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Introduction. 

The subject of integ ration was first trea ted abstract­

ly by Fre"chey*. Numero us other authors have contributed to 

the subject, notably Saks** ,Bochner*** . and mpst recentl;y 

Birkhoff t . A comprehensive disc ussion of the possibilitie s 

was presented by Kolmogoroff t\-. The purpose of this thesis 

is to unify some of the previous theories and to present 

so me new ones. 

Chapter I is devoted to the most obvious generalization 

of the classical Lebesgue theor~. Chapter II extends the 

definition of Chapter I in such a way that no special treat­

ment is necessary for unbounied funcyions or sets. Chapter 

III is a discussion of the theory of summation of diverg ent 

series, an a nplication of which is made in Chapter I V to 

the question of divergent integrals. 

Questions of relative g enerality of these and other 

int egral s are usually so easily answered that no f ormal 

proofs were deemed necessary. For exa!uple, the integ ral of 

Chapter I includes the class ical Lebesgue, Stielt j es, and 

Padon ttt integrals of bounded functions. The integ ral of Ch 

Cha~ter I I includes those of Saks and Bochner and is in­

cluded in Birkhoff's. Finally those in Chapter IV are 

obviously g eneralizations of the classical Rie mann- and 

Lebesgue- Stielt j es integrals. 

Before continuing I wish to express here my apprecia ­

tion to Dr.A. D. Michal for his guidance in the writing of 

this thesis. 



Chapter I. 

Integration of Measurable Functions. 

1. Spaces. 

In this paper t he following t ypes of spaces are con­

sidered and t he indicat ed notation used . 

B; a Banach s pace, norme d, complete, closed under addition 

and under multiplication by real numbe r s, el ements denoted 

by -l , ~,-\-. "j, T, J, ~, C, , norm by \-- l -

R; t h e real numbers -pace, elements denot ed by o1. . r:, .e .. ~.£.d 

po s itive integers b;y i,j,m,n,p,q,r, M,N, absolute value byl --l­

V; a metric space, the only propert y of distance being that 

the distance between any two points approaches zero as t h e 

distances betwe en each of them and an arbitrary third point 

approac h zero. 

D; a met r ic s pace, elements denoted by s,t,u,v,,w, distance 

by \ -s - 't. \ , with the following postulates: 

(1). Equality defined, symmetric, r eflex ive, t r ansitive. 

(2). l-s - t:\-:>,,o . 1--s-H 0 l-l:--:s ~ : \ --s- t;\ ~ o.3:. 'S::t, 

Th e s pace Dis ~aid to be de nse at t h e points if, for any 

S; a nmeasurable" space, elements denoted by x,y,z, sets 

of elements by A,C, E, X, with the prope r ties: 

There exists at least one set X of elements of Sand 

a family .¾ of sub-sets of X such t hat: 

( 1). A c:: ~ -~ - ( X - A\ E A ( 2). A "' E X -~ l ~--- A VI,~ E t . 
(3). There exists a f unction, denoted by l. \ , called 

measure, defined throughout X, to B + such that 
.,._ GO 

Av.. E 'x. -::>. J).0v--- \ 2_.,,,_ A ~ \~ 2 .,. \ AJ . 
---- -co 



meaning that if the le f t member is i nf inite so 

is the ri ght, wh i le if the right member is fi­

nite so is the left, and the equality sign ia to 

obtain if and only if the A ..,,_ are disjoint. 

Such sets A will be called measurable sets, the term in­

cluding not only sets A for wh:lch 3\ A \ =- a finite numb er, 
= 

but also sets A for which ~ A. ... , \ A ..... \ . A -.c I A ... , so that 

and consequently \ A\ need not be finite. 

Throughout it will be explicitly mentioned : wheneve r IA\ 

is a ssumed to be finite. 

By means of the convehtions herein ado nted the nature 

of a function will be made evident by the letters used in 

its expression. Also, throughout, a summation sign with no 

rang e :i ill indicate a sum of a finite number of terms. 

2. The General Princi ple of Convergence. 

Let u be a variable over a snace D. Let u' be a fixed 

element of D, a t which Dis dense. Let f(u) be a function 

on D to B, no requirement's being mad e as to simgle-valued­

ness. Then the following theorem is true, the proof being 

exactly the same as in real number theor;n 

THEORB]I : A necessary and sufficient condition that f(u) 

approach a limit as u a r,p ro aches u' is that 

(f(u)-f(v)) approach zero as u and v approac h 

u' independently. 

Thi s theorem will be referred t o as the g eneral principle 

of convergence. As a matter of reference we next state 
(1 ) 

Frechet's extension of the Borel-Lebesgue theore m: 



THEOREM: Let 1 be a famil;y of sets I ~.A ~ V , where 

A is closed: and com"act, such that x 0 A .:, . ;< E: I. 
~t . 

for some I. 

Then there exists a f inite number of sets T 1-< E: '\: 

such that -x E A .-::) . 'X. E T \,( for some k. 
,--...+. 

3. :Measurable Functions. Fundamental Properties. 

Definition: The function f(x) is measurable over 

the set A: =-

( l ). For any cS , there exists a finite number of 

non-overlapping , measurable sub-sets of A which al­

mo st co :u e r A; i e . , l. A. ,.,.. o , \ A ...... o \ : \ A - 2 A ... \ =- 0 . 

( 2 ) • For any n, d , "X , lj E- A "' 6 ·) I f c -x) - ~ ( '"!, , \ < d. 

( 3). For any o( , the sub-set of A containi ng all 

those and only those points f o r which \\ c x,\.~oZ­

is measurable. 

For any ~ , the family A "'6 will be called a finite sub­

di visio IJ of A. 

First of all we obtain a necessary condition that a 

function be measurable. 

THEOREM 3.1. I f f(x) is measurable over A, t h en f(x) is 

bounded almost everywhere in A. 

Proof: Choose any 6 . Then, by the above definition, 

there are a finite number of sets AhE which a lmost cover 

A, and in each of which \~ cx, -\<..~,\.c:: f. Denote the sum of 

these sets by A'. Then, f {x) is bounded in A'. For, if we 

assume t he contrary , ie., for any ~-;, 0, ?i. 'XE A', \~cxl\>C{) 

then °"3. Y 'X~\'"'-~ l. 1 , - . ; ~ A1 
•. ~l\(x~J\ is a steadily increasing , 



divergent sequence. Hence, }. ~ -x' .. \ ~, -x .... \ such that for 

any n, \ ~ c )'"'' - \ ( x·._ __ 1\ ~ f . Therefore, the po i nts 

for distinct values of n, must lie in dist i nct members 

of the f amily A iE • Therefore the range of i must be in-

finite if A' is t o be covered by \ A ; E~ . Thus we have 

a contrad iction . 

Having obtained a necessary condi tion for measurabil­

ity, we now obtain a sufficient one. 

THEOREM 3. 2. If V 'l A -s 'S and A is compact and closed, 

and if f(x) is continuous throughout A, 

Then f(x) satisfies the first two postulates 

of measurable functions (We shall see later 

that the third is a consequence of the first 

two). 

-Proof: Tn orde r to prove this we nust ma ke one more post­

ulat e about the measure f unction, namely that it exists, 

finite or infinite, for a YJy hypersphere, ouen or closed , 

contained in X when S i s also~ v. Explicit mention will 

always be made when this is to be assume d. Then, since 

f(x) i s continuo us, 3 dlE- ,X): \~ -)(.. \<-o(E,Xl _-:). \\{~\-'\(x)\<.f 

Define /\ ( )(. . E ) : ~ E: A ( x. , E) • = ·_ \ ~ - x \ --c::::. ct' ( c , --x). 

Then t. E A - ::::> • 

f o r any ( , is a f' ami 1 y 1 ( see the 

theorem of Frechet in section 2). 

Hence, ~ -x . 
' 

range of i finite = n. 
L 

-x t A ---:::> X: € A ( X; > 
i"' 't 

~\ - A- { E) 
I, 

for some 

'XE A - -::>•\ -x - )(.i\ L d (t. 'Xi) for some i. 

)< f A-::>- \ \(x\ -t{)(.;\\.:::: €:/z.. for some i. 

i. 



n 

Thus we have A =Z A ,- (f) : -X . ~E A ; (() -:>-\fcxJ -1/~11-Lf_ 

for a ny E . 

If the A i were disijoint, our theorem would be proved. 

Hence it will be sufficient ot const ruct disjoint, meas­

urable sets C1; f such that, for any k ' Ci,(~ Al{ ·, A= ~ c;,, 
K ·1 H'•I 

Define C, -::. A 
1 

•. C v1-::. AK-lT ( A-- C.-)-=- AK(A- - .2.r C,,.) •. vf-:;1 , --- . Vl -

r =' 
Now C . t C 1.. :.. A, -t A~ ( A - A,) '::.. A, t- A -i.. . 

,- ~ 

Assume that for some r 2 v1 Cu =-- 2 v. A 1-i" . 

~ C '=- ' I ( ,- ) I-
Then 2v. Ci,-= t-+ , + L✓, At<:::: An. A- - 2 ,,, C,-. + 2~ A-K ) 

-= An- , (A - 1-11 A-w) -t f. A-Vi = 
I I 

r t/ 

., 
Therefore, by induction 2v. c l{ :;: 21-f A--J( =- A 

' 
Next C I C 1.. == C . • A 2.. • ( A- - C.) ::: 0 _ 

Assume that for some r , i -=t j -::=> - Ci • CJ -::: 0) 

Then c ;, c r+I - c t" A- i-t, ( A - c.) -- ( A -c,_) =-O -

L ' j 

Therefore, by induction, fo r any i,j, 1 :t J .::, . C,- Cj -=O . 

Lastl;)', it is obvious that, for any k, Cu s AK. 

We now show that our definition of measurability ha s 

many of the ordinary -properties. 

