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Introduction.

The subject of integration was first treated abstract-
ly by Fré&hey*. Numerous other authors have contributed to
the subject, notably Saks™™,Bochner***, and most recently
Birkhoff T, A comprehensive discussion of the possibilities
was presented by Zolmogoroff F¥, mhe purpose of this thesis
ig to unify some of the previous theorieg and to present
some new ones,

Chapter I is devoted to the most obvious generalization
of the classical Lebesgue theoryg. Chapter II extends the
definition of Chapter T in such a way that no special treat-
ment is necessary for unbounéed funcpions or sets. Chapter
TIT is a discussion of the theory of summation of divergent
series, an anvnlication of which is made in Chapter IV to
the question of divergent integrals.

Questions of relative generality of these and other
integrals are usually so easily answered that no formal
proofs were deemé&d necessary. For example, the integral of
Chapter I includes the classical ILebesgue, Stielt es, and
Padont*tintegrals of bounded functions. The integral of Ch
Cha~ter TI includes those of Saks and Bochner and is in-
cluded in RBirkhoff's. FPinally those in Chapter IV are
obviously generalizations of the classical Riemann- and
Lebesgue~-Stieltjes integrals.

Before continuing I wish to express here my apprecia-
tion to Dr.A.N.Michal for his guidance in the writing of

this thesis.



Chapter I,
Integration of Measurable Functions.
l.Spaces.
In this paper the following types of spaces are con-

gsidered and the indicated notstion used.
B; a Banach space, normed, complete, closed under addition
and under multiplication by real numbers, elements denoted
by L. o % q, LI, F. G, nomm by l.\.
R; the real number svace, elements denoted by d\§£x(9_€,5
positive integers by i,j,m,n,p,q,r,M,N, absolute value byl.|.
V; a metric space, the only property of distance being that
the distance between any two points approaches zero as the
distances between each of them and an arbitrary third point
approach zero,
D; a metric svace, elements denoted by s,t,u,v,,w, distance
by \s-t\ | with the following postulates:

(1)e Bquality defined, symmetric, reflexive, transitive,

(BY, ls-ting .t5-Elzl4-31 :iB=-4\=0.=. B2 .
The smace D is said to be dense at the point s if, for any

) 1iteD, Lt-sl<4g.

S; a "measurable" gpace, elements denoted by x,y,z, sets
of elements by A,C,E,X, with the properties:
There exists at least one set X off elements of S and
a family X of sub-sets of X such that:
(L)oo Ack > (X-Aye X {81 A“e%.aﬁi Al cell.
(3). There exists a function, denoted by |..\ , called

measure, defined throughout X to R such that
Ane X 5. Ruw L2 ALz 2. VAL

w —0p f



" meaning that if the left member is infinite so
is the rizht, while if the right member is fi-
nite so is the left, and the equality sign is to
obtain if and only if the A, are disjoint,

Such s8ts A will be called measurable sets, the term in-

cluding not only sets A for which 3| A\ = a finite number,

but also sets A for which A A, \A.\: A:;? A ., 80 that

lAy:%g:;\EZ/AWK and consequently | A\ need not be finite,
Throughout it will be explicitly mentioned whenever \|A\
ig assumed to be finite.

By means of the convehtions herein adopted the nature
of a function will be made evident by the letters used in

its expression. Also, throughout, a summation sign with no

range 1ill indicate a sum of a finite number of terms.

2. The General Princinle of Convergence.

Let u be a variasble over a space D, Let u' be a fixed
element of D, at which D is dense. Let f(u) be a function
on D to B, no requirements being made as to simgle-valued-
ness. Then the following theorem is true, the proof being
exactly the same as in real number theory:

THEOREM: A necessary and sufficient condition that f(u)
approach a limit as u arproaches u' is that
(f(u)=f(v)) approach zero as u and v approach

u' independently.

This theorem will be referred to as the general principle
of convergence., As a matter of reference we next state

- (v
Frechet's extension of the Borel-Lebesgue theorem:



THEOREM: Let X be a family of sets T SA <V , where
A is close&t and comnact, such that xe¢ A.>. %X fi»l
for some I, |
Then there exists a finite number of sets 'YKG(%

such that xe A -2. X g*]:K for some k.

3.Measurable Functions. Fundamental Properties.
Definition: The function f(x) is measurable over
the set A: =
(1) For any & , there exists a finite number of
non-overlapping, measurable sub-sets of A which al-
most comer Asie., 1 Aus \Auzl: LA -2 A.\=0.
(2), For any n, 3, X,y ¢ Ay, [§co-Scepl= 9.
(3)e For any of , the sub-set of A containing all
those and only those points for which |Scxl<oL.
is measurable.
For any & , the family A,§ will be called a finite sub-
division of A,
First of all we obtain a necessary condition that a

function be measurable,

THEOREM 3.1, If f(x) is measurable over A, then f(x) is

bounded almost everywhere in A,

Proof: Choose any ¢ . Then, by the sbove definition,
there are a finite number of sets A, which almost cover
A, and in each of which \Scx -Ycy\<€. Denote the sum of
these sets by A'. Then, f/=®) is bounded in A'. For, if we
assume the contrary, ie., for any @ » O, 3’XG?A” \?(m\>cp

then ai/x“i‘u:hunj sA';il?(x“dﬁ is a steadily increasing,



divergent sequence. Hence, 1%%,} = { x.isuch that for
any n, |Scxwn -~ Sox.s\se. Therefore, the points XL

for distinct values of n, must lie in distinct members

of the family A . . Therefore the range of i must be in-
finite if A" is to be covered by 314;.3 « Thus we have

a contradiction.

Having obtained a necessary condition for measurabil-
ity, we now obtain a sufficient one.
THEOREM 3.2. If VZA <SS and A is compact and closed,
and if f(x) is continuous throuphout A,
Then f(x) satisfies the first two postulates
of measurable functions (We shall see later
that the third is a consequence of the first
two ).
Proof: Tn order to prove this we rust make one more post-
ulate about the measure function, namely that it exists,
finite or infinite, for any hypersphere, oven or closed,
contained in X when S is also & V, Explicit mention will
always be made when this is to be assumed., Then, since
f(x) is continuous, 3 S (e, N : \x-x\=<3CeN 2. \Cey Ko\ e |
Define AlCx, €): we A(x, &) =. \y-x\ < J(e, .
Then t € A .>. T € Al 2.€).
Thus, 3 ACx, €1} , for any € , is a family % (see the
theorem of Fréchet in section 2).

Hence, 1 X; , range of i finite = n.

W

xeA > X _6\_ ALK, £3
\w

XeA-D - \x-xil= 5 (%.X;) for some i.

K€ A -D. \Q(x\~{(xn\< ¢, for some i.

Ai(t) for some i.



Thus we have A = Z' Ail€): x ye A€l D o Aplee
for any € .

If the A; were disljoint, our theorem would be proved.
Hence it will be sufficient ot construct disjoint, meas-
urable sets C,¢ such that, for any k , C, <A, - A= :Z C .
Define C, = A, Cy = AK-WKT" (A-Ce) = A(A «E?—C,) - U=2,0.
Now C., +C. = A4 A, (A- Ar,‘) > At AL

Assume that for some r 7., = Zux Py
1 1

F¥t

Then J, C, = b b ‘*}_',,' Ay, = AH,<A'-§’%C}<)+—Z/K M)

Ffl

= A (A-Z‘;./,Ax)ij,/}y\:z Fryp -

F+a

Therefore, by induction Zl,{ Ly & ZZK Ao = A

Next C,C, =¢C,- A,_"(A~C) :‘O.
lqtj b T o7 .CJ, =O) 5»J < .
Then C; C,,, = C; Ay (A-C)(A-C =0.

Therefore, by induction, for any i,j, 1#) -O. C; CJ' L B

vAssume that for some r

’

Lastly, it is obvious that, for =any k, C, < A ,.

We now show that our definition of measurability has

many of the ordinary nroperties,

THEOREM 3.3, If f(x) and o(x) are measurable over A4,
Then ]L(' x) o (x) 1s measurable over A.

Proof: Let | Fool< a0\ 4l almost everywhere in A.
Now D A;. {7 -D.AA =0 LA -Z AL =0.

