
A CLARIFICATION OF HEAVISIDE'S 

OPERATIONAL CALCULUS 

Thesis by M. B. Widess 

In Partial Fulfillment of the Requirements 

for the Degree of Doctor of Philosophy, 

California Institute of Technology 

Pasadena, California 

1 9 3 6 



CONTENTS 

Page 

1. Introduction 1 

2. The Unit Function 3 

3. Multiple Order Impulses 9 

4. Algebraic Properties of the II p" 
Operator 11 

5. Inverse Polynomial Operators 13 

6. Linear Differential Equations 
with Variable Coefficients 18 

7. Fractional Order Derivatives 21 

8. Infinite Non-Inductive Cable 24 

9. System Initially Not in 
Equilibrium 33 

10. Swnmary 41 

Appendix: Non-Inductive Cable 
Terminated by Inductance 44 

References 53 



- 1 -

1. INTRODUCTION 

Heaviside's operational calculus 1 is fast becoming 

one of the most useful tools in the solution of differential 

equations, its power -- becoming generally realized and its 

methods expanded. However the procedures now employed, 

far different from those initially developed by Heaviside, 

involve contour integration and integral equation solution~ 

rather than .the much simpler algebraic manipulations of 

the original treatment. The supplantation was necessitated 

since Heaviside's treatment, making no pretense to rigor, 

involves unexplained rules and occasionally leads to contra

dictions. In effect his methods have remained merely 

processes of rapid evaluation which have required verification 

from external sources before the solutions could be deemed 

acceptable. ,. 

Because of its remarkable simplicity, Heaviside's 

treatment would be of great value if it could be placed on a 

sound mathematical basis, despite the fact that contour 

integral methods can now be used to evaluate operational 

equations with complete mathematical rigor. It would be well 

to correlate the contour integral methods with Heaviside's 

methods in theory as well as in application. 
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Since with only a few exceptions Heaviside's treatment 

leads to correct solutions, the situation indicates that a 

fundamentally correct procedure underlies the work, requir

ing only a more careful analysis of its basic elements 

before rigorous operational manipulations may be discovered. 
3 Though several attempts have been made to render the 

treatment rigorous, none of the suggested methods has 

succeeded in retaining the original simplicity,and our present 

mode of attack will be different from the above. 

By but slight modification of the fundamentals of 

Heaviside's treatment, it will be shown possible to place 

the work upon a sound basis, retaining the algebraic mani

pulations and their accompanying simplicity. In the course 

of the paper the established methods will be applied to 

pertinent topics covered by operational calculus, permitting 

the treatment to be extended directly to more involved 

problems. The ambiguity and uncertainty of earlier operational 

procedures will be eliminated and the difficulties encountered 

by Heaviside clarified.* 

*For the sake of expedience, we shall adopt the present 
tendency of referring to Heaviside's treatment simply as 
"operational calculus" and to Carson's infinite integral 
equation methods and Bromwhich's and Wagner's contour integral 
methods as "Symbolic calculus". 
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2. THE UNIT FUNCTION 

To represent a force which is suddenly applied at 

the time t=o , Heaviside formulated the so-called "unit 

function", designated by the symbol " j(fJ ", which he 

defined as a function such that it is zero for time before 

f=o and unity after t:o • He did not specify the value 

of unit function at t=O , intimating it to be discon-

tinuous at that instant. Such a definition of iffJ is used 

satisfactorily in symbolic calculus because the latter, 

being based upon Fourier transforms, is not disturbed by a 

function with a single discontinuity. However, in Heaviside's 

calculus, where, for example, infinite derivative series 

operating on unit function are encountered, a discontinuous 

unit function presents serious mathematical difficulties, which 

have caused the methods to be non-rigorous. In the mode of 

approach which we shall adopt, the discontinuous unit function 

will be replaced by a continuous one, all of whose derivatives 

are continuous, though it will be unnecessary to designate 

the latter function explicitly by a specific expression. 

Let us consider the electrical phenomenon which is most 

frequently represented by the unit function, namely that of 

a constant electromotive force suddenly impressed at time 

t=o upon a circuit. In such an instance the potential 
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established across the terminals of the circuit, though 

the potential appears to rise immediately, of course re

quires an appreciable time to build up to its full value. 

In actuality the exact nature of the potential rise at 

the terminals of the circuit cannot be determined. The 

problem of indeterminateness, however, is generally of 

no consequence, and representation of the phenomenon is 

considered to be approximated with sufficient accuracy by 

a stepped function. It is our intention now to examine 

whether the phenomenon can be represented also by a function 

which is continuous and all of whose derivatives are con

tinuous. The investigation will be complete if it is shown 

that the difference in the effects of the forces which are 

represented by the two functions can be made as small as 

desired. The response in the neighborhood of t=O is 

excluded from consideration because at that value for t 

the continuous and the discontinuous unit functions are 

not made even approximately equal, though the neighborhood 

can be made as small as desired. 

Since only linear differential equations are con

sidered in operational calculus, we may apply freely the 

superposition theorem (or the Boltzman;Hopkinson theorem). 
4 Using electrical nomenclature after the manner of Carson , 

let f1 (tJ be the indicial admittance* of a circuit. Then 

*The "indicial admittance" of a circuit is its current response 
to the application of a discontinuous unit function potential. 
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* the current response zdJ due to the application of 

potential e dJ to the circuit is given by 

/dJ = f_~rt-u) de<«) • (I) 

When e(fJ is identically zero for negative values of t , 
the current response becomes 

t 
z'rtJ = Jt f c-1rt- "') e<u.Jclu • 

We shall proceed to compare two responses: the first, ~<tJ , 

is the current response when e(t; is given by jdJ /~ct>, 

where inctJ is the discontinuous unit function; and the 

second, ~ <ti , is the response when ect1 is given by 

Jr!; idJ , where .lrt1 is the continuous unit function 

which is under consideration. Then the difference in the 

For physical problems, the difference is a maximum 

when the indicial admittance is exponentially cumulative, 

fqrtJ = c, E a.t , and the force function is exponentially 

dissipative, /tt1= ~ c_ 6
t , where both a and .,6 are real and 

positive. These conditions then represent the most exacting 

test which we need apply to the unit function. 

As an example of a function which satisfies the 

necessary conditions for .frt1 in that it and all its derivatives 

*we shall designate current by the letter II z " and the 
• ' 't ,-;-, II II imaginary uni , .. -, , J . 
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are continuous and can be made to approximate :l<tl a.a 

closely as desired, we may cite Maxwell's "discontinuous" 

function 
5 

: 

;YI (t) ,.. {:J) 

which may be written 
6 

The function becomes discontinuous in the limit as 

so that n must be kept finite in our treatment. 

h--+ oo 

' 

It remains to determine whether Maxwell's function is 

such that, when it is used for ,i(t), .::1 i(tJ can be made as 

small as desired by choosing n sufficiently large. For 

simplicity we shall evaluate 4idJ for finite negative values 

of t not in the neighborhood of tto • Then for a given 

negative value of t , if n is sufficiently large, Jct> 

acts as '?rt 
c' , where i rfJ is identified by /Vltf J • Intro-

ducing the above most exacting conditions and the Maxwell 

function into Eq. (2), we obtain on evaluation that 

t (0 

Here ,:) ict J can be made as small as desired by choosing n 

sufficiently large. The additional difference in response 

when t>o obviously can be made as small as desired by choosing 

h sufficiently large. We observe then that even for the 

most severe case which we may have occasion to encounter in 

physical problems, the difference of response to .f ttJ trt1 , 

where 1 rt J is Maxwell' s fun ct ion, and to / <t J f_p <f-J , where 
made 

;t.1>rt1 is identically zero for -t<o , may be.,,.vanishingly 
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small by the proper choice of the parameter n. The above 

consideration has been limited to application to physical 

problems, though it seems probable that the procedure may 

be extended directly to a rigorous mathematical treatment. 