THE0 REt'i 3. 3. If f ( x) and ex ( x.) are measurable over A, 

Then f t x) d( x ) is measurable over A. 

Proof: Let \ ~(xt.::::: q>, \o((-x)\.~ almost everywhere in A. 

Now ~ A.if- , 1 -=t j -:>. A; A:i -=- 0 : l A - 2 A; l ::; 0 . 

and 



Define 

Then i,-:thV~:tK ---=> : AiiA..,K-=0. 

and \ A - 'Z.. 1- A ;~\ -=- \ A - 2 A; • 2 B j l =\ (A - 2 Ai ) + ( A -2 Bi')\ 

~ l A-TA.,\ -t\ A-)_E_i\ ~o . 

x.~ E A i j(cl -J • \t( x) oZ( x) - ~(lj)oU~)\ '=-

:: \f-(-,<) ol( ')() -fcx,<i( 1')lt\ t(x)o(l~) -fl':J)o/(~'I\ 

<... ~- G/--i-cp + ~- ¾_o( :;_ E. 

Renee t( x) • o!{ x') is measurable ov e r A. 

THEO REM 3.4. If f(x) and g(x) are measurable over A, 

Then fcx) -± 'jC x') is measurable over A. 

Proof : ~ A I f : \ A - 2 A ; \ -=- 0 : i * J -":J • A i A j "' 0 ·- X. ~ E A ; f ·-:) • If( "'' -h '.l) 1 < f/ 2 , 

3~ - :\A-IB-\=o: i-:tJ. _-:,_ B .- B- =o · 'X , uE-Bje -:> -\_g c">') -g(~1\< f/-z, 
~t J J -.) 

Define A ii ( E) =- A i f- • 13 i f 

There f ore \ A - 2 Z A i l -=- o · 1:-Ct Lt V. j .t K ·_"'): A ij A kt< --= 0 • 

Therefore \( x, ~ ~ex.) is measurable over A. 

Next we prove an extension of Egoroff's theorem: 

THEO RE:M 3.5. If ( 1 ) . For a ny n, \\I\ ( x ) is measurable over A. 

t 2). t, ( x) converges a l most everywhere in A. 

( 3). A)/(~ A 1 l A *l - a finite number. 

Then, fo r any cf, ~ A 0 ~ A*: -:\~A 0 \ '7\A:;,-l-S_ 

such that f"' ( x ') converges uniformly in A 6 _ 



Proof: Let Al .i~~\ be a monotonic, decreas ing sequence, lim. o. 

Define E :: A* · E t p . q_ >,.- "-.-::, ·. \\\., cx,--\-,1..c "'\c:::.E'.,.. {. 
"' ' r 

Then for any r, E 1.1 . t- ~ I: 1 .... , . t". 

Also, for any n,r, • E"' . r is measu rable. 

For a ny r, \ A "' l :.\t E,. ,Y \ since -h., c )() converges a l most 

everywhere in A. 

Therefore, f or any r, \/\ ,t-' l ~ ~ i lM. \Ew. , .-\ 
"'- -'> CO d/_ i--

Therefore, for any ~ Nl \- , &) ·. II\ ✓/ N .:> . \A*- ~ If , ..- \< r, :z. . 

Define 

Then converg es uniforml y in 

THEOREM 3.5'. I f ( 1 ) . For any s in D, f(x,s) is measurable 

over A. 

( 2). Dis dense at t. 

( 3). f(x,s) approaches a limit as s - t 

almost everywhere in A. 

( 4). A""~ A •. 1 \ A* \ ::: a finite number. 

Then, for any d , 1 A & ~ A 'fl. : l \ A 0\ > \ A"' \ - S , 

such that f(x,s) approaches its limit 

limiforrnly in A & . 

THEOREM 3.6. If f(x) i s measurable over A, 

Then \ f(x) \ is measurable over A. 

Proof: ~ A , E : \ • - I A ; -=-- 0 •. i.. ::t j .:::> - A i Aj -== o . 

/!: , '_\ € A ; € ·:-::, : \ \ 1t < x, \ -\ \ l ~ \\ \ ~ \ f ( x) - \-<. 'J' \ .:: f 



Thereiore \f(x) \ is measurable over A. 

THEOREM 3. 7. If t .. c x.) is a sequence of functio ns , 

measurable over A, whic h converges to f(x()! 

uniformly almost everyvifh ere .in A, 

Then f(x) is measurable over A. 

Proof: For anr n ~ A~t : \ A - 2 A;\ ~o . ( .,,.i _:, . Ai Ai ::Q_ 

i . ':\ c;. A ~ c ·-J : \ f-. c "") - t"' ( ~, \ < E . 

ie., f(x) is measurable over A. 

THEOREM 3.7'. Let f(x,s) be defined t hroughout AD, except 

when s = t. Let f(x,s) f(x) as s - t, the 

convergence being uniform almost everywhere 

over A, For each s, let f(x,s) be measurable 

over A, and let n be dense at t. 

Then f(x) is measurabl e over A. 

THEO REM 3.8. Let llx) be a sequ ence of functions, meas­

urable over A, which conv erges to f(x) al-



most ev erywhere in A. Let A.,,,"=A'. ~\A""\ finite. 

Then, i'arr any o , ~f\ 6 ~ A ".'. -:!\ A0\7\A*l- 8" . 

such that f(x) is measurable over Ar . 

Proo f : The~rems 3.5,3.7. 

THEOREM: 3 . 8 '. Let f(x, s) be defin ed t hro ug ho u t AD exce p 

wh en s -== t, mea surabl e ov e r A for each s. 

Let f (x,s) -- f (x) as s - t, almo s t ev ery 

whe re i n A. Let D be den se at t. Let A .i-~ r+. 

1 \A* \ f inite. 

Taan , for a n;y S , ~ AD ~ A * · "3. \ A 3 \ :;, \ A :t' \ - cl, 

s uch t hat f(x) i s mea su rab l e over A 6 . 

Proof: Theorems 3. 5 1
, 3.7'. 

We now -p rov e a threore m which shows t hat functions of 

the t ypes cons i d ered by Saks and Boc hner which a re meas­

ura.ble a ccording t o ou r d ef i n ition a re a lso measur able 

according to their defin i tio n s. 

THEOREM 3. 9 . If f(x) is measurable ov e r A, t h en ~ ~"C~ 

a sequ enc e of s te p-functio Ls, which -- f( x ) 

un i f orJply almost everywhe re i n A, and conv ersely . 

Proof: Si nce f(x) is measur able ove r A, ~A i ~ '. 

Let ("" be a monotonic decreasing s equence with limi t 

zero, ie.' ~ \M o ( t)' 'nr,. :,.~ V'A _, ( f) ----::> . <? -- <.. G . 

Now, f or each i , m, define A, ,,,,_ ::: A ; ( f ""\ and let i ; .,.._E- /t i lM. · 

For ea ch m define L ..... < x) f-.__ c :x.1 = f (x;_.._) ·_ - 'x'. f. Ai vi-. 

Such a function t__cx' i wh i ch has onl y a f inite numbe r of 

distinct values is called a st ep-function. 



Now, let 'M > vv.... a ( E-) 

For any m, \ A - 2- A i ""'\ :::. C) . 
' 

Therefore \f( x, - t.,_ cx,\ -::: \\c-,,.) -~C1' j ..._\\ < E..,...:::: E, 

Therefore t...,.()(.) -fcx) uniformly a lmost everywhe re in A. 

Converse is obvious. 

From the definition of measurability it is obvious 

that if f(x) is measurable over A and over C, then f(x) is 

measurable over A -t- c. This can be extended to the sum of 

any finite number of sets but not to the sum of a d enumer­

able inf inity mf sets, since f(x) might not be bounded in 

the sum set. Also, if f(x) is measur able over A and i f C 

is any measurable sub-set of A, then f (x) is measurable 

over c. This pr operty has alread y been used. 

We 1_are now in a position to define an integral for 

measurable functions. 

4. Integration . Definition and Fundamental Prope r ties. 

Let f (x) be mea surable ove r A and let \A\ be f inite. 

~ Ai E •. i -:t j -:::> . A , A j ::: 0 , \ A - 2 A ;,\ ::: 0. 

])efinition: J 't"(x\~ -=- ~ \~ r f-cx if ) 
A G: -o L 

if the limit exists. I t is clear that i f \Al=oo , the sum 

will not exist for any (2. 

THEOREM 4.1. I f f(x) is measurable over A and i f \A\ is 

finite, then ~ J {ex) 4 . 
A 



By the general princi nle of conve r g ence wti ,Jneed to show 

that 1 ~(E): ~ - -v ~ S(e) ·.-=> ·. \ -r ( ~'I - I (v)\ ..::f _ 

Let ~l~, =- G/2\ A\ 

l L<~\ -I l v1 l ~ \ ~ t-cx i r-4 ) -, Ai~\ - ~ f ex.iv)·\ A.i)\ 
I J 

Define /\ 'i :::. A it-4 - .A. ~ -v \A\::c.LL\A -- \ 
- ' .I I j 

\ -r l . \ - r < v) \ ==- \ f f { t < x i ~') - ~ ( xj V) 1- \ A , ~ \ \ 

If A iy,- ,AlV have no points in commo n, \ A i j \ -=- 0 -

If A ; t" . l\.i-v have commou. po i nts, let Xij 

be aDy such point, so t hat 'X -. ( A i l'-'-, Aiv 
I ~ 

Then l T tr-4\- T.<.v)\ ~ l"J;J;.1h){ i,--,-f(')C. ,.)'\ -rhx ;J) -fc)(jv)t·lA ,}\ 
' J 

~ 7-. 2- ~ \\-(x- )-·h-xj\ -t\t(t j-,-hx
1

- 11)\1 \A,j·\ 
- • I I-'- _, j 
L J 

THEORF,u 4.2. If "1 \ -y C-x"\ cL-,c_ ) ) 'jC x"'l ~ 
A. A 

Then '\ \1 t b .)t~C x)~~ :: \ \ <x"l ~ ~ \3 c)(\ cl,,x_ 
A A. A 

Proof: By theorem 3.4, +<x) ~ '-~c-x \ is measurable ove r A. 

