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The elessification of linear topological spaces is discussed.
In farticular, it is shown that locally bounded linear topological
spaces are pseudo-normable and that locally compact linear topological
spaces are finite dimensional. Spaces of type (F) are characterized
emong the class of linear topological spaces. A generalization of the
Lebesgue-Fréchet-Birkhoff integral is carried out, and Riemann integrals
are discussed. |

By introducing suiteble systems of sets, called K-systems, it
is found possible to extend the method of successive approximations to
functional equations in linear topological spaces. An existence theorem
for K-systemg is proved. Existence theorems are then obtained for the
functional equation y = f(y) and for first order differential equations
in linear topological spaces.

4-beginning-is-made—on—a-gensredivetion«e:

eompletely-tontinweus-iipesrclian



Table of Contents

Chapter 1

Linear Topological Spaces

Sec. Page
1. The calculus of sets in a linear space 1

2. Linear topological spaces 4

3. The postulate of convexity; relations between the spaces J

and Neumsnn's spaces L .10
4, Sequential convergence, the postulate of completeness 13
5. Topological boundedness and compactness 14

6. Continuous isomorphism; relations between linear topological
spaces and metric spaces 18

7. Realizstions of linear topological spaces 29

Chapter 2

Integrals in a Linear Topological Space

1. Introduction 37
2. The domein of the independent variable 38
3. Unconditional convergence of series in T 40
4, Lebegsue integrals ‘ 46

5. Riemann integrals and continuous functions 55



Chapter 3

Existence Theorems for Functional Equations

in Linear Topological Spaces

Sec. Page
1. - K-systems 63
2. The equation y = f(y) 69
3. An existence theorem for a differential equation 70
4, An applicatibn of the genersl theorems 78
5, Completely continuous’ linear transformations 80
Appendix I: The Kuratowski Postulates for a Topological®

Space 87
Appendix II: Pseudo-normed Spaces 89

References ' 91



Introduction

A linear topological space may be characterized as being a
linear space supporting a Hausdorff topology in which the operations of
vector addition and scalar multiplication are continuous. A, Kolmogoroff,
J. v. Neumann and A, Tychonoff were among the first* to study such spaces.
Kolmogoroff in 1934, introduced the useful idea of boundedness in linear
topological spaces, and was able to characterize the normed spaces among
the class of linsar topological spaces as those having the properties of
local convexity and local boundedness. Newmann in 1930 had‘used several
instances of linear topological spaces to good advantage in the study of
functional operations in Eilbert space (cf. Neumann (1.)). In 1935,
Neumann studied the notion of completencess in a linear topological space
L, and in collaboration with S. Bochner, investigated almost periodic
funetions on an arbitrary group to L (cf. Bochner and Neumann (1.)).
Tychonoff generalized the Brouwer-Schauder fixed point theorem to locally
convex linear topological spaces, and gave a new way of defining the
"topological product” of a collection of topological spaces.

A, D, Michal and E. W, Paxson™* were the first to define a
"Frechet™ differential for functions with arguments and values in a

linear topological space. They also developed a theory of Riemann inte-

* EKolmogoroff (1.), Tychonoff (1.), Neumenn (2.), where the numbers refer
to the list of references at the end.

**  Cf, Michal and Paxson (1.) and (2.)
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grals for such a space.

The first chapter of this thesis, after the first four intro-
ductory sections, is concerned mainly with the classification of linear
topological spaces (Begun by Kolmogoroff). The property of local bound-
edness is studied, and locally bounded spaces are found to be "pseudo-
normable" on the one hend, and metrizable on the other. Frechet (F)
spaces are completely characterized among the class of linear topological
spaces. The main resylt is that every locally compact linear topological
space is finite dimensional. In the last section of the chapter a number
of examples of linear topological spaces (&all non-normable) are given,
illustrating various thecoretical points. Cheapter two is devoted to a
generalization to linear topological spaces of G. Birkhoff's integral
for functions with values in a Banech space, and to a brief discussion
of Riemann integrals.

In the last chapter, on functional equations, certain systems of
bounded sets, called )(-systems, are introduced, making possible the
extension of the method of successive approximetions to functional equa=-
tions in linear topological spaces. A method of constructing )(-systems
for any locally convex linear topological space is given. Existence
theorems are proved for functional equations of the form y = f(y)
and for first order differential equations. In-the last sesction of the
chapter completely -eontinucus-linear transformati-ons—are--adefined-for
lipnear topological spaces;-and-e-beginning is-made-on-a-generalization—of

+the-Riesz theoryof-completely continuous-tinear-trensformations-
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Chapter 1

Linear Topological Spaces

1. The calculus of sets in a linear space

Definition 1.1 A system consisting of an abstract set T of elements

Koy py---, the set R of real numbers oe,(®, --- and operations

X+»’. and ®X ig called a linear space if the following postulatesk

are satisfied:

(i) x+a4 €T

(ii) ¢x € T

(iii)t‘(f{‘. =,.d_+x

(iv) At(yg+z) = (x +-Al.) +z

(v) x ‘-4f.3=.x +z .. 1f==z

(vi) e (x+4) = XX Ao s

(vii)(=x +R)Xx = &«x + Px

(viii) o¢ (Bx) =(x B) X

(ix) L x = x
It is well knowm that these postulates imply (1) the existence of a unit €
and an inverse — X =(=4)X for the operation +, (2) that orx =X
implies &« = for X# © and (3) that & x = o4 igplies X = “f for

e¢c# 0. 4 linear space T will be called finite dimensionsl if every

element is uniguely exzpressible in the form o ¥ ¥ ~°° ‘f“ftx'b for a fixed

finite set (¥,°*", Xp)< T | and infinite dimensional if it is not finite

dimensionsl. The theory developed in this thesis applies equally well to

% Cf. Banach (1.) p. 26. The sign = denotes logical identity. For an
independent set of postulates for a linear space in which = is an undefined
relation see Taylor and Highberg, Comptes Rendus of the Warsaw Society of
Sciences, vol. 28 (1935), pp. 136-142.
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finite or infinite dimensional linear spaces.

By a function on a set o _p_g a set @ we meean & rule which assigns
to each element of P one or more elements of Q . For single valued
functions, where to each X € [P there is ordered just one element of Q .,
we use a small letter such as £ (X) for this element. In the case of
function§ which are not necessarily single valued, the set of values cor-
responding to X will be denoted by a capital letter, viz. F~CX) . In
all cases the set P will be called the domain, and the set of correspond-
ents of the elements of PP the range of the function. If M is any sub-
set of the domain P of a function F , the set of values fF(X)}, xeM
will be denoted by f:(nf).

et 9 , S, |, 5,, be subsets of T, and let A be a set of real
numbers. In accordance with the last paragraph we denote by X *'JS the
set of all elements X + -H, wheredj,t‘s {read # is an element of S ),
by 5, -f-.sﬂL the set of all elements X fq, where X 65. and 1. € 5,’ by |

%S the set of all X with # €S8 and by AS the set of all o X
with « ¢ A and x € O, Finally we write Co S for the "convex hull"
of 5, that is the set of all finite sums X -"—'é‘ X X where o, > O,
s =

é.:,’ e, =4 , X € S i and » runs over all the positive integers.
Definition 1.2. A subset O of T will be called convex if ¢S + (1-«)S=S
for 0 <=« <1 | We shall make considerable use of the calculus of sets

in linear spaces. Tor convenience we quote the following results in this

calculus from a paper® by G. Birkhoff.

* Birkhoff (1.) pp. 358-360
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(a) The following properties of linear spaces hold for the vector sums
of sets:

Y1 S, % 5 = 5._+5,

va S, + (S,+S3) = (S, +5,) + =

T3x(S, +S5,) = «5, +aS,

Veax (BS) = (xB)S

vs 1 S = g

Ve S+ 6 = 5
(6) S 1s convex ifemdonly it Co S = 5.
(¢) The operation (o S is edditive and homogeneous that is

Cr (Sl + Sz) = Cfs. ‘f‘Gfs;_and Co- (°<S) = (5.
(a) Ccr 5 is the smallest convex set containing 3 .

Besides the above vector operations on sets we shall of course
make use of the usual logical operations, and these will be distinguished
from the vector operations by the use of a dot. Thus 5, + S,_ will

denote the union of S, and S, , 5,-5, the intersection of S, and

S,, 5,+ G, the set of X’s for which X € S, and x€ S, (read
X not in 3.,_ ). The empty or null set will be written O ., It will be
convenient to denote the linear space and the set of all elements of the
space by the same letter T . For future reference we add the following
properties of convex sefs. It 5, and 5,_ are convex, then so are the
sets ¢ S +pS, and S, + 9, , assuming that O, * S, ¥ 0. This
statement is obvious from properties (b) and (c¢) and definition 1.2.

Again, if €(x) with domain T, and range T, is distributive, i.e., if
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£ («x +P"1/) =°t‘("(x) + P‘F(ﬂ) for all x)/j,E'T; and all real o, (3
then the set 'F'(S) of T, is obviously convex whenever S is convex.
We may sum up these statements by seying that the property of convei\&ity
is inveriant under the operations of "linear combination", "logical
multiplication® and "distributive transformation®.

A linear space L. which is a sub-space of a linear space 'T'

(with the same operations defined in both) will be called a linear mani-
fold in T . The sﬁﬂlest linear manifold L containing a given set S
will be called the linear hull of 5, or the linear manifold determined
by . The linear hull of a set 5 consists of the set of all elements
of the form X =é’“. X, where X € 5) &, is real, and » runs over
the positive integers.

2. Linear topological spaces.

Dgﬁn___m__il___ﬂ",]__g‘ A system c7 consisting of a linear space T and a femily

of point sets U of T will be called a linear topological space if the

following postulates are satisfied:

(I a) For each point x of T there is a U, with x € Uy .

(I b) TFor every pair Ux s le there is a (/x”such that U: <= Ux * U; .
(I e) If A#,EUX there is a U?CU,,

(Id) If x+= }J, there is a Uy not containing »4, .

(II a) Given any U"*‘J— there exist U, and Uq_ such that U, +U.a, < U;..-,a,.

* fThis definition of a linear topological space is equivalent to that
given in Kolmogoroff (l.), in which the closure S of a set < is taken
as an undefined notion. See Appendix I.
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(II b) Given any U«x there is a Ux and a real open interval I< with

mid-point =« such that Lo Uy < Usxx -

The sets Ux are called fundamental sets, or neighborhoods, and postulates

(I) furnish a neighborhood topology for our space. (I a), (I b) and (I e¢)
are the three neighborhood axioms of Hawsre8dorff and (I d) is the first
or Fréchet separation axiom. The linear space | will be called the
basis of the linear topological space g . A given linear space T may

be the basis for various linear topological spaces <7;c7,’ ¢orres-
ponding to different choices of the family of fundamental sets. The
following definition is a statement for linear topological spaces of the
Hausdorff equivalence criterion*.

4
Definition 1l.4. Two linear topological spaces J and J with the same

vasis T and with families { Ux} and { VX} respectively of

fundemental sets will be called equivelent if for each point X of 'T'

and each Ux there is a ch UJr and for each Vx there is a Ux s V .
On the basis of postulate (I a)we make the following definitions.

A point X is called a contact point (beriihungspunkt) of a subset S of

T if every U, contains a point »T € S . If every U, contains a point

"f €S with "f # X then X is called™ a limit point (hdufungspunkt)

of S . The closure S of S is defined as the set of all the e¢omtact

* See Alexandroff and Hopf (1l.) p. 31

** In spaces satisfying (Ia) and (Id) it is clear that this definition of
a dimig " on point is equivelent to the following " X is a dimit
point of S if every U, conteins an infinite number of points of o M



points oi‘S , end a set is said to be closed if 5 <SS . am open
set is defined as the complement of a closed set. These definitions
apply not only to linear topological spaces, but to any space E .
linear or not, in which there is a neighborhood system { U} satisfy-
ing merely (I a). The following theorem gives us an equivalent defini-

tion of an open set in any such* "umgebungsraum" £ .

Theorem l.,1. If E is eany space with a neighborhood topology satisfying

(I a), then a non-empty set S of £ is open if and only it x€S

implies that there exists a U, < S.

Proof: ILet <O be open and let X € S . Then if there were no Uy <5
every Ux would contain an element of the complement E =3 , and
E -S would not ve c]:osed. Conversely, let X € S impl& Usr €9.
Then no X € S can be a iimit point of £ =S | since for any
such X there is a neighborhood U, containing no point of E = 5 .

Corollarx: iz o £ hes a neighborhood topology satisfying both (I a) and

(I ¢), then every neighborhood U is an open set. In particular every

fundamental set of a linear topological space is open.

From this corollary and the definition of open sets it follows at
once that the three following characteristic properties of open sets
~hold for any umgebungsraum satisfying (I a), (I b) and (I c¢), and hence
are valid for any linear topologicel space.

(i) The null set and the set of all points of the space are open.

(ii} The union of any number of open sets is open.

(iii) The intersection of two open sets is open.

*  These spaces are discussed in Alexandroff and Hopf (1.) p. 30.
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We now extend the concept of "neighborhood" by the following
definition (ef. Hausdorff (1.) p. 228).

Definition 1.5. A family of sets V will be called a complete neighbor-

hood system for the space if (1.) each member of the family is open
(2) for any point X and any fundemental set Ux there is a member v
of the femily with ¥ € V. < Ur | 4 femily of sets V will be called
a complete neishborhood system of the point Xe if (1.)* every V is
open and contains X, (2.)' for every Ux, there isa V < Ux, .
Using the above corollary it is easy to show that any complete
neighborhoed system satisfies postulates (I a) - (I 4), and that if any
such system be taken as ths family of fundamental sets of postulates (I)
the resulting linear topological space is equivalent to the original
space in accordance with definition 1.4. The family of all open sets of
the space constitutes a complete neighborhood system for the space which
is in fact the largest such system.
Now consider some consequences of postulates (II). If £t () is
a function with arguments in a linear topological space c7and values in
any other linear topological si)ace <:7 ‘ , we say that £(x) is continuous*
at the point X if for every U-;(x) there is a Ux such that 'F(UX) G U-(:lcx) o
A similar definition applies to functions of more than one variable.
We now see that the postulates (IIa), (IIb) state merely that the functions
X +44 andex are continuous. Since in a linear space —-x = (-1)X

it follows that the "inverse" = X of x is a continuous function of & .

* Tor other equivalent definitions of continuous functions in topological
spaces see Alexandroff and Hopf (l.) pp. 52-53.
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Using postulates (II) and the criterion for openess given by theorem
1.1 we shall obtain

Theorem 1.2. lLet G , G—, ’ G-,, be non-empty open sets of & linear

topological space J ; A & non-empty open set of real numbers, P a

real number # O , and 4 apointof J . Then pG , G £ G

4 + G are all open sets, Moreover if either of the condi tions

0€ A or © € G nolds the set AG is open.

Proof: Since G is open, X € G implies the existence of a (Ux =G

By postulate (II b) there is a Vx with '/ﬁ Vx < Ux <G . Hence

V, < G and (3 G is open. By postulate (II a) and the fact
just proved, with B =-1 , it follows that given Ux < G; ana

4 € G',_ there exists a wa* and a U? such that

an&— UTC Ux . wow take V..‘, < U1,' G’a. . Then

wat - V“l’ < Ux e G'. and hence Ux+ﬂ, == 'Ux i U“— < G—, +G’-
so that G: 'f'G':,, is open. But — G;_ is open, so G—, - G‘,~ is also
open. Similarly 4#, t G is open. To prove the last statement of the
theorem,v first suppose O € A . Then for any « € A and any X€ G
there is a real interval I., with center & such that I‘c A , and
@ Ux cG . By hypothesis o« # O | so there is a real interval
I;“ with %é{ < I« = A. By postulate (II b) there is a real inter-

4 4
val I Y @and a neighborhood de such that L Y% Uo(x < U s I8

I, <= If,“ : I;; we have
U«x < j/I-a U“' < Ix Ux < AG"

whence A G is open. On the other hand, without requiring o€ A 5
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suppose that © € G . Let o€ A , ¥€G | 1¢ x#o
the above proof applies and yields 'U«x < A G . Ifax=0 , we nmust
show that there exists a Ue € AG. Taxe peA , p+o
Since © € G | there is a Ve € G. But by postulate (II b), there
is a Ue with '/IS Ue = Vec G or Ue CAG‘

From this theorem and postulate (II a) it follows that the
family {X + V} where X runs over the points of o/ and V runs
over any complete neighborhood system of the origin (or any other point)
is a complete neighborhood system for the space <~7 . This fact, familiar
from the theory of topological groups, is very useful in arguments involv-
ing limits.