We observe that Maxwell's function would serve admirably 

for our proposed unit function since: it and all its deri

vatives are continuous; it can be made to approach the 

discontinuous force function as closely as desired; and the 

difference of response to the two functions can be made as 

small as desired. Of course other functions can be made to 

serve equally favorably as the unit function. Nevertheless, 

because the exact nature of the unit function need never be 

ascertained, it is preferred to leave the function undefined 

explicitly. There is another important reason for not defining 

the unit function by any particular expression such as the 

Maxwell function. Consider as an illustration the problem of 

a resistance 72 suddenly inserted at time t=o across the 

terminals of a battery of constant electromotive force 

Then the potential across .R is £ .ZtfJ and the charge which 

has passed through the resistance is given by 
t 

j ,. : i .f<u.)du, (5) 

If /cf J is defined by Maxwell's function, we obtain on 

integration that 

• 
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The factor -j-o .. ,,1.101 cosi,;t) and all its derivatives are 

continuous, and also, like lfu.xwell's function, the factor 

can be made to approach the discontinuous unit function as 

closely as desired by choosing n sufficiently large. Not

withstanding this, if Jc0is defined by Maxwell's function, 

we cannot write 
(7) 

Though in the limit as n - = , the above factor and 

Maxwell's function are equivalent, we are prohibited from 

going to that limit when continuous functions are demanded. 

That is, since in operational equations we permit only 

continuous functions for operands, when j reappears in an 

operational equation, /7 must remain finite. It is only in 

the final solution that the limit can be taken. 

These considerations lead us to define the unit 

function which we shall employ in operational calculus in 

the following general manner. The unit function, denoted 

by " .fch ", # is a function such that it and all its deriva

tives are continuous and one which can be made to approach 

the discontin·uous stepped function of Heaviside as closely 

as desired (except in the neighborhood of the step, which 

neighborhood can be made as narrow as desired). 
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3. MULTIPLE ORDER IMPULSES 

The unit function not being specified explicitly, the 

derivatives of the function also remain unspecified, though 

just as in the case of the unit function, this indetermi

nateness generally introduces no difficulty. 

The first order impulse, namely j .Z<fJ , approximates 

zero for all values of t except in the neighborhood of t ~o , 

where a sharp peak occurs. For our purposes the property of 

the impulse which is of importance is that the area bounded 

by the curve d~ ,Id; and the t axis must be unity and that 

the area must be concentrated as closely to the instant t=o 

as desired. Both of these conditions are obviously satisfied 

by the definition of Jrt;. 

In regard to multiple order impulses an analogous 

situation exists. It is noted that ft-,, f<fJ approximates 

zero for all values of t except in the neighborhood of 

provided that n is flnite. (The infinite order impulse does 

not exist for any value of t ). The other property of the 

multiple order impulse which must be considered is the value 

of the integral 1;(u1 dn-:/ruy,,_ , where Jcti and all its derivatives 
/_o:, du" 

up to and includd.ng the (h-rJ th , exist in the neighborhood 

of f=O. The expression is readily evaluated on integration 

by parts. We begin with the first order impulse: 

t 

L /tt<.) d .L(U) cl{,(. -,= J ((}J 1 d) ., 
_

00 
du 
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a result which is a consequence of the fact that the area 

bounded by the curve cft. fct; and the t axis is unity and 

concentrated in the neighborhood of • Similarly on 

integrating by parts, we obtain 

I t 2 It Lt 
f {tc) d"J(l(J du = fruJ ,1,l(ui - /r"J d.ltu.J c/a. 

du :t dtt. du. ' 
a DO -oO -Oo 

which becomes 

The method may be extended to the general case: 

n jim'fe , t ,;4 O. 

This identity gives the important property of the nth 

order impulse. 

(8) 

An interesting application of a derivative series is 
d 

the expansion of the operator c a.;n , which is defined by 

the infinite series corresponding to an exponential. If 

the operand is frt1 we obtain 

(9) 

This series is recognized as an expansion about t,o by 

Taylor's theorem, i. e. 
,I 

(it" 

C ti /dJ =' ..1 ft .. ct) , (/0) 

where the unit function has been transferred an interval of 

time, a. The correlation with a Taylor's series has been 
only " 

made possible by defining lcfJ and all its derivatives as ,. 

continuous. It is observed that, though individual multiple 
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order impulses including those of infinite order are not 

evaluated, the infinite series yields a result. 

4. ALGEBRAIC PROPERTIES OF TEE II p II OPERATOR 

The customary notation wherein "p II denotes the deriva-

tive operator and "? 
11 11 denotes will be used 

throughout. Consistent with Heaviside's methods, the 11 p 11 

operator will be considered simply as abbreviatory for II ol 
;;IT' 

and is not to be treated as a symbolic eqivalent for II d 
di 

II 

in the manner of Carson in his infinite integral equation 

or Bromwich, Wagner, etc. in the case of the contour integral 

solution. 

II 

Thee:e three necessary and sufficient conditions -1t- which 
between 

permit algebraic treatment -e4' the " ,P II opera tor.s can be 

established if the inverse operator II I 11 is appropriately 
p 

defined and the operand is of appropriate form. It is first 
a. 

evident that combinations of the derivative operators ,P 

h and f' , where a and h are positive real integers satisfy 

the algebraic laws. 

We shall define the inverse operator, namely ' 
f' 

* The three laws are as follows: 
{1~ the co:rmnutative law-------------- u~= v~ 

q b """'b 

{2 the index law ------------------- u ~ = u 
(3) the distributive law------------- atu•ll)•a~-a~ 

- I 
or 17 , 

where c:c. and b are constants, and u and 11 belong to the class of 
terms under examination. 

Of_ cou,,-se the. "p" ope.ra.to,,-5 are not c.on,mvt,d,~e w,·t1,, recpec.t to fvnct-,onr •J t 
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by the equation 

The definition is restricted to the condition that j_t/fu,1,J/ d" 
.... 

be finite, a condition which requires that the integraid 

vanish at the lower limit of Eq. (11). It is the latter 

result which is sought and is of utmost importance for it 

permits the commutation of the operators /J and ; ; that 
t 

is, if lJ/11•1/clu is finite, we obtain the identities 

)?Jct; :t)Jd; 1: JrfJ, 

and as found by ready extension of this relation, 

a. b j f b "; f ( tt., bJJ f f'/> () ='f';° {)~,? {), 

where a and h are any real integers, either positive or 
I negative, and the integrands to the? operation comply with 

the specified condition. Since the distributive law is 

also satisfied by the above operators, the algebraic property 
r · 

for such operate~ is established, and we may proceed with 

complete validity to use Heaviside's algebraic manipulations. 

The condition for algebraic treatment, which we shall 

call the "algebrization condition", namely that the integrand 
t 

Jth is such that / JjtJ<;/dl,f, is finite, generally offers no 
- «> 

difficulty in operational calculus, because all operands 

which are encountered in that calculus include the unit 

function as a factor. 
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5. INVERSE POLY1WMIAL OPERATORS 

With the algebraic interpretation of combinations of 

/' and ) operators established, other operator forms will 

now be examined. Consider the operational equation 

(/2) 

where idJ may be the current response of a series circuit, 

including unit inductance and resistance a, when unit 

function potential is impressed on the circuit. The character 

of tt is limi tecl only in that it must be a finite constant. 