By theorem 4.1, ~ \ l t ( X) ~ ~ C x'\ \ c\ )( 
A 

Using the notation of these theorems, 



::- \ \ { ~ ( )( \ -:\: ~ ( X l \ 4 - ~ ~ \ ' ( X i ~ I ~ l\ C "- \ l ') ~ \ A i i O \ \ 
,,.. I j 

+\ 2.~ ,, ( )(; ;')~C~('l< ;- ) \ . \Ai io\ - 1 \ \(x)Q.x:i r'j( X) ct"><-~\ 
' J l I ,.) A A 

< E if ~ is sufficiently small. But the original 

left member is independent of (:' • Therefore 

THE0 RE~-1 4.3. If ex is any real constant and i f "1 ~ tcx, d.x, 
A 

Then 1 \ ol.. - t c x, c\ x = ol.. - \ \- ( x\ cl x. _ 
A A. 

Proof: It is obvious that a constant is a measurable 

function. Hence, by theore in 3 .3, ol.. · t cx\ is measurable. 

Hence, by theorem 4 .1, ~ ~ d. • t c x\ d. x 

A 
which is clearly equal to o<. • \ tcx1 4 . 

A 

THEO REM 4.4. If 

Then 
A 

Proof: By theorems 3. 6, 4. 1, "'l \ \ ~ c ><) \ ~ 
A 

:.\ 6(E'.\ , "\ <- 8 Cf\ _J .\ ~h ,._,<k-2.-\-C14 j)\ A; \\< E- -::,.\ ~ \\ c,o\cl)(- Ilt()( ;l\ -\ A;\\ 
~ l A I 

Hence \ \\c -,<1\~ -:;;,, ~ \~()( i)\ ·\ Ai \-E \ ~-\C >1l ~\ ~\2h"',,~ A1\\ t f'. 
A • ) p. I 

Adding, we have 

-;;, _2_ \ ~ c ~ ; \ Uf\ -, \ - \ ~ ~ < ',( i ) \ A; \ \ - :l f ~ - 2 

A. I\ 
\ 

The left member is inde-pendent of e:: 

Therefore \ ~ cx1\ d x - \ \~( x )q)('\ >,, O. 
A A 



THEO REM 4 • ~ • If ( 1 ) • ~ \ \ c ')(. ) ct ( x) ~ ) ) o1. ( ~) c\Jx 
A ,,._ 

(2). Al mo st everywhere in A, \h ,..)\~~:,cx( x) ~O . 

Then \ ) tc. -x) o1__ e x) ~\ ~ <p \ o{ Cx) ~ -
A A 

Proof: ~ o (E ) ·. I').:. ~ (E-) ·_ ·y_\ ~ {cx)o<cx,d.,x - L f{x ;)ol(x ; ) \A ;\\< E . 
f\ I 

\ \~ex)~ -Ti olc)(i) · \ AJ\ < E . 
A. 

Therefore \ \ t c -x1 o1. c x, k \.::: € +\~ t-(-x i )dC-,<i)\A ; \\~€ +l" \f()( ;)\\o<'C'l< ;)\\A·, 
~ L 

A 

THEO REM 4. 6 • If ( l ) • ~ S t c x, ex c 'I<.) M 1 \ ~ C x) ~ 

Proof: 

A ~ 

(2). Fis the smallest closed linear manifold 

in B containing all the values of f(x) 

for x in A. 

Then 3. \ E ~ ·- ) -tcx) o( C x) ~ ::: 1 · \ ol (x) ~ 
I, A 

where f will of cogrse depend on the function ~. 

~-Q ) o/. CX) ~ 
A 

cJ.. ( v .) \A · \ ( 
\.MA.. J; "• I , y ( )(; ) 

'\_,,,o • ~olCx, <lx 
A 

Now o<()(. ; ) 1\A i \ , \ J.. cx,o-ix are real numbe r s. Since Fis a 
pt.. 

clos ed linear manifold, the rightmember ab ove i s an element 

of F , say f. 



THEOREM: 4.7'. I f (1). f(x,s) is defined throughout AD 

except wh en s =- t. 

( 2). For eac h s, ~ ~ \ c ~. ~'I ~ 
A 

( 3). f ( x, s) .- f ( x) as s ~ t, uniformly 

almost everywhere i n A. 

(4). D is den se a t t. 

Then ~ \ \c x, 4 = ~-\JV\,\.., \ \ c 1' . -s\ ~ -
/\ .s --t p., 

THEO REM 4. 8 . If A and C a re non-overlapping s ets, and if 

~ \ ~ ( -,<. ) ~ ' \ \ ( ~, °'>' 
A C 

Then 

~ \ -\ (x\~ =- ~ t ('X\ ~ + \ \- (X\ (M( . 

At C A C 



Chapter II. 

Integration of Summable Functions. 

1. }!~unctions having the pro-pert y M ( or, belonging to 

the class M). 

As a generalization of Chapter I we now d efine an 

integral f or a more extensive class of f unctio n s. In the 

new definition no restrictions are macle regarding bound­

edness, either of functions or sets. Ho d eve r, in the case 

of s ets the usus.l r' evices seem t o be necessary for the proofs 

of the fundamental properties of the integ ral. Tn t h e case o f 

bounded sets, on the other hand, the fundamental prope r ties 

can be proved at once f or unbounded a s well as bounde d func­

tions, thus giDing a simnlification of the theo ~y as found 

. T't 1 h( ,.') 111 1 Ctlmars • 

Definition: f(x) is of class M over A:= 

(l ). For any ~ , there exists a denumerable 

family of disjoint, measurable, boundee 

sub-sets of A wijich almost covers A,ie., 

00 

~ A, v. 0 •. \ A. - I.. A ... \ "' o : W\ -:f 1M _--:, • A "' A ..,., = 0 . 

(2). For any n, cf, ""· 'i E A.~0 •. \ \<. "' -t',~,\ <- 8 . 

(3). For any o( , the sub-set of A containing 

all those and only those points for which 

\~ c.-x,\-c:::. ol is measurable. 

For any d , such a family of sets AV\ 6 will be called 

a s ubd ivision of A. 

THEO R;3;H 1.1. Any measurable func tion is of cl ass H. 



THEO R1~M 1.2. If (1 ). f (x ) is of class I.1 over A . 

(2). B is a measurable sub-set of A. 

Then f (x ) is of class M ove r B . 

THEO REI-:1 1. 3. I f ( 1). For any n, f ( x) is of cl!.ass m over A.,. . 

( 2 ). n -=I' """ _-::,. A"' A. _ = 0. 

(3). \ A 

Then f(x) is of class M over A. 

This de-pends simpl]1 on the denumerability of a denumerable 

set of oenumerable set s . 

a, 

THEO REli 1. 4. If ( 1 ) • I A - _L., A .,. \ -=- 0 . 

(2). "l \A\,\ A,.\ 

(3). For a ny n, f(x) is of class I' 'f ave r A .... ) 

Then f(x) is of class M over A. 

Proof: See theorem I.3.2. 
en 

Define A Jt' = 2 .. /:\ V\ Then \A- A* \-=--O. 
1\ -1 

A ,.,..( 11)/ -
... , 

,(\,} Define C I :. A, C \.\.-::: A.,. Tr ( A "" - C,,) = Ii-
.. h i--q 

For any n, 2 .. c l< 
I 

:: 2 '{ AK "* WI 
_--:) . c l-l e ""' =- 0. 

Therefore 
ro 

1: c., - A* 
~ 

'. \ A - 2 ., C., \ ::: o. 
By the preceeding theorem, f(x) is of class M over A. 

THEOP.EM 1. 5 . If (1 ). '3. \ A\ , finite, 

( 2 ) • F'o r any <S , 'J A~ ;: A ·. \ A O \ :,, l At - ~. 

(3). f(x) is of cl a ss M over A J . 

Then f(x) is of class M over A. 

~roof: Let & 111 be any monotonic decreasing sequ ~nce with 
<t:, 

limit zero. Define Al,<:: Ao 
Ill 

• Then \ A - X A .. l :: 0 . 

The remainder of t he proof follows immediately from the 

preceeding theorrem. 



THEO REM 1.6. If (1). A is measurable. 

( 2). For any Ait ~ A such that ~ \ A* \ 

finite, and for amy o 
:i A O '= A"" : ~\A&\ :> \ A~\- A ~ 

(3). f(x) is of class M over A~ 

Then f(x) is of class M over A. 

Proof: By the nreceeding theorem, f(x) is of ckass M over A~ 

Let A~ be any sequence of sets of ~inite measure such that 
Q:, 

l A - 2 A..,.\ =D . Then, by theorem II.1.4, f(x) is of cl a ss M 

over A. 

THEOREM 1.7. If A is a compact clos ed set in a measurable 

space V and if f(x) is continuous over A, 

Then f{x) is of class M over A. 

Proof: ~heorems I.3.2, a nd II.1.1. 

THEOREI/I 1.8. If f(x), d.Cx) , are of class Jr and bound ed 

almost everywhere over A 

Then ol(x) .t (x) is of class H OV F: r A. 

THEO nErn 1.9. , f f(x),g(x) are om class 1.1 over A, 

Then fcx'\ ± ~C x) is of class M over A. 

THEO RE:.'I 1.10. If f(x) is of class M over A. 

Then \f(x) \ is of class M ove r A. 

THEOREl.-1 1.11. If (1). :b1or any n, t..,. C x) is of class Hover A. 

(2). t,. c"')---tcx) uniformly almost ever;ywhere 

in A • 

• Then f(x) is of class H ove r A. 



THEOREM 1.11'. If (1). Dis dense at t. 

(2). For any sin D, f(x,s) is of class 

L1 over A. 

