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ABSTRACT 

Wave propagation problems involving irregular structures rarely 

have exact solutions. However,the most important features of such 

problems can be often obtained from appropriate approximate 

solutions. 

In Chapter 1, we consider refraction problems involving dipping 

layers. The Cagniard-de Hoop method for flat structures is extended 

to such problems to evaluate the non-geometric effects of critical 

reflection and tunneling. It is shown that the character of the 

dispersion is strongly affected by even relatively shallow angle 

dips. 

In Chapter 2, we consider teleseismic problems involving curved 

interfaces . An approximation theory, which we name "Glorified Optics" 

is developed to evaluate the effects of focusing and triplication 

due to the local curvature along such interfaces. Seismograms are 

dramatically complicated by those interference effects. The correla

tion between such complexity and the subsurface structure can be 

explicitly conceived through Glorified Optics. 

In Chapter 3, we perform an independent check on these approxima

tion theories by using finite element methods . The excellent agree

ment confirms the validity of our approximations. 

The concepts,methods and results presented in this thesis appear 

to be helpful in opening a new dimension in the fields of seismic 

rnodelling,inversion and prospecting. 

, 
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INTRODUCTION 

Irregular structures,such as corrugated surfaces, dipping non

conformities , alluvial basins, continental margins, subduction slabs, 

intrusions and petroleum reservoirs are common features in the earth's 

crust and upper mantle . Thus wave propagation in such structures is a 

very important subject in seismology. 

There are two types of problems in which we are interested. 

1 . Refraction problems, in which each individual phase can be highly 

dispersed due to the non-geometric effects, e.g. critical reflection 

and tunneling. The Cagniard-de Hoop method is very efficient in 

evaluating those effects for flat layered structures. In Chapter 1, 

we extend this method to the cases involving dipping interfaces, by 

introducing certain approximations. 

2. Teleseismic problems, in which we can assume the travel time is 

infinitely large compared to the source duration. In structures 

involving curved interfaces, although it is still true that each 

individual phase will not be significantly dispersed,the overall shape 

of the seismogram can become very complicated due to the effects of 

focusing and triplication. In Chapter 2, we develop the "Glorified 

Optics" method to evaluate such effects. 

In Chapter 3, we design efficient grid systems for a finite element 

code, with which we run a series of numerical experiments to check 
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the validity of the previous approximations. 
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Chapter 1 

GENERALIZED RAY THEORY FOR DIPPING STRUCTURE 
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ABSTRACT 

In this study we relax the strong limiting condition of parallel 

layering which is usually assumed in seismic modeling by allowing 

dipping boundaries. We start with the derivation of generalized ray 

theory in a wedge-shaped medium with free and rigid boundaries. Then, 

through the development of the method of equivalent models and de-Hoop 

contours, we extend the theory to dipping structure with elastic 

boundaries. The effect of a dipping interface over a halfspace for 

the case of a line source is shown by a series of numerical models 

which include various angles of dip and source-to-receiver distances. 

Results for a line source situated below the layer indicate that, when 

the layer thickens toward the receiver, one obtains a waveform similar 

to the case where the source is actually in the layer. These features 

are produced by the combination of forward and backward traveling 

rays which can have super critical reflections. 
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INTRODUCTION 

The seismologist can find it difficult to ipply elasticity theory 

to seismic wave problems for many reasons. One difficulty often 

encountered is that physical constitution parameters have depth 

dependences. This problem has been handled in many ways, one of which 

is by approximating the earth structure by a stack of homogeneous 

layers and applying the concepts of generalized ray theory. Although 

horizontally layered models have proven useful in many situations, one 

is constantly confronted with non-horizontal structures where the 

usual analytical methods are not applicable. Rather than relying on 

relatively expensive numerical techniques to study these types of 

problems, it would be useful to develop analytical approximations 

which can provide some insight along with the solution. We will dis

cuss one such approximate technique for the treatment of wave motion 

in locally dipping structure in this study. 

We introduce the method by considering an SH-line source in a 

wedge shaped medium with a free surface and a rigid lower boundary. 

After applying the classical ray expansion, as discussed by Hudson 

(1963), we solve for the motion by application of the Cagniard-de 

Hoop technique. A localized coordinate system is adopted which con

serves the de Hoop contour and can be easily modified to include 

elastic boundaries. We are therefore able to recover not only optical 

results but head waves and tunnelling effects as well. Unfortunately, 

we can not determine the accuracy of this procedure since there is no 

other analytical work available to do an independent check, but a 

comparison of our results with those of finite element methods , which 
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will be shown in Fig. 3.3, is in general good. 
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THEORY 

Hudson (1963) presented the analytical solution for SH wave propa

gation in a wedge with one side free and the other side rigid. Here, 

before introducing our approximate theory, we would 1 i.ke to examine this 

problem through Cagniard-de Hoop method. 

We assume a line source situated in a wedge as diagramed in 

Figure 1.1. The equation of motion in terms of displacement for a 

whole space containing this source is simply: 

o (R) 
R 

-f(s) 
2n (1. 1) 

Where "-" ·'enotes the I l u ,ap .. ace trans form , sin the Laplace variable, 

Wo is the SH-displacement, and f(t) is the source time function. 

By setting f(s) = 21r, we have 

(1. 2) 

where p = s/S, and Ko is the modified Bessel function of order zero. 

Following the transformation by Oberhettinger (1954), we obtain 

00 

Wo if I_H(pr') Ki.A (pr) . cosh [ A ('IT-I 8-8 ' I )] d).. - - . 
sinh 'ITA 

(1. 3) 

-co 

The homogeneous solution is assumed to have the following form 

( 1. 4) 

-oo 
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Line source 
( r: 8

1

) Shear vel. = /3 
Density= P 

free 

Figure 1.1 Diagram of the problem setup with 8 measured clockwise 
from the free surface . The distances from the tip of the wedge to 
the source and receiver are r' and r with the separation given as R . 
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The functions f1(A) and f2(A) are to be determined by the 

following boundary conditions 

aw 
ae 

and W 

where, W = Wo + W 
r 

We obtain, 

o, at e = o 

0, at 8 = a 

f = 
1 

-Aa -sinh[A(n-8')]e - cosh[A(n-a.+8')] 
2 cosh(Aa) sinh(An) 

-cosh[A(n-a+8')]+sinh[A(n-8 ' )]eAa f=---~~--~~--~---~---
2 2 cosh(Aa) sinh(An) 

Thus at a receiver with 8 = 0, we have 

co 

w = _ i L 
For short period pulses we use the classical approximation 

(Erdelyi, et al., 1953) . 

~ I 

[l + O(A-l)] I . (pr')= 
e 

-1A ili 2 2 !-.:-
27T [ ( pr') - A ] 4 

-~ 
[l + O(A -l)] KiA (pr )= 

e 
2 2 !-.:-

✓2/n [ ( pr) - A ] 4 

where , 

(1.5) 

( 1. 6) 

(1. 7) 

(1.8) 
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Thus we get 

+ 

+ 

sinh[.\(o.-8')] 

cash AO. 