An operational solution of the equation rests upon the con-

ception of inverse operators. 

we define formally as such that 

The inverse opera tor -----i- , 
J f>'a. 

(/3) 

where Jd; 1 rh satisfies the algebrization condition. 

Let the inverse operator be expanded in negative 

powers of p according to the binomial theorem: 

I I a- a:i ,, n _f 
_p+t:t ,i{c) := (;0 -

17
~ +-/' 3 - , .. +(-I);,,~•") (/J. (Fl} 

If the series as a function oft is uniformly convergent, 

it is obviously an inverse operator, since operation on both 

sides of Eq. (14) with (f',,.a) reduces the equation to an 

identity. For a discontinuous unit function the series is 

I -at -; convergent and equals a (I- B ) -Lp rt J as can be readily 

verified by performing the indicated operations. It is evident 
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that when /tt1 is a continuous function, the series 

becomes uniformly convergent and. approximates the above 

value as closely as desired by choosing - ;tdJ sufficiently 

close to :tJ) ctJ • The resulting solution is in terms of 

a continuous function, and using the generality of the 

definition of 1 d-J , we obtain 

_!__ fdJ:: _!_ (1-e-at) 1dJ 
/J+tN a 

(/5) 

* This becomes the solution of Eq. (12). In a manner 

similar to the above, any operational expression may be 

expanded algebraically into an infinite series, provided 

that the resultant series as a function oft is uniformly 

convergent. In Eq. ( 14), for example, the operand :I cfJ 

may be substituted by any function of t provided that the 

resultant series is uniformly convergent and that the al

gebrization condition is satisfied. 

Since the operator is expressible in terms of 

simple integration, the algebraic property for combination of 

with p , where m is a real integer, is 

established. The property can be extended further to include 

I opera tors of the form --------- where o, Y.J 
(f'•f', )(17-p,,_) • • • (p-;o,,) ' I ' I -t ' 

are constants, and, in general, to opera to's such as YtpJ 
.clp) 

where Yr~J and Zf_?J are polynomials in positive integral 

powers of ? . 

' 

* ,u ha b d f • • t · th t (f'.,.a.) 0 :a.. jttJ11t1 : jrtJ ftt; f ~e ve y e 1n1 10n a , , rom 
which one may readily show that _;_ (o,. a.) f1t1£1tJ:: /tfJ ..ft!J. 

/J~"'- r 
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I 
p+a. 

might have been expanded 

by the binomial theorem in positive powers of p were it not 

for the fact that the resultant series, 

(/6) 

is not uniformly convergent. On the basis of a discontinuous 

unit function, one may be tempted to consider that all but the 

first term of the series vanish, except at t=o • He will then 

obtain the contradiction that the value of the series in 

positive powers of ? is ;1 .f2;rt-J in contrast to the result 

already obtained from the series in negative powers of ,P , 

I -c,t ..; namely a-(1-c: }-L7/fl. This contradiction has occasionally 

been suggested as a distinct flaw in operational calculus. 

However, evaluation on the basis of a discontinuous unit 

function when applied to series (16) is entirely without 

justification because, when the resultant expression is ope

rated upon with (f1+-a.J , it does not yield .lZ> <f J for all 

values of t , notably at t =- 0 • 

' 
that is, the series operator 

of (16) does not represent an inverse operator. The situation 

may be summed up by observing that series (16) as a function 

of t is not uniformly convergent. 

The fallacy of the above method is revealed when the 

inverse operator is expanded into a finite series. Having 

established the algebraic law for operators, we can ·write the 

following identity: 

I --, [ I L ~ ,, I >,+ I 
-- ~ rt J .:: - - + ~ ~ • .. + <- I),, -12-:- + r-' J ,, .... --f!-- ' 
p+a._ a, a" ,:;l,a an+/ ct"+I pro. ]:let)' (/7) 
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where n is finite • . The very significant advantage of this 

expansion over that of Eq. (16) is that convergence need not be 

investigated in Eq. (17) since the number of terms therein is 

finite; Eq. (17) is a true identity. It can now be observed 

that the value of the expression --
1 -frh resides almost 

p+a. 

entirely in the first and last, or the remainder, term of the 

series, all other terms approximating zero.~ The value of 

--
1

- 1rfJ has been shown to be ...!.. {1- £-o.-t) 1d J , and subs ti tut ion 
~~a a 

of this expression into Eq. (17) demonstrates the importance 

of the remainder term. It is interesting that, even though 

a may be negative, corresponding to an exponentially cummula

tive response, all terms of this series approximate zero except 

the first and the remainder terms, the latter retaining the 

positive order exponential. The absurdity of ignoring the 

remainder is evident. 

It must be recognized that the insistence upon uniformity 

of convergence of an infinite series is required for valid 

algebraic manipulations of series operators, since an infinite 

series can be integrated term by term only if that series is 

uniformly convergent within the range of integration. 

Generally expansion of an inverse polynomial in 

positive powers of p leads to a divergent series, which 

therefore requires evaluation of the remainder term, while 

*These terms approximate zero since the unit function is a 
continuous one. For a finite number of such terms their 
aggregate value can be made as small as desired. 
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expansion in negative powers of p leads to a convergent 

series. 

A very useful operational tool is the so-called 

Heaviside shifting theorem, given by the equation 

(18) 

where Ff,PJ is expressible as the ratio of polynomials in /7 , 

~ is a constant, and the algebrization condition is 

satisfied by the operands. Derivation of the theorem by the 

Heaviside method may be readily modified to become consistent 

with the treatment which we have been using, and need not be 

repeated here. Applying the shifting theorem to the operator 

, we obtain 

Consequently the operator 
p+ a, 

operation indicated by €-q:Jtr a.~-d ... ... 

is identical with the 

and may be substituted by 

the latter at any time. A similar procedure may be applied to 

a great many other operational forms. 

Consider now the differential equation 

, 

where / dJ is a known force function, 6. 7-'J is a polynomial 

in p , and the algebrization condition is satisfied. Then 

the operational solution is 

are roots of G71 =0 • Substituting the 
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integral identical to the inverse operator, we obtain 

{ZZ) 

The equation is the familiar solution of an nth order linear 

differential equation with constant coefficients. 

The Heaviside expansion theorem solution of the equation 

z' {f) = £. Y(?J ;/dJ (,?3) 
.r{f'J ' 

where Yr;n and Zcp1 are polynomials in ,P , requires little 

elucidation, the proof following directly from the algebraic 

property of the p operator. The expansion of into 

partial fractions is permitted, of course, only when the degree 

of Z~J is higher than that of Y/j-JJ , a condition which is 

demanded by a similar expansion when ,P is considered purely 

algebraic. A failure to abide by this limitation results at 

worse in the loss of impulsive terms. 

