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Summary 

In parts I a.nd II the phenomenology of x-rays, especial­

ly that pa.rt which concerns the Duane-Hunt limit of the 

continuous spectrum, is very briefly reviewed, and such 

results of the quantum theory of radiation as are needed in 

the sequel are stated or developed. 

In part III the effect of the extra-nuclear electrons 

in the atoms composing the target of an x-ray tube on the 

distribution of energy in the continuous x-radiation from 

that tube is calculated, using, of course, numerous approxi­

mations. The effect of the extra-nuclear electrons is 

represented by that of a static distribution of charge 

around the nucleus. The intensity of the x-rays of a given 

frequency near the Duane-Hunt limit emitted when a beam of 

cathode rays strikes an atom is found to depend chiefly on 

the amplitude of the wave function of the scattered electron 

in the region near the nuc!eus. This amplitude, and hence 

the intensity of the x-rays, is calculated as a function of 

the frequency of the x-rays with two separate assumptions 

as to the form of the atomic field. The results of these 

two calculations are rather similar. The behavior of the 

intensity as a function of the frequency is very sensitive 

to the parameters describing the form and size of the atomic 

field. The intensity per unit frequency range may, depending 

on the values chosen for the parameters describing the field, 

rise to a sharp maximum at a frequency very close to the 
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Duane-Hunt limit, which maximum is interpretable as an 

effect of resonance of the scattered electron with a virtual 

S level of the atomic field. 

The results of the preceeding calculations are compared 

with the measurements of Du.Mand and Bollman on the continu­

ous x-rays from a tungsten target. It is possible to account 

for the knee which these workers found in the isochromat in 

the i mmediate vicinity of the threshold with a choice of 

parameters which does not seem at all unreasonable for the 

tungsten atom. The well known knee that appears at a hundred 

volts or more from the threshold is, however, not explained 

by these calculations . The present calculations also throw 

no light on the discrepancy which apparently exists between 

the values of h/e, e/m, e, and the Bohr formula for the 

Rydberg constant. 
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Part I Introduction ---
In the year 1895, professor W. C. Rontgen of Wurzburg 

discovered that a previously unknqwn radiation capable of 

exciting fluorescence in certain substances, affecting a 

photographic plate, and rendering the air through which it 

passes electrically conductive, is produced whenever a beam 

of fast cathode rays strikes a material body1 ). He called 

the new radiation X-radiation to emphasize its unknown 

nature. The x~rays travel in straight lines, are unaffected 

by electric and magnetic fields, and are capable of penetrating 

every substance to a measurable degree. 

Rontgen at first regarded favorably the hypothesis that 

X-rays consist of longitudinal waves in the ether; but in 

1906, Barkla discovered that the X-rays scattered by a 

material body are polarized, and their transverse character 

was thus established. Some attempts were made by Haga, Wind, 

and others to observe diffraction effects in connection with 

the passage of X-rays through narrow slits. These attempts 

met with some success, the results indicating a wavelength 

of the order of 10-8 cm. Since this wavelength is smaller 

than the distance separating neighboring atoms in crystals, 

it should be possible to observe diffraction effects 

accompanying the passage of X-rays through crystals. Laue 

suggested in 1912 that such effects be sought; and, when -

they were found that same year by Friedrich and Knipping, 

he gave a theoretical interpretation of the resulting 



diffraction patterns. The Braggs showed how crystal diffraction 

could be used for the accurate measurement of X-ray wavelengths, 

and the science of X-ray spectroscopy was born. 

The spectrum of the X-rays produced by the incidence of 

a beam of cathode rays on a material target is found to 

consist of a number of distinct lines whose wavelengths are 

characteristic of the material of the target, superimposed 

on a continuous background. The line spectrum, at least in 

its general structure and most of its details, is 

interpretable in terms of the Bohr theory of atomic structure, 

and will not concern us further here. When X-rays were 

discovered, it was already recognized that cathode rays 

consist of moving particles bearing an, electric charge. 

According to classical electrodynamics, whenever for any 

reason an electrified particle is accelerated it must 

radiate energy in the form of electromagnetic waves. Since 

X- radiation is produced by the incidence of cathode ray 

particles on a material target, it was natural to suppose 

it to be the electromagnetic radiation resulting from the 

deceleration of these particles by the target. Such an 

explanation of the origin of X-rays was offered as early as 

1896 by Wiechert and a few years later by Stokes and J.J. 

Thomson. It will not suffice, of course, for the explanation 

of the line spectrwn; but that the X-rays in the continuous 

spectrum are electromagnetic waves produced by the deceleration 

of the incident cathode ray particles is today about as 



certain as anything ever is. For this reason the continuous 

X-radiation has come to be called Bremsstrahlung. 

In 1915, Duane and Hunt2) published the results of 

some measurements of the distribution of energy in the 

continuous X-ray spectrum as a function of·,: the wavelength 

and of the potential on the X-ray tube. They found that for 

a fixed potential on the tube no radiation of wavelength 

less than a well defined minimum, ~
0
,is produced. For 

wavelengths greater than /\
0

, the intensity of the radiation 

increases rapidly with the wavelength, reaches a maximum 
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for some intermediate value, and falls less rapidly toward 

zero as the wavelength is still further increased. Moreover, 

they found that the limiting wavelength itself depends on 

the potential on the X-ray tube, being inversely proportional 

to it. Indeed, they found that if \l represent the potential 

on the X-ray tube, e the charge on the electron, and ~ the 

frequency corresponding to the limiting wavelength )t, the 

equation 

(1) 

holds, where h is a constant which is equal, within the 

limits of experimental error, to Plank's quantum of action. 

These results cannot be explained by any classical theory of 

Bremsstrahlung, for such a. theory would require radiation of 

all wavelengths to be present, with the intensity falling 

continuously toward zero as the wavelength decreases; but 

they are interpretable on the basis of the quantum theory, 

and are obviously very important for its development. 



Equation (1), except for the absence of the work function 

which is too small to be observable at the potentials used 

anyway, is identical with Einstein's photoelectric equation 

which describes the reverse process, namely the ejection 
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of electrons from material bodies by the action of radiation. 

Just as the validity of Einstein's equation shows the 

quantum nature of the process of the absorbtion of radiation, 

so equation (1) shows the quantum nature of the process of 

its emission. 

On the basis of the quantwn theory, the production of 

radiation by an electron is to be understood as follows: 

The electron can move without radiating in certain of the 

classical orbits for the field in which it happens to be (in 

the case of the production of Bremsstrahlung, this field is 

that produced by the atoms composing the target). The 

classical motions characterized by a negative total energy 

are treated as conditioned periodic and are subjected to 

the Bohr-Sommerfeld quantum conditions according to which 

only those motions are possible for which the action variables 

are integral multiples of Plank's quantum of action, h- The 

motions with positive energy are not periodic, and all of 

the classical motions are possible. But while the electron 

can move in a classical orbit of energy £ without :radiating, 

thus violating the laws of classical electrodynamics, there 

is, however, a certain probability that it will suddenly 

cease to move in this way and begin moving in another 

classical orbit of energy£' , at the same time radiating the 
I: - t:.- ' 

excess energy as a photon of frequency h . Such 
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transitions between states of negative energy give rise to 

line spectra, while those between states of positive energy 

give rise to continuous spectra. On this basis equation (1) 

is immediately understandable . The incident electron has 

the energy e V , and as there is no classical orbit of negative 

energy available in the electrically neutral target, it 

cannot undergo a transition to a state of less energy than 

zero. Thus, the maximum energy available for radiation is 

eV, and the maximum frequency possible for the resulting 

radiation is e: . 

The old quantum theory gave definite, if not always 

correct, values for the energies of the allowed states of 

motion and thus for the frequencies of the spectral lines; 

but it contained no principle which would allow the 

probabilities of transition between the various states of 

motion, and thus the intensities of the various spectral 

lines, unambiguously to be calculated. The best that could 

be done was to apply the correspondence principle of Bohr, 

according to which the results of quantum theoretical .. 

calculations must agree with those of the corresponding 

classical calculations in the limit of large quantum numbers, 

that is, when all the action variables involved are large 

compared with h . A judicious application of the correspond­

ence principle will enable one to calculate the transition 

probabilities in terms of the values of certain quantities 

averaged over both the states involved, but tt will not 

tell one how that average is to be taken. The problem of 



continuous spectra is entirely one of intensity, and hence 

the old quantum theory is in principle unable to deal with 

it. Nevertheless, by making some plausible assumptions 
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one can treat the case of continuous spectra in an approximate 

way using the correspondence principle. Kramers3 ) has 

calculated in this way the spectral distribution of energy 

in Bremsstrahlung, basing the correspondence theoretical 

treatment on the classical radiation of an electron scattered 

by an atomic nucleus. His results are, in the main, in 

agreement with experiment. 

The question of how the averages demanded by the 

correspondence principle should be taken was answered in a 

consistent way only through a fundamental and thorough 

change in the concepts and laws of mechanics which, initiated 

in 1925 from opposite points of view by Heisenberg and 

Schrodinger, has been further developed by these and many 

other authors into the present theory of quantum mechanics. 

Quantum mechanical calculations of the distribution of 

energy in Bremsstrahlung have been made by Oppenheimer, 

Sommerfeld, and others4 ), the basic process being taken, as 

in the case of Kramers' calculation, as the collision of an 

electron with an atomic nucleus. The nature of these 

calculations will be described in more detail in part II; 

here only the results neeH to be stated. It was found that 

the energy per unit frequency range in the radiation 

resulting from the collision of a beam of electrons of 

given current and velocity with an atomic nucleus should be 



zero for frequencies above the limit found by Duane and Hunt. 

As the frequency decreases past the Duane - Hunt limit, the 

intensity should rise discontinuously to a value roughly 

inversely proportional to the energy of the incident 

electrons. As the frequency decreases still further, the 

intensity should increase, at first very slowly but later 

more rapidly, until it becomes infinite as the frequency 

approaches zero. The high intensity at very low frequencies 

is in definite contradiction with measurements made on 

X-rays, but the reason for this is easily understood and 

will be discussed below. For the rest, the theory agrees 

rather well with experiment. 

The present interest in the problem of Bremsstrahlung 

is due largely to the circumstance discussed in detail by 

Birge5 ) that certain measurements of fundamental physical 

constants are not at the same time consistent with each 

other and with Bohr's theoretical expression for the 

Rydberg constant in terms of the fundamental constants. 

As it is very difficult to see how Bohr's expression for 

the Rydberg const ant can be suff iciently in error to 

account for the discrepancy, one is led to seek its 

explanation in the interpretation of the experiments 

themselves. The most accurate of the measurements involvem 

are the measurement of the charge on the electron, e, both 

directly by the oil drop method and by measuring the grating 

space of calcite against that of artificially ruled gratings; 



the measurement of the ratio of the charge of the electron 

to its mass, _.@:.. , both by spectroscopic and deflection 
?n 

methods; and the measurement of ~ by determining the 

position of the Duane-Hunt limit in the continuous X-ray 

spectrum. In making the measurement of 1L by finding the e 
position of the Duane-Hunt limit, one plots the intensity 

of the X-rays of a given frequency against the potential 

on the X-ray tube. This curve should intersect the potential 

axis at the value V which corresponds according to equation 

( 1) to the frequency Yo of the X-rays; but in practice it 

never does, due partly, at least, to the fact that the 

monochrometer used has only a finite resolving power. One 

has, therefore, to extrapolate the curve from the region 

beyond the threshold in such a way as to remove the fillet. 

It was thought that the discrepancy between the value of ~ 

found in this way and its value calculated from the 

Rydberg constant and the other fundamental constants might 

be due to an incorrect method of making this extrapolation 

and that a theoretical examination of the process of the 

emission of Bremsstrahlung might reveal the correct method. 

Recently, however, Du Mond and Bollman6 ) have published 

some measurements of this nature in which they used a 

monochrometer of higher resolving power than has hitherto 

been used in such work. A glance at their experimental 

curve makes the hope of explaining the discrepancy as due 

to the use of an incorrect method of extrapolation seem 



rather futile. At the same time, however, their curve 

exhibits certain unexpected characteristics which demand 

explanation and which cannot be explained, at least in any 

very obvious way, by the theory of Oppenheimer, Sommerfeld, 

et alii. 4 ) These characteristics will be discussed in 

part IV. 

