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The Caleculation of Second Order Polarization

Energies in Atoms

A, Introduction. The development of the quantum mechanics
made possible a systematic attack on many problems of atomiec
energy. The problem of polarization in an external field is
one to which the approximation methods of quantum mechanics
are applicable, since in cases of interest the external field
is small compared to internal atomic forces. Indeed, the
first use to which SchrSdingerl put his newly developed first
order perturbation theory was the treatment of the first
order Stark effect in atomic hydrogen. A second order per-
turbation theory was developed independently by EpsteinZ,
Wentzels, and Waller4 and applied to the second order Stark
effect in hydrogen. Other treatments of hydrogen and more
complex atoms in a uniform field followed, notably by
Buckinghams, who applied the variation method to the problem.
The more complex problem of polarization in & non-
homogeneous field has received relatively little attention.

Th, Neugebauer6

has given an approximate treatment of ion
deformation in binary crystals, but he was not concerned
with the energy effect of the deformation.

Inasmuch as an ion in an ionic crystal is subject to
a complex electric field arising from the distribution of
positive and negative charges in its environment, knowledge
of the theory of atomic polarization in non-uniform fields

is essential to a complete understanding of crystal lattice

energies. It is with this application primarily in mind



that the following treatment is undertaken.

The method to be followed in the subsequent ealculation
is first to carry through as rigorous as possible a treat-
ment for an electron in an hydrogen-like orbital, then to
generalize the result by substituting an effective nuclear
charge for the true nuclear charge., This method is to be
sure, an approximate one, since it assumes that the field
about one electron due to the rest is central, a condition
obviously not fulfilled.

The expression for the hydrogen-like atom will be ob-
tained by application of a general perturbation theory7 which
is capable of giving results which are exact (for the hydrogen-
like atom) to second-order terms in the parameters describing
the field. However, since filled-shell ions are of primary
interest, simplifications will be made which, while not affect-
ing the results for filled-shell ions, will destroy the rigor

of the treatment for hydrogen.



B. LElectrons in Hydrogen=-like Orbitals
1. The Potential Field. In order to describe a
potential in charge-free space, & function of spatial co-

ordinates V (x, y, z) must satisfy lLaplace's equation
2
Viv=o (1.1)

where /% is the Laplace operator. The most general solution
of this equation satisfying the usual physical restrictions of

boundary and continuity for charge-free space is, in polar

coordinates
Vs, o) =2\T ; G, [T, (n5 ) (1.2)
where k;m (r%, 9) is a spherieal harmonic function given by
/\/gh (r3 ¢) = pg'@g,h (79)‘52,’ ($) (1.3)
with

@, @ = [ <g—b)/] (Cos 5)

2 (g+n)!

(1.4)
52 - ] Cos /7
a (B) =yzF san NY =2 for #=e
P =1 otherwise.
h
f% (=) is an associated Legendre polynomial of degree g and

order h, and may be calculated explicitly by means of the formula
A ey o
Z%~ 5 =
F& = 0- ™ hagg, AR A (1.4)
The set of functions éﬂmh@D are normalized and orthogonal

satisfying the condition
! @gh Q,Ih Sch 19\ 6[& = gggl 9 . (1.5)

where &W/=1 for ¢-¢’ and O otherwise. Similarly,52b<¢)is» '

seen to be a normalized trigonometric function. The range of



variation of the index g is from zero to infinity; that of h from
zero to g. The term with g = 0, however, represents the trivial
case of a constant potential, for which G, méy be arbitrarily
set equal to zero. The sum in equation (l1.3) is to be inter-
preted to include both sine and cosine terms in\fz , each with a
coefficienf (E;h , except that when h = 0 only the cosine term
is to be considered. The coefficient 2\ﬂ§ is inserted in
order that G%h reduce to the familiar strength of field for
the case g = 1.

2. The Schrodinger Equation. The wave equation for the

perturbed hydrogenic atom is

z
-;;7 VY (r,9) - E2 yi59,9) + /68,92 Yins, )

=Wwins9) (2.1)

where ¥ 1is the wave function for the system, h is Planck's
constant, a the "reduced mass" of the electron and nucleus

(7, = ) , £  the nuclear charge, e the electronic

charge, and W the energy constant of the system. For convenience
a change of variable will be made, letting

ZZr i .
S' Ao = z 2
rs (2.2)

The transformed wave egquation is

VA0 (5,89 + (- DY (5,80) * AV (559) LYV 559)

(2.3)
¢
where A = ; Een3° O, ), (9,
= =— S+l
o, 753 Tl [ra,
Eow =-2)T 2 (77) G,
(2.4)

..'l_‘_i_a - L
RZ*e2 T

™
Il



The transformed equation will be represented symbolically by

[jV*M/:/vr=P’V (2.5)

5 /
where H”= v? +& -+ and /'=A , the "perturbation operator.”
When V = O (that is, all the G, 0) equation (2,1) reduces
to the familiar equation for thé unperturbed hydrogenic atom,

with characteristic solutions
= R ) By ® P, @) (2.6)

and allowed values of the energy constant

o Zzez‘
Wh = 5753 (2.7)
LZ 3 (n-4£- /)/ f;—
Here RM ) =‘B“aa zn(nre)l* ( ) L,,M na,
TR img . 2.8
and.~§§n7(?) == e, 4 (2.8)

CD{M” being functions already defined (equation (1l.4)). The

2ot

functions Z-m45” are associated Laguerre polynomials, expressed

explicitly by
24+ n-4-i

Lnrl (P) —Z (I)

n, 1, and m are the usual quantum numbers defining the gquantum

+1 (n,-é)l
(h-4- /_/()’(Z«?flf/()’/r/ P

(2.9)

state of the system.
3, The Variation Functions. In the method of treatment

employed, the true wave function Vs expanded in terms of

a suitable set of functions /iﬂvu(§,§,¢) ’ so that
W89y = F By S (5.59) (3.1)
s

V/ must satisfy the wave equation in the form of equation
(2.5), namely
o / - - » (5129)‘?
(B + B) Z, B B (58,90 =FZ Bors s

Multiplying both sides of the equation by /-'V,’:,/‘, (5,9,9) 5 ds sindeldcly



and integreting over the entire range of variability of the

coordinates, one obtains

/fo/ Y + // ot — /\ T 5 - O .
£ Hoe ¥ Ppmp — By £ Do (5.2)
5 ® i 27 * "F -
where H:?; =[d§jolt9°fd¢ﬁ/,uy H™ Fopu F2sinSs
p i J *sin o
H:,;//: jccgjawl oy /f,,),ﬁ, B b s o

27
L[ [ Lo e §5in 8

VA~

and F* signifies the complex con jugate of F.

Equation (3.2) represents a set of simultaneous, homo-
geneous, linear equations in the constants S~ . A necessary
and sufficient condition that it have a solution other thean
a1l the 8,.° zero is that the determinant of the coefficients

of the Eib:J vanish,

’(/—/,;,\ C ot Honw = D i )f = (3.4)

VA Y A B B
This will be true for certain values of A , which in turn
will give characteristic values of the energy constant W.

The set of functions fib» (s,% 9) used in the present

treatment was introduced into quantum mechanics by P. S. Epstein2
It is
- S (
[:)77‘/* (5,%,9) = AV/\ K @/\//’“/( )42_/“ % (3.5)
where 2
/ 2~
N\, (3) =- ‘V o :)'] ZL " sle
VA Vw'} VA (3.6)
. f s
The functions Ln(g)) Caaﬁ‘w) and é/d@) have already been
defined.

Some properties of these functions are important. They

satisfy the differential equation
s
,/i ‘V V}/A —'_ “l) V)«/*—‘ /3 )F)—),\/K (5.7)



and the orthogonality-normalization conditions

dfj‘l'gjd‘})/cv' V}/“ ¥ scn O “SVV e S/wyk . (3.8)
The functions /1V) are themselves orthogonal and normalized:
IN A,y 345 = S0 (3.9)

A recursion formula for /iaf~ which may be derived easily

will prove useful.

z f

V/\/&

= {Lrea) (V-A- )}

_{(V-))(Vr,\rl)} V'*I M *2") Oy "7/(3 10)

If the varieble ¥ in these functions is that defined by
equation (2.2) and if nt is identified with the principal
guantum number n of the unperturbed wave functions, the func-
tions f,. end UC;“'become identical (except for a constant
factor) for ¥V = n, but not for other values of » . 1In
this treatment n' will be set equal to n, the total guantum
number of the particular unperturbed state which is of interest;

that is, the state whose energy W, is to be found. Hence

il nta.
32250 ad - EERWasd — i (WWD) (5

A
°

where W, is a constant equal to the lowest unperturbed energy,

13
namely ié;z . /A, 1is seen to be proportional to the perturba-

tion energy of the system. Similarly the operator bf is seen

to be proportional to the true Hamiltonian operator diminished
by W: , so that the integral Aﬁggﬁf is proportional to the
difference between the corresponding integral inVOlving the
true Hemiltonian operator and the quantity Ayax W,

4, Simplification of the Secular Equation. Since the
value of S is desired only to second order terms in f£qn and

for a certain state of the unperturbed system, namely the



state (n, 1, m), some important simplifications can be made

in the determinantal equation (3.4). If the first orcer in-
/

tegral /A&yl is neglected in all non-diagonal elements except
V)/uu

in the row and column withn’;)', andvfﬂbrié), and M equal to
n, 1, and m respectively, no errors of second order or larger
will be introduced into f%bn. Similarly, if/S ie replaced by
a first order approximation in the diagonal elements and in this

row and column (except in the element ég } ?g where it must be

left explicitly) and by a zeroth order approximation (which is

zero) elecewhere, the value of F%mn‘to a second approximation

is unaffected. Furthermore H %»w is easily evaluated by use
Y A

of equations (3.7) and (2.8).

How = ~0-m) 3y, Sy St (4.1)

Y A

With these simplifications, equation (3.4) recuces to

/ ’ y
(Bpim ~Brtn foem ) (Hogn = Bpte Brem) - -
(”324:-42”/: frtm) —{#=h) o |.o (4.2)

tT . o . .

Here ﬁﬁ"represents a first approximation to /145. In the
diagonal elements the.first order terms have been neglected
in comparison to those of zeroth order.

It is now necessary to specify more closely the nature
of the state (n, 1, m) of the unperturbed system which is
under consideration. If it is desired to treat atoms with in-
completely filled electronic shells, the correct zeroth order

wave functions will have to be found and the secular equation

n 1 m
n 1 m)

appears shall correspond to the system described by this correct

(4.2) rearranged in order that the element % where Anen



zeroth order wave function. The present treatment, however,

is primarily concerned with ions with completely filled shells.
in this case hybridization of the zeroth order wave functions
for the individual electrons has no effect on the result, as
will be shown in section 10 of this paper. Hence for con-
venience the simple s and p orbital wave functions will be
treated, the latter in the complex form.