X.%G A‘.G s 1 \;C\(\—Q(L@\<€.
and 3%{6 % L#J—DB‘BJ =0 = lA-—j[BJl:O

Xy € Bi = | o« ) —oLc%)\<€,



. £
Define A;&(€\ = A ( zd\‘B;‘(é/Z(?).
Then L#hv.;\j‘/\ D A‘.& AL\K:O'

and |A-ZZAl=\ A - ZA;Zrl=\(h-ZA) ¥(A-ZBY
e LA-TAL 4L A-TIR;\ =0,
Xow € Ajile) - \VE oo - }(tpou@\ <
< H’(vﬂ ol € %) -%(X\o((ts\\-\'\ ?(x)o((n) «fc\g\o((tp\

< @ G/l({) ‘7 m(-é/lo( = €.

Hence )L(x)'o((x\ is measurable over A,

THEOREM 3.4, If f(x) and g(x) are measurable over A,

Then t(x) + qe>=y 1is measurable over A,

. &
broof: 3 Age FLA-Z A =0: [#] DA 20 Ry €A IRl )

3B5€3\A—ZBJ\:O D L#) 0. BBy =0 Xiy€Bje 21900 -gopl < €5

Therefore \A == Z—Z A‘J\ =) L#\/l \/J_;t;(.j A'J Ahlz{ :O,
Xy € A‘A -Z.\Ay(xy X S(’” = fnm i g(up\ < €.
Therefore %1 XV X Q) (x) is measurable over A,

Next we prove an extension of Egoroff's theorem:
THEOREM 3.5, If (1). For any n, KYV\(x) is measurable over A,
t2). ﬂ\tx‘\ converges almost everywhere in A.
(3)e A< A+ 3[A*l = & finite number,
Then, for any &, 3 Ay <« A*: UA L =AY -3

such that )LM (%) converges uniformly in Ag,



Proof: Let ﬁﬁ‘,i be a monotonic, decreasing sequence, lim. O.
Define E“‘\, = A*, Ei P> W i \G\}(x) “""CLL x)\ < éy}
Then for any r, E, ., € Eua.r-
Also, for any n,r, E.,.- is measurable,

" = - :
For any r, \A | —.\Z\ t,,yl since {'M(x) converges almost
everywhere in A,
Therefore, for any r, \A*| = Niwe  VE, N

w —>Co

5
Therefore, for any r, 4L N(v+.8§): w= N .3,\A*- E,,_Y\< /1'/,

Also, for sny r, x ¢ £ “P. . SN A3 LRt =K 00 < €.

a0
Define Ay = 11 ky ¢

=1 ’
Then &&x\ converges uniformly in Ag.

and | p¥ - Agl < 2-\AY-E, | <3

THEOREM 3.5', If (1). For any s in D, f(x,s) is measurable
over A,
(2)e D is dense at t.
(3)e f(x,s) approaches a limit as s—1
almost everywhere in A,
(4)s A*<A: 3IVA*| - a finite number.
Then, for any § , 1A < AT I Ag >\ AT S)
such that f(x,s) approaches its limit

aniformly in Ag.

THEOREM 3.6. If f(x) is measurable over A,
Then \f(x)| is messurable over A.

Proof: 3 A, :\& - ZA\l=0" t=j-> AjA; 70.

/.\'-‘j e /’\;e "‘D"\\lt(\:(x\‘\ ‘\¥L\5\\\ = \ s’(x) "g(j\\ <€'



Thereflore |f(x)| is measurable over A,

THEOREM 3.7. If f_ x> is & sequence of functions,
measurable over A, which converges to f(x)
uniformly almost everywhere in A,
Then f(x) is measurable over A.

Proof: For any n A A‘;e A -T A\, Ly -2 A; Ag =

Xy € A%é e VR ey =% e = B
A w.(e)wm Zw,le Yy oD VKo - ¥W(x5‘\ < €.

Hence, define A, :A?cqg3 where n= 0, ( </3)

Then A - Z A:\=O - =) O A; A;,f =0,

—

L § oy — Fo\ <\ Soa-Fuco\ s\ FLoa - Tuop\ ”\Q“}%\‘¥U©\

e L) -y € A, NS0 = Ry < S v+ *

Ky e Aie " L S-S\ < €.

ie., f(x) is measurable over 4,

THEOREM 3.7'. Let f(x,s) be defined throughout AD, except
when s =t. Let f(x,s) > f(x) as s —1t, the
convergence being uniform almost everywhere
over A, For each s, let f(x,s) be measurable
over A, and let D be dense at t.

Then f(x) is measurable over A.

THEOREN 3.8, Let T. (> be a sequence of functions, meas-

urable over A, which converges to f(x) al-



most everywhere in A. Let A™<A. Ap*\ finite,
Then, for any 6 , 3As< A% INA;-\AYS.
such that f(x) is measurable over Agy.

Proof: Thewrems 3.5,3.7.

THEOREM 3.8', Let f(x,s) be defined throughout AD excep
when s =t, measurable over A for each s.
Let fix,s) - f(x) as s —t, almost every
where in A. Let D be dense at t. Let A2 A.
I\A* finite.
Thhn, for any & , 3As <A - A Asl> \VA¥ -3,
such that f(x) is measurable over A .
Proof: Theorems 3.5', 3.7'.

We now nrove a theorem which shows that functions of
the types considered by Saks and Bochner which are meas-
urable according to our definition are also measurable
according to their definitions.

THEOREM 3,9, If f(x) is measurable over A, then 3 7,09
a sequence of step-functions, which — f(x)
uniformly almost everywhere in A, and conversely.

Proof: Since f(x) is measurable over £, 3 Aic -

[A-ZA\=0: (#§ 2.6/ =0: x,4

3 4 €A 2 VS -f\"-wg’\\«i‘\-
Let ©.. be a monotonic decreasing sequence with limit

~
=

zero, ie.,, I wm_(€): m = my(€¢) D. C.. <

Now, for each i,m, define A; = A, (¢ ) and let X; ¢ A;.. -

For each m define f_ (x : f_(x = Fox, ) = T xe A

Such a function ?mk&. which has only a finite number of

)

distinct values is called a step-function.



Now, let w =>w (€) : € _ < €.

For any m, \ A — ?iA;w\ =,

Therefore \fixy— fo o\ =\ S -5 (x| < €, < €.
Therefore f_(x) — f(x)uniformly almost everywhere in A.

Converse is obvious.

From the definition of measurability it is obvious
that if f(x) is measurable over A and over C, then f(x) is
measurable over A+ C., This can be extended to the sum of
any finite number of sets but not to the sum of a denumer-
able infinity af sets, since f(x) might not be bounded in
the sum set., Also, if f(x) is measurable over A and if C
is any messurable sub-set of A, then f(x) is measurable
over C, This property has already been used.

We.are now in a position to define an integral for

measurable functions.

4, Integration, Definition and Fundamental Properties.

Let f(x) be measurgble over A and let |A\ be finite,

A A L#) D AA =0\ A-ZAN=0.

e’
Xow € Aje O \ch)—-chﬂ = £,
For any i, ¢ , let % ;. € A;Gl

Definition: j Foxrdx = Xiwm Zf f(xies-\ A;@\

A € =0 !

if the limit exists. Tt is clear that if \Al=co , the sum

will not exist for any €,

THEOREM 4,1, If f(x) is measurable over A and if \A\ is

finite, then 12 .]%CX) I .
A



Proof: Define T (v = Zf(x.v\-\/h?\a function on R, to B,
i {

By the general princinle of convergence werneed to show

that 13(e) :p. v <8(e) 2 \T(p)-TO\ <€,

et 5Le) = “laat .
[T =Tl = VE Fox LA - :,Za‘(xjy)»\ A

Define Aiy = A A

Vv

i - \A\-«‘sz\/\;j\

Lt ~Tenl = LT 21 Fog0 - oAl

If A, ,A. have no points in common, \A;

W Y

If A N;, have commonp points, let X;;

v R i

be any such point, so that ’)(\.._A € Aigs Aiv

Then T\ - Loy =\ Z 4% f(xirj -ﬂc(xfd\ f{'(X,-J) -&xh)i'\ /-\-‘3\\
P

S T I 0500 -Fo Wk on) - Fog )l 1A

')

Hence ©, v < S(e) D \I(M\——I(v)\ < €.