The most obvious defect of the theory of Oppenheimer, 

9 

and Sommerfield is that they have considered the Bremsstrahlung 

produced by a beam of electrons incident on an atomic 

nucleus, whereas in fact the electrons are incident on atoms 

which have their full quota of extra-nuclear electrons. 

This defect is not serious in the case of high frequency 

X-rays which are still not too near the Duane-Hunt limit, 

for these rays are produced, on a classical picture, by 

electrons which are highly accelerated; that is, by electrons 

which penetrate close to the nucleus where the field of the 

extra-nuclear electrons is unimportant. X-rays of low 

frequency, however, are produced by weakly accelerated 

electrons; that is, they are produced at large distances 

from the nucleus where the field is weak. In the actual atom 

the field of the nucleus is rendered almost completely 

ineffective at large distances by the screening effect of 

the extra nuclear electrons. One should expect, therefore, 

that much less low frequency radiation should be observed 

than is predicted by the theory which completely ignores 

the screening, and the observations do indeed fulfill this 
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expectation. 

Sauter7 ) has made a quantum mechanical calculation of 

the intensity of the Bremsstrahlung produced by the incidence 

of a beam of electrons on an atom which has its full quota 

of electrons, approximately representing the effect of the 

external electrons by a continuous distribution of charge in 

a manner to be discussed in detail in part II. His results 

are in agreement with experiment for radiation of low frequency, 

giving much less intensity in this region than do the 

calculations which completely neglect the extra-nuclear 

electrons. He has, however, used the Born approximation to 

the wave functions for both the incident and the scattered 

electrons. His results are, therefore, invalid for 

frequencies near the Duane-Hunt limit; for in this region 

the scattered electron is of low energy and the Born 

approximation to its wave function invalid. 

Nedelsky8 ) has also taken screening into account, using 

a model similar to one of ours and using accurate wave 

functions. His calculations are chiefly applicable to the 

case in which the energy of the incident electron as well as 

that of the scattered one is small. He finds that as the 

frequency approaches the Duane-Hunt limit, the intensity 

per unit frequency range of the Bremsstrahlung falls to 

zero with the square root of the energy of the scattered 

electron. He finds also that the intensity considered as a 

function of the frequency shows maxima and minima which 
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are caused by resonance of the incident and/or the scattered 

electron with the atomic field. 

The purely classical picture of the process of the 

production of Bremsstrahlung which we have used with success 

to predict the effect of the atomic electrons on the X-rays 

of long wavelength cannot be expected to give even a 

qualitative idea of the intensity of the X-rays in the 

neighborhood of the Duane- Hunt limit; for the most 

conspicuous phenomenon here is the very existence of the 

limit itself, of which the classical picture gives no hint. 

We must turn to an at least half quantum theoretical 

description. In this picture the incident electron of high 

energy suddenly loses some of its energy under the influence 

of the atomic field with the simultaneous production of a 

photon. If the photon ie to have a frequency near the 

Duane-Hunt limit, the electron after radiating must have but 

little energy. Since the frequency of the radiation produced 

is high, the process must occur in the region of large field 

near the nucleus where the screening effect is unimportant; 

but because of the low energy of the scattered electron, its 

subsequent motion, and hence the probability of the transition 

producing it, will be strongly affected by the extra-nuclear 

electrons. ~Ma'l:W essentially quantum phenomena may be 

interpreted on a classical picture supplemented by a 

non-classical ability of fields of force to reflect particles. 

In the present case, we may say that the effect of screening 
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on the number of incident electrons which penetrate to 

the region of strong field near the nucleus, and hence on 

the amount of radiation which would be produced on a classical 

picture, is negligible. But in order for a photon actually 

to be produced, the electron must escape from the atom. While 

now classically the electron will escape from the atom if 

only its energy is positive, on the basis of quantum mechanics 

it may suffer a reflection from the field surrounding the 

nucleus and its escape thereby be prevented and the transition 

producing it rendered impossible. The probability that an 

electron will be reflected by a field which it can pe_netrate 

classically is large only when the energy of the electron is 

small, and it is very sensitive to the energy of the electron 

and to the form of the field. One may thus expect the 

screening effect of the atomic electrons greatly to influence 

the intensity of Bremsstrahlung in the neighborhood of the 

short wavelength limit. But the nature of this influence, 

whether the intensity in the screened case will be larger 

or smaller than in the unscreened case, cannot be predicted 

by these simple considerations; for there is reflection 

from the Coulomb field also in the unscreened case, and 

whether the effect of the extra-nuclear electrons will be 

to increase or to decrease this reflection, cannot be 

determined without closer investigation. 

There is another line of reasoning, mentioned by 

Nedelsky~) which will, however, yield some definite 

conclusions regarding the intensity of the Bremsstrahlung 
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very near the limit. The description given above of the 

results of the calculations based on the unscreened nucleus 

is incomplete. The incident electron may not only be scattered 

with diminished but positive energy; it may also be captured 

in a state of negative energy with the radiation of a photon 

of frequency higher than that of the Duane-Hunt limit. Since 

the electron may be captured only in certain discrete states 

of negative energy, the Bremsstrahlung so produced has a 

line spectrum. This line spectrum was not mentioned in the 

previous discussion because its production is impossible 

in the actual case to which the results were to be applied 

as an approximation; namely, in the case of the radiation 

from an atom possessing its ful l quota of extra nucles,r 

electrons. There is an infinity of these lines, all with 

frequencies less than some definite value; and they have 

their accumulation point at the Duane-Hunt limit. If, now, 

the intensity per unit frequency range in the region of the 

line spectrum be defined as the average intensity averaged 

over a frequency range large compared to the separation of 

adjacent lines, then the intensity of the Bremsstrahlung 

is a continuous function of the frequency at the Duane~Hunt 

limit. This continuity of the intensity of the Bremsstrahlung 

is a general property which holds independently of the 

particular form of the field which scatters the cathode rays. 

In case the atomic field falls more rapidly to zero as the 

distance from the atom is increased than does a Coulomb 
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field, that is, in case the atom is electrically neutral, 

there are no states of negative energy, or at most a finite 

number of them. In that case the intensity of the Brems­

strahlung must fall continuously to ze~o as the frequency 

approaches that of the Duane-Hunt limit unless there happens 

to exist a stationary state of zero energy, in which case 

the intensity becomes infinite at the limit. 

The intensity in the neighborhood of the high frequency 

limit of the Bremsstrahlung from high energy cathode rays 

is thus to be expected to depend to a great extent on the 

motion of the scattered electron in the field of the atom. 

As the scattered electron has but little energy its motion 

must be greatly influenced by the presence of the extra­

nuclear electrons and resonance effects analogous to those 

responsible for the Ramsaur effect9 ) should occur. 



Part II The Quantum Theory of Bremsstrahlung 

Section 1 The Quantum Theory of Radiation 

The modern quantum theory of radiation was first 

formulated by Dirac10) in 1927. Dirac's radiation theory 
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now forms part of a more general quantum electrodynamics 

which was initiated by Heisenberg and Paulill) and developed 

by these and other authors. Since these theories are well 

known 9nd many expositions of them are available in the form 

of reviews and even of textboolcs, 12 ) they need not be 

treated in detail here. Such results as bear directly on 

the problem at hand will merely be stated, and the reader 

is referred elsewhere for a more extended discussion of them. 

Let a material system involving electrified particles 

be described with the neglect of all radiative effects by 

the Hamiltonian 1-/,.,.. . Because of the interaction between the 

material system and the electromagnetic field, H.,,... does not 

suffice for a complete description of the behavior of the 

system. It must be replaced by H = HM -1-I-IR -i V , where HR 

depends only on the coordinates describing the state of the 

electromagnetic field, and V depends both on the coordinates 

of the material system and on those of the electromagnetic 

field. In the present state of knowledge the problem defined 

by the complete Hamiltonian H cannot be solved; or to be 

more exact, it is not possible to formulate it in such a 

way that it would have a solution. In such cases, however, 

that the forces due to the reaction of the radiation field 



on the material system are small compared to the other 

forces acting on it, which is the situation in many actual 

cases, the effect of the interaction term V may 

satisfactorily be described by the fiction of transitions 

between "stationary" states. 

Let the material system consist ofn particles of 

masses -mt and charges et (t: 1,··· n) • The Schrodinger equation 

for the stationary states of the system is 

( 1) HM 'f = £~ 
Let this equation have a discrete set of solutions If~ (X) 

with the corresponding energy eigenvalues E't' , where ?t-
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stands for a set of discrete quantum numbers specifying the 

stationary states. The wave functions lf'~ may be taken as 

orthogonal and in the present case of a discrete spectrum 

as normalized so that we have. 

(2a) 

Here x stands for the set of all the coordinates of all the 

11 particles, the* indicates that the complex conjugate 

quantity is to be taken, and S.t·a--stands for the product 

~~'t.' St.'t-a.': • • where &"''"''' is Kronecker I s delta defined by 

( 2b) 
I lf O('= 0<" 

Then, provided the wavelength of the radiation is not 

short compared to the dimensions of the region which 

contributes sensibly to the matrix integrals ( 4), the 

probability per unit time that the system undergoes a 



transition from the state o' to the state o" with the 
e~• -1:1" emission of a photon of frequency))= h , where h 

is Plank's constant, is given by the expression: 

( 3) 

~ 

where C is the velocity of light, Xt represents the 

coordinates (posit ion vector) of the t t!:J particle, and 

( 4) 
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The case in which the energy spectrum of the material 

system is continuous rather than discrete, which is the case 

that interests us here, requires further discussion, because 

the wave functions can no longer pe normalized according to 

equation (2) since the integral diverges when "t'= o". The 

normalization to adopt for the wave function representing the 

initial state will be clear in any sp~cific case. It is the 

function that actually represents the initial condition of 

the system. For example, in the calculation of the intensity 

of Bremsstrahlung it should be so normalized as to represent 

definite flux of incident electrons. The problem must be 

so formulated that the energy of the material system is 

exactly specified in the initial state; there are no other 

restrictions. The question of what normalization should be 

adopted for the wave functions representirtg the final state, 

and what interpretation should be placed on formula (3) 

when such normalization is adopted is, however, more involved. 



Let the Hamiltonian HM of the material system have a 

continuous energy spectrum. Introdu9e the energy£ itself 
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as one of the parameters (quantum numbers) specifying the 

stationa~y states of the system; and let certain other 

continuous parameters r, Ct.) t~, ···),and for completeness certain 

discrete parameters f. (r:.r.., ···)>be required for the complete 

specification of the stationary states. We have then a set 

of orthogonal wave functions 'l'i~,(x) satisfying,the 

Schrodinger equation: 

(5) H""' ~¥"r = £~rr 
The initial state of the system may be specified by the 

wave function 'fo ex) . 'fo must be energy characteristic, and 

its energy eigenvalue may be denoted by £ 0 ; but it need not 

be characteristic of any of the observables belonging to 

the remaining quantu.i11 numbers o and ,- • 

Now let the Hamiltonian HM be modified in a way depending 

continuously on a parameter ). in such a manner that 

(6) L,·m H1111, (A) = H.v. (0) = H,.,, 
-" ~o 

and that the Hamiltonian H,..<~ for values of A other than 0 

possesses a discrete spectrum - discrete not only in regard 

to energy but also in regard to all the observables 

necessary completely to specify a stationary state. This 

modification may be thought of as being brought about by 

enclosing the system in a large sphere which perfectly 

reflects all of the particles constituting the material 

system but which has no effect whatever on the radiation 

field. It may be necessary to add further devices of this 
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kind to insure the discreteness of the spectrum with respect 

to other observables than the energy. The reciprocal of 

the radius of the sphere may serve as the parameter )l. The 

eigenfunctions of H, .. .(.•1) will be denoted by V:1:or , where now 

£ and if as well as r assume discrete values only; and 

they may be normalized in the usual manner: 

(7) 

The wave function 'fo of the initial state will not be an 

eigenfunction of H"" (~). A new one, 'fo ;;i , must therefore be 

introduced satisfying 

(8) 

(9) L ,·,,., I.J/ = lll 
fo, To . 

). ➔ 0 

Then writing 

(10) 

equation (3) can be applied in the usual way. 