The postulates (I) teken by themselves are weaker than the postu-
lates for a Hausdorff space because (I d) is weaker than the second or
Hausdorff separation axiom. However, postulates (I) and (II) taken
together do imply not only that c7 is a Hausdorff space but indeed a
regular Hausdorff space, that is, the second and third separation axioms*
are both satisfied. The following theorem stating this result is proved

in Xolmogoroff (1l.), and is shown to hold also for topological groups.

Theorem 1533 A linear topological space J is a reguler Hausdorff space.

That is the following conditions are satisfied:

(1.) X ’#ﬂ_ implies that there exist Uk, U‘f with

4
(2.) For any (, there is a neighborhood U, whose closure

is contained in Uy .

* of, for example Alexandroff and Hopf (l.) p. 67.
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Thus we mey characterize a linear topological space as being (&) a regular
Hausdorff space (b) a linear space in which the operations of vector
addition and scalar multiplication are continuous.

The linear topological spaces which have been the most studied
are the linear normed spaces, where by a linear normed space we mean a
linear space [ in which there is defined a function HXIl  on T to
the real numbers satisfying

(i) Nxll >0 - lxll=0 implies X = © .

(11) Hee x 11 = lec| W1l

(iii) N +Ad,ll <& x|l + ll‘&ll.
It is easy to see that the postulates of definition 1.3 will be satisfied
by any linear normed space if we take the Ux‘s to be the spheres
Il 4 - x i< % , ¥=1,a,--- , The relation between linear topolo-
gical spaces and linear normed spaces will be discussed in section 5.
In section 6 a number of exemples are given of linear topological spaces
which are definitely»not normed spaces.

3. The postulate of convexity; the relation between the spaces J

and Neumenn's spaces L. »

Definition® 1.6. ‘A linear topological space e7 will be said to be locally

convex if the following postulate i: getis$red :

(111) If U is any neighborhood of the origin © there is a set ¥V con-

taining © amd contained in U such that

(1.) x € V implies the existence of a Uy with UesV

(that is V is open).

* Locally convex linear topological spaces are defined in Tychonoff (1.)
p. 768.
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(2.) O <e« <1 implies that o V+ {@E-«)l/=V (that is V

is convex).
An equivalent statement of (III) is that there exists a complete neigh-
berhood sys tem {V} of the origin with each V convex. It is this
postulate of convexity which often allows us to carry over useful
methods of proof from linear normed spaces to linear topological spaces.

This is usually because the laws

o:.V-\-@V:(OC‘I'ﬁ)V

andocVCﬁV for 0 <X <3
hold for convex sets V containing [} , but not for arbitrary sets con-
taining e .

We next consider Neumann's definition of a linear topological
space in relation to ours. In Neumann (2) p. 4 a linear topological
space is defined as any linear space L for which there is a family 174
of sets U satisfying the following postulates

(L.,) 1f UeU ihen 6 € U.

(2.) There is a sequence U:, Ux, ---  of sets of U whose

intersection is the single point € .

(3.) 1If U)Vf U  there exists WETUW with We U- V.

(4.) 1f V€U there is a V€ U such that —Ls sl

implies « vV <« U.

(5.) 1t UeWU there 1s o VETU witn V +V = U,

(6.) 1r f€ L, K UEU there is ene with £ € « U.

If in addition the postulate
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(7.) 1t UEU |, then U+ U = 2 U
holds, he calls L a "convex" linear topological space. Neumann has
shown that a space satisfying (1.) - (6.) is a regular Hausdorff space
in which the operations of addition and scalar multiplication are contin-
uous, so that any linear space L satisfying (1.) - (6.) also satisfies
our postulates (I)and(II) (choose Ux =x+U; ‘where U; denotes the
interior of U ) so that our definition of a linear topological space
includes that of Neumann's. We shall now show that Neumann's "convex"
linear topological spaces are likewise included in the class of what we
have called locally convex linear topological spaces.

Theorem l.,4. Any linear space satisfying (1l.) = (7.) is a locally convex

linear topological space.

Proof: Let L be a linear space and WU a system of.sets of L satisfying
(1.) - (7.). Then, as we have already remarked, L satisfies (I) and (II)
1f we set Ur =¥+ UL | we now show that (III) is satisfied. Neunann's
theorem 12, loec. cit. p. 9, states that Ue u implies that the

closed hull U[ of U“ is convex. Again,given any Velk there exists
a WEU such that W; < U:.', since L is a regular Hausdorff space by

theorem 1.3. Hence for any U € U there exists a8 W€ U  such that
Co W; €« C-W; =W, = Ue .

Denote (o W,; by V . obviously V is convex so that condition (2.)
of postulate (III) is satisfied. To verify that V also satisfies con-

dition (1.) of the postulate, let X be any point of V . Then
ks >
X=Z“oxb , Where oc,)O),.‘Z':“.,-=1 ’X,_GW".
t=) =
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7 4
choose U € U so that X, + U,: € “/;’ and then choose W'such that
’ y »
Cor M < (J; . On using the obvious equality ‘Z , (Qf., Gr/"/,;') = G—“/"
=1

we obtain

X+ W; CZ_)’; X, X, + Co‘Wc" =Z:°C'-(‘x'- ""G”Wc")
c _Sla (+U) « GW; < U,

Thus condition (l.) of postulate III may be satisfied by taking
Ue =x + W; , so that any linear space for which (1.) - (7.)
hold also satisfies (I) - (III).

4. Sequential convergence; the postulate of completeness.

Following the usual definition for metric spaces we shall call a
sequence ixu} of points ofJ convergent if there is a point X of J
such that corresponding to every neighborhood Ux there is an integer ¥
with X, € Ux for all ¢& 2?2 # ., This statement is abbreviated by
writing J_;igl‘. X, = X . It follows at once from the Hausdorff separa-
tion axiom (see theorem 1.3, (1.)) that a convergent sequence has a
unique limit X ,

In metric spaces it is well known that any limit point of a set
is the limit of at least one convergent sequence out of the set. This
property however does not carry over to an arbitrary linear topological
space, when the first countability axiom™® is not satisfied. In fact
Neumann ((4.) p. 380) has given an example of a linear topological space,

namely Hilbert space with its weak topology, in which there is a denum-

* Hausdorff (1.) p. 229, axtom (9).
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erable set of points having the origin as a limit point but containing
no sub-sequence which converges to tﬁe origin.

This fundamental difference between topological spaces and
metric spaces has recently led several authors* to the consideration of
various definitions of completeness for linear topological spaces. We
shall have occasion to use only the notion of sequential completeness
(see Neumann, loc. eit., p. 10) which is a direet generalization of the
usual notion for linear normed spaces. It appears to be a weaker condi-
tion on a linear topological space to require sequential completeness
than to demand completeness in the sense of Neumann's or Birkhoff's
definitions.

Definition 1.7. A linear topological space é7 will be said to be sequen-

tially complete if the following postulate is satisfied:

(IV.) Let X,,X,,--- be & sequence of points of & wmith the property

that corresponding to each neighborhood (/ of the origin there is a posi-

tive integer m = p(U) such thet ¢, A > M implies Xg - XA € U |

Then there exists a point & g_f‘_J such that corresponding to every Ux

there is an integer ¥ =»(l4)such that L > ¥ implies X, € Ux.

We shall call a sequence fundemental if it satisfies the condition stated
in the first sentence of postulate (IV). This postulate may now be stated
in the familiar form: "Every fundemental sequence is convergent."

5. Topological boundedness and compactness.

The idea of boundedness of sets would seem to be entirely foreign

*  Neumann (2), Birkhoff (3), Graves (1).
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to topological spaces in which there is no metric. However in the case
of linear topological spaces the operation of scalar multiplication makes
it possible to generalize the notion of boundedness from linesr normed
spaces in a very useful way. Three superfieially different definitions*
of boundedness, all using scalar multiplication, have been given recently
by A. Kolmogoroff, J. v, Neumann, and A, D, Michal and E. W. Paxson.

Definition 1.8 a (Kolmogoroff) A set J; of a linear topological space

will be said to be bounded if &, real, lim @,= 0 , X, € S
. - a8
implies lim <, X, = O .
L ~) o0
Definition 1.8 b (Neumann) A set é; of a linear topological space will
be said to be bounded if for any neighborhood v of the origin there is
a number & =a¢ (U) such that OC.SCU) x # 0.

Definition 1.8 ¢ (Michal and Paxson) A setiés of a linear topological

space will be said to be bounded if for any KXo € 53 there is a positive
number &= (%) such that o X, is not in O for any & greater than &
in ebsolute value.

Michal and Paxson have shown that their definition of boundedness is
equivalent to Neumann's. If we can demonstrate that Kolmogoroff's defin-
ition is also equivalent to Neumann's, it will follow that all three
definitions fall together.

Theorem 1.5. Definitions 1.8a, 1.8b, and 1.8c define the same class of

sets.,

*  Kolmogoroff (1.), Neumann(2.,), Michal end Paxson (1.). The definition
1.8 a was given for the case of spaces with a metric topology by liazor
and Orliez, Studia Math. IV (1933) p. lé62.



Proof: Iet* S <T bve bounded according to definition 1.8 a, and assume
that 5 is not bounded according to 1.8 b. Then for some U and each oc#£0
there is an X €S  with aex € T =U | 1et f%.}  bve a sequence
bf numbers which approach O with 1/@. Then there is a sequence {Xz. }
with X €S such that . X, € T = U | so +hat lin @ X, O,
and és is not bounded by 1.8 a. Conversely let JS be bounded by 1.8 b.
Let U ve any neighborhood of the origin and let 9¥u} be any real
sequence converging to O . By the continuity of ex we can choose a
8>0 ang a neighborhood V or the origin such that (oef < & implies
xV<U. su by 1.8 b there is a real number B so small that
X €5 implies that @X. € V' . Choose » so large that lg;_«-' < $

for ¢ 2% . Then (72 P implies that
w K =Zrpx € % VU,

so that S is bounded by definition 1.8 a. This completes the proof of
thecrem 1.5. Besides the equivalent definitions 1.8 a - 1.8 ¢ if will
sometimes be convenient to use the following which we shall prove equiva-
lent to the others.

Definition 1.8 d. A set S will be said to be bounded if given any neigh-

vorhood U of the origin there is an integer ¥=2(U) such that
lc| < Y9 implies &« S € U . mhis statement evidently implies

the statement of definition 1.8 b. To prove the converse let S be bounded

*As usugl the letter T denotes the set of all elements of the linear
topological space q7, and T = U 1is our notation for the complement of U.
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according to Neumenn's definition 1.8 b, and let U be any chosen neigh-
porhood of @ . By the continuity of e« X (postulate (II b)) there

is a real interval ) containing @, and a neighborhood v containing

6 such thet I,V <=U . By hypothesis there exists a real B
such thet B S <V . Choose % so large that d’/p € L

for l«l < Yy . Then o« O = (“/;S)PSCIOVCU

for lel < Yy . Consequently S is bomnded according to 1.8 d.

In the sequel when we say That a set is bounded we shall mean
according to any of the equivalent definitions 1.8 a - 1.8 d. In linesar
normned spaces this definition of boundedness reduces to the usuzl one, in
which the norms of all the elements of the set are reguired to be less
than some fixed positive number g .

Next we consider compactness.

Definition* 1.9. A set 3 of a linear tonological space will be called

compact if every infinite subset of S has a limit point. If every

infinite subset of < has a limit point in 5 we shall say that S is

compact in itself.

It is well known that compact sets and bounded sets are identical
in a finite dimensional Euclidean space. This is not the case for all
linear topological snaces, since the spheres of sn infinite dimensional
normed linear space (for example the space of continuous functions on

(0,1 ), though bounded, are necessarily not compact. However we

¥ COf. for example Alexandroff and Hopf (1.) p. 84.
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shall now prove the following theorem.

Theoren l.6. Every compact set of a linear topological space is bounded.

Ezggg: Iet 57 be a linear topologicel space with "basis" T , and let

S<=T ve compact. Assume, contrary to the theorem, that S is not

bounded. Then by denying definition 1.8 a we may assert the existence

of a sequence 4 X [; , Xc € S , a null* sequence { %<3 of real

numbers and a neighborhood (j of the origin such that for every # there

isa A>% with @, X, € T' =/ . In other words there is a

null sequence {Po} and a sequence % "a“o} ; #'.. €S  such that

L €T =V for all ¢ . Now O is compact so that the sequence
£ 7._} has a limit point X . By postulate (LX b) there exists a real

interval I, containing O and a neighborhood U, with I, Uy = U,

Since X is a limit point of flﬂfs} there is an infinite sub-sequence

{ff"»nz with 4, € Ux for all ¥ . If we choose K la;'ge enough

so that B¢, € I, we have p... /%’,,.‘ e-To ch U which is & contradiction.

6. Continuous isomorphism; relations between linear topological spaces

and metric spaces.

What is the relation between linear topological spaces and other
linear spaces which have been more extensively studied, such as linear
normed spaces, Buclidean spaces, Frechet (F) spaces? Are there simple
topological conditions under which a linear topological space reduces to
one of these more usual types of spaces? We shall discuss these questions
in this section, making our ideas precise by using the concepts of linear

transformation and continuous iscmorphism.

* We call {OC.,} 8 null sequence if [/m X, = o.
e => oo
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Let 27, . CZ- be linear topological spaces whose "bases" are
respectively 'T: and 7:. « A funetion or transformation (we shall use the
words interchangeably) with domain 'T: and range 'T.. is called additive
if XK, 4-€ T, implies +(x +/3,) = £(x) + 'F(ﬂ—) , homogeneous if
x€T = & real implies F(xx) = o £(x) . A function which
is additive and continuous is called linear. By using approximating
sequences of rationals it follows exactly as in the case of linear normed
spaces* that any linear function is homogeneous, and thus is distr_ibutive
(i.e. both additive and homogeneous). The space <7, will be said to be

continuously isomorphic to the space cZ if there is a linear transforma-

tion 7.= 'f(X) with domain 'T,' and range 'T;_ which hes a unigque linear
inverse x = ‘F-'(‘a‘-) » 1t is clear that the relation of continuous iso-
morphism is reflexive, symmetric and transitive, and thus is an equivalence
relation for the class of linear topological spaces. This equivalence
relation is a generalization of that of definition 1.4.

Definition 1.10. A linear topological space will be called normable if

it is continuously isomorphic to a linear normed space.

By a metric space we mean a space M for which corresponding to

each pair X,#GM there is a non-negative number (X,#) with the
properties

(1) (%, 4) =Cfs>X)

(i1) (X, "d«)’-‘ & implies x=»‘j«

(1i1) (x, 4) + (452) > (x,z).

* See Banach (1.) p. 36.
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Every metric space is* a regular Hausdorff space if we take the spheres
(’7’3 X) <« e g5 the neighborhoods Ur . The metric is said to induce
a Hausdorff topology. A linear topological space whose topology is thus

induced by a metric will be called a linear metric space™*.

Definition 1.11. A linear topological space will be called metrizable

if it is continuously isomorphic to a linear metric space.