6. LINEAR DIFFERENTIAL E~UATIONS WITH 
VARIABLE COEFFICIENTS 

r It has been suggested by Bush that Heaviside's 

operational methods may be profitably applied to the case of 

linear differential equations with variable coefficients, the 

justification for such treatment being placed by Bush upon the 

fact that the results in general agree with those obtained by 

the classical methods. However, we are now in position to 

establish directly the rigor of operational calculus. 
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Let us consider the simple case, 

Fig. 1, of a unit function potential 

applied to a series circuit including 

an impedance unit, whose impedance 

* operator is :z {fJ , and a resistance 

'R(tJ , the latter being the only circuit 

element which varies with time. Applying Kirchhoff's potential 

law to the circuit we obtain 

where 2·rtJ as usual is the current response. Though the 

inverse operator I is a function of both 17 and t , 

it is defined in the customary manner, i. e. by the identity 

[.Zq:,J + 'l<!IJ] 
1 
R :frtJ = ErfJ • asJ 

.Z(_pJ+ {f) 

Using this definition we may write 

z" rt} = 

or 

= 

I 
------fr/ J ' 
7-tpJ + 'k!tt) 

I 

if'J {1 -1- -
1 Rd;] 

Ll_?J 

fdJ . (Z6) 

To expand the inverse operator according to the binomial 

theorem would lead to error since the resulting series would 

not satisfy the property of an inverse operator defined by 

Eq. (25). However expansion following the reversal of the 

*An impedance operator of a circuit element is the ratio of 
potential a.cross the element and current flowing through it, 
the operator being expressed as a function of p. 
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position of I and RtfJ in the denominator does satisfy 
L {_?J 

the inverse property. The solution becomes: 

·1 
1 

{ • I [ 1 < [ " $ z(J=y;- /-RttJ-+ J?rtJ-]- ··· +-{-rJ'"' 1<d1_j_]+,,, JrfJ, 
If J ,t!/j'J Z (j'J 2 (/' J 

where we define, e.g. 

[ nctJ -'- ] 3 == ,J2rtJ .:/ J}rtJ ; 1! rf 1 ; • 
.,;:; L f/'J .z {f'.J .Zf?J .z f,P.J 

The expansion of Eq. (27) is valid only if the resultant . 

series is uniformly convergent as a function of time. 

To take a simple example, let Z<j'J = I' J.. and RdJ = ~ t frf J , 

where J.., and Ro are constants. Then the current response 

is given by Eq. (27); on performing the indicated operations, 

we obtain 

(28) 

The method can be readily extended to more involved circuits.* 

One must be reminded, however, that, in general, expansion of 

the inverse operator must be in terms of negative powers of 

to obtain a convergent series solution. 

*By analogy with the successful treatment of linear 
differential equations with variable coefficients by Heaviside's 
operational methods, it has been attempted to extend the same 
method to non-linear equations. Unfortunately this cannot be 
done. Since the functional operator is not distributive with 
respect to its operand, the functional operator cannot be 
expanded into a series in a manner which is requisite to the 
usual Heaviside treatment. For a solution of the problem see 
J. R. Carson, Phys. Rev. 17 p 129 (1921). 
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7. FRACTIONAL ORDER DERIVATIVES 

The function of Heaviside's operational calculus is 

to simplify operational expressions into forms which can be 

directly evaluated. The simplification may proceed either 

to a point where ready integration or differentiation alone 

remains to be performed, or else it may stop with expressions 

whose values are kno\m. Operational calculus in itself, 

however, has no provision for the evaluation of its basic 

operational forms, such as the derivative or the integral, so 

that, when half order derivatives are encountered, the basic 

form, namely or , must be evaluated by 

other than operational methods. 

In the study of physical problems, the only fractional 

order derivatives which have been investigated to any great 

extent are those of half-integer order. The half order 

differentiation is defined as an operation such that when it 

is repeated twice, the resultant operation is a complete 

differentiation. The higher order derivatives, /1 , where 
, 

n is a positive integer, can be treated as f'"',P z • In this 

way the higher half-integer order derivatives may be obtained 
, 

readily from /1 x , as also can half-integer order integrations. 

Similarly to the extent of physical problems, the general 
I 

expression ;:;·;;jrfJ:/rfJ may be derived by operational manipulations 
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I 

from 17 x /d;. We observe then that it is required to evaluate 
I 

only the expression p~.ldJ by other than operational methods 

before Heaviside's treatment may be applied to half-integer 

order differentiation and integration operations. 

I 

There are several ways of evaluating ,P ~ / {t J , the 
z 

application of symbolic calculus perhaps being the most 

satisfactory. Using the discontinuous unit function .1:z, cf) 

I ' I 

it is found that p:E/2(/J = 
7Jit

l ,'1; (f} • To evaluate ~ 2 _Jrf J 
t 

where ;/{I) is the continuous function, we use the superpo-

sition theorem equations, i. e. 

i _f (f J = i I:- d /(v. J 
? { J! (f·k) ' 

U:- oo 

where, consistent with previous notation, 

Here /rlJ has been considered to be made up of infinitesimal 

steps whose tread lengths approach zero in the limit as the 

summation of effects of each incremental rise is expressed as 
J 

an integral. The resulting function _p~.fd1 and all its 

* derivatives are continuous, and the function approaches 

{;r' , /2rtJ as closely as desired by choosing Jee J sufficiently 

close to /JJ (f J • To write the integral of Eq. ( 29) every 
I 

time /1 :z .frt; is evaluated would be awkward, and therefore a new 

notation must be used to designate such a function. It is 

evident that the function cannot strictly be written simply 

t 
* We have that ]irn. jJ-(uJciL(t<J-= .f<o> :,;ctJ 

:/(tJ-4/t} k•-= 

7 It .J .t<- /,.D(f J Therefore ~,m ~ 4> = 
Jrh ➔ :lpct_) «=- ... {JJff-t<..) (JTt

0 
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-~ lr!J because the latter is both discontinuous at t= 0 
TJTt° 

and imaginary for negative values of t. We could denote 
by 

the integral of Eq. (29) a symbol such as L~ J a-1] , 
/I 'Jr t :I> C. 

where "c" destgnates that the function and all its deriva, 
tives are continuous and that the function approaches ,r-7 f.z,d) 

T .lft 

as closely as desired. However, it is unnecessary to 
. d 

complicate notation by this symbol and we shall 1nfaed employ 

the customary expression -' frf1 with the understanding that w 
the term expresses a continuous function. 

4 

The expression p r,/(!J is obtained by differentiation 

of Eq. (29). Since direct differentiation of the right hand 

side as it stands is not possible, it is first integrated by 

parts, i. e. 

Now differentiating the equation, 

1 frf} =-/f I 

f -0.. {Jr(f-t<) 

we obtain 

Recalling the property of the second order impulse and em

ploying the above established notation, we could write 

.J 

p;,./[/J= [_zf;t;z Jc+ {Jmpu/s1ve term cd t=o] , 
3 

since ,~ldJ, as well as all its derivatives, is continuous 

and approaches as closely as desired when t is 

not in the neighborhood of f:o. Similarly we obtain for 

higher order derivatives 

(30) 
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where n is a positive integer and II r II denotes the Gamma 
if 

function. Again to simply notation, we shall return to the 
A 

more customary notation, omitting the brackets. 

I 

For integrations, i. e. ,P-:i/rt.J =/?i ,/rt;, we observe that 

I /' ,fJ -;: .I (fJ = ,;:11, z It; ... ' d / u,_) , 

a= - o0 

for which we obtain 

;° -:1,/rl> = i~ < f[j!' d :/[A,.J • 

Therefore, we write as before 

and in general 

' 
brackets to be omitted in the usual notation. 

{3/) 

The definition of the half order derivative permits 

it to be incorporated into the realm of operatori which 

obey algebraic :properties, so that any operator which is a 

function of integral and half-integral order differentiations 

and integrations may be treated algebraically. The Heaviside 

shifting theorem also applies to such operators. 