Now let '37,(1:.~. r) be a continuous function of the 

continuous variables £ and o such that 9;, c~:ir-: r'JAt'A<f'"' 

is approximately the number of stationary states of H,,,.U) 

provided b. E" 

and ha' are so large that this number is not small but 

st ill are not too large. q;. represents a macroscopic density 

of stationary states. In the nature of things qA is 

incapable of exact definition. But it becomes the more 
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preci sely definable the smaller becomes A and hence the 

more dense become the stationary states; and at the same 

time, q'). ➔ OO • Applying now formula ( 3), we have the result 

that 

gives the probability per unit time that the system undergoes 

a transition from t he initial state to some final st~te 

characterized by the quantum numbers 1=:' r': r' , where 

£'(£"< f'-1[!£~ 't'<t ''< f'tA~' with the emission of a photo:n of frequency 

Eo~ -E" 
~ . The frequency of the photon must t hen lie between 

-1-~•').:f' and )l-.6V , where AV=¥ . Thus 
- h rt 

(11) 
l6Tr""Y3I II ➔ ll. I 
--J Let(c:'t'r•1xt1o;i) (J").ff'o'r')/1£'/J."lf 

3 C t=-• 

is the probability per unit time that , the; system undergoes 

a transition from the initial state to a final state charac­

terized by quantum numbers r= f ' , t within the range At' 

of 0 1
, with the emission of a photon of frequency within 

the range AV of v . Expression (11) is approximate to the 

extent that 9~ is approximate. One may, however, expect 

the limiting form of (11) as }i ➔ o to give the exact 

transition probability per unit o range per unit frequency 

range. 

As A ➔ O , q-;.➔ oo . But also the final state wave function 

Y:,E't"'r' approaches zero because of the normalizing conditions 

(7) and the fact that the integral jl 'l'E'r'r •I\'"' diverges. 
➔ 

Hence the matrix integrals (£'t'r'/Xtfo?i ) approach zero, and 
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we may expect expression (11) to remain finite. If we 

incorporate the density function q~ directly into the matrix 

integral, we may conveniently write.: 

(12) 

(13) 

Then 

( 14) 

gives the approximate transition probability per unit time 

per unit o range per unit frequency range. Hence if we can, 

and do, so normalize the eigenfunctions of the original 

Hamiltonian H/111 that 

(15) 
'fel"r()() = ~~ ~ tl"r ( X ) 

then t he expression (3) when multiplied by h will give 

the exact transit ion probability. 

The mathematical question of the possibility of this 

kind of normalization, that is of the existence of the limit 

indicated in (lp), is by no means a simple one. The fact 

is, however , as was shown by Wey113 ), that this type of 

normalization is possible, at least in a great many cases. 

It is necessary to obtain another form of the normal -

izing condition (15) so that in a specific case it may be 

possible properly to normalize the '5fte- wave functions without 



actually modifying the Hamiltonian and carrying out the 

above operations. Such a modified form of the normalizing 

conditions can be derived from the fact that in the limit 
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~ ~ o , sums over the discrete parameters E: t"' may be 

replaced by integrals over the parameters regarded as con -

tinuous variables with the help of the density function q~ 

according to the scheme: 

(16) L. L f(£'t') ~ f di'd~'f(~'t1'')g;\ (£'b6'). 

E' 'if' 

Now from equation (7) we have 

for all functions f . We have also from (7) and (12) 

If now we go to the limit A ➔o in (lJ), making use of (16), 

(18) and (15), we obtain 

( 19) 

Equation (19) serves uniquely to determine the normalization 

of the wave functions without resort to the Hamiltonian HM (ii ) , 

which has served its purpose by showing how formula (3) is 

to be interpreted when such wave functions are used. Of 

course the above manipulations do not demonstrate the 

possibility of normalizing according to (19); they merely 

suggest this possibility and show how the wave functions 



are to be interpreted in case (19) proves possible. The 

proof of (19) must rest on Weyl's work. 13 ) It should be 

noted that the order of integration in (19) must be that 

shown and may not be changed, and that the generality of 

the function f must be suitably restricted. 

Equation (19) may be rewritten in the form 

where fJ (t'-t") stands for the product li<1. '-t.")Sc~'-t1.") ~ • , and 

0u) is Dirac I s delta function defined by th·e conditions 

x sc x) =- 0 

( 21) a, J 0cx)dx = 1. 

-OD . 

No function satisfying conditions (21) exists14 ), and 

equation (20) can therefore only be regarded as a symbolic 

way of writing (19). But to refuse, merely because it does 

not exlst, to use the delta function in those places where 

it shortens the notat ion or makes the underlying relations 

easier to grasp would be pedantry . 
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Part .ll 

Section~ The Radiative Collision .2.f ~ Electron with 

,s1 Heavy~ 

In this section I wish to discuss in a qualitative 

way the radiative collision of an electron with a heavy 

atom with the view of ascertaining the nature of the 

approximation whereby the many body problem is replaced 
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by that of the collision of an electron with a fixed field, 

and of determining the physical nature if not the order of 

magnitude of the terms thereby neglected. 

Since the atomic nucleus is thousands of times more 

massive than the electron, its motion may be neglected 

from the outset. Let the atom have the atomic numberZ, 

and let X, U= ,, • .. Z) represent all the space and spin 

coordinates of the i ~ atomic electron. The expression/ .. d><,· 

will always be understood to include a summation over the 

spin coordinate. The Hamiltonian Ho of the atom may be 

written as 

(1) 

where e and 111 are the charge and mass of the electron, Pc , 

the momentum of the i~electron, ~ the distance of the i"tli 

electron from the nucleus , and f()t;X..}:. fO<.ix,) the interaction 

between the (t.t, and j ti! electrons. F may also involve the 

momenta of the electrons, but it is given to a high degree 

of approximation by with ~ the distance between the r.. ' •J 



i.~ and J"t." electrons. Let the stationary states of the atom 

be represented by the wave functions 9?(,c, ••• Xz) , satisfying 

the Schrodinger equation 

( 2) 

and normalized according ~o the scheme of section 1. S 

represents the set of quantum numbers necessary to specify 

the stationary states. They will have a discrete range, 

representing the atom in its various excited states, and 
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a continuous range representing the ionized atom. The ground 

state of the atom will be specified by S z. 0 • Cfs(x, ••• Xz.) is 

antisymmetrical in each pair of coordinates x,,x~ , according 

to Dirac's form of the Paulm exclusion principle . 

. It is convenient first to discuss the collision with 

the neglect of radiative effects, since these are to be 

described by the fiction of transitions between stationary 

states of the system. Let the incident electron have the 

coordinates X0 • The Ha~iltonian for the complete system of 

atom and incident electron will be 

(3) 

This Hamiltonian is symmetrical in the coordinates of all 

the Z +/ electrons, but for the time being we shall ignore 

the formal identity of the incident and the atomic electrons. 

We must now seek a solution 'f(Xo; X, • ·' Xz) of the Schrodinger 

equation 

(4) Hlf =E<f 



which is antisymmetrical in the variables X1"" Xz but not 

necessarily in Xo • ~ may then be expanded in a series of 

the eigenfunctions of the atom alone as follows: 
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We must demand of ~ that the expansion coefficients -f have 

the following asymptotic forms: 

f:. 
' i k0 ~ 0 .1,, 

0 
(Xo) = e +,;;-If{, (00 ~) e•n0 t'o 

(6) 

Here ro,Bo.~ are the spherical coordinates of the incident 

electron, and ~ o its usual Cartesian coordinate. The following 

relations which express the conservation of energy will hold: 

~; = h/ +K:-Ks-i. 

( 7 ) 
'l. -:l,,, r:-

Ks ::= i;"- ,:;..s 

7f is here as elsewhere Plank's constant divided by 11T . 

The various terms in the expansion of "f have now the 

following interptetations: 

fo : This term represents an incident beam of electrons 

1i1. '.2. 
of energy ~ k0 plus a scattered beam of the same energy. 

,-.ln 

It thus represents the elastic scattering. 

{ , S discrete, Rs,._> 0 : This term represents the incident 

as scattered with the atom left in an excited state. 

£, S discrete, k: < 0 : In such terms, if they exist 

at all, the coefficient fs (Xo) decreases exponentially as 
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becomes large. It therefore represents the incident electron 

as well as all the atomic electrons as permanently in the 

vicinity of the nucleus - that is, it represents the 

formation of a negative ion. Anyway there can be no such 

terms in the case of high energy collisions. 

fs , S continuous, ks~) O : These te~ms represent the atom 

as ionized and the incident electron as scattered. 

fs , S continuous, k;<o : Here again fs<x0 ) decreases 

exponentially as ro increases, but this time the atom is 

represented as ionized - that is, with one or more of its 

electrons removed from the vicinity of the nucleus. In these 

terms are therefore included all the exchange processes in 

which the incident electron is captured by the atom and one 

or more of the atomic electrons emitted. As long as we 

disregard the identity of the incident with the atomic 

electrons these processes must be regarded as distinct 

from all the previously considered processes. Actually, 

however, they are not distinct processes and their 

probabilities interfere. 

In order to deal with the exchange processes, expand 

the wave function YJ as follows: 

This may be solved for the coefficients q
5 

: 



If the variables x, and Xi are replaced by each other in 

equation ( 9) and then Xi and Xo interchanged in cp; and Xi. 

and X, interchanged in 'fl there results, because of the 

antisymmetry of the wave funct i ons: 

Thus it is seen that the functional form of 95 does not 

depend on which of the atomic electrons is given the 

privileged role in the expansion (8). This is as it must 

be because the atomic electrons are being treated as 

indistinguishable. 

Now presumably15 ) 9
5 

(X,) has the asymptotic form: 

'G ,· Ifs r, (11) (J
5

(X,) ,-..,...,, r- :;is (e, <p,)e 
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The interpretation of the various terms in equation (8) can 

be discussed in the same way as was that of those in 

equation (5). Until we come to the last group of terms 

by which the atom is represented as ionized and the "ejected" 

electron as having negative energy, similar terms represent 

similar processes with, however, the difference that the 

terms in equation (8) represent the incident electron as 

captured by the atom and the i~ atomic electron as ejected. 
•-t" The last group of terms, however, represents the l- electron 

as permanently in the vicinity of the nucleus with one or 

more of the other atomic electrons and/or the incident 

electron removed from it. These terms, therefore, contain 



the direct scattering and the exchange processes in which 
• -,.It 

other of the atomic electrons than the ,- exchange places 

with the incident electron. 
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The probability amplitudes r epresenting direct and 

exchange processes interfere with each other because of the 

indistinguishability of the electrons. This effect is taken 

into account by requiring the wave function either to be 

symmetrical or antisymmetrical in the coordinates of all the 

particles. The Pauli exclusion principle shows that in the 

case of electrons, the wave function must be :antisymmetrical . 

Put therefore: 

'2-

( 12) l.j7 ( X.o x, •"Xx) = 'f ( Xo; x, h•Xz) - L. 'f ( x .. i X, ... Xz) 
i :: ' 

where in the sum x0 stands in the place previously occupied 

by X, . lf7 will be found to be antieymmetrical in all the 

electrons because of the antisymmetry of lf' in the atomic 

electrons. Of course it also satisfies the Schrodinger 

equation. From (8) we have: 

From (5), (13), and (12) there results: 

The various terms in this expansion give the various 

processes as before but this time including the exchange 

effect. 
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In order to calculate the amount of radiation produced 

in this collision we have according to section 1 to treat 

the initial and final states separately and to form the 

sum of Z+I matrix elements of the type of ((4) section 1). 

The wave functions for the initial and final states may be 

distinguisfled by subscripts ,· and f . T:Jf and T.f; satisfy 

the Schrodinger equation (4) but with different values of £ , 

and both will have an expansion similar to (14). The expan -

sion coefficients of t/{ and V[ will also be distinguished 

by subscripts <' and f • The matrix element for the 

radiative transition is then: 
z 

R = L f 'f;*xk '[ dxo .. ·dXz_ 
k:,O 

(15) 

Because of the antisymmetry of the T/7 , all the terms in 

(15) are equal so that we have: 

(16) 

Substituting the expanded forms of Tf{ and Y[ in (16) and 

performing the integration over dx .... dXz , we have: 

Now the terms of ( 17) fo:r which S ,=. o represent in a sense 

double processes in which the incident electron excites the 

atom to the S ~ state and then the atom falls back to the 

ground state with the emission of a photon and the ejection 

of an electron. As double processes we may expect them to 
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contribute but a small part of the total radiation, most 

of which we may expect to come from the term S = o in ( 17). 

Anyway we shall neglect these 11 double 11 processes. 