It is evident that in a normable space it is possible to define a
norm by taking N ¥l as the norm of the isomorph &’ of X ., More-
over, since by definition the isomorphism X G='F(X) is bicontinuous
end biunivocal and takes the origin @ into the origin © it is easy to
verify that the “spheres® WXIl <& form a complete neighborhood system
for the space. Hence in the terminology of definition 1.4, the norm

x i generates a topology eguivalent %o the original Hausdorff

topology. Conversely if it is possible to define a norm in J which gives
rise to a topology equivalent to the topology of e7 then -7 is normable
according to definition 1.10. A similar necessary and sufficient condition
for metrizability may be stated as follows: A linear topological space

is metrizable if and only if it is a linear metric space under a topology
equivalent to the original Hausdorff topology. The following fundamental
result is proved in Kolmogoroff (1l.).

Theorem 1.,7. (Kolmogoroff's normability theorem) A linear topological

* See Alexandroff and Hopf (1.) pp. 38, 68.

**¥  Our "linear metric spaces" are less general than the "vector metric
spaces" recently considered by Adems, Trans. Am., Math. Soc. 40 (1936)

Pp. 421-438 since we require the operations of vector addition and scalar
multiplication to be continuous.
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space is normable if and only if there exists a non-vacuous sub-set of

the space which is convex, open and bounded.

If we call a space locally bounded if it contains a bounded open set we
have the

Corollary The necessary and sufficient condition that & linear topologi-

cal space be normable is that it be locally convex eand locally bounded.

We next consider the effect of requiring merely local boundedness.

Theorem 1.8. If a linear topological space q7_i_s_ locally bounded then we

may define a "pseudo-norm"* | X | in ¢J with the following properties

(a) lxl 20 | IX1= 0 implies R = 6.

(p) {x x| = leel 1 XI

(c) The spheres |Xx1<' , ¥=1,2,--~ form a complete

neighborhood system of the origin.

Proof: lLet & be a bounded open set containing the origin, and put
V=G '(_G). Fhen V is obviously bounded, open, and V=- V.

inf (el
Define x| as j—t-b-(d-l) x€xV  muen 1x|20 , 1f

x| = O , then x ea, V for each @, of a sequence §%. §
infevior limit.

converging to zero, by the definition of greatest—Iewer—beund., Now since

V is bounded, for any neighborhood Uof the origin there is a ¥ such

that ¢ 77 implies <, Ve U (by def. 1.8d), i.e. the sequence {“.. V}

is a complete neighborhood system. Hence if IXI=0 | X 1is in every

neighborhood of @ , end X = 6@ ., This proves (a). To prove (b), note

that
x| = inf |@l, Xx€ Ba V = foc| (inf [ Pal, x € Bi V)

= loc | IX].

* See Appendix II for a discussion of pseudo-normed spaces.
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Now consider the set | *| € Y3 | mhis by definition is the set of
all X such that x € V, lal < Vy on4 this set is open by theorem
1.2. But by definition 1.8 4, for any neighborhood U of the origin
there is an integer = = 2 (/) such that (] < Y2 implies & V<= U.
Hence the sphere Ixl < YV is contained in (J for large enough » ,

and (e) is demonstrated.

Corollary: _I_f:J is locally bounded, Then a set S=T is bounded. . if

and only if there is 8 s > O such that X€ S implies 1XI < p.

On the basis of this theorem and the results of the preceding
section on compact sets we shall now investigate the relation between
linear topological spaces and Euclidean spaces.

Theorem 1.9. The necessary and sufficient condition for a linear topolo-

gical space o to be the continuous isomorph of a finite dimensional

Euclidean space is that J contain a non-vacuous compact open set.

£r=og£: The necessity is immediate since openness and compactness are
invariant under continuous isomorphism (in faet under any homeomorphism).

To prove the sufficien€y, let c be a compact open set containing the
origin, By theorem 1.6 of section 5 G is bounded. Hence we may define

a pseudo-norm I x| forJ with the properties desc_ribed in theorem 1.8,
Let S<T (where T as usual denotes the basis of <J ) be bounded.
Then for some gk @, « S<cG  ana therefore??s compact. Consequently
,5 is compact, and the space satisfies a Welerstrass-Balzano theorem.

Moreover, since the first countability axion is evidently satisfied (the

countable family x| < '/y being a complete neighborhood system of @ )
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every limit point is the limit of a convergent sequence. Hence by our
"Weierstrass-Bolzano theorem" every bounded sequence contains a convergent

sub-sequence.

(c§.Riesz (1.)),

Following a method of proof due to ¥, Riesz, iese—t—s=
we shall prove by a contradiction that the spacece is finite dimensional.
Lemma. If a linear topological space is locally bounded and L is a

which is a proper subset of o linear manifold M
closed linear manifoldA of the space, then corresponding to every M > ©
there is an Ko € M such that lXel =4 and X = Xol>1- "M
for all x € [ .

Proof: Take X '€ M = L, Then since L is closed, and since the
———
topology according to the pseudo-norm is equivalent to the original topology
of the space, if follows that there is a positive number ﬂ' such that

b 4

-x'l2B for all x € L | Iet be the least upper bound of
Ix - x

such numbers P'. (i.e. @ is the minimum "distance" of X € M rrom x°),

Given any & > O there is a #"L such that (35“"—‘#"‘(3*5

¢ 7
Put Xo = —)-‘-,-——#— . Then Xl =4 . a1so
Ix~_?'|
l LIS
lx — x| =lx,_%l' | x 4 """‘d-'lxl
Now if X € L, Zz= #’-p- lx’-?'lx e L also, so that
| )
VB = Hg) = s L el 5 u:fq'l z Pr:s

The lemma follows from this inequality.
Now assume that the space o is not finite dimensional, let #’:
be any element with I?».l =41 and let L4+ be the linear manifold

® 44 , By the lemma there is a ,7',.5 T such that laal=1 ,
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'ﬁf""&i\ > Y2 ., 1et L, be the linear manifold determined by
"J'n ‘fz . Then there is a /73 €T witn [Af_,l =1 , ’7"—7’! >Ya
for t=1(, & . By induction we can determine 7;. such that l#*,.l=i,
|1ﬂ' - *t-,,l bd ‘/2, for L <% , and since we are supposing
T'to be infinite dimensional, each finite dimensional linear manifold
l.,jﬂ a proper subset of T , and we can define an infinite sequence
S—“fb? with the properties [ 4pel= 1 |l 4gp 4| >
for f‘r’f # . Thus the sequence {Jf,} is bounded (see corollary to
thm. 1.8) and yet contains no convergent sub-sequence, which is a contra-
dietion.
We have now demonstrated finite dimensionality. But in Tychonoff
(1.) p. 769, it is shown that every finite dimensional linear topologigal
space is continuously isomorphic to a Euclidean space, and the proof of
the theorem is complete.

Corollary. A locally compact linear topological space is finite dimensional.

We next consider the question @f metrizability. An important
theorem due to G. Birkhoff* states that a Hausdorff group, that is a group
with a Hausdorff topology in which the group operation and ibts inverse are
continuocus, is metrizable if and only if it satisfies the first countability
axion, i.e. if there is a countable complete neighborhood system of each
point. Now we are interested in linear topological spaces, which are
Abelian Hausdorff groups under addition, and we shall find the following

corollary of Birkhoff's theorem useful. (Although we write the

*  Birkhoff (1.)
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group operation +, we do not need to suppose commutativity in proving
the next theorem.)

Theorem 1.10. A Hausdorff group satisfying the first countability axiom

is metrizeble by means of & metric (% 4) satisfying (¥-4,0) =(x.4)

Proof: Birkhoff shows that by choosing a suitable countable complete
neighborhood system EVx} of the unit element @ , and defining an

ftgcart”

g(x,/?) = inf,_‘te Vi (l/Q.)K

it is possible to obtein a metric for the space such that the metric

topology is equivalent to the original Hausdorff topology, the metric being

given by
b o

(":1') = ""F,wozx Z ?(,w,“,, @, )
= <=1

It is evident that @ (X,4) = g(x-4, e)
Hence 9(x+z,/t+z) = g(x-e-z.-(adﬂ-z.)JG)
= g(u—z—z-,a, e) = gcx—g-e)=9(x,#)-

Therefore (x—Ar)a) = ;”F-x—{t Z ¢ (s tap, .,.1)

Ay =

= ln'F E S;(Mn :,Il-.‘) (x;'g-).

By combining the results of theorems 1.8 and 1.10 we obtain

Theorem 1.,11. Let J be a linear topological space with the basis T, and

suppose that o/ is locally bounded. Then it is possible to define in T




(i) A "pseudo-norm" [X| with the properties

(.) lxl 2 o 3 x|l =0 implies x = ©
(2.) lex| = lee ) L X

(3.) If IxI> @ ,141>0 then Ix +4| >0

(11) A metric (¥,4) with the properties
(a.) (X,4) >0 ; (X4)=0 implies x =4
(b.) (%,44) = (44, %)
(c.) (x, 4) + (4,2) > (X,2)
(a.) (x-,«.‘/, 6)= (",1’).

Moreover the topologies induced by L x| and (&»1) are equivalent to

the original topology of J .

Proof: If G 1is a bounded open set containing © the sets ‘3 G, »=1,2,-

form a countable complete neighborhocd system of the origin by definition
1.8 d, and (i1) follows from theorem 1.10. Property (3.) of the pseudo-
norm follows immediately from theorem 1.8 when we remember that the
function X+Af is continuous at the origin.

We are now in a position to discuss the relation between linear
topological spaces and an important class of spaces known as Fréchet (F)
spaces.

Definition* 1.12. A space E will be called a space of type (F) if it

satisfies the following postulates
(1.) E 1s linear
(2.) E is a complete metric space.

(3.) The metric satisfies (x,;f) = (X -4, e)

* Cf. for example Barnach (1.) p. 35.
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R = Y . “ x ='6
(4.) Jﬁ._n’l”a:, o implies .]’_’.1.11‘1. - for each x € E

(5.) Lim x,=© implies lim < X» =0  for all real o=.
Our main difficulty will be in showing that a space of type (F) is a
linear topological space. For, while it is an immediate result of the
postulates that L is a Heusdorff space (being metric) in which the opera-
tion X"'lf is continuous in X and# simultaneously, and in which &&X

is continuous on the left, and also on the right (ef. Banach (1.) p. 35

for the details), it is not at all clear that o¢X is a continuous function
of both variables simultanecusly. However we shall now prove that this

is indeed the case.,

Theorem 1.,12. A space E of itype (F) is & linear topological space, that

is «X is & continuous function of & and X simultaneously.

Proof*: It will be sufficient to prove continuity at @= 0 , X =6

since we have

(O‘- X, O Xo) X3 ((“‘“o)(x" X)) , 9) + (°I° (x-&), 9) + ((d—.(‘,))(,, 6)

We have then to demonstrate that corresponding to any positive number M
there is a positive number & such that («¢X,8)<% for l«¢|4« & and
(x,8) <« & . Iet H, denote the set of points of E such that
le¢ | ¢ Y5  implies (¢x,6) & N € %2 N . Clearly each Ha
contains @ and hence is not vacuous. Also each.ty is closed. For leﬁ
X, € H-y be a sequence tending to a limit 9— . Then for any chosen

o satisfying el < '3  we have (¢ X.,8) £ ¥, for all ¢ .,

* The method of proof was suggested to me by reading Deane Montgomery's
paper, "Continuity in Topological Groups", Bull. Am. Math. Soc., vol. 42
(1936), pp. 879-882.
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But since o X is continuous on the right, and since (‘;1-) is a contin-
uous functional of X for #-: @ we have ("3’; e) < L , that is
Hy is closed. Since X is also continuous on the left, every point

of E is contained in some H; . That is
@
E=_=H ,
¥ (the union of the H,, S ).

But since the space E is a set of the second category™, there is at least
one of the H’S, say H,,, of the second category. Hence H,. is everywhere
dense™ in an open subset G of E . But H,., is closed, so that GCHF..
Let X, be any point of G . Then since G is open there is a S. >0
such that (X,%) < §, implies thet x€ G < Hu . By the definition
of H,.. we have that (X,%s) < S and Ll < l/l"“ imply («X,80) % N
Let & be the smaller of 9, and ‘/,.b. Then if (lj—,e) <& ana
lc 1 < we have (a(:d»,e) e (d(‘t*'xo) ~ot X0, @)

& (x(4 *')‘ﬁ),e) t+ (xX%,6) £ 21, < Y sinee obviously
(’x"f" XO,XO) < & ana (&%) < 5, . This proves the theorem.

S
Theorem 1.13. A necessary and sufficient condition that aAcomplete linear

topological space ¢7 be continuously isomorphic to a space of type (F )

is that J satisfy the first countability axiom.

This theorem is an immediaste consequence of theorems 1.10 and 1l.12.

* A set S of a metric space M is said to be of the second category if
it cannot be given as the union of a denumerable number of non-dense sets.
See Banach (1.) p. 13.

** See Banach (1.) p. 13, theorem 1.
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7. Realizations of linear topological spaces.

The following instances indicate something of the scope of the
theory, show the independence of various properties of linear topological
spaces and serve as illustrations of the preceding theorems. None of
these spaces are normable.

Examgle 19. For the linear space T take the set v of all infinite
dimensional vectors X = (X, Xa,--- ) where each X. is a
real number, X +Ad» = (. +4jf.,xx.+’f=, we=) and

o)X 2 (%X, &K, o~ 1) . As neighborhoods of X we take the sets

VACHES 5) defined as the set of all # satisfying

l«-{.— xol « & = 52, - W,

The class of neighborhoods of X is obtained by letting = vary over
the positive integers while S varies independently over the positive
real numbers. We call the space thus topologized v’, and we shall now
show that (F satisfies all the postulates I - IV.
(I a) Obvious .
(Ib) civen U(:¥,5)  ana UG #M) it is clear that
Ulx;A,8) < V(x,#5) - U(x; 2,m) providing A > p, A* 7,
Yt B <5, B < M.
(I e) If /a/ e U(;75) then U(‘f:' v, n) < U(x;2,5)
providing ¥ < the smaller of 9-—!1. ~&), ", S"“d’?”‘?l-
(1 a) If «x ##» , then there is an integer ¥ with |Xy ~45| >0
Obviously U@r,v, 4lx V"'f") does not contain 4 .
(ITI a) Obvious from the continuity of each component .

( II b) i " 1 L] L " 11
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(III) (Local convexity) If X,f e (e v,S) then lexe +(* "“’4}'.1
Solxel +( "'““1’..\45 for O 4« 4| , That is each U(ai”as)
is convex.
A
(IV) (Completeness) Let fx } be a fundamental sequence of vectors
ca) cg)
out of V. Then it is clear that [X e — X. | tends to zero for
each L as A and & tend independently to infinity. But by the Cauchy
necessary and sufficient conditiongy for convergence of a sequence of reals,
(4
there is, for each L , an X, such that |X :) - Xl tends to zero
as /\ becomes infinite. But since neighborhoods are defined in terms of
(@)
a finite number of components, it follows that the sequence {X §
converges to X , where X = (Xi,%1, -~ ).
Thus the space 7}' is a locally convex, sequentially complete linear topo-
logical space. Moreover, since (7 obviously satisfies the first counta-

bility axion it is metrizable. (See theorem 1.10). In fact if we examine

the well known* metrie

- _L lx;jtl
(x) 7) =%’ 2-“ i -+ \xu"#ul

we shall find that the metric: topology is equivalent to the above neighbor-
hood topology. To prove this let @ be any point in V and consider the
spheres K (a;ec) 1 (%, @) < o where O ««<«|[ together with
the neighborhoods

U(“J"’J S) DXk —Q,| <85, L=, ¥ vyghere ¥=1,2,---

and O < & < + co.