(3) f(x,s)---f(x) ass -+t, uniformly 

almost everywhere in A. 

Then f(x) is of class M over A. 

We also have the extensions of Egoroff's theorem analogous 

to theo r ems I. 3.5,3.5'. 

THEO R:,M 1.1:c::. If (1 ). For any n, t~ c x) is of class 3'1 over A. 

(2). {~ex) converges al most everywhere in A. 

(3). A"'-=cA · ~\A ~ \ finite. 

Then for any ~ , ~ Ag ~ A 'I< •. ;l\ AO\:>\ A~ l- a". 

such that f"' Cx) converges uniformly in AJ _ 

THEOREM 1.12'. If (1). D is dense at t. 

(2). For any sin D, f(x,s) is of class M 

over A. 

( 3 ) • f ( x , s ) - f ( x ) as s - t , al mo st 

everywhere in A. 

( 4). A" ~ A •. 1 \A,... I finite. 

Then, for any & , 1. A8 ~ A* 'l \A ,d ~tA"\- d. 

such that f(x,s)- f(x) uniformly in A6. 

THEOREH 1.13. If (1). For any n, f,,_Cx) is of class M over A. 

( 2). f" C x) -+ hx.) almost eve r;sT\vhe re in A. 

Then f(x) is of class M over A. 

Proof : Thi3 ©"re ms I I .1 . 12 , 1 . 11 , 1 . 6 • 



THEOREH 1.13 '. I f (1 ). J) is den se at t. 

(2). For any sin D, f( x, s) is of cla s s 

M over A. 

(3). f(x,s)---f(x) as s ---- t. almost 

everJrwhere in .A . 

Then f(x) is of class M over A. 

Proof: Theorems I I.l.12',1.11',l.6. 

Thus we see that functio ns of class M have all the 

ordinary pro perties of me asurable functions in real number 

theory. Tn particular , the class H is closed urid er limiting 

nrocesses a pplied t o f unctions or sets. 

DEFINITI ON : f (x) is an el ementa ry function over A: = : 

1A"' , \ A,..\ finite ,"'"" \. 2. ,- - ·) A"'~ A, v..--;:IM.-J - A"'A...,-==-0. 

a'.) 

\ A - L A" \ -== 0 . -x '= A" ;::, . f c X ) = -\ ~ , 
""'' 

\ ~ a constant for aach n. 

THEOREM 1.14. f(x) is of class M over A if and onl y i f 

3 ~ .. Cx) a sequence of element a r y functions 

which conve rg es to f(x) uniforml y almost 

everywhe r e i n A. 

This shows that any fuhction which is measurable a cco rd ing 

~o Saks or Bo chner is of class M. 

THEOREM 1.15. In the definition of functions of the class M, 

postula te 3 is a consequence of the first 2. 
('3) { 

-P r oof: • Let T,_,.Cx) be an approximating sequenc e of ele-

mentary functions, a s in the preceeding t heorem. 



Then, clearly postulate 3 is satis f ied by eac h t_ <. x ) 

Let o<. be any -positive re al numbe r . 

For any rn, ~ -\-V\ ( x) \ ~ Cx\ - fV\ ex,\< '/2w. 
""' IN\ 

Define Cw- = A · E \ \ , \/\ C x)\ -c:: o< - '/:l..""' 1 

Then, in G ,..__ , \ ~ c x )\ < o<: _ 

Conversely, if \, c 'X)\ <- o< 

Let - f < 

Then \ , V\- ( -x 'I < \ ~ c .,. ,\ .\ ~ - -:: d - G + -;.,... ..:::: o< - ½ .,.... 
00 

Therefore A ·Ef\\( ,n\<-o<} -= A·2 G..._ except for a set of 
I 

measure zero. Hence postulate 3 is satisfied. 

2. Surmnable Functions. 

Definition: f(x) is summable over A: =­

(l). f(x) is of class M over A. 

( 2). For any a , any subdivision A "' 6 , any 
Q) 

the series T.. \tcx \\\/\ \ converges. 
w -:= l "" \I'\ 

A:) 

Hence, the series .2 Fc-xH)\ A..\ converg es. 
IJ::: I 

l'.' e begin by finding sufficient conditions that a 

function be sumrnab:Fe. 

'.PHEOREM 2.1. If (1). f(x) is of class M over A. 

(2). f(x) is bound ed over A. 

( 3 ) • \A\ is finite. 

Then f(x) is summable over A. 

Proof: Let (\l ~ l \ c ..,,_,\ 
lb 

Then 2 \ f C" ,J\ \ A ,J ~ cp • \ A~ 

But, any bounded series of positive terms is convergent. 



THEOREM 2.2. If (1 ). f(x) is of class M ove r A. 

( 2). For any J t some subdivision A v..6 
co 

any "f...,,. t A._ . 3. L \ h 'I( ",\ \ A ..\ 
\ 

n ~ I 

( 3). For any n, ~ ' A1-1 ""' is a subdivision 

of A.,,.. ,~"'"' E A VI.Y\A 
co 

Then ~ 2- \ \(x.,, •. :-\\ 1\ .,.=\ , the manner of summing 
I 

being immaterial since all the te rms are positive. 
(b 

Proof: Lemma. 1 b (\)""\A "\ where ~"' is the l east upper bound 
I 

of f(x) in A"' . :B' rom the definiti on of the class JvI of func­

tions it is clear that ~ ~"' , any n, ~ -

Also, by the definiti on of a leas t u-pper bound, for an;y n, d,E' , 

~ 'X,._ E: A"' such that D -:: (\)\,1. - l, c x .,)\ !,'.. €. 

Choose ~ =- ~~I').. , Then ~"' ~ 2.\ ~ c x "')\ . 
(b Q:) 

Therefore J: cp,,.\A~\ ~ 'J...2-\\C-x.~l\\A,J 

and, by hypothesis, the right member o f the ine quality exists. 
<b 

d:) ('.I:) <'b 

Now, .2 l f ( X., •• J\ lA M ... \ ~ 2. 'PIA ]_\ A"'=\ .:. 2 ~~lA~\ 
., . ,._ .,,, ,,,..:: , '1 = I 

I 

and, by the lemma, the extreme right membe r ex ists. 

THEOREM 2.3. If (1). \ A\ is finite. 

(2). f(x) is of class M over A. 

(3). For any [J , some subdivision A .... r 
a, 

any 'X..._ f /\ "' , 1 l \ t ( x ")\ \. A ... \ 
h: I 

Then f(x) is summable over A. 

Proof: By the de f inition of summability it must be showm 

that if, for any cS , B"'~ is any sub division o f A, ~"" ~,1' ...,,. 
a::, 

then ~ I. \f c'J .. )\ \~ ,J 

Let 

Then 



¢> «> a, 

L \ (c~ ..... 'I\·\~-\ = L L \ tc~ ... 'I\\A" ... \ 

0) <X) (I) <b 

.::: z.., J_ ., l t(~...,'1-t()(.,.,.\\\A.,..,\ +-.Z: ~ \t'(X.,,..1\\A\,1\,1,,\ 

a, lO 

<- ~ -\A\ + Z:,, Z., \ \C x.,. ... ,\\ A""'\ 

By the preceed j ng theorem, th e rig ht member is, for any a 
finite. 

THEOREM 2.4. If (1 ). \ A \ is fini t e. 

(2). f(x),g(x) are summable over A. 

Then \ex)~~ (x) is summable ove r A. 

Proof: Let A .. ,'D ."' be the resp ective a/ -:i__ subdivisions of 

A f or f ,g. 

Define 

Then A~.,,.. is a & subdivision of A for ~C')(,l ~<jCx'I 
Cb 

Therefore, by hypothesis 2, ~ ,2_ \ ~cxV\..,.') ~ S(xV\,,_1\lA.,,.½'\ 
11 , ,,., 

I 

'l1herefore, by theore m II.2 .3, \e x ) ~ ~ Cx\ is summable ove r A. 

THEO"'Ell 2. 5. If \A\ is fin i te, then any measura ble function 

is summable. 

THEO PE:T 2 .6. I f f ( x) is summable over A, so is \ f(xH 

and conversely. 

TH EOREM 2.7. I f f(x) is summable over A, and i f Bis a 

measura ble s ub-set o f A, then f (x ) is s mmnable 

over B. 

THEORK·.~ 2.8. If f(x) is s ummable over A and over B, 

Then f ( x) is S'l!limmabl e over A +- B, AB. 

11.'HEOREM 2.9. If f(x) is summable ove r li, and if ex is any 

real numb er, then c,1.f Cx) is s ummable over A. 



THEOPEM 2.10. If ( 1 ) . ~( x ') "=;!- 0 , summable. 

( 2 ) • ex C x) --;::.,,,. 0 . of class M. 

( 3). ex c )<._) ~ 0>C x"') . 

( 4). \A \ is finite. 

Then o{ C x ) is summable. 

Proof: Let A ..,. , ~ "' be c subdivisions of A for ""' . r-, respect-

·vel The11 A - "-.1 1.·s a S suba1.·v1.·s1.·on for cJ. ]. y . ...._::. 0 "' \:l "" 

for ~ 
Q:) 

~ 2 \ ~ ( x "-,\ \ A ""'\ 
"' •"" 

I 

and, by hypothesis (1), the right member exists. 

Therefore, by theorem II.2.3, ~( x ) is summable. 

THEO REM 2 .11. If ( 1 ) . \ A \ is finite. 

and 

(2). For a ny n, \ .... ( x.) is summable over A. 

( 3). t._,c x, - tcx) uniformly almost every­

where in A. 

Then f(x) is summa ble over A. 

""' o/ Proof: Let A ..,_ be a 3 subdivision of A for t ,,_ Cx ) 

Let m be such that \ \ (-,<) - \.....,.c x,\ < S/3 

almost everyv,rhere in A. 

