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Abgtraet

The increase in the diameter of the cables used in overhead

- épansmission lines has fobused the atiention of the Hiestrical
Tugineering profession on the mechanigal vibrations which are

set up in these linve by the apition of the wind. These vibrations
have been the importent sause of failures in many casede

A study of the literature of the subjest Bhows the wery
haphasard state in which the theory of these vibrations fiamds
itselfs It is the purpose of this paper to vorrslaile some aiithe
observed phenomena by a methematical analysis amd‘h@nae to place
the subjeet on a moye soisntifis basis.

The thesis concerns itself with en analysis based on gertain
simplifying anaum@ﬁions whigh are well substantiated in prastiocal
¢asess The analysis comprizes the following topies:

1« Imperfect flexibility of conductor.

2. Travelling waves.

5. Damped Vibrations.

4 FPorvged Oscillations.

f¢ An Analyeis of & Simplified Vibration Daaper.

6. The Effe¢t of Movable Bxtremiiies.

7. Refleetion fgam»a Damper.

8+ An analysis of Preswerk's Vibrationless Cable.

The results of the analyses of the various topies disoussed
are tabulated throughout the body of the paper and the derivation

of the equations is carried out in the appendixm.



Cable and Damper
Vibration Studies

A theoretical analysis of dampers and
conductor vibration is presented in this
paper and certain new methods of elimi-
nating or reducing conductor vibration are

discussed.
By
L. / California Institute of
NON Technology, Pasadena

THE interesting and important sub-
ject of mechanical vibration of transmission line
conductors lends itself readily to a mathematical
discussion if certain assumptions be made. Al-
though these assumptions are not exactly true, they
are quite close to the physical case, and produce re-
sults which should not be far in error. It is the pur-
pose of this paper to present a fairly comprehensive
analysis of several aspects of conductor vibration
and of some of the methods which have been em-
ployed or suggested to lessen it.

IMPERFECT FLEXIBILITY

In the discussion of transmission line vibrations
it is customary to assume the cable tension to
be of such great magnitude that it may be con-
sidered constant, and that the effect of rigidity may
be neglected. In such an analysis the motion of the
cable is deseribed by the familiar wave equation in
one dimension for small deviations from the static
catenary curve produced by oscillations. The same
equation is employed in the study of stringed instru-
ments. If rigidity be taken into account, however,
the equation of motion is:
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where

lateral displacement of the cable from the catenary position
of equilibrium, measured in a vertical plane and having a
direction at right angles to the cable

Young’s modulus of elasticity for the material of the cable
moment of inertia of the plane area cut by a plane normal to
the cable about a diameter

mass per unit length of cable

tension, assumed constant throughout the span. This may
be done with very little error for the usual span sag

distance measured along the catenary curve as position of
static equilibrium

any arbitrary force per unit length acting along the conductor
time
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TRAVELING WAVES

A paper by W. B. Buchanan! has stimulated a
great deal of interest in the study of traveling waves
along conductor spans. It may be profitable, there-
fore, to investigate the effect of conductor rigidity
on such waves.

In the absence of any impressed or frictional forces
equation 1 becomes :
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It is this equation which a traveling wave must
satisfy. If f is the frequency of the traveling wave,
and the quantity
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is so small that x* may be neglected in comparison
with x, then the velocity of propagation v of the wave
is given by v = V' T'/m and is thus independent of
the frequency of the traveling wave. The criterion
that x be small is satisfied at frequencies of from
10 to 30 vibrations per second, the usual aeolian fre-
quencies for the size of conductor ordinarily em-
ployed, if the size of cable is not very much greater
than one inch in diameter. If the conductor is
assumed to be a solid cylinder having a density p,
an expression is obtained for x in terms of 7, the
4omiEySF?
T2
that the effect of rigidity is dependent upon the
sixth power of the radius. At high frequencies or
with large radii 2 is not negligible compared to x.
In such cases the effect of rigidity is marked and the
law for the velocity of propagation is not a simple
one. The velocity of propagation then depends
upon the frequency and the other constants. The
expression may be written
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where & = 2xf

radius of the conductor: x = , showing

The conclusions to be drawn from this are:

1. For the usual size of transmission conductors and for frequencies
and tensions that are met in practice, the criterion that x be small
is met. In such cases the velocity of propagation is the same
as that. given by equation 1 if the term EI involving rigidity is
neglected. Hence, for the usual transmission line span, the effect
of rigidity may be neglected for traveling waves.

2. For an impressed wave of a complex character, which may be
resolved into a Fourier series, the high frequency components will
not be propagated with a velocity independent of frequency and
there will be marked distortion.