THEOREY 4.2. If 3 | § o dm, § gqooo 8
A A

Then =& X"{‘r(x\ + g( x)§ dn = g%(x\d_.rx«l— {\ S(x\c\/x-
A A A

Proof: By theorem 3.4, {'(x}-x%(vd is meagurable over A,

By theorem 4.1, 3 \{5cw 2 gy dx
A

Using the notation of these theorems,



l f{Scw s quod dx — 39 Seadn & U gooaxy)
A A A

< \\?‘?(x\ sqeaYdye —Z Z1 § it\(x-‘i\i\A“X\\
A LA

'\'\ ZZ(\Q(X;&\-‘: Cj)(x;.\?s-\/'\;-g\ ‘? g Sexadx 4 (gfx\ c\x%\
vl 3 ‘& A A
< € if § is sufficiently small. But the original

left member is indevnendent of ¢ , Therefore

H;migmaw = N Sy e & § qOxy d.
A I A

THEOREL 4.3, If « is any real constant and if 3 (foadx
A

Then A \eo-ddx = o- \ Yo d o
A A

Proof: It is obvious that a constant is a measurable
function. Hence, by theoremn 3.3, o fcxy is measurable,

Hence, by theorem 4.1, 1A Xd-wc(x\dx
A

which is clearly equal to - | Frwy de.
A
THEOREM 4.4, If 3 § $¢xo due,
A
Then 1 § \ §¢wo\ da >\ ‘rcxu&»‘\
T4N
A

Proof: By theorems 3.6, 4.1, 2 \ | Sc\ dae
A

3 5(@\ B \'\ < & el D .\g"'(x\dlx *I %(7‘;\\[);\\< G >\ g\‘()ﬂ\dX*’ Zlc(xp)\\A,\\
A 1 A (

Hence g\f;cx\\&"f»} Z\Q(x()\.\Ai\,g \\ SQ(x)M\ é\ZFcy,\\ A,\\‘cG
I - A '

Adding, we have

LK ool Quse Y & Scadx\ 7 Z.\X(X;\\‘u’\'.\ *\7: ¥(“i\\A\'\\~2 € Z=2
A A ' ‘

-~

The left member is independent of &

Therefore S\%cx)\dx -\ S\(x)c\y\ =, 0.
A A



THEOREM 4.8. If (1)s 2 | f0y w0ddm, [aodx
A A
(2). Almost everywhere in A, \fea\=@; () 20.
Then | § Fex) oL €13\ < (?\0((706*’7‘~
A A

Proof: 1 5(6\ 2 < 8 (e) '.3'.\8‘8'0()0((%\6/)( -—%: {'(X")'D((X;) \A,\\ %

A
VS oo dm = oex;) VAN < €.
A
Therefore | | S 2cx1dme\ < € +\Z ¥'—(xi)o((x;)\A;\\é€ ¥ 7 \F WA,
A 3

\S¥Cx)o((x\6~oc\< (5 +C?Zo((%¢'\\Ai\ <€ +t@y¢ +§d<x\Mi
A

\ 9 Q(x\xCXva\ < @ \ dox dx.
A

A

THEOREM 4.6, If (1)s 3 | Taawoadn, | &0 duw
A A
(2), F is the smallest closed linear manifold

in B containing all the values of f(x)
for x in A.

Then 12 SS ¢ F- \ g'(x\o(Cx\&/x:'g ‘\ol(x)(\/x

A A
where £ will of course depend on the function «.
& S\:(ﬂ A Cxy dx 7:‘ j/’CX;‘\ 02(7(;'\ \A,\
Proof: A — S ¢
\ o) A 1o dea&x
A A
( XV AN % ‘
w—>0 ' \o((X\éVX
: A

Now (xLYq\,\A\\,(\&Cx\&x are real numbers., Since F is a
A
closed linear manifold, the righimember sbove is an element

of F, say f.



THEORENM 4,7', If (1). f(x,s) is defined throughout AD
except when s=t.

(2). For each s, B,Sgcﬁs\am
A

(3)e f(x,s)— f(x) as s = t, uniformly
almost everywhere in A.
(4). D is dense at t.
Then 3 \‘icn&zx = R S(’(xs\ dx.
A s—st A
THEOREM 4.8, If A and C are non-overlapping sets, and if
3 (Cooan, v § o b
A C
Then
BN \ §x)dx = Y F o dx 4 \;(x\M,
A

AxC &



Chapter 11,
Integration of Summable Functions.
1. FPunctions having the proverty M (or, belonging to

the class ).

As a generalization of Chapter I we now define an
integral for a more extengive class of functions. In the
new definition no rsestrictions are made rezarding bound-
edness, either of functions or sets. Hovever, in the case
of sets the ususl “evices seem to be necessary for the proofs
of the fundamental properties of the integral. Tn the case of
bounded sets, on the other hand, the fundamental nroperties
can be proved at once for unbounded as well as bounded func-
tions, thus giwing a simrnlification of the theory as fouund

)
[ ]

: : (
in Titechmarsh

Definition: f(x) is of class If over A: =
(L), Por any & , there exists a denumerable
family of disjoint, measurable, boundeé

sub-sets of A wliich almost covers A,ie.,

EA“S‘. \ A —E Al=0: n#Fwm >, A“/.\m___O.

(2). For any n, d, %4 € Aus 2 LS -fapl < 3.
(3). For any { , the sub-set of A containing
all those and only those points for which
\Scx\ < oL is measurable.
For any O , such a family of sets A,5 will be called

8 subdivision of A.

THEOREM 1l.1l. Any measurable function is of class M.



THEORKI 1.2, If (1), f(x) is of class M over A.
(2)e B is a measurable sub-set of A.

Then f(x) is of class I over B,

THEOREM 1.3, 1f (1), For any n, f(x) is of class m over A .
(2)e vz w > A A, _=0.
©
(8le VA — 1 A \=0

Then f(x) is of class M over A.

This depends simply on the denumera®ility of a denumerable

set of cdenumersble sets,

THEOREM 1.4, If (1). \ A - f LI
(2)e 3 LAl VA
(3)s For any n, f(x) is of class Mover A,
Then f(x) is of class M over A.
Proof: See theorem I.3.2.
Define A¥:= ji A, : Then \ A-A*\=0.
Define C,= A, = C. = A. T (A*-C) = AL(A™- 3‘ )

" » r=i
For any n, 7. C, = 2y By : wegwm ->.C,C, =0.
Therefore i Ch= A*: Y A& af; c.l=0. |

By the preceeding theorem, f(x) is of class M over A.

THEOREM 1l.5. If (1)s A\ A\, finite,
(2)e Por any & , IA5=A- \As\ >1A\-8,
(3)e £(x) is of class M over Ay.
Then f(x) is of class I over A.
Proof: Let d,. be any monotonic decreasing sequrnce with
limit zero. Define Aufl\gn . Then |\ A-fl Alz0
The remainder of the proof follows immed;;tely from the

preceeding theorem,



THEOREM 1.6. If (l1). A is measurable.
(2). For any A*= A such that 3\ A™\
finite, and for any O
A Az =AY VARl LAY A
(3). £f(x) is of class M over Ag
Then f(x) is of class M over A.
Proof: By the preceeding theorem, f(x) is of chass I over A”
Let A, be any sequence of sets offinite measure such that
| A= Z A\ =0. Then, by theorem II.l.4, f(x) is of class If

n=)

over A,
THEOREM 1.7, If A is a compact closed set in a measurable
space V and if f(x) is continuous over A,

Then f(x) is of clags M over A,

Proof: ‘heorems L148:2,8m8 TI.l:1,

THEOREM 1.8, If fi(x),d(x), are of class Il and bounded
almost everywhere over A

Then d(x-5x)is of class M over A.

THEOTEM 1.9. 7f f(x),g(x) are of class I over A4,

Then ¥(xy +q(x) is of class M over A.

THEORE!! 1.10, If f(x) is of class Il over A.

Then \f(x)\| is of class M over A,

THAOREM 1.11, If (1). For any n,¥“<xy is of class M over A.
(2), §, (0 -—~%00 uniformly almost everywhere
in A.

,Then f(x) is of class ! over A,



THEOREM 1.,11', If (1). D is dense at t.
(2). For any s in D, f(x,s) is of class
¥ over A.
(3) f(x,8) —f(x) as s —t, uniformly
almost everywhere in A,

Then f(x) is of class ! over A.

We also have the extensions of Egoroff's theorem analogous

to theorems I. 3.5,3.5'.

THEOR*M 1.12. If (1). For any n, f (x> is of class ¥ over A.
(2)s £ <x) converges almost everywhere in A,
(3)e A"= A - 3VA* | finite,
Then for any § , a Ag <A™ 3| A\>\AY(-F

sucn that ?ch) converges uniformly in Ay,

THEOREM 1.12'. If (1). D is dense at t.
(2)e For any s in D, fl(x,s) is of class If
over A,
(3)e f(x,8) —f(x) as s —t, almost
everywhere in A,
(4)e A< A:31A*| finite,
Then, for any § , 3A;=A" 1|Asl>lA" -3,

such that f(x,s) — £(x) uniformly in Ag.