5. The s State (oo), Since the & state corresponds
to a spherically symmetrical electron distribution, there can
be no first order perturbation, provided that the possibility
of hybridization with another orbital is precluded. f9;oo
may therefore be set equal to zero. The intégrals./ﬁég which
do not vanish are finite in number and are shown in the
Appendix to have the following values.

s dh
gl _ s treg)lne e (?_gfl).'
/‘/r,g,t/, = fg/; (1) [zg(_p-g_-r)] z(nrrgei(g+ri-ntr)] ) (5,1)

¥
. 7 /
for grisr & g+irn,  with ' PP =H2go’oth .

N,050
/
The sum over g and h which enters into the definition of féﬁf
is seen'to have reduced to a single term depending on g and h
for any given set of indices ZA/& This makeg it possible to

express ﬁ&“~as a sums:
Broo =gZh Bree &1h) (5.2)

in which f%m(g, h) ies the perturbation energy produced by

the g h term of the potential, acting alone. For simplicity,

the subsequent calculations will concern the g h term alone.
The diagonal elements whose row and column still contain

some non-vanishiﬁg integrals are seen to be -(r-n), and ZXgﬁ:

is easily seen from equations (3.10) and (3.8) to be 2n.



j
O

With these substitutions the secular equation becomes

/
- (g.h) °
an /@70; g- Hr"’)golth
H! = 0 (5.3)
noo — (r_n)
K¢ th
Two elements are to be included for each value cf r, one

corresponding to the index + h and one to - hj however when

T =

solution of (5.3) is
g+irn

>

r:grl

1
Pn

Broo (£2h) =
©e The P,

are (see Appendix)

O only one element should be included for a given r.

State (210).

rs,
(r-n)

/ 2
u (5.4)

The non-vanishing integrals

g+n-r -hy(sth)nt)l G rr=1)16p 13
ngash = Egn 1) 5 [(‘;_f)( s - )! g (25 +2)!
P 1o (zg+t1)(n-2)/ (r~&)! 7T (8+1-ntr) ! (grirn-r))

wh gers= Frn+/

and

Hiagosh = Egn € b[hrlgmtioal grlée ) 2 g o]

n,t ,o

with Sr28rg grht)

With  ho hybridization, a

appear only 1if one of these

zf"'”(z,?"i)m*’),/ (r~-g-2) | 77 (g'fltﬂ-f‘)"{g’-r/—h*f)!( 6. l)

first order perturbation can

/
integrals reduces to f%i% o

This can occur only for g = 23 the case should be given
. % /
special consideration. In general then Swm(g, h) = O.
The secular equation reduces to-
eng,,  @r) M, M
—-an J hio
Mio e, th ’:?:'f'ath
/ *
Hh/o ~ (r-n) o - .
ngith =0 (6.2)
¥
",
o (o) — "
r,é, b ) (r-n)
whence
-~
Sth#) /HI 2 éﬂ*’ L ” (003)
_ r,g-1,th / //’Ir‘ +1, £h
Frio G = o e aFee
l"*g’ (r‘—n) (r*._n)

r=g+2

The



11

7. The States (211) and (2,1;1). The non-vanishing

integrals are (see Appendix)

< ~ 47 - gr0-r ) [3pr ) (g+r=1)]&+h=1)(S+h) (zgr2)]
. j = gl s = -~/ A 3 A < e I N (S ’,
/L_ &=l 1-h /7/'31 /, =1+h é:' ( ) [tﬁ—z)’(r—g’)l(zg—/) (2€+1) T (g*-,—/_nrr )] (gq-“n-r)./

Rt ;2 ", L, ~z
FEregrn+/
He S, )L B8 b (k) 12 gl
’:;S;" ek S n ;/;'/”/7 soh F| T (2ge1)(2+3) (02D (r~1)] [(gr1-ntr)] (10 ~-F)]
) s Ly = ‘
EXrsgrhns

H oo 0= < £ @S R g h 2 ) (5 1)) ) g [prgrnr-r ]
1 §#), - o1 ~1Fy - <
n,g: '; , n'g;f,), h  ~sh E W l2g+i)2gs3 Wnti1)l (r=g-2.) | j?’*l—nrr’!(g’tl#ﬁ-r)!

=

§t2S rSg*nyr )

V.
i ’ gen-r, |3p(d*h - - . %
Hr,e'ﬂ, 1+h :/-/’_' gtk = E (‘,, ry 7,79 #1)(2+hr2) (N~2)I(g+1+r) | w
! (2gri1)(2g»3)(n+1)]) (r-2- -2)/ (g‘w-nrr)/(?',.,,,,-p),

2SS r<S+ s L Pl

n, i, h, ), -~y

Again wilh no  hybridization, a first order perturbation
can occur only if g = 2, h = 0y and again this case needs
. . . . / /
special consideration. In general again &,, (£:4)=6,,_, k)= O y

and the secular equation becomeg, for (mll)

-2h (g,h / 4 v
2 Fm, h) /"/;n: /7',,“ Hhu //,
p . 3 €1, /h 5¢4, tHrh rigriy b P 1vh
ni S -
e (r-m (o) 9] lo]
Hi
nity o -
r,g~1,1t4 ‘(r—h\ “ g — 2
H e B ) ~(r-n) 0
Fygelyi-h
/ # o -
Higown O o S

(7.2)

The result for (n),-), as can easily be seen, is identical.

8. Hybrid p Orbitals. It will be useful to cons ider
the states of the unperturbed system cbtainable by hybridiza-
tion of the three p states just treated. Take, for example

V;“F,—(’: t Gy + 5
/-1
) (8.1)



The perturbation integrals for this state are
Hosw = (P + Hipue + 1

pyu =5 (P = Hip = My (8.2)
However, for particular values of g and h only one term of
this sum will be different from zero, as will be seen upon ex-
amination of the non-vanishing integrals. Furthermore, this
wave.function represents a spherically-symmetrical ¢lectron
distribution, and as such cannot ,give rise to a first order
perturbation energy for any perturbing potentialy, g =2, h = 0
included. It is, also, as good a bacis for ireating filled-shell
ions as the simple p functions treated above., It can easily be
seen that the seéular equation for this hybrid state will have

the solution

Brgh) = 5 [Brio 8h) 1, (4,h) +n, (5,0)] (8.3)

2

and 1is goodlfor all values of g and h, including g =42, h = 0.

Two other linearly ihdependent hybrid orbitals may be con-
structed, such as K., */5, —Fay - and Fae~ Gou ~Fay~ 3 thes
will give results identical to that indicated in equation (8.3).

9. Final Expressions. Ohintroducﬁhﬁfthe explicit values of
the integrals calculated in the Appendix into the expressions
for B(gh) calculated in the preceyding paragraphs, the following
expressions are obtained for A (gh) and for W//(gh).

For the unperturbed state (noo): ;

. S+Ith
’ L ul
h )= F2 (gr2)] Zi (r+g)!
Broe @1 )= Ey, 87 L (=) (@ r1+n-r)] = (@+1~n+r)]Z (5-N)
r L 2g = { (Bed)
/ - na, \~s 2 r
Wi, @ =-G,, 3a, (27:) (2g+2)] Z (rrg)!

-1 )
r:g*lfhg— 1) (?'*Hn-;-”a(g-f,_nf,.)/z(r_n)
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For the ' ybrid state p= V%—(n/o +P11+0, 1)

s —2. _1_ [S(n#)] (25,,,_)/1_21’”’
Bnp®h) = L, &un el 2_ (reg-nl
-Z)'/ e (r-)) (gf./fn~r)/a(g,_,_n,_,-)!z(r__”)
; _ S*/rh
+ W/LZ (reg+1)] [rgrzy ~r 1%
(Zg'*l) (ﬂf/),/ =P (r‘g‘l)! (g'-:-nn-r)lz(g-,,_n,.,-,/ (r.ﬂ)}
= ' "(2.2)
” 2 4 /n 2g+2 'zfﬂfn ny
V\/” @h) = - Ggh'Sao na, gnr1)l @g+2)] (rrg 1)
P p 2Z nzg*1) (n-2)/ () (G + 1#n-F)1 (S +1-nsr)] 1(/;}'
r-g '

o ‘l(gﬂ)(n-z)_/(zg*,,[zi‘:”"
HELH)(rry )

(r+g ¢ 1) !Ep(gﬂ.}-r_]z }

Fogre (r-g-2)/ (g‘i—/fn~r)_/?—(g/-/~/7ﬂj/‘ r-n)

It will be noticed that the energy expression for the
hybrid p orbital is independent of hy +this result is necessary

on account of the spherical symimetry of the wave function.



Ce The CGCeneralization to Filled Shell Ions

10. The Splitting of Degenerate fnergy Levels. It wi}l
be noticed that in case n is greater than or egual to g there
will be a term for r = n in one or both of the energy express-
ions in equations (¢.1) and (9.2), and that then the factor
(r-n) in the denominators of the expressions will vanish. This
factor is-/¥521 s proportional to the energy difference be-
tween the state ("Ax) and the state (nén) whose perturbation
energy is being calculated. Since the wave functions being
used are hydrogen-like, these states are treated as degenerate.
If it is desired to treat a hydrogen-like atom, this degeneracy
makes the calculation of perturbation for non-hybridized orbitals
unsuitable; the correct procedure is to solve a first-order
secular equation for the correct zeroth order wave functions
and to use these in the subsequent calculations. The subject
of the present treatment, however, is not the hydrogen-like
atom, but the filled shell ion with more complex structure.

In this case the degeneracy of thesé states is removed by the
non-coulomb fiecld of the other electrons and the integral
—/4E§Q'should have a finite value. As the present method
fails to give this result, an empirical estimate of the
splitting for the atom in question must be made and a suitable

value inserted in place of the factor (r-n).

o
The integral /45?w may be shown by equations (2.5), (2.8),
/A—

(3.6) and (3.11) to be equal to

‘)4 o¥ h* 2 Ze* o
Wi - { Vo (-era V- FIV AT
il 2 J¥or Core V= W7y

+ VVﬁ}m}
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For the case ¥V = n in which we are interested
3 o .
[ _ qL _ o
H;;;j: Zvg, (Waye =~ Wien ) (10.2)
By use of the energy screening constants of Pauling and
Sherman®, the latter factor may be estimated. If‘SJ is the
required screening constant for the atom being treated for the

state (n§u) and S; that for the state(n 1 m)

Z-~ -S;
“Hmye > * 2y, [‘ se)e’ sE)e]

nam 2& h# Zaohl (10.3)

=452 (5, SL)(2Z =Sz * S )

This quantity should replace the factor (r-n) in the term of
equations (9.1) and (¢.2) for which r = n.