To calculate the wave functions f appearing in ( 17), 

put (5) in (4), using the form (3) for H . Reduce this by 

means of ( 2), multi ply by q.{1cx, --·Xz),and integrate over dx, • •• dx.z. . 

There results: 

(18a) 

where 

(18b) 

The solution to (18) that we want is one in which fo is much 

larger than the other fs . Hence if the quantities ~'.s" for 

s't- SH are sufficiently small, the set t defined by fs =o 

for s ;;t o , fo a solution to: 

(19) 

will be an approximation to the desired solution. Vao<Xo) merely 

represents the average potential at the point Xo due to the 

atom in its ground state. Thus using this approximate 

wave function in (17) we have reduced the problem to that of 

t he radiation of an electron moving in the field of the 

atom. 
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Part II --
Section 3 The Radiative Collision of~ Electron with~ 

Sphericalll Symmetric Field 

In this section I propose to show how the energy J~ of 

the radiation of frequency t emitted per unit time per unit 

frequency range when a. beam of electrons of uniform energy 

~o and constand current is incident on a fixed field in 

which the electron has the potential energy Ver) has been 

calculated. Here -r is the distance of the electron from a 

fixed point in the field. 

Schrodinger's equation for the electron in this field is: 

( 1) (L+v-E)<f-;::.o 
1..·n1 

➔ 

The momentum of the electron, F , is here to be regarded as 

the operator 

In accordance with section 1 we have to find a solution 

1./,: to equation ( 1) for the eigenvalue Eo representing an 

incident beam of electrons of unit current plus a scattered 

wave, and a complete orthogonal set <kv~ of solutions for the 

eigenvalue E • The wave functions t,,.. are to be normalized 

according to the scheme: 

(2) 

b ( t'- r"'"> must stand for Dirac's or Kronecker's delta according 

to whether the ~ are continuous or discrete valued parameters. 

The result then is : 



(3) 

with 

(4) 

and 

(5) 

(3) is obtained from ((14), section 1) by multiplying by 

hv to change from number of photons to energy. 
➔ 

x is the 

vector whose rectangular components are the coordinates, ><) 

:J, ~ , of the electron, and o1J stands for dxoltfdi:. 
➔ --+ 
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If we let 1t denote the velocity and a the acceleration 

of the electron we may expect to be able to apply the 

general formula for the quantum mechanical matrix of the 

time derivative of a quantity, 

(6) 

twice, obtaining 

(7) 

and then making use of the equation of motion 

(8) 

to rewrite (3) as f ollows: 



( 9) h '2. - -i.. J:, :; 3Ct.,,, .. z I(£~ I ( gra.d V )Io)) 
0 

In order to establish the validity of this transformation 

in the present case, note that with the operator represen­

tation of jJ by $ ~r7d we have 
( 

(10) 

where H is ~he Hamiltonian 

(11) 
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The right side of (lo) contains two terms and the left side 

only one because (gral V) is regarded as the operator 11 mul ti-
1, » •--+v ply by the gradient of v, whereas "Ii P is the operator 

"multiply by V and then take the gradient atf the resulting 

expression." Then from (10) we have: 

(12) (£''r"1c,rti1V)/f'Y-1) ==; [(£"r··1;!HJ£'r')-(t''o""/t-1PIF'~'J] 

Now 

and because of the fact that H is self adjoint 
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whence the expected formula 

(13) 

➔ -, .. ,) 
i -,_ =")( - ''lf''' t f I I= 0 

~tlV)J _,..,.,) - ( F I=- J: { f'' ?f' ' I{~((). J:. 0 -:::: .,,_ 

➔ -,> 

follows. To transform from the ? to the >< matrix, note 

that we have: 

whence 
f;.-i. X - ~ X fx = f f,.. 

and therefore 

... 1i: i;.xf! -xf,.. = ~ fx 
' 

(14) 

analogous equations holding also for 1 and ~ . In exactly 

the same manner that ( 13) was derived from ( 12,), 

may be derived from (14). Then from (3), (5), (13), and (15), 

(9) follows. 

The Schrodinger equation (1) may be written as follows: 

(16) 

with 

(16a) k'2.= ~ t: -,._m v 
j;.._ , V .: -J;."- • 

\J '2.. is the Laplacian operator. In case v depends on r only, 

this equation is separable in spherical cobrdinates16 ), and 

a complete set of single valued solutions is given by: 
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(17) 

where Rkl satisfies the differential equation: 

d R ..f{.../+t)) D 
J.. L(r ... -d) +(k2.-v - ~ "=o 
r1.dr r (18) 

Here J is any non-negative integer, ,m any integer such 

that 1m1 ~ --f , and "f; 1111 

the associated Legendre function. 17 ) 

Functions (17) are characteristic besides of the energy, of 

the total angular momentum and its 

values are ..Pt;. and m 1i respectively. 

coordinates so chosen that i-= rco.s e 

~ component, whose 

~ G, ff are spherical 

The angular part of (17) may be normalized by 

multiplying it by a suitable constant ~'-771 , so that 

(19) 

The value of A~~ then is given by: 17 ) 

( 20) 

If V<r} approaches zero as r increases faster than does 

J.. , then the solution to (18) which is finite at r= o will r 

have the asymptotic form: 

R~, __, ~onsianf• Sin { R.r- f[ + "?-<) 

where 1'/j depends on ~ and .R but not on r • For definite­

ness let R~~r) be that solution to ( 18) which is finite at 

the origin and for which: 



(21) 

In accordance with the normalizing scheme of section 1 for 

the wave functions representing the final states of the 

electron, it is necessary to find a constant .Bkf such that 

( 22) / B4,, 11::.dr if ;'.I (r) R k ._, l r J = f, ( £ 0 F') 
0 
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This normalizing constant, once it is admitted that it 

exists, can be calculated in a manner given by Sommerfeld19 ) 

and ascribed by him to Fues from the asymptotic form alone 

of R1r~ • The fact that only the asymptotic form of R1r-1 need 

be used in this calculation is not surprising, for the delta 

"function" is singular, and any singular contribution to the 

integral in (22) must come from the infinite part of the 

range of integration. According to equation (19) of section 1, 

equation (22) means 

... a, 

(23) / Bk'i/irtdr-Rt<.f(r,f dt"R.k."..f(r)f(;:")::: {(ff') 
o J0 

In (23) write 

{(£) = 
O o-f-4er-w;:,e 

1i 1. t.,.''cl J.,'' 
and replace d~" according to (16a) by its equivalent ~''( ''. 

There results: 

(24) 

The order of integration in (24) may not be changed, but the 



expression may be replaced by: 

(25 ) 

where now the order of integration is arbitrary. Now from 

equation (18) written with the parameter k' and multiplied 
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by R1t''..f subtract the same equation written with I/' and 

multiplied by Rt~ . Dropping the subscript ...f which is 

understood to appear in the appropriate places , there result s : 

I [ o d / -.. dl<Jt') - 0 , g_ ( ,.-1. ~")] , ~ k"I. ':J ::a O r"'" ''tt•:Trlr dr l'\lftfr dr -f- (h - )R1r1 l,1('' 

Multiply this equation by ri.Jr , integrate from o to r;, , and 

transpose one term. There results: 

From (21) we have : 
RR.er>= ,/r sin(ltr--R,_""+-,)[1+()/JJ] 

d fl,,cr\ F cos( h.. r- -![ +-o/)[ I +o{f.) J 
dr 

If these values be substituted in (26), the result trans -

formed by means of the identity 

J_ 5,-.. t< eo~a - .l Si-.. t3cout -:: .1,_ [- (<.c~l:,) ,,·" l«+fS) + (t:al:,) ~i'h(K-~) J 
'4 I • b 4 Q. f, r-

and the equation divided by /{':.Jf'a.=(Jl-J()(l/+k"J , multiplied 

I 1.~t J."d,L" by [Jlf/:;;:,,,: 11 and integrated from o to ro , there results on 

comparison with (25): 

(27) li,._ / 8.,/1.J.,-?711 "c1.~"Hl ~ - ~ + O(.!...) 1 - I i f k,< k ' < lf i. 
l1"/(.' k r.; ➔a, If '-"-1..' L."t-k.' r; -" k, 1\ f'(. f'( 0 o+l.e rwise. 
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where 

(27a) 

The te r ms in ( 27) of the order { disa.ppear in the limit ro ~a,. 

If the type of normalization required by section 1 is indeed 

possible, and we are here assuming that it is, equation (27) 

must hold for arbitrarily small values of lf-:z. - k, • But the 

middle term in (27) is always finite, and hence its 

integration will yield a term which vanishes with k~-R, and 

which may therefore be dropped. We are thus left with the 
L" '-') rt I first term. Compared with (," -1'{ r,, , 71 -~ is a slowly varying 

function of k" if ro is suffici ently large. It may then be 

replaced in the integrand by the value O which it assumes 

when k"-== k 1 
, for it is the values of k" in the neighborhood 

I 

of k which contribute most, and in the limit r; ~a, all, of 

the value of the integral. We have then: 
If Jr rk,-k'>ro 

I., [ d/i" S•>r I' = J..,mI dk" s,·,, (k"- h ') r;, = }.Jm i dK s ,-~ x 
,m k" L1 h'' Lt J< 

r;, ➔oo k, - ff fo-ftD k, "' - I'( r;, ➔a, 'k,-lf'>ro • 

In case k, < k 1 -<. I<...,_ , this integral becomes in the limit j?xs,-?tx == "iT ; 
-<» 

and if k ' does not lie between /q, and If ... it becomes indeed 

zero. Hence from (27) we have 

( 28) 

and a set of properly normalized orthogonal wave functions 

for the specification of the final state of the electron is 

given by: 



( 29) 

The wave function 'I-: specifying the initial state of 

the electron must represent for large r a plane incident 

wave of un,it current plus a spherical scattered wave. This 

function is known to be 20) 

Q:> ,· ( iI.:! + '?/_, ) 
< 30) </-: = m Z.., o.1+0 e -.t.. R1r"/,..) f, {CcJs s} 

./::IP 

The matrix element appearing in equation (9) for the 

intensity is 

1.u, r/' ~ 
( 31) ( R .Pm /l'l-:-:d V)JO) =f C:.-..di d()/4 sh,@ tip ~m <J r/d V fa' 

Now ~ dV '""- ..... 
9racl V= ;_r,: • ,.. , where r is the unit vector in the r 
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direction - that is, the vector with the rectangular 

components sinocos f , sin0sin~, cos s . We have now on putting 

( 29) and ( 30) in ( 31): 

where 

(33) 

and 

If the Cartesian components of vector quantities be distin -



guished by a subscript which takes on the values 1, 2, 3, 

there results: 
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The integrals (34) can be evaluated with the aid of 

properties of the Legendre functions to be found in 

reference 17. In accordance with the usual selection rules 

for optical spectra, they vanish except when --f=....P,,±, , and 

,,,,., = :1=1, o • The values of these integrals are: 

With the values (36) for the integrals involved, the 

expressions (im(?11:J,(.lm1rU;'J,~ can be formed. It should be noted 

that the cross terms 'l.!i..,,,,S.,,,-1appearing in <6,,,,,, % {>1'1,·t)'I. vanish. 

These expressions may then be multiplied by IA.a1'1(and the 

summations over m carried out. There results: 
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The expressions for the x , '1 , and i- , components ma,y now 

be added. It will be seen that the cross terms involving 

the expressions ~,, ~,, +-b,,, ·+, ~.£."-R-I cancel out. The rest 
o,.,.-1 'Jl0 ,.J+-I ...<oA • 

may be slightly reduced by writing ~~.R; &.1~ J±:i in place of 
I I 

i 1.t, ~;-t:r, with the result: 
3 

( 37) LL IA-",,,. tc~-rniru:{ (J11t1r r 11o')t;: t1-7T ~'.,P/ { i: 1-, • rH:;1. + ~:,1+1 • r1.:;;) ,_] 
(:I ..,,, 

(37) may now be substituted in (35) and the summations over 
I I/ 

,1" and l1o carried out. This gives: 

Substituting (38) in (9) and putting for /Bnt" its value 

given by (28), we have: 

The problem is thus reduced to the solving of the radial 

Schrodinger equation (18) and the subsequent evaluation of 



those integrals ( 33) for which ~ and /4 differ by unity. 

