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The Calculation of Second Order Polarization 

Energies in Atoms 

A. Introduction. The development of the quantum mechanics 

made possible a systematic attack on many problems of atomic 

energy. The problem of polarization in an external field is 

one to which the approximation methods of quantum mechanics 

are applicable, since in cases of interest the external field 

is small compared to internal atomic forces. Indeed, the 

first use to which Schrod1nger1 put his newly developed first 

order perturbation theory was the treatment of the first 

order Stark effect in atomic hydrogen. A second order per­

turbation theory was developed independently by Epstein2 , 
3 4 Wentzel, and Waller and applied to the second order Stark 

effect in hydrogen. Other treatments of hydrogen and more 

complex atoms in a uniform field followed, notably by 
5 Buckingham, who applied the variation method to the problem. 

The more oomplex problem of polarization in a non­

homogeneous field has received relatively little attention. 

Th. Neugebauer6 has given an approximate treatment of ion 

deformation in binary crystals, but he was not concerned 

with the energy effect of the deformation. 

Inasmuch as an ion in an ionic crystal is subjeot to 

a complex electric field arising from the distribution of 

positive and negative charges in its environment, knowledge 

of the theory of atomic polarization in non-uniform fields 

is essential to a complete understanding of crystal lattice 

energies. It 1s with this application primarily in mind 

-
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that the following treatment is undertaken. 

The method to be followed in the subsequent calculation 

is first to carry through as rigorous as possible a treat­

ment for an electron in an hydrogen-like orbital, then to 

generalize the result by substituting an effective nuclear 

charge for the true nuclear charge. This method is , to be 
I 

sure >an approximate one, since it assumes that the field 

about one electron due to the rest is central, a condition 

obviously not fulfilled. 

2 

The expression for the hydrogen-like ' atom will be ob­

tained by application of a general perturbation theory7 which 

is capable of giving results which are exaot (for the hydrogen­

like atom) to second-order terms in the parameters describing 

the field. However, since filled-shell ions are of primary 

interest, simplifications will be made which, while not affect­

ing the results for filled-shell ions, will destroy the rigor 

of the treatment for hydrogen. 



B. Eleotrons in Hydrogen-like Orbitals 

l. The Potential Field. In order to describe a 

potential in charge-free space, a function of spat ial co­

ordinates V (x, y, z) must satisfy Laplace's equation 

3 

(1.1) 

where 9z i s the Laplace operator. The most general solution 

of this equation satisfying the usual physical restrictions of 

boundary and continuity for charge-free space is, in polar 

coordinates 

where 

with 

(1.2) 

is a spherical harmonic function given by 

n _ _!__ co.s h 
06h (f) - VP7T .sin f 

p = l otherwise . 

(1.3) 

(1.4) 

is an associated Legendre polynomial of degree g and 

order h, and may be calculated explicitly by means of the formula 

,, ¾. dli I d!° ~ " 
f; _("J:.) = {1-;=.-z.) . dz.,, z_:fg! c/._z_~(Z;1.-1) i r: {z.) -=-1 

The set of functions 0 9 , ,-, (!9-) are normalized and orthogonal 

satisfying the condition 

(1.4) 

0 

where 

{1.5) 

for <,f::: ~' and O otherwise. Similarly ,Q/i ( <fl is 

seen to be a normalized trigonometric function. The range of 
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variation of the index g is from zero to infinity; that of h from 

zero tog. The term with g = O, however, represents the trivial 

case of a constant potential, for which Go 0 may be arbitrarily 

set equal to zero. The sum in equation (1.3) is to be inter­

preted to include both sine and cosine terms in S2 , each with a 

coefficient G~.i, , except that when h = 0 only the cosine term 

is to be considered. The coefficient 2. \[J is inserted in 

order that G~,, reduce to the familiar strength of field for 

the case g ==- l. 

2. The Schrodinger Equation. The wave equation for t he 

perturbed hydroge nic atom is 

-::"-/ 'vz.1jl(r,191 <f) - ~ez.'l{/'(r,.9,<P) -t- V(r,i9,'f)~ l('(r, ij, q,) 

(2.1) 

where Y is the wave function for the system, his Planck's 

constant, ,J-< the "reduced mass" of the electron and nucleus 

( J_ -t- ..1.. - .1. ) m, m,,_-r 
' 

Ze the nuclear charge, e the electronic 

charge, and W the energy constant of the system. For convenience 

a change of variable will be made, letting 

The transformed wave equation is 

where 

V'2.y OJ~) <P> +- rt -¾ )¥lt, ~, <PJ +-A Y (s, -B, if )-=-!31((1,19, <PJ 

A -::: b Ev, 31 e~,h c-&>J?. h (<f)) 

i= ~ - 2-. hr .!!.!__ (n'a.a) !{.,., G 
'- <_t, li VY Ze Z.Z ~.1i 

(2.2) 

(2.3) 

(2.4) 
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The transformed e quation will be represented symbolically by 

(2.5) 

where ti_ 0 

:: V2. 
n' +-- _l. 
5 "f and H'= A , the "perturbation operator." 

When V ==- 0 (that is, all the G:s,1,-= 0) equation (2.1) reduces 

to the familiar equation for the unperturbed hydrogenic atom, 

with characteristic solutions 

( 2. 6) 

and allowed values of the energy constant 

(2.?) 

Here O( t.Z. )3 (n-,.L-1)/ J 1i. _',]. r(z.l. ).,eLz-1:>1 ('l-Z } 
- - - --- n.i.Q - r - r - na.o 2.n(nt-..f}/3 ..ll n"'- n n" 

, \Ag hT< ~o 

/4 I imcp (2.8) and.. '±!,,, ( <P) -=- Vff e , 

(2)-f.ln,J being functions already defined' (equation ( 1.4}). The 
2.-e1- 1 

functions Lni--t lf'J are associated Laguerre polynomials, expressed 

explicitly by 

(2.9) 

n, 1, and mare the usual quantum numbers defining the quantum 

state of the system. 

3. The Variation Functions. In the method of treatment 

employed, the true wave function 1.f/ is expanded in terms of 

a suitable set of functions Fv,">-f ( 3, z9, <P) , so that 

y o., J9, if J -=- [ BJJ. >-/'" ~),,, r c-s, -J.J 4> J . 
j,,\),)"-

'\f/ must satisfy the wave equation in the form of equation 

( 2 . 5 } , namely 

(3.1) 

( /:!_o +- Ii/) t,,;v BV,ll,J,4- /;,;,,_µ. ( 'f, -i9, {f) = f l,)A- BP,li,I'- F;,,),fA- (3, -J, 'f 

Multi plying both sides of the equation by Fy,;~, (,, i, c.f) J~S s/nJcl1P,l'f' 



and integrating over the entire range of variability of the 

coordinates, one obtains 

L ( /-I :,>-'.1-'-' t- fl;,J.',)<' - Av'J./' (3 ) Bvf'r ==- 0 

~\j'- Y, ),.,,1-'- y ,.,,,, y ),._I-'-

"' 7i 2.T, .If 

where H ~'r' -=-f ds j Jt9 j d,p ?.,,}.,;,-1 /j__" Fv,.,,,,._ J 2.sin-8-
VJ.r- 0 0 o . . 

H~Yy ~ j dJ jdJ (d,'f ~ '~/ f( ¼,P- S~s<'h ,g_ 

n.r-- i) " .,/, 

00 1.,, 12.71 ¥ 2. • 
..Ll v'>-'.,,J "'1 d,3 cL i9 c.(_ <P 0 ';>.',;;,' 0 ;.r g S•., Jl. 

-J.- Y;. ,;,,,..., cl o o 

and F signifies the complex conjugate of F. 

6 

( 3. 2) 

(3.3) 

Equation (3.2) represents a set of simultaneous, homo­

geneous, linear equations in the constants BvJ.r. A necessary 

and sufficient condition that it have a solution other than 
) 

all the Bv>r ~ zero is that the determinant of the coefficients 

of the Bv>,I"-, ..s vanish. 

'rhis will be true for certain values of f3 , which in turn 

will give characteristic values of the energy constant w. 
The set of functions FvJ.)'-- Cs, vi, <f} used in the present 

2 treatment was introduced into quantum mechanics by P. s. Epstein. 

It is 

(3.5) 

where 

(3.6) 

.f. 

The functions LnlSJ, E\,.,._ll.9) and f.rc47) have already been 

defined. 

Some properties of these functions are important. They 

satisfy the differential equation 

( n' ) -('!!.::..!!-1
) F fl 0 

~J,,µ- :: \11. Fv,,,,,,. +- T - { ~ J,.,)"- :::: 5 v ~./'-- (3.7) 
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and the orthogonality-normalization conditions 
0:, 7T 2-11 

J d s J d.~ J dcp ~~17, FvJ,,,,,.. r s,,,, ~ -::. s.,,v s?-';;i s/'"/- (3.8) 
"' 0 .., . 

The functions /\,..,;. are themselves orthogonal and normalized: 
DO 

j I\ }J';i /\ v ~ :sol s "' S>y 
0 

A recursion formula for fv,._,,,,,.. which may be derived easily 

will prove useful. 

(3.9) 

S F,,,~ ~ - [rv-;. > CV•,\• /J /•/;,,,,A/- • '- VJ;;,,,,, -{<>-'•.>HY-A-, l} ½. J;:.,.{3. 10 I 

If the variable J in these functions is that defined by 

equation (2.2) and if n' is identified with the principal 

quantum number n of the unperturbed wave functions, the func­

tions ~"r and 1r:,;, become identical (except for a constant 

factor) for Y = n, but not for other values of Y • In 

this treatment n' will be set equal ton, the total quantum 

number of the particular unperturbed state which is of interest; 

that is, the state whose energy Wn is to be found. Hence 

(3.11) 

where Wµ is a constant equal to the lowest unperturbed energy, 
z2..e'Z.. 

namely -- • A 1s seen to be proportional to the perturba-
z, 0-o 

tion energy of the system. Similarly the operator J:!.0 

is seen 

to be proportional to the true Hamiltonian operator diminished 

, so that the integral is proportional to the 

difference between the corresponding integral involving the 
0 

true Hamiltonian operator and the quantity L\~t;::' W" • 

4. Simplification of the Secular Equation. Since the 

value of ,Ii is desired only to second order terms in E-:;.'1 and 

for a certain state of the unperturbed system, namely the 
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state (n, 1, m), some important simplifications can be made 

in the determinantal equation (3.4). If the first order in-

tegral 

in the 

/-/ ;'A',µ' is neglected in all non-diagonal elements except 
l-7 J.,.'-4 

row and column with v ', }.', 
I 

and ,,f'- or v,;., and,,µ equal to 

n, 1, and m respectively, no errors of second order or larger 

will be introduced into /3n.£,,,. Similarly, if f is replaced by 

a first order approximation in the diagonal elements and in this 

row and column (except in the element~~~:~ where it must be 

left explicitly) and by a zeroth order approximation (which is 

zero) elsewhere, the value of /3n'-,,., to a second approximation 
is unaffected. Furthermore H ~'>',,....' is easily evaluated by use 

>' ).fa'-

of equations (3.7) and (3. 8). 