8. JNFINITE NON-DIDUCTIVE CAELE 

The familiar partial differential equation for the 

potential, ec~t) , along a non-inductive cable is given by 
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where R is the distributed series resistance of the cable 

and C is its distributed capacita nce to ground, while the 

leakage conductance and series inductance are considered 

negligible. All circuit parameters are assumed constant. 

It is easily verified by substitution into the partial 

differential equation that a solution of the equation is 

where in the customary manner the exponential operator is 

defined by the infinite series corresponding to the exponential, 

e.g. 

] j,d J. 

The solution follows from consideration of the algebraic property 

.of the ? operator raised to half-integer powers. 

For the specific example of a unit function electro

motive force impressed at 'J!-= 0 upon a non-inductive cable 

which extends to infinity in the positive i: direction, the 

potential equation becomes 

e { ~ t J = c - ✓PR. c ' 1t I rt J , 

which can be readily shovm to be uniformly convergent for all 

values of ~ and t. Now if if~f) is the current along 

the cable, we have that d)e; t J =- f?irz, t) , and sub st i tu ting for 

we obtain 

e[z, tJ 
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At the head of the cable, i. e. ~=a , the current is 

simply t(OJJ:/ij[f</; so that the impedance operator of the 

infinite cable is 172'. 
✓jc 

Consider now the problem of determining the response 

of the infinite cable when the latter is terminated at its 

source by a resistance 1?
0 

• 

{R,C) 
The impedance operator 

complete circuit becomes 

;i: (/'J of the 

e<O= /(fJ and the current response idJ to 

l unit function electromotive force is 

Fig. ,2 

We shall treat an operator of this form, namely 

rt re J(IJ 
L. ( J = .r- -

'? + ra 
(3'3) 

(S'Z) 

where a is a positive real constant. The solution of this 

equation will be o.btained in two forms: namely, as an infinite 

convergent series and as an asymptotic series. Our treatment 

will differ from others in that the complete remainder terms 

for both solutions will be obtained, terms which Heaviside 

failed to consider • 

* Though remainder terms have previously been evaluated by 
putting the original operational expression into an integral 
which is integrated by parts, such a method lacks the flexi
bility of the complete operational solution since the integral 
form is preferably introduced only for the final remainde r 
term in the manner now to be described. 
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The convergent series is obtained by expansion of 

the operator in negative powers of ? , according to the 

binomial theorem: 

The expansion is exact since the remainder term is included. 

To evaluate the remainder, first the half-powers of its 

denominator are eliminated: 

and, using the shifting theorem for the denominator factor 

Since 
-af 

£ is greatest in the range t)o at t=o , a 

dominant to the absolute value of R is obtained by removing 

that exponential from the equation, i. e. 

or 

~fat_t_) lrf J , 
r(; +z) 

where e is a real constant such that o ~ e ~ I 

.(:?SJ 

• 

The complete solution is now obtained by evaluating 

Eq. (34) term by term using Eq. (31): 
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The presence of the positive order exponential in the 

remainder term renders the remainder rapidly more uncertain 

with increasing values of t so that an asymptotic form 

of solution is required and is next obtained. 

Expanding the original operator, Eq. (33), in 

positive powers of p according to the birfmial theorem, 

we have 

The expansion again is exact~ On the elimination of 

half-order derivatives from the denominator of the remainder, 

the latter becomes 

Let n+' = 171 
.2 

theorem: 

,,.,, .,,,,., 
:2 :c-,J (-ff J-r /·rie ..lrfJ. 

,I' - c., 

, an integer, and apply the shifting 

.R = (,f)~-f;_ /rt) -(t:-/" l.'z:-tJU t911(uJlf/,(, 

The first term R, may be reduced directly, since _f!_ $(CJ=£ 
0

1.irlJ 
/.,-a, 

to 

7 
(J6) 

where the impulsive terms are ignored because the asymptotic 

solution is not applied to the neighborhood of t=O • 

For the second term R.e of the remainder, the integral 
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is separated according to 

Then 

But 

so that 

Therefore the complete remainder is 

(5'.9) 

To evaluate this expression we recall that integration 

and differentiation operations are commutative provided 

that the operand vanishes at the definite limit of the 

integral. In Eq. (39) the operand under consideration is 

~-arfa?f{tJ , which indeed vanishes in the limit as 

t approaches infinity. Then using the commutative property, 

we may"shift" the multiple derivative operator (a?Jh, past 

the first exponential, bring it into the integrand, "shift" 

it past the second exponential, and complete its journey by 

operation on (ap .Id J • The important aspect of the integral 

is that the impulsive terms are not present in the range of 

t over which the integral extends. We find for t > o 
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A dominant to the absolute value of R is obtained if 

the exponential is removed from the integrand past the 

integral sign; then 

., o, e, 1 J t > 0 , 

The complete solution obtained on term by term evaluation 

of Eq. (37) becomes 

The impulsive terms are dropped since • It will be 

noted that the error incurred by stopping the series with 

the m th term is less than the magnitude of the rn th term. 

Usually the diverg ent series obtained by expansion 

of an operator in positive powers of p is asymptotic and 

Heaviside generally evaluated such a series by stopping it 

with its smallest term, presuming that the uncertainty of 

the remainder is less than that smallest term. The above 

example satisfies this cond ition. However the procedure 

occasionally fails. Consider the problem of a sinusoidal 
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electromotive force impressed suddenly on an infinite 

non-inductive cable. 

z:rt) = -
1
- e (f) .z {?J 

The current response may be written: 

me c- Jwt -; cc J 
= £ f lR C /4 ' 

where the real part of the solution is the response to a 

potential f cos wt .2'rfJ • Converting the exponential 

term to its operational equivalent, 
.s 

i rtJ = J; ff ,e_:z 
/' -J u.J 

Expanding in positive powers of~ according to the binomial 

theorem, we obtain 

The remainder term is 

t 
fr) . (jJ ,-, .c (j 6''£,1"'t,-j"'u fj' J{4.J du 

Separating the upper limit and evaluating as in the pre

ceding example, we find 

where The complete solution is Ci> o) 

where n is made even and 0, , {)-? are real quantities such 
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evidently is 
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c,<:Je21<1 The steady state term 

, which, we note, was obtained 

from the remainder term of the expansion. Therefore a 

failure to take the remainder into account would lead to 

an absurd result. The example illustrates the necessity 

for the development of an asymptotic series in a manner 

which permits of the evaluation of the uncertainty conse

quent to stopping short the series. 

Sometimes the error resulting from the ommission of 

the remainder term is not as obvious as above,for example 

when the remainder contains a negative order exponential. 

Since an asymptotic series cannot reveal the presence of 

a negative order exponential, it is to be expected that 

if the solution contains such exponentials, the latter will 

persist in the remainder term when the result is expressed 

in asymptotic form. Heaviside's usual methods would fail 

in these instances and he has used intuitive methods to 

handle the situation, methods which are not rigorous and not 

explicitly defined. A conspicuous example of such a problem 

is that of an infinite non-inductive cable terminated by 

inductance. :By the application of the methods herein estab

lished, the problem is treated in detail in the appendix 

of this paper. The solution is made cumbersome at one point 

due to the fact that the remainder of the asymptotic ex-
I 

pans ion of 1 1 2 /cf J does not lend its elf to ready 
f t- (ol.+j(3) 
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evaluation when ex is real and positive and (3 is 

real. 