"' Then A ,,,.. is a d subdivision of A for f(x). 
a, Q'.) V', 

~ z .. \ \ C )( .3- ·L.c )<..)\\ A~ -\ I: \ \""' ( ')\ .. )\ \ A" \ 

3, n:: I 

and, by hypothesis 2, the right t rn embe r exists. 

THEO REM 2.12. If (1). \ A is finite. 

( 2). For any n, t,,cx) is surnmable over A. 



(3). For every n, \\ ~ <.-x)\<-cJ,(x") where ri.Cx) 

is surnrnabl e ove r A. 

( 4). t Cx\ - tCx\ as "'- ___,._ co almost 
"' 

eve ryvvhere in A. 

Then f(x) is summable over A. 

Proof: By theo r em ~I.l.13, f(x) is of class M ove r A. 

Hence, by theorem I I.2.1O, f(x) is summable over A. 

3. I nteg ration of Summable Func tions. 
ll) 

Definition: ~( <2) = L h x.,) \ A J where A,.,,, is any € 

subdivision of A for f(x), -x.,.. E A ,.,,, . 

Definition: S-te.,.,,~ ·-~ F(f} if the limit exists uni quel y . 
A e -,o 

~ e beg in with existence theorems. 

THEOR '-]!T 3.1. I f (1 ). f(x) is s ummable over A. 

(2). \A\ is finite. 

Then "1 ~ ~ c x'l ~ ­

A 

Proof: I t is sufficient to show that FCE'') satisfies th e 

Cauchy cond ition. 

© lb 

\ F ( c.=) - f ( o) ::: I~ f ( x" I') \ AV\ E' \ - :z... h )( .,.. /) \ F'\ ._ £ \ \ 
\ 

As in the n roof of ~heor em I.4.1, 
eo 

Define A .. ..,,,= /\Vlf · A=~ Then \ A :::: 2 ", ..... \A.,,,.,..\ 

since A.., .,,.. a r e disjoint. Let ,x.,....._ E AV\,.,,,.. 
= ~ 

Then F (.E) - F ( 0 \ 4.: \ 2.. (~Cx..,f ) -~c~ ... ..,\\\ A.,, ,,,.\\-\-\ Z. {\c"X.,.._') -~C-x ... 5\\\A .. ,J\ 
11 , "'1 \,.. , "' 

Q:) ao 

:: )_ \ Cx.,,,_',-~c)(."'.,..."'l Al.\ ,,.,,.\-\- 2. \t (x .,, .,,.,.'>-hx ... 0 \\\A\,\ v,,. 

A 



and the right member can be made arb i tra rily s mall b y 

making f:. ~ su:ffici entl:':,; smaibl. 

The above rnani , ulations of se ri es are permissibl~ 

since e~ch is absolutely converg ent. 

THEOREM 3. 2 . If (l ). f(x) is measurable ove r A. 

(2). \A\is finite. 

Then the two definitio n s of its integ r a l are 

equiva lent. 

Proof: Theorems I.3.1,4.1,II.2.l,3.l, and the general 

~rinci ~le of convergence. 

Thus if a function of cltss M happens to be measurable, 

there will be no ambi guity in the expression: \ t c ')(, ~-
A 

THEOREM 3.3. If \A \ is finite, then a nee essary and suff;:,. (~ 

icient condition that ~ J \ c x, 6.1)( is that 

'1 \ \\ c)()\ ON.. ; then \ \ , c ·,<\~ \ ~ \ \\ cx)\ <il><. . 
f\ A 

Proof: By theorems II.2.6, 3.1, the equivalence is evident. 

The remainder of th e nroof is exactly the same as that of 

t h eorem I.4.4. 

THEO REM 5,4. If ~ \ \c x, 4 , ~q( x)ck ,IA\ finite, 
A A 

Then "3. \1 f cx, ± ~Cx'\\ 4 = r f cx) ~ i \ 3<- x, M'- . 
/\ A /'I 

Proof: Theorems II.2.4,3.1, remainder of proof as in 

theorem I. 4 .2. 

THE OREM 3. 5 . I f :\ \ ~ e x) ()._I)(. 
I\ 

and o(. is any real number, 

Then ~ ) o(_ t ( x )Q.!x = o<. ) t-C x) cl/,>< 
A A 

Proof: Theorem II.2.9. 



THEOREM 3 • 6. If ( l ) • ~ ~ ct< X'\ f c x, ~ 1 \ 0\ C X) ~ 
f-. A 

(2). \~Cx)\""cp)o< c x) 3-0 almost everywhere in A. 

Then \ \ cJ.. Cx ) ~Cx) ~\ ~ q> \ ol. Cx ) ~ 
I\ r\ 

Proof: Same as that of theorem I. 4 .5. 

THEO REM 3.7. If (1). ;\ \o1. cx)fcx)~ , \o<'.C x)M_ 
A A 

( 2). F is the s mallest closed linear mani-

fold in B containing all the values of 

f(x) for x in A. 

Then ::. t € F such that \oZ(x) t(x)th = f- \°'-C x) OIX . 
~ A 

where f will of course depend on the function ~. 

Proof: ~ame as that o f theorem I.4.6. 

THEOREM 3.8. If (1). \ A\ is finite. 

( 2). ~C -x) ~o '=- oUx) ~ ~C x ) almost everywhe r e in A. 

(3). ~e x) is summable over:r·A. 

Then 1 \ oUx) ~ , \ ~Cx ) ~ 'l \ olC )'.") ~ . 

~ A A 
Proof: By theorem II.2.10, ol c x"\ is summable. 

By theorem II.3.1, 3 \ olC x 'l ~) 3. \ ~e x.,~ . 
A /\ 

Inequalit y is obvious. 

THEOREM 3. 9. If 

Then ~ \ \ex,~ -

Att3 

Proof: Theorem rr.2.s. 

\ ~( x'l ~ + \ ~(. x)4 . 
A ~ 

THEOREM 3.10. If 3. \ -\("J<J ck , B:;1 is a measu r able sub-set of A, 
A 

Then l S ~ex) c\.;x. 

Proof: Theorem II.2.7. 
B 



THEOREM 3.11. If (1 ). \ A \ is finite. 

(2). For any n, ~ \ \,Jx)l,x_ 
A 

(3). -\..._C.x) - \cx, uniformly a lmost everywh ere 

in A. 

Then ~ ) ~ c x\ 04"' 1~ \ \-"' C?<-) 4. 
A ~ ----. co P.. 

Proof: By theorem II.2.11, f( X) is summable over A. 

By theorem II.3.1, 3 s \ C x ') ~ -

A 
Remainder of proof is the same as that of theorem I.4.7. 

THEORETJ 3.12. If f(x) is of class M over A, where IA\ is 

finite, then a n ecessary and suff i cient con­

dition that ~ S h x) ~ is that the series 
A 
converge, where for amy m, 

Proof: For any E , let A v..f be any f subdivi s ion of A. 

By theorems II.2 . 2, 2.3, 3.1, we mus t prove that the con­

dition stated in the theorem is a necessar;y and sufficient 
co 

condition for the convergence of t h e seri es 2 ... ... \ \ C)<. .,..,~ )\ \A ~E A ... \ 

COROLLARY 1. If \ A\ is finite, and if l \ fcx,k. 
I\ 

where 

00 

Proof: Since 2 - V\,\_" I A..,_ \ converges, 



co 
But \\i\ · \ ~ M \ -::: \\I\ . L _ \ A -. \ 

(V\ 

COROLLARY 2. The necessity does not depend on the finiteness 

of \A\. 
co 

Therefore 2.- \ A .__\ must converg e. 

Therefore \~
1 

is finite. 

CO ROLLARY 3. Si mil a rl;y, if for any posit ive number cl , 

~o1:: A- £ '\ al~ \~ c. ")<.)\1 

and if 1 \ ~ C x) ~ -
/'I. 

Then \ ~ o{ \ i s fin it e • 

THEOREM 3.13. Define ~"' C x) ::. \" C. ")(.) •. ~ •. \ \ ( ,n\ < lt\ . 

Proof: Using 

corollaries, 

For any ~ , 

~ 0 •. ::: •. \ \' ( 'I{")\ ❖ \I\, 

If \A\ is finite and if ?i. \ ~ c -x'\ 4 
I\ 

Then \ ~ c x) 4 -:: ~ vvv-.. . \ ~ ~ ( ""-> ~ . 

A \S.-"> = A 

the notation of the preceeding theorem and its 

\ \ °\ ( X '\ -~ - \ ~ \. ( ><) ~ \ ~ \ ) °t ( X) ~ \ 
A A Ek 

let A..._ ~ be a S subdivision of A. 

«> <lO 

--\- .Z: I- \~c-x .,_ 0 ..._1\\A-..d.._\ ~ 
\.. 

" -¾-- 2.,_ 2--. ( ...... .,,.~\A "'-r,..__\ 
\,, 

(0 co 

\• -\- L- \A.,..\ + 1- Iv. -\ A-\ 

By the preceeding theorem, the third term can be made arbi­

trarily small by a suit able choice of h. Similarly for the 

second term. After h has been so chosen, the first term can 

be made arbitrarily small by a suitable choice o f r , from 



the definition of the integral . 

COROLLARY • If\ A\ is finite, 3. \ ~cx1 ~. 
A 

Then 1_ \ \ -\-c-,,.,\ 4 =- ~ . S \~ ... c.~,\ ~. 
A .,.,_co A 

We now prove a quasi-converse of the above theorem: 

THEOREM 3.14. If, for any n, ?:. ~ \~ .,__C."K'I\~ 

"' 1 ]~ \ \ ~ ~ ( ..... )\~ , \ A \ \,-..,\ e , 
"----+ro A 

using the notation of the previous theorems, 

Then ~ \ ~<: x'\6-1)(. = ~ \ ~--c "'' ~. 
A "' - oo I\ 

Proof: By theorems II.3.1,3.13, it is sufficient to show 

that f ( x) is summable over A. Hence, by theorem II. 3.12, 

it is sufficient to show that the series 2- ~ \ A~ \ con-

verges. Now, ~ \A. o(C\: \\I '>,.M -:,~1/\. o -J.\ \\~N( 1<.,\~-\\\ k.(-x.'\\~\< ( 
Ps l'I 

\ \ Si C ><)\ <l. X < f . 
AMt ··· +AN. 