/-l~,,.,1-'-, ~ -{v-n>J,,,,., S\,i' S'.,,u-',/,'- (4.1) 
Y'J.)"-

With these simplifications, equation (3.4) reduces to 

-(v-n) 

0 

0 =-o (4.2) 

Here f!.t,.. represents a first approximation to (1,,1,., • In the 

diagonal elements the first order terms have been neglected 

in comparison to those of zeroth order. 

It is now necessary to specify more closely the nature 

of the state (n, 1, m) of the unperturbed system which is 

under consideration. If it is desired to treat atoms with in­

completely filled electronic shells, the correct zeroth order 

wave functions will have to be found and the secular equation 
~n 1 m) (4.2) rearranged in order that the element tn 1 m:} where /'n-1,..:,. 

appears shall correspond to the system described by this correct 
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zeroth order wave function. The present treat ment, however, 

is primarily concerned with ions with cor.ipletely filled shells . 

In this case hybridization of the zeroth order wave f unctions 

for t he individual electrons has no effect on the result, as 

will be s hown in sect ion 10 of this paper. Hence for con­

venience t h e simples and p orbital wave functions will be 

treated, the l atter in the comp lex form. 

5. The s State (no o ) • Since t h e s state cor responds 

to a spherically sym.rnetrical electron distribution, t her e can 

be no first order perturbation, provided that the possi bi lity 

of hybridization with another orbital is precluded . /3~0 0 

may therefore be set equal to zero. The intearals. II~~,,.,. which o n o o 

do not vanish are finite in number and are shoVvn in the 

Appendix to have the following values . 

I 

The sum over g and h which enters into the definition of H vA/'-n oo 

is seen · to have reduced to a single term depending on g and h 

for any g iven set of indices V,~f,• This makes it possible to 

express fnoo . as a sum: 

( 5. 2) 

j.n which f,,00 (g , h) i s the perturbation energy p roduced by 

the g h term of t he potentia l, acting a lone. For simplicity, 

t h e subsequent ca lculations will conc ern t he g h term alone. 

The diagonal elements whose row and column still contain 

some non-vanishing integrals are seen to be -(r-n), and 

i s eas ily seen from equations (3.10) and (3. 8) t o be 2n . 



With these substitutions the secular equation becomes 

-Zn fnoo lg-,h) 

H' , 
noo 
r,,g-, t.h 

10 

( 5. 3) 

Two elements are to be included for each value of r, one 

corresponding to the index+ hand one to - h; however when 

h = 0 only one element should be included for a given r. The 

solution of ( s. 3) is 
$f+l•n 

/9noo (~,h) ::. ..L ~ pn 
r=-:s•' 

I I I z. H h o o 
r,s-, c.h ( 5.4) 

r The p ~ State ( 210). o. The non-vanishing integrals 

and 

Wifh no _ hybridization, a first order perturbation can 

appear only if one of these integrals reduces to H~,o 
2. I 0 • 

This can occur only for g = 2; t he case should be given 

special considerati on. In general then 
I 

{5'n10 (g, h) = O. 

The secular equation reduces to 
I / 

-2.n f,,,,,o (~,J,) Hn,o H,, ,o 
r., <1 -', tJ--, r, ~•• , tf, 

H
I 1i' 
n,o - ( r -h) 
r,fi , 1./i 0 :::..o (6. 2) 

)-I I • 
n,o 0 -(r-nJ 
r,g-, th 

whence 

I I 2. 31-n+-I 

H r,1-1, t.'1 J I )_ 
l'J, I IO + --::;;--f, 
(r-n) 

r~g-n .. 

(6.3) 

(r-n) 



7. The States (s~l) and (2,J.-,1). 

integrals are (see App endix) 

11 

The non-vanishing 

LI/ JI/ :::. £ ,_
1 

srr1J- r.Ll3p{nr1J/{~-,..r .... 1)_f(<s",.h-1)(~rh))½. {zq-rz.)J 
I I r, g--1, 1->i ~ r,~-1, -11-'7 \ ) 

n 
' 

l I 
• _:;,, J, "I 1n-2.Jf (r-51 )! (z ,g-1)(2~.,.., J 7{ & ... 1-m·r>! (51,-i+n-r)) • n, J. I -z 

HI - Hi -::.. £ (-1)<1•n-r.,l1~::spf'!-'1r1)(,t->,-r-e.){n-~J1(<s-,.J1-r)!J.(~-+1J!f!?rg-1-2.,-rJ 
r, 'fr11 1-J, - l';'l°-1-1

1
-Jrl-J '-'g'.>, Z.. 

n, J 
1 

I n, I, _
1 

, 7T(2
:f'"l)(2 g-t-J){IH·1}/{r=-~-~)! {<{,-1-n-,.r)t(<{;H+h-r)J 

'{-t2~ ,..~ ~--,,.,.., 

(7 .1) 

.Again ws"t h no hybridization, a first order perturbation 

can occur only if g = 2, h = o, and again this case needs 

special consideration. In general again f7n~, <'i!,'1 > =-/J/11 _, r,r, Ji) -:::. o 

and the secular equation becomes , for (mll) 

/ 1f 

H n 11 
,-,g-1, I t't 

J-J~~J 
r,,r ... ,, ,-,-, 

- (r-n, 0 

0 

0 0 

0 0 

/ 

Hn 11 
/// 

r, '/1-11 1-1--, hll 
r, 'if•~ , .. ,., 

0 0 

0 0 -=- 0 

-(r-n I 0 

0 _ (r-n J 

(7. 2) 

The result for (n, 1,-•), as can easily be seen, is identical. 

8. Hybrid p Orbitals. It will be useful to consider 

the states of the unperturbed system obt-3.ing_blE by hybridiza­

tion of the three p states just treated. Take, for exauple 

( 8 .1) 
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'rhe perturbation integrals for this state are 

H I = J... (H.~, 
V,A~ Vj r,<,;'-L 
p n,o ( 8. 2) 

However, for particular values of g and h only one term of 

this sum will be different fro:n zero, as will be seen upon ex­

a'Tiination of the non-vanishing integrals. Furthermore, this 

wave. function represents a spheric•al ly-symmetrical electron 

distribution, and as such cannot ,give rise to a first order 

p erturbation energy for any perturbing potential, g = 2, h = 0 

included. It is, also, as good a basis for treating filled-shell 

ions as the simple p functions treated above. It can easily be 

seen that the secular equation for this hybrid state will have 

the solution . 

( 8 . 3) 

and is good for 3.11 va.lues of g and h, including g = 2, h = o. 

~wo other linearly independent hybrid orbitals may be con-

s tructed, such as l:,10 +- F,,,, - 1=,,,,, -, and F;-,N - Fn11 -f;,,,,-, ; the s e 

will g ive re sults identical to that indicated in equation ( 8 .3). 
of 

9 . Final Express ions. Ori intro due t.ionl\ the explicit values of 

the integrals calculated in the Appendix into the expressions 

for /3 (gh) calculated in the prece~ding paragraphs, the following 

;3 II expressions are obtained for 1 ( gh) and for W (g'h). 

::Tor the unperturbed state (n° 0 ): 

( 9 .1) 
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For · t h e • y br id s t ate ?= ~ (n10 1- n11 +-n, ,, -,) : 

It will be notic ed that t h e energy express i on fo r t he 

hybrid p orbital is independent of h; thi s resu lt i s necessary 

on acc ount of the sph eric al symn-ietry of the wave function. 
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c. The Generalization to Filled Shell Ions 

10. The S~litting of Degenerate ~nerg-J Levels. It will 

be noticed that in case n is greater than or equal to g there 

will be a term for r = n in one or both of the energy express­

ions in equations ( S.l) and (9.2), and that then the factor 

(r-n) in the denominators of the ex:,:Jressions will vanish. This 

factor is - H':i>y,- , proportional to the ener6,y difference be-
n )./ ,.,._ 

tween the state (n f)"-) and the state ( nLm) whose perturbation 

energy is being calculated. Since the wave functions being 

used are hydrog en-like, these states are treated as degenerate. 

If it is desired to treat a hydrogen-like atoill, this degeneracy 

makes the calculation of' perturbation for non-hybridized orbitals 

unsuitable; the correct procedure is to solve a fir s t-order 

secular equation for the correct zeroth order wave functions 

and to use these in the subsequent calculations. The subject 

of the present treatment, however, is not the hydrogen-like 

atom, but the filled shell ion with more complex structure. 

In this case the degeneracy of these states is removed by the 

non-couJo,nb field of the other electrons and the integral 

-H~A~ ·should have a finite value. As the present method 
n), )"-

fail S to g ive this result, an erapirical estimate of the 

splitting for the atom in question must be ~ade and a suitable 

value inserted in p lace of the factor (r-n). 

The integral 

( 3. 6) and ( 3. 11) 

H~i\_r may be shown by equations (2 •. 5), (2. 8 ), 
V)..,P-

tO be equal to 

v 4 {J o~ ( hz. Vz. J:e')v._o d 
-=- - Z..W,, n 1.f"vl-,1'- -81T~ - r VJ._r r . ( 10.1) 

+- \tv'n~ni J 
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F'or the case v = n i:::i which we are interested 

( 10. 2) 

By use of the energy screening constants of Pauling and 

8 I Sherman , the latter factor ma;:,r be estimated. If tSE is the 

required screening constant for the a tom being treated f'or the 

( 10. 3) 

This quantity should replace the factor (r-n) in the ter:n of 

equations ( 9 .1) and ( 9 .2) for which r = n. 

11. Effect of B__ybridizing Unperturbed Wave Functions~ 

The next step in generalizing the expressions in equations 

( 9 .1) and ( 9 .2) to apply to filled shell ions will be justifi­

cation of the statement made in paragraph 4 that the pertur­

bation .energies for filled shell ions are independent of the 

type of hybridization assumed for the individual electrons. 

If¼_, is the wave function for the nth state of the unperturbed 

system, the first order perturbation energy is given in general 

by 
W / :=. f11r o* H' V," d:( 

'Yn """"" n 
( 11.1) 

and the second order perturbation energ--y by 

L J 'l,ro_. fl''IYo d-r}Y." 1" H'v,.o d-r 
• ·~JI/=. TJ IJ n • J 
VV 1 _ / o \ _ / o • 

i'f-11 VVj - vv,, 
( 11.2) 

For a system with several electrons theee 1.f/ 's are the com­

plete zeroth order wave functions and err is the product of the 

volume elements of all the electrons. In case the perturbation 
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op erator li.' is a sum of' t er ms each depending on the c oor dinates 

of a single electron, as it is i n our case, the wave equat i on 

remains separable into several single electron equations, if 

interelectronic interactions are neglected. The complete unper ­

turbed wave funct :Lon can therefore be expressed as a compl etely 

antisymmetric product of single electron wave functions 

( 11. 3) 

. ' . 

where 9"'- represents all the coordinates of t h e ~-th electron 

and I\i is the number of electrons. Electron spin i s neglected 

here; however its consideration makes no essential chang e in 

the arg1..unent. Since we are considering a filled shell, t he 

number of orbitals in the shell is the same. We wish now to 

investigate the effect of rep lacing each ¼ ('ft') i n equat ion 

C1.:1·.3)by a hybrid function of the form 

" 
tp"' (CJ,) :: E a."'.- y; <1~ > 

i:.1 

The equation now assumes the f orm 
,, 

I 

\IN 

~ a.,.: Vf (9,) 
'=, 

,., 
? aw,· ¼ (9, J ,:., 

(11.4) 

,., . . . c.. a,..-v,: <'l~) 
t'~I 

( 11. 5) 
r" 

°L ~"'...; "K· <<t,., ,,., 

This determinant is i mmediately recognized to be a product of 

determinants, so that 

-o I · ! iJ,,.,:;'' •••• ~,111 ,(9,) 

p(9, .. .. qr1)=VN x 

a", •• - . . ~"'r1 ,v~ <'f, I 

11.6 ) 
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According to equation (11.6) fu and Yb diff er onl y by a con­

stant factor. I f however t he individual Y.: ~ and the hybrid 'Pct..\ 

are all normalized, both Y 0 and ~., are also, · and the first 

determinant in equation (11. 6) must be equal to unity. Hence 

V 0 and. 'P O 

are identical. It fo llows from this and equations 

( 11. 1) and ( 11. 2) that t he fir st and second perturbation energi es 

in filled shell ions are independent of the typ e of hybridiza­

tion chosen for the individual electrons. This being the case, 

the simple s functions and the hybrid p functions of the t ype 
/ 

of equation . ( 8.1) have been chosen for the present treatment. 