1l. Effect of Hybridizing Unperturbed Wave Functions.
The next step in generalizing the expressions in equations
(2.1) and (2.2) to apply to filled shell ions will be Jjustifi-
cation of the statement made in paragraph 4 that the pertur-
bation energies for filled shell ions are independent of the
type of hybridization assumed for the individual electrons.
If‘hﬁois the wave fupction for the nth state of the unperturbed

cystem, the first order perturbation energy is given in general

Dy
AR kA A
(11:1)
and the second order perturbation energy by
2 VT ATV T H Y dr (11.9)
."#” M‘° = wr‘o . e

For a system with several electrons thece YW 's are the com-
plete zeroth order wave functions and dT is the product of the

volume elements of all the electrons. In case the perturbation



1o

operator H' is a sum of terms each depending on the coordinates
of a single electron, as it is in our case, the wave equation
remains separable into several single electron equations, if
interelectronic interactions are neglected. The complete unper-
turbed wave function can therefore be expressed as a completely

antisymmetric product of single electron wave functions

Ya) -« « . Y(aw)

o ’ v .
V(f/.-‘--"lw)=,7iv_- . . (11.3)

Yola) o v L Yo aw)

where @ represents all the coordinates Qf the <-th eclectron
and N i1s the number of electrons. Electron spin is neglected
- here; however its consideration makes no essential change in
the argument. Since we are considering a filled shell, the
number of orbitals in the shell is the same. We wish now ﬁo
investigate the effect of replacing each YW(9e) 1in equation

(11.3)by a hybrid function of the form

N

G @)= ) Bus Vi(3)

[ (11.4)
The equation now assumes the form
7 v
Z &, Y (q) ‘e Z au'% (q")
<= L”"
(=] | : .
% (q,..-qﬂ) = V_IV ) : (llc5)

» v
Z;awWé@n 5% & Z N Y
x|
This determinant is immediately recognized to be a product of

determinants, so that

BRI T W) oo Y
R | [ " -~
é 4. -. Gw) = 'V“N ' % X ; 11.8)

a'NI """ 3~.,,,, Vy(‘m € M %(‘hf,
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According to equation (11.8) ﬁw and ¥ °differ only by a con-
stant factor. If however the individual ¥ * and the hybrid 9a’s
are all normalized, both ¥° and ¢ are also,  and the first
determinant in eguation (11.8) must be equal to unity. Hence

YW and @w are identical. It follows from this and eguations
(11.1) and (11.2) that the first and second perturbation energies
in filled shell ions are independent of the type of hybridiza-
tion chesen for the individual electrons. This being the case,
the cimple s functions and the hybrid p functions of the type
of equation . (8.1) have been chogen for the present tf%atment.

12, Selection of Screening Constants. Finally it is

necessary to allow for the perturbing effect of interelectronic

interactions on the energy expressionss This will be done in
an approximate way by use of well-known screening constant
wave functions. The quantity Z, the nuclear charge of the
atom, is replaced by an "effective nuclear charge" Z - Sj

S, the screening constant, represents the average effect of
the additional electrons in shielding the electron under con-
sideration from the nucleus.

S will depend both upon the atom under consideration
and upon the property whose calculation is to be attempted.
According to a calculation by Paulingg, a proper value of S
for calculation of a property proportional (for a hydrogen-

like electron) to n"Z° is given by
r
5:21“—;22‘-
¢ 3

Here =z. is the number of electrons in the 1th ¢hell and D

Dy (12.1)

is known as the screening defect for an electron in the ith

~shell. D may be calculated theoretically;'it is better how-



ever to obtain it froa the semi-empirical screening constante
(&

of Pauling and Sherman®©.

Approximate values of r are obtained by calculating valuec

of W’ for vsrious values of g and n and plotting their loga-
rithms againest log n. Fig. 1 ghows this plot for g = 4 and o,
two cases which are of interest in the subsequent'application.
The result shows r for both the s and p states to be approximate-
ly 1o for g = 4 and 22 for g = 6.' The value of t is seen from
equations (22) to be 2g + 2,‘hence

%gl‘é yeor g’:‘] a”4g=6 -

In the follow1ng table, Pauling's and Sherman's semi-
empirical "size" screening constants O were used to calculate

2z:D: 3 this in turn gave S for ? = 1.6, by ecuation (12.1)

Table 1. Screening Constants

Siructure Type Js Orbital Xz Zz: D, S
He 0.1¢ ls —Z/ 0.40 0.35
faw & o BB &%)
Ar {13:3 35 17 {3:88 19:1}
e (BB g e {RE B
e @3 g o= {Ld HS)

13. Final Expressions. The final expressions for the

second order polarization in an ion with two s and six p

w

electrons is the following

I, (€h) 3 dne

2 2 na g‘+2. 4
ch,h) -G, = (%) R
gh 3 [Z-S.s <2 h)ng Iz= 5 (g,h)]“’ =

(13.1)
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F+irn

: (r+g)!
where J,. @h) = (zg+2)!*
" éﬂ (r-g =0T (gsren-r)| *(gri=ntr)|ig, (r;g)’( 13.2)

$rirh /
J by = S(ns)!lzgs2))* Z (r+g-i)!
T e Gy COTEINI g nrr) 2y oy

@2 zge DI *THT (regen [rigeay-r]*

i iSOG
il2ger) (hs) / reg=2 (f’g~z)[(g'+h~n~r)'/n(gﬂ‘,?,,,-)‘/z o (F S 71)

s = Gnp = PF-n for r#n
(13.4)

h
s (N, )= mz [:SE (noo) ~ S m,gqh)] [zz~sf(noo) +SE{ngh)J
' - (12.5)

- h - - +Sc(h Q)
Top (M2} = 2(z~ snr)z [SE i SE (i l/“')] [ZZ R 62.6)

S,,s (€.h)3nd S,.@h) are appropriate screening constants for the
potential Vg, , and SE(n}/u) are energy screening constants for

the states (mMap).



De. Application to the Lattice Energy of a Sodium Chloride
Type Crystal.
14. Introduction. In an ionic crystal, the electron
clouds of the individual ions are polarized in the field of
the surrounding ions. This polarization gives rise to a
stabilizing term in the lattice energy, the magnitude of which
may be calculated by use of the theory developed in the
preceeding sections. The present application will be limited
to crystals with the halite structure.
15. Potentials with Cubic Symmetry. Since the environment
of every ion in the halite structure is cubically sy:anetric,
the potential function due to the ion environment must also be
cubically symmetric. The conditions for cubic symmetry may
be derived by expressing a general potential in cartesian
coordinates and equating coefficients of equal powers of x,
Yy 2y =Xy =¥y and =2zZ.
The general potential function is

Very,2) = 22 g Con Fg (%o9:2) (15.1)

where K, is a spherical harmonic. K, is homogeneous in
Vx*+y*+z> . of degree g. Because of this, any symmetry proper-
ties possessed by the complete function V (%, y, z) must also
be possessed by the sums of terms with the same value of g.

Since V (x, ¥, 2z) must be symmetric in positive and
negative values of the variables, all odd powers of the
variables must vanish. -That is, ;@,, Hgn = O for all sine lerms, all
terms with h odd, and all cosine terms with g - h odd. Since

the functions K., are linearly independent, this condition

requires that Gy, vanish for all of these cases. In addition,
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in the spherical harmonics with even and h ecqual to twice an
odd integer the coefficients of x" and y" are equal and oppoeite,
n being an even integer, winile in thoce with the remaining even
values of h the coefficients of x” and y” are equal. Under
these circumstances the former are incompatible with cubic
symnetry. Hence 2Y%w @m =0 for g even, h = 2 (2n + 1). Again
this condition requires that all these C—g;,73 be zero.

There remains the cosine functions with g even and h

I
N
o

By expressing these explicitly and equating coefTicients of x,

y" and z" , the following conditions are obtained

G,, &=V G, | (15.2)

Other relations exist for higher order terms.
16. Evaluation of Coefficients for the Halite Structure.
The potential due to a distribution of point charges is given

by Coulomb's law as

@
V{r): LZ—’Q‘—,C:'

(15.1)
where g 1s the magnitude of the ith charge, a, is the vector
from the origin to the g o8 charge, and r_is the vector from
the origin to the point of interest. By use of an expansion

theoremlo, equation (16.1) can be expressed as

2p 71
V(r) = Z A ; ng’_, / &h (r)“si ‘P) ' ?a‘T‘,ZS’l /T?A (a;,195, ‘p‘) é‘*xf':‘;'}“g)

)

where r,#, and¢ give the length and direction of r and &,
9, ¢ thosge of & « In order that V(r) should be in the
form of equation (15.1) we must have

9. i
.Z 23’1-3 ° a‘ 2g+) /]/g—h ('K‘-) gc i ZC) (lb.B)



where X, 5, ¥y, 5 2, are the cartesian components of the vector a..

The halite structure ic based on a face-centered cubic lattice.
There.are positive ilons at (000), (4,%,0), (404), and (0id),
and negative ions at (100), (040), (00%), and (444): It is
convenient to classify the ions surrounding a given ion into
groups of cimilar ions at the same distance.

The following table enumerates the first six sucir groups
of ions about the origin and gives values of %f y the common
dicstance from the origin of the icns of group Jj, expressed
in terms of the unit translation of the lattice a, and valuesg
of the group coefficient Ggl ‘, defined as the sum over the

group of The part of Ggs referring fo & single ion.

g v3m o _ 9
Ggh = ‘Z STV gy (X 4e 20)

(13.4)
Teble 2.
T\(’ . f a: (j) § (S) 7
Group Fo. ;?ong C%ggge C%ggdinates f an %L go‘%
] 65 - £ 0039 L _az. B8, 08
1. 6 ©6-e £ 3 3231 3.0
P 12 + e it 0)S : -5 56 -14:.58
1:0)S =
11 Q) vz
11009
o 3 - (812) +1.84 1 17
3 8 € gjigs !g
L 8)0
£37)
24 = e : — -004:‘\6 +0022
2. (116} i
I3 =
13

OO0 0000 O
LOLOOGULLL

A

=~
Neine N
A

(Table 2 continued, next page)



Group No.

