitation areas (< 1.5 mm day−1, top row) and high-
precipitation areas (> 5 mm day−1, bottom row) for 26 CMIP6 models and 21 CMIP5
models. Precipitation masks are calculated and applied separately for each model.

CMIP Oceanic Phase–ECS Correlations

Precipitation
Regime

CMIP5 CMIP6

Low -0.15 0.52
High -0.31 0.47
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C h a p t e r 3

ONLINE LEARNING OF ENTRAINMENT CLOSURES IN A
HYBRID MACHINE LEARNING PARAMETERIZATION

3.1 Abstract
This work integrates machine learning into an atmospheric parameterization to target
uncertain mixing processes while maintaining interpretable, predictive, and well-
established physical equations. We adopt an eddy-diffusivity mass-flux (EDMF) pa-
rameterization for the unified modeling of various convective and turbulent regimes.
To avoid drift and instability that plague offline-trained machine learning parame-
terizations that are subsequently coupled with climate models, we frame learning as
an inverse problem: Data-driven models are embedded within the EDMF parame-
terization and trained online in a one-dimensional vertical GCM column. Training
is performed against output from large-eddy simulations (LES) forced with GCM-
simulated large-scale conditions in the Pacific. Rather than optimizing subgrid-scale
tendencies, our framework directly targets climate variables of interest, such as the
vertical profiles of entropy and liquid water path. Specifically, we use ensemble
Kalman inversion to simultaneously calibrate both the EDMF parameters and the
parameters governing data-driven lateral mixing rates. The calibrated parameteri-
zation outperforms existing EDMF schemes, particularly in tropical and subtropical
locations of the present climate, and maintains high fidelity in simulating shal-
low cumulus and stratocumulus regimes under increased sea surface temperatures
from AMIP4K experiments. The results showcase the advantage of physically-
constraining data-driven models and directly targeting relevant variables through
online learning to build robust and stable machine learning parameterizations.
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3.2 Introduction
The latest suite of global climate models (GCMs) continues to exhibit a large
range of climate sensitivities, the measure of Earth’s equilibrium temperature re-
sponse to a doubling of atmospheric greenhouse gas concentrations (Meehl et al.,
2020). Variance in modeled responses has been traced to disparate representations
of subgrid-scale (SGS) processes not explicitly resolved by climate models, specif-
ically those controlling the characteristics of cloud feedbacks (Bony et al., 2015;
Sherwood et al., 2014; Vial et al., 2013; Zelinka et al., 2020). Furthermore, climate
models often fail to reproduce several key statistics from the recent past when run
retrospectively (Vignesh et al., 2020). In light of these discrepancies, researchers
have launched systematic efforts across the climate modeling enterprise to incorpo-
rate machine learning (ML) methods into GCMs, in order to improve the ability of
climate model components to learn from high fidelity data. This study specifically
uses a training dataset focused on marine low cloud regimes in the central and
eastern Pacific—areas that are particularly problematic to model in GCMs (Črnivec
et al., 2023; Nam et al., 2012), yet are critical for precise assessments of equilibrium
climate sensitivity due to cloud feedbacks (Brient & Schneider, 2016; Myers et al.,
2021; Siler et al., 2018).

Initiatives to replace existing physics-based parameterizations in atmospheric mod-
els entirely with ML are often marred with challenges surrounding numerical in-
stability and extrapolation performance. Instabilities, such as the generation of
unstable gravity wave modes (Brenowitz et al., 2020), largely arise from feedbacks
between the learned SGS parameterization and the dynamical core upon integra-
tion. Currently, the favored strategy is to train ML models offline via supervised
learning to predict SGS tendencies as a function of the resolved atmospheric state,
then couple trained models to a dynamical core to perform inferences at each model
timestep (Krasnopolsky et al., 2013; Rasp et al., 2018; Yuval & O’Gorman, 2020).
As an example of the offline training procedure for atmospheric turbulence, a re-
cent encoder-decoder approach was used to learn vertical turbulent fluxes in dry
convective boundary layers on the basis of coarse-grained large-eddy simulations
(Shamekh & Gentine, 2023). Although significant progress has been made towards
advancing and stabilizing data-driven parameterizations (Brenowitz & Bretherton,
2019; Wang et al., 2022; Watt-Meyer et al., 2023), the conventional offline training
strategy precludes learning unobservable processes indirectly from relevant climate
statistics. Furthermore, instabilities arising from system feedbacks are not typically
incorporated into training, and cannot be easily assessed until ML models are cou-
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pled to a dynamical core (Ott et al., 2020; Rasp, 2020). More recently, the advent of
differentiable simplified general circulation models (e.g., without phase transitions
of water) has enabled spatially three-dimensional (3D) online training of ML-based
SGS parameterizations using short-term forecasts (Kochkov et al., 2024). These
strategies have not yet overcome the problems of instability and extrapolation to
warmer climates and remain difficult to interpret.

We take steps to address these issues by employing ensemble Kalman inversion
(EKI) to perform parameter estimation within a SGS parameterization from statis-
tics of atmospheric profiles in a single column setup (Dunbar et al., 2021; Huang,
Schneider, & Stuart, 2022; Iglesias et al., 2013). Treating learning as an inverse
problem directly enables online learning. Inverse problems are characterized by
setups where the dependent variable of some target process is neither directly ob-
servable nor explicitly included in the loss function. In this case, it is through
secondary causal effects of atmospheric dynamics on observable atmospheric quan-
tities that parameters are optimized. In the field of dynamical systems, theory
underpinning the use of inversion techniques to infer parameters is well established
(Huang, Huang, et al., 2022; Iglesias et al., 2013), and they have also been shown
to be effective for learning neural networks (NNs), especially in chaotic system
where the smoothing properties of ensemble methods can be advantageous (Dunbar
et al., 2022; Kovachki & Stuart, 2019). In practice, ensemble Kalman methods have
been used to learn drift and diffusion terms in the Lorenz ’96 model (Schneider
et al., 2021), nonlinear eddy viscosity models for turbulence (Zhang et al., 2022),
the effects of truncated variables in a quasi-geostrophic ocean-atmosphere model
(Brajard et al., 2021), and NN-based parameterizations of the quasi-biennial oscil-
lation and gravity waves (Pahlavan et al., 2024). An alternative approach to online
learning relies on differentiable methods to explicitly compute gradients through
the physical model to learn data-driven components (Shen et al., 2023; Um et al.,
2020). The differentiable learning approach has been used successfully to learn
NN-based closures in numerous idealized turbulence setups (Kochkov et al., 2021;
List et al., 2022; MacArt et al., 2021; Shankar et al., 2023). In an Earth system mod-
eling setting, differentiable online learning has been used to learn stable turbulence
parameterizations in an idealized quasi-geostrophic setup (Frezat et al., 2022) and
residual corrections to an upper-ocean convective adjustment scheme (Ramadhan et
al., 2023). While promising, differentiable methods preclude computing gradients
through physical models with non-differentiable components, such as the physics
stemming from water phase changes in cloud parameterizations. Furthermore,
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given existing work surrounding differentiable and inverse methods for geophysical
fluid dynamics, there remains a lack of literature demonstrating indirect learning
of data-driven components in more comprehensive atmospheric parameterizations
of convection, turbulence, and clouds. Our contribution is the application of these
methods in a more realistic climate modeling setting, a use case which can directly
improve operational Earth system models.

We extend a flexible and modular framework that allows for the selective addition
of expressive, non-parametric components where physical knowledge is limited,
introduced by (Lopez-Gomez et al., 2022). Our approach promotes generalizability
and interpretability. Interpretability comes by virtue of targeting specific physical
processes, which enables a mechanistic analysis of their effect on climate. Gener-
alizability is a result of both retaining this physical framework and employing an
inversion strategy that targets climate statistics. The physical framework includes the
partial differential equations in which the closure is embedded, the nondimension-
alization of data-driven input variables, and the dimensional scales that modulate
learned nondimensional closures. In contrast, a fully data-driven parameterization
benefits from expressivity at the expense of sensitivity to training data, leading to
difficulties in extrapolating to unobserved climates. Generalizability is verified in
our setup by assessing performance on an out-of-distribution climate where SSTs
are uniformly increased by 4 K; test error decreases in lockstep with training error
from the present climate and overfitting is not observed.

In this study, we will investigate the performance of a single column model con-
taining data-driven lateral mixing closures spanning a range of complexities, from
linear regression models to neural networks. In section 2, we describe in detail
the data-driven architectures, training data, and online calibration pipeline. Section
3 outlines the performance of the data-driven eddy-diffusivity mass-flux (EDMF)
scheme in terms of the root mean squared error of the mean atmospheric state in a
current and warmer climate, and representative vertical profiles are presented with
physical implications discussed. Relative to the previous work of Lopez-Gomez
et al. (2022), modeling improvements are made by both modifying the calibra-
tion pipeline and addressing structural biases in the EDMF model itself, namely
boundary conditions and the lateral mixing formulation.
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Figure 3.1: Schematic illustrating the ensemble Kalman inversion pipeline used for
online training of a one-dimensional (1D) atmospheric model with both physics-
based and data-driven components (hybrid EDMF). Black arrows indicate fixed
operations between components, and red arrows indicate dynamic information flow
on the basis of Kalman updates to EDMF parameters. The training data comprises
176 LES simulations from the AMIP climate, processed in batches of 16 cases for
each ensemble Kalman iteration. Lateral mixing rates are formulated as the product
of a dimensional scale 𝛾 and a data-driven, nondimensional function 𝐹.

3.3 Online Training Setup
An overarching goal of SGS modeling is to produce computationally-efficient
schemes that emulate expensive high-resolution simulations, given the same large-
scale forcings, boundary conditions, and initial conditions. Of primary importance
are the prediction of SGS fluxes and cloud properties, which are determined by
small-scale processes not resolvable by the GCM dynamical core. In the setup
described here, parameters in a full-complexity SGS scheme are systematically op-
timized through the ensemble Kalman inversion technique to match characteristics
of high-resolution simulations, namely time-mean vertical profiles and vertically-
integrated liquid water content produced by large-eddy simulations (LES) (Shen
et al., 2022). A variant of the SGS scheme is introduced, which imposes fewer
assumptions and incorporates more general data-driven functions that can be deter-
mined with data. The SGS model is an eddy-diffusivity mass-flux (EDMF) scheme
that parameterizes the effects of turbulence, convection, and clouds. The refer-
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ence high-resolution simulations are performed with PyCLES (Pressel et al., 2015),
which explicitly models convection and turbulent eddies larger than 𝑂 (10 m). The
process diagram in Figure 3.1 illustrates how calibrations are performed using the
SGS model. Components of the diagram are detailed in the sections that follow,
starting with the EDMF scheme.

Eddy-diffusivity Mass-flux (EDMF) Scheme Overview
EDMF schemes partition GCM grid boxes into two or more subdomains, each char-
acterized by containing either coherent structures (updrafts) or relatively isotropic
turbulence (environment). While most SGS schemes use separate parameteriza-
tions for the boundary layer, shallow convection, deep convection, and stratocu-
mulus regimes, the extended EDMF scheme we use (herein referred to as EDMF)
simulates all regimes in a unified manner by making fewer simplifying assumptions
(Thuburn et al., 2018). The scheme includes partial differential equations (PDEs)
for prognostic updraft properties (notably temperature, humidity, area fraction, and
mass flux), which are coupled to PDEs for environmental variables (temperature,
humidity, and turbulent kinetic energy). The physical skeleton of the EDMF con-
sists of these coarse-grained equations of motion and houses a collection of closures,
appearing as right-hand-side tendency terms for the prognostic variable equations.