Nz L ( _ 1) n e A 0 ' - 2 no. A + (-l)Ni+l cosh[ATI-A0'-(2N1+l)aA] 
2 sinh ATI cash Aa 

n=l 

(-l)Nz+l cosh[An+A8 1 -(2N2+l)aA] 
2 sinh ATI cash Aa 

(1. 9) 

where Ni, N2 are the largest positive integers to keep 8'+2N1a<n and 

We distorted the integral path to the imaginary axis and by using 

the principle of Schwarz reflection we obtain 

2 Im l N1 ioo -s(<j>+S'y +2nay) 

I: fo (-l)n 
e dy w "" Y. Y. 

n=O [(r' / S)2- y2]4 [(r/i3)2-y2]4 

N2 ioo -s(<j>-8'y +2nay) 
L f (-l)n 

e dy + Y. Y. 

n=l 0 
[(r'/8)2- y2]4 [(r / s)2-y2]4 
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Where, (1.10) 

y = A/s 

<I> 
2 2 ½ 2 2 !<: -1 -1 [(r/S) -y ] -[(r' /S) -y ] 2 + ysin (yS/r) - ysin (yS/r') 

The first two terms are the summations of multiples trapped 

between the two boundaries. The other two terms are the diffracted 

waves from the wedge tip, which we will neglect for reasons which 

will become apparent later . 

Then by Cagniard-de Hoop method we have 

f\, w = 

N 

I: w 
n=l 

N 

n 
= I: 

n=l 

where r is the contour in the complex y-plane defined by 
n 

<1>+0'y+(n- l)ay = pure real, if n = odd 

<1>- 81 yt-(n) ay = pure real, if n even 

(1.11) 

( 1. 12) 
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and, 

N = N1 + N2 + 1 

m n-1 
.:l\n = (-1) 

The factor (2 !Rn) is the reflection effect, !Rn is the product of 

all reflection coefficients which are either 1 at the free surface or 

(-1) at the rigid boundary. The factor 2 is the free surface effect, 

and the factor 

dy 
dt 

controls the spreading effect. 

Next, we illustrate the behavior of these generalized rays by 

examining the first motion approximation of a particular ray diagramed 

in Figure 1.2, with 

t(Y) 

The geometric time, is obtained by setting 
clt 

to, -
cly 

for appropriate Yo, 

dt (2a.-8') -l(y8) -l(y8) - = + sin 7 - sin --;, dy 

But since Et -E: 2a. - 8' one obtains 

r'sin E:
1 rsin E 

Yo = 8 8 

Substituting Yo into (1.13) one obtains 

+ ( 2a.-8 ') y 

(1.13) 

0 and solving 

( 1. 14) 

(1.15) 
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Figure 1.2 Diagram showing the geometric path of a particular ray 
reflecting off the lower boundary following path ABC. 
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to = (AB+BC) /B 

Following the usual first-motion technique, one approximates 

dy 'v 

dt 

which can be written 

dy 
dt 

~[f l'-Y2r rrtY-Y2r 
[ 2 ( t-to) (AB+BC)] ½ 

and evaluating Wn from (1.11) we obtain 

2 2 -½ w a:(t - t 0 ) H(t-t0 ) 
n 

which is the behavior of the well known line source solution, see 

Gilbert and Knopoff (1961). 

( 1. 16) 

(1.17) 

(1.18) 

(1.19) 

Thus, we obtain a solution consisting of generalized rays similar 

to the flat case except that the number of rays is finite, limited by 

conditions on N1 and N2, see appendix for details. There are also 

two remainder terms given in expression (1.10) that correspond to 

diffracted waves which do not have saddle points and are depleted in 

the shorter periods as discussed by Hudson (1963). When the dip is 

small the number of contributing rays approaches that normally used 

in the flat case. However, when the dip is large the number of rays 

allowed is relatively small and the remainder terms are proportionately 

larger. 
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Method of equivalent models. If we drop the term (2 !Rn) in 

formula ( 1.11), we can find an equivalent model for each generalized 

ray . For example, suppose we examine the ray with its geometric path 

as shown in Figure 1.3. It is easy to show that the path in the layer 

is equivalent to the ray path with BoB4' in a whole space model. 

Furthennore, it is convenient to choose the coordinate system (x, y, 

z) and to use the ray parameter, p, defined by 

(1 . 20) 

At the geometric arriving time, t 0 , p becomes sin (8)/S. For 

a p along the de Hoop contour we assign a complex angle to it such 

sin(a+bi) 
that p = S and the local ray parameters are defined as: 

sin[a+(m-l)a+bi] 
s (1.21) 

Thus, the SH-displacement of then-th generalized ray becomes 

W _ Im 
n 

2!!?.dp/dt 

( 
1 212 
~ - p p along o/ 

n 

( 1. 22) 

where!!?. is the product of all the reflection coefficients in terms of 

local ray parameters P 'sand~ is the appropriate de-Hoop contour m n 

for eac~ ray in its equivalent model. 

Following another point of view we can break the parameters d 

and h into smaller segments as shown in Figure 1.4. This gives 
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,J 

8'4 

Figure 1.3 Diagram showing an equivalent model of a ray where the 
length of the line segment between points Bo and B~ is taken to be 
the sum of the segments B0B1, B1B2, B2B3, and B3B4. 
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/ 
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/ 
/ 

/,1 
/ 9 () 

JJ, p 

Figure 1.4 Diagram showing one kind of parameterization for a ray. 
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d 

and ( 1. 23) 

Now we can write the de-Hoop contour (1.20) in the following way: 

( 1. 24) 

We note that under an arbitrary rotation of local frames, which 

changes the real parts of the complex angles, the quantity t = 
m 

d sin(a +b i)+h cos(a +bi) is invariant, where d and h are defined 
m mm m mm m m 

as the horizontal and vertical projections of the segment of the 

geometric ray path in a frame, see Figure 1.5. Note that: 

d sin(a)+h cos(a) d' sin(a') + h' cos(a') ( 1. 25) 

d cos(a)-h sin(a) = d' cos(a') - h' sin(a') ( 1. 26) 

and thus, 

d sin(a+bi)+h cos(a+bi)=d' sin(a'+bi)+h' cos(a'+bi) (1.27) 

Therefore, we can reconstruct the contour (1.24) by redefining 

d and h in the following way shown in Figure 1.6. 
m m 

hm] = pure real 

Where p is the local ray parameters defined in (1.21). The 
m 

SH-displacement of then-th generalized ray becomes: 

( 1. 28) 
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\ 
n 

\ 

Figure 1.5 Diagram illustrates formulas (1.25) and (1.26). 
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~ d2 f-- I ◄ d4 
.... , 

I 
I 
I 
1h 4 

p 

/3 ~ p 

Figure 1.6 Diagram showing another kind of parameterization for a ray. 
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w 
n 

Im (1. 29) 

where f is the de-Hoop contour (i.e., equation (1.28)), of then-th n 

generalized ray. 

When the source is in the half-space, we can similarly build up 

the de-Hoop contour as shown in Figure 1.7. 

p 's are related to each other in the following way 
m 

p sin(a'+b'i)/B' = sin(a+bi)/B 
1 

pm= sin[a+(m-l)a+bi]/G for m=2, 3, 4 

The SH-displacement of the (n-th) generalized ray is: 

2 ff !R. 

w Im 
dt 

n 
p

1 
along fn 

(1. 30) 

( 1. 31) 

where &"'is the transmission coefficient in terms of local ray param-

eters. 

It should be noted that when we relax the rigid bottom allowing 

an elastic boundary, we replaced!R.n by the product of elastic reflec-

tion-transmission coefficients in terms of the complex local ray 
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/3, p 

Figure 1.7 Diagram showing the parameterization of a ray with the source in the halfspace. 
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parameters. This approximation is essentially extended from the 

geometric ray theory in general structures. This enables us to evalu

ate nongeometric arrivals which play important roles around geometric 

times of multiples with critical reflections. Since this approximation 

lacks a rigorous theoretical basis, we need some independent checks. 

A comparison of results against a finite element code has been done 

and found to be generally accurate. 