Let A..,. d be any d subdivision of A, A.IA. .,,,,._-=- A..,:F;A""", "X"'.,..E A.,. Wl 
N "'N N (l'.) 

Then 2~ ~\ A~\ f l ~ 1\-\\ A.,. v..\ ~ 2W\ L \fc,<. .. .,..'\\·\ A" ""'\ 
M ""'lV\ M ' 

N 
::: \ T~ J.: l t (Xi.~"'>\\ A~~\ - \ \ ,. ( ">( ) \ d X \ 

J\11 A Mt · ··-'rAN 

+ 
AM-'r···'tAi-.1 • 

\ 
The last term can be made small by choosing :M sufficiently 

large. For an;y choice of M,N, the first term is small with S 

which does not appear in the left member of the inequal.ity. 

THEOREM 3.15. If (1). \ A \is finite. 

( 2 ) • ~ \ \ C-x) d._ X . 

/>I 



<O 

( 3). A=- J_ ... B..,. where the Bvv, are dis joint, 

mea m1rabl e. 

Then ) ,ex) 4 =- ,Z
11 

\ "Y C><-) 4. 
A E"' 

Proof: Let A"'"s be any o subdivision of A. 

Let Ap be defined as in theorem 3.12. 

Define A..,. ..,...~ :: A"'! ~""'" A?· 

Then \ \tCx) ~ -~J.~ \ \(x)~ :: \ j \Cx') k \ 
A \ -o 2 .... D ~ 

~.... a:, Cl:> 

~ \ ..,\ \ ( ~) k - .f..,, i ' p f ~ ~ - ~ \ A \1\M t' \ -t lM 2", p ( p t 1) \ A ~ ~" \ 
I E"' M l M I 

"' " t--\. 

< " + 2- 2p (p -\ 1)\ C)-"' A p\ 
00 IV\ I 

Now the series 2p Ct-t11 \ AP\ converges and is equal to 
f 

IP <0 

L lp (ptl ) lB~ At'\ 
) I 

Therefore the s econd term of the right member of the above 

inequality approaches zero with 1/M. For any M, the first 

term approaches zero with 6 , which does not appear in the 

left member. 

COROLLARY. If (1 ). \A\ is finite. 

( 2 ) • 3 \ \ ( x) ~ . 
A 

(3). A~ i. B"" where the B""' are disjoint, 
Ill:. J 

measurable. 

Then 

THEO REM 3.16. If (1). \ Al is finite. 

( 2}. :! \ \ c X) dr,(__ 
A. 

( 3 ) • B.,. ~ A ~ 3. \ l3 ~ \ ·. Q ~ \ ~ "'\ ~o . 
Then. 



Proof: It is sufficient to prove the secon« conclusion. 

Consider the cohstructiom. 
§'.. 

A :: A- 2 "8 I '1 \.\ 

~ 
co 

A
3

=- 8
1

-B-i.{B, + 2 .,. B.J 
3 3 

= 
VI -¼ I 

.a.:\-c. 

Then, evidently for any n, there is an integer \{"'(-=.2+ 

such 

Also 

~ 

that B"'" ~ 2 ,-
c:c, I{~ 

A ✓ 2 11 A"" •. II\ -=t V¼ . --.:, 

Hence, by the~rem II. 3 .15,, 

Therefore 

\/\ ----+ co . 

A .,._A"""==O . 

~ \ \ ( x)\~ 

2 ,- A y 

v("' 

==-C) _ 

THEO REM 3. 17. Analog of Lebesgue's conve r gence theorem. 

If (1). \ A\ is finite. 

(2). For any n, ~ \ \"'-c~1 ~­
/\ 

(3). v; .. c-,q\ "":::o<Cx)almost everywhere in A. 

( 4 ) • ~ \ ol C x ) 4 . 
A 

(5). ·\-( -x) -=- Sl.:...... \_,(x)almost everywhe r e in A. 

Then 3. \ ~Cx.1 d.t)( -;. ~~ \ -\-- ( ><-\ 4. 
/\ v.. - CV A 

Proof: Same as t hat of Titchmarsh, with the use of theorem 

II.2.10. 



4. Relations of this t o other recently defined integ rals. 

THEOREM 4.1. If f(x) is summable over A, then a necessary 

and sufficient condition that f(x) be int­

egrable over A i s that if x..., .~"' E A. ....._E 
(l) 

\Z .. ~\Cx._') -\cj~')\ A"\\< E. 
\ 

Proof: This is equivalent to the Cauc hy condition, sin~e 

\ F ( c ) - F ( t1 \ -5 \ 2.., \c ')<. ~ .;; , \ A " €' \ - 2.,., ""' t C ')(. "' - 1 \ A v. f A "'Y) \ \ 
I I / 

a:, co 

~ \ 2 ...... ~c~ .. ,,..') \A l,\ 6 A..,.r:> \ - ].,,, ~ex ... ,') \Aw. , \\ 
1 l 

< if G, '1 suf ficientl y small. 

(4 ) 
We might, wi t h Birkhoff , take simply this condition 

as our definition of integrability. Taht is , f(x) is int-

'° egrable if and only if the series ] \fc)(. J \A..\ converg es and this 

Cauchy condition is satisfied. However, this definition does 

not seem to yield Egor,ff's theorem. For, consider the 
1 -1/-... 

simple real function \ C~ ~ ;<. 

Let A be the int erval lD, '1. 1 . 
L, 

For any €, , the interval ~E =- \.. ~ , 11 can be subdivided 

into a finite number of sub-interval s in each of which the 

oscillation of f(x) is le s s than <=/.,. , so that 

: D ... == S< . tA. .~ . \ \C -,c.) - \(_~~\ 

Hence, define 

so that \A..,.\ :: 
3E -

00 

Then 2 \ f C ~ .. ,\ \ A J :- 2 \. \ Ct< --,\ \ A J 
A ., ~' 

and the sum over B contains only a finite numb er of terms, 



{D 

whil e, 2 
Q) 

3 f 
::-

l --- - 3 € - =----
H : I 11 :::1 2 2 

so that f(x) is summable over the g iven subdivision. 
a:, 

Furthermore, 2 .. O"" \ A-..\ == .[. D\.\. \A,,.\ -\- L- ·• 
A ~ 

(£> 

fi 2 "L""-\ 1... 

so that this Camrhy condition is satisfied. But, ~"'.,_2_"/f 

which, for any f , is not uni f ormly bounded in n. That is, 

the function is not of class M with this choice of sub­

divisions, and t he proof of Egoroff's theorem rests directly 

on the properties of functions of th e class M. 

However, in such a simple exanrnle the di f ficulty is 

removable. There do exist subdivisions satisfying the pos­

tulat es of the class M. The question, then, of the sufficiency 

of the condition of theorem 4.1, for the existence of such 

subdivisions still remai ns an o~en one. 

It is evident from the definitions that this integral 

includes those of Saks and Bochner, and Radon. 

Also, Birkhoff's integral is more g eneral than this only 

in so far as "unconditional" convergence is more g eneral than 

absolute. If these are equivalent, then so are the integrals. 



Chapter III. 

Theory of Divergent Series. 

Before proceeding t o the next and last integral concept, 

we n eed some elements of the theory of divergent series. 

' (. 5 ) 
1. The Cesaro Theory. 

<b 

Consider the series I"' QI< 
c) 

Define 

( vt.-1) :: o . "' "/ 0 -

(v.. . ""'\ 0 \I\. .::. """'-::c > 
0 .... 

Ar = 2- \._'< -\- ""'- - ' ,""' \ A IA - = 
"' 

0 

o(:-:: g ..._ ( (r- t lA. , VI) 
Q:> 00 

If A -= 2 Q"' , t) -o. 2 b"' are summable (C,r), then 
(s) . 

the f ollowing properti es are well known.: 

l ) • 

2). 

3). 

4). 

G. ,,_-';, 0 ( C rJ 

(A - A 0.., ") -'7 o ( C , r 1 -
Q:) 

z"' (a .... - a.,, -t, ") ~ Q O ( c. r-> . 
() 

A change in one t erm of A will affect its sum in the 

obvious manner. 

5). The addition of a constant other than zero to each term 

of A will de stroy its summability. 
Q:> 

6). If CL "3- o , then I Q .,.. is convergent. 
~ ~ ~~ 

7 ) • 2., ( o. ... , \, .. \ -=- A + C) l c. " ) 
,) 

8). Q.,. ~ \:, "' . J . A ~ 
Cl) 

9). c:t~~ b~--:, - 1 b .. -ah converges to (B-A). 
l1 c() 

We also need the following two more i mportant theorems: 



co 

a). If A 7- I.,. Cl"' is summable ( C, r), 
0 = 

Then p/ ::. 2 ~ 
- ()VI VI 4 \ is summable (C,r-1) and 

Cl) z C<."' is summable ( C, r-1) to A, where 
., =o 

Q'.) Q.,,,.._ ( C, ' -,) . al V\ J_...,, 
'""' -\- I V\ 

co 

b) • If A= l .... (X"' is summable ( C, r-1), 
Q'.) 0 

Then J..._ Q"' is summable ( C, r) to A, where 
() 

Cl---- -=- ("' .._ ,\ ( o!.,._ -cc .. . ,) 
Vl Q_ 

We shall adopt the following notation: A .,,._ ::: 2 ..... - )",-, + I 
C, 

so that A ~ .... o/.. - .,)_ 
0 "'--\- \ 

The purpose of this section is to prove the 

all n. 
(b co 

(2). A ~..20.,. 1 B: 2 b.... are summable (C,r), 
{) l) 

is surnmabl e ( C, r) and A ::: D ~ B . 