Table 2 (continued) _
] £ Ton Ion_. G LN
Charge Coordinatesg

5e 24 + 2 ( "0037 +0.00

W | B

A A -
NP e o o] eofeemfooie (b

"“l"‘hﬂ'lﬂ'-“"]"’ [ .
UWOLLLLUL

[

+C.03 -0.02

tof e (=
N e NN S NN
Nlw

=
GCLLLUubLOL

NN NNN NN
= b= o i ey
s

o N el ~ie| e Qe

Each positive ion in this table is the first of an in-
finite, ecually-spaced row of similar ions. Xach negative ion
is the first of a similar row of alternately negative and
positive ions. The eifect of the other ions in the row can

W )
conveniently be taken into account by multiplying G4, for a

S5 g ;4)
group of positive ions bny(i) and G, for a group of
o=
’ . b2 ar) 4y SF! N i .
negative ions by 2 V) (&) . Values of these sums are
oz
-] (oo 7
> ()% hes7 > (4) = tocs
o=} 21 -~ g
o ru il 1 » (15.5)
+1 1 - 7 .
> ) )= 0972 > " L)'= 0995
o= o=y

Carrying out this calculation, summing over the groups,
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and using equations (13.2), wve obtain the following results

=—33.35 e&r

(15.3)

"

G4o

. . o
644 = =282z /a
Géo -38.15 €/37

+/00.92 E€/57

{

Gys

For WaCl, the unit translation ic a = 5.928 A « This

gives the following numerical values, expressed for convenience

/72'
in terms of a, = amper = 0.5282 A for infinite nuclear mass,
qu = —2.4390 x /0.-, e/‘.;\‘:r
-4 e, &5
= -z057x10  “/a
644 ° (16.7)
-6
Géo 2 ~2.95) x /o e/aoi
' -~
G&q : +4,483 x /0 97%37
17. Polarization Energy for Na Cl Crystal. From these

coefficients and the energy expression (48 ) a value may be ob-
tained for the polarization energy in the Na Cl crystal. The
ellective nuclear charges used are the following.

Table 3. Values of S and Z2 for Na Cl.

Ton Orbital 8 Z

Na 28 4,28 Q.72
2p 5.46 , 54

gl 3s 10.7 Ce3
2 1241 4.9

The resulte are summarized below, in units &a, .
Table 4. Values of W” for Na Cl
¢see next page)
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Table 4. Values of W’ for Na C1

g Na : cl.
-5 -5
4 0.12 x 10 455 x 10
-5 . -5
5 0.02 x 10 224 % 10
-5 -5
Total 0.14 x 10 679 x 10
Total W' = 672 x 10 = 4.24 keal / mol.

The sodinm chloride lattice is stabilized to the extent of
about 4 kilocalories per mol by high order polarization of the
ione. The accuracy of this value will be discussed in the
next section.

18. Errors. The one great error which overchadowe 21l
others arises from uncertainties in the effective nuclear charge
Z = Se. Pauling and Sherman8 ectimate their error in the
screening constants to be 10% in the ccreening defect.. Accepting
this value, the uncertainty in Z - S is about 6%; and in 2 - 8
to the tenth power, about &0%. Taking a generous estimate, we
may place the uncertainty in the result at abou£ a factor of
two or three.

. The expansion (13.2) used to evaluate the potential V (r)

ving it to this problem,

J O

is convergent only.for r<a. In appl
the assumption has been tacitly made that. the electron dis-
tribution of one ion cdoes not extend to the position of the
next ion. A more serious assumption is made in applying the
formula (16.1) for the potential due to a distribution of
point charges. Both of these assumptions, however, introduce
negligible errors if the overlapping of the electron dis-
tributions of adjacent ions in negligibly small, a condition

which is probably fulfilled. At any rate, the error intro=-
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duced it negligible in comparison to the uncertainty discuessed

in the preceeding paragraphe.
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E. Digscussion
18. Precision of the Calculation. The fundamental
cendition underlying the applicability of the perturbation
method, namely that the perturbation energy may be small in
comparison to the energy separations of the unperturbed state

of the system from the adjoining excited states, is fulfilled

in the case under discucsion. The calculation of the energy
expression for the hydrogen-like electron is straight-forward
and devoid of approximations affecting the result tc second
order terms.

The generalized expressicn applying to filled shell ions
is in error chiefly because the use of a central coulomb field
to deécribe the potential on one electron due to the others is
not valid. The error due to this is perhaps reasonably small
because the quantity calculated, the perturbation energy, is

the difference between two quantities which might be expected to

be in error by about the same amount in the same direction. A
larger error is introduced by the practical difficulty of ob-
taining the best value of the parameter describing this coulomb
field, namely the effective nuclear charge. The magnitude of
this error was dicscussed in connection with the application of
this theory to the sodium chloride crystal.

The non-coulomb character of the atomic field made it
necessary to introduce into the derived expressions an em-
pirical quantity corresponding to the splitting of degenerate
energy levels of the unperturbed state. The error due to this
cause depends upon the accuracy with which this splitting can

be estimated in the individual cases in which it enters.
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Whether or not there is any a@preciable error in other in-
tegrals due to displacement of excited energy levels away
from their values with a central coulomb Tield is difficult
to say, since the functions used to calculate these integrals
are not wave functions of the system. It seems likely that
any error of this type would be small compared to tne other
errors discussed.

The gpin of the electrons and the emall splitting of
energy levels introduced by it has been ignored throughout;
ite effect is undoubtedly negligible.

20. Value of the Treatment. Although this treatment
gives a value for the high order polarization energy of an
lonic crystal which is uncertain to a degree approcaching an
order of magnitude there are nevertheless situations in
which it should prove to be of value. It should be poscible,
for example, to compare with reasonable confidence the polari-
zation energy of a substance in two different crystal modifica-
tions, such as sodium chloride in its normal structure and in
the cesium chloride structure.

If it were possible to obtain experimental values for
some of the energy quantities predicted by this treatment,
very accurate screening constants could be obtained for use
in treating other atoms. Such experimental values, however,
are not available, and would be excessively difficult to ob-
tain because of the difficulty in producing accurately known
electric fields of the type needed.
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Appendix
The evaluation of the integrals was carried out as

follows:

Himut = JEmys A By AT < [y AES ol = H
V” / YA it T = ﬂy
7 Jrorr AR o 90 (100)

m =2 Lo //\,,\E A 45 / 1 O €, 5in s fi}/jj)h . dp
& 1 JB
jcf RS 27/7:/ N?."ih47d9={f'/’z&'“’

- ¢

*2VE S, 1h
T w
!@M @, @, sn9d8=[@,, O, 1z 5in 848

= b
vz “24

by equation (7)

To evaluate the remaining integral let

;frl/‘ho = rZ la,. /\rg (101)

Then by equation (3.9)
-4 g*l _ S
SN A, F s =3 Svr (102)

The values of An. and./\gare taken from equations (3.9) and

(2.9)3; equatlon (101) Decomee

N~ g ]
_ n' ‘." (2{*/*])! &
EZ ¢ ,) lh~l-¢)I(H-L)f4 Z b ; (1._£)!(2g'*”‘:).".-'§ (103)

. 3 (r-g-n! o
where j = r-g-1 and bj =[E;£%ﬁ;] nlva a, « The upper limit

of the summation over r is found by recognizing that the poly-
nomial of highest degree which can enter is of degree n. By
changing the order of summation, with an appropriate change in

limits, making the substitution

C. - (zg'f-lrj),’zb_
T TTThrE ‘] with k = n-j,

and equating coefficients of equal powers of §, we obtain a

set of"51maltnneouc linear equations for the coefficients C, *
z“‘ck '=_ (z-gth).’ o‘é":s”
ko (N-¢-k ! -t @-07 (104)
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Solving the equations for i = n, n-1, n-2, n-3 successively,

5 (2g+h+1) !
(n—-)!
(2g+n)!
¢, = - m—'{(ﬂ")—(zg*hfl)}
- (2 ]
¢, = - g*n 1)}

T {1 (n-2)(1~1) ~ (2g+n)(n-1) +% @ +n X2g +r+1 )}

2g +n-2)!

s {é‘(ﬂ-s)(n-z)m--)‘-‘,-_('1-7—)("")(23’"")""5..(”"”15’"”) (zg+h)
Y

- 2‘(2{*’7—1) (2g+n )(zg-:—nrl)}
Apparently the general coefficient ¢, ic

__(zqrnr1-0)] X (n-0)! (2g+n rz%TQL(")J
G (n-nt L@ (n-0)] slinag=1)!

- (2g +n+1-a)! < (2§ +h+2-0)5 (—o)
ST eniol & T e, sy

(108)

where the notation (a)s = a-(a+l).(a+2) . « « (a + g-1) has

been introduced. This sum, however, is an hypergeometric seriesg??

with unit argument F (a,bjc; 1) where, in this case

a:zgfﬂ*fz,‘O’ " b=~ , C=pn-0

The value of the function isl?

[ () [(c~a-b)

I -2y [(c-b) (106)
Applying this formula

F(ab c;/) =

= (__I)ﬂ" (2g+nr1)! (-2g~2),
o - - 2
tn-1l ol (~2g-h-1)_ (107)

To prove this value is correct, it is substituted into equa-

tions (104) to lee

” - k 2 5 ) ’ n=t (-nr:.') -2 -z)
i‘v Ch _ (~1)" (-nsc), ¢ = _ (2g+nr1) ' Z —\«i_
&, =ik = (h-c)! " (=01 (n-0)!

(-zg--n—l)
- _(zgrhn)] I (2¢-n-1) /(1~c)
N———
(=4)! (n-i)1 [-2g-c~1) [ne1)

_~(&grirn)l
(n-¢)! (n-1)1t ( 108)



where the first transformation results from the introduction

of the notation of equation (105), and the third from the
recognition that the sum in the cecond line is an hypergeometric
function with unit argument. The final form is seen to be
identical with that in equation (104), thus proving the
correctness of equation (108). A series of simple substitu-

tions now gives
n-rrg i ! /3 !
a,.=(‘l) g [rrg)n J (2g+2) !}

r-g-1 ! (@+1tn-r)l(g+1-nrr)| )
and
/ n~r+g ] Y (eg+2) )
Hrg.sn = (0 :;:-g)—'rhfﬂ ' : T(g s rrrr)] (109)
Po o g-1! Zlg'flfn-r). (g“-,-,,.r)'

for a cosine term in V, j the corresponding sine term in ob-
tained by multiplication of *i.
The method of evaluating the other integrals is identical

with thisj thexr evaluation w;ll be outlined wore brieflys.

Hi = Eq j/(,AE A, azs}e,wog,, ) s«»ecm]df 8, ¢, 4y

Nio
- -
- co ; V— 'Y

j @ \52 P, ‘P‘zvyﬁj 7~ ;:b%ﬁrg “um Szh

=732 Suen

Ve
_! @, O, 6,59 ds = jOM O, <059 sin ol (110)
vz Jig-h)grn) 5 . Ve [ (g -h+1)(SThr1) '/15
= Z [teg-1)(2g+1) 2,41 Z | (2g+1) (2¢ +3) g+l

. this last step resulting from the application of the formulal®

_ [@hligHh) 4 J@-ht) @rhrD
C”59 -n&gw) C)ggh [;gﬂ)ngry g£eyh (111)

and the orthogonality conditiones (1.5).

There are now two cases to consider: A= g-1 and A= g + 1.