* Of., for example Banach (1) p. 10. This metric for V has been used
extensively by Frechet.
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a:p S = _9
Given U (a7 ) put <€ S2v+5) . Then (X,@)<

([ Xe — Qo <_9 < $ L=l - P
implies L +lxe - @ | t+$ or (Xg. a’ul J > %, 2 ¥

That is, K(a ;@) < U(a;%,8) | on the other hand, let K(aj«)

ag
. A
be given. Choose % so large that Z: ze < '3": , and choose

LEVee
<
2 . Then if [Xe -yl <& for e =02,--, %

Me

we have
[~ ]
1 1Xa—@,) Zf S t
=T & R T—— = =
A= 2 l*‘le—C‘[ 22 ""8 2‘\
=1 A =1 A= P4y

9
< 2 oc
L+5 +'5: L

That 1, (@:28) = K(a,%) | gence by aerinition 1.4 the

two topologies are equivalent. With this metriec 4 is a space of type

(F ) , and thus illustrates theorem 1.,13. On the other hand U is not

normable since it is evident that no neighborhood is bounded.

Example 2°. TFor the linear space T teke the space F of all real functions
£(%) of a real variable defined on—=e < § < + % ywith addition

of functions and multiplication by reals teken in the ordinary way, -exné

Corres-

ponding to any finite set ($.,---, %) of real numbers and any 3 > ©

we may define a neighborhood U(t; - L 5) of the point ¥

as the set of“pointsﬂg for which | 9 (%.) - £(3.)] <86, e=12-17

We may verify by methods similar to those used for exemple 1© that the

space :f- with basis F and topologized by means of the neighborhoods
Ut §u T %7; 5) is & loeally convex, sequentially complete linear

topological space.
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H

5

[
3

The space ? provides us with an example of a linear topological
gspace which is in fact locally convex, but which is not a Neumann space
L , because Neumann's postulate (2,) requiring the existence of a countable
set of meighborhoods whose intersection is the origin is not satisfied.
To prove this, let { Ule; ;,b,”’) ;;“,5‘)} be any countable sequence of
neighborhoods of the origin © (@ is the identically vanishing function).
Now the union of the countable family of finite sets (31.--", %3, )
is obviously a countable set, say (;.) 3;, 3,) - = ) . But
since the real numbers are uncountable, there is a real number

§o Lad ;A g AELRT, e . Hence the function g(ﬁ) defined by

{3 ($)=0 for ;* $o
9(%.)=1

. e .
is contained in each U(G s ;'; T gv,_) but does not vanish identi-
cally, and Neumann's second postulate does not hold for the space ? .

It is now obvious that the first countability axiom cannot be satisfied

by ; , so that the space 7‘ , unlike the space 7}, is not metrizable.

Example 3° (Tychonoff) As a basis take the linear space HV, of all

infinite dimensional vectors & = (X, Ka, ="~ ) for which
oo ) & 2
| i, - 2.
the series Zl [ X7 converges, and put 11Xl = (ﬁ‘;“‘“l )
e=1

Now define a neighborhood U (XJ"‘) &s the set of points »3— for which
(1.) 4y — x| <o
(2.) There is a positive 8 = & (4)  such that lz—/drl <$
implies | Z — x| < <.
Clearly, for all e« >0 , x € U ¥ %) | For the proof that this

Space is a linear topological space see Appendix II, where the general
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class of "pseudo-normed" spaces is discussed. This example is due to
Tychonoff (cf. Tychonoff (1.)) who has shown that the space is not
locally convex. Thus an independence example is provided. for the convex-
ity postulate (III). In addition, this example taken together with say,
example 1°, shows the independence of Kolmogoroff's two conditions for
normability, namély 1oca1 convexity and local boundediess. For it is clear
from definition 1.8 a that every U (X¥;%) 1is bounded.

Exeample 4° (Neumann) As a basis take the real Hilbert space H,_ that is
the set of all infinite dimensional veetors + = (xo, X.,-") for

o0
which the series Z' | x| converges. As is customary we put

oo t=0
(f,9) = _%j Xe ﬂ"’ where g = (‘f.ﬂ#«.,-n) . Define
neighborhoods U(fy), ¢,,- 5@, S) of £, as the sets of points q
for which |(3,‘PA)|< S for A=0L,2,---, ¥ . The set of neighbor-
hoods of ‘f', is obtained by letting <?.,—--,<P~,, vary over all finite
sets of vectors in H,, and ledting S range from O to+99, In Neumann
(1.) and (2.) it is shown that this space P, with the basis H, and the
above "weak" topology is & locally convex, sequentially complete linear
topological space which is not metrizable, and hence not normable. We may
also prove that Nw is not normable by showing that 1:10 neighborhood is
bounded, as follows. Given any finite set &, - -, d»  of vectors,
there is a vector Fp# @ orthogonal to each ¥, , that is (‘?o,ﬁ)= o
for t=04,2,-""» , Put 34-=°‘(P° . A . Then 9 € U("Fci ‘9«."';4’;5)
for any chosen 9 , and for all real &« , since (9x- ¥, 9.) =« C'ﬂ%‘?“):O

Consider the neighborhood (/ (e ;€. , 1) . Then no matter what B#owe

* An alternate proof will be given in the discussion of example 5°.
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choose, there is & Je such that @ 9Ju € U(e; ‘P")i) as is
evident from the equality (f 9«, <Po) = Bx(Ps,8) + P (fo,40)
and the fact that (%o, ‘90) # 0 | Tence by definition 1.8 b,
Uit ‘9.,"‘,4,,5) is an unbounded set.

Example 5° (Normed space with weak topology)

Let G be a linear normed space with basis E . Besides the
ordinary "strong" topology furnished by the norm (cf. last paragraph of
#1) we can define & "weak" topology for the space in terms of the linear
functionals on £ .

Denote by E, the set of all linear functions 'FW on E. to the
real numbers. Corresponding to any finite set ('Fn, ‘F;, ”'..'F'v) of
elements of E, Lany >0 | andany x € £ gerine U(5H,565,5)

as the set

{”3’}: lﬁ.(”}""”‘ S, v =1,3,7, %

Then we can easily show that the space 6“, With'basis E and with the
topology furnished by the neighborhoods U(xiﬁ,"’,'fy, 3) is a loecally
convex linear topological space.
(I a) Obvious.
(I b) Given Uy = U(X}ﬁ,"')f”»s), U; = U("'J9u"')9r"»5,)
Teke & < min 5,5 . Then i Uy= U(X;ﬁ,--;f,,q.,---,gp,s")
we have U: < Ux' U'-
(Ie) If 4 € U(xs ¥, %, 5) s Lada ,'ﬂ(’a""'”<5
for ¢=1,""", 7 | put 51, = .'2:.?;»(5 - l'ﬂ(ﬂ—'l‘)l)

Then for all =z satisfying ‘-(—‘ (z-"&)\ < 51
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we have, since +#£ew cach ‘F,, is linear, that

| £ (= -x)| < l'F'o(z'"a')l f\‘f'«.(’-&—x)l

4 S,,, + [foCyp—x)l <3S
That is U(?’;‘F"—"j'f"S?) < U(xJ ﬁa'—',f—v_,;) .

(I d) Suppose X # 4 » so that uqr—xll>o . By theorem

3, p. 55 of Banach (1.) there exists a linear functional f; (2) on E

such thay £ (¢-x) =Ug=Xl . crearty 4 & UG £, lg-xu),
(II a) Given U(xty; f,--%,,5) , note that if

| £Cx’-x) 1« 3/n  ang | #lq'-4)1 2% ror ¢=1,--2% then
L& e —mm g = [ ) + B (g )| 84 + 5 =5

That is U("} 'ﬁ."‘,":—r,‘s/z) + U(A', ;—F.)--',-G,J s/,,) < U("*“Jﬁ'ﬁ.""ﬁv,é)
(II b) Given U(‘“‘l‘('l,"'ff"’) 5) , choose positive numbers S,

and 5,_ so as to satisfy the inequalities /
5:-(51 *lf.,()‘)‘) £ S/:_ 3 (X ='JQ~,'",V
g lec | 8, < 3/,

Then if La denote the real open interval 17T -« |< 5. , we have for
a1l 7¢ T and all 4 satistying VEly -2V <5, for e=1,2,70%

that

£ (frp= wx) | = £ (=) +x(g-2)]
s 1o-al 1l + 1] |€ (4 -2
< 5, (5 *+IFmI) t1=l 8

< Sy, + oy = S.
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or, in the notation of the calculus of sets,

Lo Ul -~4,.8,) =& Ulkzxt, -4, 58)

36



Chepter 2

Integrals in a Linear Topological Space

1. Introduction

A considerable number of authors, starting with Radon (1913)
and Frechet™ (1915), have studied integrals for functions of which
either the domain or the range are suitably restricted abstract spaces.
In 1935 G, Birkhoff (Cf. Birkhoff (2)) developed a very general integral
of the Lebesgue type for functions with values in a Banach space, basing
his work on Frechet's integral for real valued functions on an abstract
"measure" domain. In defining his integral Birkhoff does not need to
suppose at any time that the domain over which the integration is to
extend is of finite measure, or that the function to be integrated is
bounded on this domain.

The first four sections of this chapter are devoted to an exten-
sion of Birkhoff's integral to functions with values in a lineﬁr topolo-
gical space, following his suggestion of (Birkhoff (2.), p.377) that
his integral might be extended to linear spaces™** more general than
Banach spaces. We continually make use of (1.) the idea of unconditional
convergence of series, due to Orliecz in the case of linear normed spaces,

(2.) the calculus of convex sets, (3) the properties of convex sets.

* (Of., Radon (l.), Frechet (1.)

** pAfter I had obtained the results of this chapter, Birkhoff (3) was
published, in which there is contained a definition of & "Lebesgue"
integral for linear topological spaces. This definition does not coin-
cide with mine.
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Besides the properties of convex sets given in Chapter 1, #1 we shall
need that provided by the following
Theorem  If S is convex so is its closure.
Proof: TFor X, 4 €S we must show that z =ecx + (1—e)y € §
for 0<e <1 | Giyen any Uz , by the continuity of vector addition
ané scalar multiplication there exist Ux, U, such that o¢ Ur +(1-%) U‘.}C Ux e
Since X, 4 € v§ there exist X', 7—'6 S such that X € Ux, f" Ua(— .
Therefore z' = ocX ' + (1 —) 1}' € Uz . But since S is convex,
z2¢ S end since Uz is arbitrary, = € §

From this theorem it is evident that a:—s is the smallest
closed convex set containing S . In this chapter it is convenient to
denote a linear topological space and its "basis" by the same letter

as we shall have no occasion to consider spaces with the same basis but

with different topologies. Throughout this chapter T will stand for a

locally convex, sequentially complete linear topological space. U,KW,'"

will denote convex neighborhoods of the origin o .

2. The domain of the independent variable.

We shall be concerned with functions F(#) on a space* E to
T, where E satisfies the following postulates:
M 1. There exists a familyﬂ of "measurable" point sets A of E 3
with E € D.
M 2. The logical sum of a finite or denumerable number of sets 4 € ®

is a member of ﬂ A

¥ These postulates are a modification of those used by Birkhoff, in
which the family &, is not explicitly mentioned.
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M3, If A€D g0 is its complement E = 4.

M 4. There exists a sub-family jb, of jD such that to every 4 or
55, there corresponds a non-negative real number ax (4) , called the

measure of Q.

M5, If Ak?Jéflﬁt is the finite or denumerable logical sum of dis-
joint sets A, or E, and if the series ZJM(AM) converges,
then A € b. and «ee () =ZM(45) .

ne, It AED, A€D, A'=a then & €Dy,

M 7. Every set & of D can be given as a finite or denumerable logi-
cal sum of sets A, of B, .

The consistency of the postulates MI-MT7 is shown by inter-
preting E +to ve the set of all real numbers, jb to be the set of all
Lebquue measurable linear pointd sets, including sets of infinite
measure, and jb. to be the set of all linear pointg sets of finite measure.
From M 2 and M 3 it follows by taking complements that the logical product
of a finite or denumerable number of sets A ¢ € b3 is a member ofJD o
ir E'# O is a member of 8 , then E’ can be made to satbisfy postulates

M1l -MP7 by a process of relativisation. Simply put

P = {E’.A} ,A€ED

¢ ?
(read the set of all £ ‘A s for which A€D )

and

D = SE-A}, A €D,

V4
and M 1 - M 7 are evidently satisfied by £ .
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Since the logical product and the complement of sets of «a

are sets of 3 s 1t follows that the logical difference
A~ = a-(Exa)

of A ang A" 15 in D for A,AIEE . Now, from M 7 we have foi-
A€D  ay A =.ZIA‘- , where 4, € D, . Hence

4 = z (ac = (ﬁd.\)) =_=, 4 , where the sets

A,‘- AT ':'% Ax are disjoint, and belong to 3: by M 2 and
M@, If A# O then we can reject all the null sets A’c_
and obtain A as the sum of a denumerable number of non-vacuous dis-
joint sets a’, €8, . This result is fundemental for the theory
of integrals in #4.

3. Unconditional convergence of series in T .

A series =g X« = K, tXg + Xz t--- x, €T

will be called unconditionally convergent to an element X € T il

corresponding to each U there is an integer » 2> 0 such that

s-xeU , where S is any finite sum 4%”: Xag teken from
the series and including X,,Xa, "~~~ . Xy . In general it will be
convenient to denote infinite series, and &@lso their sums, when conver;-
gent, by Z Xe , and finite sums, each of whose terms is selected
from an infinite series by ,%: X.;,

Theorem 2.1. A necessary and sufficient condition that a series zl'\'u

be unconditionally convergent is that corresponding to each U there is
a y=yp (Uj such that for all finite sums in which Mg > we

have Zg.xt, e U.




_llr_i_giz To prove suffiency, let the condition of the theorem be satisfied.

By sequential completeness the series converges to an element X , For

U arbitrary take V - Ve U ang there will exist ¥ 7O with
‘zg: Xeg € V for tg2? ¥ If $ is an arbitrary finite sum

including X, "~ ,X» , let .Z;. Kpg be the sum including all

elements not in $ , but such that #¢ is less than the greatest index

in & . C(Clearly
- e V
s +‘gZ*X,,,g X €
sothat s—x € Y-V <=U.
The necessity follows in a similar way.

A countable set {-X--.} of point sets out of T is called un-

conditionelly summable to the set X if every series z.‘ Xe, X, . 6X,

is unconditionally convergent, and 1fX is the set of sums X of all
these series. In this case we write Z.X,_ =X .

Theorem 2.2. The necessary and sufficient condition that {.X‘u} be

unconditionally summable is that corresponding o every U there is a

% such that fex &3  p o > W implies Zg-zp-,cu-
M: Sufficiency follows at once from theorem 2.1. To prove necessity
assume that {.’&—,_} is unconditionally summeble but that the condition
of the theorem does not hold. Then for some v and any ¥, , there is

a set of elements Xpg EZ,‘, such that fbg 7 % and

Z Xf"’ b 5 = U . This however implies that there is a
series Z." X, xy‘;{which is not unconditionally convergent. This contra-

diction proves the theorem. The following theorems are fundamental to
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our theory of integration.

Theorem 2.3 If the sequence of sets {X},} is unconditionally sum-

mable then {Q'Zu} is also unconditionally summable and
= GXE, = GzZX.

Proof: Let U ve any chosen neighborhood of €. Since T’ is regular and

locally convex, there exists a YV U sueh that V = GV <= U.

By hypothesis there exists a 3/, such that le 7 % implies ;X‘fc V.

Hence

-’Z &-xt’ < Z—, &'-X.—L, = &-ZZC, L= U

for any finite set of L; s , Lg 7 ¥, , and the sequence { G—X._}

is unconditionally summable.

vV P
GX.< CranXe
Since ‘Z___': or
for all integers ¥ > <@ , it follows that in the limit

>l X, < X, .