12. Selection of Screening Constants. Finally it is 

necessary to allow for the perturbing effect of interelectronic 

interactions on the energy expressions. This 'Nill be done in 

an approximate way by use of well-known screening constant 

·wave functions. Th e q_uanti t y Z, the nuclear charge of t:he 

atom, is rep laced by an "ettective nuclear charge" Z - S; 

s, the screening constant, represents the average eff ect of 

the additiona l electrons in shielding the electron under con­

sideration from the nucleus. 

Swill depend both upon the atom under consideration 

and upon the property ·whose calculation is to be at tempted. 

According to a calcula ti:::m by Pauling9 , a proper value of S 

for calculation of a property proportional (for a hydrogen­

lik e electron) to nrl-c is g iven by 

( 12 .1) 

Here z., is the number of electrons in the i th shell and D,· 

i s known as the screening defect for an electron i n the ith 

shell. D ma;y be calculated theoretically; it i s better how-
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ever to obtain it fro :n the semi-emp irical screening cons tants 
8 of Pauling and Sherman . 

Approximate values of r are obtained by calcula ting values 

// 
of W for v -3.rious values of g and . n and plotting their loga-

rithms against log n. Fig. 1 shows this plot for g = 4 and 6, 

t wo cases wl:..ich are of interest in t he subsequent application. 

The result shows r for both the s and p states to be approximate­

ly 16 for g = 4 and 22 for g = 6 . The value oft is seen from 

equations (9.'q) to be 2g + 2, hence 

In the following table, Pauling's and Sherman's semi­

empirical "size" screening constants 0 6 were used to calculate 

rz. O· ; this in turn gave S for r 
= 1.6, by equation ( 12 . 1) 

" ' c i 

Table 1. Screening Constants 

Structure Type ~s Orbital 'E_Zt 
..!..--

fZ.:D.: s 

He 0.19 ls 1 0.40 0.35 

Ne [ . 3 .!.10 
• 4.57 

2s} 
2p 9 {

2.95 
2.22 

4.28} 
5.46 

Ar { 
0. ~ 10: ~tl 17 { 3

3. 9§ 
< .oo 1~:I l 

Kr { 2~.b?. 4s,} 35 { 
5.4 26.4 } 2o. 4p 4.2 28.3 

Xe { 38.8 ss·.} 53 
{

7.1 41.6 l 41.8 Sp:. 5.6 44.0 

13. Fin3.l Express ions. The fina l expressions for the 

second order polarization in an ion wi t h twos and six p 

electrons is the following 

(13.1) 
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g1-1 .. n 

Jn.s (g,h) = (~1- 2. )!~ [_ 

r=g1-I 

r 4~~1J(n-2.Jftz,1+-1)/ 2.f.,+-n (rt-~1-1)! [n(<_t1-2.J-r]2.. 

n 12;1 ... , J ( h-J.,) ! r ='l, ... 2. (r--'jf- 2.J/ ('![+1-,.11-r)f •r,11-1 -n;-r)/~P (r, g1-1) 

( 1~ . 3 ) 

for rf 17 

'1rls (n d 1- n 1c 
)~ - Z(z-shs)G Lsc {noo) - 5E tn,_g,.,'1}][2.Z-sE(noo} t-Sc(nth,J 

( 13 . 5 ) 

%p (n, A) = 2.(Zn_ s,,,,>-z.. [ SE (nlo) - 5€ (r, A-,1-'-)] [z..z -sE {17/o) t-5E.(nif)_] 

( 13 . 6 ) 

S,,
5 

(~.~> i}nd S,,,.,<<s,h) are appropriate screeni ng c onstant ,s for the 

potenti 9.l Vr1-i , and SE (nf;,-) are en~rgy screening constant s for 

the s t a t es (n \/). 



D. Ap;;,lication to the Lattice Energy of a Sodium Cl1loride 

Type Crystal. 

14. Introduction. In an ionic crystal, the electron 

clouds of the individual ions are polarized in the field of 

20 

the surrounding ions. This polarization gives rise to a 

stabilizing term in the lattice energy, the magnitude of which 

may be calculated by use of the theory developed in the 

preceeding sections. The present application will be limited 

to crystals with the halite structure. 

15. Potentials with Cubic Syu11r.o.etry. Since the environment 

of every ion in the halite structure is cubically sy:rrnctric, 

the potential function due to the ion environment must also be 

cubically syrmnetric. The conditions for cubic symmetry may 

be derived by expressing a general potential in cartesian 

coordinates and equating coefficients of equal powers of x, 

y, z, -x, -y, and - z. 

The general potential function is 

Vr-,.., ':f,Z),: 2. v'.r l o~,'1 /(<sh (7{,':J,Z.) 
~,h 

( 15 .1) 

where Ks-J.i is a spherical harmonic. K~1i is homogeneous in 

J/,t...,1-j' .. .,z..,. of degree g. Because of this, any symmetry proper­

ties possessed by the complete function V (x, y, z) must also 

be possessed by the sums of terms with the sarne value of g. 

Since V (x, y, z) must be symmetric in positive and 

negative values of the variables, all odd powers of the 

variables must vanish. That is, ? ~,, Xs>i = 0 for all sine te,,-,,.,.:,> a.I/ 

terms with h odd, ~no all cosine ter:ns with g - h odd. Since 

the functions K$~ are linearly independent, this condition 

requires that G~~ vanish for all of these cases. In addition, 
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in the spherical har,nonic s vd t h g even and h equal to twice an 

odd integer the coefficients of x" and yti are equal and opposite, 

n being an even integer, while in thosE with the remaining even 

values of h the coefficients of x" and y n are equal. Under 

the s e c ircu.,11s t ances the former are incompatible with cubic 

symmetry. Hence f Gs-Ji ~;, .= 0 for g even, h = 2 ( 2n + 1) • Again 

' this condition requires that all these Gg1, ~ be zero. 

There remains the cosine functions with g even and h = 4 n. 
n By expressing these explicitly and equating coefficients of x, 

yn and z'P'I , the f ol lowing conditions are obtained 

G == 0 Z.o 

G,
0 

=-~ V3S (},,_~ ( 15. 2) 

Other relations exist for higher order terms. 

16. :svaluation of Coefficients for the Halite Structure. 

The potential due to a distribution of point charges · is given 

by Coulomb's law as 

Vtr> = l Cf,· 
. la,• - r I 
' - - ( 16.1) 

where g is the rnagni tude of the i th charge , .§:.., is the vector 

from the origin to the i th charge, and £.._ is the vector from 

the origin to the point of interest. By use of an expansion 

10 t heorem , equation (16.1) can be expressed as 

where r,D, and<? give the length and direction of E._ and a..:, 

s. , JJ.- tho se of ~.. • In order that V(r) should be in the 

form of equation (15 .1) we must have 
G ~ l/37i q,· 

is>i :. f 2S1'3 • a, za-+, /(!1'1 C-x ~·, ~'° , z:~) ( 16. 3) 
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whE:rE X . , y , 
4 ' 

z .: are the cartesian co:11p onents of t Le vector 

The halit e struct ure i s based on a face - center ed cubic l ::ttt ice. 
' 

There ar e positi ve i ons a t ( 000) , ( ~, ½.., 0 ) , ( ½. O i.) , and ( Oi -l) , 

and negative ions a t ( i OO) , ( O½.O) , ( 00 i.) , and (iii) ; It i s 

conveni ent t o clas sify the ions surrounding a g iven ion into 

groups of simi lar ions at the s ame distanc e . 

The fol l owing tabl e enumerat es the first six such groups 

of' ions about the orig in and g i ves val ues of ~ t he c orrznon 

distance from .the origin of t he ions of group j, expre 2,sed 

i n t erms of t he uni t trans l ation of t he latt i c E a , and va lue s 
(ii 

of the group coeffici ent G1,ii 

group of ll,e ('qrf 

Table 

, def ined as the su.rn over the 

(lo . 4 ) 

2. 
a· ljl 

Gr oup 1': o . N~. gf iion 
Ciond. t on..: .Q_.§:rge oor ina es G <i> a..S ..J 

G1.o iJ. "lo e 
0,.7 

e 

7 6 6 - e ~
t oo~.; .... I oo ,.j 

I - 32 . 31 - 23 . 03 2. 

2 . 12 + e !ii ol~ It 0 -' 
HO~ 
li O ~ 

I -2 . 86 - 14 , 26 

'(z_ 

3 . 8 (
.L J L ) - e 2..2.. 1.. 

!U.I~-' 
~lt. '-' 
1r t) 
i- 1, z. 

Vj 
7,. 

+l. 84 -1. 17 

24 - e 
~1to~ ~ 4 . li O ~ 

!Itol ~ 110 :> 
il0 .!> 
Il0 ~ 

£1±8~ 1 

vJ 
1... 

- 0 . 4 6 +0 . 22 

(Table 2 continued, next page) 



Group No. 

5. 

6. 

No. of 
Ions 

24 

24 

Table 2 (continued) 
Ion Ion 

Char~ Coordinates 

+ 2 

- e ( Ili) ~ 
( lli)" 
( llI) ~ 
( lli.) ~ 
(llI)..!> 
( 11 I)~ 
(1iI) ~ 
( ll'i.) ~ 

3· ..J 
a. 

(j I 

G.,. 
-0.37 

+0.03 

23 

+O.Oo 

-0.02 

Each positive ion in this table is the first of an in­

finite, equally-spaced row of similar ions. Each negative ion 

is the first of a similar row of alternately negative and 

positive ions. The effect of the other ions in the row can 
(ii 

conveniently be taken into account by multiplying Gf>i for a 
.., '.f~I 

group of positive ions by~ LU .. ~, 
ti> 

and G.t"'- for a group of 
. .!!.. -.+1 ( I \ !st I negative ions by 2 HJ ii- , Values of these sums are ,,...,_, 

~ (Jl -=- 1.ooa 
... =, 

( 16. 5) 

l. (-,t'' (!)
7 
= 0. 9 95 

u-=-1 

Carrying out this calculation, s1.L:1ming over the groups, 



and using equations (lb . 2) , v;e obtain the followi ng res ults 

G - - 36. ,s- e/;a7 60 -

For Yael, the unit translation is a = 5. 628 A •. This 
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g ives the fol l owing nu.Jneri c a l va lues, expre ssed for convenience 
h2. 

i n terms of a 0 = 4 1r1/ez = O. 5~ 82 A f'or infinite nuclea r mass . 