Equation.(39) expresses the total intensity of the 

radiation of a given frequency as a sum of terms each of 
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which may be regarded as the contribution from a transition 

to a state of definite angular momentum f '/f from a state in 

which the angular momentum differs from ,,/1{ by the amount -Ii . 

The usual spectroscopic nomenclature may be employed and we 

may thus speak of the S to P transition etc. Some very rough 

idea of the relative importance of the different transitions 

can be obtained from correspondence considerations. In order 

to produce radiation of high frequency, the electron must 

be highly accelerated and hence must pass close to the 

nucleus. An S electron, having no angular momentum, will 

indeed pass through the origin; but P, D, .•. electrons 

have angular momenta different from zero and therefore will 

not do so. Furthermore, the smaller the energy of an electron, 

the greater obstacle does its angular momentum present to 

its penetration into the central parts of the field. Hence 

all the possible transitions except that from the P to the S 

state should be expected to give but a negligible contribu -

tion to the radiation near the Duane - Hunt limit, where 

the scattered electron has very small energy and the 

frequency of the radiation is high. 

If the potential V may be considered constant for 

values of r- greater than some screening radius a , we may 

say that the radiation from a transition in which the electron 



in either the initial or the final state cannot penetrate 

into the region r< a. will be completely negligible. The 

classical distance ,. b, of closest approach to the origin of 

a P electron (angular momentum -If ) of energy £ is given, 

provided b > a by 

( 40) 
1i 

b = y,. m J:_--. 

44 

The electron will just get to the edge of the field if Jo-== a. , 

that is, if 

(41) E =-

-t::; 'l.. 
If we substitute the Bohr radius, ~ ) for a in ( 41), the 

value of E that we obtain is about fifteen electron volts. 

Thus for radiation whose quantum energy is within fifteen 

electron volts of the high energy ltmit the contribution 

from the S to P transition, and indeed from all transitions 

other than the P to S, should be completely negligible. In an 

actual case when the energy of the incident electrons is 

high, it may be supposed that one must go very much farther 

from the Duane~ Hunt limit before the S to P transition 

becomes important. 



Part III The Effect of Nuclear Screening 

Section 1 Model Number 1 
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In the following let all quantities be measured in the 

system of atomic units introduced by Hartree. 21 ) In this 

system the unit of length is the radius of the Bohr orbit 

for the ground state of the hydrogen atom, ao = -m1ie: ; the 

unit of charge is the charge on the electron, e ; and the 

unit of angular momentum is t . The unit of energy in this 

system is f~= ~!~, the value of which is about 27 electron 

volts. 

With this system of units the Schrodinger equation (18) 

of part II section 3 is 

(la) I d ( 1. <!3_ ) +- ( 1.. J= - 'J.. V - --f ( ~~)) R = 0 
r~dr r dr 

where £ is the energy of the electron. The substitution 

L = r R throws this equation into the simpler form 

(lb) 
d 2L - -tr -f+-0) - + (1..t:- -? .. V - -- L-=- o 
dr1. r~ 

In the future, whenever it seems desirable, ~ will be 

written for the quantity -yi?' . 

The potential V(~ must be chosen in such a way as 

to represent as closely as practical the average potential 

due to the nucleus of charge Zand the cloud of electrons 

about it. For small r this potential must be approximately 

- Z. , and it must approach zero rather rapidly when r 
r 

becomes larger than the radius of the atom. Since the 



potenti llil does fall off rapidly for increasing r it is at 

once suggested that the potential be treated as actually 
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zero for r larger t h an some screening radius a . If t h is is 

done, then for r> o. the Schrodinger equation ( l) becomes 

(2) 
di.L + ( k"- -f(,/;~>) L =O 
dr--i. 

which has the solution normalized according to part II 

secti on 3 equation ( 21), 

(3) 
rii?f s,·,,, .., . T ( '--;-) -r ccr.1 J , ( k r)} L k1 (() -:= V i'k L l}_f tf,._ ,y, -;I-~ 

Here 1 is an arbitrary constant, and J" represents the 

u sual Bessel functions. 22 ) 

Let now c(
1
u<rJ be a solution of (lb ) for r<u , which 

vanishes at r=-o and is normalized in a way depending 

essentially only on its behavior for small r . For example, 

it may be required that the coefficient of the lowest power 

of r in the expansion of /:.tr) as a power series be unity, 

or a constant value may be specified for some kind of 

average of It./ taken over small values of r . Then the 

solution of (lb) valid for r<.a.. and normalized according 

to part II section 3 equation ( 21) is 81t1 t:."-_/rJ where Bk...f 

is a constant determined by the equations 

(4) 
I / 

B .P {aJ ::::: L. /,., caJ 
Ju A,k.t ,,. .R 

in which the primes indicate differentiation with respect 



to Y- . These equations express the continuity of the wave 

function and its derivative at r = o. . 
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The integrals (33) of part II section 3 which determine 

the intensity of the radiation now become 

The variation of the intensity of the radiation with 

frequency is due to the variation of I with R. ; and th is may 

itself be regarded as made up of two parts: the variation 

of the i ntegral itself appearing in ( 5 ), and the variation 

of BR£ • Now in the neighborhood of the Duane - Hunt limit it 

is this second part, namely, the variation of O~, , which is 

of decisive importance. For in this region J,, must vary 

rapidly with the frequency Y since it must change from a 

finite value for >-' less than the limiting value Yo to zero 

for ~ larger than v0 • Equation ( 1) with r< a. does not 

exhibit any pecuTiarity for the value zero of R which might 

account for this behavior of .J..,, , for the potential V may, 

and in general will, contain a constant term, say C; and 

any such peculiar behavior of the wave function oC would 

occur, if at all, for the value -C rather than zero of k . 

The value of B~Y' however, depends on the solution of 

equation (2); and for this equation the value zero of f<. is 

peculiar. Thus, comparing (5) with equation (39) of part II 

section 3 and neglecting all transitions except that from 

the P to the S state, we can say that for frequencies 



suf fi c iently near the Duane-Hunt limit the intensity of 

radiation is practically proportional to ~/BkJ~ 
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While it can hardly be doubted that the above 

approximation is valid for frequencies sufficiently near the 

Duane-Hunt limit, the question of the range of its validity -

of how near is sufficiently near - is not easily settled in 

a satisfactory manner. The integral in (5) contains in the 
dV 

integrand besides the factor cir the product of two 

oscilatory functions whose periods and amplitudes vary with Jr. 

One of these functions is not affected by changes in If ; 

the amplitude of the other does not vary greatly with k 
because of the way in which it is normalized, but its period 

does. Let N (k J be the number of periods of r1: /u in the 

range o < r, o.. . Inasmuch as N is not a small number and 

the other oscilatory function, LMo--l'o ' has a still larger 

number of periods, it may be expected that the integral in 

question will not change greatly until k changes enough 

to cause N to change by one unit. The approximation may 

thus be supposed valid over a range of energies given by 

(~!)£coo 

One has now approximately 

i t:,..dr 
N-; ;i"" 

t7 

where ;\ is the wave length of an electron of total energy 

£ at the position r . The wavelength of the electron of 

kinetic energy £ - V is given by 

A= l7T ,q 

Y~< J:- V ) 



whence 

--'-fa. dr 
:tr£Tr r-v 

0 
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If for V is chosen the potential due to a nucleus of atomic 

number Z screened by Z units of charge spread uniformly 

over the surface of a sphere of radius a , that is, 

(6) 

V=- o for r > a. 

there results 

The approximation in question may thus be expected to be 
_,/,..... ~l. - 3/2. 

valid for energies up to the order of JI,~ Z a , The 

screening radius will be of the order of unity, so with an 

atomic number of 50 this will be an energy of about 40 

atomic units or 1000 electron volts. 

The quantity B1t..e may now be calculated from equations 

(4) using the value (3) for the wave functions for r>a.. . 

{3) may be rewritten 

with r£ = I? r . Using the prime to indicate differentiation 

with respect to the argument so that [r'i'JCi)J1 -- fi_ [r'i'J (~)] , but 

p I -- d L 
t1,..., equations (4) become 

cir ' 



(8) 

Bfil l..,u::: ~ ff f s:'>11 r'i'.if;_(l-) +CO!>?/ ri"J~-.!;_ ("1:)} 

Bit"' ,e;.( = If f Si11 '1 [ ri' i+~/ 1:1]' + e~q [ r i' l..-e-{_ C :l) r I 
Solve these equations for sin 1 and cos 7 , square and add 

the results, and solve the resulting equation for ~: . 

There results 

(9) 

with 

(10) 6. == 
JI-;-' J...1-1 CV .. 

Now 

where N has been writ ten in place of --f + -f. • Hence 

(12) 
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But now -;/i' J';/xJ are solutions to the differential equation 
N"-~ 22) 

:,'' = Q !J where 6? = ~ - r • Therefore 

d4 = r i1J,...N("i'J·6l · rFX-Nt~) - r£J."'t~>·GJ·rFJ"/vtz) = o 
dz 

and 1:). is a constant . .6. may thus be evaluated by using 

the limiting form of the Bessel functions either for large 

or for small x . This gives Ll = -$ s,·,,, iTN or in our case, 

(13) 

The case --f"" o 
=ta) 

is of special interest. We have 
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(14) 

Putting (13) and (14) in (9) and expanding the determinants, 

there results 

(15) 

and the intensity of the radiation, being proportional to 
l 

Ir 8*
0 

, will satisfy 

(16) 

In order to calculate the wave functions appearing in 

(16) some method of approximation must be adopted. The method 

devised by Wentzel , Kramers, and Brillouin, 23 ) (W.K.B. method) 

at once suggests itself. When considered as applied specific­

ally to Schrodinger 1 s equation, this method consists in 

expanding the action function in powers of 1f and retaining 

only the two lowest order terms. For the differential 

equation 

(17) 
d]. J,/ dJcXJ it === 0 
dx. i. t- r · 

i t leads to the approximate solution 

By differentiating 2(,, , one finds that 

( 19) c!:Jlo +- rf)CJL ) Jlo l t +- * f ~l.C/'., - §_6 rp-3 ~;' ... ] -= C> 
d x ~ 1 

where the primes indicat e differentiation with respect to x. 



Thus the condition for the validity of this approximation 

is 

(20) 

(20) ceases to hold in the neighborhood of any point at 

which ff vanishes - that is, in case (17) is a Schrodinger 

equation, at which the kinetic energy vanishes. In case 
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(17) is the equation (lb) in which V represents a Coulomb 

field, (20) is also violated near r:::o , even when --f=- 0 • 

In case (17) is the Schrodinger equation for a problem 

in which the kinetic energy is everywhere positive and 

becomes asymptotically independent of x for X very large 

and also for X very small, it will be seen that of the 

two independent approximate wave functions in (18) each 

represents a beam of particles moving in one direction only. 

There is thus in the W.K.B. approximation no connection 

between a beam of particles moving in one direction and a 

beam of particles moving in the opposite direction. This is 

merely another way of stating that the effects of the 

reflection of particles from potential 11 humps 11 are neglected 

in the W.K.B. approximation. Hence in so far as the effect 

being sought here is describable, as it was described in 

part I, in terms of the reflection of the scattered electron 

from the field about the nucleus, the W.K.B. approximation 

should fail to give it. 

That the effect sought here is indeed neglected in the 
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W.K.B. · approximation is best seen by making the calculation, 

which is very simple. If (17) is regarded as equation (lb) 

with -f-:::. a , the approximate solution (18), with appropriate 

choi ce of the arbitrary constants, may be written 

( 21) 

S is here an arbitrary constant which is to be so determined 

that (21) will be an approximation to that solution of (lb) 

which vanishes when r= o . It cannot simply be set equal to 

zero because near r=o (21) is no longer an approximation 

to any solution of (lb). (21) as written is normalized in a 

way consistent with the requirements stated on page 46. For 

r> a. , v-::::.o , and (21) becomes 

(22) 

To normalize this in accordance with equation (21) of 

/f -Y-L • part II section 3 one must multiply it by This 

gives B,,_ 0 :: k-'7. and the intensity of radiation, which is 
'1. 

proportional to fe D~0 is constant. This result is ±ndepend-

ent of the particular form chosen for the potential if only 

it vanishes for large r • 

The region in which the above W.K.B. treatment breaks 

down most seriously is just inside the screening radius; for 

<f> is small there when r is small but ~~is not zero and 

for the potential (6) not even small. Kramers23 ) and others 

have devised 11 connection' formulae" which enable one under 
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certain circumstances to find what W.K.B. solution is 

approximate on one side of a point at which (fJ vanishes to 

the correct solution of the wave equation to which a given 

W.K.B. solution is approximate on the other side. With the 

help of these formulae certain problems involving reflection 

may be treated. This device , however, cannot be used in the 

present case because the kinetic energy never vanishes but 

is positive on both sides of the troublesome region. This 

difficulty could be avoided by choosing a straight line to 

represent the potential in the neighborhood of r: a : that 

is, by choosing 

V = o for r>a. 