The EDMF scheme we use was initially introduced by Tan et al. (2018). It contains
closure functions, for example, for entrainment and detrainment, which capture
physics without a known, closed-form expression; specifying them is necessary to
fully define the set of EDMF PDEs such that they can be numerically integrated.
Closures in the EDMF equations play a role similar to SGS parameterizations in
grid-scale prognostic equations. Tendencies from SGS parameterizations appear
in dynamical core equations, and, similarly, tendencies from closures appear in the
EDMF equations. In the context of GCMs, the EDMF parameterization predicts
vertical SGS fluxes and cloud properties due to unresolved processes. The present
EDMF parameterization, which is run at 50 m vertical resolution, has been shown to
effectively generalize between isotropic and stretched vertical grids (Lopez-Gomez
et al., 2022). Its prediction of second-order quantities such as turbulent kinetic
energy (TKE), which approach zero as the resolution increases, and its inherent
SGS memory endow it with some “scale-aware” properties that become especially
important as convection begins to be partially resolved in the “gray zone” (Boutle
et al., 2014; Schneider et al., 2024; Tan et al., 2018); however, we have not explicitly
tested its resolution dependence yet.
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Following domain decomposition, the contributions of EDMF SGS fluxes (𝜌⟨𝑤′𝜙′⟩sgs)
to the grid-scale equation for a general quantity 𝜙 are

𝜌⟨𝑤′𝜙′⟩sgs = −𝜌𝑎env𝐾𝜙,env
𝜕𝜙env
𝜕𝑧

+ 𝜌𝑎up(𝑤̄up − ⟨𝑤⟩)(𝜙up − ⟨𝜙⟩). (3.1)

Here, ⟨·⟩ indicates a grid-mean quantity and (·) a subdomain mean. Subscripts “up”
and “env” signify updraft and environmental subdomain properties, respectively.
We define 𝜌 as the air density, 𝑎 as the subdomain area fraction, 𝐾𝜙,env as the en-
vironmental diffusivity of quantity 𝜙, and 𝑤 as the vertical velocity. The first term
parameterizes the turbulent flux due to eddy diffusion (ED) in the environment; the
second term represents the mass flux (MF) from coherent updrafts. The environ-
mental eddy diffusivity, which governs the diffusive flux, is determined by a mixing
length closure (Lopez-Gomez et al., 2020) and environmental TKE, following Mel-
lor and Yamada (1982). In shallow maritime regimes, the turbulent kinetic energy
budget is dominated by a balance between shear, buoyancy, and viscous dissipation
(Heinze et al., 2015). Thus, lateral mixing primarily affects the updraft mass flux
term.

Baseline EDMF: EDMF-20

We compare a hybrid EDMF, detailed in the next section, to a baseline version we
call the EDMF-20. The EDMF-20 model includes physically motivated closures
for eddy diffusivity (Lopez-Gomez et al., 2020), entrainment/detrainment (Cohen
et al., 2020), and perturbation pressure. The physically motivated closure functions
were manually tuned so that the simulated EDMF profiles closely match field cam-
paigns. Parameters in EDMF-20 were tuned to match field campaigns representing
a spectrum of convective and turbulent regimes, including Bomex (marine shallow
convection) (Holland & Rasmusson, 1973), TRMM (deep convection) (Grabowski
et al., 2006), a dry convective boundary layer (Soares et al., 2004), ARM-SGP
(continental shallow convection) (Brown et al., 2002), RICO (precipitating shal-
low cumulus) (vanZanten et al., 2011), and DYCOMS (drizzling stratocumulus)
(Ackerman et al., 2009; Stevens et al., 2003).

Hybrid EDMF

Building on the baseline EDMF-20, two notable modifications have been imple-
mented since to improve the realism and relax assumptions imposed by previous
bottom boundary specifications. Firstly, the surface Dirichlet boundary condition
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on area fraction, a free parameter found in previous work (Lopez-Gomez et al.,
2022) to be correlated with numerous other EDMF parameters, is modified to be
a free boundary condition (Appendix A1). The modification allows updrafts to be
generated directly by entrainment and detrainment source terms, rather than being
“pinned” to the surface, and eliminates the dependence on lower boundary specifi-
cation of mass flux and area fraction required by most mass-flux schemes. Secondly,
the surface Dirichlet boundary condition on TKE in previous versions is replaced by
a TKE flux boundary condition that depends on surface conditions and turbulence
parameters (Appendix A2).

The key distinction between the hybrid EDMF and EDMF-20 lies in the formulation
of data-driven entrainment closures. We consider an EDMF scheme that uses
linear regression to determine entrainment rates, designated EDMF-Linreg, and an
EDMF scheme that uses a neural network for entrainment rates, designated EDMF-
NN. These data-driven closures take the place of the semi-empirical but physically
motivated closures implemented in EDMF-20 (Cohen et al., 2020).

Functional Learning for Entrainment and Detrainment
Functional Learning Targets

Entrainment and detrainment are two forms of cloud mixing, which describe the
exchange of mass, momentum, and tracers between coherent updrafts and their
turbulent environment (de Rooy et al., 2013). Entrainment is the process whereby
environmental properties are incorporated into updrafts, whereas detrainment de-
scribes the ejection of updraft properties into the environment. Entrainment and
detrainment appear as rates (units of s-1) in the EDMF tendency equations. These
processes are often decomposed into the sum of turbulent and dynamical contri-
butions, which represent cloud mixing driven by horizontal turbulent mixing from
eddies and exchange due to more organized cloud-scale flows, respectively (de Rooy
& Siebesma, 2010). The closures learned for this study combine the contributions
into a single function. Inputs for data-driven closures are chosen to be nondimen-
sional variables 𝚷. For the closure formulation, we adopt the approach of learning
a nondimensional function, which modulates a dimensional scale of the same units
as the entrainment/detrainment rates:

𝐸 = 𝛾𝜖𝐹𝜖 (𝚷;𝚯𝒎𝒍), (3.2a)

𝐷 = 𝛾𝛿𝐹𝛿 (𝚷;𝚯𝒎𝒍). (3.2b)
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Here, 𝛾𝜖 and 𝛾𝛿 are inverse time scales while 𝐹𝜖 and 𝐹𝛿 are nondimensional func-
tions for entrainment and detrainment, respectively. The data-driven functions 𝐹
parameterize the relationship between nondimensional groups 𝚷 and nondimen-
sional mixing rates, given a vector of learnable parameters 𝚯𝒎𝒍 . We note that 𝐹𝜖
and 𝐹𝛿 are vertically local functions, and thus map 𝚷 groups defined from local
quantities at some level to a single lateral mixing rate at that level. Thus, applying
the local function to every level yields a vertical profile of mixing rates that varies
with height.

The entrainment dimensional scale is chosen as the ratio of updraft-environment
vertical velocity difference Δ𝑤 to height 𝑧:

𝛾𝜖 (𝑧) =
Δ𝑤

𝑧
. (3.3a)

We denote the difference between subdomains with the symbol Δ. Thus, the dif-
ference between the mean updraft and environmental vertical velocity is Δ𝑤 =

𝑤up − 𝑤env. The inverse height scaling is chosen here as an easy-to-diagnose proxy
of the inverse updraft radius or eddy size at a given height (Siebesma et al., 2007).
Thus, 𝛾𝜖 defines a horizontal shear that gives rise to entrainment (Griewank et al.,
2022). For detrainment, 𝛾𝛿 is chosen as a dimensional scale that corresponds to the
rate needed to sustain mass flux profiles in steady-state. Taking the EDMF continu-
ity equation (Equation 3.10) as steady and assuming no horizontal convergence or
entrainment yields the detrainment expression

𝛾𝛿 (𝑧) =
1
𝜌𝑎up

ReLU
(
−𝜕𝑀
𝜕𝑧

)
. (3.3b)

Here, 𝑎up is the updraft area fraction, 𝜌 is the air density, and 𝑀 = 𝜌𝑎up𝑤up is
the updraft mass flux, where 𝑤up is the updraft vertical velocity. ReLU is the
rectified linear function, which ensures detrainment only occurs when the mass flux
divergence is negative.

Nondimensionalization of Input Variables

A consequential step in designing ML problems is the choice of input variables and
their preprocessing, including normalization, transformation, and feature engineer-
ing. Effective training of data-driven closures requires inputs of similar magnitude
so that disproportionate importance is not assigned to variables with larger mag-
nitudes. The online training approach complicates variable normalization since
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the input variables and their associated distributions are strongly dependent on en-
trainment mixing, and thus will vary as parameters change through the calibration
process. A natural and physically motivated approach to transform input variables
is to form nondimensional groups by combining dimensional variables in a man-
ner that removes physical units. An additional advantage of doing this is that it
increases the likelihood of obtaining climate-invariant closures that generalize well
out of distribution (Beucler et al., 2024), in much the same way that Monin-Obukhov
similarity theory is fairly generally applicable (Schneider et al., 2024).

In principle, nondimensional functions may depend on any nondimensional groups
associated with lateral mixing processes. Here, nondimensional groups are found on
the basis of Buckingham’s Pi Theorem, which states: given 𝑁 variables containing
𝑀 primary dimensions, the nondimensionalized equations relating all the variables
will have (𝑁 − 𝑀) dimensionless groups (Buckingham, 1914). We consider a set
D of 𝑁 = 7 primary variables, containing some already nondimensional quantities,
namely, relative humidity (RH) and updraft area fraction (𝑎up), in addition to other
variables deemed relevant for SGS turbulence and convection:

D =

{
Δ𝑏,Δ𝑤,TKEenv, 𝑧, 𝐻scale,ΔRH,√𝑎up

}
. (3.4)

The set contains two length scales: the height coordinate 𝑧 and the standard at-
mospheric scale height 𝐻scale = 𝑅𝑑𝑇ref/𝑔; TKEenv denotes environmental turbulent
kinetic energy. Note that we use √

𝑎up instead of 𝑎up because it represents a nondi-
mensionalized length scale. Because entrainment mixing transports properties be-
tween subdomains, we defined dimensional variables as differences between the
updraft and environmental properties. Using subdomain differences also ensures
Galilean invariance, such that the diagnosed entrainment rates are independent of
the reference frame. Given that these variables contain 𝑀 = 2 primary dimensions
(length and time), this leaves 𝑁 − 𝑀 = 5 dimensionless groups.

We use the nondimensional 𝚷 groups

𝚷 =

{
𝑧Δ𝑏

Δ𝑤2 ,
TKEenv

Δ𝑤2 ,
√
𝑎up,ΔRH,

𝑔𝑧

𝑅𝑑𝑇ref

}
, (3.5)

and refer to group 𝑖 as Π𝑖. These 𝚷 groups, defined locally at each level of the
atmosphere, serve as inputs to data-driven models that return continuous, non-
negative outputs. Π1 and Π2 are unbounded and typically have magnitudes larger
than 1, so they are normalized by characteristic values of 102 for Π1 and 2 for Π2,
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such that they typically lie in the range [−1, 1]. Π1 resembles the classic Δ𝑏/Δ𝑤2

scaling introduced by Gregory (2001), and may be interpreted as a proxy for the
ratio between updraft buoyancy and the updraft-environment shear. Π2 is indicative
of whether turbulent or convective kinetic energy dominate. Π3 and Π4, which
are already dimensionless, allow for explicitly learning the dependence of lateral
mixing on updraft area and relatively humidity, respectively. Finally, Π5 serves as an
easy-to-compute measure of geometric height, nondimensionalized by the density
scale height.

Data-driven Entrainment Architectures

The data-driven models considered for this study are linear regression and a fully-
connected neural network. The linear closure is a linear mapping between 𝚷 groups
and the nondimensional mixing rate. A separate regression model is used for
entrainment and detrainment, totaling 12 trainable mixing parameters, including
bias terms. Linear regression outputs are passed through a ReLU function to ensure
positivity of mixing rates. The fully-connected NN contains 237 parameters with
three hidden layers containing 10, 10, and 5 neurons, respectively. Neurons in
all layers have ReLU activation functions. We confine ourselves here to relatively
shallow network architectures, as they already yielded substantial gains in accuracy
of the EDMF scheme; exploration of whether deeper networks can yield additional
gains is left for future work.

GCM-driven Simulations
We aim to learn compact representations of directly-simulated, SGS processes
as a function of large-scale forcings. Forcings are taken from Cloud Feedback
Model Intercomparison Project sites (cfSites), which correspond to locations where
high-frequency GCM output is saved for systematically diagnosing cloud feedbacks
(Webb et al., 2017). To generate spread in forcings, one model from CMIP6 (CNRM-
CM6) and two models from CMIP5 (HadGEM2-A and CNRM-CM5) are used,
the latter two representing the upper and lower end of tropical low-cloud reflection
response. The LES and EDMF scheme are driven with the same large-scale forcings
from the corresponding GCM dynamical core. LES simulations are forced with
GCM-prescribed tendencies for large-scale subsidence, horizontal advection, and
vertical eddy advection. Additionally, entropy and total water specific humidity
profiles are relaxed to the initial background GCM state with a 24 hour relaxation
timescale above 3.5 km, where convective and turbulent activity cease. Momentum
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profiles are relaxed on a 6 hour timescale throughout the column to prevent drift.
Radiation is computed interactively with RRTMG. The EDMF scheme is forced in
the same manner, with the exception that radiative cooling tendencies obtained from
RRTMG are prescribed from LES. LES simulations are run for 6 days; a steady
state response to large-scale forcings is often observed after a couple of simulation
days. Single column model simulations are ran for 3 days and more readily reach
steady state. For calibration, we consider a total of 176 LES simulations across the
east Pacific stratocumulus-to-cumulus transition regions. The setup discussed here
is described in Shen et al. (2022).