00
grz e
J P05 8 N = [ A, Z 0 A )55 =0, 5,y (112)
. O o )
. g .
with § /\,,,f-rZa,Ar,g_, « This leads as befcore to a set
of simultaneous linear equations in the coefficient a,,
hii~c . s )} 5
Cr _ . (zg-ts<)] . o0&t < Nt
=, hei-i-k)! R YRS YITRE 3 B =Rt (113)

after the substitutions

1
(g+r-0 ) (r-g)) |2
e -t SN
k (h+)] (h-2)) ) k = g+tl+n-r..

The golution to these eguations may be found by generalizing

the solutione of the first few, it is

e = () gl lag2),

m)r

(114)

which may be proved correct by substitution in equation (113).

Hence
grhstp (n-rl)_l(g'*"").' Ze. (z.g+z),’
= (-1 s e 2
a, =) (n-2)1 (r-g)) (T+=n2r)I (g r17n-1)] (115)
and
,mr i
H:“g‘—t'gh E (“l)g [;Nfl)/(?ﬁ“l)’(g— )(g’+h)6;bj (zgf:.)/ ,
ni,o 2g-1)2g +1)(n-2)1(r-g)1 T | +i-nrr1{(gsi+n-r)] {(116)
for cogine potentiale; the integral for sine potentials is
obtained by multiplication by +i.
oo g_z @
£ d (— -
J/‘Kfm 57N, A5 = M BN )5l5 = 3,6 “117)
vhere E57'N,, = 2 &/ Again this leads t et of
here 3 = e gy . gain this leads to a set o
simultaneous linear equations in the coefficients a,., ¢f
= Y,
L [Eeniegayt ,
Ce .—[‘W_] ap ] k~<§+lrn~r . (118)

Aiter the SubStltdtlonSym obtain

b~}
4 (Z fS#c)IL %
Z. S == 0L ¢ < hn-y

e
ko (h=¢~ *k)! (h~c~1) ! (¢rz)! ) .

Again the general solution is inferred from the form of the
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first few expressions:

-
G = e )y D771 Col, (egrarstel,
Wi~ )l oy =] larz -o7); \119)

= - (2grnrz o)) {(n T..)Z I g wiirseady

(Pt 1~y ! o1 sl (n+z2 -0-),

(n+2- a—)

-1
- a—(zg“fnrs-o-) (o) (24 +n4q~-T),
E e DS T i
2! (or3-oy, }

- / -2~ = »
_(2gtniz—o)] {(n—o-p) r(n-2-0) [@~24-1)

e F(rrz) [(~zq4-1)

—olgtnr3-c) [(n+3-0) [ (-2¢-2+0")
(htz~c") I (nrz) (~2g-1)

o+ (2grnt2)] (~z2g-2)
(nenl(g+1) (@) (-z24-p- 2),-

= (=}

[(n-1)(g +1}a” ] "

(120)

where the essential transformation again depends upon recog-
nizing the hypergeometric sum and applying equation (109) .

That this is correct may be proved by substituting it in equation
(118)« Hence |

§+n=r T(n-2) Ngsisr)! 2(2g+1)! [N(Z+2)-~ f‘]
By S0 [ ) (121)
r "fl).’(r“g 2—)! (?’-Irn~r).,(g‘,,_.nrr~)! 1 8

and / e gfn-p‘ g—h'fl)(g‘f/)rl)(n—zj{(?*r*'),’ép % (zg-u}_l[n(gff-z.} ‘f‘]
Hr;g'ﬁ s B L (H] 3

2g#1)(2g+3) (n+)] (rg-2)] T (gr#n-~r) | @g+i-ntr)!

h 1, 0
for cosine potentials; the value for sine is this expression

ultiplied by F1 4 (122)
Hore = & Es,hj/\,,) YN, 4;]@\//40% o, sm&d&.]é’ "4, dg
nity

J‘@‘Q f ‘P~27TV—7/ ik <°ShtPe"’d,o:/c‘((-#mﬁ?f,h‘Pd‘f
[\)

Sin
[3)

(123)



/ i o T _%x
H:j‘/j ghj/‘n 7N JS] P 1sl,[‘é*‘szh b, g
I °
2n
T ¥ - ] < ~Lup | 1M Peos
ojcf,&,,q& 49 = s [0 b9 Uy stz o
Le §
i} ZVW Ay (-1Eh) (124)
‘
—i I/%D ‘S:u, (-1 +4)
There are two cases to conesider: [#) = [(1+h)] and {#] = K1-h)|
o w
\!@h,hh Oqi B, sin9d = %3_/ O, irn Oy 5n™9 L8
Vi (T+h+)) (§+h+ 2) '25\ _ V‘ (g-h-1)(€h) (128)
=9 (2¢71)(2g+2) A, S (&g—f”(&g#)] S?‘ gl
i T
@ (— ¢ - V.z_ 3
‘! 2y /h-1] eﬁ"\ O/: sin 44 < z j@),/fh @g/, sin? 8 o[ 8
o
\ _ V5 [lgeh-)(g+h) |2 _ V3 [lg-mghray) Eo
(2g-1)(2g +1) A, ¢- (zg+1)(zgr3) | MEY
(126)
These results were obtained by use of the formulas!®.
) _ (S+h+1N(Srht2) §~h~1)($h
sin 9 @, = [(ag‘m(zgn) ] griy ke WJG ) h#!
(127)

(§+h-1)(g+h)
(2g-1) (2g+1)

sin9
' 63 C)~5M4I

The § part of integrals (123)
the integrale (112) and (11

Hence

-[gzzuugﬁgz]?

7) which have already

@grl’ 1h-1|
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The Molecular Structures of the Bromomethanes,

Boron Trimethyl, and Three Boron Trihalides

Introduction. The determination of molecular structurees of
gas molecules by electron diffraction was first carried out
in 1831 by R, Wierl!. During the relatively short time which
has elapsed since this date the method hacs been applied to
several hundred substances, with several investigat ors active
in the field. One of these, L. O. BErockway, has given a com=-
prehensive review?® of the method,its history and its applica-
tionse.

During the investigations presented in the following
pages, the author had the pleasure of working with Dr. Brockway

and the use of his apparatus.

1. R. Wierl, Amn. & Physik 8, 521 (1931)

2. L. O. Brockway, Reve. Mod. Phys. 8, 231 (1930)
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The Molecular Structures of the Bromomethanes

By HENRI A. LEVY AND L. O. BROCKWAY

The investigation of the molecular structures
of the halogen substituted methanes has been
undertaken in these Laboratories as a means of
testing the constancy of chemical bond lengths
and of determining the bond radii and the varia-
tions in bond angles in unsymmetrical mole-
cules. The results of the investigations on the
fluoro-, chloro- and fluorochloromethanes al-
ready have been reported.! Using the experi-
mental procedure which has been described in
detail elsewhere,® we have applied the electron
diffraction method of studying molecular struc-
tures to the bromomethanes, obtaining the re-
sults which are reported in this paper.

o J
CHBF3 /\/\
|
CHzBrz ‘/\A
| >—
CHsBr N
|
! | l
1 2 3

Fig. 1.—Radial distribution curves for the
bromomethanes. The tall peaks near 3 A. rep-
resent the Br-Br distances; those near 2 A.
the C-Br distances.

The electron wave length was 0.0611 A. and
the camera distance was near 10.5 cm. The
diameters of the maxima and minima appearing
in the photographs were measured visually, and

(1) L. E. Sutton and L. O. Brockway, THiS JourNaL, 57, 473
(1935); L. O. Brockway, J. Phys. Chem., 41, 185, 747 (1937).
(2)':L.~Q. Brockway, Rev. Modern Phys., 8, 231 (1936).

the corresponding .Sy values (equal to 4w(sin
8/2)/\), where 6§ is the angle of scattering and A
is the electron wave length, are tabulated below
for each substance. These were combined with
the visually estimated intensities (shown under
the column heading I) to give the observed
radial distribution of scattering matter shown
by the curves in Fig. 1. The “calculated S”
values are taken from the theoretical scattering
curves in Figs. 2 and 3.

Carbon Tetrabromide.—Photograpl@ of car-
bon tetrabromide vapor were taken with a sample
of the Eastman preparation heated to 115 to °
130°. The pattern contains seven extraordi-
narily sharp, evenly-spaced rings. The radial
distribution function (Fig. 1) shows a sharp
peak at 3.13 A., corresponding to the Br-Br
separation, together with smaller, less reliable
peaks at shorter distances. The theoretical
scattering curve (Fig. 2) based on a regular tetra-
hedral arrangement of four bromine atoms
around a central carbon atom with an assumed
C-Br distance of 1.91 A. shows excellent agree-
ment with the photographs. The quantitative
comparison in Table I and the radial distribution

curve lead to final values of C-Br = 1.91 = 0.02
A.and Br-Br = 3.12 = 0.03 A.
TABLE I
CARBON TETRABROMIDE
Max. Min, 1 So Secaled, Sealed./So
1 12 2.662 2.49  (0.936)
2 3.615 3.48 ( .973)
2 15 4.528 4.49 .992
3 5.597 5.51 .984
3 12 6.525 6.58 1.008
4 7.514 7.56 1.006
4 10 8.464 k.51 1.005
S 9.507 9.51 1.000
) 12 10.51 10.59 1.007
6 11.56 11.62 1.005
6 5 12.49 12.58 1.007
7 13.56 13.56 1.000
7 4 14.49 14.54 1.003
Mean 1.002
Br-Br3.12 A.
C-Br 1.91 A.

In an earlier investigation, Wierl® obtained
(3) R. Wierl, Aun. Physik, 8, 521 (1931). o
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Fig. 2.—Theoretical scattering curves for carbon tetrabromide and tribromomethane.

value of 2.05 A. for the C-Br distance from
photographs showing only three maxima. More
recently de Laszlo! reported in a brief note a dis-
tance of 1.93 A.

Tribromomethane.—The vapor of tribromo-
methane (Eastman) was photographed at a tem-
perature of 75 to 100°. Eleven rings are ob-
served on the photographs, whose pattern re-
sembles that of carbon tetrabromide in general
appearance. The radial distribution curve (Fig.
1) has a sharp peak due to the Br—Br interac-
tion at 3.14 A. and a smaller one due to the C-Br
interaction at about 1.88 A. Theoretical scat-
tering curves were calculated for three models
each having an assumed C-Br distance of 1.91 A.
and with Br-C-Br angles of 110, 112, and 115°,
respectively. Because of the small scattering
power of the carbon atom relative to the three
bromine atoms the curves are determined chiefly
by the positions of the bromine atoms; accord-
ingly the three curves are indistinguishable ex-
cept for the change in scale corresponding to the
change in the assumed Br-Br separation. On

(4) H. de Laszlo, Natwre, 135, 474 (1935).

comparison with the observed maxima and

TABLE 11
TRIBROMOMETHANE
Max. Min, 1 So Scaled. Scalod./So
1 8 2.693 2.48  (0.921)
2 3.563 3.39 ( .952)
2 12 4.480 4.40 .983
3 5.570 5.46 .981
3 : 8 6.519 6.48 .994
4 7.419 7.41 .998
4 @ 8.459 8.36 .989
5 9.477 9.38 .990
5 9 10.48 10.43 .995
6 11.53 11.44 .992
6 6 12.45 12.38 .994
7 13.51 13.31 .986
i 6 14 .41 14.31 .994
8 15.53 15.37 .990
8 3 16.45 16.40 .996
9 17.45 17.35 .995
9 3 18.32 18.28 .997
10 19.32 19.29 .998
10 1 20.34 20.32 .998
11 21.33 21.33 1.000
11 1 22.36 22.30 0.997
Mean 0.993
" Br-Br3.15 A.