RESULTS 

In this section we present some numerical results of SH wave 

propagation in a layer over a halfspace. The model is given in Figure 

1.8 where we have attempted to minimize diffraction effects by 

removing the wedge tip. We assumed a simple saw-tooth time function 

with a three second duration. The results are displayed in Figures 

1.9 through 1.12, in which the columns on the left and middle contain 

individual contributions of generalized rays 1 through 4 with the 

summation given on the right. The higher order multiples were not 

included here since they are small and arrive somewhat later. All 

the traces on each figure are on the same amplitude scale to properly 

show the ray contributions. 

In Figure 1.9, we fixed the source and receiver at x = 20 km and 

0 0 
changed the dipping angle from 0 to 10 where the layer thickens 

toward the receiver, shooting down-dip. The motion behaves as if 

the source was actually in the layer for the larger dip angles. 

This effect is achieved by the simple fact that each time a ray 
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Sourc 

ce1ver 

/3, p 

13', p 

Figure 1.8 Diagram showing the labeling of model parameters. 
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LINE - SOURCE 
Displacement of each arrival Displacement 

(a-1) (a-2) x=20km 1 --~(a-3) 

,__.,_._..__.. L ~ .S . . 

a=0° 

(b-1) (b-2) (b-3) 

- ~ 

a=1° 

(:-.:~ 
a=2.5° 

(d-2) 

(e-2) 

10 20 30 sec 

I 

Figure 1.9 Theoretical displacements for the down-dip case with a= 0° 
0 ( ) 0 (a-3), a = 1 b-3 , a = 2. 5 (c-3), etc. Individual ray contributions 

are labeled 1, 2, 3, and 4 indicating the direct, (1), followed by the 
one multiple, (2), etc. Column (a-1) contains rays (1) and (2) and 
column (a-2) contains rays (3) and (4) . The summation of these four 
rays is given in (a-3) and similarly for the other dip angles. The 
common model parameters are: L3 = 6 km, L4 = 10 km, Ls= 50 km, 
L5 4 km, x = 20 km, B = 1.6 km/sec, B' = 4.8 km/sec, p = 2.6 gm/cm 3 , 
p' = 2.7 gm/cm 3 . The other parameters for the individual cases are: 
L1 = 4, 3.825, 3.563, 3 . 125, 2.242 km and L2 = 4, 4.873, 6.183, 
8.376, 12 . 789 km for a , b, c, d, and e respectively. 
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LINE - SOURCE 
Displacement of each arrival 

(a-1) (a-2) x =20 
km 

Displacement 

(a-3) 

a=0° 

(b-1) 

(c-1) 

~ 
~4f~; 

(d-1) (d-2) I A (d-3) 

~ L . rQ:: -• f ~ 
~os1c 

Figure 1 .10 Theoretical displacements for the up-dip case with 
a= o0

, -1°, -2.5°, -5° respectively. The common model parameters 
are : L3 = 6 km, L4 = 10 km, L5 = 23 km, L5 = 4 km, x = 20 km, 
B = 1.6 km/sec , B' = 4.8 km/sec, p = 2.6 gm/cm3 , p' = 2.7 gm/cm3 . 
The other parameters for the individual cases are: L1 = 4, 4.175, 
4 . 437, 4.875 km, L2 = 4, 3.599, 2.996, 1.989 km, for a, b, c, and d 
respectively. 
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LINE- SOURCE 
Displacement of each arrival 

(a-1) (a-2) 

(b-1) 

(e-1) 

a =10° 

0;=-L007 
0,=-0286 
fo= 20.79 

(b-2) 

0/=-0 773 
01=-0235 
t

0
= 23 .35 

(c-2) 

0.'=-0575 
0, =-0.182 
t0 = 25.99 

0' =-0.415 
0,=-0.135 
t0 = 28.71 

Displacement 

(a:..3) 

10 20 30 sec 

Figure 1.11 The common model parameters are 11 = 2.242 km, 1 2 = 
12.789 km, 13 = 6 km, 14 = 10 km , Ls= 50 km , L5 = 4 km, and the 
other parameters for individual cases are: x = 10, 15, 20, 25, 
30 km for a, b, c, d, and e r espectively. 
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LINE - SOURCE 
Displacement of each arrival 

(a-1) (a-2) 

a=-10° 

(b-2) 

___J --12 

__J ~ 
(d-2) 

Displacement 
(a-3) 

x=5km 

(b-3) 

x=10 

_ _J 

(c-3) 

_j 

0 ~ 
10 20 30 sec 

Figure 1.12 The common model parameters are 11 = 5 . 758 km, 1 2 = 
0.484 km, 13 6 km, 1Lf = 10 km, 15 = 22 km and the other parameters 
for individual cases are: x = 5, 10, 15, 20 km for a, b, c, and d 
respectively. 
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bounces in the layer its trajectory becomes flatter and can easily 

reach critical angle, thus producing head waves. The separation 

between the direct ray and multiples is increased compared to the flat 

case since the layer thickens towards the receiver. In this way the 

summation of rays produces dispersion and the development of Love 

waves. The opposite situation occurs when shooting up-dip, layer 

thinning towards the receiver. This case is displayed in Figure 1.10 

where we again fix the source and receiver at x = 20 km and vary the 

0 0 
dip angle from O to -5 . In this situation the motion behaves as if 

the source was somewhat deeper than it actually is when compared to 

the flat layer result. This effect is produced because each time a 

ray bounces in the layer its trajectory becomes steeper and radiates 

energy into the halfspace and becomes ineffectual. 

One of the more interesting features produced by the dipping 

layer is back-scattered rays. When shooting up-dip, rays can either 

enter the layer beyond the receiver and, after bouncing a few times, 

become steeper and turn back towards the receiver. But, in general, 

these rays are not very large contributors because of the large loss 

of energy in entering the layer at these large angles of incidence. 

When shooting down-dip, rays can leave the source moving away 

from the receiver and, after bouncing a few times in the layer, 

reverse their direction and return to the receiver. An example of 

this type of ray is given in Figure 1 .1 1 when the dip-angle is set 

at a= 10° and xis increased from 10 to 30 km. We have included 

some values of 81 and 81' for ray 4 where these angles are negative. 

These back-scattered rays are not particularly impressive here, but 
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they could become important in the presence of radiation pattern. A 

profile similar to Figure 1.11 but shooting up-dip is given in Figure 

1 . 12 for completeness. 

An interesting feature displayed by some of these rays is a 

tunneling effect caused by a sharp bend in the de-Hoop contour where 

the ray parameter r emains almost real between the geometric time and 

the corresponding time for a source on the boundary. It is the 

typical behavior of a ray incident from fast region to slow region 

at a large angle, see Helmberger and Ma lone (1976). In our present 

case of shooting up-dip, the r ays are more grazing than the corre

sponding ones in the down-dip case. This is the reason why the 

tunneling effect becomes important in the up-dip situation, for 

example, notice the apparent double ar r ival of ray 2 in Figure 1.12 

(c-1) and (d-1) . 

DISCUSSION 

At this point, we will review the approximations made in above 

techniques . Fir st , we neglecte d t he diffracted waves associated with 

the wedge tip by removing the tip from the model, see Figure 1.8. 

Secondly , we used a h i gh frequency approximation given by expression 

(1.8), and thirdly, we r epla ced the rigid boundary by an elastic one . 