G ":::. -2.4 3'1 • lo - 1 t?l::i .s-~o /~o 

( 16. 7 ) 

17. Polarizat i on Energy for Na Cl Crystal. l<'rom the s- e 

coefficients and the energy express i on (48 ) a value may be ob­

tained for t he po larization energy in the Na Cl crystal. The 

ei'l.'ec tive nuclear charges used are t he following. 

Ion 

Na 

Cl 

Table 3. 

Orbital 

2s 

2p 

3s 

3:p 

Values of 

.2 

4.28 

5.46 

J.0. 7 

12.1 

C and z for Na ..., 

z; 
6.72 

5.54 

6 . 3 
4.9 

The re sults are surrnnari zed below, in uni ts e./a0 • 

Table 4. Values of W11 for Na Cl 

~ see next page) 

Cl. 
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Table 4. Values of w 1/ for Na Cl 
g Na Cl 

-s- -S 
4 0 .12 V 10 455 X 10 .,,. 

-s- 10-s-6 0.02 X 10 224 X 

-s-- -s-
Tot a l 0 .14 X 10 679 X 10 

Total 
I ( 

679 
-.) 

I w = X 10 = 4 . 24 kcal mol. 

The s odi1Jm chloride latti ce is stabili zed to the extent of 

about 4 kilocalori es per mo l by high·order polarizat ion of the 

ions . The accuracy of t h i s value will be d i s c ussed in the 

next sect i on . 

The one great error which overshadow::: s.11 

others ar i ses from uncert ainties in t he effective nuclear charge 

Z - s . Pauling and. Sher man8 e2ti.111ate their error in the 

scr eeni ng constant s to be 10% i n the s creening defect. , Accepting 

this val ue , t he unc ert a i nt y in Z ,... - .:) is about 6% ; and i n Z - s 
t o the tent h power , about 6(Y,/2 . Takins a generous estimate, we 

p l ace the uncerts.inty in the r esult a t about a f act or of~ 

two or t hree . 

The expans i on (16 . 2) u sed t o eval uat e t he po tent ial V ( r ) 

i s convergent only-.for r < a . In applying i t to thi s pr ob l e:m, 

the assun1ption has been tac itly made that. t he e l ectron dis­

tribution of one i on does not extend to t he posit ion of the 

next ion. A mo r e ser ious a ssumption i s made i n applyi ng t he 

for mula (16 .1) fo r t he po t ential due t o a dis t r i but ion of 

po i nt charges . :Soth of t h ese assumpt ions , h owev er , i ntroduc e 

negl igi bl e errors if the over l a pping of the e l ectron dis ­

tri but i ons of adj ac ent i ons i n neg ligibly small , a condi t ion 

which i s probab l y fulfilled . At an~r rate , the er ror intr o-
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duced is negligible in co~parison to the uncertainty discussed 

in the prececding paragraph. 
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E. Discussion 

19. Precision of' the Calculation. The fundamental 

condition underlying the applicability of the perturbation 

method, namely that the perturbation energ,0 ma,'/ be small in 

comparison to the energy separations of the unpE:rturbed state 

of the system from the adjoining excited states, is fulfilled 

in the case under discussion. The calculation of the energy 

expression for the hydrogen-like electron is straight-forward 

and d-evoid of approximations affecting the result to second 

order terms. 

The generalized ex:pressicn applying to filled shell ions 

is in error chiefly because the use of a central coulomb field 

to describe the potential on one electron due to the others is 

not valid. The error due to this is perhaps reasonabl;y s'.-~all 

because the quantity calculated, the perturbation energy, is 

the difference betvrnen two quantities which mi ght be expected to 

be in error bv about the sa:ne amount in the same direction. A .., 

larger error is introduced by the practical difficulty of ob­

taining the best value of the parameter describing this coulomb 

field, namely the effective nuclear charge. The magnitude of 

this error was di scussed in connection with the application of 

this theory to the sodium chloride crystal. 

The non-coulomb character of the atomic f'ield made it 

necessary to introduce into the derived expressions an em­

pirical quantity corresponding to the splitting of degenerate 

energy levels of the unperturbed state. The :error due to this 

cause depends upon t he accuracy with which this splitting can 

be estimated in tile individual cases in which it enters. 
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'\Nhether or n ot there is any appreciable error i n other in­

tegrals due to disp lacement of excited energ,' levels away 

from their values with a central coulomb ·field i s difficult 

t o say, since t he functions used to calculat'e these inte6-rals 

are not wave functions of the system. It seems likely that 

any error of this t yp e would be small c ompa.red t o tJ.1e other 

errors disc ussed. 

The spin of the electrons and the small splitting of 

energy levels introduced by it has been ignored throughout; 

its effect is undoubtedly negligible. 

20. Value of the Treatment. Although this treatment 

g ives a value fo r the high order polarization ener gy of an 

ionic crystal which is uncertain to a degree approaching an 

order of magnitude there are nevertheless situations in 

which it should prove to be of value. It should be possible, 

for example, to compare with reasonable confidence t h e polari­

zation energy of a substance in two different crystal modifica­

tions, such as sodium chloride in its normal structure and in 

the cesium chloride structure. 

If it were possible to obtain experimental values for 

some of the energ-J quantities predicted by this treatment, 

very accurate screening constants could be obtained for use 

in treating other atoms. Such experimental values, however, 

are not available, and v,ould be excessively difficult to ob­

tain because of the difficulty in producing accurately known 

electric fields of the type needed. 
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Appendix 

The evaluation of the integrals was car ried out as 

( 100) 

by equation (7) 

To evaluate t h e remaining i ntegral let 

5~.,., A =- ~ cl. /\ 
I lho L r r:t r . . (101) 

-Then by equation (3.9) 

""' g .. , S' 
jl\.,,i ~ j\n

0 
5 d! = ar vr (102) 

0 

The values of /\no and /\~ are t aken from equations (3. 6 ) and 

(2. 9 ); equation (101) ·becomes 

• The upper limit 

of the su..1nmation over r is found by recognizing that the poly ­

nomial of highest degree v✓hich can enter is of degree n. By 

changing the order of sumrnation, with an appropriate change in 

limits, making the substitution 

C = ,~~.,.,~j>(z...b · 
'< ntz.. J vd th k = n-j, 

and equating coefficients of equal powers of 3, we obtain a 

set of h-~imul t ane ous linear equations for the coefficients c" . 
' C • (2.fjt-/1-i..)f L ~ - - -,--...,..-,--,,_...,~ , o ~, ~ n k:oln-i-1..)! - ln-i)!(i-•JJ (104) 
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Solving the equations for i = n, n-1, n-2, n-3 successively, 
('2.~1-tJ t,) ! 

C-= - ~---
o (n-,,1 

c, : -

Apparently the general ieoefficient c,,.. i s 
r ~ 

-==--('½1-111-1-cr){ > tn-1)! (Z-{+nr2.-cr ) ;S (-1) 

Co-- (n-,)! _l;;-('1""-~)!(n-"°)! s!tn-cr=r>! ' 
-:. _ (-z.g1-n.,.,-cr)! f £2.'51-h-,.2-c:r):. (-crJ..s 

(n-cr- J )! er! S=o tn-0-,
5 

s / (105) 

where the notation ( a )s = a • (a+l)• ( a+2) ... (a+ s -1) has 

b een i ntroduced. This sum, however, i s an hypergeometric series11 

with unit argument F (a,b ; c ; 1) where, in this case 

C.=-n-o-

The value of t he function is 12 

F{ 
._ ) r(cJ rtc--a-b ) 

a. ,~ • C. / -1 > J - r(c-;,.) T(c-b) 

Apply i ng this formula 

(
-l),r- (zg1-ti1-I){ (-.Zi ~:Z.)v­

ctr= 
tn-,) ! er! (-2.5-h -1).,... 

{106) 

(107) 

To prove this value is correct, it is subst i tuted into equa­

tions _( 104) to 
/1-1, 

~ c,. 
L- ln-i-LJI Jp,o rr • 

- - (-z.~--111-1)! r<-z1-n-1J r(l-i.) 

- £n-l>! (n-i}f n-2.1-£-1) r(-11,-1) 

-=-- (~g-1-,· ,-1)! 
(n- ,) ! Cn-,J { 

(108) 
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~vhere the first transformation results from the introducti on 

of the notation of equation (105), and t he third from the 

recognition that the surn in the second line is an hypergeometric 

function with unit argument. The final form is seen to be 

identical with that in equation (104), thus proving the 

correctness of equation (106). A series of simple substitu-

tions now gives 
a =-(-,(-ng L-,r~,, ! n J 1/z.. {2.~ + 2.) ! 

r <r-i-1>! <-t.,_,,.n-r-}/ <<1+1-n,-rJ! ' 
and 

( 109) 

for a cosine term in V~" ; the corresponding sine term in ob­

tained by multiplication of +i. 

The method of evaluating the ot..~er integrals is identical 

(110) 

this last step resulting from t he application of the formula13 

( 111) 

and the orthogonality conditions ( 1. 5). 

There are now two cases to consider:. :\ = g-1 and ).= g + 1. 
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(112) 

to a set 

of simultar1eous linear equations in the coefficient ar, 

(113) 

after the substitutions 
I 

r(g+,--•J ! (r- ~ )IJ"i. 
C = ------• ~ 

k tn+1J/ (n-z.J! ,- J k = g+l+n-r. 

The solution to these equations may be found by generalizing 

the solutions of the first few, it is 

(2.&+11} ! (-2.1-2. )a­
(n-2.) !o-!l-2.g-n),,- ) 

(114) 

which may be proved correct by substitution in equation (113). 

Hence 

( 115) 

and 

for cosine potentials; the integral for sine potentials is 

obtained by multiplication by +i. 

(117) 

Again this leads to a set of 

simultaneous linear equations in the coefficients a,.. , ,._·f 

C -::. (';:(+1,-r)f(r-~-2.)1 z.a l
- 'I 

t ln·t-1)! (n-z.)! j "' ( 118) 

t\ f ter the substitutions W" obtain 
n-,-1 

L cl( 

k=-o (n-•-:-1 -~) ! 

Again the general solution is inferred from the form of the 
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firs t few expr essions : 

'.. 119 ) 

- - ----- I n--o--, J " 
_ (2.tj ~ '112. -er)! { r(n- 2-<r) f (fr- 2d"-/) 

(n-,. 1-<rJ/ er! 1 ( n-n .. l r {- z.,r-1 J 

- u-(2.11--n-r- 3-cr) r(n1- 3-cr) r {-z_g--2 +er)} 

l111--2..-cr) rrnr2.J r(-~<§-1 J 

~-t• (2-<t-n t-z.) I (-Z.6-z.) 
V _-'5 ___ , __ ~ __ 0- [<n-1)(~+1)t<T'"J 

:::.. (~J) (n+-I) ! (~-,.,)(er).' (-2.g-t'/- 2-),,... ' 

( 12 0) 

where t h e es s ential tra n s f or mation again depends upon rec og­

nizing t he hyper geometric suin and a :)pl~0 ing equat ion ( 106). 