40
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Fig. 3.—Theoretical scattering curves for dibromomethane and bromomethane.

minima (Table II) each of these curves leads to
the value Br-Br = 3.15 A.

Although the carbon-bromine distance cannot
be determined directly in this molecule it is very
probable that it has the same value as in carbon
tetrabromide. This assumption is supported
by the observed equality of the bond distances
in- trichloro- and tetrachloromethane and in
trifluoro- and tetrafluoromethane. We accept
as the final values: C-Br 1.91 A, Br-Br
3.15 = 0.03 A. and ZBr-C-Br = 111 = 2°.

Wierl® found with the aid of photographs
showing three maxima the values C-Br
2.03 and £Br-C-Br = 111°. Dornte® obtained
the values C-Br = 2.05 and £Br-C-Br = 115°
from five maxima.

Dibromomethane.—Photographs of dibromo-
methane (Eastman) were obtained on which seven
well-defined maxima are observed. Of these the
second is much stronger than the first, while the
fifth and the seventh are each a little stronger than
- .the fourth and sixth maxima, respectively. The

(5) R. Wierl, Ann. Physik, 18, 453 (1932).
H (6) R. W. Dornte, J. Chem. Phys., 1, 630 (1933). -
E

radial distribution curve (Fig. 1) shows a strong
reliable peak at 3.16 A., the Br-Br distance.

Theoretical curves (Fig. 3) were calculated for
four models. The C-Br distance was taken as
1.91 A., the C-H distance 1.05 A., the H-C-H
angle 109°28’ and the Br-C-Br angle 109°28’,
112, 115, and 118°, respectively. As the angle is
increased the model becomes unsatisfactory
because the fourth maximum becomes too strong,
rising above the third and fifth, and the sixth
maximum becomes too weak in comparison with
the fifth and seventh. For these reasons it is
improbable that the angle is greater than 112°.
On the other hand, the sixth and seventh max-
ima in the curve for the 109°28’ model are not
so well set off from each other as they are in the
photographs. The most probable value of the
Br—-C-Br angle is accordingly 112 = 2°.

The S values for the 112° model are shown in
Table III; comparison of these with the .S,
values gives a Br-Br distance of 3.17 = (.02 A.,
in agreement with the position of the strong
peak in the radial distribution curve. The
C-Br distance is 1.91 = 0.02 A. R
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TaBLE ITI
DIBROMOMETHANE
Scaled.
Max. Min. 1 So 112° Sealed./So
1 5 2.641 2.50 (0.947)
2 3.538 3.34 ( .944)
2 10 4.507 4.37 ( .970)
3 5.597 5.47  ( .977)
3 8 6.517 6.51 .999
4 7.399 7.40 1.000
4 6 8.275 8.29 1.002
5 9.407 9.34 0.993
5 7 10.40 10.47 1.007
6 11.47 11.53 1.005
6 2 12.37 12.44 1.005
7 13.38 13.23 0.989
i 3 14.32 14.25 .995
Mean 0.999
Br-Br3.17 A.
C-Br 1.91 4.

Dornte® reported C-Br = 2.05 A. and £ Br-
C-Br = 125° The discrepancy between this
result and ours is probably due in part to the
smaller number of maxima which he observed.

Bromomethane.—Bromomethane was pre-
pared from methanol and hydrobromic acid and
was fractionated at 0°. The photographs show
five rather diffuse rings. The poor definition in
the pattern is due to the presence in the molecule
of one atom whose scattering power is much
larger than that of all the other atoms. '

The radial distribution curve shows one peak
at 1.90 A. The theoretical curve calculated for

TABLE IV
BROMOMETHANE
Max, Min. 1 So Soaled. Secaled./So
1 12 3.997 3.76  (0.942)
2 5.942 5.67 ( .954)
2 12 7.626 7.64 1.002
3 9.186 9.20 1.000
3 10 10.77 10.74 0.998
4 12.35 12.16 1.005
4 13.94 13.74 0.986
4 5 15.30 15.44 1.010
5 2 17.28 17.60 1.018
Mean 0.999
C-Br 1.91 A,

THE MOLECULAR STRUCTURES OF THE BROMOMETHANES

a methyl group with tetrahedral angles and C-H
distances of 1.05 A. and for a C-Br distance of
1.91 A. gives on comparison with the photographs
(Table 1V) an observed distance C-Br = 1.91
= 0.06 A. The large estimated probable error
is assigned because of the difficulty of mak-
ing precise measurements on the photographs.
Dornte® reported C-Br = 2.06 A.

Discussion

The results for the bromomethanes are col-
lected in Table V with assumed values given in
parentheses.

TABLE V
Substance C-Br, A. Br-Br, A. /£ Br-C-Br
CBry 1.91 =0.02 3.12 = 0.03 (109°287)
CHBr; (1.91) 3.15 = 0.03 111 = 2°
CH:Br, 1.91 =0.02 3.17 =0.03 112 = 2°
CH;Br 1.91 = 0.06

The observed C-Br bond distances are for all
the substances equal to the sum of the single
bond covalent radii’” for carbon and bromine,
1.91 A. The Br-C-Br bond angles show only
small increases in tri- and dibromomethane
above the tetrahedral angle which occurs in the
symmetrical tetrabromide. This increase is of
the same order as that found in the chloro-
methanes. The increased repulsion between the
halogen atoms which might be expected in com-
paring the bromine and the chlorine compounds
evidently is offset by the greater separation be-
tween the bromine atoms due to the larger bond
distances; the bond angle is not appreciably
affected when bromine is substituted for chlorine.

Summary

The molecular structures of the bromomethanes
have been investigated by means of electron dif-
fraction. The C-Br distance in each com-
pound is 1.91 A.; the Br-C-Br angle is 109°28’
in carbon tetrabromide, 111° in tribromomethane
and 112° in dibromomethane.

RECEIVED JUNE 28, 1937

(7) L. Pauling and M. L. Huggins, Z. Krist., 87, 205 (1934).

PASADENA, CALIF.
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The Molecular Structures of Boron Trimethyl, Trifluoride, Trichloride, and

Tribromide.

The Covalent Radius of Boron :

By HENRI A. LEVY AND L. O. BROCKWAY

The molecular structures of the compounds of
boron are of special interest because the unusual
number of electrons occurring in many of them
suggests that their structures may be different
from those of corresponding compounds of the
other non-metallic elements of the first row of the
periodic table. Because of the anomalous elec-

tronic structures of the stable hydrides due to the
~lack of enough electrons to form electron-pair
bonds throughout the respective molecules, other
- compounds of boron were chosen in the hope of

determining a characteristic single bond covaleri’t
radius for comparison with the radii of other
elements. Although boron in its normal valence
compounds (in which it is codrdinated with three
univalent atoms or groups) has only six electrons
around it in place of the octet found in the normal
valence compounds of the following first row
elements, the number of electrons in the BXj
compounds is sufficient for the formation of elec-
tron pair bonds. In particular, boron trimethyl
was investigated because the methyl derivatives
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of a number of non-metallic elements have pre-
" viously been found to contain single covalent

bonds.! In addition we have investigated boron

trifluoride, trichloride, and tribromide.

BICHy, W

A

BFy | I

BBr, /\A
|

| I |
2 3 4

A.
Fig. 1.—Curves showing the observed radial dis-
tributions of scattering matter. The vertical lines mark
the interatomic distances as determined by comparison

of the photogrdphs with theoretical scattering curves.

—

The vapors of these substances were used in ob-
taining electron diffraction patterns by the known
procedure? with an electron wave length of 0.0611
A. and a camera distance near 10.5 cm. Photo-
graphs were obtained showing from six to ten
apparent maxima which were measured visually.
The corresponding s, values (equal to 4 (sin 6/2) /A
where 6 is the angle of scattering and A the electron
wave length) are tabulated for each compound,
and they were combined with the visually es-
timated intensities (shown under the columns
headed I) to give the observed radial distributions
of scattering matter shown by the curves in Fig.
1. The tables also show the comparison of the s
with the “calculated s,” values (taken from the
theoretical scattering curves in Figs. 2-5) to give
observed molecular dimensions.

Boron Trimethyl.—From a sample of boron

" trimethyl prepared by Dr. A. Burg of the Uni-

(1) L. O. Brockway and H. O. Jenkins, Tars Journar, 58, 2036
1 (1936).
(2) L. O. Brockway, Rev. Modern f&ysics, 8, 231 (1»9»3_6), )

Henri A. Lévy anp L. O. BROCKwWAY
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versity of Chicago, photographs were obtained
showing a pattern of six well-defined rings which
is well represented by the 120° curve in Fig. 2.
The characteristic features used in distinguishing
among the various molecular models are the
following. The third and fourth maxima are
about equal in intensity, and are resolved by a
distinct minimum. The fifth maximum, slightly
more intense than those preceding, is followed by

a ‘‘shelf,” whose intensity is about equal to that

of the following (sixth) maximum. The radial
distribution function (Fig. 1) shows sharp peaks
at 2.69 A., assigned to the C-C distance, and at
1.57 A., corresponding to the B-C distance, to-
gether with other less reliable humps. Theo-
retical scattering curves (Fig. 2) were calculated
for plane and pyramidal arrangements of tetrahe-
dral methyl groups with C-H = 1.05 A. about a
central boron atom; approximation to free rota-
tion of methyl groups was achieved by averaging
configurations differing by methyl group rota-
tions of 60°, a procedure which has been shown
in this Laboratory to be satisfactory. A B-C
distance of 1.53 A. and C-B-C angles of 120,
118, 116, and 110° were assumed. That the
110° model is unsatisfactory is evident in that the
corresponding curve shows a “‘shelf” following
the third peak instead of the fifth. Inasmuch as
the 116° curve shows the fourth peak weaker than
the third and the fifth resolved from the hump
following it, it is likely that the boron bond angle
is larger than 116°. Furthermore, since the
sixth peak appears too intense compared to the
shelf in the 116 and 118° models, we feel that the
photographic evidence favors the 120° model.