Erro r s associat ed wi th the first and third are difficult to determine 

anal y t i cally, and , therefore , a series of numerical comparisons were 

performed to test the ove r all validity, as shown in Figure 3.3. 
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SUMMARY 

A detailed investigation of the wedge problem has confirmed 

earlier studies in that the motion can be constructed from rays when 

the diffracted wave from the wedge tip can be neglected. But instead 

of stopping with geometric ray theory as in the classical treatments, 

we have developed a scheme of mapping the de-Hoop contour by using 

the local complex ray parameters, thus allowing the application of 

generalized ray theory. This result allows us to obtain an accurate 

picture of the motions over a wide frequency band. Numerical motions 

are presented for a layer over a halfspace which display some of the 

important features of dipping st ruct11rc as revealed by their accom

panying ray expansions. The results indicate that shooting down-dip 

allows rapid development of Love waves by the trapping of energy in 

the layer. The opposite result occurs when shooting up-dip. We think 

there are abundant examples of this type of phenomenon observed in 

local earthquake records and that this technique provides a new 

dimension in solving these seismological problems. 
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APPENDIX 

Some of the details in the derivation of foFmula (1.9) were 

skipped in the main context. Since we think some people might be 

interested in how the limitation N1 and N2 came about we add this 

appendix. 

sinh[A(a-8 ')] 
cosh(,\a) 

2 sinh(ATT) sinh[A(a-8')] 
2 sinh(ATT)cosh(Aa) 

cosh[ATT+Aa-A8']- cosh[ATT-Aet+A0'] 
2 sinh(ATT) cosh(Aa) 

N1 
= I:-~( -_l~)_n __ c_o_s_h~[_A_TT_-_A_G _' -_2_n_a_A~]'---_ 

sinh(ATT) 
n=O 

(-l)N1+l [ I ( ) ] + ~-~ ___ c_o_s h-------"-A_TT_-__ A_8_-___,__2_N_1.1....+_l-'--a~;\ 
2 sinh(An) cosh(Aa) 

(-l)n-1 [ , l cosh \TT+A8 -2na~ 
sinh(,\TT) 

+ ___,_(_-_1-'--) N_2 _c __ o_s_· h-'[,_A_TT_+_A_8_' _-__,,(_2_N,,_2+_1_)'-a_, A--"'--
2 sinh(;\TT) cosh(Aa) 

Nz (-l)n [ATT+A8'-2naA] + '\' ___ __,_~ __ e ---------
LJ A TT 

n=l e 

( -l)Nz+l [ ' + -~~ ____ co_s l_1..s...A_TT_+_A_8_-___,__( 2_N~2'--+_l-'):....::ac..:.A.:....,]!,__ 
2 sinh(ATT) cosh(Aa) 
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Here, the two conditions: 

are required. 
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Chapter 2 

GLORIFIED OPTICS AND WAVE PROPAGATION IN 

NON-PLANAR STRUCTURE 
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ABSTRACT 

Waves propagating in varying non-planar st~ucture can produce 

many interesting phenomena , such as focusing, caustics, and triplica

tions. A high-frequency technique based on the first-motion approxi

mation, referred to as glorified optics, has been developed to generate 

synthetic seisrnograms for these types of problems. The technique, in 

its simplest form, uses the spreading rate of a beam with transmission 

and reflection coefficients along each possible ray path . The time 

behavior of each arrival is either that of the original pulse or its 

Hilbert transform depending on the position of caustics . The geo

physically interesting structure of a soft basin over a half-space is 

investigated in detail by this method. Synthetic seismograms appropri

ate for various locations are compared with the results of finite 

difference and finite element methods . The technique appears rich in 

insight and should prove very useful in modeling problems. 
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INTRODUCTION 

In recent years there has been a substantial increase in the 

number of seismic waveform inversion studies. These efforts are char

acterized by matching a set of records by computing synthetic wave

forms for the forward problem and matching the observations by a trial 

and error procedure. The fits for some of the more diligent efforts 

are sufficiently good to allow the application of linearized inversion 

techniques, see for example Burdick and Mellman (1976). Unfortunately, 

in many studies the matching procedure can be frustrating due to the 

presence of scattered waves which can be readily detected by particle 

motion plots. However, one does not need to do much soul searching 

to discover abundant causes, such as basins and ridges above the 

source and/or similar receiver structure. The effects of basins, 

for example, have been well studied by Aki and Larner (1970) and 

Boore et al. (1971). But, because these numerical methods are so 

expensive one can hardly perfonn a parameter search to use in waveform 

inversion studies especially when these waveforms contain high 

frequency. Furthermore, most numerical methods do little to develop 

ones insight with respect to the physics of the problem. Thus, we 

have developed a technique of generating synthetics by simply 

tracking rays. The method is based on first motion approximations 

and is, therefore, a high frequency solution but appears to compare 

favorably to numerical experiments even at long periods in many 

situations. 
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THEORY 

Solving rigorously the boundary value probiem involving compli

cated geometry is not possible, so we have jumped directly to an 

approximate form of the solution. The approximation is based on the 

understanding of the connection between the physical behavior of rays 

and the mathematical formulation for the solution of simple structures. 

We will introduce our technique by first reviewing the interface 

problem, followed by multi-dipping layers and then generalize to 

smoothly varying interfaces. 

Fluid interface problem. We assume a point source with time 

history given by f(t) with the geometry specified in Figure 2.1. • 

Applying generalized ray theory we can write down the high frequency 

solution, Helmberger (1968), 

cp(r,z,t) f(t)>c ·- - - -,~ld [l 
r TT dt It (2.1) 

where cp is a scalar potential 

T(p) = transmission coefficient 

p = complex ray parameter 

r is the de-Hoop contour 

This solution can be simplified further by constructing the first-

motion approximation for times near the direct arrival, t (p) 
0 0 



~ 
dt 

i 
!,,: 

[ 2 ( t- t ) ] 2 
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( :2; )-½ 
p t =t 

0 

(2. 2) 

But from the geometry given in Figure 2.1 we can show that the spreading 

factor, Sf, 

(2. 3) 

t=t 
0 

where A is the original cross-sectional area of the beam o f rays at 
0 

unit distance and A is the projected area at the receiver. To show 

this we note that 

[ d 2t ] 
½ 

n = 
1 dp2 

[ d 2 t ] 
½ 

n 
1 dp2 

and, 

[ 
h1 h2 

] 
½ 

n + 
1 n3 v2 n3 v2 

1 1 2 2 

1 
[ R 1 d 8 1 + Rz d 8 2 = 

Fi 
t=t 

0 

sin81 + R2 sin82 

sin8 1 

]

½ 
cos81 1 
cos8 2 ~

1 

(2.4) 

thus, 

!,,: 

Sf= [ (R1sin81 d¢+R2sin82 d¢) (R1 d81+R2 d8 2 cos8 1/cos8 2)]-
2 

sin81 d81 d¢ 

( 2. 5) 

But if we let A= A'cos81/cos8 2 or the projection of A' onto the 

original orientation we obtain 
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I 

h2 
I 
I 
I 
I 

------ d, ------'------------r 

Figure 2.1 Diagram displaying the infinitesimal phenomena of geometric 
spreading for the simple interface problem . The area A' is the product 
of L e and L¢ where Le = R1de1 (cose 2/cose1) + R2d82 and Lcj) = R1d¢sine1 
+ Rzdcj)sine 2 . 
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The solution becomes 

<P = f(t)''- _l __ d_[_l_ ,., 1 
if dt \ft ~ ] (2.6) 

which reduced to 

(2. 7) 

Note that the velocity contrast across the interface changes d81 to 

d82 or the spreading rate in the 8-direction, whereas dq> remains the 

same and the azimuthal spreading rate remains constant across the 

interface. 