Unconditionally convergent double series may be defined by re-
quiring that every arrangement of the double series as a single series
be unconditionelly convergent. From the corresponding facts for single
serieé it is clear that a double series Z Xap is unconditionally
convergent to an element X if corresponding to every U there is a
V(U) such that for any finite sum S out of the rectangular array such that s
whieh contains é Xap we have S—x € U | 1t follows as
in theorem 2.1 thatz Xape is unconditionally convergent if and

only if for every V) there is a 7’( U} such that every finite sum

_Z‘_' Kig, e where either all Ag or all e are greater
- ==
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than ¥V {U) . Since the space is regular it may easily be shown that
in case Z: Xap is unconditionelly convergent to X , then the

"sum by rows" and the "sum by columns" both exist equal to X

Theorem 2.4 If f‘q,A >0, Z:f"u &= Z f‘u /Ll'\J
L=
X ea CZ,,) X., Cz 3 Z f"u = X,

= X, =X
sumable and ,Z”.' Moea Z.‘ = Ca-Z
Z‘ /a'tA —X-LA — CG'X/

b)-(

then  § Mea X} 1s unconditionally

Proof: Denote by X, + 6 the logical sum of the set X, and the

¥
set consisting of the zero element €@ . Then since Z Mea < e
A=

we have

Zy: F’N\rz-c,\f s Co"/“w (—Z:_"i'e)

2
the sun being extended over any finite set of /\, S . Hence

(2.1) 2:,' Prers X sy = 2 Cr phog (Ko 76)

anda similarly

(2.2) % Moee,ae Y‘-‘,“g CZ CO"/L,,\, (‘Z",s 5 6)

Now { /"., Z,_} and { [AI,\ X; } are unconditionally swmmable
by hypothesis. Hence {[L,Zb *:9}) {;L;Z:\f-ﬂ} are also unconditionally

surmable, by considering unconditional remainders, and by theorem 2.3

{ct(,o.,Z‘.,-i-e)} end .. {&’(I";—Z;":e)}
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are unconditionally summable. From (2.1) and (2.2) it follows that

{ Hor X'-A} is unconditionally summable.

Now

Az’j po X,
; Hoea

by the definition of Co'-&.. . Since the "sum by rows" of {f%aza}

= (X,

exists equal to Z #X(a we have in the limit

LAz

or %{‘ /L‘AXH < Ca-/-bczl

0 (- -3 «® a —
and %(/iuzu — gz //-‘,\Z:_'\ C‘L—Z" a"/"cz—o =

where the last step follows from theorem 2,3. By symmetry

Z F(.A be o Q" X:"

A=

N
.

and the theorem is proved.

L
Theorem 2.5 If pha 7O 7 ;' P = Ko, -Z X;

Az,

every X,, is bounded, and ,Z: /-L..X.. =X then {f‘a x‘;}
is unconditionaLy summable and

Z ""‘A-XLA = CO’_Z

¢,A=

Proof: The proof differs from that of the preceding theorem only in
oo

the method used for showing that HZ /-‘,.A Z._A is unconditionally
WA=y

convergent. We have formula (2.1) exactly as before, and we can conclude



from“it that given any U there is a 9, such that Lg 2> ¥ implies
G,Z CRY Z“;“f = U. In order to prove that S,J—U,X;\}
»§ =t

is unconditionelly summable it remains to show that corresponding to

any U there is an integer Ao such that ' % Le €% and

P P
Asg 2 Ao implies Z ,‘L‘Gc,l\.f *K“c,"r = U

C9=1

et U be any chosen convex neighborhood of © ., Since for each L

the set X, is bounded, there is an a.>©  such that <. X, € U
(ef. definition 1.8 d). From the hypothesis thaté #a  converges,
where /A,\ 20 , it follows that there is a positive integer

A= Al) such that Ve > Ao implies
{ <
L =k
f‘-’ »
% ¢ b 2 —)/o

Hence, from the elementary properties of convex sets and the hypothesis

-X-LxCXL we have
=, X, <= G (SEX.F6)
S
= G (3 U)=3U

Consequently, if Aa = l"?f{; Ao , we find for 1 & Lg € and
° (¥ ¥ Sommands)
Yy > Ao that A _
it %,
< L +-L-U+"~ + 2 U)="4UCU
Z /'L‘e, Vs XL"-;:’ (-yo U o %% %
C)P::’

where we have again made use of the convexity of U in applying the

® i
distributivity law on the left. This shows that )Z P X cp s
[3

ekt |

unconditionally convergent and the theorem is proved.



# 4. Lebesgue Integrals.

By a partition of the domain E of the independent variable we
shall mean a set T » finite or denumerable, of disjoint non-vacuous
sets 4, € Dy whose point set sum Z’ A, = E (ef.#2).
Let F(%) be a function which orders to each £ of E one or more
points of T . 1f Tl is any partition of E into sets A, € B, 5
dendte by FC(AL) the set of function values F(£) with £€ Ao
We shall say that the function F (t) is summéble under the partition
TT it the sequence of sets .m (A.) F(a.) is unconditionally sum-
mable. If [ is summable under Il and each set mw1(Ac) F(4.)
is bounded, we shall say that F is boundedly summable under the parti-

tion TT »

Definition 2.1 Let I be a partition under which F(2) is summable.

The set (r 5 sm(A) F(AJ is called the integral range of F

relative to TT and will be denotéd by J-.r ( F) . To emphasize the fact
that the set ¢ belongs to || we shall occasionally write A

for A, ., We may now prove the following fundemental theorems on the
integral range of a pertition "consecutive®" to a given partition.

Theorem 2.6 If Tr, and 77; are any two partitions of E under which

F is summeble and if TV, TT, denotes the partition of £ consist-
in £4T A3, thew F s
ing of the non-vacuous setsfswmable under TV, - TTa and

Jo . m (F) = T (F) - I (F).

Proof: Note that theorem 2.4 applies here if we take
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w, @, p— b
/“c,\::/m(Ac.'AA ) Pu“M(A‘)’
T 7,
C=am(a%) X, = F(AT-AY)

NI F(AaY) .

la

oo Ty > - W . Wy
Hence %:'““ (a7 -Aay) F(A" “ “) is unconditionally
i T
convergent and is contained in both ;‘ G‘M(A‘L') F(A",_)

A% ) F (A7
{ |
and in Z Cr' a1 ( ) . Comnsequently, on taking convex
A

hulls we obtain

(F) = Jg (F)- Jg (F).

n, A

Theorem 2.7 Iet P : (A.,A;, —"), A, °Ay=0 be a decomposition of

D e —

E into sets A, of R ( &¢ not necessarily of finite measure) and
let 71 be a partition of £ into sets A, of B, .

Let 7T°'P denote the partition of E consisting of the non-vacuous

sets in SA',, 'A,\} « If F&) is boundedly swmable under 7

then F(#) is also boundedly summable under 1 P ana
L(F) = J.(F).

(
Proof: Theorem 2.5 applies here if we take /L,_‘\ = m (A - A, ))
v l 7 e ‘
po=mm(al), X, = F(Al-4,), X.= F(4l),

and we obtain

Slamal-a,) F(ai-a,) < (’,Z’M(A)F(A.,)

e,Ag

Teking elosed convex hulls of both sides, we have
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J;r.-p ( F) = J‘"‘L (F)~

Definition 2.2 A function F(& (single valued or not) on £ to

T is said to be integrable over E if there exists an element _f(F)
of T and a sequence of partitions TTy with the property that for
every V) there correspends an integer <, such that V2> ¥ implies
that Jrr, (F) — (F) «U.

The element J4 (F) is called the integral of F(t) over ,E "

Definition 2,82 1If F(#) is integrable over £ , and if F is not

only summable, but boundedly summable over each of the above partitions

Tr-y then we shall say that F is boundedly integrable over E .

Theorem 2,8 The integral of definition 2.2, when it exists, is unigue.

[
Proof: Let iﬁ-y} and §Tr-y} be sequences of partitions defining inte-

grals L(F) and J (F) respectively. Then by theorem 2.6
CI-;T % 51 = '-Trrv ’ J;;

k4
for any »,4 . ILet U ve eny neighborhood of the origin, and let v
be such that V =V € U |, Then by definition 2.2 we have for
V> (V), A>Ar(V) that
J—Tr,.-"-; = J CF) < V

Jtr,.tr; - L(F) <= V

Hence J;r,.“‘ — Jm’_-ﬂ.‘:\ + L(F) —j(F)e V-V.

But since © € Ju .w; — J. this implies

»'“'A

v(F) —j(F) e V-V =U,
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whence ¢ (F) = j(F) , since T is a Hausdorff space, and
l:(F/ "‘j (F/ is contained in every neighborhood of € . From
definition 2.2 and the fact that | is both regular and locally convex
we have the following theorem.

Theorem 2,9 A necessary and sufficient condition for F(#£) %o be

integrable over ‘T' is that there exist & sequence of partitions Tl of

E and an element J(F) of ‘T' such that, given U there is a A =A(Y/

such that 3 A implies ‘
M(A) F(A) = jJ(F) + U,

AG 6777

THe following "Cauchy criterion" for the existence of an integral is
often useful.

Theorem 2,10 In order that F(t) be integrable it is necessary and

sufficient that there exist a sequence of partitions 'ﬂ; with the prop-

erty that, given U there is an integer A =A(U) such that »> A

implies |
I

>»

- Jy, = U.

Proof: Necessity is obvious. To prove sufficiency let U ve chosen and

let 9, be the integer corresponding to (J in accordance with definition
2.,2. From theorem 2.6 the sequence of closed sets
has the properties

(1.) Each set contains the following

(2.) Jyoom, — J",r',__m < Jp— Iy, < U

for Vo>,
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By the axiom of choice (applied here to only a countable number of sets)

there exists a sequence {X-yz such that &5 € J-'.:r....'n‘v « Then
MV 7Yy implies &p— X, € v , So that by sequential com-

pleteness, the sequence fz\’-y} converges to a point X € T -

Each of the closed sets Jm...ﬂ', contains X so we have X € cJ;-.—,,

for each » ., Hence J;,-, —x = U | and F is integrable to

J(F) = x

Corollarz: _IE theorem 2.10 we may replace Jﬂ‘? by Z M(du) F(A..)

AETT,
and still have a true statement.

By comparison with G, Birkhoff's definition (ef. Birkhoff (2.)
definitions 1 and 3, pp. 366, 367) of an integral for Banach spaces, we
see that our integral reduces to Birkhoff's in case I’ is a Banach space
and the function F (t) is boundedly integrable in accordance with
definition 2.2 a.

Theorem 2.11 If F(#) is integrable over E it is integrable over every

set A of ® to an elemsnt j(F,4) , and we have

J-(F-, 4, 'i‘Az) = g(F,4,) +J.(I':Az.).

Proof: Let [(£) be surmable under a partition [l of EE into sets

A, € D, and suppose 4 € Y . Then

F(a'.) < F(aw
F(Azu) < F(AL)

m(a.) +m (A7) = mlA)
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where A:_ = A, A A = (E=A)-A..

2

Therefore

m (AL) F(A.) + m (4%) F(A) = Gam(4.) F(4,).

Evidently . (AL) < m(Ac) so that
m (4A,) O F(A,) = m(a,)C (F(aL)+6)
< Cr (m(a)F(a.)+0)

From theorem 2.2 the sequence {M (4.) F(Au) + 6} is easily
found to be unconditionally summable, since by hypothesis

{’”‘ (a.) F(a)s is unconditionally summable, and hence by
theorem 2.3 we may conclude that the sequence of sets

m(A) Co F(A,) = Gemcalj F(A.) is unconditionally summable.
A similar agrument shows that § e a1 (a%) F(A‘Z.)} is

[

unconditionally summable. From the distributivity of the CO‘” operation

and the fact that M + N = M + N for any two sets M, N

in 'T' we obtain

e,:z‘l‘ m(aL) F(aL) + G_>. may) Fay

<= G > mcay) Feay

=
That is,

(23) Jp (F4) + T (FE*A) = J, (FE),

where oJqrs (F,A) for instance is the integral range of F over

.
A with respect to the partition 1T {A.,'A} of A . Now consider
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a sequence TT, of partitions of £ for which J;;-_y" J,—,-, — ©
in accordance with theorem 2.10. Given U we have for all V2> A(U)

on using the inequality (2.3) for TT = I [,
Joy (Fy4) + Tga (FLE~ L) — Too (/4) — Tos (F E-4)

= Jp, (F,E) — T, (FE) = U,

But since the sets :TT-,:’ (F4) — :I:r',(ﬁﬂl and

e (F}E-‘A) - j-;r‘,,(F’ E—'~4) each contain @ , this implies that

Jps ([ E=A) = T (F E-4) < U

and Je, (F E) - J;,?(F,E) = U

for all 3> A(U) . It follows (theorem 2,10) that F(A) is inte-
grable over A to some J ( F, A) and over £ =A to some J(F,E-=a),
As in the proof of theorem 2,10 we have

j(ha) v+ i(FE~a) = I, (E4) +Jpa (FE~4)

< J. (F,E) < j(EE)+U

for ¥ >A (U)) for arbitrary U . Hence, by-ths-unigueness—theozen

8,

j(F,a) + J(FE=a) = j(FE),

The theorem now follows, if we replace £ by the "sub-space" E ’

Theorem 2.12 If F(#) is boundedly integrable over E then the set

function 4 (F,4) is completely additive.

Proof: Since any member e’ of B by relativisation satisfies the postu-

lates for an li-space, it will be sufficient to show that if 79 is any
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denumerable collection of non-vacuous sets Qe € ‘6 with

AL =E, Acay=0 (A

<«
then % J(F,44) converges and is equal to J (F E)
. k4
To prove this, let Tr,.-(" LA, ) , where A7 €9, vea

sequence of partitions of E such that

Ir, (RE) = J(FRE).

Having chosen U let ¥, be such that »> 3, implies
Jwy (F,E)— i (EE) =« U . Consider the partition
”-,‘p , for any ¥ > % . By hypothesis each set F(A,f) is

bounded, so we can apply theorem 2.5, putting
=1l , P = M(AZ-A,.)) e _-:',44«1(A'f)J

5 _— »
_z‘"'\ = F'(A, 'A,\), -Xc. - F(A'-); and conclude that

a7 - Pay
SM (ax-4,) F(at A")} is unconditionally summable and that

the following inequality is satisfied.

(24) ZA m (A% 4,) F(a%-8,) = G 7 ma(4%) F(a2)
€,A=q o
- Jw,, (F,E).

Since by theorem 2.11 F'(i:) is integrable over A, , we have

$(F25) €0, (FAx)= G =i m(ar-a,) FA7-4,)

Summing on A from 1 to o@ , we have

S1itRay = S G5l mara) F-4,)

A=y A=y
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But from theorem 2.3 this implies that
2:‘ J(F4,) = G 2;'/»1(41"Ao\) F(az.a,)

I‘ =¢ "‘=’

Eﬁom inequality (2.4)

Zi(a) = J, (FE)

A=

for ell V2> % ,

S0 that _=!J(F,4,) = j(FE).
A=y

Theorem 2,13 It F(JL/ and G‘(t) are boundedly integrabile over E then

L F(t) and F(/t) '('6"(*) are integrable over E eana
J(«F)=«/(F) , J(F+G)=,(F) /()

Proof: The statements about ot F(t) are evident. To prove those

A
about F + G , let {n:} and gTTC—z be sequences of partitions

—

of £ into sets of ‘%; such that

cTﬂ-z (C) —> (G')

as » and A respectively — co . Given U , choose 4 so0 that
V+t+Y < U . By theorem 2.7,

JW?:-TT&‘ (F) = "'I"’T? (F)
Jar.wa (6) = J;a_ (6)

But from the properties of convex hulls,
Cr (A+B) = GA+ (B
for any A) B < T.
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so that

Jn:_.né (Ff G') = J‘i;.né(t:) + Jfr‘;_.‘-ﬂé (G)
< Jr(F) + J:'rc‘ (G).