Tha t this is correct ma.y be pr oved by s ubstituting it in equati on 

( 118) • Rene e 

/ l " 1 -) \ _,_ w 

and I - - - !{H"}-r, f[:,-li-t1)(g"-1J,-,1)(n-2.HC'tt-r1-1J/6p]fi. r~~+1J_l[n{<£t-Z.J-r] 

H r,f1-l,?.I-, - f:g-,-, ( I} 2..lJ~1-1J(2g-1-3)(n1-1J{(r--1-3..J! 7f (':{-rJ+-n-r)/(<f"t-1-nt"r)! 
f7, I, o 

for cos i n e potent ials; t he value f or sine is this expres s i on 
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I 
H v 71.)"-

n,,,-, 

(124) 

Th E:r8 are t wo case s t o consider: /.;-ti = l( l+h)J and f/-1 -- /(1-h) / 
n ~ f e,.,,.,.>i 8~1, B,, s,·;,sJ,9 =- tj 8~1 ,.,.1i ·Bg1i s£n2J d~ 

0 

fi /!£T•M1 J(,g+-Ji1-2.)J ½ <l, V3 fcq--i-,-,)(~-1))] l 
= f [12-g-~1Jf2.<J~z.) >-,,tn - 2,.[(i.,g-rl)(Z.!f-11 fl',f-/ 

(125) 

1T 

1 e>1lh-1/ e,rli 6>,, s,·n {),4-1).::::. "{_ J 8J.,lth €>git $1.n'°f}..c/,i). 
0 

(126) 

'I'h ese results were obt ::i. inecl b~r use of t he f or rr.u la.s 13 • 

(127) 

The s part of integrals (123) and (124) is identica l with 

the integrals ( 112) a.11.'d ( 117) which hav e already been eva l uat e:d . 

Benc e 

H;,~••, ,- ... :.H~ fH,-h', 
ti,,,, ,.,,,,-, 
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Yz . Jf'. J , / _ F _
1 

<J~11-r1l3P('{+-J,-t-1>(~+l,r~)/h-z..)/('f+l-rrl{] (t';(+l),th({-,z)-r 
Hr,'11',1tJ., -::. Ht-,~1-1,-1-i, -~I, { ) 3- 71' {Z.~t-1){Zg'+-S)/n+-iJ!(r-g-'J.)! ('f+-Hn-rJ!{~•l-r,,.r)f 

n, I) , n I I ' -· 

(] Z 8) 

Each of thesis is for a cosine ter;n in V~" ; the valu e for t he 

corresponding sine t erm is obtained by multiplying J/~,C{"t, , 11±1,J 
n, I > I 

I 
or Hr.1~1,f-11:.1,) by +i , the + sigr..s being correlated with 

n, I • -1 

the !. sign on h. 'vvhen h = O only t vvo o-.: the s e f our integrals 

exi st. 
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Introduction. The determination of molecular structures of 

gas molecules by electron diffraction was first carried out 

in 1931 by R, Wierl1 • During the relatively short time which 

has elapsed since this date the method has been applied to 

several hundred substances, with several investigat o.rs active 

in the field. One of these, L. o. Brockway, has given a com­

prehensive review2 of the method,its history and its applica­

tions. 

During the investigations presented in the following 

pages, the author had the pleasure of working with Dr. Brockway 

and the use of his apparatus. 

.. 

1. R. Wier 1, Ann. d. Ph;/Sik .§, 521 ( 1931) 

2. L. o. Brockway, Rev. Mod. Phys .~, 231 (1936) 
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The Molecular Structures of the Bromomethanes 

BY HENRI A. LEVY AND L. 0. BROCKWAY 

T he investigation of the molecular structures 
of the halogen substituted methanes has been 
undertaken in these Laboratories as a means of 
testing the constancy of chemical bond lengths 
and of determining the bond radii and the varia­
tions in bond angles in unsymmetrical mole­
cules. The results of the investigations on the 
fluoro-, chloro- and fluorochloromethanes al­
ready have been reported.1 Using the experi­
mental procedure which has been described in 
detail elsewhere, 2 we have applied the electron 
diffraction method of studying molecular struc­
tures to the bromomethanes, obtaining the re­
sults which are reported in this paper. 

CH2Br2 
I 

CH3Br ~ 
2 3 

A. 
# Fig. 1.-Radial distribu tion curves for the 

bromomethanes. The tall peaks near 3 A. rep-
't resent the Br-Br distances; those near 2 A. 

the C-Br distances. 

The electron wave length was 0.0611 A. and 
the camera distance was near 10.5 cm. The 
diameters of the maxima and minima appearing 
irt_ the photographs were measured visually, and 

(I) L. E. Sutton and L. 0. Brockway, Tuts JouRNAL, 67, 473 
(H135); L. 0 . Brockway, J. Phys. Chem., 41,185,747 (19_37). 
,,(2):,:1--. ,9. Brockway, Rev. Modern Ph-ys., 8, 231 (1936). 

,.~,\;~ .,;,..-

the corresponding S0 values (equal to 41r(sin 
0/ 2) / 'A), where 0 is the angle of scattering and A 
is the electron wave length, are tabulated below 
for each substance. These were combined with 
the visually estimated intensities (shown under 
the column heading I ) to give the observed 
radial distribution of scattering matter shown 
by the curves in Fig. 1. The "calculated S" 
values are taken from the theoretical scattering 
curves in Figs. 2 and 3. 

Carbon Tetrabromide.-Photograp~ of car­
bon tetrabromide vapor were taken with a sample 
of the Eastman preparation heated to 115 to 
130°. The pattern contains seven extraordi­
narily sharp, evenly-spaced rings. The radial 
distribution function (Fig. 1) shows a sharp 
peak at 3.13 A., corresponding to the Br-Br 
separation, together with smaller, less reliab'.e 
peaks at shorter distances. The theoretical 
scattering curve (Fig. 2) based on a regular tetH­
hedral arrangement of four bromine atoms 
around a central carbon atom with an assumed 
C-Br distance of 1.91 A. shows excellent agree­
ment with the photographs. The quantitative 
comparison in Table I and the radial distribution ;, 
curve lead to final values of C-Br = UH ± 0.02 
A. and Br-Br = 3.12 ± 0.03 A. 

Max. Min. 

1 
2 

2 
3 

3 
4 

4 
5 

5 
6 

6 
7 

7 

TABLE! 

CARBON TETRABROMIDE 

I So 

12 2 .662 
3.615 

15 4.,528 
5.597 

12 6 525 
7.514 

10 8.464 
9.507 

12 L0.51 
11..5(\ 

5 12.49 
13.56 

4 14.49 

Scaled. S"ald./So 

2.49 (0 93G) 
3.48 ( .97:3) 

4 49 .992 
5.51 .984 
6 58 .008 
7 .56 .006 
8 T)l 005 
9 5l 000 

IO .'i9 1 007 
ll .H2 1.005 
12 58 1.007 
13.56 1.000 
14.54 1.003 

M ean 1.002 
Br- Br 3. 12 A. 
C-Br 1.91 A. 

In an earlier investig~tion, Wierl3 obtai,g~fl,,..$ {~ 
.:.;.-4.f-~,..;>-:.(~,: ~- ., 

(3) R . Wier!, Ann. Physik, 8, 521 (1931). 
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i i 

115° 

110° 

5 15 20 
s. 

Fig. 2.-Theoretical scattering curves for carbon tetrabromide and tribromomethane. 

value of 2.05 A. for the C- Br distance from comparison with the observed maxima and 
photographs showing only three maxima. More 
recently de Laszlo4 reported in a brief note a dis­
tance of L 93 A. 

Tribromomethane.-The vapor of tribromo­
methane (Eastman) was photographed at a tem­
perature of 75 to 100°. Eleven rings are ob­
served on the photographs, whose pattern re­
sembles that of carbon tetrabromide in general 
appearance. The radial distribution curve (Fig. 
1) has a sharp peak due to the Br-Br interac­
tion at 3.14 A. and a smaller one due to the C-Br 
interaction at about 1.88 A. Theoretical scat­
tering curves were calculated for three models 
each having an assumed C-Br distance of 1.91 A. 
and with Br-C-Br angles of 110, 112, and 115°, 
respectively. Because of the small scattering 
power of the carbon atom relative to the three 
bro{nine atoms the curves are determined chiefly 
by the positions of the bromine atoms; accord­
ingly the three curves are indistinguishable ex­
cept for the change in scale corresponding to the 
change in the assumed Br-Br separation. On 

_(4) H. de Laszlo, Nalulre, 13G;.474 (1935). 

Max. 

2 

3 

4 

5 

6 

7 

8 

9 

11 

Min. 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

TABLE II 
TRIBROMOMBTHANE 

I S. Seo.led. 

8 2. 693 2 .48. 
3.563 3.39 

12 4.480 4.40 
5.570 5 46 

8 6.519 6.48 
7.419 7.41 

7 8.459 8.36 
9.477 9.38 

9 10_48 10 .43 
11.53 11.44 

6 12.45 
13.51 

u 14.41 
15.53 

3 16.45 
l7.4fi 

3 18.32 
19.32 

1 20.34 
21.33 

1 22.36 

12.38 
13. 31 
14 .31 
15.37 
16 .40 
17.3:5 
18 .28 
19.29 
20.32 
21 .33 
22 .30 

Scoloo./So 

(O. 921) 
( .952) 

.983 

.981 

.994 

.998 

.989 

.990 

.995 

.992 

.994 

.986 

.994 

.990 

. 996 

.995 

.997 

.998 

.998 
1.000 
0.997 

f'1ean O. 993 

Br- Be 3.15 A. 

40 



41 

1664 HENRI A. LEVY AND L. o. BROCKWAY Vol. 59 

5 15 20 
s. 

Fig. 3.-Theoretical scattering curves for dibromomethane and bromomethane. 

minima (Table II) each of these curves leads to 
the value Br-Br = 3.15 A. 

Although the carbon-bromine distance cannot 
be determined directly in this molecule it is very 
probable that it has the same value as in carbon 
tetrabromide. This assumption is supported· 
by the observed equality of the bond distances 
in · trichloro- and tetrachloromethane and in 
trifluoro- and tetrafluoromethane. We accept 
as the final values: C-Br = 1.91 A., Br-Br = 
3.15 ± 0.03 A. and LBr-C-Br = 111 ± 2°. 

Wierl5 found with the aid of photographs 
showing three maxima the values C-Br = 
2.03 and LBr-C-Br = 111 °. Dornte6 obtained 
the values C-Br = 2.05 and LBr-C-Br = 115° 
from five maxima. 

Dibromomethane.-Photographs of dibromo­
methane (Eastman) were obtained on which seven 
well-defined maxima are observed. Of these the 
second is much stronger than the first, while the 
fifth and the seventh are each a little stronger than 

.,the fourth and sixth maxima, respectively. The 
•;,tA,·· •. -4" 

(5) R. Wier!, Ann. Physik , 13, 453 (1932). 
[ (6) .R. W. Dornte, J. Chem. Phys. , 1, 630 (1933) . • 

radial distribution curve (Fig. 1) shows a strong 
reliable peak at 3.16 A., the Br-Br distance. 