THEOREM 1.13. If (1), For any n, ﬁA(xsis of class II over A,
{2 e %“CXN-+¥(ﬂalmost everywhere in A,
Then f(x) is of class I over A.

Proof: Theerems 1I.l1.12,1.11,1.6.



THEOREM 1,13', If (1), D is dense at t.
(2)e Por any s in D, f(x,s) is of class
I over A,
(3)e f(x,8)—>f(x) as s - t. almost
everywhere in A.
Then f(x) is of class I over A,

Proof: Theorems Il.l.18" 1.11',1ls6.

Thus we see that functions of class M have all the
ordinary properties of measurable functions in real number
theory. Tn particular, the class !7 is closed under limiting

processes applied to functions or sets,

DEFINITION: fix) is an elementary function over 4A: =

AA“\ \ A\,\\ finite‘\/\t\_l'.. 8 A\AS A:V\¢\M3'AMAM=O.

\/-\—'Z;A“\=D'. ’XGA“.’D.§(X‘): ‘{V\ :

gn 8 constant for sach n.

THEOREM l.l4. f(x) is of class M over A if and only if
3£§x\ a sequence of elementary functions
which converges to f(x) uniformly almost
everywhere in A.

This shows that any function which is measurable sccording

o Saks or Bochner is of class 1M,

THEOREM 1.15. In the definition of functions of the class M,
postulate 3 is a consequence of the first 2.
Proof:tg. Let &M(ﬂ be an approximating sequence of ele-

mentary functions, as in the preceeding theorem.



Then, clearly postulate 3 is satisfied by each §w\(x3
Let & Dbe any positive real number,
For any m, 3 %“w{x\ A E o - +mm(x\\<=\/1m
Define Q. = A-EI\Sa_Ool=s - V-
Then, in G.. . \Scwo\ < <.
Conversely, if \S(x\ <x let \Scxwl= &£~ €.
Let L. < & 5 -—€ < T74a¢
Then \;mm("\\ <\ Sl *{w (- € 42‘/,,, < < - VZW
Therefore A'E§\¥ch<«i=A-%?Gmexcept for a set of
|

measure zero. Hence postulate & is satisfied.

2. Summable Functions.
Definition: f(x) is summable over A: = :
(L), f£f(x) is of class M over A,
(2). For any & , any subdivision A.s , any
% €A, the seriesj%lWTﬁNﬁ)converges.

&0
Hence, the series 7 fx, )| A\ converges,
{, =t

e begin by finding sufficient conditions that a

function be summable,

THEOREM 2.1, If (1), f(x) is of class M over A,
(2)s f(x) is bounded over A,
(3)e \A\ is finite.
Then f(x) is summable over A,
Proof: Let @ 2 (¥l
Then f VECcx VWAL < Cp“\A\

n=1
But, any bounded series of positive terms is convergent.



THEOREM 2.2, If (1). f(x) is of class M over 4,
(2)s For any & , some subdivision Ags
any w%,eA, ;3 7 el AL
(3)e For any n, & ": A,.. i1s a subdivision

6F Bu, %X € A,

Wi

@
Then 3 2\ §(xu.\\A.,.\ , the manner of summing

v

{
being immaterial since all the terms are positive.

&
Proof: Lemma. 72 @\ A\ where @, is the least upper bound

-

of f(x) in A, . From the definition of the class I of func-

tions it is clear that 23 QWA , any n, o.

Also, by the definition of a least upper bound, for any n,51€,
1% e A, such that o <« @, - \SxD\ = €.

Choose ¢ = q)“/g\ ,Then @, < 2\ S (x.o\ .
®

Therefore 2 P VAL = 2 72 \Fxo\l ALl

=t n=1
and, by hypothesis, the right member of the inequality exists.
o s3] o]
%

Now, 2 | ¥ix, . )\A...\ Z 0, 2 VAL lgjq&\Aﬂ

v, r~

(A

0 sy

and, by the lemma, the extreme right member exists.

THEOREM 2.3. If (1). \A\ is finite.

(2). f(x) is of class M over A.

(3)s For any & , some subdivision A,

any x_c¢ A, , s,f'\FLxg\\AvA
Then f(x) is summable o;zr A,

Proof: By the definition of summability it must be showm
that if, for any & , B,y is any subdivision of A,u ¢ B,
then 3 L \§cgallBa |

Define A, A, B, . ILet X.. € A, -
Then



=4

TS B = 2 T L F AL

M2t nz)
® o .

£ T L \?(3w\-1c(x"w\\\AMm\ w2 2o VEo, WAL

' 1
@» [-&]

< SAAL & Zm Zu VS oxud\\ AL

By the preceeding theorem, the right member is, for any )

finite.

THEOREH 2.4. If (1), \A\ is finite.
(2)s f(x),g(x) are summable over A,

Then Scx) > q(x) is summable over A,
Proof: Let A, B, be the respective &/ 2 subdivisions of
A for f,g.
Define A, .. = AwDu .
Then A,,.is a & subdivision of A for S x q(x)
Therefore, by hypothesis 2, 3 l?; RIE IR T TE (-

Therefore, by theorem TI.2.3, ¥<X>5:ggx\is summable over A,

THEO™EI 2.5, If |A\ is finite, then any measurable function

is summable.,

THEOREY 2.6, If ffx) is summable over A, so is |f(x)|

and conversely.

THEOREM 2.7. If f(x) is summable over A, and if B is a
measurable sub-set of A, then f(x) is summable

over B,

THEOREM 2.8. If f(x) is summable over A and over B,

Then f(x) is summable over A+ B, AB,

THEOREM 2.9, If f(x) is summable over A, and if X is any

real number, thenﬂi.an) is summable over A,



THEOFEM 2.10. If (1). RGO 20O, summable.
(8)e ol(x)= 0O, of class M,
(3)e ol (O §(§(xﬁ.
(4), \A\ is finite.
Then oA(x) is summable,
Proof: Let A.. %, be O subdivisions of A for o, f respect-

ively. Then A _:pA R, 1is a § subdivision for o and

n,
]

for 3 . i‘ \ (xo MNALN = 7 \G(X\M\\\Am«\

and, by hypothesis (1), the right member exists.

Therefore, by theorem 11.2.3, «(x) is summable,

THEOREM 2,11, If (1). |A\ is finite.
(2). For any n, %, (x) is summable over A.
(3)e §_ca — tx) uniformly almost every-
. where in A,

Then f(x) is summable over A.

Proof: Let Av: be a 8/3 subdivision of A for @mcx\

Let m be such that | & (x) — S (x| < 8/3

almost everywhere in A.

Then A, is a & subdivision of A for f(x).
O

® : W .
F gV ATY £ T\ F o=t WA« 2, LS el TAT
] \

§-\A\ > TR L. R
& v L PR ORD "
S nzsi

and, by hypothesis 2, the rightimember exists.

THEOREM 2.12. If (1). \A\| is finite.

(2), For any n,\i\c»o is summable over A,



(3)e For every n, \S.ool <o (x) where ol (x)
is summable over A,
(4). %mcx\_—>¥cﬂ as w - oo almost
everywhere in A.
Then f(x) is summable over A,
Proof: By theorem I.1.13, f(x) is of class M over A,

Hence, by theorem 1I.2.10, f(x) is summable over A,

3. Integration of Summable Functions.

Definition: v(e) = Z fx)\A . \where A, is any €

ns |

subdivision of A for f(x), %. ¢ A,.
Definition: {$G0dx = Uwe F(€) 1f the 1imit exists uniquely.

A € >0
e begin with existence theorems.

THROR®M 3,1, If (1), f(x) is summable over A.
(2)e \A\ is finite,

Then 2 S S =) &,
A

Proof: Tt is sufficient to show that F(e) satisfies the

Cauchy condition.
@ Ly
IE(e) =€\ =\ Zu Foxu\ALe |l =2 Foxng) VA sl
\

(2

Ag in the »roof of Theorem T.4.1,

s

Define Awn-Pue A5 Then \A\ = .. AL

]

since A, are disjoint. Let %, € A, ..

Then | F(e)-F( 3 < \.Z:?Q(xnes—thwgﬁ\Auw\4\Zl{?fx“w\-Qfxwgﬁ\Ahhﬁ
y y,‘w, Yo v

" )

© ‘ o . @ _ _
< 2 ARG FTOGONAL VT \’?(xmw‘a-?(xmg\\\#\uw\

< (€« 3Y\A\ .



and the right member can be made arbitrarily small by
making €, § su’ficiently smaihl.
The above manipulations of series are permissible

since each is absolutely convergent.