We have examined the method of treating inverse 

polynomials in integral and half-integral powers of p 

An analogous method, though more cumbersome, may be 

• 

applied to the more advanced operational expressions. For 

example, in the case of operators pertaining to the 

inductive transmission line, the expansion may be made to 

proceed not as a power series in ~ but in terms of Bessel 

functions, as used by Heaviside, permitting the evaluation 

of a dominant to the remainder of the series. Space 

does not permit a detailed exposition, and the latter 

procedure can be derived by utilizing Heaviside's own 

methods, with the slight modifications which have been 

discussed in the course of this paper. 

9. SYSTEM INITIALLY NOT IN EQ,UILIBRIUM 

Thus far we have been dealing with solutions of 

differential equations under the simplified boundary 

conditions pertaining to a circuit undisturbed prior 

to application of the electromotive force which is under 

consideration. The methods already developed are readily 

extended to a treatment of general boundary conditions. 
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We have observed that operational equations for 

lumped parameter circuits state explicitly the entire 

history of the dependent variable, but in the case of 

systems which are initially (f-= 0 ) not in equilibrium, 

the values of the variable are both unknown and of no 

consequence prior to t=O • The obvious procedure in 

setting up the operational equation is to assume that 

the system is in equilibrium before t=o and that at 

this instant an impulsive force is introduced such as to 

create a state identical with the boundary conditions. 

Consider an nth order differential equation: 

We are to determine the dissipation of the v.-ariabie z"<tJ 

following an initial excitation, specified by z·raJ, 

The operational equation 

assumes the following form: 

where the right-hand side represents the impulsive force 

which is necessary to produce the initial conditions. 

There remains then only to identify the b coefficients 

with these initial conditions. Divide the equation by the 

left-hand polynomial in ? , 

(-'17) 
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where 1<,..., is the coefficient of p -"" , i. e. 

k -= -' { 6 - q o J ,· etc., and c c . . . c are 
I Cl,., >,-1 ;,-,"• ,, .2, ,., 

constants. 

As we approach t= o from the side of positive 

values of t , we find that, since the integration 

terms approach zero, 

:But this approach is exactly what we mean by the first 

boundary condition, namely i · roJ , so that K. ~ z· roJ • 

Now differentiate both sides of Eq. (47) with 

respect to t . • 
_,., ,.:{ 

C, jJ r C,z + , • • ., C,, p 
C<,,p"+"• -+o,;:,~Qo 

Approaching t = t> as before, we have 

; 

The impulsive term on the right hand side vanishes except 

in the neighborhood of and the neighborhood is as 

small as desired, so that we obtain in .k',~rfJ exactly 

what we mean by the second boundary condition, or 

The method is extended by successive 

differentiations, giving for the general term: 

The b coefficients can now be evaluated in terms of the specified 

initial conditions: 

.-, 
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6,, = a,, z'(o J 

The operational equation becomes: 

+ ••. 

-1-p" a,, /Co) }lrfJ. 

Immediately after the impulsive force is applied, the 

force vanishes and the proper initial conditions are 

assumed; therefore the validity of the equation is 

(,t/8) 

• -If 

established. The solution of the above equation pro-

ceeds in the usual operational manner. 

If an additional force is impressed on the system, 

a function representing the force is added to the right

hand side of the equation according to the principle of 

superposition. 

In electrical circuit problems, it is a series of 

simultaneous differential equations rather than an nth 

order differential equation which is involved. For a 

*H. Jeffreys introduces the above general boundary 
conditions, though for a more restricted treatment of the 
fundamental operator ) , "Operational Methods in Mathe
matical Physics" Cambridge Tract, 1927. 
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passive network of n branches under initial excitation, the 

first current equation of a series of simultaneous equations is 

where e. g. l.1<s indicates the mutual inductance betiveen the 

branches Jz ands. That the boundary cond itions specified by 

are satisfied by this equation is evident by comparison with 

Eq. ( 48). 

In setting up the current equation it is more convenient 

to express the terms in dimensions of potential, to which 

fo·rnn the above equation may be turned by operating on the 

equation with ; . Furthermore, to consider a more general 

problem, the presence of sources of potential within the 

branches will be taken into account. Since inital conditions 

have already been introduced into the equations, potential 

functions are considered to vanish for negative values oft 

and consequently include the unit function , as a factor. 

The first of the system of equations becomes: 

Again the solution proceeds in the customary operational 

manner. 
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In the field of partial differential equations, an 

analogous method may be employed in the treatment of boun

dary conditions. As an example, we shall consider the 

wave equation: 

) \: (-r:, -t) I d 'e ( .,,., f) = () 
")-i:-<- c~ at~ 

governed by the initial conditions: 

('19) 

In the manner of the previous problem, the equation is 

written operationally 

{St>) 

where the right-hand side corresponds to the force function 

necessary to produce the required initial conditions. To 

ascertain the function j,rr J and ./4 r·o , we first operate 

on both sides of the equation with ,P
1
~ : 

Since includes ~d; as a factor, as we approach 

tc~ , the first and last terms of the equation tend to 

zero,leaving 

c2 ecx, t) - j (7tJ ;/{fJ 

Therefore, comparing with the first bounda!"J condition 

Eq. (49), we obtain 



38 

Similarly, operation on Eq. ( 50) with .!. leads to the 
l" 

second boundariJ condition 

The operational equation becomes 

In the customary manner the equation is integrated 

with respect to z, treating ? as a constant, the justi

fication for such a procedure resting upon the algebraic 

property of the/' operator. The solution may be expressed 

in terms of the particular integral, J fr., t J , and the 

solution of the complimentary equation: 

or 

The familiar method of determining the particular integral 

by operational methods, let ting 2> = j"Jt , gives 

The operator is expressed in partial fractions, 

--'- C ( 
1 

I 

J>"- .,e; = -<.f' .J) + I!- - 7> - J=. 
C C C 

) , 

and each fraction may be substituted by its equivalent, e. g. 

--?J Jt ./.Z Z< 
£ C C .. c;/1,( I , 

-oo 
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where the lower limit is chosen at - 00 in order to 

simplify the derivation. 

Evaluating the first term z; cx_,tJ of the particula r 

integral: 

or 

But the function ~ ::/(t+;) , as a function of u , represents 

a peak concentrated at 21=-c-t which encompasses an area 

of magnitude c with the u 

pression becomes 

or 

In a similar manner,we find 

axis. Therefore the ex-

Since the remaining terms .,;_; rx., tJ of the particular inte

gral are of the same form as those already derived except 

for the presence of a ? factor, we have 

Proceeding to the limit as ./rt; is made to approach the 

discontinuous unit function, the particular integral 

becomes: 
t 

Ir~.,tJ-=-f {f,(x,cf)+£,{x-ct}j+jj/,(,(x•C'1)r£;(x-(1AJ}ct<A.. J t>fJ (.5SJ 
0 
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By change of variable the integral may be written in a 

more familiar form: 

x,.cf 

L{,t,f)= ~ {£,(xt-ct}+E,(y-ct)+
2
:j £'~(uJd'1,, t>o. CS(.) 

x-ct 

The complete solution of the wave equation becomes: 

. x•ct 

c=(X_,t) =::-F, (f- f) +~ (/-+ ~) + f {£,fr+ct)-1-£,{)(·CtJj...-Jc/£-l(UJdl,f. {.5
7

) 
y-ct 

The two functions, F, and ~ , are determined by the 

particular conditions specified at the termina.ls of the 

line, the functions representing reflected waves. If an 

electromotive force is impressed at the terminals, the 

corresponding force function is also involved in the two 

boundary functions. 