Theoretical curves (Fig. 3) were calculated for 
four models. The C-Br distance was taken as 
1.91 A., the C-H distance 1.05 A., the H-C-H 
angle 109°28' and the Br-C-Br angle 109°28', 
112, 115, and 118°, respectively. As the angle is 
increased the model becomes unsatisfactory 
because the fourth maximum becomes too strong, 
rising above the third and fifth, and the sixth 
maximum becomes too weak in comparison with 
the fifth and seventh. For these reasons it i;, 
improbable that the angle is greater than 112°. 
On the other hand, the sixth and seventh max­
ima in the curve for the 109 °28' model are not 
so well set off from each other as they are in the 
photographs. The most probable value of the 
Br-C-Br angle is accordingly 112 ± 2°. 

The S values for the 112 ° model are shown in 
Table III; comparison of these with the So 
values gives a Br-Br distance of 3.17 ± 0.02 A., 
in agreement with the position of the strong 
peak in the radial distribution curve. The 
C-Br distance is 1.91 ± 0.02 A. •••• '.c_-:--
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Max. Min. 

1 
2 

2 
3 

3 
4 

4 
5 

5 
6 

6 
7 

i 

TABLE III 

DIBROMOMETHANE 

I s, 
5 2.641 

3.538 
10 4.507 

5.597 
8 6.517 

7.399 
6 8. 275 

9.407 
7 10.40 

11.47 
2 12.37 

13.38 
3 14 .32 

S caled. 
112° Scalcd./So 

2.50 (0. 947) 
3.34 ( . 944) 
4.37 ( . 970) 
5.47 ( . 977) 
6.51 .999 
7.40 1.000 
8.29 1.002 
9.34 0 .993 

10.47 1.007 
11.53 1.005 
12.44 1.005 
13.23 0.989 
14.25 .995 

Mean 0.999 
Br-Br 3. 17 A. 
C-Br 1. 91 A. 

Dornte6 reported C-Br = 2.05 A. and L Br­
C-Br = 125°. The discrepancy between this 
result and ours is probably due in part to the 
smaller number of maxima which he observed. 

Bromomethane.-Bromomethane was pre­
pared from methanol and hydrobromic acid and 
was fractionated at 0°. The photographs show 
five rather diffuse rings. The poor definition in 
the pattern is due to the presence in the molecule 
of one atom whose scattering power is much 
larger than that of all the other atoms. • 

The radial distribution curve shows one peak 
at 1.90 A. The theoretical curve calculated for 

TABLE IV 

BROMOMETHANE 

Max. Min. I So Scaled. Scalcd./So 

1 12 3.997 3 .76 (0 942) 
2 5.942 5.67 ( .954) 

2 12 7 .626 7.64 1.002 
3 9.186 9.20 1.000 

3 10 10.77 10 .74 0.998 
4 12 .35 12 .16 1.005 

4 13 .94 13.74 0.986 
4 5 15.30 15.44 1.010 
5 2 17.28 17.60 1. 018 

Mean 0.999 
C-Br 1. 91 A 

~- .. ,,._ 

a methyl group with tetrahedral angles and C-H 
distances of 1.05 A. and for a C- Br distance of 
1.91 A. gives on comparison with the photographs 
(Table IV) an observed distance C-Br = 1.91 
== 0.06 A. The large estimated probable error 
is assigned because of the difficulty of mak­
ing precise measurements on the photographs. 
Dornte 6 reported C-Br = 2.06 A. 

Discussion 

The results for the bromomethanes are col­
lected in Table V with assumed values given in 
parentheses. 

Substance 

CBr, 

CHBr3 

CH,Br2 

CH3B r 

TABLE V 
C-Br, A. Br-Br, A. 

1.91 ± 0 .02 3.12 = 0.03 
(1.91) 3.15 = 0.03 
1.91 = 0.02 3. 17 = 0.03 
1.91 = 0.06 

LBr-C-Br 

(109°28') 
111 ± 2° 
112 = 2° 

The observed C- Br bond distances are fdt all 
the substances equal to the sum of the •single 
bond covalent radii7 for carbon and bromine, 
1.91 A. The Br- C- Br bond angles show only 
small increases in tri- and dibromomethane 
above the tetrahedral angle which occurs in the 
symmetrical tetrabromide. This increase is of 
the same order as that found in the chloro­
methanes. The increased repulsion between the 
halogen atoms which might be expected in ~om­
paring the bromine and the chlorine compounds 
evidently is offset by the greater separation be­
tween the bromine atoms due to the larger bond 
distances; the bond angle is not appreciably 
affected when bromine is substituted for chlorine. 

Summary 

The molecular structures of the bromomethanes 
have been investigated by means of electron dif­
fraction. The C-Br distance in each com­
pound is 1.91 A.; the Br- C-Br angle is 109 °28' 
in carbon tetrabromide, 111 ° in tribromomethan-e 
and 112° in dibromomethane. 
PASADENA, CALIF. RECEIVED J UNE 28, 1937 

(7) L. Pauling and M. L. Huggins, Z. Krist., 87, 205 (1934). 
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The Molecular Structures of Boron Trimethyl, Trifluoride, Trichloride, and 
Tribromide. The Covalent Radius of Boron ' L 

BY HENRI A. LEVY AND L. 0. BROCKWAY 

The molecular structures of the compounds of 
boron are of special interest because the unusual 

, number of electrons occurring in many of them 
suggests that their structures may be different 
from those of corresponding compounds of the 
other non-metallic elements of the first row of the 
periodic table. Because of the anomalous elec-

\ tronic structures of the stable hydrides due to the 
,', lack of enough electrons to form electron-pair 

bonds throughout the respective molecules, other 
cogipounds of boron were chosen in the hope of 

I,• ,.> ,•,,. -~ .. 

j 

determining a characteristic single bond covalent 
radius for comparison with the radii of othi r 
elements. Although boron in its normal valence 
compounds (in which it is coordinated with thre'e 
univalent atoms or groups) has only six electron~ 
around it in place of the octet found in the normal 
valence compounds of the following first row 
elements, the number of electrons in the BXa 
compounds is sufficient for the formation of el~\:.? 
tron pair bonds. In particular, boron trimetijy,h· 
was investigated because the methyl derivati.Jes 
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~f a number of non-metallic elements have pre­
viously been found to contain single covalent 
bonds. 1 In addition we have investigated boron 
trifluoride, trichloride, and tribromide. 

1 2 
A. 

3 4 

Fig. 1.-Curves showing the observed radial dis­
tributions of scattering matter. The vertical lines mark 
the interatomic distances as determined by comparison 
of the photographs with theoretical scattering curves. 

The vapors of these substances were used in ob­
taining electron diffraction patterns by the known 
procedure2 with an electron wave length of 0.0611 
A. and a camera distance near 10.5 cm. Photo­
graphs were obtained showing from six to ten 
apparent maxima which were measured visually. 
The corresponding s O values ( equal to 41r ( sin 0 /2) / 'JI. 
where 0 is the angle of scattering and A the electron 
wave length) are tabulated for each compound, 
and they were combined with the visually es­
timated intensities (shown under the columns 
hea4ed I) to give the observed radial distributions 
of sbattering matter shown by the curves in Fig. 
1. The tables also show the comparison of the s 

,with the "calculated so" values (taken from the 
the8;etical scattering curves in Figs. 2-5) to give 
observed molecular dimensions. 

Boron Trimethyl.-From a sample of boron 
'. trimethyl prepared by Dr. A. Burg of the Uni-

(1) L. 0. Brock way and H . 0. J enkins, Tms JOURNAL, 58, 2036 
I (1936). 

(~) L. 0. Brockway, lieu. Mo1ern_., f£~s~cs, -~" 231_ (193~>·. , ,., ., , .-· . 
• ' .,,""'.;• : ' · 

versity of Chicago, photographs were obtained 
showing a pattern of six well-defined rings which 
is well represented by the 120° curve in Fig. 2. 
The characteristic features used in distinguishing 
among the various molecular models are the 
following. The third and fourth maxima are 
about equal in intensity, and are resolved by a 
distinct minimum. The fifth maximum, slightly 
more intense than those preceding, is followed by 
•a "shelf," whose intensity is about equal to that 
of the following (sixth) maximum. The radial 
distribution function (Fig. 1) shows sharp peaks 
at 2.69 A., assigned to the C-C distance, and at 
1.57 A., corresponding to the B-C distance, to­
gether with other less reliable humps. Theo­
retical scattering curves (Fig. 2) were calculated 
for plane and pyramidal arrangements of tetrahe­
dral methyl groups with C-H = 1.05 A. about a 
central boron atom; approximation to free rota­
tion of methyl groups was achieved by averaging 
configurations differing by methyl group rota­
tions of 60°, a procedure which has been shown 
in this Laboratory to be satisfactory. A B-C 
distance of 1.53 A. and C-B-C angles of 120, 
118, 116, and 110° were assumed. That the 
110° model is unsatisfactory is evident in that the 
corresponding curve shows a "shelf" following 
the third peak instead of the fifth. Inasmuch as 
the 116° curve shows the fourth peak weaker than 
the third and the fifth resolved from the hump 
following it, it is likely that the boron bond angle 
is larger than 116 °. Furthermore, since the 
sixth peak appears too intense compared to the 
shelf in the 116 and 118 ° models, we feel that the 
photographic evidence favors the 120° model. 

• 
TABLE I 

BORON TRIMETHYL 

Soalcd. 
Scated./SI Max. Min. I So 120° 

1 5 3.072 2.58 (0 .840) 
2 4.178 3.79 (. 907) 

2 10 5.351 5.40 1.009 
3 • 6.470 6.60 1.020 

3 7 7.577 7.70 1.016 
4 8.43 8.70 1.032 

4 7 9 .51 9 .63_ 1.012 
5 10.98 11 . 10 1.003 

5 8 12 .35 12 .78 1.035 
Sa 4 14 . 14 14.47 1 .023 

6 15.70 15.90 1.013 
6 4 16 .92 17.38 1.027 

Mean 1.019 

C-C = 2.70 A. 
::-rt: t'-: 1: .... , ; ,,,, ; B,:{C :=,L 56 A:,v• . 
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Fig. 3.-Theoretical electron scattering curves for boron trifluoride. 

l_-! 

1 tion of Badger's rule to the force constant from 
infrared data gives 1.33 A., for the B-F distance. 

TABLE II 
< • 
' • BORON TRIFLUORIDE 

n Sea.Jed. 
Scn.lod./So Max , Min. I So 120° 

t."{ 

.. lJ 1 8 3.259 3.16 (0. 969) 
2 4.446 4.21 ( .946) 

t.j 2 12 5.748 5.69 .990 
'i t1 3 7.232 7.21 .997 

~! -~ 3 7 8.403 8.58 1.021 't 

,. 
·i 4 9.610 9.49 0.988 

' 4 8 10.81 10 .71 .991 
5 12.23 12 .20 .997 

5 5 13.45 13.71 1.020 
6 14.82 14.94 1.009 

~ l 6 2 15.96 15.87 0.995 
7 17.37 17.21 .991 

i 7 4 18 .59 18.70 1.007 
:\ 8 1 21.13 21.28 1.007 
L "j 

9 1 23.45 23 .70 1.011 
• ~-

Mean 1.002 t . 
F-F 2.25 A. 
B-F 1.30 A. 