THEOREM 3.2, If (1), f(x) is measurable over A,
(2). \Alis finite.
Then the two definitions of its integral are
equivalent.
Proof: Theorems I[.3.1,4.1,1I.2.1,3.1, and the general

vrincinle of convergence.

Thus if a function of cakges Il happens to be measurable,

there will be no ambiguity in the expression: | §c. dx.
A

THEOREM 3.3. If \A\ is finite, then a necessary and suff=c
icient condition that A 1%cx dx is that
Ao a3 then | [Sondn| < | VSl A

Proof: By theorems I1.2.6, 3.1, {;e equivalghce is evident.

The remainder of the proof is exactly the same as that of

theorem I.4.4,
THEOREM 3,4, If A \YToadx, {q(0dx J8) finite,
A A

Then A ({§cx * g0 M:S{ux&xgﬂﬂm due .
. B A A

Proof: Theorems 1I1.,2.4,3.1, remainder of proof as in

theorem T.4.2.

THEOREM 3,5, If 1A &A’?v:x)éwx and of 1is any real number,

Then 2 S&S;Cx)d/x = o S‘S‘&x)(\/x
A A
Proof: Theorem II.2.9.



THEOREM 3.6. If (L1)e 3 (oo foadn, (00
A A

(2)e \SOo\< @, ol(x) 20 almost everywhere in A4,

Then SA(x)?(x)&m\f:c? \oL(x\(&xA
A K

Proof: Same as that of theorem T.4.5.

THEOREM 3.7. If (1)s I (oo oy dm, § oo dne
A A

(2). F is the smallest closed linear mani-
fold in B containing all the values of
f(x) for x in A.
Then 3te F  such that («(of(odw = § %:xxud«.

where f will of course depend on the functionol.
Proof: Same as that of theorem I.4.6.

THEOREM 3.8, If (1). \A\ is finite.
2)e POXIZ0O <X (x) € A(x) almost everywhere in A,
(3)e pCx) is summable over:rA,
Then 3 gx(xhém. % PCxrdn = &‘ifwﬂ A .
Proof: By theorem II. 2 10, cicx\ is summable.
By theorem II.3.1, 3 \Aoux\ &, I g B dae
Inequality is obvious. "

PHEOREM 3.9. If 3 | §ex s, § £ dx, L ABL =0
A B

Then 3 \;cxydxx = %g(x\ Ax A XQQ’OM.
A3+B A B
Proof: Theorem II.Z2,8.

THEOREM 3.10, If 3 g*(%)&u , Bris a measurable sub-set of A4,

A
Then :& S ;(xﬁd/x

Proof: Theorem II.2.7. 2



THEOREM 3.11. If (1). A\ is finite.,
(2). Por any n, 3 §§ 00dx
{8 ) %cm—»i»(x\ unii?ormly almost everywhere
in A,

Then 33%@\&«: L T \?WCMM.
A

w—o A
Proof: By theorem II.2.11, f(x) is summable over A,
By theorem II.3.1, 3 | Scx dn

A
Remainder of proof is the same as that of theorem I.4.7.

THEORENM 3,12, If f(x) is of class M over A, where Al is
finite, then a nccessary and sufficient con-
dition that 3 ) f(xdx is that the series

A

2 wl\A L\ converge, where for anmy m,

m=0

A= A.Eimf\:cx»pmn%.

Proof: For any € , let A, be any € subdivision of A,

By theorems II.2.2, 2.3, 3.1, we must prove that the con-

dition stated in the theorem is a necessary and sufficient
condition for the convergence of the series %.m \‘Q(xmc\\\AM'Aw\

2

where Xuwn. e < Aue A
@

o2
© o

Now (Al & 7o wmA A A2 Zam \S O ONAANZ 2, ml AL
0 L O o

from which inequality the result is evident.

COROLLARY 1. If \A\ is finite, and if 3 ) FGodu.

A
Then Nuwe, MABLN =O.
> o i
where B AE] m < | oo\,

00
Proof: Since . vwii/'%,h} converges,

a

X M(G) 7 Vbt'\[\m\ <€.

A_

M



(o]

<O o
But M- \B \ = M- Z. VAL = e wm\ KL\ < €

(AN (AN
COROLLARY 2. The necessity does not depend on the finiteness
of \aAl.
(s3]
Therefore 2. \A.\ must converge.

Therefore \® | is finite.

COROLLARY 3, Similarly, if for any positive number « ,

R, = A-ES o < V5o

and if 1 \ §cx A .
A

Then \® ,\ is finite.

THEOREM 3.13., Define 'Sk(x) = S 2\ S ol <u
- o : = AKewl 2w
If \A\ is finite and if =3 | §cx &y .
A
Then § Scxrdy = Rowe. ) §x) &
A w-—oea A

Proof: Using the notation of the preceeding theorem and its
corollaries, \ E\Q(x\.M - S ;J"’M\ =\%g¥< ) dae |

For any & , let A_gbe aA S subdivision of A.

Define A, 5. =A,.5 A, LTet X, 5. € A

V\Sw’

Then | { Scodal £\ | S dx — I 7%::“ ST N LF: |
B, B, ‘ '

2 2 = <«
w70 Lo VSO N A < Wk Zu 2 eV A s
‘ - W

[}

© it
W [N

By the preceeding theorem, the third term can be made arbi-
trarily small by & suitable choice of h, Similarly for the
second term. After h has been so chosen, the first term can

be made arbitrarily small by a suitable choice of Y , from



the definition of the integral.

COROLLARY . If \A\ is finite, 3 {Scx> dne.
A
Then 13 g\{‘Cx\\AJX —3 &/\/\/\/\- g \g\:“CX\\ A .
A w—> QGO A

We now prove a quasi-converse of the above theorem:

THEOREM 3.14. If, for any n, A {\C_cwaldx
A
1 Nee W\S 0\ VAL Sade

w—roo A
using the notation of the previous theorems,

Then 3 | Seadx = Dwe \ §.cod .

A w— oo
Proof: By theorems II.3.1,3.13, it is sufficient to show

that f(x) is summable over A. Hence, by theorem II.3.12,

(==

it is sufficient to show that the series /. w-\A_\ con-

verges. Now, 3 wo(e) : N =M >/V\c,~5-\\\g,\,(ﬂ\&fx——\W.,\(“\M\( <
A A

& \Scoldx < €.
Ay ¥ P g
Let A“g be any 5 subdivision of A Avwe = Aus A ) Xuw € Auin

Then Z"“ m\ A \ Z,ZM m\ Au\M\ ZW\ 7 -?CXVHM\\\AM\A«

e

<\ 7. 7, foa AL = (vscond |
M J AM*'“*AN

\ \;(x\\é*«xz

Amt x By
The last term can be made small by chooging M sufficiently

large, For any choice of M,N, the first term is small with &

which does not appear in the left member of the inequality.

THEOREM 3.15. If (1). \A \is finite.

(2)s A \§cxw Ax.
A



3). A= /= B, where the B.. are disjoint,
measurabl e,

Then §§cxdx = i § $oa due.
A 1

w

Proof: Let A, 5 be any O subdivision of A,
Let A‘D be defined as in theorem 3,12,

Define A, = /-\\,\g B, A,
Then \\%(X\M Z“ \gf(x\&&\ \ ,3\%5’0‘5‘”‘ \
l o]
o M
\Z\ g(x)(\d\c ZM Z, (X V\ M‘MP\\'\',ZM “P(F“\\ “”"(’\
B.
nWs M © ™ .
= ' - .2\~\Z-p (P'\\)\BW\A p\\
© Mo

Now the series ,Z, (Pu\\ﬁp\converges and is equal to
)

7o Z, () 18w Al

Therefore the second term of the right member of the above
inequality approaches zéro with l/M. For any M, the first
term approaches zero with s o Which does not appear in the

left member,

COROLTARY . If (1). |\A| is finite.
(2)e 3 {50 .
A
(3)e A=7 B, where the B, are disjoint,

m=)
measurable,

w
Then S\Scwo\dx = Zu % \ S o\ d .
A f
By
THEOREM 3.16. If (1). \Al is finite.

(2). a&A&,om,
(3)e B, <A = 3L Bul: N \B) =0,

L% N
w—-w

Then
&\-MMS%(’OQX:O: Do S\QCxw\M:Q_

UW— O
B“ W = @ 3“



Proof: It is sufficient to prove the second conclusion.