As in the field of lumped parameter circuits, the 

operational equations pertaining to distributed parameter 

circuits describe an entire past history of the equation; 

or at least a history which simulates the actual in regard 

to the production of the initial conditions. In contrast 

to the differential equation, which is true for only par

ticular intervals of its independent variables, the ope

rational equation is true for all values of the time variable. 

It is this completeness which renders operational calculus 

so useful, for the initial conditions are inherently stated 

in the equations and do not require further attention. 
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10 • SlJJl1TIVrARY 

A mathematically sound treatment of operational 

calculus has been shov.rn to be possible following several 

modifications of Heaviside's methods. The basic diffi

culty in Heaviside's presentation, namely that which 

accompanies differentiations of a discontinuous function, 

has been eliminated by the restriction that operands e-f 

of operational equations, as well as all successive deriva

tives of the operands, must always be continuous. As a 

consequence, the unit function :ictJ has been defined as 

a function such that it and all its derivatives are con

tinuous and. which function can be made to approach the 

Heaviside's discontinuous stepped function as closely as 

desired. 

To render the operators p I 

and P 
I commutative, ;o 

t-
is defined by the operation /;, .. dt-t. , where the integrand 

f 

JctJ is required to satisfy the condition that j ljru;/ d« 
-= 

be finite. 

Linear differential equations with variable coef

ficients are shown to be amenable to solution by operational 

calculus. 

I 
:i The half order differentiation, r' , is defined as 

an operation, such that when it is repeated twice, it per

forms the same operation as e, complete differentiation. 
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Its basic evaluation is found from other than operational 
I 

calculus methods to be ? :;; ~{I;: Gt .7'.o<t J , where ;/.I)rfJ 

is the discontinuous unit function. For our purposes, using 

the continuous unit function, we have by the superposition 

theorem that 

I 

17.:£ /(fJ /

t 
,:1./'{l<..J 

= u=- oo {.,,-{f- fA) 

which, as well as all its derivatives, is continuous and 

which approaches in the limit as 

The expression is abbreviated by • The alge-

braic law can be readily shovm to extend to operators 

which are functions of integral and half-integral powers 

of r . 

• 

In the treatment of as:rmptotic series, the remainder 

terms must be determined before the series can be con-

sidered evaluated. 
I 

.z 
When inverse polynomials in ,? and ? 

are expanded into either the convergent or asymptotic form 

of series, the remainder terms may be obtained if the 

finite series expansions are used, where the finite ope

rational series are true identities with respect to the 

original operators. Example:, of the procedure are presented. 

The operational methods herein established are 

applied to the problems involving systems vtl1ich are initially 

not in equilibrium, where both ordinary a~d partial 

differential equations are considered. 
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A deri va. tion of a n a symptotic expansion, •i:h ich in-

eludes the r ern.a, incl.e r term, of 

v1here oc and (! are r eal and o< is positive, i s g iven in 

the appendix in the course of treatment of the non-inductive 

cable t er minated by inductance. The deriva tion supplies the 

only deficiency _which has be en l)resent t hus far to the deter

mination of an asymptotic solution with rema inder term for any 

operational equa tion involving polynomials in half-intege r 

powers of p . 

The writer takes pleasure in acknowledg ing his 

indebtedness to Dr. 1Torga n Ward and to Dr. D. H. Weinstein 

of California In s titute of Technology who h.ave kindly 

assisted in the preparation of this thesis. 
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APPENDIX 

1'TO:N-INDUCTIVE CABLE TERMINATED BY INDUCTANCE 

A problem which has been the center of extensive 

investigation is that of determining the asymptotic 

solution for the response to unit function electromotive 

force of a non-inductive cable terminated at its source 

by inductance. It has been mentioned, p 32, that the 

difficulty lies in the presence of negatjve order exponen

tial terms which appear in the remainder of the asymptotic 
/0 

expansion and which are not readily evaluated • 

Consider the circuit, Fig. 3; the impedance operator 

of the cable has been found to be , so that 

(R,C) 

;t ------

edJ• ftt; 

T 

the impedance operator .Z<;11 of 

the complete circuit becomes 

.:z. 1 ~ The current .z:. <;n = ,P ;...o + f-:?;., • 
f"C 

response ith to unit function 

electromotive force is 

{ /) 

Then the potential (ctJ at the head of the line, Fig. (3), 

is 

(2/ 

We shall treat an operator of this form, namely 

(-3) 
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Let us expand the operator of Eq.(3) in positive powers 

of according to the binomial theorem. 

, 
3 5 3 :i;, V f I ~f [ - .l z ,,_, ;;:(»-I n (cf_?) 

o ( J == .J/ ,d J = /- fa17J., + (ctpJ - (a_pJ + ••• ,r-,J r0_p) + <- 1) ~ ] :ltfJ. 
(C?j7)cz..,., [t:;pJ +/ 

,!.h 

We shall evalue,te first the remainder term Rc/J = 1-1)" C4 fJ::z. 
' (aJJJ'/• ,-/ 

Clearing the fractional order derivative from the denominator 

by opera ting on }<dJ with 
-?.... 

(t:1JI) .,_ - I 

(c/j'//,__ I 
J 

(qp)i - I 

' 
(q /' J 3 - I 

, we obtain 

:irf J • (.:5) 

Now we expand the operator into partial fractions, and 

let h be even so that , where 1-n 

By R, dJ we denote the terms of the remainder which involve 

only integral powers of 17 • Using the relation --./2, Itf> = cM/tfJ 1- b 

already evaluated, we have tbat 

The multiple differentiation is now performed and the 

terms combined: 

f ) 0 , (B) 

The neighborhood of t~o is excluded from consideration 

since the asymptotic series is not applicable to this 

region. 

The other terms of the remainder, to be grouped 

under are 



46 

R {fJ "" r<?,PJ,,,[-'- -l+i/3 -1-iri ~ Ja_ I + v •,1 -t- . 1 ~ :ZrtJ • ,o- er 2{o- -1+1 .J) 2(/.J - -1-;u'j r 
I .2a. I .Za. 

For the first of these fractions, R-2,, rt; 

the inverse operator to its equivalent, 

Then separating the integral according to 

and evaluating -r; ;td J , we have 

, we transform 

i.e. 

t 0,, t-i · I ~/ , 
-oo - oo 00 

The value of the definite integral approximates a as 

fdJ is made to approach the discontinuous unit function. 

To evaluate the second term, we shift the derivative 

operator (a/J~ within the integral in the manner already 

discussed on p 29. We find for t > 6 

A dominant to the absolute value of R.1, rfJ is obtained 

if the exponential is removed from the integrand past the 

integral sign; then 

i. n,~ -J 
~-<,Id} = ~a+ .Jr/: ... f) (i-J , a<.'9,(/ ~ t>o. {IZ) 

The positive order exponential cancels that of Eq. (8) when 

the complete remainder RclJ is derived. 