Boron Trichloride.-Photographs of boron 
. trichloride obtained with a sample of Kahlbaum's 
., c. P. preparation showed nine well-defined uni­

' formly spaced rings. The radial distribution 
', curve (Fig. 1) shows a tall, sharp peak at 2.99 A., 
.i• •. ~ssigned to the Cl-Cl distance, with a small, less 

•, .. reliable peak at a shorter distance. Theoretical 
scattering curves (Fig. 4) were calculated for 

~: :::"'lJ}}Y'~? • ~"';~ ;;~-.,~ ~i ... : --~~~ .. JJ/J.,~--~~:_~{~r , - ·, 

plane and pyramidal arrangements of chlorine ' 
atoms around a central boron, assuming a Cl- i 
Cl distance of 3.00 A. and a Cl-B-Cl angle of; 
120, 118, 116, 110, and 90°. As the angle is 
decreased, the fourth maximum drops below the ,; 
third and fifth, contrary to the appearance of the ; ., 
photographs, where the third and fourth are ;- J· 

equal, with the fifth weaker. In addition, the -: 
resolution of the sixth and seventh peaks be­
comes less distinct than that of the fifth and sixth ' 
in the smaller angle models, whereas in the photo­
graphs the reverse is true. These features make 
it improbable that the angle is less than 116 °, and 
favor the planar configuration. The quantitative ,::--·· 
comparison shown in Table III together with 
the radial distribution result leads to the final 
values Cl-Cl = 2.99 ± 0.03 A., B-Cl = 1.73 
± 0.02 A., < Cl-B-Cl = 120° (within 3°). A 
previous electron diffraction investigation6

a of this J 
compound by WierF resulted in the value 3.03 ± f'. 
0.05 A. for the Cl-Cl distance, with the configura-f Y. 
tion undetermined. The zero value obtained in{ 
the measurement of the dipole moment in benzene;1 
solution8 supports the planar structure, as do also\ 
Raman spectral data. 5 From the latter, with the ' 1, 

; . ~ 

(6a) The electron-diffraction value 1.76 ± 0.02 A. for the B-Cl~ 
distance in BCb has been reported, since our work was submitted ·" 
for publication, by Gregg, Hampson, Jenkins, Jones and Sutton ,r_J· 
Trans . Faraday Soc., 33 , 852 (1937). ~l 

(7) R. Wier!, Ann. Physik, 8, 521 (1931). l 
(SJ H. Ulich aad W. Nespital, Z. Elektro<hem., 37, 559 (1931 ). • 

.,., ... .,., .. ..,~ ...... 
' ~..a'-"' 

.~;.,, ' •-:. '2;. • l"'f.... ~v':i 
• ·.:,¼':-'' ... _,:::~'' ;}i:ft:-
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116° 

120° 

5 15 20 
s. 

Fig. 3.-Theoretical electron scattering curves for boron trifluoride. 

tion of Badger's rule to the force constant from 
ipfrared data gives 1.33 A., for the B-F distance. 

Max. Min. 

1 
2 

2 
3 

3 
4 

4 
5 

5 
6 

6 
7 

7 
8 
9 

TABLE II 
BORON TRIFLUORIDE 

I So 

8 3.259 
4.446 

12 5.748 
7.232 

7 8.403 
9.610 

8 10 .81 
12.23 

5 13.45 
14.82 

2 15.96 
17.37 

4 18.59 
1 21.13 
1 23.45 

Scaled. 
ScaJcd./So 120° 

3 . 16 (0 . 969) 
4.21 ( . 946) 
5 .69 .990 
7.21 .997 
8.58 1.021 
9.49 0.988 

10. 71 .991 
12.20 .997 
13 .71 1.020 
14 .94 1.009 
15.87 0.995 
17.21 .991 
18.70 1.007 
21 .28 1.007 
23 .70 1.011 

Mean 1. 002 
F-F 2.25 A. 
B-F 1.30 A.. 

Boron Trichloride.-Photographs of boron 
trichloride obtained with a sample of Kahlbaum's 
c. P. preparation showed nine well-defined uni­
formly spaced rings. The radial distribution 
curve (Fig. 1) shows a tall, sharp peak at 2.99 A., 
~ igned to the Cl-Cl distance, with a small, less 
r ··able peak at a shorter distance. Theoretical 

~!;!ring " curves (Fig. _ 4) . were calculate11"·•.f©r 
t}i' ;:; . tr·. • ,::t~~;~ 

plane and pyramidal arrangements of chlorine 
atoms around a central boron, assuming a Cl­
Cl distance of 3.00 A. and a Cl-B-Cl angle of 
120, 118, 116, 110, and 90°. As the angle is 
decreased, the fourth maximum drops below the 
third and fifth, contrary to the appearance of the 
photographs, where the third and fourth are 
equal, with the fifth weaker. In addition, the 
resolution of the sixth and seventh peaks be­
comes less distinct than that of the fifth and sixth 
in the smaller angle models, whereas in the photo­
graphs the reverse is true. These features make 
it improbable that the angle is less than 116 °, and 
favor the planar configuration. The quantitative 
comparison shown in Table III together with 
the radial distribution result leads to the final 
values Cl-Cl = 2.99 ± 0.03 A., B- Cl = 1.73 
± 0.02 A., < Cl-B-Cl = 120° (within 3°). A 
previous electron diffraction investigation6

a of this 
compound by WierF resulted in the value 3.03 ± 

0.05 A. for the Cl-Cl distance, with the configura­
tion undetermined. The zero value obtained in 
the measurement of the dipole moment in benzene 
solution8 supports the planar structure, as do also 
Raman spectral data. 5 From the latter, with the 

(6a) The electron-diffraction value 1.76 = 0.02 A. for the B-Cl 
distance in BCb has been reported, since our work was submitted 
for publication, by Gregg, Hampson, Jenkins, Jones and Sutton, 
Trans. Faraday Soc., 33, 852 (1937). 

(7) R . Wier!, Ann. Physik, 8, 521 (1931). 
(8) H . Ulich and W. Nespital, Z. Elektro<,hem., s7;··SS9'tlw.tl;),I),_ 

.. 
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109°28' 

116' 

120° 

5 10 15 20 
s. 

Fig. 4.-Theoretical electron scattering curves for boron trichloride. 

aid of Badger's rule, the B-Cl distance is estimated curve (Fig 1.) shows a tall, sharp peak at 3.27,A.; 
to be 1.72 A. assigned to the Br-Br distance. Theoretical • I 

TABLE III 
,· . 

BORON TRICHLORIDE 
TABLE IV 

BORON TRIBROMIDE 
Scaled. 

Soalcd./•o Max. Min. I So 120° Sca1cd. 

1 14 2 . 678 2.59 (0.968) 
Max. Min . I so 120° Sca.lcd./So \f 

2 3 . 645 3.53 ( .968) 1 3 2.567 2.45 (0.954) 

2 22 4.733 4.67 .987 2 3 .400 3 .29 ( . 968) 

3 5.906 5.82 .985 2 12 4 . 383 4 .29 .979 

3 11 6.837 6.88 1.006 3 5.447 5.30 .973 
3 10 6.296 6 .21 .986 ; 

4 7.949 7.78 0.979 
4 13 8 .877 8 .80 .991 4 7.335 7.18 . 979 

5 9 .987 9 . 93 .994 4 10 8.175 8.11 .992 , 

5 6 10.99 11.09 1.009 5 9 . 182 9.11 .992 , 

6 12 .08 12.09 1.001 5 8 9.999 10.11 1.011 '. 

6 2 13.08 12.99 0.993 6 11 . 11 11.06 0.995 

7 14.25 14.07 1.988 6 6 11. 92 11.96 1. 004 ,, 

7 3 15.19 15 .21 1.001 7 12.91 12.91 1. ooo · 
7 6 13.80 13.92 1. 009 {1 

Mean 0 .994 8 14.86 14.91 1.003 1 
Cl-Cl 2. 98 A.. 8 2 15.78 15 .86 1.005 [.. 
B-Cl 1. 72 A.. •. 

9 16.89 16. 74 o.991 d 

Boron Tribromide.-A sample of boron tri- 9 1 17.97 17 .75 . 988 T 
10 18 .94 18.72 .988 . 

bromide redistilled from mercury gave photo- 10 ½ 19.96 19.70 .987 
graphs of fair quality with a pattern of ten rings Mean 0.993 
more closely spaced but otherwise similar to that Br-Br 3.24 A. 
of boron trichloride. The radial distribution '!~: .. ~{; B-Br 1.87 ;,__:-
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Fig. 5.-Theoretical electron scattering curves for boron tribromide . 

scattering curves (Fig. 5) were calculated for 
models having a Br-Br distance of 3.27 A. and a 
Br-B-Br angle of 120, 115, and 109°28'. Be­
cause of the large scattering power of bromine in 
comparison to boron, the two former curves are 
practically identical; in the latter, however, the 
fourth maximum falls below the third and fifth, 
whereas in the photographs the third and fourth 
appear equal with the fifth weaker. The angle 
is therefore larger than tetrahedral and is quite 
probably 120_0 as in the three compounds pre­
viously discussed. The final quantitative re­
sults are Br-Br = 3.25 ='= 0.03 A., B-Br = 1.87 
='= 0.02 A., < Br-B-Br = 120° (within 6°). 

Raman spectral data5 are consistent with the 
planar configuration; with the aid of Badger's 

' rule they lead to a B-Br distance of l.85 A. 
Discussion 

The results of the electron diffraction investiga­
. tion of these compounds are collected in Table V. 

Substance 

B(CH,)a I 

BF, 
BCI, 
BBra 

TABLE V 
X-X distance, A. 
2. 70 ± 0 03 
2.25 ± .0;3 
2.99 ± .03 
3.25 ± .03 

R- X distance, A. 
1. 56 ± 0.02 
1. 30 ± .02 
1.73 ± . 02 
1.87 ± .02 

~~ he observed B-C distance of 1.56 A. in boron 
• • ethyl.,c9mbinetl wfth the carbon single bond 

covalent radius, 9 0. 77 A., leads to a value for the 
radius of boron of 0.79 A. This value is to be 
compared with 0.89 A., obtained by extrapolation 
of the radii of oxygen, nitrogen and carbon. The 
large discrepancy between the two, amounting to 
0.10 A., raises the question of what is represented 
by the extrapolated value. As has been pointed 
out to us by Professor Pauling, the radius values 
used in the extrapolation correspond to atoms 
having complete octets of electrons; and the 
value 0.89 A. for boron presumably represents 
the single bond radius when the boron atom has 
associated with it four pairs of electrons. In 
boron trimethyl, on the other hand, the boron 
atom has only three electron pairs occupying a 
set of three equivalent planar orbitals probably 
arising from hybridization ?f sp2• The larger rela­
tive contribution of the s orbital in bonds of this 
type as compared with the tetrahedral sp3 bonds 
observed in oxygen, nitrogen and carbon would 
lead to a smaller bond radius. Accordingly, the 
discrepancy observed may well be due to a funda­
mental difference in bond type, the radius of 0. 79 A. 
being associated with boron surrounded by six elec­
trons occupying hybridized sp2 orbitals and that 
of 0.89 A. associated with boron surrounded by a 
complete octet of electrons in sp3 orbitals. 