Ensemble Kalman Inversion
For calibration we employ ensemble Kalman inversion (EKI), an iterative data
assimilation technique that blends Bayesian inference with stochastic ensemble
sampling to efficiently find optimal parameters (Iglesias et al., 2013; Schillings
& Stuart, 2017). Starting with a prior distribution over parameters, the method
iteratively updates and narrows the parameter distribution by minimizing the EDMF–
LES mismatch without explicitly computing gradients. After a sufficient number
of iterations, the spread of the ensemble tightens around the ensemble mean, a
phenomenon referred to as ensemble collapse. The method is built into a framework
that optimizes EDMF parameters on the basis of LES simulations forced in the same
manner. The EDMF calibration framework described here was first introduced in
Lopez-Gomez et al. (2022), where further details can be found.

The Kalman update equation estimates parameters iteratively following

𝚯𝑛+1 = 𝚯𝑛 + Cov (𝚯𝑛, G𝑛)
[
Cov (G𝑛, G𝑛) + Δ𝑡−1𝚪

]−1 (𝒚 − G𝑛) , (3.6)

where 𝚯 is a vector containing EDMF parameters, G are EDMF statistics evaluated
with parameters 𝚯, 𝒚 is a vector of the reference LES statistics, and 𝚪 is a noise
covariance matrix. Subscripts denote iteration number. The sample covariance ma-
trices Cov (𝚯𝑛, G𝑛) and Cov (G𝑛, G𝑛) are computed from the ensemble members,
reflecting the covariance between parameters and EDMF statistics, and within the
EDMF statistics themselves. The artificial timestep is denoted Δ𝑡, and represents an
EKI hyperparameter analogous to the learning rate in the gradient descent algorithm.
The quantities 𝚪, 𝒚, G, and Cov (G𝑛, G𝑛) are formed by concatenating operations
over all cases in a given iteration. Statistics in G and 𝒚 are computed with the
following sequence of operations for each LES configuration. First, state variables
are individually normalized by their respective time-variance over the simulation
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period. A time-mean is then computed over the final 12 simulation hours before
a low-dimensional encoding that preserves 99% of the variance is applied through
principal component projection. The projection reduces the dimensionality of each
case from 401 to 8–40. Finally, the resulting statistics are concatenated over cases
to form G and 𝒚. The six variables whose statistics appear in the loss function are:

1. 𝑠: entropy

2. 𝑞𝑡 : total water specific humidity

3. 𝑤′𝑠′: vertical entropy flux

4. 𝑤′𝑞′𝑡 : vertical total water specific humidity flux

5. 𝑞𝑙 : liquid water specific humidity

6. LWP: Liquid Water Path

The overbar denotes a temporal and horizontal average and primes deviations there-
from. The first five variables are vertical profiles, whereas liquid water path is
a vertically integrated quantity. The pooled LES time variance, used to estimate
observation noise 𝚪, is scaled by 0.1 for the vertical flux and liquid water specific
humidity variables. We found that noise estimated from LES time variances over the
full simulation results in uncertainty bands that overwhelm important details about
the vertical structure of these variables. Stated differently, the temporal variabil-
ity in LES simulations, used as a proxy for observation noise, likely overestimates
the noise relevant for calibration for these variables. The artificial timestep Δ𝑡 is
determined adaptively by a Data Misfit Controller (DMC) learning rate scheduler,
and generally increases with iteration number (Iglesias & Yang, 2021). The DMC
scheduler has no hyperparameters, as timestep is computed as a function of obser-
vation noise, data misfit, and integrated timestep. The calibrations are terminated
after a specified number of iterations, which are quantified below.

In the Kalman update equation, parameters encoding functional relationships of
lateral mixing are denoted 𝚯𝑚𝑙 (machine learning parameters), and are calibrated
alongside parameters 𝚯𝑝 appearing in eddy diffusivity and perturbation pressure
closures with imposed functional forms, which we denote physical parameters.

𝚯 = {𝚯𝑝,𝚯𝑚𝑙}. (3.7)
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Many parameter combinations lead to unstable simulations, an issue addressed by
sampling from regions of the parameter space with successfully completed simu-
lations. For a given iteration, only the subset of ensemble members with stable
simulations are used to approximate the parameter distribution for the subsequent
iteration, an approach detailed more in Section 3.1.1 of Lopez-Gomez et al. (2022).
Model failure rates are typically 50% - 80% in the initial few iterations and diminish
to zero after∼ 10 iterations. To further promote stability and determine robust initial
priors, we employ a 2-stage calibration process where the initial phase contains only
a subset of the full LES library. The first calibration, which we denote precalibra-
tion, is performed on 5 cases using the linear regression closure and 300 ensemble
members for 20 iterations. The 5 precalibration cases are representative, and span
cloud regimes along the stratocumulus-to-cumulus transition. Priors for the precal-
ibration stage are chosen from Lopez-Gomez et al. (2022) for physical parameters.
Linear regression prior means are randomly drawn from a uniform distribution on
the interval [0.75, 1.25] with a prior uncertainty of 5. Following this step, the
neural network model is independently optimized via gradient descent to reproduce
the linear regression mapping learned from EKI in the precalibration stage. For
the linear closure, the second phase is initialized directly with prior means from
the precalibration phase. The NN calibration is initialized with parameter means
learned from gradient descent. The second phase contains all 176 LES cases and
a batch size of 16 cases per iteration. Rather than evaluating the full LES dataset
in each iteration, 16 cases are drawn from the full dataset without replacement until
the entire dataset is processed. A complete pass through the dataset is referred to
as an epoch. The final calibrations are run for 50 iterations, or ∼4.5 epochs. The
need for batching is two-fold: computational efficiency and generation of noise in
the training loss. Using the full dataset of 176 cases in each iteration is expensive
given the runtime and memory requirements of single model runs. Additionally,
variability in the forcing and cloud regimes between batches translates to variabil-
ity in the evaluated loss and root mean square errors. The noise generated by the
batching process inhibits convergence to local minima and is commonly used in data
assimilation and machine learning (Houtekamer & Mitchell, 2001).

3.4 Calibration Results
Calibration Characteristics and Performance Comparison
To characterize the EKI training process, we consider the evolution of root mean
squared error (rmse) separately for each of the six variables in the loss function,
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Figure 3.2: Root mean squared error (rmse) by variable for (left) training set from
AMIP experiment and (right) validation set with five cases from the AMIP4K
experiment. Shaded regions indicate min/max rmse across ensemble members for
a given iteration, demonstrating ensemble spread. Dashed horizontal lines indicate
baseline simulations from the EDMF-20 version described in Cohen et al. (2020).
A summary of rmse comparisons can be found in 3.6.
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tracked through the final calibration and following the precalibration step. Figure 3.2
displays the evolution of rmse for the AMIP training set (left column) and a fixed set
of 5 LES cases from the AMIP4K climate (right column). The AMIP4K validation
cases are a representative set spanning the stratocumulus-to-cumulus transition using
HadGEM2-A as the forcing model. Shading indicates the maximum and minimum
rmse over ensemble members for a given iteration, as each member is associated
with a unique set of parameters. A summary of rmse comparisons between the
EDMF variants can be found in 3.6. We note that the training rmse curves are
noisier than the validation curves due to the batching processes. During training,
the rmse for a given iteration is calculated for the 16 sampled LES cases that vary
in location, season, and regime iteration-to-iteration. The validation set is intended
to track generalization performance though the calibration process.

The rmse evolution represents an improvement over the precalibration posterior
(full calibration prior), constrained initially by the 5 precalibration cases in the
AMIP climate. Variables with larger rmse differences between the initial and final
iterations benefit more from additional cases from the full AMIP training set, and
vice versa. The largest differences are for 𝑞𝑙 and LWP, where error decreases by an
order of magnitude, consistent with the sensitive and multi-scale dynamics needed
to simulate cloud variables with fidelity. We note that LWP is the density weighted
integral of 𝑞𝑙 , so the rmse values are correlated. Remaining variables, including state
variables (𝑠, 𝑞𝑡) and flux variables (𝑤′𝑠′, 𝑤′𝑞′𝑡), demonstrate rmse improvements of
roughly 50 – 75% with respect to the prior. The differences in rmse improvement
may stem from observation noise differences, but these are scaled to have roughly
comparable relative magnitudes, such that they hold similar weight with respect to
each other in the loss. This analysis reveals that the accuracy in simulating cloud
properties, through parameters that constrain 𝑞𝑙 , is greatly improved by expanding
the number of training cases from 5 to 176.

Significant improvements of the hybrid EDMF over EDMF-20 are observed, partic-
ularly for cloud-related variables and 𝑤′𝑠′. Coplotted are variable-by-variable rmse
baselines evaluated with EDMF-20 over the entire AMIP dataset for the training
plots and the 5 AMIP4K cases in the validation plots. The most significant im-
provements of the hybrid EDMF over EDMF-20 are observed for 𝑞𝑙 , LWP, and 𝑤′𝑠′.
The sizable reduction of entropy flux error likely stems from the modified boundary
conditions and larger entrainment rates learned near the surface. Earlier assessments
of EDMF-20 demonstrated integrated entropy fluxes that were systematically biased
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too large, even after calibration (Lopez-Gomez, 2023). Overly warm and buoyant
updrafts in EDMF-20 are likely contributors to the systematically large entropy
fluxes. The updraft warm bias has been largely mitigated in the hybrid EDMF,
coincident with enhanced surface entrainment that mixes cooler environmental air
into the updraft and larger TKE at the surface. Less consequential improvements are
identified for state variables 𝑞𝑡 and 𝑠. In the validation curves, greater differences are
observed between the hybrid EDMF schemes and EDMF-20, owing to data-driven
closures, structural model improvements, and the larger training dataset.

The comparable performance of EDMF-NN and EDMF-Linreg in training and
validation metrics has several potential explanations. Differences in the learned
entrainment functions are detailed further in section 3.3. While the NN is pretrained
on the linear regression model, significant prior uncertainty is introduced in the
NN weights to ensure large regions of parameter space are explored beyond the
linear, low-dimensional manifold. Further, given the physical structure surrounding
the data-driven mixing closures, including the dimensional scale multipliers and
derivation of 𝚷 groups for input, expressive and non-linear ML architectures do
not appear necessary for learning the optimal mapping. The success of simple
nondimensional functions may also be a consequence of simplifications made in
the setup. A limitation of the training data is the use of steady large-scale forc-
ings and LES-prescribed radiation tendencies. These preclude the simulation of
high-frequency climate variability, such as the diurnal cycle of precipitation and
clouds, which is more sensitive to details of entrainment (Del Genio & Wu, 2010).
Nonsteady forcings with interactive radiation and deep convection cases may be
needed to gain predictive benefits from more expressive mixing closures. A final
contributing factor, discussed in section 3.4, is the presence of remaining structural
errors in the EDMF formulation itself, which may not be rectified through modifying
the cloud mixing process.