Congider the cohstruction.

A(: A’fagm > A1:81~Zw BV\'

> 2
AE'): Bl_B‘LiBI—*— Zu Bul s A4:B‘BL_B\Bli %M B“K,

3
AS - Bs — EXE Aé = B‘Bs - elc.
A*l = B,8B; ~ <¥e. Ag = By ete.
\D/*C_
AK - Bwvgm% Z_;’ B" *ZP Br)& '
(38 1 n4i
AKH: B‘PQV\“’ aYc - =t

W wn-1)
Then, evidently for any n, there is an integer W, (=2+ o
o
such that ®.< Zr A, and (,—® as w—o.
[e=] V(u

Also A=2, An - wFw D. A A =0O.
Hence, by theorem II.3.15,, 5 l\(‘?(ﬂ\&f% =O.

s R P

Therefore v S\YVC“\M:(). K

w—>eo B,
THEOREM 3.17. Analog of Lebesgue's convergence theorem.
If (1). \A\ is finite.,
(2)e For any n, 3A \;W(x\ & .
(3)e \S, o\ Ec><C><‘)a,lmogt everywhere in A.
(4). 3 \Ao((ao AN

(B8] '((cx) = Qw%‘jx\almost everywhere in A,

w—>qy

Than 3 S5cadn = N \ §oxy B
A

w —»> o A
Proof: Same as that of Titchmarsh, with the use of theorem

IT.2.10,.



4, Relations of this to other recently defined integrals.

THEOREY 4,1, If f(x) is summable over A, then a necessary
and sufficient condition that f(x) be int-

egrable over A is that if x, . u. ¢ A ¢
(<2}
| 2.5 C%D =Sy NA N < €

\

Proof: This is equivalent to the Cauchy condition, sinze

| Fe)- Flol = \fm §ex U NA L = Zam T\ A AW‘?\\

- ) =
) Zon S0 A Augl = 2o S0 VA

= g if €, v sufficiently small.

'4)
We might, with Birkhoff , take simply this condition

as our definition of integrability. Taht is, f(x) is int-
@
egrable if and only if the series ) |{(x\|p,| converges and this

n=j

Cauchy condition is satisfied. However, this definition does

not seem to yield Egorfiff's theorem. For, consider the

-7~
simple real function *(n = X

Let A be the interval (o.1+\.

. Q_Yb_~—
For any £ , the interval B, 5‘&_4\L\ can be subdivided
into a finite number of sub-intervals in each of which the

/

oscillation of f(x) is less than €4 , so that

ZOW\BA\ < %\b\ < & Q»\: &u\) \QCx\ ’Q&\s\\

" A X € B
Hence, define A , . = gﬁ:\ ) — { wZA.
2 L\-‘- = ~
TN 5
so that \A.\ = s Oy : 2 f e,
i _

Then 7 \SxMVA L) = 2 \ScxMNVALL + 2 o

A -t B

and the sum over B contains only a finite number of terms,



- =
® ® n+l

7 3 € %

= £ =2
while, 7 = 7 =— . S ‘/m - 3€
n=l n=1 @ 27.,%4'1. 2 : 2 2

so that f(x) is summable over the given subdivision.

Purthermore, J. O\ =7 o A\ Z
A ! R

® (7Y -
=5 3¢ &

f 'Z'h 2—‘ ‘ 1‘1-!1.-\’ a. - é
8 2 .

so that this Cauvhy condition is satisfied. But,, =2 /¢
which, for any & , is not uniformly bounded in n., That is,
the function is not of class M with this choice of sub-
divisions, and the proof of Egoroff's theorem rests directly
on the properties of functions of the class M.

However, in such a simple examnle the difficulty is
removable., There do exist subdivisions satisfying the pos-
tulates of the class M. The question, then, of the sufficiency
of the condition of theorem 4.1, for the existence of such
subdivisions still remeins an ownen one,

It is evident from the definitions that this integral
includes those of Saks and Bochner, and Radon.

Also, Birkhoff's integral is more genersl than this only
in so far as "unconditional™ convergence is more general than

absolute. If these are equivalent, then so are the integrals.



Chapter IIT.

Theory of Divergent Series,

Before proceeding to the next and last integral concept,

we need some elements of the theory of divergent series.

" L&D
l. The Cesaro Theory.

(o4

o
Consider the series ZL{ QK : Am = Zl( G/;( .
o o

Define (w.x) = w /K\_w-m\, P E s MK 20,
(.- = 6. W 70O
(\Avv\\ = €2 | W =
" (s}
A\: = ZM kk“\m“c(\’\\ Au'm
o oo
, ., - _ -
7 = A (G ) €' Z Q= A ]
@ . * K=o h—=00
If A=Z G.. B=2 b. are summable (C,r), then

=0 nw=o

the following properties are well known.k:$

1), Q. — o (G r).

2). & - ALY —o ().

8)e Zu(@.-Qu.) = Q. (GO

4)e A Uchange in one term of A will affect its sum in the
obvious manner,

5)s The addition of a constant other than zero to each temrm
of A will destroy its summability.

6)e If Q.20 , ‘l:hen,%> (L., is convergent,

7). i‘? (au. b = AJrEsh:0 CCar).

8)e QAu =t b, . A=DB.

9)e Qb >. 7 b -a. converges to (B-i),

"

&

<

R

We also need the following two more important theorems:



@
a), If A=Z. Q. 1is summable (c,r),
(o]

8

o Qu
Then A = Z. /4\ is summable (C,r-1) and
o

wn

jf’ «, is summable (C,r-1) to A, where

n=
B ]
ol = Z ;::\ (C‘r—\.

(=}

n

Also, Q.= Cwan (o, =~ N v\

©
b). If A=Z. o is summable (¢,r-1),
Then fZ\OQV\ is summable (C,r) to A, where
’ Q= GhanColy = o)) .
We shall adopt the following notation: A, = Z. =
so that A = oo —o | ’

The purpose of this section is to prove the

THEOREM . If (1), dweb,. all n,

Q. , Bz Czib“ are summable (C,r),

A is summmble (C,r) and A <D = B

Proof: The theorem is obviously true for r=0. We proceed

by induction on r, which is a positive integral variable.,
Let of,, .. be definéd as in theorem (a). We have the

following results immediately:

Lemma 1. %« =3 all n.

Proof: Theorems 8 and (a).

Lemma 2. I&@“—:;\_;\, converges to (B=A),.

n= O

Proof. Theorems 9 and (&), lemma 1,

Hence Aow (B.-)=0.

w =D
Lemma 3. o, +L _-A, < P°~(B“-D“\ all n,
Proof: Since ol, - A = « Bo— B, )%WM

“wat )

it follows from lemms 1.



Hence it is permissible to speak of the interval.
t“zid;«Du-A“,@b—tsu—b“ﬂ. Clearly, T _ <ido‘$3 all n.
Lemma 4. The sequence of intervals X, defines a real number,
Proof: We must show that

Lhe X . =T, s all n,

2). limit(length of I, )= 0.

W - o
Clearly, O -A.20<=8,.-U,.since Q. = <\“ ) P

Thus to prove (1), we need only show that

- - 1 ~ = = -
Dv\ﬂ A\«\—\Z Lo AV\ and B“_\\ "b.m_\\ B\A Bv\.
. . . (e ) ™ d —@\AA\
This is true since O, . - Auy® VO - &, 2 20
Wx %
= hui\_&mA.\
and BVH\- Dvx\\ - E‘A VL —
W X 2

—~

W

As for (2), the (length of I, )=p.-d, B B B - ol
and the result follows from lemma 2,

Let O, be the number defined by the sequence of inter-
vals I,.. Then o, = 0= Bo (LA D . -AN<S t/\(%°~13w\3“1\)
ie., &, lies in I,, ali Py
Lemma 5., If ( _ be defined by A&. = (na V(S — cgw“\\ "z

Then of.<+d.< B all n.
Proof: 5““ 2 ds "V Ruy, T o Ay E)vu\ = Bo- B
But, since ol,+ D _- A - §, ¢ (5,,- C Bu-0W
it follows that of, - A. < {§,-B, bo-Bu
and hence the result,

We are now able to complete the proof of the theorem

stated at the beginning of the paragraph.

Proceeding by induction, assume the truth of the the-

© =2
orem for (r-l). By theorem (a), o, , @k are summable (C,r-1).
o >



By the induction hypothesis and lemma 5,
T8, = ssweshlg Lo, r-fi,
o
Hence, by theorem (b), > &, is summable (C,r).
D

Then A < O = ® by theorem 8,

Since we are discussing the subject of divergent series,
it seems convenient to introduce here the following new

metho& of summation.