Consequently for large enough ¥, A we have

Jopm (FeC) = (=@ = Jpu =ilF) + Ty (6)-J )

so that F +G is integrable and
J(F+6) =i(R+4(6).

Theorem 2.14 If A is of finite measure, that is if A € &y , then

we have the following law of the mean for L-integrable functions:

J(F,A) © m(a) Cr F(A),

Proof: ;;L(-A_) i(Fa) e::l'('z)' I (F,4) = G < @/m(_A(:TA) F(a.-a)
< (- G F(4a)
= G F(a) .

5. Riemann integrals and continuous functions

Riemann integrals of functions on a closed* real interval

to a Neumann linear topological space** are considered in Michal and

* The interval « <« T4 £ will be denoted by (e« ,p), and the intervals
X s$T<f ,«<F <f . , «<T &P will be denoted respectively by

L«') ?)) (d') FJ ) E“; ﬁJ .

** Such a space is slightly less general than T. See Chap. 1,#3 and
#7, Ex. 20. My results on Riemenn integrals were obtained independently
from those of Michal and Paxson.



2, #5 56

Paxson (1.) and (2.) and are studied in detail in Paxson (1l.). However
in view of our later applications, and in order to correlate the
"Lebesgue" integral of the preceding sections with the Riemann integral,
a brief discussion of the latter will be given in this section.
1t F(4®) 1is a function (possibly many valued) on E(,P] to
'T, we can obtain a definition for the Riemann integral of F(T) over
7 to be the usual subdivisions
[e] from the general definition of #3 by requiring the partitionsyof
E‘,P] into a finite number of intervals. lMore specifically, for
A =Ty4 T, € <P 16t J—y denote the collection of sub-intervals
A, = (’I'o,’l‘.], A,= (’l‘.,"‘;\]) e A, =" _,,’I;J. Put /g{A‘,) = T
S ('87) = MGXJZ'/AQE,

oL LY and define the Riemann

integral as follows:

Definition 2.3 4 function F(T) on [W,P] to T will be said to be

. s
Riemann integrable to J(F) = K“ F(G) de if, corresponding to each
U ana each N >0 , there is a sub-division SZK, such that S(Jr) <7
and - )
= H(A)Fa) — S (F) = U.
=y
Since we are always supposing that the space T is locally convex, and

since any linear topologicel space is regular, it is clear that the content

of the definition is unchanged if we replace ..Z::' j(A ‘-) F(A")

v Co 2y L(Ae) F(AL) . As in the ca;e of the L -integral of

#3, it is convenient to define the (Riemann) integral range J:g,, (F) of
F(’f) relative to 537 by

T, ()= &2 tca)Fay).
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Thus definition 2.3 could have been phrased in terms of integral ranges.
(Compare with definition 2,2 and theorem 2.9).
If we interpret the M -space E or #1 to be the real interval
E’) P_] where -3 and @' are identical, and each consists of the set of
all measurable sub-sets of *,8] then definition 2.2 furnishes us with
the definition of a Lebesgue integral of a function F(T) on E", el .

Theorem 2.15 If F(‘rj on =61 w0 T is Riemany integrable over

B<,@] then it is Lebesgue integrable over [%@] and the two integrals

are equal.
M: The theorem is clear from the uniqueness theorem 2.8 when we
notice that (1) every sub-division J., is a partition_”—of ,f]1 into
measurable sets, (2) every "Riemann" integral range is a "Lebesque"
integral range, (3) by taking & sequence of "(,5 =20 in definition 2.3,
we obtain a sequence of integral ranges satisfying the conditions of
definition 2.2,

In the following theorems on Riemann integrals and continuous
functions we shall, for the most part, merely outline the proofs, for the
reason given at the beginning of this section.

Theoren 2.18 Every (single valued) continuous function on [d,PJ to T

is uniformly continuous.

Proof: As in the case of real functions, use Heine-Borel theorem.
=1

Theorem 2.17  (Cauchy condition) A necessary and sufficient condition

for F(T') on & ,@'1 to be Riemann integrable is that corresponding o

every U there is a sub-division ﬁgy:{A"S of [=, ¢l such that
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5(*’3*)‘“( ang
,€(AL) Fa,) —_>1 f(a)Fa) = U.

LSI
Proof: See proof of theorem 2,10, and corollary.

Theorem 2.18 If £(r) is a (single valued) continuous function on

C°",P] to T , then £(7) is Riemann integrable.

Proof: Use theorems 2,16, 2,17 and the postulate of local convexity.

N ¥
It is convenient to define S:F'(C')dc as — S F(‘)dC in case

lf7/1(

Theorem 8.19 Let the Riemann intesral of the functions F(T), G(7)

exist over [ec, 1. Then we have
(i) The integral of F(r) over any sub-interval exists and

!ﬂF(c)dc j F(s) de +f F(c)de +or Y se = B]

T

!ﬁ(/« F(()-;—ﬂ,@(c'})dcw) = A S"(‘)d“ f,;fG.(;)dc
110 ["Fee)de € @ -a) Cor F(EFI)

In the law of the mean (iii) F( [, P_]) denotes the range of , 1@,
the set -{F("‘)S) T€ L“) {'7] . The proofs of (i), (ii), (iii) are
similar to those of theorems 2,11, 2.13, and 2.14, respectively. Here
the proofs are greatly simplified, since all series Z:/C(AL) F(Ab)
are finite, and hence automatically unconditionally convergent. Conse-
quently, it is not necessarily to bring in the notion of "boundedly
integrable™ functions.

Definition 2.4 A function 'f'('l") on the open interval (“‘, ﬁ) to ‘T'
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7
will be said to possess a derivative f (7o)  at the point T € (¢,3)

if for every (/J there is a 8 >0 such that IT-Tol< 8 implies

§(r-Te) = £CT) _ £/n,) = U.

T - T,

Since T is a Hausdorff space, a function F(T) can have at most one
derivative at T, .

Theorem 2,20 If +() is continuous on [*,P] 3o T ang

g (1) = ff'(")d‘, then g (1) bhas the derivative
g'(r) = {(1) gt each point of (,@).

Proof: As for real functions, using theorem 2,19.

Corollary: Under the conditions of the theorem 4(T) is continuous on l,£].

Theorem 2,21 If a function £(1) on [e«,@] to T has a derivative at

each point of («,@) which vanishes identicelly on («,@) then £(T)

is a constant element of T

Proof: Since -‘-‘-'(“') =6 for all T € (G’, @) , there exists for each
U (we may suppose U convex) and each 7" € (=, P), a positive number

S§= §() such that

) ~f (g HE(

(2.8) c - © > Ta Ty for T— 849 <T<«g<T+s.

Hence since U is convex, we have

(2.5 -8 e-2 yy 2o y = U
c— 9 C-g C-—g

2

for T - S(\‘)<9 <T<C <T+o(r).

Iet [B’,T\] be any closed sub-interval of ("‘, (9) . We wish to show that
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£(¥) =f(Mm)

By employing the Heine-Borel theorem for linear
point sets we may assert the existence of a finite covering of [x, ’(]
by open intervals Aec= (’P,_-S,,,'i‘,,*-s,,) with the following properties:

(1.) 5, < 9(1.) (so that we can apply inequality (2.5)) and

5. < S

(2.) Tewr =T

(3.) Ag has ¥ as its mid-point.

(4.) The intersection of the left open half of A, and the right
open half of Q.- contains at least one point &, .

(5.) Some A. , say Ay , contains " .
If o is not the mid-point of Ay , put €o=¥ , 644 = 7

for 1S$LEY
select 6, in accordance with (4.)4, end we may clearly suppose

6., <6, , ¢ =2,--~,»+1 | Then we have by inequalities (2.8) and

(2.8)a that

‘F(C‘.) ""F(‘l-\) — U

G - G- for ¢=1,---,¥%¢#(.

i 1( is the mid-point of A-y , We can stop & at ? instead of ¥+l .,

In any case we have

(4) —£C2) . f() — $ ) -
£() I N P RO =G U=U.

(U ¢ Co-t

But since U is an arbitrary neighborhood of €@ and  —¥#F O  we
have -(:(1]) =S -(-(b’) = @ s Qe€eds

Theorem 2.22 If -{3’(1‘) exists and is continuous on (=, P) , then,

for ¥, M € («,p) we have

f) — (0 = [T de.
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Proof: See Theorems 2,20, 2.21.

Theorem 2,23  If {'F.,, (1‘)} is a sequence of contimious functions on

["‘, PJ %o any linear topological space, converging uniformly on
[, 2] to a function (*) , then £(T) is continuous on [,p].

Proof: As for real funetions, In this theorem the postulates of local
convergity and sequential completeness are not used.

Theorem 2,24 If {f,(f)} is a sequence of continuous functions on

=,1  to T converging uniformly on this interval to -F(T)  then

#
'ff(c) = lim (% (c)de.

P> ol

Proof: Use theorem 2,23, the lew of the mean, and the local convexity

and regularity of T .

Theorem 2.25 If f) is a continuous function on [=,B] to any linear

topological space then its range ‘F(["‘,Pj) is compact in itself.

Proof: Let ‘F;) 'F‘,_)-—- be an infinite sequence of (distinct) values of
the function -{:'(T‘) , and A,)A,_J"'— the original sets corresponding
te 'f'n,‘ez,"" i.e. Ao = {fl‘}, T € [“,p], ‘F("‘)’-'ﬁ,. By the
axiom of Zermelo (used here for only a countable number of sets) we may
choose T, € A., : obtaining an infinite sequence {"\.3 of distinct
points of [“, ﬁ.] , such that #(T) = £ . By the Weierstrass-
Bolzano theorem there is a limit point T¢ of the set {’f‘u} .
Evidently T, € [“) P] and since ‘F(‘P) is centinuous, the corresponding

point () of T is a limit point of the set £F.5 "
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Corollary  The range of a continuous function on [<,8] & linear

topological space is a bounded set.

Proof: Cf, theorem 1.6.



Chapter 3

Existence Theorems for Functional Equations in Linear Topological Spaces

L K-systems
Let there be ordered to each element X of a linear topological*
space T a set K(X) subject to the following conditions.
K 1. Zach K(x) is convex.
k2. xe K(x); ©€ KX 17 x#68 «>1 then xx & K(x).
K 3. K(xx) =« K(x) for o > 0.
K4.4€ K&K implies K(4) < K&x).
K 5. Bach K@) is bounded.
Then we shall call the family gf sets K (X) a K-system for the space.
If instead of K 5 the condition

K Sa. Given any neighborhood U of © there exists a neighborhood

of © such that

SK&x) = U

XEY

is satisfied, we shall call {K(x)} a continuous K-system. It

follows readily from K 3 and the continuity of scalar multipication that
X S5a implies K 5, so that a continuous K-system is a K-system. When
each of the sets KK(x) is closed, we shall call the family a closed

K -system.

In the case of a linear normed space, the spheres Il"d»" <l

* As in chapter 2, we shall denote both the basis and the space by the
same letter when there is no chance for confusion. It will be explicitly
stated when postulates (II.) and (III.) are required.



form a closed, cqntinuous K -gystem for the space. In any linear topo-
logical space the closed line segments joining the origin to the point
form a closed K -system Ko which is "minimal" in the sense that each
set K(X) of an arbitrary K-system contains the corresponding member
Ko(x) of the system %, . ( Ko(x) being merely the line segment &X,
ogagq .)

For locally convex linear topological spaces K-systems have a
special significance. In particular, the minimal K-system 7{0 is contin-
uous for such spaces. We now state a fundamental existence theorem for

K -systems in locally convex spaces.

Theorem 3.1 In any locally convex linear topological space ‘T° there

always exist complete neighborhood systems U -'(U,‘{.W,”' of the origin

with the properties

(1) It Uvel then (/ is convex
(i1) 1t €U  then « L TU .

U %+
For eny such neighborhood system U define

K&) =TT (V)

xXeU, UET

Then the sets K{x) form a closed continuous K-system for the

D 4 we h = TT1(0).
space T , and we have K (X) xeb,u(eu)

Proof: IfUFis any complete neighborhood system of the origin in the

locally convex space 'T' , there is ordered to esach WE?(/' a convex open

set VEW yith € € 4 , by the definition of local convexity. Then

the family QV} Ve W, W‘wfoms a complete neighborhood system of the
7

origin, with each ¥ convex. Now add to {V} the sets (J=a V ,

*:.'.e._ K(x) = intersection of all U € U Ffor which xe U.
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where & ranges over the positive real numbers, and "4 ranges over{Vf.
By theorem 1.2 of #1, Chapter 1, each U is open, and clearly each U
is convex. The system UL :{U}, 3:;(:)20‘ satisfied (i) end (ii), and
the first statement of the theorem is true.
To prove the second statement note that, due to the continuity
of scalar multiplication, for each X € T and each Uéu there
isan o > O with «x € (J/ , that is xeml/=U" el
Hence K(x) = T.T (U) is not empty and in fact contains X, 0.
¥eUe
We now verify that properties K 1 - K 5a hold for the set K(X).
For convenience we denote by U(G; X) any Ué u with X € U
MEL KX is convex, since the intersection of any family of convex
sets is convex.
A4 K 25 Obviously x,0 € K(X) | rake xz @ , «>L , ana
(/€ TL such that X € U . Then put Y=SUPpJPxEU'
Choose ¥ so as to satisfy /a ¥ < ' <y , and put V="Y U.
Then x€ V since ¥ x € U/ , but <X € v since
Yo >% and therefore (¥e¢)X €U . But since
K(x) =TT fU,x)I} < V) o« x € K(x).
MK 3: oo K(X) = « TT§U(9, x)} = T fx U, x5 = ‘[T(u(e,ozx))

MK 4: If s € K(x) , then '21'6 V@X) tor a1 (e,x) €L
Hence every (/(9)/\') is a (/(9/#) , and
TT U@, 4} =TT U@, 5],

Ad X 5a. Given any neighborhood Wosr the origin, there exists a U‘\u
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such that (/S MWV . Tmen it xe U , TTSU@X)]{<= U< W.

That is %U: K& =‘I%:: TT{ We,x)} < W, g.e.d.
In order to show that K(x) is closed we first establish the

following lemmas which are of interest in themselves and should perhaps

be included in Chapter 1.

Lemna 3.1 If T is a linear topological space and G-~ is a convex open

set of T" which contains the origin, then « G < G for all e< ,

P g

e
oL ¢ <1
(o]

<
Proof: If 0 <o < 1 , then by hypothesis

xG +{-<)G = G

Let X be any point of (¢G) = G . Since « G and (1-«)G are

open sets dontaining @ , there is a neighborhood Ux of X such that

UX - UX < (« C—) ."( (t-«) G') , by the continuity of subtraction.
eontact

Since X 1is ajissis point of « G there exists a point /d' € ("G) ° UX .

Hence we have

x=,<d«+x—;d,CdG+Ux‘Ux
CxG +t+ (-6 =G,

That is « G < G

Lemme 3.2 If U (e, x) is any convex neighborhood of the origin con-

taining x , and &« is any positive number less than unity, there is a

number B , & < B <1 such that x € (3 U, x) .
Proof: Either the lemme holds, or there is a number ¥, 0< ¥<1 such
that X g 3’(/(0,)() . Put 11 = svp b’, X EVY U(ezx)

so that # ¢ 1 . Then X is in the frontier of the open set 1[(/(9)"') .



(&)}
(o3}
~3

y 7L

For if V,, is any neighborhood of X , by continuity there is a 8 >O
such that AX€ Vy for all A satisfying | A -1l <3 . But
A 1 impites x @ Wy U@ X) o Ax EqU@X) | hie
A>e implies x € M/, Ule.x) or rx € | U(e, x) . Henece
each Vx contains points of ¥ U(alx) and also of its complement, end
X must lie on the frontier of | ( 6, X) . But since X € U(G)X)
where (J(€,X)  is open, X is not in the frontier of (@, %)

whence % <4 . By the definition of ¥ , X € =] Ule,x) for

(3 ’ 11 , and the lemma 3.2 is proven.