Dipping structure. We now consider a more general case, namely 

two non-parallel planar interfaces. This problem was studied in 

Chapter 1 assuming a line source excitation. For a point source, we 

require an additional complication due to spreading in the azimuthal 

direction. For flat structure this correction is simply lp/r but 

for dipping structure we must represent it in terms of parameters in 

local Cartesian coordinates 

<P .. ~ d ~ f(t)>, - - - -
if dt t 

;, Im T(p) ( t :: )-½ 
m=l 

1 dp _ _::__i_ 

n dt 
1 J ( 2. 8) 

wher e p is th e local ray parameter of them-th ray segment and d m m 

is the projection of the geometric path onto the local Cartesian 

coordinates, as shown in Figure 2.2. The justification for this 
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factor along with the details of the contour rare given in our 

earlier paper. Again, we take the first motion approximation by 

letting 

dp 
--1. 

dt 

and after some algebra (see Appendix) we obtain 

and, 

thus, 

cos81 
where A= A' 

cos82 

sin8z 
d1+d2 sin82 

sin8 3 +<l3 sin8 3 

sins 2 _V2 r.::
sins 2 ~ 

-~-------c-k-------

(sin81) 2 

cos82 

cos8 3 

1 
n 

1 

(2. 9) 

(2.10) 

( 2 .11) 

(2.12) 

or the projection of A' given in Figure 2 . 2 back into the original 

orientation. The solution becomes 

(2 .13) 
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where we must compute the transmission coefficients with the appropri

ate local ray parameter (p ). Calculating (A/A) analytically for a 
m o 

large number of ray segments is laborious but could be done. A much 

more practical approach and one we recommend is to simply add a small 

(op) to the proper ray parameter, p , that p required to track a ray 
0 

from the source to the receiver and measure (A'/A) numerically, or 
0 

more precisely 

Lim (A ) 
op➔O A

0 
= 

Lim 
op➔O 

where the azimuthal spreading 

Lim (:fp_) 
oq>➔O o </> 

(2.14) 

(2 .15) 

can be computed analytically. The numerical procedure is required to 

obtain the limiting value on .[8 when its behavior becomes highly com

plicated with the addition of curvature as we will demonstrate shortly. 

Periodical semi-circular boundary. In this section we apply our 

technique to a simple curved boundary such that the limiting process 

can be performed analytically in the presence of caustics. For 

convenience, we will assume a plane wave source at vertical incidence 

to eliminate_[</> contributions. The geometrical considerations dis

playing focusing and other complications are given in Figure 2 . 3. We 

begin as before by investigating the spreading rate for a particular 

ray as shown in Figure 2.4. The function description of the boundary 

for the assumed coordinate system is 
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-10 km 0 km +10 

Figure 2.3 Diagram showing the bending of geometric ray pa ths caus ed 
by a periodic semi-circular int erface . 
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a 

b 

10 r 
I 

z 

Figure 2.4 Diagram displaying the infinitesimal phenomena of geometric 
spreading for a curved boundary. The parameters are a= 5 km , r = 

0 
5 km, the upper velocity (v1) is 1 km/sec and the lower velocity (v2) 
is 3 km/sec, and the density is assumed constant. 
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for -r < x < r 
o-

The angle between the local normal and the vertical is 

e (x) = 

and, further, let 

where v1 and v2 are the velocities in the upper and lower media 

respectively. The spreading element, E, is 

(2.16) 

(2.17) 

(2 .18) 

from the geometry given in Figure 2.4. Next, we perform the limiting 

process 

Lim 
b-+O (+) 

d ~ -tane = 
db 

l-[a+2r -z] -- tane l Lim[ d ~j l 
0 b-+O db 

1 

1 - (1-

V 

__L cose 
V 

v
2 

sin
2
e)½ 

v2 
2 

(2.19) 

(2.20) 

(2.21) 
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Note that A can be negative and there is a singular point along this 

geometric ray path with z defined by 

which is dramatically displayed in Figure 2.3. Our solution fails at 

this point but could be salvaged by using the third order saddle-point 

approximation. For 

0 
we cross the caustic and the 90 phase shift occurs, see Hill (1974) 

for a discussion of such effects. 

In cases involving multiple reflections the generalized 

coefficient containing the product of all interactions expressed 

simply as T(p) can become complex, so that in general for (A/A)> 0, 
0 

cp = f(t-t
0
)Re[r(PJ] jsfl 

+ f*(t-t
0

)Im[T( p
0

)] I sf! 

Similarly, for (A/A) < 0, the response becomes 
0 

cf> = f*( t-t
0

)Re[T (p 
0

)] I Sf I 

+ f(t-t
0

)rm[T(p
0

)] lsfl 

(2.23) 

(2 . 24) 

where f*(t-t) is the allied function of f(t-t), that is the same 
0 0 

amplitude spectra but with a 90° phase shift . 
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In the next section we will generate synthetics for a soft basin over 

a half-space using several methods. Thus, as a preliminary comparison 

we compute the responses for the periodic structure at x = 0 and 

x = lO _km as displayed in Figure 2.5. These two ranges were chosen 

to further test the phase shifts discussed above. If we number the 

rays left to right we see that the second or middle ray is phase

shifted for x = 0 whereas the second and fourth rays are phase

shifted at x = 10 km. Glorified optics results (GO) are obtained by 

simply adding the rays shown in Figure 2.5 applying equations (2.23) 

and (2.24) . The source function and its allied function are displayed 

at the bottom of Figure 2.6 with the synthetics given above along with 

the finite element results. The comparison is good considering the 

nature of the source. That is, glorified optics is expected to give 

the most accurate result for short periods, thus the drift effects 

occurring in the GO synthetics are caused by the large offset in the 

assumed source. There are, also, errors associated with using the 

flat-layer transmission coefficient which could be easily corrected 

for local curvature. However, we are primarily concerned with 

focusing and defocusing in this particular study since such effects 

appear dominant . 
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0 10 km 

Figure 2.5 Diagram showing the paths of geometric rays arriving 
at x = 0 km, z = 0 km; and x = 10 km, z = 0 km. 
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10 

GO 

so 

so' 

20 30 sec 

Figure 2 . 6 Comparison of SH displacements received at the two 
locations shown in Figure 2.5 . The traces marked with FE are by 
finite element method . Those marked with GO are by glorified 
optics. 
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RESULTS 

Since our technique is a first order approximation it is prudent 

to test its validity against other more exact techniques such as the 

numerical methods discussed by Aki and Larner (1970), the finite 

difference method, Boore et al. (1971) or the finite element method, 

see Chapter 3. These numerical methods are basically long period 

techniques in that the grid size must be large enough to make the method 

affordable. On the other hand, glorified optics become increasingly 

accurate as the frequency is increased, thus the various methods 

complement each other. Boore et al. (1971) have already performed 

a detailed comparison between the AL method and finite difference 

results for basin structures. We will attempt to match Boore's results 

using their model parameters and source description specified below. 

The curved boundary describing the bottom of the basin is 

z(x) =-D elsewhere (2.25) 

where w = 50 km, D = 1 km, and C = 5 km . A plane SH wave with source 

time function, f(t), is impinging vertically from the half-space, 

f(t) = 

where, 

t = 20 sec. 
s 

( a - _!__) exp ( -a) 
2 

T = 18 . 3 sec. 
p 

(2 . 26) 
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The density and velocity in the basin are p 1 = 2 grn/crn3, Bi= 0.7 km/ 

sec respectively, and p2 = 3.3 grn/crn3, s2 = 3.5 km/sec, in the half-

space. 