2, New Summation Method for Diveggent Series.

The method to be given here is a modification of that
due to Euler-KHOpégl For the weighted means of the partisl
sums we use the binomial coefficients, but instead of be-
ginning with the first we begin with the central one,ie.,
with the greatest. Thus the initial terms always receive the
gregtest weight, as in the CesarosHolder method.

Therefore let us consider the series %i.ax.
with the partisl sums. A, = .:ZKOK

n

Define 3\“ = Z—K (2w, w=vD Py 2"
o

A\

and S = z‘( (1\0\ A\, M- W\ 6‘; (1““ . '7/\
o

“

If there exists &Q:: S0 :9 then 3" is called the "sum”
of the series, N
Our first problem is to find the relation of this
method of summation to that of Cesaro. To do this we recall
the following wigl-known quflityﬁ\:
(- xV"" Za AT X" = T AL
both series conv;rging absolitely i the open interval (=1;1).

Hence, equating coefficients we obtain the partial sums of



~
the original series as linear functions of the Cesarc means.
A, = Ze (VR (Fvw-wo o7 S B

W

< o.’\l\’

A = ZV\ (XN w7z, .
o .

Thus we can express our means as linear functions of Cesaro's,

5;2 7. ZK DY Cawart, wee W) O ) (- 4 w- KL E) o(:_k /Q\"“’“ - e\

v 3, \"-\—\.

I N3
o Nl 5
X

o
r w
end S - 7. 21, « «+
0 o

1
or, collecting coefficients and rearranging

3\ - 5:\‘- J% % "Z"“ik_\\‘*‘i(-,_M*\_M-u\(‘r\v\-'@(\'*&.&\ /1""‘&\ ol ab
LEN RY %
o 4

Lachl it 2}

amd S . 7 «f 3 Cer L {120 e
]

-,

Hence we may write . = Z; Q:ﬁ ol ¢
[+
S 4 s .
by defining Qr_ = Z“ (-0 3 (lw\\-l\w\~m\(r‘.\n~5)
h—ss o

\

ety i s

Now we make use of the following

Toeplit's bheorem: Consider the transformstion:
q (N

o

In order that St T, 2 L P

w — 00 M - D

whenever the latter exigts, it is necessary and sufficient
that

~—o® ©

2), AawCQu =0 al1 j.

20\ _
3)e 2; VAL \ <K all m, X indenendent of m,
o

Thus we shall not need the values of the coefficiénts



C\v. for m£2r, since all three of the conditions of the
ek

theorem depend on the:behavior of the (1:-\ as m-— o .

Now let us consider the first condition, which is that

S —> o
- - i dir mey o Y . / 29
We have 7 Q7. =Z; L. (D (F+5, i) (rw-j) (2 t1m-n) /o]
0 o J

Interchanging the order of summing, we have

- (-} B .
ol = . . N T ) - %7, _
ZJ’ am3 = Zh (21»»\) (2vat, m-n) /ZJ (-1} “Era] J)(I,n J)
o o 0
+ 2,81 LSy
r+i s .
m - " _ .
We can write this as 2, Q[ = Zn (N Gmrt,m-n) T Lrul /o
() o
where T Sv.wl = Z; (-0 (rag. ) (vin-d) nev
4]

and TEeEwl = Ly “ W%
‘_

" -

By means of the recursion relations ({,x) = (j- K1) w (-1 %)

we find that Tir,wy = -Tovruad ¢ TLraunal ¢ TCrul jur 2?2

while Toral=-t ; TLuwlz(EwW , Torelzt , ¥.w

2 O.

by actual calculation. Thus, by induction, T Lwv.wl =(- 0y

for every n,r. Hence, I,'Q:A. = 1 for every r,m. Therefore
(s}

Toeplitz's first condition is satisfied.

Now let us consider the second condition, namely

v
T G”“(s =0 . any r,J.
J - - L .
We have G:. = Z_‘,‘(—n)1 J (Lt m-n)(F, n—J)(v—+J.J)/2

d
Eds

= iQ’*’J-.\' )/2“” }2’« (")”-j(?’.w—‘j)(lmu)./%m
J

wm 7 m+ L

) (mrusd)

’
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_ wef _ . e
A0k 155 v s B 2 o (e v 4 P o0 T Crone YT (mcineid- (R 14D e rend
J

where there are n-j factors in the first bracket and j + r-n
in the second, or r in all,., That is, each term in the sum is
a polynomial in m of degree r. The leading coefficieht in

egch term is (ﬂ;dUu»Q ; hence, for the entire sum the lead-
ing coefficient is &ii (“‘kﬁﬁﬂw—v\= Q"f’=0.

Thus the entire sum ;s a polynomial in m of degree r-1 at o

most, Denote it by P.

(v o+ ‘&\ . K Rk .,,(1\!\4«1&"\ -1 (1m-13“\-~ (1M*t\i'P
Y A e e

a” =
wy 1.\ o Gkl -0 La_\m-:.\'\\ ﬁ (v ) QM-\—A H—i—\\wﬁ

where the bracket in the numerator has j+ 1 factors and that
in the denominator j+rs+ 1.
Therefore \ Q' \ = (v+i.f) . (%)
Hence
Now Q7 =0
W —>

Now for the third conditimn, which is:

23 \Q:q\ < W (x) K independent of m.
3
Q. = Z. (0"t rme ) ei) @t} /2

substitute h for n-j , yielding

+ - -

Q\’ = Z\,‘ ('HM(\’.\A\ (\’*&\S\(lw\*\\w“S'\“\/l

m\\ 5
(CA
Now, in the statement of Abel's lemma , we have
'?k: (‘LM-\'\.\»«/S—\/\\ (\-*s‘o /llm ; g—i 5 F;h70.

- L . X
. Q= (0" (W) L S =4, Q2 2,0 (r,h) = (1) Cret,m).
o

o

and



ad

ZP_L Ok¥h: Z‘KSK (;K-FK+|)+SY¥P
0 4

or, since S_ =0
=t

Q:A) = Z_K (-nw(r-‘, ) ()’+J'.J')§(zm*\‘»u-s—u\-(‘Lm-\\‘\m'\i-k"l“ /ZLM

o

and hence, again by footnote

Now, in the swecial case vy = 2

A

G‘L'“S s {4 e 0 i(l"‘\"-""‘"&\ -2 vy v -0) (2w, m—j—ﬂz\/jz_lm

= { Lo (SH\CS{—I\ (~W\»<x'3‘&6&f3\ /?f\mcw-s\\. (M*hs\\,

g™ ) . im_ 3 3 _
O‘““s s O & < 1*:{ i = Y.

n A 122 . )L
Tovar o\ =L G Z; Q0 = LR —a 2 Ry
Ds Y ’ \ }{4—“\ \M\\ ol A bs )
-
Lo 2 A Q“‘J K
g + ‘ 4 (2vaan) (3R D Omm2) 6 - 3)
Therefore L \&. .\ = + Zi = =
4 ’lv_vwk\ 3 \W-s\.kv"\\'sY3 )
' H ’ : ST
QLLM\\\\ — (3D (v - vy '63—3\
2L % &
1)-““\»\\.(\'\«“\\ b Cvae % ¥ L s & 3

© = s - 7t
Now Ly 4 —_@(V\):@(w\lx
d
" N A w o O\ @ (\)_,\
R AV S U R T errarai =,

Thus, we need only show that

Ve Czweand
Vo A U e\l is a bounded function of m,
XY \]—Tvx T—\ (l\/\/\* 1\ -
B T . and, using Stirling's theorem
] T Oma VUV (m+ 2)
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2w avala N U

f; T (iwaa) 12“ < €
we have - . v o wa v A P WY
e"“* Q««*-\\ s!lﬂ () \J T
R 2w
2 AN
e T 3T N
g\_\ ¥ F‘_‘. _— 7 T g ’ 2 Al

= - AN
W™ i W G B T )

i

(L aahe
b ‘(-T? \ X ‘/w\

Al

Hence we have proved the
THEOREM 1. Any series which is summable (C,2) is summable

by this method to the same sum.

Next we investigate the relation of this method of
summation to that of Euler-Xnopp. Using Rey-Pastor's 2y

result

.

n e = L 1)

A= 70" e 27 B B Je 2 tn Ao
0

5 E
we find that .. = Z- Qe Br

s &

2ZonAa

m - v
where Q.. = Zu. -V T (2w sy 2 /2
¥

We wish to see if the matrix Wa, \is a Toeplitz matrix.