V=-A(r-A.) for b<r<a 

and some approximate form for Y-< b . In the region b<.r<a 

the Schrodinger equation can be solved exactly in terms of 

Bessel functions of the orders ± 3 .The constants A and b 

would be so chosen that the W.K.B. approximation would be 

valid near r=b . The arbitrary constants in the exact 

solution valid for b< r < ~ would be adjusted by matching 

its amplitude and phase to those of a W.K.B. solution valid 

for r < b • This could in turn be matched to the exact 

solution of the wave equation in the form of a power series 
-· 

for small values of r . Thus the wave functions appearing in 

( 16) could be obtained. The matching at ,-:::. b is greatly 

facilitated by the circumstance that the condition for the 

validity of the W.K.B. approximation at r==b is just the 



condition that the Bessel functions appearing in the exact 

solution for b < r< a may be replaced by the first term of 

their respective asymptotic expansions. 
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This somewhat complicated proceedure can be considerably 

simplified by the use of a modified form of the W.K.B. 

method recently introduced by R. E. Langer. 24 ) Langer 1 s 

method supplys an approximate solution of the differential 

equation 

(23) 

which reduces to the W.K.B. solution in any region in which 

the latter is valid, but which may also be valid in the 
... Q2-neighborhood of one zero of Q . If, namely, have a zero 

of order Y at the point X;~. , Langer 1 s approximate solution 

is 

( 24) 

where 

(24a) 

( 24b) 

A and /3 

_J_ n = v +1-. 

S = j"'QdX 
:.i<;, 

are arbitrary constants, and ~f are the Bessel 

functions of order ±r . This approximate solution satisfies 

the equation 

( 25) 

with 

(25a) 
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the primes indicating differentiation with respect to x 

The solution (24) is valid on both sides of the zero of Q~ 

at X, and in the neighborhood of x, itself, but it breaks 
"£.. 

down in the neighborhood of a second zero of Q . Replacing 

the Bessel functions in (24) by their asymptotic forms 

reduces Langer's solution to the ordinary W.K.B. solution. 

Comparison of the asymptotic forms of (24) on the two sides 

of X1 yields the usual connection formulae of Kramers. 

Langer's solution may be used in place of the W.K.B. 

solution to represent the wave function in the neighborhood 

of r=- a. , thus obviating the neces·si ty of replacing the 

potential in that region by a linear function. In order that 

this may be done, however, it is necessary that the kinetic 

energy actually vanish at some point near r=- a.. • The 

vanishing of the kinetic energy can be secured by choosing 

for the potential some function which vanishes at r-==-a. 

but which continues to increase with r for r > a. . In 

particular the potential (6) may be used, using the same 

form for r > a. as for r < a. • 

The approximate solution (24) is not applicable in the 

neighborhood of r :.o when the potential represents a Coulomb 

field, since the difficulty here is not caused by the 

vanishing of the kinetic energy but by its becoming infinite. 

Langer has given special attention to this case. As an 

approximate solution of the equation 



( 26) 

which vanishes at r=-o , he finds 

f 
Lr Q,_dr} ,-

( 27 ) ]J, = Q"' ~.R .. , C l ~"L dr) 

in which 

( 27b) 

The function u which is normalized in accordance with the l"t) 

requirements stated on page 46 as it stands, may be taken 

to represent the solution of equation (1) with potential 

(6) for small values of r . In case this approximation is 
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not valid for such large values of r as a , and it will not 

be for small energy, a solution of type (24) may be used 

to represent the wave function for the larger values of r . 

The arbitrary const§.Ilts in this solution may be determined 

by matching it to ( 27) at some intermediate value of r at 

which both solutions are valid. 

Equation (lb) with the potential (6) may be written 

( 28) 

with 

( 28a) 

Writing 

( 29a) 

dl.L [ :tZ -Pt.fr,) I l- ;:- 0 
- + -l.(:+---~ 
dr'L ,.. r 

z - J: e = ,.. 
a. 
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( 29b) 

( 29c) 

equation (28) takes the form 

( 30) 
d-,./... [ , n _ -Pt-f+1)] L - + ---r- -o dxi. '+ x ><1. -

The approximate solution (27) for equation (30) is 

( 31) 

with 

( 31a) 

A change of variable from >< to -,/i"' reduces the integral 

in (31a) to a standard form, and the result of the integration 

is 

with 

(31c) J = f ff 

The introduction of X= ;ft'" in place of r has led to the 

result that (31) is not normalized in conformity with the 

conditions stated on page 46. In order properly to normalize 

it, its approximate value for small r must be calculated. 

We have 



whence 

Hence in order to normalize the function properly one must 
.I+ I _,lf..L • 1 • divide it by ?f n a. . According y we wr1 te 

(32) 

where A is a constant, independent of the energy, to be 

fixed later. 
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Replacing the Bessel func·tion in (32) by its asymptotic 

form we have 

(33) 

This is simply a W.K . .B. solution for the case -f'= 0 • The 

condition for its validity is (20) together with the condition 

that the centrifugal force term, Ji:::J , be negligible. (20) is 

in this case 

(34) 

Under some circumstances (33) will be a good approxi­

mation to the wave function clear out to r = a . If the energy 

of the scattered electron measured in terms of the "screening 

energy" z 
Q. 

be introduced as the parameter c so that 



(35a) a l= £· z 
and if one writes 

( 35b) 

one obtains from equations (28a) and (29) 
-z_ (J-1... 

( 35c) G = a C ,- l) == :ta. 'L ( ,- t) 

(35d) 

(35e) 

(35f) 

( 35g) 

Written in terms of these parameters, the comdition that 

( 33) hold at r= a is 

( 36) 

or roughly 

( 36a) 

If, now, one substitutes ?I, with .,,f::-o for X in ( 16) there 

results after some reduction 
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Y
-, 

31(' l 

( 37 ) Toe !I. 0--i. __ 1 .f cos,.(<}- 'f!I) -1, [s,·n(!ii- 3il")- __}__~~os(p- ;j:)} 
v" ;2.. Q. A,. l >t If, .lfa--c "" 

Whenever (36a) is satisfied and C itself is not small so 

that (36) is also satisfied, 
.....L- <.< I 
4 o-c:3/~ 

and the right side of (37) reduces approximately to the 
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irO---.. I 
constant rr· A~ . Thus, whenever the Langer solution valid 

near r=o is also valid at r::.a. it gives a constant value 

for t he i ntensity. This is what should be expected in view 

of the fact that the W.K.B. approximation neglects the 

effects of the reflection of electrons. When e is large 

enough to satisfy (36), the other approximations that have 

been made will in general no longer be valid; therefore (37) 

can never be expected to give the true course of the 

intensity. Nevertheless it will be convenient for purposes 

of comparison so to choose the normalizing constant A in Uo 

that the constant value of the right side of (37) - that is, 

of ( 16) - for large c. · shall be unity. Accordingly we take 

(38) 

It is necessary now to find the Langer solution (24) 

of equation (30). Comparing (23) with (30) we find that in 

this case 

( 39) ri '2.(x) = - ..!... t- ~ - ~ 
~ 't }( x ... 

1. Q has simple zeros at the points x=~(n.:1: ~) where 

( 40) 

l. 

For values of x between these two roots, Q is positive 

and r2 is real. Introducing C and '7, as arbitrary constants, 

we can write the approximate solution (24) a.s follows : 
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( 41) 

with 

(41a) 
Xo 

f =1 QdX 

where '2. is given by ( 39) and Xo is the greater of the roots 

of ~ .... = 0 : 

(41b) Xo = 1.{n +00 

J has here been given the sign opposite to that which it 

had in (24b) in order to avoid imaginaries in the arbitrary 

constants. By replacing the Bessel functions in (41) by 

their asymptotic forms one easily finds that 

(42) 

The constants C' and o/ in (41) are to be determined by 

comparing ( 42) with ( 33) at some value x, of x between 

zero and 1< a. . If the comparison is made at such a place that 
..Pl-l+t) 

the term ~ is negligible in Q~ , and this condition is 

necessary in any case for the validity of (33) and is 

satisfied everywhere in the important case .,,f =.. c , there 

results 

(43a) C= 
2.A 

( 43b) 

where .f, and ~, are the values of j and ~ respectively at 
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the point x. = x, . Differentiation of ( 43b) with respect to 

x, shows at once that to the extent that .R~.R:_t) is negligible 

in Q , ~ is independent of the point at which the wave 

functions are matched.· In the important case J= 0 , ?. is 

accurately independent of x, , and one need not trouble 

himself about the matching point further than to make sure 

that it exists - that is, that there exists a point at which 

both (33) and (42) are valid approximations to the wave 

function. For --f= 0 one obtains 

(43c) 

(43d) 17. = 

( 44) s = 

where J has the same -significance as before. 

In order that a point x=- x, may be suitable for the 

above matching in the case .l=o it is necessary not only 

that it satisfy (34) but also that ! be so large that (42) 

may be a good approximation to (41). (34) can always be 

satisfied by values of x, in the neighborhood of ~ Tl • t. The 

condition that ~!. (!) can be replaced by the first term of 
,1 

its asymptotic expansion is 

( 45) j >> 
S" 

72.. 

Now the maximum value of J~ is ½, and si'n-'J <J . Hence 

( 46) 



For x:: f 11 , J::;:, Yf and J..{ 1-J] ~ • 7tflf . ( 45) will then al so be 

satisfied provided 

( 47) 

It will be shown later that (47) is indeed satisfied for 

scattered electrons of small energy with reasonable values 

of the screening radius 

There remains only to substitute (41) for L in (16), 

using the values of e and r given by ( 43). In the 

subsequent numerical work it proved convenient to have the 

result expressed in terms of the Bessel function of the 

second kind instead of the Bessel function of negative 

order. The Bessel function of the second kind, )-; , is 

defined as follows: 

(48) t (X) :: 
.)_;(x ) cos s ,r - J:..sf )( } 

$ i11 S1T 

If (48) written with S:j is solved for J_~ and the result 
'3 

substituted in (41), there results 

( 49) 

with 

( ) A ~ 49a L.l == 3 - "'( 
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If one differentiates (49) with respect to r , taking 

equations ( 29c), ( 41a) , .and ( 39) into account) and evaluates 

the result at r-=- a he obtains after some reduction by means 

of equations (35) and (43c) 
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(50) 

where 

(50a) I 

~ 

lo represents the value of .f when r=- Q , and the primes on 

t he Bessel functions indicate differentiation with respect to 

their arguments. Similarly ( 49) reduces for r-= a. to 

( 51) [71,)~a. = : -t [ Jf/!0 )s,nLl - 'G;3 (fo ) cos4J). 