The basin structure with the direct, and two sets of multiply 

reflected ray paths are displayed in Figure 2.7. The qualitative 

characteristics of the motion can be seen by observing the focusing 

of the multiples and development of caustics. For instance, the first 

multiples at the center of the basin focus rather strongly which will 

give rise to a large second arrival at this position. For longer 

times, rays begin to come in from the sides. Since our model is a ray 

method it is educational to observe the development of the motion as a 

function of ray summation for a couple of positions, see Figures 2.8 

and 2.9 for the center position and Figures 2.10 and 2.11 for a station 

close to the edge of the basin. In Figure 2.8, we display the rays by 

the number of times they are reflected internally starting at the top; 

that is (1) contains the direct, (2) contains one multiple and one 

ray, (3) contains two multiples but three rays, etc. The synthetic 

contribution from (1), (2), (3), and etc. are displayed in Figure 2.9 

individually with the final summation of all responses given at the 

bottom. Note that the rays bouncing vertically contribute very little 

after two reflections whereas the rays corning in from the sides are 

heavy contributors at large times because of the large low angle 

reflections. The rays that enter on one side of• the basin and travel 

across the basin internally and return again are sometimes large but 

usually small depending on focusing. The observations at the edge, 

or off center, are more interesting in many ways due to the large 
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-20 km -10 0 +10 +20 km 

Figure 2. 7a Diagram showing the paths of geometric rays; the direct 
rays on the top; the rays with two reflections in the middle; the 
rays with four reflections on the bottom. 
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Figure 2.7b Patterns of the caustics formed by higher multiples. 
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Figure 2 . 7c Continuation of Figure 2.7b. 
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0 km 
0 +10 +20 km ··---,--, 

Figure 2.8 The paths of geometric rays arriving at x = 0 . The top 
trace, (1), contains the direct ray, and (2) displays the ray with 
two reflections, etc. 
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Figure 2.9 Diagram showing the contribution of each set of rays 
displayed in Figure 2.8 with the final summation at the bottom. 
Arrows indicate arrival times. 

200 
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Figure 2.10 The paths of geometric rays arriving at x = 16 km . 
The top trace, (1), contains the direct ray, and (2) displays 
the ray with two reflections, etc . 
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Figure 2.11 Diagram showing the contribution of each set of rays 
displayed in Figure 2.10 with the final summation at the bottom. 
Arrows indicate arrival times. 

200 
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contributions that come from the opposite side of the bas in at later 

times as is apparent from Figures 2.10 and 2 . 11. 

The results at various ranges after summing the first 10 sets of 

rays are displayed in Figure 2.12 along with the comparisons with 

numerical methods. It is relatively expensive to compute the numerical 

results at large times which is the reason for the truncations, see 

Boore et al. (1971) and Hong and Kosloff (1978). Considering the 

simplicity of the glorified optics method it is rather surprising that 

the agreement is so good. In general, the beginning portion of each 

record appears very accurate which corresponds to rays traveling nearly 

vertical. At later times, the CO results appear less accurate which 

corresponds to rays traveling more nearly horizontal. This probably 

means that the curvature of the boundary becomes more important and 

higher order reflection coefficients may be necessary. Rays that 

travel from one wall of the basin to the other side without hitting 

the surface were also considered but found to be weak contributors. 

The results with a shorter period time function are given in 

Figure 2.13, where some of the amplified arrivals are more apparent 

such as the first multiple at x = 0. It is relatively important for 

these large signals to perform the limiting process carefully. That 

is, we examine the ratio of areas for a narrow beam of area A and test 
0 

for stability by considering a series of smaller and smaller values. 

This process is simple if one requires the boundaries to be smooth 

and one avoids examining the motion on a caustic . We have not been 

particularly concerned with the motion at or near caustics in this 

study since we are primarily interested in developing a methodology 
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Figure 2 . 12 The comparison between the results of glorified optics, 
finite element, and finite difference. The later results were 
obtained from Larner (1970), Figure 4.9. The traces are the tangential 
displacement at surface receivers with horizontal distances of Oto 
20 km from the center of the basin. 
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Figure 2 . 13 Diagram showing the SH displacement caused by vertically 
impinging plane wave with short pulse. The source time function is 
the Ricker's wavelet, see formula (2 . 26) with T = 1 sec, t = 1 sec. 
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for studying seismograms to infer the broad features of structure. On 

the other hand, the fine geometric detail needed to form caustics in 

regions of earthquake hazards abound and the role of such focusing 

could be highly significant. 

In Figure 2.14a and 2.14b, we show the shape of the wavefront 

propagating in the basin. Along the caustics, we can see the wave

front is sharply bent. This effect can make the wavefront become 

extremely complicated as time goes on. We can see also that the 

wavefront at later stages includes two portions, one is propagating 

up and down, the other is propagating back and forth in the grazing 

direction. 
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T(l)=l sec, 6T=1 sec 

Figure 2.14a The shape of the propagating wavefront. T(l) is the 
starting time. ~tis the time step. In each plot, three traces 
corresponding to three time steps are drawn. 
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T(1)=32 sec, 6T=3 sec 

Figure 2.14b The shape of the propagating wavefront. T(l) and 6t 
have the same meaning as those in Figure 2.14a. In each plot only 
one trace is drawn so that we can examine the details . 
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DISCUSSION 

In general, curved boundaries introduce a number of interesting 

effects, namely frequency dependent reflection coefficients and 

geometrical focusing with the latter being the dominant feature in the 

basin study. The reason for this result is chiefly caused by the 

assumption of plane waves, constant p, where we essentially assume 

infinite travel time compared to the source duration. This as sumption 

would appear to be appropriate for many seismological problems, some 

examples are the development of body wave codas and waveform complexi t y . 

The interpretation of recordings in terms of synthetics for t hese 

applications has been predicated almost exclusively on the simplifying 

assumption of flat layers . Given the experience developed in the 

basin study we feel it would be useful to briefly review these subjects. 

Most observations of nuclear explosions made at di sta nces between 

0 
30 and 90 are quite simple, especially if the station is located on 

bedrock as noted by Thirlaway (1966) . However, many records show a 

large complicated coda which has drawn much attention because of the 

use of P-wave complexity as a discriminant between earthquakes and 

explosions. An example of a simple and a rather complicated P-wave 

is given in Figure 2. 15. Possible explanations have been put forth 

by numerous authors. Douglas et al. (1971) suggest tha t the direct P 

has been attenuated by passing through a lower Q zone rel a tive to the 

later arrivals. Woodhouse (1973) suggests that strong later arrivals 

are diffracted arrivals from the upper mantle transition zones. More 

recent studies (Simpson and Cleary, 1977) suggest that P-signal 

complexity is caused by random scattering along the entire path. It 
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Figure 2.15 A comparison of the three components of observed motion 
of the Long Shot nuclear explosion at two sites in Southern California 
showing the P-wave complexity of TFCL (Taft) relative to CPCL (Campo). 
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would appear to us that the type of scattering discussed in this paper 

would be good explanation of the phenomena in that the scattering 

could come from shallow structure near the source (Figure 2.13 in 

reverse, using the reciprocity principle) and/or the receiver structure. 

For the example given in Figure 2.14, we would prefer the latter 

interpretation since these two stations are at nearly the same ray 

parameter. The station CPCL is setting on bedrock whereas TFCL is 

near the edge of the Great Valley. Our proposed technique appears 

ideally suited to study such problems. 

Another application is with waveform complexity observed in 

refraction profiling, especially oceanic exploration with OBS receivers. 