To demonstrate that K () =TT (U) and therefore that KX) is
x6€T UEW

closed we first prove that T (F) < K (X) . Suppose that

— xeT, UeU _ ,
o o € (/ , for all (/€ T such that x€ (U ., 1et (U bve any

member of U containing X . By lemma 3,2 there exists am o | o< <l
Vs V4
such that X € o U . By hypothesis (i), &« U is a member of

wu , call it U (9, X) . Using lemma 3.1, we obtain

U@,x) = ) = (U’

Now by hypothesis, 4 € /(6,8 , so that € " , sui it follows
wmat [ 1 () = TT (V) = Kx).
XET,VEW XeU UEU

- x)< TT1T(0)
To demonstrate that IK(X) xeg,uetd suppose that

"?é Kx) = 7_T (U) , and let (J be any member of U such that

xeue .
xel . We must prove that # e (/ . By lemma 3.1 V=%l

for 0 < < 1 , hence xesUeU . since #6 K(X),
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we also have 7/5 w U or daf‘U for a1l a, 0<e<1
Since scalar multiplication is continuous, ?b is a limit point of U .

§ B “t € (/ . Combining our results we have that K (x)= ;[:_;[:U(GZ)
Also, since the intersection of a family of closed sets is closed, K(X_)
is closed.

In view of the later applications to functional equations it will
be of interest to examine some examples of K-—systems in a few of the
important instances of non-normeble linear topological spaces (ef. #7,
chap. 1).

() In the space U} of infinite dimensional vectors the sets K (X):
i*‘j’}, "‘j‘el $ 'x"’, ¢=1,%""" form a continuous, closed WK-system.
(B)* 1In the space - of all real functions the sets I (£):

{ﬂ }) (ﬂ(f)‘s (5] tor — o0 < % <+ oo form a continuous,

closed K -system.

(C)* 1In the weakly topologized Hilbert space ¥, , the sets K():

‘Eﬂ }) l <5)‘9)l\< ‘('f; ‘P)l for all CP_) form a continuous, closed K-system.
(D) In a weakly topologized linear normed space 6’,‘, , the sets K@) :
gxt}’ I-F(#)I-S ('F'(l")' for all linear functionals ‘F) form a
continuous, closed K-system. In each case, the space considered is
locally convex, and the set |{(x) is the intersection of all those neigh-
borhoods containing X whieh belong to a complete neighborhood system of
the origin having properties (i), (ii) of theorem 1. TFor example in (A)

K(x) is the intersection of all the neighborhoods U(e.8.;-,5»):

* The spaces F and Nw are non-metrizable as well as non-normable.
Cf. #7 of Chap. 1.
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< = - e

‘{’f}, l'or"l S s * L2 -y - as  varies over

the positive integers, and S,, varies over the real numbers greater than
[ % . From the general existence theorem 3,1 it follows that the

families of sets K(x)given in (&) - (D) are continuous closed K -systems.

2. The equation ,3, = 'F'(%) .

Theorem 3.2 Let -f—(,af) be & continuous function on ¥V~ to Y where W

is & sequentially complete sub-s¢t of a linear topological space T' . Let

{K(‘t)} be any W-system with respect to which the function -F(‘Jr)

satisfies the "Lipschitz" condition

f(q) - (=) € p K(#-2) , o<p<l,

for all pairs "f' z € Y

Then the transformation z = 4(7) of Y into a part of itself

has a unique fixed point.

Proof: We employ successive approximations. Having chosen /?/, eY , put

7:.1’! = _F(T“)) = o)')”;"'

Clearly

each "f" is well defined. Using K 3 and K 4 we get

g = T - Hfe) = p Klpipe) = K(# G- )
/1’:‘*‘(: = 'Hq»,) - -(3(14) < p K(‘b'#f} :
< p K ("‘(7'"'7"’))
= p K=ol
and by induction we obtain
/7’:.*' “’7’9 < ,L"K(‘?’n"/?o) for ¢=10,2,3,--~
Consider the series Ab, t4&, v 4L, +---  where /Lo":"z’o , A, :#cfl —#o

for ¢ =0,1,d --- . A Cauchy remainder /},y)f =4, Fo- Ay,
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satisfies
Ry © M7 KO ipe) 17T RO ) + oo 4 g0 Kpeo4p)
= (7 - ) KOgie)

since I ("f' "‘»‘1/0) is convex by X 1.

But since by K 5 the set K(Afa "«7’0) is bounded there is a S>o
corresponding to any neighborhood U of the origin such that 0<B3<3$
imlgies [3 KK (,«1,, “"d”o) < U . By nypothesis o< p< L | 50 that
LZ;‘: ,uvb converges, and so for all sufficiently large % ,

/7..,,)? =B K(ﬁ'. "«‘afo)c U for a1l ¢ . Since Y is supposed
complete, the series b, L, + — -~ and therefore the sequence

’7’0, %, b converge to an element /jxlof Y . But ,7". = -F(‘f‘--)
and ¥ is continuous, so that F(‘jﬁ.) B 'ﬂ" . Hence ‘f,: f(#') q.0.4.
To demonstrate the uniqueness of the fixed point, let = and W be two

solutions of 74 = ‘F["J') with 267_, weY . Then
z —w = (=) —f(w) < ,A,K(z-w).

Now pL< 1 by hypothesis. Putting < = l/,u- we have « (z=-w)c K(z-w)
where « >1. . Hence =z-w =6 by K 2,

Remark: The property «x € K (X) for o¢ >4 ,X# 6 is not
used in establishing the existence of a solution, but only in the unique-
ness proof.

3. An existence theorem for a differenticl equation

Theorem 3.3. Let T be a locally convex, sequentially complete linear

topological space and let {f be a complete neighborhood system of the

origin with the properties




(i) Baech U €U is convex
(i1) V€ WU implies o« U € Te.

Let I be & real open interval, G an open set of T . If 'F'(T)ﬂ') is

continuous on LG to T and satisfies the "Lipschitz" condition

-2z€UEU

(3.1) £(n, ’d‘) - f£(n,z) < ,u';{ﬁ- (U) ( M a constant >0)

for all 7€ I and ,41/,2 e G , then for any chosen e € I and a € G

we may assert that

(1) The differential system

(5.2) % = f(ny), &= a

has at most one continuous solution with values in G— .

(2) There exists & & >O such that the differential system

(3,2) has & continuous solution ﬁ' =7("‘) on the closed interval
Cc-5x+5] to G-

Existence proof: Ve seek for a continuous solution of the integral equation

(3.2)a 41/("‘)= a + J::f (<, xf(s')) de

where the integral is of Riemann type. Since -F'('C«f) is a continuous
functioniof T, lf, £ (¢, /f(’l‘)) is a continuous function of T for
a continuous ,? (r) . (Cf. Alexandroff and Hopf (1l.), p. 53) Hence

by the corollary to theroem 2,20 the functional transformation

(3.3) z(T) = a + f-F(Qz?(C)) de
of



wto a
takes a continuous function /7«(7') on I 'boc-/]continuous function =(T)

on I .

Since @€ G where G- is open, and since the space T is regular
and locally convex there is a convex neighborhood vV of © such that
at+V © G . Choose gel so as to satisfy simultaneously the

inequalities

(3.4) (@) o<p-as<ty (@) (F=x)a =« aV () B-x < Y

and keep @ fixed. Now if A‘»(c)‘ ae¢V sfor ¢¢€ [=8] we have, on
using the law of the mean for Riemenn integrals (Theorem 2,19, (iii)),

“that

z@®)—a = f:%CC,;fCC))dc = (v-«) Co(a+V)

Therefore, since V, and hence V, is convex, we have by inequalities (3.4)

that for T € [x, 8] 5

2(t) ~a < (T-«)a +(T-«) VY

Vv cg‘EV+-‘5\/=V.

c T-x) LV + L

(@ -) * *
That is the functional transformation (3.3) carries the set Y orf contin-
uous functions 7(“) satisfying /-f(f)e a+V sor e€[%p]l into
a part of itself. It remains to show that the functional transformation
(3.%), carrying-Y- into a part of itself-has a '"fixed point", i.e. that
the integral equation (3.2)a has a solution. We shall prove this by the
method of successive approximations, after a few necessary prelimina;x;ies.
K(x,

put K&x)= T 1 (U) . Then by theorem 3.1 the setsfform
xeUeU
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a K-system for the space T , and we have IK(x) =] ) (U)

x€U,VeW _
Hence for any U € U we have K(x)= (J for ecach X € U .
Let us denote by K(M) the set ZM;' Kx) , where M is any subset
x€

of our space T'. Then, from what was just shown, K(U)< U
But since x ¢ K(xX) | we may also write D < K(D) , 80 that
K(U)"—" U for each Uel.

Define ,’7,(_(1‘) inductively by

"fo(f‘) = a
(3.5)

-~
7’&«((1‘)‘-‘-“ a + S‘:‘FCCJ ’Tc(‘})da P €= 0,1, % """

for Te€fe,p].
Clearly /Jz,(?) €Y for each ¢ , so that for each Te€ I»@] we
have /f‘,(’t‘) ca+V .. In order to prove that the sequence 4{1,(1‘))
Aﬁﬂ),ﬁ(;(f),--- is uniformly convergent for T € [«, PJ , let Wbe an
arbitrary neighborhood of the origin. SinceZL is a complete neighborhood
system of (2] , and since T is a regular Hausdorff space, there exists a
VETU  witn —U_e W . ciearly lf,("‘) “lfo("‘) is a continuous function
on [=,B] to T , and by the corollary to theorem 2.25, its range is
a bounded set. That is there exists a positive constant ¥ such that
7,(1‘) -,41,‘,(‘?) e yU for a1l T € [=,p] . By an induction we
shall show that #,,, (*) - #,,(1‘) € b’/‘-"(P —a)?¥ O_ for »=t2,--.
This statement is evidently true for #=© | so let us suppose that it

is true for »# =¢ - 1L ., On using the law of the mean for integrals and

introducing the Lipschitz condition (3.1) we find that
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Heei ) 1) = J(ﬁ(c,//«(‘)) — (S 4(9))) de

€ - ) CO'Z (1‘(‘3*{4‘))—f(C,f.-,(c)))~

G€ fnr’p]

< (f-«) CrZ #K(ﬂq(:}—,ﬁ‘,(ci)

celep]

where, of course, K(x) =TI (U) .
ACUEU

The induction hypothesis states that

Z: (,?,‘(() '-411-,(()) < (/,(,‘"'(F—aa)"' (.

¢€lz0] .
Hence, since the set operations Co(M)  ona K(M)z% K&)

are both homogenecus with respect to positive scalar multipliers we
obtain
Aea (0) = (1) € (=) p Cr K(¥p'(e-)" U)
< - pm - K(U)
=ye-<)'pt G U

=Yv(p-4)p U

The last equality is true because the closure of the convex set U is
convex. The induction step is now established, and it follows that
Ao ) ~ 5 (1) € K (B=) T U for ¥=0,12 -
Sinece P satisfies the inequality (3.4), (e), the series é(?‘d)bﬂ"

is convergent. Let X bhe an integer so large that #>K implies
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t e )
- (B-o0)'p” < /b' . Then we have for any integer 3 ?K
=

any positive integer @ and fér 211 T€ [«,p] that
Yrep (™) — M (1) = % (Gvecer = Hpie)
€ xﬁ (p-o)™*t pe¥** U
- (‘éﬁ(e"“)w‘ ch) U
= (U c w.

The last two steps are justified since D is convex and contains @ .

But since w was a;n arbitrarily chosen neighborhood of the origin,
%(T))Af.(‘l‘),'“ is a fundemental sequence for each € [, FJ . Since
the space is complete, and the choice of & was independent of T € [o,f]
it follows that the Aj«,(f) converge uniformly to a function w(T)
which is therefpré (ef. theorem 2.23) continuous on [e,8] . On taking

limits: in both sides of (3.5), recognizing that £(T, Atv('f)) — £(T, wen)

uniformly, we see from theorem 2,24 that
T

wer) = o + f\c(s w(e))de
el

Differentiating both sides, making use of theorem 2,20, we have

d:/('r) . -(:(1‘) W(.,.)) for each v € [«,2]
&r

where W(x)= Q.
¢ 7
A similar proof shows that there exists a @ eT , P <o |
and & continuous function ZC¢F) on T € [f3] with

d-z{?) - (/\ 2(1\)
a7 ik ) for each T € Lf,«] , where

z(x) = @.
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The conclusion (2., ) of the theorem now follows on putting

S = min (1p-«1)p"-1) , ,.a,c‘r) = z(T) on [*-8,a]

and A}.CT)=W(T) on f[e,¢+8].

Unigueness Proof: To establish conclusion (1.) of the theorem let /'*.("')
and #,_(1‘) be two continuous solutions of the differential system (3.2)
on I to G. Either #,(’f‘) =/f,_(“") on ] or e (*) F 4 (n)

at some point T, € I . We may suppose F.> & for if T, ¢ & | a
similar proof applies. Put @ =supe, A (T) = 4a(r) on [x,AC]

so that o €@ <1 , Then there is a ¥, 0<¥-p < {u , such that
g1 (To) ~ appa (7o) # e at some point To € [f¥) | my
hypothesis the functions /7', (*) and ///,.(T) are continuous, so that

-+ (’i‘, Af,, ("‘)) , t=L2 are continuous™®. Hence by theorem 2.22, #1(1')

satisfy the equation

T
7,(1‘) = a =+ ff(q 7(:))dc' for t6¢ I,
Thus, by our selection of (B,

4o ) = ap (7) = fp’~F(€ 4@)de  for TEI, TP

Since ,1/, (%) "'#, (T.) # 6, there is a neighborhood U of the

complete neighborhoodl system u of the origin such that

——

4,(%) = 4,(T) e U.

Now the function ,1/,(1) -~ 7,.(’1‘) is continuous on the closed interval

* Cf. Alexandroff and Hopf (1.), Satz III, p. 53.
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Lp.¥] | so its range for this interval is bounded (cor. to thm. 2,25)

and there is a constant 11 > O such that
,7‘ r) _,4/,,_(1') € 11U for all TECP}’J.

Using the law of the mean and the Lipschitz condition, exactly as in the

existence proof, we obtain for Te€ [£,¥],

G 4 (t) = S:({-(c,q.m) - £ (¢, ,&w)) dc

(3.6)

€ (¥-g) Co—Z" U K (44.6e) ~apg ()
ce@nl

Hence, since (J is convex, and KCU) =U ;

“p T) — 5. (1) € (vr-B)p v U ‘ for a1l T €[] .
Substituting this result in the right member yields

7'.('!' - /j/,,('f‘) € (l"(’)‘r”n U for T E(_(ﬁu?],
and by induction, it is easy to establish that 4(T) —4pa(1) € (r-ppfq u
for all 7€ [« {3] and any given positive integer ¢ . But
0 <« Q’—p)’;. < 1 , 80 that for sufficiently large L ,

(A (3 .
(z(_..@) l‘" Y < 1 . Thus for sufficiently large ¢ ,

() = (1) € (ep)ptq U =0,
contrary to the hypothesis that 4, (1) # #; (7) . Hence

/17,("‘) = »‘f:.("‘)‘ on I , and the uniqueness proof is complete.
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4., An application of the general theorems

By specializing the abstract space T" we can obtain existence
theorems for various functional equations from the general theorems 3.2
and 3.3. We shall consider below an existence theorem for an infinite
system of differsntial equations, obtained by interpreting T as the
space® U* of infinite dimensional vectors X = (X, %3, ).

Since Fis metrizable, a function 3(1‘, X) , where T is a
.real number, X a vector in ?}. end the values of the function are also
in U, is continuous** if and only if ¢ (Ty, X% — ﬂ("'ﬂ") for any
real sequence 7. —> T and any sequence of vectors X¥ — X.