Substituting (50) and (51) for ,to' and L: respectively in (16) 

we obtain the final result: 

(52) ;,. [ [ J~1(f0 )iinL)- ~(J.)C<>St!t.]7.t-[(MJ;(f.)-J,'(1'.)'st",,~ 
.Jo 3 J Y3 ° '..I 

- ( M ~3 ( f,,) - y~ ( f ,, )) ~d5 6 111-1 

From (44), (31c), and (35) we get 

(53) r u- .S
171 

- yt 
{ 

• -
1~T -~j 

.>o= ~ 

The behavior of (52) for small values of~ , and hence 

of J. , is of special importance. To investigate this expand 

(53) in a power series. We get 

(54a) ,,,_ ~ [ 1. ' P ,._ ,,., .J. 3. r-~ 7-tl-Z.. _,__ O( ~SJ] l ::: ¥ £ 1 I + 1, • ..s- -. C. T ... ~ T c,; 

This series may be reverted and the result sub~stituted in 

(50a). This gives 



66 

( 54b) 

By means of (54b) and the power series expansion of the 

Bessel functions one can now calculate the value of the 

denominator of ( 52) for small c . Treating L:l. as a constant 

one gets 

with 

(55a) 

13 =-(3-~ • .r-~ o-· ~ 2. _,_ 3- ~ -r~ r -+zr) 3- '/3_ .s -1. r - ~ 
+ ----- (!d.,S l'.} + -------- 51",n ,:j 

rt%) r r½ ) rr'½J 
( 55b) 

In case A approaches some value different from zero as J .. 

and c approach zero, it is seen that the denominator of ( 52) 
- ~ - ½ 

becomes infinite like !,, or like t .c and hence that the 

intensity approaches zero like l'I,._ . But in case A approaches 

zero as c approaches zero more discussion is necessary. If we 

represent by .do the limiting value of .A as !,, approaches 

zero, this case occurs when 

( 56) 

or when 

( 56a) 
~o = ot.7T-rSTT 

where o< is a number less than ½ ·defined by ( 56) and s is 



any integer. A numerical evaluation of (56) shows that for 

reasonable values of G'"' the second term on the right is 

small compared to the first; for 6-' ==- 8 , for example, the 

second term is less than six per cent. of the first. Hence 

we have approximately 

( 56b) 

From (43d), (35d), and (49a) we have 

(57) 

which together with (56a ) shows that the singular case 

occurs when 

(58) 
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where .s' is an integer. With the value ( 56b) for o< this is 

( 58a) 

In order to find the behavior of Jy in the singular case 

note that when ( 56) is satisfied {';-t).r.::o cannot vanish and 

that therefore A=o~ -~J . In the same way that (57) was 

obtained one can get 

( 58) A = '!!-,..rr( q- -1) 
3 2. -,;'i=T . 

From this equation it follows that as t approaches zero 
dti remains finite and hence A-AO = D( l) ::: 0( / 11 ) • Therefore in di 

" this case A.,_= O(S •) and the first term in (55 ) is infinitesimal 
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of the first order with S . The second term of (55) appears, 

therefore, to be the term of lowest order as indeed it is 

since cos~Ao cannot vanish because of (56). Hence in the 

singular case defined by ( 58 ),J =O(ri5J= O{c~':); that is, Jv 
I 

becomes infinite like ff . 

The choice of the parameters Z and a. and the general 

behavior of the function (52) remain yet to be considered. 

These will be discussed in section 3. 
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flli III 

Section _g Model Number 2 

M. F. Manning 25 ) has discussed the question of what 

forms of the potential energy function lead to a one­

dimensional Schrodinger equation solvable by means of a 

recursion formula of two or three terms. Among the potential 

functions which he finds to lead to a Schrodinger equation 

of the hypergeometric type is 

(1) V= 

For small r , V represents an approximately Coulomb field, 

since we have 

( la) V =- A [ ~ - { -+ O( rJ] ; 

while for large r' , V goes exponentially to zero. It is 

thus suitable roughly to represent the potential for a 

screened Coulomb field. From (la) it is seen that in order 

that V may approximately represent the potential of an 

atom of atomic number Z , A must be chosen according 

to the equation 

(lb) A= --z.. - -a. 

where again Hartree atomic units are being used. 

With the potential (1) the radial Schrodinger equation 

for an electron with the angular momentum zero, is 
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(2) 

Here, as in section 1, k1 is twice the energy of the electron. 

If the following change of independent variable is made: 

(3) 

equation (2) becomes 

( 4) 

where 

( 4a) 

( 4b) 

.J -t. ,,,., "1.,) d a'L + ( _!:::... + ~ L. = o 
dx x dX x'- ,-x 

If one now writes in equation (4) 

where , is the imaginary unit and A is an arbitrary 

constant, there results 

(6) 

This is the standard form for the hypergeometric equation26 ) 

with the paramete:rs c< , ($ , .,-. , where 

(7) 

with 

( 8) 

C( = iX+-R 

p = ,·-vt - It 

i'- : 1;'X +- I 



Besides the solution j:/:(«.,f!;~;x) where I=" is the 

hypergeometric function, equation (6) has the solution 

As r approaches zero, x approaches one; and since under 

these circumstances the right side of (9) approaches ~era, 

it is seen that (9) is the solution required to fit the 

boundary conditions at r=o . From (5) and (9) we get 

( 11) 

The general formula 

+ rt~Jr(1'-r(3-.r) r{/"-ll{,/'-t3j;-o1.-(,l+'; ,-x) 
rec{.> nf3} 
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holds when o<H 1 and 'lf-"'-(3 is not an integer. 26 ) For the 

hypergeometric function in (10) the quantity corresponding 

t O .,,._ "'- - /J is -.ti'X , which is not an integer. Hence ( 11) 

is applicable to that function, and it gives 

(12) 

Were it not for the factor x. a.,?< in the second term, the 

second term on the right side of (12) would be the complex 

conjugate of the first term when X is real. Substituting 
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(12) in (10) we get 

(13) 

This equation shows that L is real as it stands with a real 

value of A . 
Noting that ;=ro1..,13; o'-; x ) = 1 + ocx>J we find, on replacing 

- J;. 
x by e a in ( 13 ) , that 

where 

(15a) 

(15b) 

Thus, L will be normalized in accordance with equation (21) 

of part II section 3 provided 

(16) 

_ J;.. +O(r'), 
For small r , X is near unity, and from ( 3), t-Jl - a 

Hence, by (10), L=Af +-O<r.,). Thus :rthe function~ L is 

normalized in accordance with the requirements stated on 

page 46, and according to the argument given in section 1 

the intensity should be proportional to k IA/'L for sufficiently 

smal 1 k.. . Thus we have 
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(17) 

The gamma functions with complex arguments in equation (15a) 

can be evaluated in a way described by Nielson27 ) with the 

result 

(18) I 
- = M 

() 7'-:,:' J/t. 7( '}( Sf>, /2 7. iT X 

y Ct,!,~ %Tr?( - C0.5 ?.TT f? 

Substituting (18) in (17) we get, after dividing by the 

constant lfiTr>-"La. 

(19) 

For large -x ( large energy), the hyperbolic sine and cosine 

are large and nearly equal; and if /? is still real so that 

cos i,.iTf< is not also large, it is seen that the right side 

of (19) is practically unity. 

For small energy, (19) may be expanded in a power series 

in -x . There results 

?..1' -x +orx5J 
( 20) 

Hence if a-- is not an even integer, J;,:: tJrxJ ==- tX/'%.J ; while 

if rr is a.n even integer J,, ::. or,c') # t1tt•?..J. Thus, as in the 

previous case,~ either becomes zero like the square root 

of the energy, or becomes infinite like the reciprocal of 

the square root of the energy, depending on the value of a-- . 

The choice of the parameters Z and a. and the 

significance of formula (19) will be discussed in the next 

section. 
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Part III ----
Section~ Choice of Parameters and Discussion of Results 

In order intelligently to assign values to the para­

meters e- and a. appearing in the formulae for the intensity 

of radiation derived i n the preceeding two sections, it is 

necessary to compare the potential functions assumed there 

with some better approximation to the actual atomic field 

of part II section 2. The best available approximation is 

the self-consistent field of Hartree; but the statistical 

approximation of Fermi and Thomas28 ) is more than suffi­

ciently accurate for the present purpose. This approximation 

leads to the following formula for t he electric potential 

V,c- in atomic uni ts at a distance ,- atomic uni ts from the 

nucleus of an atom of atomic number Z : 

(1) 

where <P(X) satisfies the differential equation 

d1.f/) - '? ¾ ---dx"L ~ ( 2) 

with the boundary conditions rproJ=-1 , and <fJrxJ"='- 0 ; and 

(3) 

The function ff has been tabulated by Fermi 28 ) and will be 

found plotted at the end of this section. 

The potential of model number 2 may be written 
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( 4) 

so that the functions pr;;;) and are to be compared. 

Both functions are plotted on the same graph, and it is seen 

that they do not differ greatly in shape, although the 

function goes to zero much more rapidly as r increases 

than does each case the function tp(~) or r:_-i. 

represents the ratio of the potential in the atom at the 

distance r from the nucleus to the potential at the same 

distance from a bare nucleus. It would, then, seem reasonable 

to choose a so that the two functions would be equal at 

that value of r for which their values are about one-half; 

that is, so that half the potential of the nucleus would 

be screene:d off at about the same distance in ea.ch case. One 

may thus define a as a function of y by requiring that <P(~ J 

for that value of r for which they 

are both equal to !/ . It is more convenient to consider the 

function Nr~J = arttJ/ f" • This function will be found plotted 

at the end of this section. From section 2 we have ~=riza' . 
' 

whence, with the definition of JV and equation (3) it follows 

that 

(5) (J'- ,,, Z Y1-~ 

With values of y ranging from 0.2 to 0.8, and with 74, the 

atomic number of tungsten, for Z , (5) gives values for a-­

ranging from about 5.28 to 3.57. Curves showing the intensity 
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of the x-rays calculated from t he formula of section 2 

using various values of a- in the neighborhood of the above 

values plotted against the relative energy c (defined 

is sections 1 and 2) and the actual energy 1=- of the 

scattered eledtron will be found at the end of this section. 

The potential V, adopted for the calculations of 

section 1 is defined as follows: 

(6) V, = 

0 

Again one may choose for Z the atomic number of the element 

composing the target in which he is interested - in the 

present case, tungsten - and compare the function ,- ~ 

with the function f/7( ~) as was done above for V-i. • The 

function I- L a.. , however, is represented graphically as 

a straight line and is very different in shape fro m t he 

function ;;'ff) ; and the process does not carry t he conviction 

t hat it did in the previous case. Nevertheless, if one 

compares the two functions in this manner he finds values 

for 0-- from about 8 to 5.6. At the end of this section 

will be found curves showing the x-ray intensity calculated 

from the formula of section 1 with such values of CJ- plotted 

again against both c and E . These curves, it will be 

noticed, are not greatly dissimilar in shape to those drawn 

from the formula of section 2; but the scales of abscissae, 

both in the case in which t he abscissae represent c and 
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in that in which they represent £ , are quite different. 

This difference in the case in which the abscissae represent 

£, is not surprising because the parameter e is itself 

relative to the model adopted; but when the abscissae 

represent £" , this difference in scale represents an actual 

difference in the experimental results predicted by the two 

models. Specifically, model number 1 with the above values 

for the parameters predicts that such characteristics of the 

intensity curve as maxima or the settling down to a constant 

value will occur at much higher energies of the scattered 

electron, that is, at x-ray frequencies much more removed 

from the high frequency limit, than does model number 2. 

Since the discrepancy in the scale must be due to an 

inappropriate choice of the par~met ers of the model in at 

least one of the two cases, and since the choice in the 

case of model number 2 seems quite appropriate, we may 

expect the difficulty to be resolved by the proper choice 

of the parameters for model number 1. Now in their 

discussion of the Ramsauer effect, Allis and Morse29 ) have 

used the same model of the atom that we have used in section 

1, and they found that they got a surprisingly good agreement 

with experiment when they chose their parameters in a way 

quite different from that in which we have chosen ours. They 

based their choice of para'11eters on a model of the atom due 

to Slater. 30 ) Slater assumed hydrogenic S-state wave 

functions for all the electrons in the atom with, however, 



78 

different amounts of screening for the electrons in differentt 

shells. He then set up simple rules for determining the 

screening constants for the different shells in such a way 

as to give roughly correct values for such observable things 

as ionization potentials and x-ray energy levels. With this 

model it is possible to calculate the charge density at any 

distance from the nucleus due to the electrons in any given 

shell. Allis and Morse then considered the field which results 

when one considers the charge of all the electrons in one 

shell as spread uniformly over the sphere which occupies the 

position of maximum radial charge density for the shell 

considered. If one:,.denotes the potential of this field by V 

then r V when plotted against r gives a broken line which 

meets the axis of ordinates in Z , the atomic number of the 

element, suffers an increase in slope whenever r passes 

through an electron shell, and meets the axis of abscissae 

at ro , the radius of the outermost shell. They then chose 

for their screening radi-µs, corresponding to our a.. , the 

value r; , and for their parameter corresponding to our (]-

such a value as would make 
( r~ V, dr ~ [r;, rvdr, 

lo o 

This of course makes the parameter Z appearing in V, less 

than the atomic number of the element considered. 