It is common practice to drop OBS's in small basins of sediments to 

insure proper coupling to the bottom. However, in many such situations 

the OBS records are much more complicated than hydrophone recording 

near the surface of the ocean, see Lewis and Mcclair (1977) . In 

this case, converted shear waves could easily become partially trapped 

and complicate the motion. To test this hypothesis would require a 

more complete data set. However, in general, the whole question 

about the intensity and waveform complexity in the presence of uneven 

bottom sedimentary cover could be handled with this technique. 

Still another interesting application of this technique is with 

respect to site amplification effects observed in earthquake studies. 

There is abundant evidence of accelerations in excess of gravity 

occurring during earthquakes, see for example Morrill (1972). Numerous 

authors using numerical codes suggest that 25% of such high values can 

be attributed to topography effects, Boore, (1973), Trifunac (1971), 
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or Bouchon (1973). However, it would appear to be quite easy to 

generate a factor of two by subsurface focusing at high frequencies of 

the type discussed in the previous section . But since the observa

tions of large earthquakes contain information from 20 Hz to static 

offsets, we must be careful to understand the effects of lateral 

structure at all wavelengths. Thus, we have started work on including 

the effects of boundary curvature on curved wavefronts where the dura

tion of signal need not be short compared to the travel time. 

In summary, we have presented a practical method of generating 

synthetic seismograms for models containing non-parallel boundaries. 

The method consists of Slililming generalized rays describing the various 

possible paths based on the ray construction for dipping structure 

discussed earlier in Chapter 1. The response of each ray is determined 

by its numerical behavior near its particular arrival time. A 

comparison between synthetics generated by this new method with those 

obtained by finite element for a basin structure are presented and 

a number of possible applications discussed. 
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APPENDIX 

In order to help understanding, the derivation of (2 . 10) is a s 

follows, 
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Chapter 3 

AN APPLICATION OF THE FINITE ELEMENT METHOD IN 

WAVE PROPAGATION PROBLEMS INVOLVING IRREGULAR STRUCTURES 
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ABSTRACT 

The finite element method is very effective in solving problems 

involving wave propagation in irregular structure, especially since 

in most cases these problems do not have closed form solutions. This 

study presents a comparison between the finite element method and 

analytic solutions for two typical problems, namely, one of an SH 

pulse propagating through a dipping layer with a low shear velocity, 

and the other of a vertically incident SH wave impinging on a curved 

boundary separating two regions with contrasting wave velocities. 

The study is concerned with layer thicknesses of about 2-10 km, a time 

window of about 30-100 sec, and wave velocities between 1-4 km/sec-The 

results of the calculation are presented in the time domain and the 

resolution power of the finite element method is discussed. Some 

interesting characteristics of wave propagation in such structures 

are pointed out. 
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INTRODUCTION 

elastodynamics in a composite medium. 

Generally, rigorous analytical solutions are limited to problems 

involving regular structures which can be trivially described in a 

Cartesian, spherical or cylindrical coordinate system. However, 

irregular structures are such common features in the earth's crust 

that we can not go any further without understanding them. In the 

recent papers by Hong and Helmberger (1977, 1978), analytical methods 

for some of these problems are introduced . Since the accuracy of 

certain frequency-dependent approximations in their methods cannot 

be rigorously justified, an independent check is necessary. Finite 

element methods, as well as finite difference methods, are the best 

for this purpose. In addition, these methods have very high potential 

to be used as a general procedure to investigate many interesting 

problems in both seismology and earthquake engineering. 

In this study, we used a low order, explicit scheme, which was 

originally developed by Frazier and Peterson (1974) and named as SWIS . 

It is a very fast scheme but needs dense grid to achieve accuracy . 

On the other hand, smaller element size requires smaller time steps to 

remain stable, thus costs more computing time. In the next section, 

we will discuss resolution power and stability, and find an 

efficient way to grid a system. 
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RESOLUTION POWER AND STABILITY 

The resolution power is the ability of a scheme to resolve signal 

from noise. It can be achieved if the dominant modes in source field 

are well sampled. The criterion varies from one scheme to another 

Here, we took a severe consideration to keep the grid size small e r 

than one-tenth of the quarter-power wavelength. The quarter-power 

wavelength is defined to be the wavelength corresponding to the 

frequency of upper-quarter-power point in the power spectrum of the 

source time function. Generally, similar criterion of resolution 

power should also be considered in time domain. But in an explicit 

scheme, it is not necessary since stability requirements also insure 

that the time steps are sufficiently small. 

In many time stepping schemes, certain modes can be amplified 

step by step and rapidly ruin anything else. The stability criterion 

of the three-step central difference scheme, used in SWIS, is 

nf6t < 1 ,where f is the frequency of a mode, 6t is the time step. 

The highest possible mode in the system is determined by the grid 

size. If we take the most severe consideration, the highest mode 

could be the one with frequency of (v /2h ) , where h is the minimum s s • s 

grid ~ize in the region of highest wave velocity, v. Therefore the 
s 

time step 6t should be smaller than 2h /nv . s s 
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CASE STUDY 

Here we are going to investigate some cases which are interesting 

in geophysics and on which some analytical methods have been worked 

out. We classify these cases into A) and B). 

A) SH-wave Propagation in a Dipping Layer Over a Half-space From 

a Uniform Line Source. 

The structure we consider here is the same as that shown in 

Figure 1 . 8, with the following parameters, a= 10°, 1 1 2.24 km, 

1. 6 km/ sec, = 9.47 km, L
3 

= 4 km, L4 = 10 km, 

3 S2 = 4.8 km/sec, pl= 2.6 gm/cm, 

1 5 = 31 km, 8
1 

3 
p 

2 
= 2 . 7 gm/ cm . The grid system 

used in our computation is shown in Figure 3.1. Notice that quite a 

few distorted elements are introduced. Such a grid design is based 

on the consideration of compromising the requirements for accuracy 

and for computing economy. The maximum and minimum values of grid 

size, which control the resolution power and stability respectively, 

are: 

In the region with x > -20 km, 

h (in layer) = 0.5 km, 
max 

h (in half-space) = 1.5 km, 
max 

In the region with x < - 20 km, 

h (in layer) = 1.5 km 
max 

h (in half-space)= 4.5 km 
max 

h . (in layer) = 0.42 km 
min 

h . (in half-space) = 0.40 km; 
min 

h . (in layer)= 0.42 km 
min 

h . (in half-space) = 0.40 km 
min 

The source time function is an equilate ral triangle with dur a tion of 

3 seconds and peak value of 1. The corresponding quarter-power 
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wavelength is 5.41 km in the layer and 16.22 km in the half-space. 

It is loaded at the node with coordinates (x,z) = (O, -6. km). 

Notice that the criterion of resolution power is satisfied in the 

region with x > -20 km. However, in the region with x~ -20 km, which 

is added to prevent the artificial reflections, the criterion is not 

satisfied. A source of concern is whether the noise generated there 

could interfere with the signal in the right region or not. Here 

we perform a test as follows. The medium in the layer is set to be 

identical to that in the half-space. The results are shown in Figure 

3.2. If there are significant noises coming back from the left region, 

their arriving time at the two receivers separated by 20 km should be 

different. But there is no such phase that can be identified. Notice 

that the noises in Figure 3.2-a and Figure 3.2-b are not precisely 

reflecting the characteristics of noises in the real situation in 

which the shear velocity in the layer is smaller. However in Figure 

3.2-c, we try to illustrate an equivalent situation by picking a 

location in the region where the ratio of grid size to quarter-power 

wavelength is larger. 