Generalization Performance in AMIP4K Climates
The full library of LES simulations is divided into a training and validation set on the
basis of the forcing climate; the hybrid EDMF is calibrated on 176 present-day AMIP
simulations and performance is evaluated on simulations from a warmer AMIP4K
climate. The AMIP4K climate contains out-of-distribution large-scale forcings
and surface heat fluxes. Five AMIP4K cases are chosen to track extrapolation
performance through the calibration process, illustrated in the right column of
Figure 3.2. For the chosen AMIP4K validation set, consequential performance
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Figure 3.3: AMIP4K, time-mean vertical profiles of liquid water specific humidity
(𝑞𝑙 , left), total water specific humidity flux (𝑤′𝑞′𝑡 , middle), and entropy flux (𝑤′𝑠′,
right) from hybrid EDMF models across a sampling of climate models, seasons,
geographic locations, and cloud regimes. Top row: stratocumulus case (cfSite17)
in July forced with CNRM-CM5; middle row: transition case (cfSite6) in April
forced with CNRM-CM6; bottom row: cumulus case (cfSite22) in July forced
with HadGEM2-A. Baseline simulations from Cohen et al. (2020) are plotted in
gray dashed lines. Large-eddy simulation (LES) time-mean profiles from Shen
et al. (2022) are plotted in black. Calibrated EDMF simulations using a linear
regression-based mixing closure (EDMF-Linreg) are depicted in red, while those
with a NN-based mixing closure (EDMF-NN) are shown in blue. Light blue shading
indicates the 2𝜎 time variance, by level, from LES simulations.
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improvements diminish after∼ 1 epoch, consistent with the training rmse. Validation
rmse is noted to roughly track training rmse, with rmse for cloud-related variables
𝑞𝑙 and LWP containing larger extrapolation errors of 2.54 × 10−5 kg · kg−1 and
5.84 × 10−4 kg · m−2 for EDMF-Linreg, respectively. Nevertheless, it is found that
the validation set does not enter the overfitting regime, which is characterized by a
u-shaped validation curve.

Robust extrapolation performance is noted in data space as well, where key features
learned in training are persistent in a simulated warmer climate. Figure 3.3 depicts
a sampling of profiles from the AMIP4K climate across climate models, seasons,
location, and cloud regimes. Optimal parameters are chosen from the ensemble
member nearest to the ensemble mean at the end of the final training epoch, as
the mean itself is not directly evaluated. For a given cfSite, the AMIP4K LES
simulations feature changes in boundary layer depth, cloud water content, cloud
depth, and vertical fluxes in response to larger surface heat fluxes and changes in
local forgings due to large-scale circulation responses. Given these changes, we find
hybrid EDMF simulations, trained in a cooler climate, capture these characteristics
well. EDMF-20 is noted to have a large bias in 𝑞𝑙 near the cloud top, particularly
for cumulus and transition cases. Remaining biases observed in these profiles are
detailed in section 3.4.

Learned Entrainment and Detrainment Profiles
This section turns to the assessment of learned entrainment profiles following the
calibration procedure outlined above. To reiterate, the precalibration data-driven
cloud mixing priors are initialized with random numbers, and closure learning is
indirectly guided by the time-mean profiles alone. Focus is placed on cumulus
cases, where cloud mixing is most relevant for determining the formation and
behavior of clouds reliant on updraft dynamics. Figure 3.4 illustrates time-mean
vertical profiles of the 𝚷 groups (left), nondimensional entrainment rates (middle),
and total entrainment rates (right). Nonzero liquid water specific humidity (𝑞𝑙) is
shaded in gray to highlight the cloud layer. The optimal parameters are chosen
from the ensemble member nearest to the ensemble mean at the end of the final
training epoch, as in Figure 3.3. The first observation to emphasize is the realism
of calibrated simulations on the basis of nondimensional input groups (Figure 3.4a,
d). Both EDMF-Linreg and EDMF-NN exhibit canonical characteristics of shallow
convection. Notably, updraft area (Π3) begins to shrink considerably above the
cloud base due to net detrainment of mass into the environment. Near the cloud
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top, the updraft-environment relative humidity difference (Π4) intensifies, where
buoyant and saturated updrafts begin to penetrate into the dry, stable inversion layer.
Additionally, the sub-cloud boundary layer is dominated by mixing from turbulent
eddies, while the cloud layer is dominated by updraft dynamics, as indicated by the
ratio of TKE to vertical velocity squared (Π2).

The learned cloud mixing profiles themselves further demonstrate realistic and
physically robust characteristics, consistent with theory surrounding lateral cloud
mixing for shallow convection. Several well-established qualities of entrainment
and detrainment in shallow convection include (de Rooy et al., 2013):

• A local maximum of entrainment where updrafts form;

• Net detrainment (𝐸 − 𝐷 < 0) through much of the cloud layer;

• Strong detrainment near the cloud top, in the vicinity of a capping inversion
layer.

These are consistent with theoretical work and diagnostics of lateral mixing in LES
(Savre, 2022).

These key characteristics are observed in lateral mixing profiles (Figure 3.4c, f) for
both EDMF-Linreg and EDMF-NN. Many SGS parameterizations feature distinct
turbulent surface layer and mass-flux schemes, with the latter typically prescribing
a boundary condition closure for the cloud base mass flux. Consequently, this con-
figuration precludes both entrainment below the cloud base and strong entrainment
at the cloud base. Because the EDMF scheme employed for this study is unified,
updrafts may be either saturated or dry, and extended from the surface where they are
generated by strong net entrainment. Coincident with near-surface updraft forma-
tion, large entrainment rates are observed in Figure 3.4c, f. Both closures accurately
predict net detrainment above the cloud base, where entrainment rates tend to small
values and detrainment grows. Finally, a global maximum in detrainment rate is
observed near the cloud top.

Several core similarities and differences are discussed for the linear and NN-based
entrainment closures on the basis of nondimensional rates, or the components tar-
geted with data-driven closures. The nondimensional functions may be viewed as a
multiplicative modulations of dimensional rates introduced in Eqs. 3.3a, 3.3b. De-
viations far from unity suggest that the dimensional mixing rate does not accurately
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Figure 3.4: Time-mean vertical profiles of lateral mixing variables for cfSite22
with AMIP4K forcings, depicting shallow convection near Hawaii in July. a,d):
Nondimensional 𝚷 groups, with liquid water specific humidity (𝑞𝑙) shaded in gray.
b,e): nondimensional entrainment and detrainment (data-driven model output). c,f):
Total entrainment and detrainment rates.

capture dynamics consistent with LES time-mean profiles. In contrast, nondi-
mensional rates close to unity indicate that the dimensional component effectively
approximates cloud mixing without need for modification. Turning to the nondi-
mensional rates (Figure 3.4b, e), we note more consequential differences between
the hybrid EDMF schemes in the detrainment rates. Notably, EDMF-NN features
a secondary maximum of detrainment near the cloud base, around ∼ 500 m above
the surface. Such secondary local detrainment maxima are often observed in LES-
diagnosed detrainment rates (Romps, 2010). Generally larger detrainment rates are
also observed for EDMF-NN through the cloud layer. Alternatively, EDMF-Linreg
maintains a less variable nondimensional rate with height, with slight enhancement
in the updraft. Focusing on nondimensional entrainment, we find stronger modu-
lation of the dimensional scale than for detrainment. In particular, both closures
demonstrate increasing modulation of the dimensional scale with height in the upper
cloud levels. This indicates the Δ𝑤/𝑧 dimensional scale significantly underpredicts
entrainment rates near the updraft top. The behavior driving this learned enhance-
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ment may surround the physical mechanisms governing cessation of updrafts, where
updraft area fraction or mass flux tend to zero. Updrafts vanish by a combination of
strong detrainment, which serves as a sink for area fraction, and entrainment, which
diminishes upward mass flux by both reducing updraft buoyancy and entraining
environmental parcels with negligible vertical momentum. Despite the two com-
peting effects, studies point to strong net detrainment at the cloud top, as alluded
to previously, which is consistent with our simulations. In the sub-cloud layer, the
dimensional scale overpredicts entrainment, as indicated by nondimensional values
less than unity in both schemes.

The closed-form linear expression for entrainment following the full calibration is

𝐸 =
Δ𝑤

𝑧
× 6

[
−0.05 + 0.8

(
𝑧Δ𝑏

Δ𝑤2

)
+ 0.6

(
TKEenv

Δ𝑤2

)
+

−3√𝑎up + 3
(
ΔRH

)
+ 0.2

(
𝑔𝑧

𝑅𝑑𝑇ref

)]
,

(3.8)

and that for detrainment is

𝐷 =
1
𝜌𝑎𝑢

𝑅𝑒𝐿𝑈 (−𝜕𝑀
𝜕𝑧

) × 8
[
0.04 − 0.07

(
𝑧Δ𝑏

Δ𝑤2

)
− 0.07

(
TKEenv

Δ𝑤2

)
+

0.8√𝑎up − 0.2
(
ΔRH

)
+ 0.5

(
𝑔𝑧

𝑅𝑑𝑇ref

)]
.

(3.9)

These are determined from the ensemble member nearest to the mean in the final
training epoch. These functional relationships may be used to understand the vertical
structure of nondimensional mixing in the context of Figure 3.4. In the sub-cloud
surface layer, where a local entrainment maximum is observed (Figure 3.4c, f),
the linear model has strong contributions from Π2 as a consequence of large TKE.
Above the surface layer, the increase of nondimensional entrainment with height
has large contributions from gradually decreasing area fraction (Π3) through the
cloud layer and sharply increasing updraft-environment relative humidity difference
(Π4) near the cloud top (Figure 3.4a, d). The linear nondimensional detrainment
rates demonstrate weaker variation with height. The 𝚷 groups themselves contain
covariances, so variable importance cannot not be read off explicitly from Eq. 3.8
and Eq. 3.9. Because the full calibration is initialized with parameter means from
precalibration, differences in the final parameter values indicate sensitivity to number
of training cases, particularly when going from 5 to 176 cases. We find the training
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data sensitivity to be parameter-dependent. The entrainment weights for Π3 and Π4,
in particular, demonstrate the most sensitivity. For entrainment, the full calibration
modified the Π3 weight by a factor of ∼ 2 and the Π4 weight by a factor of ∼ 3.
Alternatively, the detrainment parameters for Π3 and the bias have little sensitivity
beyond 5 cases, and are modified by < 10% in the full calibration. Remaining
parameters exhibit intermediate sensitivities. In 3.6, we provide a comparison of the
final linear regression weights following each experiments, as well as precalibration
uncertainty estimates from the Calibrate, Emulate, Sample framework (Cleary et al.,
2021).

Beyond Calibration: Addressing Structural Errors
Post-calibration, persisting discrepancies between the LES and EDMF may be at-
tributed to three primary contributions: the EKI optimizer, the inverse problem
setup, and inherent biases in the underlying physical forward model or data, in
this case, the structure and assumptions of the EDMF scheme. The performance
of the EKI optimizer, as determined by its convergence, may be sensitive to EKI
settings and hyperparameters. Among the most consequential choices are the EKI
artificial timestepper and the batch size. Sensitivity to constant artificial timestep
values in previous work (Lopez-Gomez et al., 2022) is addressed here by using a
hyperparameter-free adaptive timestep (DMC) that increases through the calibration
process. For batching, we chose the largest batch size feasible given computational
limitations. It is found that batch sizes smaller than ∼ 10 generate excessive noise in
the loss, preventing descent of the ensemble mean to lower values and convergence
of the EKI algorithm. Additional biases may persist as a result of the problem setup,
such as the input variables selected for data-driven closures and the choice of priors.
In addition to addressing instabilities, the precalibration procedure reduces sensi-
tivities to the priors. Precalibration is initialized with large prior uncertainties over
parameters with a relatively large number of ensemble members (300), allowing
broad exploration of the parameter space and narrowing of the posterior on the basis
of a small but representative dataset. While these approaches curtail EDMF-LES
discrepancies and mitigate convergence to local minima, it is possible that more
advanced strategies are needed to initialize, pretrain, and calibrate the NN-based
EDMF. Attempts to initiate the EDMF-NN calibrations directly with Xavier ini-
tialization (Glorot & Bengio, 2010) produced EKI calibrations that exhibited high
ensemble failure rates and minimal convergence of the loss function across a range
of prior uncertainties.
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Figure 3.5: Ensemble spread of EDMF-Linreg for all loss function variables in (top)
first iteration and (bottom) final iteration. Large-eddy simulation (LES) time-mean
profiles are plotted in black (Shen et al., 2022), and each colored lines represents
the evaluation from an ensemble member. Blue shading indicates the 2𝜎 observa-
tion noise used by EKI, calculated from the pooled variance across levels in LES
simulations.