In terms of the components of the vectors 3 and X , this criterion for
continuity reduces to: 7(73 X) is continuous if and only if, for each
L, T~ T, X; > X, for A=L% --= | implies 9L(‘7','”)“59¢("3*}

In the space ‘I/~, consider the complete neighborhood system /2

of the origin consisting of all sets v (Su") Sv) : {‘2’3 J/'?"‘I < Sl\ >
A=1l,2x,--, ¥, obtained by letting the 5,,’3 run over the positive reals,

the 7”.5 over the positive integers. As we have already remarked in #1,

each ues,, -, 5”‘) is convex, and we &lso have &€ U(S,, ~ 55)

= ((«5,--,x5,)€ U for « >0 , so that conditions (1) and (ii)

of theorem 3.1 are satisfied by the neighborhood system C& . Evidently

the set K(x) =};£u( U) is identical with the set

57}) l‘éﬂ,|$ ‘x(-l) (.=l".,3}--_

*Cf. example 1°, Ch. 1, #7

**% Mhis is the "Heine condition" for continuity in metric spaces. See
Alexandroff and Hopf (1.), p. 58.
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Theorem 3.4 Iet G-) be a sequence of open sets of real numbers, all

2
but a finite number of the @*5 consisting of the real axis (- e, + @)

and let T be a real open interval. Let £ (%, X, Xs,---)

_I_)_e__ an infinite set of real functions _ci an infinite number of real

variables, and for each ¢ , suppose thet £ (T, X, &, ---) is

defined for ¢ I , X, € G'A and is continuous in the sense that.

/

P T, XS Xy implies A (KAL) = (T Kk o)

for all 7€ IJ Xx € 651, Finally, we suppose that for each ¢ ,‘F',_
satisfies the Lipschitz condition
| e s pa, - ) = R@ 2z ) | S g2l

for 7€ I, s, z5¢ G5 where M 1is & positive constant independent of

¢ . Then
(1.) for any chosen « € T , @, € G‘; the differential
system

Y g o)

;r,,(d)= a.
has at most ome set of comtinuous solutions 44, = M (T) with
qu(T)EG,, for 7el.

(2.) there exists & $§ >O  such that this differential system
has & set of continuous solutions 4 = A (1) for [T-l<3,
where apr (T) € G for |T-|< 8.

Proof: Immediate from Theorem 3.3, the above considerations, and the
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fact that "b‘ is sequentially complete (cf. discussion of ex. 1°, ¢h. 1,

#7) .
*

5. Completely continuous linear transformations

\Let 4 = £ ) be a linear transformation of a linear tOpologi/-f
cal space i N “into a sub-set L of T . If there is a neighborhood U of
the origin whose transform ‘F(U) is & compact set, then we shall say

that ¥ is a completely continuous linear transformation (function).

It is clear that a completely continuous linear transformation + takes

bounded sets into compact sets, for if S is bounded, then for some real
x Scx( and
$£(s) <+ (xU) = ««£(V),

whence 'G(S) is compact. Thue, when T is & linear normed space, the
above definition of complete continuity reduces to the usual one*,

We have proved in theorem 1.9, chap. 1, #6 that every locally
compact linear topological space is finite dimensional. This suggests
the possibility of extending the Riesz theory of completely continuous
linear functional transformations to linsar topological spaces, with the
above definition of complete continuity for such spaces. I shall show
below that several of the simpler theorems of Riesz concerning the equation

is completely coutinvovs

1»- x-f&) ghere ¥(x) A ere immediately extensible. The following theorem
illustrates the power of topological methods and will often permit simpli-

fication of Riesz's proofs8. What is more important for us, it will meke

i’c’possible to eliminate the role of the norm.

-G RICBZ- (1 )w P74,
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. 3 Fra 4
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Theorem 3,5: If A= =4(x) is a completely continuous linear transforma-

tion carrying a linear topological space T into a subset L of T,

then L is a finite dimensional linear manifold.

Proof: L is obviously a linear manifeold, for if i € L, <pa €L,

where 44 =€) | Apa= (s then o apy C sty = £(ax txs)€ [
We wish to find a topology for L which will meke L a locally compact
linear topological space.

Let {/ ve any neighborhood of the origin. For any /T('L- put

~,,, ='/7' +4(U) . Then with the sets U,} as fundamental sets, L.
forms & linear topclogical space.

Verification =o£ the postulates

(I a) Obvious, since O € U
(I b) Given «7’*‘ () | 7 b =4 +£(v’) , choose
U”e U-U . Then clearly £(U%) £ (V)
ena £(U%) < £(U').
Hence U‘I 4t -F(a"} = (/3(-1-4:((/)) (7—1——(5(0})
That is U; < U U
(Ie) Ifze U 7++(U) then z—,«ri-F(X.):
where x, € U . /ftake (/' so that x, + U < U . Then, since
§ 1o limar, A(x) + £(U) = £@&+U) < £(U),
meme U, = =+ +(0)= ae 4 )t 4] < g «F()
i.€., Uz = U
(1 4) Ii‘ﬂ/#z ,A{,zé/- =T , there is a

neighborhood 4 of the origin such that = -«f gV . Since
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—\‘\—\(K) is continuous at @ there is a U such that £ (V)= V.
Hence z—/—}/ € ‘F’{’U) , or, putvl::ingw (7’7 = "r *"'(U)
we have .z € Uﬁ’ }
(IT a) Gixbren\ D;“"—"/-t*‘z +f(U) , choose V so thet V+V <= v

Then, since ¥ \"ig linear, we have
4 T £CY) +z + £ (V) =apt = +£(r+v) =t S ++$(U)

That is, VT + V. = U,a"_
(I b) Given Ud,a, = “'g +£ (U}, let the real interval L, and the
neighborhood U, of & bve such that B € Id. implies
3 (xtU") e <x + U, where ? = £(x), Then, since 4 is
linear, we obtain

B4 +4(U) = g £(xvU) = £(p x+U)) < f(«x+U)= oy + U,

for all B ¢L, . That is, on putting U;. =’1""'F(U'), ki 4 < U“j!«
Thus L forms a linear topological space L if we take the sets

07 =4 ""F(U} as fundemental sets. But since +(XJ 1is

supposed completely continuous, there is a neighborhood U whose /)
transform -P(U) is compact. Hence L is locally compact; and by theoren .
1.9, chepter 1, #6, the "basis" L of L is finite dimensional.

Theorem 3.6 _I_g 4 = £(x) is a completely continuous linear .""l;rans—

formation of & linear topological space T into & seb-set L PE'T than

the equation x — ¥ (x) = ©  has only & finite number of linearly '

independent solutions.

Proof: The set of points X for which X~ f&)=6 gorns a linear
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sub-space M of the finite dimensional linear space L which is the

range b\f\»the transformation # =f&x) .

Theoren™ 3.;7‘\ If —F(X) is a completely continuous linear function,

and if the equation agp=x- £ x) has a solution for each 4, then

the homogeneous equation X — £(x)= 6 has the unique solution

Xx=06 . &
Proof: Put +t'(x)=+t (x) ‘\é—‘—-,x ~ £ (x)
) — v-1) o
)= t(t ».(“x))) WHEEY -

Let M,. be the linsar manifold consiisting of all the elements x € T
P )= s
for which T (x)= 6 . Suppose that there is an element X, # O

for which t(x.) = 6 . By hypothesis thefg is a solution x =X, of

+(x) = x, , a solutionx=X; 0f t(x) = Xa " , and a solution

X=X, 0f +(X) = Xy_, , for any chosen =, el Kypoy = t(xy), »=2,3,---
Then t% (x,,,)= % # 6 , wnile t (X)) = 6.

That is X4, € Mru = M . But obviously M}CM)'*-,

so that M,, is a proper subset of M,“ p for Y= l,\-‘b T
Using operator notation, where "@" denotes the identity operator, we

have

%) = (e - £)'x = (e-3:)0 = x- g=(¥) |
were gy = — 2 (2)(-F)= £ (S D))

e=¢
and where C Z) =, 7% (»-¢)! . Clearly then, the range
?7 ('T') of the completely continuous transformation 9 v is

* Cf. Riesz (l.), p. 82 and Banach (1l.), p. 153.
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contained in the range ‘F(’T‘) of the completely continuous transfor- )
ma’ﬁiﬁ'l\_ + , and therefore, since Ma < 97('71) , we have |
M, C'{:(‘T‘) for #=423.""- . Now by theorem 3.5, the linear
manifold l.:"i\s finite dimensional, so that there must be an integer fL
such that M,L = M;LH , since a finite dimensional linear space
cannot contain an infinite sequence of linear manifolds, each & proper
subset of the following one. Thus by supposing X+ 6 we have
arrived at a contradiction, and the theorem follows. We have inciden-

tally proved the

Corollary*: There is a non-ﬁeé&tive integer % such that for PL b 4

e e
every solution of the homogeneous equation t F ("() =86 also satis-

fies t(")(x)-'—' 6 , while for 0 £ 4% | the equation t("'ﬂ)(x)= 6

has a solution not satisfying t""’ (x) =06 .

Proof: Take % +to0 be the first integer such that M-y': M-y-r-n *

Theorem 3.8 Put €(x)=x-€C(X) | andg denote by L., the range

)
L ('T') of the linear transformation 't'(w (%) . Then there

exists an integer ¥ such that for Q2 %, L—pl-: L'J', but for

0O $ L <7 L_yﬂ is a proper subset of Ly . This integer » is

the same as that of the preceding corollary.

;ng__c;i;: Clearly L m , being the range of a linear transférmation is a
linear manifg’oid, and sinee T ¥TY(T) = ;""(—t(m)) , we have
L}L-H CLH— . Also, if L—'.l."-l = L—f‘— , then L; = Lr—

for all g = pt . .'Ihus, if the theorem does not hold, then every l—-f"“l

is a proper subset of L.,,,. Therefore there exists an element Xpo in

* ¢f. Riesz (1l.), p. 81



3,#5 85

L,., but not in L,m . Now we have
£ (rp) = tCope) = Kp= (Kpartb () — £ (tee)
= )(P" - X

where X = Xp&n t Clopw) =t (apel) € L‘ff'ﬂ since

Xptr, tCxpe) , t'(t(;,u-() € [ Y
Since X € L,,L+' , While Xg € L_y.-w , We see that
X”—X € L"-’-l . Hence ‘F(xu—‘xf“‘l) € Lp.."._ Lp.-e—l .
But if L,ul is a proper sub-get of L,.. for all p¢, then we are led
to an infinite sequence of linearly independent elements
'f,o = (% - Kf“") , with /Z/,u. el =+ (rrv))
contrary to the fact that L is finite dimensional (cf. theorem 3.5).
Therefore the first conclusion of the theorem holds, and we have
L,p ?EL - for p<% , but L—y=LvH . That is tCX/ takes
L,.. into itself. Hence, for any,?« sl » , there exists a solution
X=z €[, of the equation ’f-'()‘)-'"/#' . The rest of the argument
may be carried over word for word from Riesz's proof, see Riesz (1l.) p.85.
From theroem 3.7 and corrollary, and from theorem 3.8 we obtain at once
the following criterion for the solution of the equation tx) = "j’

Theorem 3.9 E-F(X) is a completely continuous linear function on T

to T then the equation X — t@ =/3/ has a solution for all Aff T

if and only if the homogeneous eguation X - -@(K)—*—‘-G has no solution

pesalay —

Il

]

ther than e,

X
Proof: If x =6 is the unique solution of t(x)=6 then we

cleerly have the case ¥ =0 of theorem 3.8. But then T(X) takes
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L.“’T into itself, and for every /dr"' T , the equation €Cx) =14,

has a solution. The necessit&' was proved in theorem 3.7.
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Appendix I: The Kuratowski Postulates for a Topological Space.

Let T be an undefined set operation which orders to each sub-
set M of a "space" E , & subset M of £ , subject to the following
postulates (ef. Kuratowski (1))

(1)) M+N = M+ N

(ii)vf EE 2 (’F) =q’) where (f’) is the set consisting

of a single element /f’ .

(1ii) Iﬁ =M

(iv) @ = O where © is the mull set.

A space £ satisfying (i) - (iv) also satisfies postulates (Te) - (1d), ana
conversely, as is shown for example in Alexandroff and Hopf (1.) p. 43
and p. 59. If T is a linear space satisfying (i) - (iv), and if in
addition the following postulates hold for T

(v) M+ N<M+N for a1l sub-sets M, N of T

(vi) /-\- M < m for all sets A of real numbers and
all sub-sets M of T; where /-‘- denotes the closure of A , then
is the "basis" for a linear topological space j , where neighborhoods
(jx are open sets containing X , a set U being defined as open if
T-U=T=-U | e postulates (v) and (vi) are simply another
way of atating the continuity of the operations of vector addition amnd
scalar multiplication, making use of the following definition of contin-
uous functions:

V4 .
Let £ and E be spaces satisfying the Kuwatowski postulates (1)

/
- (iv). Then a function ‘f' on E to E will be said to be continuous
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on E if 'F‘(M-) < 'F(M) for any subset M of E . TFor the

proof of the equivalence of this definition of continuity to the
definition in terms of neighborhoods used in Chapter I, see Alexandroff
and Hopf (l1.) pp. 52 - 54 (Satz IV). The postulates (i) - (iv) are

essentially those used in Kolmogoroff (l.) and Tychonoff (1.).
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Appendix II: Pseudo-normed spaces.

A linear space T will be said to be pseudo-normed*if to each

of T there corresponds a real number || satisfying the con-

ditions

(1,) lxl>»0 3 \xl=0 .D. x=86

(2.) lee x| =[] | x]

(8.) If Ixl—>o0, 141>0 then Ix¥+«(—>0.
We shall show that a linear pseudo-normed space is a linear topological
space in the following way: If S is any sub-set of T we denote by 5
the set of "contact™ points of S5 , where by a contact point of S we
mean & point X such that for every $>0 there is a Ad. € 9 with

l"a' -xl <8 . Then we may demonstrate that the postulates (i) -

(iv) of RKuratowski are verified. (See Appemdix TI)

A3 (i) It is clear that M + N < M+N . 1 prove that

!.—T—-. — — .

M+ N cM+ N take X € M+ . 1If x is not a contact
)

point of N then there is & $ such that no point ﬂ/ of N satisfies

\x"a’l <35 |, Therefore for each | ? &  there is a 2€ M such

— ——

that lx-2( < N , i.e. X €M . Similarly if X€ M then
X € N . Postulates (ii) and (iv) are evidently satisfied.

Ad (iii) Given ™ > © , by property (3.) of the pseudo-norm there
exists a §20 such that \x+agl < for \X1, lygl ¢ 5.

Given Xo€ A_';: , there exists an xéﬁ such that \X- Xol <% S , and

similarly there exists a ,«a,(- M such that IA& —x] < 8 . Hence

qu—xolzﬂ'] ,where/.’,éM ,i.e.l-\-/l-cm .

Ad (v) If x € M— : »1/6 N , there exists sequences ##y € M,
My eN , With [me,,—x| —> O, l/n,,."»j,] —> (0O . Hence by (3.),

*ruis poevdo - novrme is noet to be confused with Nevmaun’s
IPSevdo - metric ‘av liuca.r-tapologiccl spaces.
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l,m,,-f-,n.,_x_,#l — 0 i.e. x-t-:t e M+N.
Ad (vi); Follows from the fact that
(XX — Xokog ] = | X —o(Xo *XXy —KoXg| — O
as | x = otko| = let] | X—Xo| > O and |« Xo—cloXo| =12 —as| X |— 0.
From Ch. 1, #6 we now have the

Theorem The necessary and sufficient condition for a linear topologi-

cal space to be pseudo-normable is that it contain a bounded open set.

It is clear from Tychonoff's example H-/,_ , and the results of ch. 1,
#6 that a pseudo-normed space is metrizable, but not necessarily

normable,
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