After this test, we run the actual problem with the soft layer, 

described above . The results are shown in Figure 3.3. Notice that 

the rays transmitted from the half-space can be trapped in the dipping 

layer. We can pick the second phase of each trace in Figure 3.3 to 

examine it. It is apparent that this phase is gaining the feature 

of critical reflection at receivers away from the source in the down

dip direction. More detailed discussions through the generalized 

rays can be seen in Chapter 1. In Figure 3.3, the results of 
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Figure 3.2 The displacements caused by an SH line source in a 
uniform medium gridded in the way shown in Figure 3.1. Analytical 
solutions are also presented for comparison . 
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20 sec 

Figure 3.3 The displacements in a soft dipping layer caused by an 
SH line source. Analytical solutions, marked with CD, are also shown. 
Each number in this figure refers to the horizontal distance from 
source to each receiver which is on the surface . 
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generalized ray theory are also presented for compar ison . The agreement 

is good in general. The long period drift found in this comparison 

should be due to the inaccuracy in the approximations pointed out in 

Chapter 1. 

B) The Interaction of an Incident Plane SH Wave With Structures 

Involving Curved Interfaces. 

An incident plane SH wave with a given displacement time f unction 

f(t) can be simulated by loading body force on a plane with time 

function of df/dt. The reason is given in the Appendix. 

(1) We consider the structure of two half spaces seperated by 

a periodic semicircular interface. For SH wave propagation,this 

structure is mathematically equivalent to a finite structure 

consisting of one period of the original structure with traction 

free boundaries at the sides. The configuration and the grid system 

are shown in Figure 3.4. The maximum and minimum values of the grid 

size are listed as follows, 

h (in upper half-space) = 0.67 km, h . (in upper half-space)=0 . 33 km 
max min 

h (in lower half-space) = 2. km, h . (in lower half-space)=0.33 km 
max min 

In the upper half-space, the shear velocity is 1 km/sec and the density 

3 is 1 gm/cm. In the lower half-space, the shear velocity is 3 km/sec 

3 
and the density is 1 gm/cm. 

The source time function is an equilateral triangle with durat i on 

of 6 sec and peak value of 1. The corresponding quarter-power wave

length is 6.76 km in the upper half-space and 20.27 km in the lower 
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half-space . The source is loaded at nodes with z = -23 . 86 km. 

in order to check how well this planar loading can simulate the 

teleseismic incidence, we perform the following test. The medium in 

the upper half-space is set to be identical to that in the lower half

space. Figure 3.5 shows the results, compared with analytical solution. 

The agreement can not be better. 

Then we go back to the problem with soft upper half-space, Figure 

2.6 shows the displacements at two locations in upper half-space. We would 

like to point out that the humps in those traces are indicating the 

arrival of some rays which experienced ninety degree phase shift by 

the effect of boundary curvature. The results of glorified optics, 

and of finite element method have been presented in Figure 2.6 for 

comparison. Notice that the long period components are not favored 

by glorified optics , even though we can still see good agreement 

in this comparison. 

(2) We consider a soft basin over a half-space . In order to 

compare with Boore's results by finite difference method, we use the 

same model described below. 

The equation of the interface is given by, 

-D 
z(x) = 

-D 

where, D = 1 km 

w = 50 km 

C = 5 km 

C J1 [2n(x-w/2)]{ 
-21 -cos w ~ ' 

for - :::!_ < 
2 

, elsewhere 

x< 
w 
2 
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Analytical 
~--------------------/ 

Finite element 

sec 20 30 

Figure 3.5 The displacement caused by a planar loading in a uniform 
medium gridded in the way shown in Figure 3.4. 
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In the layer, the shear velocity is 0.7 km/sec and the density is 

3 
2 gm/cm. In the half-space , the shear velocity is 3.5 km/sec and 

the density is 3 . 3 gm/cm
3

. 

A plane wave is impinging vertically with the displacement func

tion f(t), the Ricker's wavelet 

f(t) ~ 1 
= -

2
- (a -

2
) exp(-a) 

and 

a = 

t = 18.3 sec , t is the time shift, can be given arbitrarily . 
p s 

The configuration and grid system used in our computation is 

shown in Figure 3.6 . The maximum and minimum values of grid size are 

listed as follows , 

h (in layer) = 0 . 71 km, 
max 

h . (in layer) = 0.49 km 
min 

h (in half-space) = 3 . 57 km , h . (in half-space) = 0 . 71 km 
max min 

Nodal forces are loaded at the nodes with z = -19 . 8 km . The source 

time function , df(t)/dt, is drawn in Figure 3 . 7 . The corresponding 

quarter-power wavelength is 6.90 km in the layer and 34 . 48 km in the 

half space. 

The displacement at the surface receivers has been shown in 

Figure 2.12, accompanied with the results of glorified optics . We 

noticed that a simple plane wave pulse becomes a long wave train after 

interacting with the soft basin, and its shape is varying dramatically 

from one location to another . At the central part of the basin , the 

displacement can be much stronger than we can ever expect in the 
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Figure 3.6 The configuration and grid system of a basin structure. 
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0.5 (a) 

0.5 (b) 

0 30 sec 

Figure 3.7 The Ricker's wavelet (a) and its derivative (b) . 
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structures with planar interfaces . And at a location close to the 

edge of the basin, the wave train shows the separation of two groups 

of phases, one of them comes across the bas in from the other side. 

The complete interpretation about what these phases are and why they 

gain large amplitude has been given in Chapter 2. 

From Figure 2 . 12 , we can see the agreement is good in general. 

Certain disagreements show up. We think that is caused by the 

inaccuracy in glorified optics. In Figure 3 . 8, we present the spatial 

deformation pattern of the soft basin , varying from time to time. 

We can see that the energy trapped in the basin can hardly get out. 

Thus the vibration lasts very long, especially in the central part of 

the basin. 

DISCUSSION 

In regular structures, uniform grid system with elements of 

regular shape can be trivially made. However, in irregular structure, 

we have to introduce many distorted elements. 

The stiffness or restoring force evaluated in a distorted element 

is less accurate. However, through the comparisons with analytical 

solutions in this study, there is no evidence that such inaccuracy 

could significantly distort the major part of a signal , as long as 

the criterion of resolution power is satisfied . 
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the SH displacement is drawn in the x-direction. 
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CONCLUSION 

Although it is a powerful tool, the finite ·element method hasn't 

been used extensively in seismic modelling or inversion. One reason is, 

of course, the speed and cost of the existing computers. The other 

reason is, as other numerical methods, the connection of each phase 

in the synthetic seismogram with the structure parameters is implicit. 

In this paper, it is shown that by combining with the analytical 

approximation we can thoroughly understand the wave propagation in 

many irregular structures. And, thus seismic modelling and inversion 

to great details of the structures are possible. 
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APPENDIX 

The tests of grid systems are often performed in uniform media . 

Therefore, we list here the analytical solutions for calibrations. 

In a whole-space, the differential equation of motion for SH-

wave is 

here, 

( 

2 .. a u 
Pu=J.1 clx2 a

2u) + --
2 

+ f(x,z,t) 
dZ 

u, the displacement in y-direction 

x,y,z, Cartesian coordinates 

f, the body force per unit volume 

p, the density 

J.1, the shear modulus 

1) Line source, i.e., 

f(x,z,t) = o(x)o(Z)T(t) 

here, T, source time function 

6, a-function 

The solution is, 

1 
{,(t)* 

1 l u(x,z,t) = 
2nµ ✓ t 2

-t~ 

here, *, means convolution 

c, shear velocity 

2) Planar loading, i.e., 

f(z,t) = o(z)T(t) 

✓x2 + 
2 

z 
t -

0 C 
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The solution is, 

u(z,t) 
z t ::: 

0 C 