Structural error denotes errors arising from the design of the EDMF scheme itself,
including but not limited to the formulation of other closures, boundary conditions,
and assumptions made in deriving the EDMF equations. Such limitations may not
be corrected by calibration, but must be addressed by modifying the anatomy of the
EDMF scheme or adding structural error models within the governing EDMF equa-
tions. Relative to Lopez-Gomez et al. (2022), this study addressed three structural
errors by modifying the EDMF equations and boundary conditions:

1. A strong warm bias near the surface, resulting from a TKE minimum in
the bottom cell center, addressed by implementing a bottom flux boundary
condition for the TKE equation;

2. Calibrations with near-zero entrainment throughout the vertical profile, ad-
dressed by implementing a free boundary condition on updraft area in the
bottom cell center;

3. Divergence of area fraction to values close to 1, addressed by choosing a
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dimensional scale for detrainment that ensures area fraction gradually tends
to zero when the mass flux gradient is negative.

These modifications led to both improved training and validation errors as well as
more realistic cloud mixing profiles following calibration.

Remaining structural errors primarily involve biases in the depth of the mixed layer
and cloud-top 𝑞𝑙 maxima. First, we note an underestimation of capping stratocu-
mulus clouds in stratocumulus-topped cumulus forcing regimes, as demonstrated
by 𝑞𝑙 profiles in the Figure 3.3d and Figure 3.5h. While relatively low 𝑞𝑙 errors are
observed for layers composed of cumulus clouds in these regimes, below roughly
1000 m in Figure 3.3d and 800 m in Figure 3.5h, the grid-mean 𝑞𝑙 is biased system-
atically low at cloud tops. Transition cases demonstrating this bias contain saturated
updrafts in the cloud layer, but fail to saturate the environment at the level stratocu-
mulus clouds are observed in LES simulations. Because stratocumulus dynamics
are dominated by environmental mixing, rather than updraft dynamics, this likely
indicates a bias in the TKE equations or other environmental factors. This hypothe-
sis is further supported by the initial spread of 𝑞𝑙 profiles across ensemble members
in data space, illustrated in Figure 3.5b. The initial iteration contains sizeable spread
in parameter values, consistent with the prior, and is indicative of the data space
subsequent iterations will explore. Characteristics, such as capping stratocumulus
clouds, not loosely demonstrated by ensemble members during the initial iterations
are unlikely to be developed in later iterations, implying a systematic bias in the
model or prior means that are far removed from the optimal solution for a given case.
We found the bias to be persistent across many calibration in offline experiments
varying the precalibration set and EKI settings. The bias is further demonstrated
by systematic collapse of ensembles in the final iteration far beyond the envelope
of observation noise (Figure 3.5h). Cloud top maxima of 𝑞𝑙 are also observed for
LES simulations of pure shallow convection, but these features may be an artifact
of microphysics in LES simulations. Anvil-like structures in the LES shallow con-
vection cases are coincident with vertical maxima of cloud fraction, and may not be
desirable to fit to.

Secondly, we note a bias in mixed layer depth for some cases, resulting in biases
across variables near the cloud top. This is evident in the shallow cumulus case
illustrated in Figure 3.3, where the mixed layer becomes ∼ 100 m too deep, as
evidenced by the vertical fluxes in panels h, i. As a consequence, the cloud also
develops too deeply (Figure 3.3g). While most cases capture the depth of the
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mixed layer with high fidelity, cases with the most prominent bias in cloud-top
stratocumulus structures tend to coincide with a bias in the mixed layer depth.
Remaining structural errors may be rectified in future work by replacing additional
closures with data-driven models or learning structural error models as additional
additive terms that modify EDMF tendency equations (Wu et al., 2024). With the
latter strategy, care must be taken to ensure conservation of mass, momentum, and
energy. Given biases in the depth of the mixed layer and cloud top stratocumulus
structures in transition cases, we believe adding data-driven closures or error models
to the TKE equation would help address these issues.

3.5 Concluding Remarks
In this study, our aim was to develop realistic hybrid SGS models that combine gen-
eralizability with interpretability, targeting the challenging Pacific stratocumulus-to-
cumulus transition—a region notorious for being particularly error-prone in state-of-
the-art climate models. The primary contribution of this paper is the demonstration
of online learning of a 1D hybrid model in realistic climate settings, a step needed
to eventually apply such methods in operational GCMs. Application in realistic
setups may require pretraining more expressive data-driven components (NNs) to
obtain sensible priors, failure handling mechanisms to address numerically unstable
simulations in the training process, and procedures or guidelines for identifying
remaining structural biases. Development of hybrid models benefits from a bidirec-
tional workflow, where online learning is informative about where structural model
biases might lie, and calibrations of data-driven components help improve the pre-
dictive power of hybrid models. Finally, and critical in the development of hybrid
SGS models, is the assessment of physical validity alongside predictive power. Suc-
cess of the hybrid EDMF is particularly evident in the realism of cloud mixing
closures, which were learned indirectly from extensive LES data with no direct
prior information about entrainment and detrainment. The learned closures align
closely with existing theoretical understanding and LES-diagnosed characteristics
of lateral cloud mixing as it relates to convective and cloud dynamics, reinforcing the
model’s scientific validity. Furthermore, our results highlight the hybrid model’s
predictive power, with substantial improvements over a baseline EDMF tuned to
match field campaigns. We observe that performance improvements translate to an
out-of-distribution AMIP4K climate, as assessed by rmse and qualitative analysis
of physical profiles. This generalizability is crucial for the model’s application to
prediction of future climate scenarios in GCMs.
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The online learning approach for hybrid modeling presents several advantages over
offline, fully-data driven alternatives. The EKI framework allows for indirectly
training SGS model components on the basis of observable statistics or quantities
appropriate for long-term climate model projections. While the study focused on
high-resolution simulations for training, this may be extended to include sparse
observations in the loss function. Numerical instabilities resulting from unstable
parameter combinations are directly addressed in the training process, reducing the
likelihood of instabilities when the parameterization is incorporated in operational
GCMs. Additionally, data-driven components of a hybrid model can be more
easily isolated and reasoned about, giving stronger confidence in out-of-distribution
predictions of future climate states and promoting physical process understanding.

Despite these promising developments, there are remaining avenues for improving
the hybrid EDMF scheme. The paper highlights that the reliance on steady large-
scale forcings and prescribed radiation tendencies in the training data limits the
ability to learn phenomena important for capturing high-frequency climate variabil-
ity, such as the diurnal cycle. Additional datasets of high-resolution simulations,
such as those introduced by Chammas et al. (2023) and Yu et al. (2023), would likely
improve performance over a broader range of forcings and atmospheric regimes. Ad-
ditionally, some errors in the structure of the model persist after calibration, resulting
in a form of underfitting. Remaining structural errors may be remedied in future
work by replacing additional closures with expressive, data-driven components or
learning structural error corrections as additional additive terms that modify EDMF
tendency equations. One avenue is to target closures in the environmental TKE
equation, as the data-driven lateral mixing closures presented here primarily affect
updraft characteristics and mass flux. Because our EDMF scheme uses a 1.5-order
Mellor-Yamada turbulence closure, a natural target is the mixing length function,
which determines environmental turbulent diffusivity and viscosity (Mellor & Ya-
mada, 1982). Future work should focus on these aspects, in addition to more
expansive training datasets, to ensure that the hybrid modeling approach can be
effectively applied in operational Earth system models.

3.6 Appendix
Hybrid EDMF Bottom Boundary Conditions
Updraft Area
The inhomogeneous Dirichlet boundary condition on area in EDMF-20 is replaced
by a free boundary condition, where updraft area is generated directly by entrainment
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and detrainment source terms at the bottom boundary. Because area is a prognostic
variable in the EDMF equations, choices must be made about how the boundary
conditions are specified. The EDMF continuity equation for a single updraft reads

𝜕 (𝜌𝑎up)
𝜕𝑡

= −∇ℎ · (𝜌𝑎up⟨𝑢ℎ⟩) −
𝜕 (𝜌𝑎up𝑤̄up)

𝜕𝑧
+ 𝜌𝑎up(𝐸 − 𝐷) (3.10)

where ⟨𝑢ℎ⟩ is the average grid-scale horizontal velocity, ∇ℎ is the horizontal diver-
gence, 𝑎up is the updraft area fraction, 𝑤̄up is the updraft vertical velocity, 𝜌 is the
air density, and 𝐸 and 𝐷 are entrainment and detrainment, respectively.

The bottom area fraction was previously specified as an EDMF parameter 𝑎𝑠, typ-
ically chosen as 0.1, which remained fixed in all simulations (Cohen et al., 2020;
Lopez-Gomez et al., 2022; Tan et al., 2018). The Dirichlet boundary condition on
area was defined as

𝜌𝑎(𝑧0) = 𝜌𝑎𝑠 (3.11)

where 𝑧0 is the height of the interior point adjacent to the bottom boundary. Remov-
ing the surface area parameter and allowing for a free boundary condition permits
the generation of surface-based updrafts directly from source terms. The modifica-
tion allows updrafts to be generated by net entrainment (𝐸 − 𝐷 > 0) or grid-scale
horizontal convergence near the surface, and thus vary with environmental condi-
tions.

Turbulent Kinetic Energy
We substitute the TKE Dirichlet boundary condition in EDMF-20 by a flux boundary
condition at the bottom boundary. The Dirichlet boundary condition was formulated
as

TKEenv(𝑧0) = 𝜅2
★𝑢

2
★ (3.12)

where TKEenv represents the environmental TKE, 𝜅★ is the ratio of rms turbulent
velocity to the friction velocity (an EDMF parameter), 𝑢★ is the friction velocity,
and 𝑧0 is the height of the interior point adjacent to the boundary.

We replaced this formulation by a flux boundary condition on the TKE flux at the
bottom boundary. To obtain the flux boundary condition, the following simplifying
assumptions are made:

1. The mixing length in the surface layer is limited by the distance to the bound-
ary.
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2. Storage and mean advection of TKEenv are neglected. This is a good approx-
imation in the surface layer, where TKE is roughly constant.

3. Horizontal derivatives are small compared to the vertical derivatives close to
the boundary (the boundary layer approximation).

4. The velocity-pressure gradient correlation term can be neglected. This as-
sumption is consistent with the impenetrability condition for the subdomains
and the closure for perturbation pressure in the EDMF model.

These approximations lead to the flux-gradient relation at the surface

𝜌𝑎env𝑤
′
0TKE′

env

���
𝑧0
= 𝜌𝑎env

(
1 − 𝑐𝑑𝑐𝑚𝜅4

★

)
𝑢2
★



𝑢𝑝,int


 , (3.13)

where 𝑎env is the environmental area fraction, 𝑢𝑝,int is the near-surface velocity
component parallel to the surface, 𝑐𝑑 is the turbulent dissipation coefficient, and
𝑐𝑚 is the eddy viscosity coefficient (Lopez-Gomez et al., 2022). The modification
allows the surface TKE to vary more strongly with environmental conditions.

RMSE Tables
EDMF Version - AMIP s̄ q̄l q̄t w′q′

t w′s′ LWP
EDMF-NN 5.55 8.26e-06 1.29e-03 5.54e-06 2.54e-02 4.72e-05
EDMF-Linreg 5.10 7.25e-06 1.00e-03 4.45e-06 2.06e-02 3.14e-05
Cohen et al., 2020 5.43 4.13e-05 1.23e-03 7.12e-06 8.38e-02 1.79e-01

Table 3.1: Table of root mean squared errors for EDMF variants. Reported rmse
values for EDMF-NN and EDMF-Linreg are the ensemble-averaged rmse in the
final iteration.

EDMF Version - AMIP4K s̄ q̄l q̄t w′q′
t w′s′ LWP

EDMF-NN 4.84 2.54e-05 1.14e-03 4.37e-06 1.82e-02 5.73e-04
EDMF-Linreg 4.78 2.54e-05 1.06e-03 4.44e-06 1.88e-02 5.84e-04
Cohen et al., 2020 5.03 5.86e-05 1.16e-03 5.93e-06 7.93e-01 2.13e-01

Table 3.2: Root mean squared errors for EDMF variants on AMIP4K validation set.
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Parameter Sensitivities
This analysis compares linear regression parameters for the 5-case precalibration
(precal) and 176-case full calibration (full cal), including precalibration uncertainty
estimates using the Calibrate, Emulate, Sample (CES) framework (Cleary et al.,
2021). The precal prior and posterior distributions help contextualize shifts in the
final weights between experiments. Figure 3.6 shows the precal prior and posterior
distributions, coplotted with the final parameter values for each experiment. The
linear weights multiplying Π𝑖 are labeled𝐶𝜖

𝑖
for entrainment and𝐶𝛿

𝑖
for detrainment.