®
TABLE I

BORON TRIMETHYL
Scaled

Max. Min. I S0 120°°  Scaled./S0
1 5 3.072 2.58 . (0.840)
2 4.178 3.79  (.907)

2 10 5.351 5.40 1.009
3 ' 6.470 6.60 1.020

3 7 7.577 7.70 1.016
4 8.43 8.70 1.032

4 7 9.51 9.63 1.012
5 10.98 11.10 1.003

5 8 12.35 12.78 1.035
5a 4 14.14 14.47 1.023
6 15.70 15.90 1.013

6 4 16.92 17.38 1.027
Mean 1.019

Cc-C =270 A

B-C = 1.56 &,
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Fig. 3.—Thecoretical electron scattering curves for boron trifluoride.

- tion of Badger’s rule to the force constant from
infrared data gives 1.33 A., for the B-F distance.

TaBLE II
BORON TRIFLUORIDE

Sealed,

Max., Min. 1 50 120° Scaled./So
1 8 3.259 3.16  (0.969)
2 4.446 4.21  ( .946)

2 12 5.748 5.69 .990
3 7.232 7.21 .997

3 7 8.403 8.58 1.021
4 9.610 9.49 0.988

4 8 10.81 10.71 .991
5 12.23 12.20 .997

5 5 13.45 13.71 1.020
6 14.82 14.94 1.009

6 2 15.96 15.87 0.995
7 17.37 17.21 .991

7 4 18.59 18.70 1.007
8 1 21.13 21.28 1.007
9 1 23.45 23.70 1.011
Mean 1.002

F-F2.25A.

B-F 1.30 A.

Boron Trichloride.—Photographs of boron
trichloride obtained with a sample of Kahlbaum'’s

" ¢. P. preparation showed nine well-defined uni-
formly spaced rings. The radial distribution
curve (Fig. 1) shows a tall, sharp peak at 2.99 A.,
assigned to the Cl-Cl distance, with a small, less
reliable peak at a shorter distance. Theoretical

. scattering curves (Fig. 4) were calculated for

plane and pyramidal arrangements of chlorine
atoms around a central boron, assuming a Cl-
Cl distance of 3.00 A. and a CI-B-Cl angle of
120, 118, 116, 110, and 90°. As the angle is.
decreased, the fourth maximum drops below the
third and fifth, contrary to the appearance of the
photographs, where the third and fourth are
equal, with the fifth weaker. In addition, the:
resolution of the sixth and seventh peaks be-
comes less distinct than that of the fifth and sixth
in the smaller angle models, whereas in the photo-
graphs the reverse is true. These features make
it improbable that the angle is less than 116°, and
favor the planar configuration. The quantitative
comparison shown in Table III together with
the radial distribution result leads to the final
values CI-Cl = 2.99 = 0.03 A.,, B-Cl = 1.73
= 0.02 A.,, < CI-B-Cl = 120° (within 3°). A
previous electron diffraction investigation®™ of this -
compound by Wierl” resulted in the value 3.03 i, :
0.05 A. for the CI-Cl distance, with the configura-,
tion undetermined. The zero value obtained in;
the measurement of the dipole moment in benzene;
solution® supports the planar structure, as do also.
Raman spectral data.> From the latter, with the

(6a) The electron-diffraction value 1.76 = 0.02 A. for the B-Cli. =+
distance in BCl; has been reported, since our work was submitted
for publication, by Gregg, Hampson, Jenkins, Jones and Sutton,
Trans. Faraday Soc., 33, 852 (1937). 1%

(7) R. Wierl, Ann. Physik, 8, 521 (1931). &

(8) H. Ulich and W. Nespital, Z. Elektrochem., 87, 559 (1931).
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Fig. 3.—Theoretical electron scattering curves for boron trifluoride.

tion of Badgér’s rule to the force constant from
infrared data gives 1.33 A., for the B-F distance.

TaBLE II
BORON TRIFLUORIDE

Sealed,

Max. Min. I S0 120° Soaled./So
1 8 3.259 3.16  (0.969)
2 4.446 4.21 ( .946)

2 12 5.748 5.69 .990

3 7.232 7.91 .997 -

3 7 8.403 8.58  1.021
4 9.610 9.49  0.988

4 8 10.81 10.71 .991
5 12.23 12.20 .997

5 5 13.45 13.71  1.020
6 14.82 14.94  1.009

6 2 15.96 15.87  0.995
7 17.37 17.21 .991

7 4  18.59 18.70  1.007
8 1 21.13 21.28  1.007
9 1 23.45 23.70  1.011
Mean 1.002

F-F 2.25 A.

B-F 1.30 A.

Boron Trichloride.—Photographs of boron
trichloride obtained with a sample of Kahlbaum’s
¢. p. preparation showed nine well-defined uni-
formly spaced rings. The radial distribution
curve (Fig. 1) shows a tall, sharp peak at 2.99 A.,
assigned to the C1-Cl distance, with a small, less
liable peak at a shorter distance. Theoretical

plane and pyramidal arrangements of chlorine
atoms around a central boron, assuming a Cl-
Cl distance of 3.00 A. and a CI-B-Cl angle of
120, 118, 116, 110, and 90°. As the angle is
decreased, the fourth maximum drops below the
third and fifth, contrary to the appearance of the
photographs, where the third and fourth are
equal, with the fifth weaker. In addition, the
resolution of the sixth and seventh peaks be-
comes less distinct than that of the fifth and sixth
in the smaller angle models, whereas in the photo-
graphs the reverse is true. These features make
it improbable that the angle is less than 116°, and
favor the planar configuration. The quantitative
comparison shown in Table III together with
the radial distribution result leads to the final
values CI-Cl = 2.99 = 0.03 A.,, B-Cl = 1.73
= 0.02 A., < CI-B-Cl = 120° (within 3°). A
previous electron diffraction investigation® of this
compound by Wierl” resulted in the value 3.03 =
0.05 A. for the CI-Cl distance, with the configura-
tion undetermined. The zero value obtained in
the measurement of the dipole moment in benzene
solution® supports the planar structure, as do also
Raman spectral data.5 From the latter, with the

(6a) The electron-diffraction value 1.76 = 0.02 A. for the B-Cl
distance in BCl; has been reported, since our work was submitted
for publication, by Gregg, Hampson, Jenkins, Jones and Sutton,
Trans. Faraday Soc., 33, 852 (1937).

(7) R. Wierl, Ann. Physik, 8, 521 (1931).

(8) H. Ulich and W. Nespital, Z. Elektrochem., 8T, 559*¢1931):-
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BCl,

aid of Badger’s rule, the B-Cl distance is estimated

to be 1.72 A.

N
N
AN

Fig. 4. —Theoretical electron scattering curves for boron trichloride.

TaBLE III

BORON TRICHLORIDE

Max. Min. I s 120°°  Soaled./So
1 14 2.678 2.5 (0.968) A

2 3.645  3.53 ( .968) 1

2 22 4.733  4.67 .987
3 5.906  5.82 .985 2

3 11 6.837 6.8  1.006
4 7.940  7.78  0.979 3

4 13 8.877  8.80 .991
5 9.987  9.93 .994 4

5 6 10.99  11.09  1.009
6 12.08  12.09  1.001 5

6 2 13.08  12.99  0.993
7 14.25  14.07  1.988 6
7 3 1519  15.21  1.001 ,

Mean 0.994
Cl-Cl12.98 A. 8

B-Cl1.72 A
Boron Tribromide.—A sample of boron tri- -
bromide redistilled from mercury gave photo- 10

Soaled,

S.

graphs of fair quality with a pattern of ten rings
more closely spaced but otherwise similar to that

of boron trichloride.

The radial distribution

10

TABLE IV

BoroON TRIBROMIDE

12

10

10

So
567
400
.383
.447
296
.335
175
.182
.999
L1
.92
.91
.80
.86
.78
.89
17.97
18.94
19.96

P e T e O S S SR
SOtk W=

Scaled.
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curve (Fig 1.) shows a tall, sharp peak at 3.27 A.,

assigned to the Br-Br distance. Theoretical

120° Scaled./S0 §

2.45  (0.954)
3.2 ( .968)
4.29 .979
5.30 .973
6.21 .986
7.18 .979
8.11 .992
9.11 .992.
10.11  1.011
11.06  0.995
11.96  1.004
12,01  1.000
13.92  1.009
14.91  1.003
15.86  1.005
16.74  0.991
17.75 .988
18.72 .988
19.70 .987
Mean 0.993
Br-Br 3.24 A,

B-Br 1.87 A.
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Fig. 5.—Theoretical electron scattering curves for boron tribromide.

scattering curves (Fig. 5) were calculated for
models having a Br-Br distance of 3.27 A. and a
Br-B-Br angle of 120, 115, and 109°28’. Be-
cause of the large scattering power of bromine in
comparison to boron, the two former curves are
practically identical; in the latter, however, the
fourth maximum falls below the third and fifth,
whereas in the photographs the third and fourth
appear equal with the fifth weaker. The angle
is therefore larger than tetrahedral and is quite
probably 120° as in the three compounds pre-
viously discussed. The final quantitative re-
sults are Br-Br = 3.25 = 0.03 A., B-Br = 1.87
= 0.02A., < Br—B-Br = 120° (within 6°).

Raman spectral data’ are consistent with the
planar configuration; with the aid of Badger’s
rule they lead to a B-Br distance of 1.85 A.

Discussion

The results of the electron diffraction investiga-
tion of these compounds are collected in Table V.

TABLE V
Substance X-X distance, A. B-X distance, A.
B(CHj;)s 2.70 = 0.03 1.56 = 0.02
BF; 2.25 = .03 1.30 = .02
BCl; 2.99 = .03 1.73 = .02
BBr3 3.25 = .03 1.87 = .02

. yThe observed B-C distance of 1.56 A. in boron
ttimethyl.combinied with the carbon single bond

covalent radius,® 0.77 A., leads to a value for the
radius of boron of 0.79 A. This value is to be
compared with 0.89 A., obtained by extrapolation
of the radii of oxygen, nitrogen and carbon. The
large discrepancy between the two, amounting to
0.10 A., raises the question of what is represented
by the extrapolated value. As has been pointed
out to us by Professor Pauling, the radius values
used in the extrapolation correspond to atoms
having complete octets of electrons; and the
value 0.89 A. for boron presumably represents
the single bond radius when the boron atom has
associated with it four pairs of electrons. In
boron trimethyl, on the other hand, the boron
atom has only three electron pairs occupying a
set of three equivalent planar orbitals probably
arising from hybridization of sp2. The larger rela-
tive contribution of the s orbital in bonds of this
type as compared with the tetrahedral sp® bonds
observed in oxygen, nitrogen and carbon would
lead to a smaller bond radius. Accordingly, the
discrepancy observed may well be due to a funda-
mental difference in bond type, the radius of 0.79 A.
being associated with boron surrounded by six elec-
trons occupying hybridized sp? orbitals and that
of 0.89 A. associated with boron surrounded by a
complete octet of electrons in sp? orbitals.