(9.l. L . . Pauling and L. 0. Brockway, THIS JOURNAL, 69, 1223 
(1937). ' .,. ' ,· '... Ill' 

-
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TABLE VI 

Substance Bond distance, A. 
B(CH,), B-C = 1.56 ± 0.02 
Extrapolated from 0, N, C radii 
BC!, B- Cl = 1. 73 ± . 02 
BBr3 

BFa 
B,NaHG 
BN 
BH,N(CH,,),, 
B2Hs 
B6H9 
CaB6 

BHaCO 

B-Br = 1.87 ± 

B-F = 1.30 ± 

B-N = 1.44 ± 

B-N = 1.45 ='= 
8 -N l. (i2 ± 

B-B l.8{i ± 

B- B 1.7G ± 

B-B 1. 716 ='= 

B-C = 1.57 ='= 

.02 

.02 

. 02 
.01 
.15 
.04 
.02 
. 004 
.03 

If we accept the value 0.89 A. for the tetrahedral 
radius, a satisfactory explanation of both bond 
distances and molecular configurations in bo­
ron trichloride and boron tribromide is possible. 
Resonance among the three Lewis structures of 
the type 

:X :X: 

would give each B-X bond one-third double and 
two-thirds single bond character, sp3 quantization 

'-' being necessary to provide for the four bond orbi­
tals. Such resonance would constrain the atoms 
to a coplanar configuration with 120° bond angles, 
as in graphite and carbonate ion. While some con­
tribution might be made by the structure having 
three single bonds on boron, the loss of the energy 
of the extra bond would make this structure rela­
tively less important; and a small contribution 
would have no effect on the bond distance because 
the sp2 bonds in this structure would have a length 
only slightly greater than that of the bonds in the 
proposed resonating molecule. Applying the rela­
tion between bond distance and double bond 
character, 9• 10 we find that the distances 1. 73 and 
1.87 A. observed in the chloride and bromide, re­
spectively, both lead to a value of 0.89 A. for the 
single bond tetrahedral radius of boron. 

The extremely short bond distance in boron 
trifluoride under the foregoing assumptions cor­
responds to a boron radius of 0.77 A. It is very 
probable that the structure of the fluoride re­
quires another explanation since abnormally 
short bond distances are observed in other fluo­
rides as well, e. g-., silicon tetrafluoride and phos­
phorus trifluoride. 11 

(10) L . Pauling, L. 0. Brockway and J. Y . Beach , Tms JOUR NAL, 

57, 2705 (1935). 
(11) L. 0. Brockway and F. T. Wall, ibid., 56, 2373 (1934). 

Boron single bond 
radius, A. 

0.79 
.89 
.89 
.89 

( . 77) 
.89 
.87 
.92 
_9;; 
.88 
.86 
.80 
.88 

Remarks 

sp2 bond type 
sp3 bond type 
Graphite type resonance assumed 
Graphite type resonance assumed 

•• Graphite type resonance assumed 
,"13,e_nzene type resonance assumed 
CTraphite type resonance assumed 

sp3 state for carbon 
Resonance with sp2 state 

Other boron compounds which have been in­
vestigated are shown together with the above 
results in Table VI. In B3N3H6

12 the molecule 
undoubtedly has the electronic structure of ben-· 
zene and the observed B-H distance of 1.44 ± 0.02 
A. corresponds to a single bond boron radius of 
0.89 A. The boron nitride crystal has been 
found12

a to have a graphite-like structure with 
B-N = 1.45 ± 0.01 A., corresponding to a single 
bond boron radius of 0.87 A. The single bond 
B-N distance in BHaN(CH3) 3

13 is combined with 
the nitrogen radius 0.70 A. to give a boron radius 
of 0.92 A. The boron-boron distances observed 
in B2H514 and B5H915 are treated as single bonds 
to give radii of 0.93 and 0.88 A., respectively. It 
should be noted that in the latter substance one 
of the five boron atoms forms only three bonds 
while the others each form four, and the average 
boron radius observed is perhaps 0.03 or 0.04 A~ 
smaller than it would be if all of the atoms were· 
of the tetrahedral type. In CaB6

16 each boron'·-. 
forms five bonds with an obsenred boron-boron 
separation of 1.716 ± 0.004 A. 

The boron-carbon distance 1.57 ± 0.03 A.' 
observed in BHaCO13 combined with the tetrahe­
dral radius for carbon gives a boron radius of 0.80 
A. On the other hand, the carbon-oxygen dis­
tance is observed to be near that in carbon mon­
oxide, and accordingly the carbon-oxygen bond 
presumably involves resonance between double­
and triple-bonded structures. In the structure 
having a double bond between carbon and oxygen 
the carbon atom is holding only three electron 
pairs, and in accordance with the suggestion made 

(1 2) S. H. Bauer , paper submitted to Tars JOURNAL. 

(12a) 0 . Hassel, Norsk Geo/. Tidsskrifl , 9, 266 (1926). 
(13) S. H . Bauer, THIS JOUR N AL, 59, 1804 (1937). 
(14) S. H. Bauer, ibid., 59, 1096 (1937). 
(15) S. H . Bauer and L. Pauling, ibid. , 58, 2403 (1936). 
(16) L . Pauling and S. Weinbaum, Z . Krist., 87, 181 (1934). 
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above in the case of boron trimethyl the carbon 
radius in this structure would be about 0.10 A. 
less than the tetrahedral radius. In resonance 
"'.ith the triple-bonded structure the carbon­
o~i gen distance would be unaffected, but the 
sipgle bond distance between tetrahedral boron 
and carbon atoms would be decreased by about 
0.08 A. With this allowance the observed boron­
carbon distance gives a boron radius of 0.88 A. 

The values for the boron radius listed in Table 
VI lie within 0.04 A. of 0.89 A. with two excep­
tions. In the first, boron trimethyl, the bonds are 
of a different type from those in the other com­
pounds; and in the second, boron trifluoride, 
the anomalies observed in other fluorides make it 
difficult to interpret the observed distance with 
any assurance. The general agreement among 
the other data lends support to the value first ob­
tained by extrapolation from the other first row 
elements. In the three compounds in which 
boron-boron distances have been observed there 
exists an insufficient number of electrons to form 
electron-pair bonds in. every bond position. 
While this deficiency undoubtedly affects the 

character of the bonds, it is not evident that the 
bond distances are materially affected since the 
average of the three observed radii is 0.89 A. 

We are indebted to Professor Anton Burg of 
the University of Chicago for the sample of boron 
trimethyl, to Dr. S. H. Bauer for data on triborine 
triamine, borine trimethylammine, and borine 
carbonyl, and to Professor Linus Pauling for 
consultation and advice. 

Summary 

The electron diffraction investigation of the 
molecular structures of boron trimethyl, trifluo­
ride, trichloride, and tribromide shows that these 
molecules are planar with the distances B-C 
= 1.56 ± 0.02 A., B-F = 1.30 ± 0.02 A., B-Cl 
= 1.73 ± 0.02 A., and B-Br = 1.87 ± 0.02 A., 
respectively. 

These data together with those from six other 
boron compounds listed in Table VI support a 
value of 0.89 A. for the single bond radius of boron 
surrounded by an octet of electrons and of 0.79 A. 
for boron with only six electrons. 

PASADENA, CALIF. RECEIVED JULY 31, 1937 
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Su.'1l.111ary 

A quantum mechanical treatment of the perturbing effect 

of a general electric field on ions with completely filled 

electron shells is carried out with the aid of second-order 

perturbation theory. The perturbing field is eArpressed as a 

sum of· spherical harmonic functions; the second order pertur­

bation energies corresponding to individual terms in the sum 

prove to be additive. The calculation is made first for an 

electron in an hydrogen-like orbital, and then is generalized 

by means of screening constant wave functions to apply to filled 

shell ions. An application to the sodium chloride crystal 

shows that the polarization of high order of the electron 

clouds of the ions in the field of the surrounding ions intro­

duces a stabilization of about four kilocalories per mol into 

the lattice energy of the crystal, this value beiri...g uncertain 

by a f actor of two or three. 

The molecular structures of the bromomethanes have been 

investigated by means of electron diff'raction. The C-Br dis­

tance in each comp ound is l.91A.; the Br-C-Br angle is 109°28' 

in carbon tetrabromide, 111° in tribromomethane and 112° in 

dibromomethane. 

The electron diffraction investigation of the molecular 

structures of boron trimethyl, trifluoride, trichloride, and 

tribromide shows that these molecules are planar with the dis-

tances B-C 1.56 + 0.02 A.' B-F 1.30 + 0.02 A.' B-Cl 1.73 = - = - = 

+ 0.02 A.' and B- Br 1.87 + 0.02 A.' respecti ve1;/ . - = -
These data together with those from six other boron com­

pounds listed in. Table VI support a va lue of 0. 89 A. for the 
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single bond radius of boron surrounded by an octet of electrons 

and of o. 79 A. fo2:· boron with onl;y six electrons. 
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Propositions 

Submitted by / Henri A. Levy 

1. An appreciable part of the lattice energy of alkali 

halide crystals is due to the stabilization produced by high 

order polarization of the electron clouds of the ions. 

2. The first and second order perturbation energies in 

filled shell ions produced by a perturbation not involving 

inter-electronic interactions are equal to the sum of the 

perturbation energies of tr1e individual electrons and are in­

dependent of the hybridization of one-electron orbitals which 

may be assumed for the individual electrons. 

3. Boron atoms with three attached groups will form four 

bonds if the electrons needed are available. 

4. The tetrahedal covalent radius of boron with a singly 
negative formal charge is 0.89°l0.02 A. 

5. The experimentally observed interatomic distances in 

trimethyl borine support the thesis that an atom with onl:,, a 

sextet of electrons about it has a cov8.lent radius shorter than 
• 

its normal tetrahedral radius with a complete octet. 

6. A reasonable :nolecular model of' ethylene oxide in agree-

ment with observed electron diffraction data cannot be found 

unless the thermal vibrations of the hydrogen atoms are con­

sidered. Such vibrations should not bE' neglected in treating 

electron diffraction data of ::iolecules with rel3.tivsly large 

numbers of hydrogen atoms. 

7. In the unsynrnetricall~' substituted bro:nomethanes, the 

large size a.f the bromine ato"ns does not causE: great spreading 

of the carbon-bromine bonds from tetrahedral ar...gles. 
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8. The correction made for formal charges· in predicting 

interatomic distances shcu.Ld not br:: t ?..ke n as constant for all 

elements. 

9. In the linear sym:netric dihalogen substituted acetylenes 

the structure with a carbon to halogen double bond contributes 

largely to the structures of the molecules about twenty per 

cent in the case of dibromoacetylene. 

10. The preparation of chlorine fluorite described by Ruff 

can bE improved by c-3.rrying out the reaction in the presence of 

nitrogen. 

11. The silver ion catalysed reduction of peroxysulfate 

ion by hydrazine proceeds by the formation of an interrn.ediate 

product which is probabl;y' an argenic ion. 

12. The coined ter.11 "vicinence" is a satisfactor:I sub­

stitute for the awkward ter!n "coordination nli!'Tlber" and should 

supplant the latter in the vocabular;y of th€ structural chemist. 

13. Investigators calculating free enerf?;.)T changes of 

chemical reactions fro1;1 !nicroscopic data should not i2,nore the 

contribution to the free energy of the entropy change accompany­

ing the reaction. A derivation of t..~e dependence on concentra­

tion of free energy change for perfect gases or s olutes can be 

made by a statistical consideration of this entropy term. 