Is it true that 2 6., —~1 a8 i—c ?

’ - ” LA
2 '(“ﬂu‘\ (Mov) (2madi - ’)_k /2

wA
We have 2. Q.. = 20? ‘
J ;

3

= bt ey 27
A e LY -\ w,v
oA L

= j-—n i (v, vie- W)
o

. ww
= I Gmiiwmen i -4

o

=

Thus the first condition is satisfied. We prove that the

third condition is also satisfied by showing that G__70 , for



2 _—w—‘ w- 1"
11 m,T. = T Za G0 () (2w wew)
a m QM\, o .
v M
2 k~\\ -\ 2
Qe = —— Z, D Gmad (mex,x)
2L o
Now, in the statement of Abel's lemma we have La
{2 Gm-wi) 7 5 20
K +\
T SR AR
¢ K+
K
G‘K o (—l\ le.\\,\,(\
8 X
() ) 3\/ N Q»\ = O (2wl KD
: . "
t £-
and 2, Q,f, = Zu sk<§K/fK+.)+stﬂ .
o 0 - \vm-\‘
% = Sy -t
Therefore QW\\/ &= <% Ly (-\\K(lw“w\(m-t(q,v-ﬂ D @vmavaee )
llm ) ”
B} 2¥ (-0 2”: (=1 (L, €Y Lwns -, - 1)
1LW~ % 1
‘1‘;‘/ < 2 =
Now let <j(s) = 2, O (im-s, K YOm-u-s, r-3) 0f3S<l
0

The same method shows that  Q (s> = gCSM\

Therefore, by induction Q (o) = 30&

M-\

But, Qq(v) = jv\ P (2mat-g K) :(-l)vw’ (rwm-v, w V)
o
— -\ v wvAa = \"
(=1 -
Also Qm\/ = 1_ o %(‘_C;) - Q_L_‘l— SCYW
2\_\"’\' 11\“

1\’ (1 A~ N\, Via ~\’\

Th erefore 5 S v 2% 0.
124aY Wk ’—’L

Hence ZV [ §¢ SN W ZV Qm\,- = X,
o [}

'lk(lm-\"w\—\—\

To prove condition 2, we have (), _ =



2" Cam-vd 1\—-\. 2.3 (w2 ¥ ) T (2 ra) - (awm- e Y

QW\\’ - x

o 2l

2 ) G-\ ¢ s WP DA, (R VN |

where the bracket in the numerator contains r factors.

it Ry as (Lwecav-d L 2wm-2v ad - C2wm-vY)
Therefore ()W“, = _— T

where the brackets in the numerator have respectively

m-r and r factors.

N e BT we WO PO, | R 2 -2 Y XN\ L v -\
) . = - B PR l
huS Q’ﬁ,\\ iy s (1\/\/\—1\'\ 1 wA - X\ v

where the bracket eyntains r factors,

" 2 g Bilm—l\’-‘\ o ‘1m-z\—‘g
Therefore O, = (- 200- ) (v 700 o

Lwva-A Y 4 L

and hence — 0 a8 wm—®.

A
Thus we have proved the
THEOREM 2. Any series summable (E,1) is summable by this

method to the same sum,



Chapter IV,

Divergent Integrals.

The possible methdds of generalizing the integral con-
cept have been well discussed by Kblmogoroff“**. He suggests
that we may

(1). Take infinite instead of finite subdivisions.

(2). Congider abstract functions.

(3)s Generalize the measureﬂ)Y .
He overlooks, however, the possibility of gemeralizing the
sum, which is presented by (1), We propose to make this gen-
eralization, with particular reference to the Cesaro swumma-
tion method. Since, however, the sum of a divergent series
does not remain invariant under commutation, we must always
be able to order the subdivision sets according to a definite
rule., For this reason we find it convenient b consider
only real functions of a real variable in this chapter, We
present generalizations of both the Riemann and Lebesgue

integrals,.

l. Riemann Integrstion,

Let A be a semi-open interval | a.s) (b may be infinite),
Let () be a real function of a real variable defined
throughout A except possibly at b, and have the following
properties.

(L)s For any ¢ >0 , A can be covered by a denumer-
able infinity of &losed intervals A, , any two
having at most one point in common, such that « =
if deA, ¢ A ... and (4 is bounded in each

interval,



(8)e \Av\e\ £ £,
Definition. @ (d) is summable in A: =:

For any £ , the series

a

$e) = 2. q&dh\~\\/~‘\“€\

L

is summable by a regular method (always the same),

where Adv € A e -

Definition. [ pcavdd = Xuio P (e
A € —o
if the right member exists.
By a "regular" summation method is meant one with the
following properties:
a)e Za +Zb = Z Case)
b). If the ordinary sum exists, both exist and are equal.
¢)e Changing a finite number of terms affects the sum in
the obvious manner.

d). a. <d b, X Za Zb, 2D

LA A <D =B,

Ag was shown in III.l, the Cesaro methods of integral order

are thus regular.

"

Now define @, . L Y Ply , &€ Aune

~C£\AG - %Q\D

Define @ (e) = ZT“ Pl Auclh
@(G\ = Z_V\ Q“G\AWGK'

v —e

Then $ (e) = D (e} =& (e for any € , from property d.



Thus we obtain the first existence

THEOREIl 1. A necessary and sufficient condition for the
existence of S@(cﬂc\o‘a is the existence of
the common limiht

Nie Be) = Roe Pl

€ 0 e —0O

Now, for any € , any subdivision A, . , define

@‘CG) "Z@v\@\A‘J\é’\

5

where in the / the terms are associated in any manner
such that all the A.¢ in any group have a total length = €.
Similarly for E_l?‘x€l :
Then we can prove the more powerful existende
THEORENM 2, Let A..be any ¢ subdivision, and & _ . any
resubdivision of A.. (in particular, B may be
A itself).
Let EﬁA\c‘) = 7 'TD{_‘AM\ A\

Let @ELG\ B ;q&vxel\%v\e\

the terms being associated as above., Similarly,

define @AQG‘) 'Q}‘Z&(E‘)

e

Then, a necessary and sufficient condition for the
exispence of {‘J P&l ig that it be possible
to enclose EP:EA \@;‘58 in an interval whose
length — O Wi}IG . o
Proof: Let Ane A5 be two subdivisions, ¥ . the product
subdivision, so that B satisfies the hypothesis ralative to

both A's, Tet &' refer to the |  with B in it, associated



so that the nth term contains precisely those B's which add
up to A, .. Similarly, in &" those in the ath group add up
to A.s . Let @m be the simple unassociated series of the
B's,

Then, firstly, all the series considered are summable,
&' ®" bya), anda B because (0 is summable,

Now, to show integrability, we need only show that
@TZ—\ LB (e, 5“\‘\’5\ Y’s lie in an interval of arbitrarily
small length. -
Well, \ & ey — IGREE \ ¢ A - &'\

—_—

A\_\ @f B lE“‘ “\5\"\ ‘;ng '_CE“ l

=T 1
B — ()
and the result follows from the hypotheses.

It is clear that !} P)dd is additive with respect
to @ and with respectﬁ to A,
We might have allowed the values of the funetion to
be abstract, but then we should not have had these existence

theorens,

2., Lebesgue Integration.
Let A be a measurable set of real numbers, ©(«) & real

function defined and measurable in A, Then, as in classical

& v = =

theagar, 1ek —~ < M.e =M. = %0 =4, T M

5

and 4 -4, . <€ for all n, Define A, = A L Y ERC <L$“\ ‘

Definition, ®E) is summable in A: = :

@ .
The series J(e) = J, § C?(O(u\\Ak\ v @Ce. ) LA ]



is summable for any € , with o/ ¢ A ..

Definition . \ Gg(o(\&oL 2 &W @LG\.
A ¢ —D

Then the analogs of the two preceeding theorems are valid,
Here also we might have generalized to the case of an
abstract independent variable, since both the ordering of
the sets and the avove existence theorems depend only on
the realness of the values of the function.
Finally, it is evident that these integtals are true
generalizations of the classical Riemann and Lebesgue

integrals.

3. Examples.

The function %‘(x\ = L-zﬁ“ y @ Tz R WAL all =
is integrable in either of thése senses, using the Euler-
Knopp summation method, the value of the integral being =
simply 1/5, although this function is not integrable accord-

ing to any other definition with which we are familiar.
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