The corresponding bias terms are labeled bias𝜖 and bias𝛿 for entrainment and detrain-
ment, respectively. We find the training data sensitivity to be parameter-dependent,
as indicated by varying degrees of modification to the final parameter values between
experiments. In precalibration, the emulation step consists of training Gaussian pro-
cesses containing a radial basis function kernel on parameter-to-data pairs from the
ensemble. We train the emulator on the first iteration with a failure rate below 50%
(iteration 4), and include iterations 8 and 16 to better emulate regions of the param-
eter space where the ensemble is converging. The sample step probes uncertainty
via Markov Chain Monte Carlo (MCMC) sampling of the parameter space around
the precal final mean parameter values. We use 100,000 samples for MCMC, with
the first 2,000 samples discarded as burn-in to ensure the chain reaches equilibrium
and mitigate the impact of initialization bias.
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Figure 3.6: Prior and posterior parameter uncertainty estimated by Calibrate, Emu-
late, Sample (Cleary et al., 2021) for the 5-case precalibration. Blue distributions
indicate the prior and red distributions indicate the posterior. Vertical lines mark
final parameter values for the precalibration (precal) in solid red and the 176-case
full calibration (full cal) in dashed gray, determined by taking the ensemble member
nearest to the ensemble mean in the final iteration. Entrainment parameters are in
the left column and detrainment parameters are in the right.
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C h a p t e r 4

LEARNING AND DISTILLING TARGETED MIXING LENGTH
CLOSURES

4.1 Introduction
Turbulence is pivotal in governing the vertical transport of heat, moisture, mo-
mentum, and various tracers in the atmosphere (Garratt, 1994). The treatment
of turbulence has been shown to influence the ability of climate models to accu-
rately produce the stratocumulus-to-cumulus transition (Bogenschutz et al., 2013),
an important consideration for this thesis. The concept of mixing length, initially
introduced by Taylor and further developed by Ludwig Prandtl in the early 1900s,
serves as a foundational concept representing the characteristic distance over which
turbulent anomalies maintain their initial properties before dissipating. In the Eddy-
diffusivity Mass-flux (EDMF) scheme, the diagnostically-determined mixing length
fundamentally controls the behavior of turbulence in the environment, in addition to
vertical diffusive fluxes and cloud properties. Over the decades, numerous mixing
length closures have been proposed for Large Eddy Simulations (LES) and atmo-
spheric parameterizations, ranging in complexity (Boutle et al., 2014; Grisogono &
Belušić, 2008; Mellor & Yamada, 1982; Umlauf & Burchard, 2005). Traditional
mixing length closures are often semi-empirical, derived from theoretical regime
limits and assumptions that may not fully capture the complexities of atmospheric
turbulence in coarse resolution models used to predict weather and climate (Hon-
nert et al., 2021). This is especially true in transitional regimes or under varying
stratification and shear conditions. The problem is compounded by the fact that
parameterizations vary in how they account for subgrid-scale processes and their
interactions, complicating the search for a universally valid mixing length.

In this study, we replace the empirical mixing length closure described by Lopez-
Gomez et al. (2020) with a neural network (NN) embedded into the EDMF pa-
rameterization framework. Both mixing length closures are trained online using
the ensemble Kalman inversion (EKI) framework to match statistics of large-eddy
simulation (LES) data, as in Chapter 3. Training is performed to simultaneously
optimize parameters controlling turbulence, convection, and cloud microphysics.
Following online calibration, the learned NN relationship is distilled using sym-
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bolic regression in an offline setting in order to interpret the NN relationship. We
compare the performance and functional form of our data-driven closure with the
existing semi-empirical closure, demonstrating improvements in turbulent mixing
representation, particularly in stratocumulus regions where the empirical model
tends to under-predict mixing. This work highlights the potential of integrating
machine learning techniques with physically-based parameterizations to both im-
prove the fidelity of mixing length parameterizations against LES statistics, while
also pinpointing physical limitations of semi-empirical mixing length closures in a
manner that can inform model development.

4.2 Overview
EDMF Version 3
Building on previous variants of the previous EDMF setup, specifically those used
in Chapter 3, the EDMF used for this study contains consequential improvements,
namely

• Quadratures are used to compute environmental cloud properties, rather than
the grid-mean state.

• Prognostic EDMF equations are in advective rather than flux form.

• The updraft prognostic variable is changed to moist static energy.

• Clippings on most prognostic and diagnostic variables are removed.

• The use of a uniform grid is replaced with a stretch-grid, which extends to
40 km, well into the stratosphere.

• Interactive surface fluxes are used, based of Monin-Obukhov theory, where
only the sea surface temperature needs be specified. Previously, surface
sensible and latent heat fluxes were prescribed to match the LES simulations.

• Fully interactive radiation with RRTMGP is used, rather than prescribing
radiative tendencies from the LES.

EDMF Turbulence Scheme
In the EDMF, diffusivity acts to vertically smooth grid-mean quantities and accounts
for the influence of stratification, shear, and dissipation (among other source and
transport terms) on both turbulent kinetic energy (TKE) and the characteristic eddy
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sizes in the environment. Local diffusive fluxes, characterized by chaotic and rela-
tively short-lived environmental eddies, operate in tandem with non-local transport
by coherent updrafts to distribute properties vertically and modify the grid-mean
state. We focus on the eddy-diffusive contribution to grid-mean fluxes, 𝜌⟨𝑤′𝜙′⟩ED,
defined as

𝜌⟨𝑤′𝜙′⟩ED = −𝜌𝑎env𝐾𝜙,env
𝜕𝜙env
𝜕𝑧

, (4.1)

where 𝑎env is the environmental area fraction, 𝜙 is a general tracer, 𝐾𝜙,env is the
environmental diffusivity for scalar 𝜙, and 𝜌 is density.

TKE is formally defined as

TKEenv =
1
2




u
′
env




2
, (4.2)

where TKEenv represents the subdomain average of TKE in the EDMF environment
and u′

env denotes fluctuations of the environmental velocity field. For this study, we
use the abbreviation TKE to broadly refer to turbulent kinetic energy, with TKEenv

specifically indicating its subdomain average in the EDMF environment.

The EDMF makes use of a 1.5-order Mellor-Yamada turbulence scheme (Mellor
& Yamada, 1982), where a single second-moment prognostic equation for vertical
velocity variance is retained, representing TKE, and turbulent diffusivity is closed
by a diagnostic expression for mixing length:

𝐾𝜙,env = 𝑐𝑑 𝑙 (TKEenv)1/2, (4.3)

where 𝑐d is an empirical nondimensional parameter, 𝑙 is the mixing length, and
TKEenv is the environmental turbulent kinetic energy. This formulation effectively
parameterizes diffusivity as the product of the characteristic eddy velocity scale and
a length scale, referred to as the mixing length. For the purposes of this study, 𝑙 is
used to denote a general mixing length, with subscripts corresponding to specific
variants, introduced later.

The governing prognostic equation for TKEenv in the EDMF is
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𝜕 (𝜌𝑎envTKEenv)
𝜕𝑡

+ ∇ ·
(
𝜌𝑎envTKEenvu

)
= ∇ ·

(
𝜌𝑎env𝐾𝑚,env∇TKEenv

)
︸                             ︷︷                             ︸

Turbulent transport

+ 𝜌𝑎env𝐾𝑚,env

[(
𝜕𝑢

𝜕𝑧

)2
+

(
𝜕𝑣

𝜕𝑧

)2
+

(
𝜕𝑤env
𝜕𝑧

)2
]

︸                                                   ︷︷                                                   ︸
Shear production

− 𝜌𝑎env

(
𝐾ℎ,env

𝜕𝑏env
𝜕𝑧

)
︸                    ︷︷                    ︸

Buoyancy production

+ 𝜌𝑎envE𝑝︸   ︷︷   ︸
Entrainment/Detrainment

− 𝜌𝑎envP︸  ︷︷  ︸
Pressure diffusion

− 𝜌𝑎envD︸   ︷︷   ︸
Dissipation

. (4.4)

In the prognostic TKE equation, 𝐾𝑚,env is the environmental turbulent viscosity and
𝐾ℎ,env is the thermal diffusivity (related to each other by the Prandtl number). The
turbulent transport term represents the diffusion of TKE by environmental eddies
themselves. Shear production generates TKE through the differential motion of fluid
layers, driven by vertical gradients in the horizontal and vertical wind components 𝑢,
𝑣, and 𝑤env. Note that the lack of subscripts in the 𝑢 and 𝑣 components denotes grid-
mean velocity components. The buoyancy production term captures the generation
or suppression of TKE due to density stratification, where 𝜕𝑏env

𝜕𝑧
is the environmental

buoyancy gradient. E𝑝 is the entrainment/detrainment term which generates TKE if
updrafts detrain into the environment and removes TKE if updrafts entrain air from
the environment. This term, alongside P, directly couples the environmental TKE
budget to updraft dynamics. Finally, dissipation, represented by D, parameterizes
the irreversible conversion of TKE to thermal energy due to molecular viscosity,
closing the TKE budget by removing energy from the turbulent flow. The TKE
dissipation D is parameterized using Taylor’s surrogate:

D = 𝑐𝑑
TKEenv

3/2

𝑙
. (4.5)

We note that mixing length affects several terms in the prognostic TKE equation,
specifically turbulent transport, shear production, and buoyancy production via eddy
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diffusivity and viscosity (Eq. 4.3). Mixing length is also inversely related to the
dissipation rate (Eq. 4.5).

The Semi-Empirical Mixing Length Closure
The empirical mixing length closure, described extensively in Lopez-Gomez et al.
(2020), is derived from theoretical limits of TKE balance in various regimes. The
minimum dissipation assumption dictates that turbulence self-organizes in a way
that dissipates TKE as efficiently as possible. Following the minimum dissipation
assumption, the empirical mixing length closure is written as a smooth minimum
between three candidate mixing lengths

𝑙p = 𝑠min(𝑙tke, 𝑙w, 𝑙b), (4.6)

where 𝑙b is determined by environmental stratification, 𝑙w by interactions with the
surface boundary, and 𝑙tke from minimum-dissipation limits of the TKE budget
equations. The physical mixing length described by Lopez-Gomez et al. (2020) is
denoted 𝑙p for the purposes of this paper. The foundations for each candidate mixing
length are briefly described in the subsequent sections.

Stratification

In the presence of vertically stratified (stable) atmospheric layers, the strong effects
of buoyancy rapidly suppresses eddy extent in the vertical. A characteristic length
scale that decreases with increasing stability is defined,

𝑙𝑏 = 𝑐𝑏
TKEenv

1
2

𝑁𝑒
, (4.7)

where 𝑁𝑒 is the effective stability measured by the Brunt-Väisälä frequency.

Wall Constraint

Monin-Obukhov similarity theory provides a framework for describing the behavior
of flows in the atmospheric surface layer. Derived from approximations of the
Navier-Stokes equations near a solid boundary, the theory fundamentally relates
surface turbulence under varying stability conditions, linking turbulence statistics to
mean flow profiles. Monin-Obukhov theory also imposes an upper bound on eddy
size in the presence of a boundary. This length scale, 𝑙𝑤, takes the form
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𝑙𝑤 =
𝜅

𝑐𝑚𝜅
∗Φ𝑚 (𝜉)

𝑧, (4.8)

where 𝜅 is the von Karman constant and 𝜉 is a stability parameter defined as 𝑧
𝐿mo

.
Φ𝑚 is an empirical stability function. 𝐿mo is the Monin-Obukhov length, defined as

𝐿mo = − 𝑢3
∗𝜃𝑣

𝜅𝑔(𝑤′𝜃′𝑣)𝑠
, (4.9)

where 𝑢∗ is the friction velocity, (𝑤′𝜃′𝑣)𝑠 is the surface virtual potential temperature
flux, 𝜃𝑣 is the virtual potential temperature, and g is the gravitational acceleration
on Earth.