Proof: The theorem is obviously true for r = o. We proceed 

by induct ion on r, which is a po si ti ve integral variable. 

Let o!"' , f'"' be defined as in theorem (a). We have the 

following results immediately: 

Lemma 1. o< ..... ~ (s "' all n. 

Proof: Theorems 8 and (a). 
co 

Lemma 2. 2 ( ~ - - ,._) converges to ( B-A) • 
.,._-:.o 

Proof. Theorems 9 and (a), lemma l. 

Hence ~ (~ --~--' ::0. 
.. --, (I) 

Lemma 3. cx 0 +D .... - A ... :: ~ ,, - ( B .... - D ... , all n. 

Proof: Since cl. c. -A.,..-=- o<'...._ -\ , , ~ o - \3.,.-:. r-, .... ..,., 

it follows from lemma 1. 



Hence it is permissibl e to speak of the interval. 

-rv.~\._ct 0 -\D.,. - A .. , ~b-C~ .... - b~,'\ • Clearly. I ---. <-\o1
0
,~:) all n. 

Lemma 4. The sequence of intervals I ~ defines a r eal numb er. 

Proof: We must show that 

all n. 

2). limit(length of I ... ) = o. 

C 1 early. D.._ - A .,,. "? o '= B "' - D... since Q ..._ s ~"' ::: \::i .,_, -

Thus to prove (1), we need only show that 

This is true since D -
""" ' 

As for (2), the (length of I ) =-t\ -~ -~ *A ::::. R -ol.. 
" , .. 0 "- \A ,_,__ ... \ "'- ... \ 

and the result follows from lemma 2. 

Let d o be the number defined by the sequence of inter­

vals I ... . Then d.. 0 ~ &,, =~ 0 -,(ol. 0 -\'b..._-A..._ ~o., ::.(~t>~\.E"-\.'.>.._1) 

ie., <S0 lies in I ._ , all n. 

all n. 

But, sine e ol. 0 \- t) ..._ - A ..,._ -=- 6., ~ r0 - (. B ..._ - D " "'> 

it follows that c,/.. 0 - A - -:: 6 0 - \i) "'- ~ ~" - \.S. '-'­

and hence the result~ 

We are now able to complete the proof of the theorem 

stated at the beginning of the parag raph. 

"Proceeding by induction , assume the truth of the the-
ll:> ~ 

orem for ( r-1). By theorem (a), ].ex .. , 2 f-- are summable ( C, r-1). 
i> <> 



By th e induc tion hypothesis and lemma 5, 

l> 
00 

Hence, by theorem (b), 2.. Q .,,_ is summable (C , r). 
i) 

Then A ~ D ~ \::>. by theorem s. 

Since we are discussing the subject of divergent s eries , 

it seems convenient to introduce here the following new 

methofl of summation. 

2. New Summation Method f or Diveg-g ent Ser i es. 

The method to be given here is a modi f icatio n of that 
('1) 

due to Euler-Knopp • For the weighted means of the -partial 

sums we use the binomial coeff icients, but instead of be­

ginning with the first we begin with the cent ral one,ie., 

with the g reatest. Thus the initial terms al ways receive the 

g reates t weight, a s in the Cesaro ! Holder method. 
«> 

Therefore let us consi der the serie s r>< Q '< . 
,. 0 

with the partial sums. A "' = IK a I-<: 
0 

0 

and 
v 

If there exists ~.:,__ -s:~"5"then --S \-is called the ri sum 11 

of the se r ies. 

Our first problem is to find t he relation of this 
.... 

method of summation to t ha t of Cesaro. To do this we recall 

the following well-known equality 
(1 ) 

(X) co 

( \- -,('{ I ... A: 'K ~ ~ 2..,.. A I.A -x " 
C D 

botij series converging absolutely i n the open interval ( .;;;.:i,. r tJ. 

Hence, equating coef fi c ients we obtain the partial sums of 



' the original series as linear functions of the Cesaro means. 
" A = 7 ( -,\ K'"'° 11(\(r-\-¼-'-< ,v-""\o£< = ---- ~r. 

\I\. .1-V. \ ' ----\( 
0 

... 
A .... -=- lv.. 

0 

Thus we can express our means as linear functions of Cesaro's. 

WI 

~< .... =- i"' 2 1,{ l - I'/,;_ ( :t-w-.H, ""-.- "'\ (__ " ll<\ (. ,- ... II\ - I,(, 1-\ o<'. :-1.< I')._,.,_,,__ 

() 0 

..... r 

and 

or, collecting coefficients and rearranging 

..... -,- J ... ,-

and 2 j d j 1 J..., [ •• 1 \ + 
0 J 

Hence we may write 
0 

by defining 
J ¼-1- • . / 
2 .. (_ -l)"'- j (,_"""- H,Yh -"'-\( r,\1\- ~)\_Y- ~i,~} )._,.._....,,_: ~,_,r+\. 

J 

Now we make use of the following 

Toeplit's theorem: Consider the transformation: 

0 

In order that 

whenever the latter exists, it is necessary and sufficient 

that 

2 ) • .SL.~- <l..._~ =-0 all j • 
..,, _(t) 

t{ .... , 

3 ). Lj \O. ..... ~\ -< K all m, K independent of m. 
0 

Thus we shall not need the values of the coefficients 



.... 
Cl . for m ~ r, since all three of the conditions of the -~ 

theorem depend on the .s behavior of the a.:_~ as m - co . 

Now let us consider the first condition, which is that 

We have 

Interchanging the order of summing , we have 
w, ,-- (y J ~ k-J ) - ,- I .. ..., ... ""' · (?... ""' -\ \, \'l,\ - \-1) - J. j . c -1) c ,- -+ j. j { ,-, 11 -J ) 
l J· Q - ~ ::. . , ... 
o O O 

"' 

r+ I .., _ .... 

We can write this as .2.,, ( -1).,, (:2..wi t-1,m-n ) -, ( t-;1d / 2 .,_ ,,,,. 
0 

where 
" 
l i ( - l) J ( r +..i . i) ( \"' . \I\ - ~) 
() 

"' 
and }_ • 

J 

By means of the recursion relations ( ! , \,( ) :c (j -\, \.( -1) +lS- i- ~) 

we find that --r L r,"'\ -=- -T \_ Y-, ¾. -l1 t-TL ,- - ,, \.-1. -~1 .,. 1( 1--1, 1.-\1 ; 11 ,r ?:t . 

\,\ 

by actual calculation . Thus, by induction, T~r . ... "\ -=- (- t') 

- ,-for every n,r. Hence, 2 >·Q . ~ 1 for every r,m. There f ore 
0 "'\\ 

Toeplitz's first condition is satisfied. 

Now let us consider the second condition, namely 

any r, j. 

We have 
J t-r- • 

:::. 2., (-1)"'-J (1..m -tl, Wi-1-1)(t-, "1 -j)(1- +-j , j)/22.,-. 

J 



J t-1- . 

s . ·) \/1.- · ) \t . _ ,\ 15"' c-n"' - \i-- .. -i ) tC """ - "'"'•)--(h< · P H l "-'t "'- tu ··c-+~ 1--'<Hi 
-:: le \- ~ > . 1 l 1.. ----- ... 1) . 2 (}'\,I _ J . Wt t J -1- 1 -+ " · \ L ~ • • 

J 

where there are n-j fac t ors in the firs t bracket and j + r-m 

in the second, or r in all. That is, each term in the sum is 

a polyno mi a l in m of deg ree r. The leading coeff icient in 
'"- · \ 

e~ch term is <.-1\ (, .... -~\ ; hence, for the entire s um the lea d -
.it\· , ~ ..., _ l • 

ing coeff icient is r ... ( -,, 6-. ~-i \ -:. (\- I\ = 0 
... 

Thus the entire sum is a pol~nomial in m of deg ree r-1 at ~o ~g 

most. Denote it by P. 
(\- + i , i\ \ ·l • ;'.)- .,, (J.""-1..j -1 ) ·1(-;i.. ..... -'2 ~ -\0'" h .. ~ -ti\ 1- V 

where the brac ket in the numerator has j "° l factors and that 

in the denominator j t- r t- l. 

Therefore \ ur_~\ ~ ( \"' ti, i) · 6 C Yi,.-) 

Hence 

Now for the third conditinn, which is: 

K independent of m. 

j 

substitute h for n - j , yielding 

I- \ I 'l."'°' 
-== 2 1,, (. - l) \.. ( Y, ~) ( r "° i , ~ ~ l 1.. V'-'- ., ' , VI,\ - ~ .. ~ J... 

((t\ 

Now, in the s t a tement of Abel's lemma , we have 

(10 ) 

and 

f \, ::. (i_w.. ,.,, . ""'--i -\.\ Lr -\ i , ~) /1'},."" \ ~. -:,/ f ,· ti 7 () , 
l 

K 

n ~ 7. ( _ \I\, c ,- . \,, ._ s """ ~ r h u "' 
(.) 

.!5. l. "' :\ - 2ti ( - 1) (r,, h) -:.(-/} (Y-/, if) . 

C 



\ <\ '> and hence , agai n by footnote , 
~ ~I 

l 1, 0\.. f\,i = I "' ~ v. ( f v. - fKt" 
d 0 

or, sine e "'S \- -=..O 

~-, I 
Q : ~ :: l ~ ( -,)~ ( r-1. w) Cr+J,j){ (2 w.. H,--~-u\ - (_ ,._ VV\H , V\,1- j -l,(-t)\ 2 ').."" 