3. Since the quantity x varies as the sixth power of the radius of a
solid conductor, it may be seen that the effect of rigidity becomes
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{marked as soon as the conductor size passes a certain dimension.
g (a; is quite small for conductors having a diameter of one inch or less.)

STANDING WAVES ON R1GID CONDUCTORS

It is not surprising that there is an appreciable
difference between the behavior of a perfectly flex-
ible conductor and a rigid conductor. If standing
waves exist, it is natural to find them distorted be-
cause of the effect of rigidity near the supports.

If equation 1 is solved under the assumption that
no external forces exist, that F = 0, and that abso-
lute fixity exists at the 2 extremities of the span, the
quantity x is encountered again, and if it is assumed
to be small, a solution for standing waves is possible.
The effect of rigidity under this assumption is
merely to disturb the nodal points, making their
position a function of the distance from the points
of support as well as the frequency of vibration.
The nodal points are defined by a somewhat com-
plex transcendental equation, but it is possible to
caleulate their position near the middle of the span.
Thg general effect of rigidity appears to be to raise
the frequency of all harmonics as given by the
fo@ula

o

(3)

~ The effect of the small amount of rigidity present

transmission line cable does not influence mate-
y the propagation of traveling waves or the
formation of standing waves; however, at higher
‘harmonic frequencies the result becomes compli-
‘cated. Fortunately the criterion that the quantity
e small is met in a practical transmission line,
there is no need for a discussion of this com-
ated phenomenon.

i
‘DAMPED VIBRATIONS

~ Since the effect of rigidity is not appreciable in a
ractical transmission line it is possible to study the
fect of damping on the behavior of the vibrations by
nitting the term due to rigidity in equation 1.
The phys1cal law of damping actually followed by
ithe cable is very complicated, and it cannot be
formulated exactly; nevertheless, a law of damping
that is approximately true and that can be ana-
lyzed mathematically can be assumed. Although
the results are not exactly correct, they should give
at least a qualitative view of the effects of damping.

If it is supposed that the force F in equation 1is a
force of viscous damping, or damping proportional
to the transverse velocity of the cable,
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where the damping coefficient R is assumed to be
small.

TRAVELING WAVES WITH DAMPING

In case a traveling wave on a conductor obeys the
foregoing law of damping produced, say, by having
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one end of the span execute forced vibrations of a
characteru = A cos wt at s = 0 it is found, on the
supposition that R is small, that

Rs
T2 ‘[vTcos w(t — s/a) (5)

= V/T/m in this and

u = Ae

Unless otherwise defined a
subsequent equations.

Equation 5 represents a traveling wave progressing
in the positive s direction with a velocity a inde-
pendent of the frequency. The wave undergoes
a diminution in amplitude because of the attenua-
tion factor, and the greater the tension and mass
per unit length of the conductor, the smaller will be
the attenuation. If the damping coefficient is
very small, as it is usually, the amplitude diminishes
in a manner proportional to the distance traveled;
however, if R is appreciable the damping is great,
particularly at low values of tension.

It is interesting to observe that Buchanan! found
experimentally a greater attenuation of the travel-
ing wave at low values of tension, and that the loss
in amplitude is proportional approximately to the
distance traveled. This effect can be seen from
equation 5, for if R is quite small,
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approximately.

This shows that the loss in amplitude is propor-
tional to the distance traversed. Hence, a rough
experimental check is available for the assumed
law of damping. The rate of decay is seen to be
independent of the frequency, so that no distortion
of a complex wave occurs.

STANDING WAVES WiTH DAMPING

With the justifiable assumption that the damping
coefficient R is very small, it is possible to obtain a
general solution of the damped wave (equation 4).
This solution is:
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where ¢; and ¢, represent arbitrary functions of the

argument (s = a#). Physically ¢, is a wave of dis-

placement traveling in the positive s direction and

¢ is a wave traveling in the negative s direction.

The whole disturban%e is subjected to a decay be-
t

cause of the term e 2". If a solution is sought to
satisfy the restriction of fixity at the extremities
of the span, on the supposition that R is small,
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(Ay sin Byt + Cp cos But) sin n—:ﬁ )

n=1
where A, and C, are arbitrary constants depending
upon the initial distortion of the cable from the
position of equilibrium and
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which is the solution for standing waves when damp-
ing is present. The position of the nodes is not
changed by damping, but the whole disturbance
undergoes a rapid decay in amplitude with time,
and the periods of the various frequency components
are increased by damping. The damping of stand-
ing waves, unlike the damping of traveling waves,
is independent of the tension, and is greater for lower
values of mass per unit length of the conductor.
The powerful damping effect of the exponential term
suggests the desirability of having a large damping
coefficient R. If R could be made large enough there
would be no tendency for transient oscillations of the
cable to arise.