Minimum TKE Dissipation

The final candidate mixing length, 𝑙tke, is derived from a complex mathematical
formulation involving numerous diagnostic terms. For a comprehensive explanation
and derivation, readers are referred to Lopez-Gomez et al. (2020). The mixing length
𝑙tke is based on the principle of minimum TKE dissipation. By positing that TKE
is dissipated at a rate equal to or greater than its production at small scales within
the environment, a balance in the TKE budget is achieved. This balance results in
a mixing length that incorporates entrainment processes and convective motions.
Specifically, 𝑙tke depends on local environmental conditions and the vertical velocity
differences between subdomains. It is most effective in neutral and slightly stable
flows. Under certain conditions, 𝑙tke is shown to simplify to align with other
established mixing length closures.

Limitations of Minimum Mixing Length Closure
A key limitation of the smooth minimum closure lies in its tendency to cause exces-
sive dissipation of TKE when one of the length scales becomes small, particularly in
regions where eddy sizes are constrained by stratification or near the surface layer.
This over-dissipation can lead to significant underestimations of turbulent fluxes, as
the semi-empirical length scales may not fully encapsulate the complexity of turbu-
lent processes. Also, the application of a uniform smooth minimum across different
turbulent regimes can result in overly diffusive transitions, making it challenging to
capture sharp gradients accurately. Perhaps a regime-dependent smooth minimum
might better address the nuances between different turbulent states. Additionally,
the buoyancy length scale employed may fail to account for phenomena such as
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intermittent turbulence. By assuming that one length scale dominates through the
smooth minimum, the model may oversimplify interactions between multiple phys-
ical processes, especially in scenarios where several processes contribute equally
to the production and dissipation of turbulence. Finally, parameterizing numerous
terms (higher-order moments) in the TKE equation and deriving mixing length
limits based on these assumptions may introduce inaccuracies, particularly during
transitions between regimes.

4.3 Ensemble Kalman Inversion Setup
Precalibration
Following Christopoulos et al. (2024), a precalibration step is performed to get
sensible priors before exposing the EKI pipeline to the full library of LES cases. The
default, semi-empirically determined priors for the turbulence, convection, and cloud
closures are originally taken from Christopoulos et al. (2024) and Lopez-Gomez et al.
(2022) and slightly modified to improve stability for AMIP-like global atmospheric
simulations. Because the parameters were largely designed for a previous variant
of the EDMF and modified in an ad-hoc manner for stability in a global simulation,
we perform a precalibration on six representative cases representing stratocumulus,
cumulus, and deep convection to give more robust initial priors. The precalibration
set consists of LES simulations forced with the HadGEM2-A model for the month
of July, and includes cfSites 17, 18, 22, 23, 30, and 94. Precalibration is run using
the empirical mixing length closure for 10 iterations. The optimal precalibration
parameter set is chosen from the ensemble member nearest to the mean in the final
iteration, and referred to as 𝚯′

pre.

Full Calibration
Relative to the previous work of Christopoulos et al. (2024), we briefly summarize
modifications to the observation map in the EKI pipeline. The low-dimensional
encoding via principal component analysis has been removed. The PCA compo-
nents, computed from the time-variability of domain-average LES profiles, are not
guaranteed to encode data in a manner that is optimally needed to explore state
space by EKI. Additionally, retaining the full profiles preserves the full covariance
structure of the system, likely facilitating faster convergence. Further, we find that
memory constraints for even relatively large batches (30) are not prohibitive. In pre-
vious work, we found the EKI convergence characteristics were strongly sensitive to
the EKI noise covariance level, empirically estimated from the LES. In general, the
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LES noise either over or underestimates noise levels relative to the time-mean signal,
necessitating separate variable-dependent, empirical scaling factors for each noise
covariance matrix. To reduce this sensitivity, we simplify the noise by specifying a
diagonal, constant noise of ∼ 5%. A log transform is applied to 𝑞𝑙 since the quantity
generally follows a log-normal distribution and so that constant noise can be applied.
All variables are empirically scaled to have zero mean and unit variance on the basis
of distributions collected from all LES simulations forced with HadGEM2-A in
the AMIP configuration. Following these updates, we find the EKI convergence
properties to be generally smoother and less sensitive to hyperparameters relative to
previous work. The loss function variables included in EKI are

1. 𝜃: potential temperature

2. 𝑞𝑡 : total water specific humidity

3. 𝑞𝑙 : liquid water specific humidity.

Beyond these differences, the setup is comparable to the one used in Christopoulos
et al. (2024) and Lopez-Gomez et al. (2022).

The full calibration is initialized using prior means equivalent to𝚯′
pre, and calibrated

to all 60 HadGEM2-A cases with a batch size of 30. After three epochs, the final
optimal parameter set is chosen from the ensemble member nearest to the mean in
the final iteration, in the same manner as precalibration. The optimal parameter
set for the NN-based EDMF is denoted

(
𝚯′

full
)NN and that for the physically-based

EDMF
(
𝚯′

full
)phys.

Pretraining Neural Network

To obtain priors for weights and biases of the NN, pretraining is performed by
running all simulations in the training set using 𝚯′

pre. Ten timesteps from every sim-
ulation in the 60 HadGEM2-A AMIP runs are randomly sampled and concatenated
to form a collection of input-output pairs for NN training. The NN is trained using
an Adam optimizer and a learning rate of 1e−3. The batch size is set to 50000 and
the network is trained for 1000 epochs.

Data-driven Inputs
We consider eight input variables for the NN deemed relevant for describing TKE
dynamics:
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𝑋1 =
shear2(
𝑑𝑏
𝑑𝑧

)
env

, (4.10a)

𝑋2 =
TKEenv(
𝑑𝑏
𝑑𝑧

)
env

· 𝑧2
, (4.10b)

𝑋3 =
TKEenv

Δ𝑤2 , (4.10c)

𝑋4 = shear2, (4.10d)

𝑋5 =

(
𝑑𝑏

𝑑𝑧

)
env
, (4.10e)

𝑋6 = TKEenv, (4.10f)

𝑋7 =
𝑧

Lmo
, (4.10g)

𝑋8 =
Δ𝑧

Lmo
, (4.10h)

where
(
𝑑𝑏
𝑑𝑧

)
env

is the environmental buoyancy gradient, 𝐿𝑚𝑜 is the Monin-Obukhov
length, Δ𝑧 is the vertical model resolution, and z is the geometric height. The
initial input 𝑋1 is the gradient Richardson number, a proxy measure for indicating
thermally- or mechanically-driven turbulence. The variable 𝑋3 may be considered
an indicator of the relative importance of turbulence versus convection in driving
EDMF fluxes. In 𝑋3, the difference between the mean updraft and environmental
vertical velocity is Δ𝑤, equivalent to 𝑤up − 𝑤env. We note that 𝑋4, 𝑋5, and 𝑋6

are dimensional variables and not Buckingham Pi groups. Quantities with the
subdomain subscript “up” or “env” omitted are grid mean quantities.

Empirical scaling was applied to the input variables to encourage relative consistency
in their magnitude and range. Each variable was centered by removing its empirical
mean and was subsequently scaled by ten times the empirical standard deviation,
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leading to values that generally lie in the range (-1, 1). The transformation is
expressed mathematically as

𝑋̃𝑖 =
𝑋𝑖 − 𝜇𝑖
10 · 𝜎𝑖

, (4.11)

where 𝜇𝑖 and 𝜎𝑖 are the empirical mean and standard deviation of each variable,
respectively. The scaling makes 𝑋4, 𝑋5, and 𝑋6 nondimensional due to division by
the empirical standard deviation.

Finally, the mixing length 𝑙 is normalized in the same manner:

𝑙 =
𝑙 − 𝜇𝑙
10 · 𝜎𝑙

. (4.12)

Neural Network Architecture
The data-driven model selected for learning mixing length is a fully connected
neural network with 666 parameters. The number of parameters was selected by
training a series of eight networks with varying parameters and architectures to
match the physical mixing closure. The considered number of parameters ranged
from O(10) to O(1000). Consequential performance improvements diminish after
∼ 500 parameters, indicating networks of this size are expressive enough to capture
the sorts of mixing length relationships we hope to learn through EKI. The NN takes
the normalized, nondimensional inputs and predicts the normalized mixing length,
denoted as 𝑙𝑚𝑙 , where

𝑙𝑚𝑙 = 𝑁𝑁 ( 𝑋̃1, 𝑋̃2, ...𝑋̃𝑁 ). (4.13)

Hard Constraints on 𝑙

As in Lopez-Gomez et al. (2020), we enforce the following hard constraints on 𝑙 in
the parameterization code following prediction of 𝑙 with the closure:

1. 𝑙 < 𝑧 : Enforces eddy length scales which are smaller than the distance to the
boundary (ocean surface, in this case).

2. 𝑙 = max(𝑙smag, 𝑙), where 𝑙smag is the Smagorinsky-Lilly length scale.

The Smagorinsky-Lilly closure, commonly used in LES simulations, parametrizes
eddy diffusivity as a function of the resolved-scale strain rate of the flow and the
characteristic grid spacing (Smagorinsky, 1963). The limiter properly encourages
resolution-dependent mixing lengths, ensuring that subgrid-scale dissipation adjusts
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to grid resolution, thus improving the model’s ability to capture energy transfer
across unresolved scales at different resolution.

Additionally, to ensure no spurious turbulent length scales in non-turbulent regions,
𝑙 is set to zero when TKE is zero:

𝑙 =


0 if TKEenv = 0

𝑙 otherwise.

This constraint is also essential for numerical stability when NNs are coupled to the
simulation.

Symbolic Regression

To extract interpretable mathematical expressions that approximate the learned NN
mapping, we employ symbolic regression using the PySR package (Cranmer, 2023).
In atmospheric and ocean modeling, equation discovery and symbolic regression
techniques have been effectively used to learn eddy parameterizations in ocean
models (Zanna & Bolton, 2020) and cloud cover parameterizations in a global
storm-resolving model (Grundner et al., 2024) with success, among other exam-
ples in fluid dynamics more generally (Brunton et al., 2016). Symbolic regression
searches the space of mathematical formulas to find equations that best fit the data
while balancing complexity and accuracy. PySR utilizes a genetic algorithm that
evolves a population of candidate equations through operations analogous to natu-
ral selection, crossover, and mutation. By iteratively modifying the population, the
algorithm converges toward parsimonious expressions that approximate the underly-
ing relationships learned by the NN. From them, we can begin to physically interpret
relationships between the mixing length predictors and mixing length. The training
dataset for this procedure consists of all 60 training cases in the HadGEM2-A AMIP
configuration, run with the optimal parameters

(
𝚯′

full
)NN.

4.4 Calibration Results
We compare the performance and physical behaviors of both EDMF variants, follow-
ing full calibration of EDMF-NN_mix (NN-based mixing closure) and EDMF-Physical_mix
(empirical mixing closure). We use root mean squared error (rmse) as an aggregate
summary metric to broadly capture performance differences between the schemes.
Figure 4.1 displays box-and-whiskers plots comparing the schemes. Boxes indicate
the interquartile range and the center line indicates the median rmse. Whiskers
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extend to 1.5 times the interquartile range, with outliers shown as diamonds. The
rmse is computed over all 60 training cases in the HadGEM2-A AMIP configura-
tion, using the optimal parameters

(
𝚯′

full
)NN for EDMF-NN_mix and

(
𝚯′

full
)phys for

EDMF-Physical_mix.

On the whole, EDMF-NN_mix demonstrates slight improvements in 𝜃 with a smaller
spread and comparable performance with EDMF-Physical_mix for 𝑞𝑡 . While the
median 𝑞𝑙 error is comparable between the schemes, EDMF-NN_mix demonstrates
a marginally higher spread and more outliers. The tendency to produce outliers
in 𝑞𝑙 for both schemes centers around the prevalence of "cloud spikes," where a
single model level becomes saturated. This may be a consequence of environmental
microphysics or grid resolution, but further study is needed.

Differences in Mixing Characteristics: A Stratocumulus Case Study
While rmse statistics broadly capture performance differences, averaging over height
can obscure consequential differences in physical mechanisms, despite both leading
to robust statistical fits. We tease out the differing physical mechanisms at play in
the EDMF for setting the time-mean statistics, using a case study to identify differ-
ences in how the simulations evolve and maintain clouds. The most consequential
improvements of EDMF-NN_mix over EDMF-Physical_mix are noted for the evo-
lution and maintenance of the boundary layer height in stratocumulus clouds. In
particular, EDMF-Physical_mix significantly under-predicts turbulent mixing in the
presence of the strong inversions characteristic of subtropical subsidence regions.