It might seem at first inadvisable to choose for our 

calculations values of the parameters which will make the 

field close to the nucleus very different from the actual 
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atomic field there, for it is the region of high field near 

the nucleus which is important in the production of high 

frequency x-rays. It must be remembered, however, that what 

we are at present calculating directly is not the rate of 

production of x-rays but the probability that a slow electron 

will be reflected by the field of the atom. This does not 

depend so specifically on the inner regions of the field as 

does the actual production of x-rays; and indeed we should 

expect it to depend on the same things that the scattering 

of slow electrons depends on. If the parameters are chosen 

for the tungsten atom after the manner of Allis and Morse, 

the following values are found: a:::: 5.11, (J"" = 12.3, Z=' 14.8. 

These values are indeed very different from those given by 

the previous choice, which gave a value of about 1/3 for a 

This choice, however, again gives a discrepancy in scale 

between the two models, but this time in the opposite 

direction. An intermediate choice here, namely, of about 2 

for a and the same values ( around 12) for tr, gives agreement. 

Inasmuch as the scale is not as sensitive to the choice of 

the parameters for model number 2 as it is for model number 1, 

and since the potential for model number 2 more closely 

approximates that for the actual atom than does that for model 

number 1, it seems probable that the intermediate choice of 

parameters corresponds the most closely to reality. 

The condition for the validity of the W.K.B. approxi­

mation used in the calculations of section 1 is given by 
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equation (47) of that section. A comparison of this equation 

with equation (35e) of the same section shows that this 

condition is that C"'be much larger than 1/5. This condition 

is very well satisfied for all the values of the ~arameters 

proposed in this section. 

On examining the curves showing the theoretical intensiy 

of x-rays which will be found at the end of this sect ion, one 

will see that their shape is strongly dependent on (J"" . As the 

energy of the scattered electron approaches zero, that is, as 

the frequency of the x-rays approaches the Duane-Hunt limit, 

the intensity either falls smoothly to zero or it rises to a 

maximum at from a few volts to a few tens of volts from the 

limit and then falls rapidly to zero. This maximum, when it 

is present, is due to resonance of the scattered electron 

with a virtual energy level of the atom; for by definition 

a virtual energy level is an energy for which the wave 

function of an electron has a large amplitude inside the 

atom, and it is this condition that we have shown to govern 

the emission of the x-rays in which we are interested. Since 

only P to S transitions are important in producing these 

x-rays, only virtual S-levels can cause the maxima which 

appear in our curves; and the general shape of these curves 

shows that only that virtual S-level of lowest energy is 

effectivel If there is a virtual S-level of exactly zero 

energy, then, as was shown in sections 1 and 2, the intensity 

of the x-rays approaches infinity as the energy of the 



81 

scattered electron approaches zero. The fact that only the 

virtual energy levels of angular momentum zero affect 

noticeably the distribution of energy in the continuous 

x-ray spectrum probably renders impossible any correlation 

between this distribution of energy and the sross section 

for scattering by the atom of slow electrons; for in the 

latter process in the case of heavy atoms, the virtual 

energy levels of angular momentum different from zero play 

a large role. 29 ) 

The distribution of energy in Bremsstrahlung as 

calculated in sections 1 and 2 is very sensitive to the 

form of the function used approximately to represent the 

field of the atom, and it seems, therefore, impractical 

by a reasonable improvement in the model to predict for 

which elements the sharp maximum in the energy density near 

the Duane-Hunt limit will occur and for which it will not. 

All that can be said from the present calculations and, it 

would seem, also from any reasonably simple improved 

calculations of the same type, is that for some elements 

such a maximum of intensity should be observed very close to 

the high frequency limit and for others the intensity should 

fall smoothly to zero in a range of about a hundred volts. 
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Part IV Comuarison with Experiment 

The spectral distribution of energy in Bremsstrahlung 

is usually investigated by allowing the radiation from an 

x-ray tube to pa.ss through a spectrometer and measuring the 

ioniza.td.on produced in a suitable chamber by the radiation 

that gets through. One may hold the potential on the tube 

constant and vary the setting of the spectrometer, thus 

measuring directly the amount of energy present in the 

Bremsstrahlung in various frequency ranges. More frequently, 

however, one keeps the setting of the spectrometer fixed 

and varies the potential on the x-ray tube; the resulting 

curves of ionization plotted against tube voltage are called 

isochromats. In either case there are at least two 

circumstances which cause the resulting curves to differ 

from those expressing the distribution of energy in the 

radiation produced by the collision of an electron with an 

atom: First, the target of the x-ray tube is thick; and, as 

the incident electrons are gradually slowed down as they 

penetrate more deeply into it, we receive from various 

depths in the target radiation produced by electrons of 

various energies. And second, the spectrometer itself is 

not completely opaque to radiation of frequencies other than 

that for which it is set. 

The most recent and perhaps the most precise measure­

ments of this nature are those of Du Mond a.nd Bollman. 6 ) 

Using a double-crystal spectrometer and measuring only close 
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to the Duane-Hunt limit, these workers have obtained two 

isochromats, one with potentials in the neighborhood of 

20,000 volts on the tube and one with tube potentials near 

10,000 volts. In discussing such experiments it is 

convenient - at least for the present purpose - not to 

discuss the isochromats themselves, but rather to discuss 

their derived curves; for in the latter the most important 

effects of the thickness of the target are eliminated, and 

any small peculiarities of the energy distribution appear 

to better advantage . Accordingly, at the end of this section 

will be found a curve showing the rate of change, I/ , of the 

ionization current with respect to the potential on the 

x-ray tube plotted against a linear function, w , of this 

potential for the 20,000 volt isochromat obtained by Du Mand 

and Bollman. The function w is so adjusted that it vanishes 

for that value of the tube potential which corresponds 

according to Du Mand and Bollman to the Duane-Hunt limi t 

and that a change of one unit in w corresponds to a change 

of 16.8 volts in the tube potential. The reason for this 

latter adjustment will appear later. The most striking 

characteristic of this curve is the pronounced maximum which 

occurs near W= o . This maximum correspo,nds to a slight bend 

or knee in the isochromat itself and was totally unexpected. 

Wh ile the fillet extending far below the limiting potential 

is al most certainly due to the finite resolving power of t he 

spectrometer , the maximum in the derived curve must be due 
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to some characteristic of the energy distribution in the 

Bremsstrahlung itself. Although i t is conceivable that this 

may be in some way connected with the structure of the target 

as a solid body, no very convincing explanation along these 

lines has been offered; and since it was seen in part III 

that the screening of the nuclear field by the extra nuclear 

electrons can have a very marked effect on the energy 

distribution in the Bremsstrahlung from a single atom, it 

is natural to look for the explanation in this effect. 

Before the results of part III can be compared with the 

experiments, it is necessary to take account of the thickness 

of the target and of the finite resolving power of the 

spectrometer. In the following let all energies and frequen­

cies be expressed in the same unit by means of the relation 

energy equals frequency times Plank's constant. The energy, 

J>' di1 , in the Bremsstrahlung from a single atom in the 

frequency range from \1 to vt--dJJ is a. function both of the 

energy, z , of the incident cathode rays and of the 

frequency, y • There is both theoretical and experimental 

evidence that J,, is nearly independent of Y and nearly 

inversely proportional to ::z for frequencies near the 

limiting frequency y ; z but not too near it. The 

dependence of J;, on l- Y , the energy of the scattered 

electron, has been calculated in part III. As we are 

interested only in frequencies near the limiting frequency, 

the exact dependence on r is not important, and we may 
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write 

(1) 

If, now, it is assumed that the electrons incident on the 

target with the energy :r-0 are slowed down in such a way that 

at the depth ! in the target they all have the same energy 

i(f) , and if the absorbtion of the x-rays by the target is 

neglected, we. may expect to receive from depths from J to 

I +-d J in the target radiation of energy proportional to 

d =r -== _!._ f [t.cfJ-Y]dJ 
vy ;US) 

and the energy per unit frequency range received from the 

whole target will be 

(2) 

The integration may be stopped at "J: =- J/ because fr~-v) 

vanishes for smaller ~ . If we assume that the Thomson­

Whiddington law31 ) adequately describes the slowing down of 

the electrons in the target, we have c;f oe - ~ , and 

1 
~~ ~ -y 

(3) L== >' fc~-y)d~-::=/4 
6

f<x)dx 

The spectrometer may be supposed to transmit the fraction 

(J(Yo, v) of the incident radiation of frequency Y when it 

is set for the frequency Yo . The experimental isochromat 

will then be given by 

(4) 
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and 

( 4a) 

The dependence of I~ on the upper limit of integration, ~ , 

is weak because >'o is a high frequency, and ~(>lo,o) may be 

supposed to be very small. Hence the upper limit ~ in (4a) 

may be replaced by ClJ • This amounts to integrating over 

negative frequenc ies, which is nonsensical; but if the 

function chosen as an analytic representation of g 

approaches zero sufficiently rapidly, no great error will be 

introduced in this way. Further, if 9 is of the form g ( Yo->-') 

( 4a) takes the simpler form,1 -I; = [ l)tw-xJ fc.x)dX 
0 " 

( 5 ) 

gives directly the distance f r om the Duane­

Hunt limit of the frequency to which the spectrometer is 

set, and the upper limit of integration has been replaced 

by tX? • 

Du Mond and Bollman found that the transmission 

coefficient of their spectrometer is given rather accurately 

by 

(6) [ ( 
y- Vo r:i 7 -/ 

q(y-Yc):::: I-,. CL) _j 

where a is a constant for any given setting of the 

spectrometer. For the setting of the spectrometer correspond­

ing to their 20,000 volt isochromat, the value of a is 16.B 
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electron volts. If energies and frequencies are measured in 

units of 16.8 electron volts, we should have for the case 

of the 20,000 volt isochromat of Du Mond and Bollman 

(7) 

In evaluating the integral (7) there is no need to 

replace ftJ1.J by the complicated functions found in part III 

as these are only approximate anyway. Any simple function 

which is not too different from those of part III may be 

used in place of these for fcxJ in ( 7). If one puts 

f (X) -=--0 +or X<O 

(Ba) fc X) =-<X. /or 0-<.><-<(3 

f<><): I /-or (J ,(. )( 

or 

f CX) -=- 0 .for )( < 0 
(Sb) f ,,. ) :. I- ol.. 

+()(., -x for o < x< fl (J 

f C 'i-) =- r for (HJ( 

in ( 7)' he obtains respectively 

(9a) 

and 

(9b) { T ') 
~ l. 

Putting cX=-1 or (J-=e> in (9a) or (9b) gives 
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which increases monotonically, giving no maximu.mo If one 

compares (Sa) and (Sb) with the curves at the end of part III 

section 3 and remembers that in (8) energies are measured 

in units of 16.8 electron volts, he will find that a 

reasonable agreement between fcx) in (8) and the corresponding 

functions calculated in part III can be obtained by choosing 

values around 2 for fX'. and between 3 and 7 for (3 • 

The functions (L'.,), and (I~),_ given by (9) will be found 

plotted for the values O(=A. and (3~3 at the end of this 

section. On comparing these curves with the experimental 

curve it will be seen that they do have the same general 

shape. Indeed, the agreement between (I~l and the 

experimental curve is all that can be expected when account 

is taken of the approximate nature of the theory involved 

and of the fact that since the experimental curve is a 

derived curve, its shape can be varied within rather wide 

limits by smoothing the original data in different ways. 

It will be noticed that the best agreement between the 

theoretical and experimental curves is obtained if the 

potential assumed to correspond to the Duane-Hunt limit 

for the setting of the spectrometer used is reduced by about 

0.6 w- unit or by about 9 volts. This would make only an 

insignificant change in the value of ,½ obtained from this 

experiment; moreover, this change would be in such a direc­

tion as to increase rather than to decrease the discrepancy 

between the values of ~ found in this way and in other 
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It may be said in conclusion that the effect of the 

extra-nuclear electrons in the atoms composing the target 
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of an x-ray tube on the spectral distribution of energy in 

the radiation from that tube is not of such a nature as to 

remove the present discrepancy between the value of ~ 

obtained from the measurement of x-ray isochromats and the 

value found from other experiments with the use of the Bohr 

formula for the Rydberg constant, but that it is able to 

account for the knee found by Du Mond and Bollman in the 

isochromat in the immediate vicinity of the Duane-Hunt 

limit. It should be said further that the theory in its 

present form leads one to expect that this knee will be 

present when targets of some substances are used and absent 

when targets of other substances are used, but it is not in 

a position to predict whether this knee will be present or 

not when a target of any given substance is used. 
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