(> 

Now, in the s necial case r :: :t. , 

Cl.').._ ~ = l ~ t, ""l. , ~ ) {l'l..""'- " \ , 'M. -~} -1-.l'l-""'- .... ' · "" -~-\) -\- ( '.l."'1. ~l, l¾ -j - :i.1 \ / J...i""' 

~ ( i """""' ~' ( ~ H ' C 5 t i~ ( - h-- "' ;i..-~ ~ + 6 J n "'\ / 2 ,,., .,..,.. c ....,,.,.. - ~ , \ l VII\, -\- ~ + 1 , \_ 

,_ 
, \ ~ "3, 

~ -0. -::::o ~ ~ - -..... ~ 4 2-. 

,_ s while Q ....,.-~ ~ o J :;, \{, 

)(_ 
"" 

~ X, ... '\,-
,._ .... 

2 - )_ , Q . -"2_ 2 -
,._ 

2 i \ Q:_ , \ :: -[ Cl . -\- a. , = Q ~ j 
l ""'~ l ""'J l los~ 6 ~ ~ ~ " x+, (,) 

,c .,_ 
2 · ::. l - l Q~ _ J 

K 0 
4 ( 'L """ -\\} \_ ( j \,\) l ~t-1..\ l'-" - "l..i 1:. h ~ - 1') "" 2 -Therefore 2.-\ \ Q~-~ ::, \ + 

l"'- - ~")\ l ""'- "' ~ " ~ "')\_ d "l...,.,..__ ~, ~ 
'J_ 0 

-4:(_'l...""'- ",;'-\ \_ 
K ( ~ \- \ H j -\- l..") , Y'- - ,_ ~ ... _ f. i - ) J 

L. \ -\- L -- l 
'l..'""-"'\ :\ \ \~ .., >--'\ l"""' "'°'' 2 v,,.,..\_ (""'- H . " 

~ (__ 1... ""'- ... 1.) \ _ 

"L."- "' ' \ \\ J... \M. , LW1. +\I, 

Thus, we need only show that 
~ ( 'l-""'- -u\ \_ 

is a bounded function of m. 

and, using Stirling's theorem 



-:I..""' "\"'{.,_ ""'- "<\ _ ..,.,_ 

~ ,-:i..--- -\. -:,.> -[.;; e e 
we have -

e \ 

m 

Hence we have proved the 

THEOREM 1. Any series which is summable (C,2) is summable 

by this method to the same sum. 

Next we investigate the relation of this method of 

summation to that of Euler-Knopp. Using Rey-Pastor's (n,) 

result 

we find that 

where Cl""' ....­

I) 

r 
We wish to see if the matrix \\ a .,.,_\\ is a Toeplitz matrix. 

Is it true that 2- o"",... - l as VIA - co ? 
r:. o 

We have 
l) 

0 

~ ~ 

-:: l.. ..,._"" ( "2.-. .... \, IM..-\I\\ /-;_,,_.._ \ l "J.. - \\ 

0 

Thus the first condition is satisfied. We prove that the 

third condition is also satisfied by showing that Cl,._1- ~ 0 , for 



y-

2 
all mt r. 

YI - 1-

,Z.,. (_- II (\\ , \") b .. """'-·H , ""'--\1\.) 
i-

~ -,-- - \,( 
2 1,{ ( -\) (_~V¾ -H , \.(J \wt -~ . ~, 

0 

N 
(.q\ ow, in the statement of Abel's lemma we have 

~ =:. \.""'--¼,"! / ~l(H "7 0 . 
~ 

t - f :: ( V¼-'-( , rl - ('\Iv\.- ~-\ .\- )-;, ( M - K -\Jr-':) 
I( I,( t \ 

and 

Therefore 

11. - 1-

- I< Now let '3(~1 ~ 2 v.. ( -l) h . W\, +\- S , K ~ (}ll,t -l.(-s , 1--5) 

0 

The same method shows that 

Therefore, by induction 

But, 
D 

Also =-

Therefore 

0 0 

~ ( ':> ') :::- ~ ( s -\ I.} . 

3c c) =-- s( y-") _ 

To prove condition 2, we have O -""-r -



2 ,- (_ "l..W\-V--) \ 
,-

2 ·\·2-:.···l""l..'--H\·1 l-i.""'--~r-H) --- (."l.""'--v- \\ 

(\""-\- :=: J...-,_w- WI\ ( \'\,\ - \-)\ 

where the bracket in the numerator contains r factors. 

Therefore 
'2.. "'"" . \IV,.. \ 

where the brackets in the numerator have respectively 

m-r and r factors. 

Thus 

where the bracket cpntains r factors. 

Therefore 

and hence 0. ..... ,- -- o as VV\ - QJ . 

Thus vrn have proved the 

THEOREM 2. Any series summable (E,l) is summabl e by this 

method to the same sum. 



Chapter IV. 

Divergent Integrals. 

The possible methmds of generalizing the integral con­

cept have been well discussed by Kolmogoroff t \- . He suggests 

that we may 

(1). Take infinite instead of finite subdivisions. 

(2). Consider abstract functions. 
-H -\-( 3). Generalize the measure • 

He overlooks , however, the possibility of generalizing the 

sum, which is presented by (1). We propose to make this gen-

' eralization , with particular reference to the Cesaro summa-

tion method. Since, however, t he sum of a divergent series 

does not remain invari ant under commutation, we must always 

be able to order the subdivision sets according to a definite 

rule. For this reason we find it convenient to consider 

only real functions of a real variable in this chapter. We 

present g eneralizations of both the Riemann and Lebesgue 

integrals. 

l. Riemann Integration. 

Let A be a semi-open interval La. ,\, (b may be infinite}. 

Let ~(~1 be a real function of a real variabl e defined 

throughout A except pos s ibly at b, and have the following 

properties. 

( 1 } . For any € > 0 , A oan be covered by a a enumer-

able infinity of iHosed intervals Av..€ , any two 

having at most one point in common, such that o< ~ ~ 

if c::/.f A \,\ , r f A IA 4<\ and ~(oZ°\ is bounded in each 

interval. 



Definition. ~ld) is summable in 

For any € , the series 
co 

A· ==- • . - . 

is summable by a regular method (always the same), 

where cJ....,,. G A V\. E 

{\ G -o 

if the right member exists. 

By a "regular" summation method is meant one with the 

following properties: 

a). z_ Q * Z- 6 ~ Z (a_ ,. ~ ') 

b). If the ordinary sum exists, bo~h exist and are equal. 

c). Changing a finite number of terms affects the sum in 

the obvious manner. 

' As wa s shown in III.l, the Cesaro methods of integral order 

are thus regular. 

Now define 

Q:) 

Define Q2 (f') - T ., cp~(O \ A"'~\ 

q:, 

~ Cf') :::. 2 .,.. q>_,.f \A'-'-~t-
1 - --- -

Then ~ Cr) 7,, ~ <.. r') ~ ~ (<,:) for any £ , from property d. 



Thus we obtain the first existence 

THEO REI'.'T 1. A necessary and sufficient cond i tion for the 

existence of S q>Co()<lol is the existence of 
A 

the common limit 

Now, for any ( , any subdivision A..,._ f , define 

where in the I.. the terms are associated in any manner 

such that all the A ..,._ E in any group have a total length '.:" f'. 

Similarly for ~• Cf'\ 

Then we can prove the more powerful existende 

THEO REM 2. Let A ..... c:: be any f' subdivision, and XS "'- E any 

resubdivision of 1--\..,_f (in particular, B may be 

A itself). 

Let cE" A ( ~ 1 

Let 

the terms being associated as above. Similarly, 

define 

Then, a necessary and sufficient condition for the 

exisjrence of ) ~c,1.',<\ol. is that it be possible 
{\ 

to enclose ci) (6 ~ (15.,. in an interval whose 
- A ' ~ , hl!13 ' ~ 

length - 0 with E • 

Proof: Let A ... € .I\ "-~ be two subdivisions, 1=>"'- the product 

subdivision, so that B satisfies the hypothesis rala~ive to 

both A's. Let ~ I refer to the I_ with B in it, associated 



so that the nth tenn contains precisely those B's which add 

up to /\ "'- e • Similarly, in g? 1
\ those in the nth group add up 

111 
to A"'-~ • Let g_> be the simple unassociated series of the 

B's. 

Then, firstly, all the series considered are summable, 

-::C-1
1 

i'h\' ) ,K"(I\ 
~ ~ by d , and w because (? is summable. 

Now, to show integrability, we need only show that 

~u,, ~ (£=\ ~( o\ ~ ~ ( o\ lie in an interval of arbitrarily _ _ , - -
small length. 

Well, \ ci" cn 

-\- \ ~ - cli \I I -\ \ ~ \1 1 - F \ 

~ ,, ili Co)\ 

and the result follows from the hypotheses. 

It is clear that \cp(_d.) <\d.. is additive with respec t 
(\ 

to er and with respect to A. 

We might have allowed the values of the function to 

be abstract, but then we should not have had these existence 

theore ms. 

2. Lebesgue Int~gration. 

Let A be a measurable set of real numbers, ~Col) a real 

function defined and measurable in A. Then, as in classical 

theory, let -· ..:: ~ - 1.-.::: ~ -'-.::::.. ~ o::: D .:::_ '-\~ ~~--..__-<::. 

Definition. ~(o!'I is summable in A: =:- : 

The s e ri es ~ ( E'.) - ] 
11 

f CV c ex~\ \ A J -\- q C £¥. J t I\ - \,\ I t 



is summa.bl e for any E , with ol... ('. A "'-· 

Definition 

Then the analogs of the two preceeding theorems are valid. 

Here also we might have generalized to the case of an 

abstract independent variable, since both the ordering of 

the sets and the a bove existence theorems depend only on 

the realness of the values of the function. 

Finally, it is evident that these integ~als are true 

generalizatio ns of the classical Riemann and Lebesgue 

integ r als. 

3. Examples. 

The function f-c -i<) ::. (-2')"' , o ~ V\ ~ x ..:..V'--H, o\\ V\, 

is integrable in either of these senses, using the Euler­

Knopp summation method, the value of the integral being s i. m 

simply 1/3. although this function is not integ rable accord­

ing to any other definition with which we are f amiliar. 
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