EDMF simulations are initialized from a time-averaged GCM state with shallow
boundary layers, leading to initially unsteady dynamics. From the initial state,
the boundary layer must grow and eventually form and maintain a relatively thin
stratocumulus deck (typically O(100 m) or less) to match the statistics of the LES.
The dominant mechanism maintaining stratocumulus clouds is top-down turbulent
mixing driven by cloud-top radiative cooling, in addition to surface moisture fluxes
(Stevens et al., 2003; Wood, 2012). In the EDMF, boundary layers can grow and
are maintained by the actions of both diffusive turbulent flux (ED) and convective
mass flux (MF). We find that the overwhelming majority of stratocumulus cases
using the physical mixing length closure, even after calibration, result in significant
under-mixing in the environment. The consequence of this can manifest in several
ways, as illustrated by Figure 4.2. Panels (d) and (i) display the learned mixing
length 𝑙, while (e) and (j) display the resulting turbulent kinetic energy. During
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Figure 4.1: Comparison of root mean squared error (rmse) for EDMF-NN_mix
(left; blue) and EDMF-Physical_mix (right; red). Boxes indicate the interquartile
range and the center line indicates the median rmse. Whiskers extend to 1.5 times
the interquartile range, with outliers shown as diamonds. The rmse is computed
over all 60 training cases in the HadGEM2-A AMIP configuration, using optimal
parameters from the full calibration.
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cfSite 4, April

cfSite 4, July 

a) b) c) d) e)

f) g) h) i) j)

Figure 4.2: Comparison of EDMF-Physical_mix (red), EDMF-NN_mix (blue), and
the LES (black) for a characteristic stratocumulus case off the coast of South America
in April (top row) and July (bottom row). The first three columns display profiles
for variables explicitly included in the EKI loss function.

April (Fig. 4.2, top row), both variants correctly capture the height of the boundary
layer (∼ 1000 m), but EDMF-Physical_mix lacks consequential turbulent mixing
above ∼ 400 m. TKE, alongside 𝑙, may be used as a proxy for the diffusive flux.
The lack of consequential mixing results from excessively small mixing lengths
which lead to over-dissipation of TKE (Eq. 4.5). Given the comparable boundary
layer heights despite the large difference in TKE and diffusive flux, this implies
EDMF-Physical_mix relies strongly on convective mass fluxes in the upper ∼ 600 m
to maintain the boundary layer.

For the same site in July, the under-mixing in EDMF-Physical_mix results in a
boundary layer that fails to grow far beyond its initial depth, leading to a bound-
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ary layer height bias of ∼ 500 m and larger errors in 𝜃 and 𝑞𝑡 . In contrast,
EDMF-NN_mix produces strong mixing in the boundary layer that grows the bound-
ary layer to a height consistent with the LES. At the same time, a stratocumulus cloud
forms with excessive 𝑞𝑙 relative to LES and EDMF-Physical_mix. While the amount
of (un)resolved turbulent kinetic energy is resolution dependent, we can broadly
compare the properties of the TKE profiles to other studies. In stratocumulus-
topped boundary layers TKE magnitudes are typically 0.1 - 0.8 𝑚2 · 𝑠−2, maintained
to the stratocumulus cloud top, with typical mixing length of (50 -100 m) (Heinze
et al., 2015; Lenderink & Holtslag, 2004).

Comparison of TKE Distributions
Figure 4.3 displays the aggregate frequency distributions of mixing length and TKE
across all cfSites and vertical grid levels with non-zero TKE, so that they may be
systematically compared. The EDMF-NN_mix model shows a more concentrated
distribution and limited mixing lengths larger than ∼ 400 m. Both models demon-
strate a comparable range of TKE, generally ranging below 2.5𝑚2 ·𝑠−2. The physical
model notably has a high frequency of large mixing lengths ∼ 200−700 m for small
values of TKE (<∼ 0.05 𝑚2 · 𝑠−2). Furthermore, some counts as high as ∼ 1000 m
occur, which is comparable to the boundary layer height. While not explicitly lim-
ited in the model, mixing lengths in convective and turbulent boundary layers should
in general be smaller than the boundary layer height, as turbulent mixing is almost
fully suppressed at the top.

Both models demonstrate distinct modes. In particular, both contain a mode char-
acterized by large counts across a large range of TKE values at small mixing
lengths. In the space of intermediate TKE values (∼ 0.1 − 1.0 𝑚2 · 𝑠−2) and mixing
lengths ∼ 50 − 400 m, EDMF-Physical_mix shows a distinctly broader dispersion,
implying a weaker relationship between TKE and mixing length. Alternatively,
EDMF-NN_mix demonstrates a roughly linear relationship with modest dispersion.

4.5 Symbolic Regression Results
We build a large set of candidate equations using symbolic regression run with
varying hyperparameters and variables. A final list of candidate equations are
selected by choosing the simplest expressions with the best fits, while maximizing
diversity across the symbolic regression runs. In general, the first candidate equation
from each PySR run with a non-dimensional loss < 10−3 is selected. Following
symbolic regression, constants are added and the equation constants are re-optimized
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Figure 4.3: Comparison of 2D frequency distributions between EDMF-NN_mix
(left) and EDMF-Physical_mix (right) for mixing length (𝑙, y-axis) and environ-
mental turbulent kinetic energy (TKEenv, x-axis) across all cfSites and vertical grid
levels with non-zero TKE.

to fit the learned NN relationship, as PySR focuses more on functional forms rather
than constant optimization. The final candidate equations are enumerated in Table
4.5, alongside their correlation with the NN relationships after optimization.

Among the candidates, 𝑙′1 stands out as among the simplest and most predictive
expressions, which we will largely focus on here. The exponential decrease of
mixing length on shear likely prevents excessive generations of mixing in strongly
sheared environments, as shear explicitly appears in the shear production term of
the prognostic TKE equation. Furthermore, while shear increases TKE, it often
simultaneously inhibits the size and persistence of larger eddies, leading to a re-
duced mixing length. All expressions have an explicit dependence on TKE in the
numerator, which very commonly appears in empirical closures, including 𝑙tke. This
aligns with the physical expectation that higher turbulence allows eddies to trans-
port momentum and scalar quantities over larger distances. Mixing length closures
containing a negative relationship with shear include Grisogono (2010), Huang et
al. (2013), Blackadar (1962), and some of the earliest parameterizations of mixing
length, including von Karman’s in the 1930s. Many parameterizations, including
Lopez-Gomez et al. (2020), also include semi-empirical and theoretically based
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Candidate Mixing Length Equations Correlation

𝑙′1 =

(
0.703 T̃KE + 0.0298

)
exp

(
−14.9

�( TKE
(Δ𝑤)2

)
− 8.72 �shear2

)
0.936

𝑙′2 =
2.22 T̃KE + 0.0897(

0.00299 exp
(
135

�( 𝑧
Lmo

))
+ 1

)1.09 0.905

𝑙′3 = −
(
5.73

�( TKE
(Δ𝑤)2

)
− 0.618 T̃KE

) (
1.61 T̃KE + 0.0382

)
× exp

(
−88.6

�( TKE
(Δ𝑤)2

)
− 6.61

����−0.359 T̃KE + 0.603
�( 𝑧
Lmo

)
+ 0.0506

����) 0.899

𝑙′4 =

(
−0.556

�( TKE
(Δ𝑤)2

)
+ 0.417 T̃KE

)
exp

(
−59.5

�( TKE
(Δ𝑤)2

))
0.845

Table 4.1: Learned symbolic expressions for non-dimensionalized mixing length
functions and their correlations with the NN relationship. Primes indicate candidates
and subscripts on 𝑙 are used to index the different equations. The overbars and
subscripts denoting subdomain means have been omitted for easier readability.

relationships that directly depend on the stability (often measured by the Gradient
Richardson number 𝑋1). While buoyancy gradients and 𝑋1 do not explicitly appear
in 𝑙′1, the quantity TKEenv

Δ𝑤2 can implicitly indicate the stability, as the prominence
and strength of updrafts, indicated by Δ𝑤2, is influenced by buoyancy differences
between the updraft and environment and so too is the amount of environmental
turbulent kinetic energy via buoyancy production.

Additionally the factor
(
𝑐1 �TKE − 𝑐2

�( TKE
(Δ𝑤)2

))
commonly appears across PySR runs

with different hyperparameters. The terms couples TKEenv length scales to updraft
dynamics through (Δ𝑤)2. The term increases the mixing length as TKEenv increases,
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but modulates the growth by the influence of TKEenv relative to a proxy for mass
fluxes due to updrafts. For a fixed TKEenv, stronger updrafts would increase the
mixing length. This may encode the contribution of updraft detrainment (and,
by symmetry, environmental entrainment) to TKEenv via TKE injection. Faster
updrafts will detrain more at their tops by virtue of mass continuity, leading to
stronger detrainment and more TKEenv production.

4.6 Conclusion and Future Work
Given the trade off between mass fluxes and diffusive fluxes for setting time-averaged
statistics of 𝜃, 𝑞𝑡 , and 𝑞𝑙 , it may be helpful to add additional variables to the loss
function which isolate the contribution of each flux more precisely. In particular,
a measure of TKE in the LES may be included or a second-moment statistic that
captures spatial variability. Furthermore, nondimensional groups such as 𝑋4, 𝑋5,
and 𝑋6 may be turned into proper Pi groups by finding the appropriate dimensional
scales, rather than non-dimensionalizing by empirical variances. We would also
like to explore and confirm physical limits of the learned symbolic expressions,
specifically whether they approach mixing lengths in the surface layer predicted
by Monin-Obukhov similarity theory under a range of stability criteria. Finally,
the "cloud spike" dilemma may potentially be addressed by increasing the vertical
resolution of the model, although it is unclear whether this is the chief cause of these
phenomena.
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C h a p t e r 5

CONCLUSION

This dissertation investigates the representation of subgrid-scale processes, namely
turbulence and convection, which are key contributors to biases in climate mod-
els and uncertainties in ECS. These issues manifest strongly in stratocumulus-to-
cumulus transition regions, where traditional parameterizations struggle to capture
key dynamics that dictate cloud properties. Building on the EDMF framework,
this research develops a hybrid parameterization that incorporates targeted machine
learning to improve representations of the poorly constrained processes of turbulent
mixing and lateral entrainment. Ensemble Kalman inversion facilitates calibration
of empirical closures alongside data-driven components, ensuring that the hybrid
model maintains stability and physical consistency while fitting statistics relevant for
modeling on climate timescales. This approach, demonstrated in a single-column
setup, improves model fidelity across the stratocumulus-to-cumulus transition and
holds promise for addressing systemic biases in climate predictions on the basis of
indirect observations.

Looking ahead 5–10 years, the operationalization of ML-based climate prediction
systems will require consideration of diverse stakeholders, including government
agencies, climate researchers, private sector companies, and non-governmental or-
ganizations. Each group has distinct priorities, such as forecasting the frequency
of heatwaves for public health planning, predicting changes in crop yields for agri-
culture, or modeling sea level rise for coastal infrastructure development. The
inherently high-dimensional nature of atmospheric predictions poses unique chal-
lenges, as stakeholders care about different aspects of the forecasted state. Persistent
issues with ML methods, such as numerical instability and limited generalizability,
must be addressed, and the development of common benchmarks will be essen-
tial to ensure their reliability across diverse applications. Addressing these varied
demands will likely require the integration of ML techniques—not only for tasks
such as downscaling, uncertainty quantification, and post-processing but also for
improving subgrid-scale parameterizations in numerical models.

Operational success will hinge on the ability of ML-based models to produce robust,
CMIP-like projections that meet the diverse needs of stakeholders while maintaining
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scientific credibility and transparency. Progress will likely evolve in fits and starts,
as climate modeling continues to face physical, computational, and data limitations.
While advances in computational power bring kilometer-scale horizontal resolution
within reach, many small-scale atmospheric processes—including turbulence and
cloud microphysics—will remain unresolved. Hybrid approaches should play an
increasingly central role, but their effectiveness depends on the quality and avail-
ability of training data. Processes like cloud microphysics, occurring at scales too
small for consistent and direct observation, will pose persistent challenges due to the
lack of robust observational constraints and incomplete physical understanding. As
the field evolves, the balance between accuracy, interpretability, and generalizability
should remain a critical focus, ensuring that next-generation models can meet the
pressing demands of both scientific research and practical decision-making in a
changing climate.