(9) L. Pauling and L. O. Brockway, THIS JournaL, 59, 1223
(1937). ' -
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TABLE VI
Boron single bond
Substance Bond distance, A. radius, , Remarks
B(CHj;); B-C = 1.56 = 0.02 0.79 sp? bond type
Extrapolated from O, N, C radii .89 sp? bond type
BCl; B-Cl =1.73 = .02 .89 Graphite type resonance assumed
BBr; B-Br = 1.87 = .02 .89 Graphite type resonance assumed
BF; B-F =1.30 = .02 (.77 Graphite type resonance assumed
B;N:H; B-N =1.44 = .02 .89 :Benzene type resonance assumed -
BN B-N =1.45= .01 .87 Graphite type resonance assumed
BH;N(CHy), B-N =1.62 = .15 .92
BoHs B-B =1.86 = .04 .93
BsHg B-B =1.76 = .02 .88
CaBg B-B = 1.716 = .004 .86
BH,CO B-C =1.57 = .03 .80 sp? state for carbon
.88 Resonance with sp? state

If we accept the value 0.89 A. for the tetrahedral
radius, a satisfactory explanation of both bond
distances and molecular configurations in bo-
ron trichloride and boron tribromide is possible.
Resonance among the three Lewis structures of
the type

(X *
B
X ' S &

would give each B-X bond one-third double and
two-thirds single bond character, sp® quantization
being necessary to provide for the four bond orbi-
tals. Such resonance would constrain the atoms
to a coplanar configuration with 120° bond angles,
asin graphite and carbonateion. While some con-
tribution might be made by the structure having
three single bonds on boron, the loss of the energy
of the extra bond would make this structure rela-
tively less important; and a small contribution
would have no effect on the bond distance because
the sp? bonds in this structure would have a length
only slightly greater than that of the bonds in the
proposed resonating molecule. Applying therela-
tion between bond distance and double bond
character,*1% we find that the distances 1.73 and
1.87 A. observed in the chloride and bromide, re-
spectively, both lead to a value of 0.89 A. for the
single bond tetrahedral radius of boron.

The extremely short bond distance in boron
trifluoride under the foregoing assumptions cor-
responds to a boron radius of 0.77 A. It is very
probable that the structure of the fluoride re-
quires another explanation since abnormally
short bond distances are observed in other fluo-
rides as well, e. g., silicon tetrafluoride and phos-
phorus trifluoride.!?

(10) L. Pauling, L. O. Brockway and J. Y. Beach, THIS JOURNAL,
57, 2705 (1935).
(11) L. O. Brockway and F. T. Wall, ibid., 56, 2373 (1934).

Other boron compounds which have been in-
vestigated are shown together with the above
results in Table VI. In B;N;3;Hg!'? the molecule
undoubtedly has the electronic structure of ben-
zene and the observed B-H distance of 1.44 == (.02
A. corresponds to a single bond boron radius of
0.89 A. The boron nitride crystal has been
found™® to have a graphite-like structure with
B-N = 1.45 = 0.01 A, corresponding to a single
bond boron radius of 0.87 A. The single bond
B-N distance in BHsN(CH3)3'? is combined with
the nitrogen radius 0.70 A. to give a boron radius
of 0.92 A. The boron-boron distances observed
in BoHg!* and BsH,!% are treated as single bonds
to give radii of 0.93 and 0.88 A, respectively. It
should be noted that in the latter substance one
of the five boron atoms forms only three bonds
while the others each form four, and the average
boron radius observed is perhaps 0.03 or 0.04 A.
smaller than it would be if all of the atoms were
of the tetrahedral type. In CaBg!® each boron
forms five bonds with an observed boron-boron
separation of 1.716 = 0.004 A.

The boron—carbon distance 1.57 = 0.03 A.
observed in BH3;CO'? combined with the tetrahe-
dral radius for carbon gives a boron radius of 0.80
A. On the other hand, the carbon-oxygen dis-
tance is observed to be near that in carbon mon-
oxide, and accordingly the carbon-oxygen bond
presumably involves resonance between double-
and triple-bonded structures. In the structure
having a double bond between carbon and oxygen
the carbon atom is holding only three electron
pairs, and in accordance with the suggestion made

(12) S. H. Bauer, paper submitted to THIS JOURNAL.

(12a) O. Hassel, Norsk Geol. Tidsskrift, 9, 266 (1926).

(13) S. H. Bauer, THIS JOURNAL, 59, 1804 (1937).

(14) S. H. Bauer, ibid., 59, 1096 (1937).

(15) S. H. Bauer and L. Pauling, #bid., 58, 2403 (1936).

(16) L. Pauling and S. Weinbaum, Z. Krist., 87, 181 (1934).
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above in the case of boron trimethyl the carbon
radius in this structure would be about 0.10 A.
less than the tetrahedral radius. In resonance
with the triple-bonded structure the carbon-
oxygen distance would be unaffected, but the
single bond distance between tetrahedral boron
and carbon atoms would be decreased by about
0.08 A. With this allowance the observed boron—
carbon distance gives a boron radius of 0.88 A.

The values for the boron radius listed in Table
VI lie within 0.04 A. of 0.89 A. with two excep-
tions. In the first, boron trimethyl, the bonds are
of a different type from those in the other com-
pounds; and in the second, boron trifluoride,
the anomalies observed in other fluorides make it
difficult to interpret the observed distance with
any assurance. The general agreement among
the other data lends support to the value first ob-
tained by extrapolation from the other first row
elements. In the three compounds in which
boron-boron distances have been observed there
exists an insufficient number of electrons to form
electron-pair bonds in every bond position.
While this deficiency undoubtedly affects the

HeNrI A. Litvy anDp L. O. BROCKWAY

Vol. 59

character of the bonds, it is not evident that the
bond distances are materially affected since the
average of the three observed radii is 0.89 A.

We are indebted to Professor Anton Burg of
the University of Chicago for the sample of boron
trimethyl], to Dr. S. H. Bauer for data on triborine
triamine, borine trimethylammine, and borine
carbonyl, and to Professor Linus Pauling for
consultation and advice.

Summary

The electron diffraction investigation of the
molecular structures of boron trimethyl, trifluo-
ride, trichloride, and tribromide shows that these
molecules are planar with the distances B-C
= 1.56 = 0.02 A., B-F = 1.30 = 0.02 A., B-Cl
= 1.73 = 0.02 A., and B-Br = 1.87 = 0.02 &,
respectively.

These data together with those from six other
boron compounds listed in Table VI support a
value of 0.89 A. for the single bond radius of boron
surrounded by an octet of electrons and of 0.79 A.
for boron with only six electrons.

PasADENA, CALIF. RECEIVED JUuLy 31, 1937
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Summary

A quantum mechanical treatment of the perturbing effect
of a general electric field on ions with completely filled
electron shells is carried out with the aid of second-order
perturbation theory. The perturbing field is expressed asz a
cum of spherical harmonic functions; +the second order pertur-
bation energies correspending to individual terms in the sum
prove to be additive. The calculation is made first for an
electron in an hydrogen-like orbital, and then is generalized
by means of screening constant wave functions to apply to filled
shell ions. An application to the sodium chloride crystal
shows that the polarization of high order of the electron
clouds of the iong in the field of the surrounding ions intro-
duces a stabilization of about four kiloccalories per mol into
the lattice energy of the crystal, this value being uncertain
by a factor of two or three.

The molecular structures of the bromomethanes have been
investigated by means of electron diffraction. The C-Er dis-
tance in each compound is 1.21A.3 the Br-C-BEr angle is 109°:28!
in éarbon tetrabromide, 111° in tribromomethane and 112° in
dibromomethane.

The electron diffraction investigation of the molecular
structures of boron trimethyl, trifluoride, trichloride, and
tribromide shows that these molecules are planar with the dis-
tances B-C = 1.56 % 0.02 A., B-F = 1.30 £ 0.02 A., B-C1 = 1.73
- On02 A., and B-Br = 1.87 ¥ 0.02 A+, respectively.

These data together with those from six other boron com-

pounds listed in Table VI support a value of 0.89 A. for the
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gingle bond radius of boron surrounded by an octet of electrons

and of 0.72 A. for borcn with only six electrons.
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Propositions

Submitted by Henri A. Lévy

l. An appreciable part oi the lattice energy of alkali
halide crystals is due to the stabilization produced by high
order polarization of the electron clouds of the ions.

2. The first and second order perturbation energies in
filled shell ions produced by =a perturbatién not involving
inter-electronic interactions are equal to the sum of the
perturbation energies of tne individual electrons and are in-
dependent of the hybridization of one-electron orbitals which
may be assumed for the ingdividual electrons.

3. Eoron atoms with three attached groups will form four
tonds if the electrons needed are available.

4, The tetrahedal covalent radius of boron with a singly
negative formal charge is 0.89%0.02 A.

5. The experimentally observed interatomic distances in
trimethyl borine cupport the thecis that an atom with only a
sextet of electrons about it has a covalent radius shorter than
its normal tetranedral rad&us with a complete octet.

6. A reaconable molecular model of ethylene oxide in agree-
ment with cbserved electron diffraction data cannot be found
unlese the thermal vibrations of the hydrogen atoms are con-
sidered. Such vibrations should not be neglected in treating
électron difiraction data of molecules with relatively large
numbers of hydrogen atoms.

| 7. In the unsymnetrically substituted bromomethanes, the
large size of the bromine atoms does not cause great spreading

of the carbon-bromine bonds from tetrahedral angles.
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8. The correction made for formal charges in predicting
interatomic distances should not he taken as constant for all
elemente.

9. In the linear symnetric dihalogen substituted acetylenes
the structure with a carbon to halogen double bond contributes
largely to the structures of the molecules -- about twenty per
cent in the cace of dibromoacetylene.

10. The preparation of chlorine fluoride described by Ruf
can be improved by carrying out the reaction in the precence of
nitrogen.

1l. The gilver ion catalysed reduction of perbxysulfate
ion by hydrazine proceeds by the formation of an intermediate
product which is probably an argenic ion.

12. The coined term "vicinence" ic a catisfactory sub-
stitute for the awkward term "coorcdination number" and should
supplant the latter in the vocabulary of the structural chemist.

13. Investigators calculating free energy changes of
chemical reactions from microscopic data should not ignore the
contribution to the free energy of the entropy change accompany-
ing the reaction. A derivation of the dependence on concentra-
tion of free energy change for perfect gases or sclutes can be

made by a statistical consideration of this entropy term.