The second and third terms, ~ <rtJ and ~ ctJ respectively, 
, ,3 

of .R
2

dJ Eq. (9), present certain difficulties in their 
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evaluation. Let us consider a general expression of which 

122,zrf; and R 2 , 3 dJ are examples, namely 

D f - (~ ,., -(<> •j(' )ff t (ol•,1°(3) "- j 
,c:I( J - . ) € E n ;/ooctu 

e>!+Jf3 -oo r 
(/ '3) 

where o<. is real and positive, and (3 is real. This expression 

is the remainder after the mth term of the asymptotic expansion 

of 

To the writer's knowledge no rigorous method of evaluating a 

useful dominant of the remainder has yet appeared in literature :If- • 

For the remainder of the particular operator series in our 

problem Heaviside obtained an exponential f, with the uncer-

tainty less than the smallest term of the series when the series 

is stopped with that term, but no proof was furnished by Heavi

side though his conclusions are correct,as we shall observe 

presently. 

The following treatment of ldJ, Eq. (14), obtaining a complete 

and useful asymptotic expansion, was outlined to the writer by 

Dr. 1viorgan Ward. · The expression is first expanded in convergent 

form, either by integration by parts or by familiar operational 

procedure: 

*For the specific case of ~~ 0 , T.J.Stieltjes, Acta Math.IX 
p 167 (1886), has shown that the remainder is less tr,..a,n the 
smallest term of the asymptotic series, when the series is stopped 
with that term. 

1Treating the problem by contour integration T.J.I'A Bromwich 
Pree.Phys.Soc. 41 p 420 (1929) (discussion of an article written 
by W. E. Sumpner), derives the negative order exponential but does 
not evaluate the uncertainty of the remainder. 
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where , and we let ~'=, The series is a 

hypergeometric one, namely 

Ia; = 2 ff , F, r 1; } ; - nt J id; 

An asymptotic expansion is obtained by employing the Kummer 

function 

where 1a1r9 .:z- J <f JT ; the contour is designated by Fig.4, and 

0 

Wplane requires that the singularity at w=-.r 

be outside the contour, as shown. The 

Kummer function is identified with the 

N~- 4 - hypergeometric function by: 

For the problem under consideration, we shall let o<•::£, r~ i 

.i'= - l'ft Then 

But 

Therefore, we obtain on substitution 
·(It 

IctJ = f -~ - ...!_ ;r.. r.1,. ..!. -cit J] ..lrf 1 . (15) 
v-r1 0 !i" :2,-'' 

To evaluate the contour integral 

we first expand by the binomial theorem 
~ - I w-- )1/""' .z. r hT ,.,.-,.J - I 

O- elf) ~,.,.cir"'(~ J .. ,. • .,. 6r-J .,. c,f;) (/- Jf) ? 

and substitute into the integrand: 
; I _f I I 

9(f, j, -?t) = -L-'- ~-~{(-w-f:i_ (-,.,.;; r-,.,.-J,' _ .. . ,. r-,J'"1-xr),.,-:; c-tl,._.,f-w)"''i(/- .-r)-'jdw-
-.J.1f {-,-1t j"' c1t ut; rr1tJ,., r~tJ"'" r1t • 

But it is kno~~ that 
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where the contour is identical with that of Fig. 4. Then 

To evaluate the remainder, we shall deform the contour as 

shown in Fig. 5, where the radius of the circle about the origin 

is made vanishingly small and the lines r, and ~ are made to 

W pl&1ne 

w= .-,to toJ•J~Jt 

l---<1t 
r: 

rad. r C r, 

approach the real axis. A dominant to the 

absolute value of the remainder may be ob-
y{' - I tained by permitting the factor (1-c:TT) to 

assume its greatest absolute value in the 

range of integration, i.e. from Fig. 5 

I (1-;5f'j ~ (3 , since kl I-=: J • The re-

mainder term of Eq. (16) therefore becomes: 

e , 
rr- .... -i:- J~ cM)'"•:. 

101 <. I 

* On substituting into Eq. (15), we obtain the final solution: 

•The remainder term, it will be noted, is multiplied by the 

term of the asymptotic series following the last considered. The 

remainder Rrcc i, Eq. (13), is 
-("'-•J·f) t-

;l?_ cf) = [ E ~ ~ I ,... _!. ] .1d) (/8) 
., v-<o1•Jr) (3 rr-,,.,-i)(o";Jr:)'" .. 't- ~ • 

* The uncertaint;'}r factor e is different in the various equations 
where it appears, subject only to the cond.i tion that 1e1..:.. 1 • 



50 

The expansion is extremely useful as it now permits us to obtain 

complete asymptotic solutions for any operational equation in

volving polynomials in half integer powers of p. 

We now apply the above results to the problem on hand, 

namely the evaluation of P.,, 2 lf J and J.?-l 
3 

<f J ,Eq. ( 9). Comparing 

Eq.(9) with the remainder, J?rr!J, Eq.(13), already evaluated 

in Eq.(18), we have that 

And substituting~ ; n,.: ~, 7, /(), , .. ' 

I _(f)t 3 
ff"l C-:;-+J~ .. .2fl ' q,..+r t> (1'3) 
r<.,,:i_(f) = -j- £ + .J(J" /(-;,.-..:...it> ; 181 <.I , 0, .. 

In a similar manner, we obtain the conjugate remainder term: 

( 
I Jj) ±. ] 

I •"5"-J;r ~ ? 'J? (C)" __ E: + ~ 1 (..!) ..... :i"; Jf)l<I ~ t>o (20) 
.,,3 ..3 ..3(3 rr- ... --i-J t . 

The complete remainder is evaluated by the combination of 

the four constituents: 'R=-k, .. 'R.,_, ... 'l<., ... +k.,,a Eq's (8,12,19,20); 

The final potential equation therefore becomes: 

'f & 0. .,, {) I ,.__i j 
+ ~ ( t -l -+ - -- (~) • I 81 < I t > O f1< = >I 7 IO ' · • 3 1 , 1 2 rr-... ~]:) t , , , , , , 

The exponential term which we have obtained agrees with that 

given by Heaviside. It is unnecessary, however, despite 

Heaviside's statement, to stop the series with its smallest 

*In the evaluation of ~-(01 '"J(3) , it must be recalled that 
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term in order to ascertain the uncertainty of the remainder. 

A treatment by convergent series of the non-inductive 

cable terminated by inductance permits ready evalua tion 

of the uncertainty of the remainder after the nth term. 

Expanding the operator in negative po-wers of p , we obtain 

I 

V,: ct J = 3/2 ..lei J 
(c,,f') "- + I 

The remainder term, 'k?dJ , is expanded into partial fractions, 

following the clearing of fractional order derivatives from 

the denominator, as for t h e asymptotic series: 

:J 

(_ap)-,, - I 
2,-, 

Ccy) ~ 
Lc!J. 

Applying the shifting theorem to each fraction and combining 

t er ms, we obta in 
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It is evident that a dominant to ,frtJ may be obtained by 

proper removal of exponentials and trigonometric functions 

from the integrand, and one form of the remainder is 

certainly given by 

On integrating and taking the limit as the continuous 

unit function is made to approach the discontinuous one, 

t 3 I 3 • 

RrfJ" 1 {ea: .. ,z) [ ./ I r.!.../h"'z - I • (_t/"'']; o~/0/~J, t":;o. (.24) 
r<-zi.~-:zl ~ UJ» .. ~l a. 

Finally the potential equation is obtained by performing 

the indicated operations of Eq. (21), i.e. 

3 
~ - 3 

t - -' (,.!:) z I i 3 ,,_, I t S h 

~ r J - rc~J a - - f-) + • .. .,. (-t J -- (;;) 
2 ..J_I CL r ti n,I) 

The expansion is useful for small values of t . 
;;;: ' 

t" as-.;-

increases, greatly more terms of the series are required 

to maintain accuracy of computations. 
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