FoRrRCED OSCILLATIONS

When a circular cylinder is placed in a moving
fluid there is a tendency, in a real fluid such as air,
to form a region of immobility behind the cylinder.
Because of the shearing effect of the fluid stream on
this dead wake, however, the fluid is set in rotation
in the form of 2 eddies as shown in figure 3.

This dynamic system is most unstable, and when
the stream attains a sufficient velocity, the vortexes
formed in the wake no longer remain attached to
the cylinder, but on reaching a sufficient size are
carried downstream as if they were solid bodies.

KAarméan and Rubach?® investigated the stability of
the vortex system and Rayleigh* gave an empirical
formula for the frequency of detachment of these
vortexes. Rayleigh’s formula is:

0.195 w200
frequency = 3 V(l - T)

where

V = velocity of wind in feet per second

D = diameter of cylinder in feet

R = Reynold’s number or the critical value of VD/» at which
eddies form expressed in suitable constants, and » = u/p the
kinematic coefficient of viscosity

coefficient of viscosity of the fluid

density of fluid

®
I

For the range of values of practical interest in
transmission line vibrations use may be made of
Relf and Ower’s’ value for the frequency, f =
0.185 V/D, in which V = velocity of wind rela-
tive to the cylinder in feet per second, and D =
diameter of cylinder in feet.

The problem is the finding of an expression for
the transverse oscillatory force produced by the de-

tachment of the vortexes and the drag force due to
the wind. If use is made of the dynamically similar
case discussed by Thom,® Fp per square foot (drag
force per square foot) = Kp p V2, where Kp is a
constant varying but slightly with the velocity V,
and p is the density of the fluid.

For the maximum amplitude of the transverse
force or pressure :

? (8)

The values of Kp and Kr vary with the velocity,
but for the usual value of Reynold’s number for flow
of air around a cylinder having a diameter of about
one inch, they may be taken to be approximately
KT = 0.45 and KD = 0.64.

Using the average density of air, and converting
units to the English system,

FTper square foot = KrpV?

Pr = maximum transverse pressure = (1.04 X 10~%)V? pounds
per square foot

Pp = drag pressure = (1.47 X 10~3) V2 pounds per square foot

V = velocity of wind in feet per second

If D = diameter of wire in feet,
Fr = MrDV? = maximum transverse force per foot of length
Fp = MpDV? = drag force per foot of length

where the quantities M7y and Mp vary somewhat
with the velocity of the wind but may be taken as
reasonably constant throughout the usual range of
wind velocities of from 0 to 10 miles per hour.
For such a case the values M7 = 1 X 102 and Mp =
1.5 X 1072 produce the correct order of magnitude.

Having obtained this empirical expression for
the maximum transverse force and drag force, the
problem can be solved as follows: Assume that the
transmission line span is subjected to a uniform
horizontal wind having a velocity component Vi
at right angles to the length of the line. Assume
further that the transmission line conductor is a
cylinder suspended in space, acted on by the forces
shown in figure 4, and has a velocity 2 transverse to
the wind.

Now if the transverse force Fr may be as-
sumed as Fr = M7zDVr? cos wt where o =
(27)(0.185) Vy (01')1 85)Vr and Fp = MpDVs? components
may be taken in the « direction t i

E Fy = Fpcos § — Fp sin 0 where 0 = t&y

It may be assumed that in a practical case Vr =

VVw? + v?* = Vyw approximately; therefore,

ZFu = MTDVW2 cos wt — MDDV;V‘D (9)

The action of the wind is seen to be that of a
driving force M 1D Vw? cos wt and a viscous damping
force MpD Vyv.

Assuming the velocity of the wind to be reason-
ably constant throughout the span, it is permissible
to substitute into the general equation of motion and
obtain

o%*u ou
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It will be noticed that the coefficient of the damping



term contains 2 factors; R due to the bending and
twisting of the material, and MpDVwy due to the
drag of the wind.

On the assamption that there is negligible damp-
ing,
27(0.185) Vipm

'R + MpDV
5 >R+ MpDVy

and with the limitations imposed by the boundary
conditions of fixity at the extremities, the solution
of equation 101s:

23.8MrD?

- ————sin Ks + sin K(} — s) — sin K] cos wt
w sin Kl

(11)
where

w = weight of line, pounds per foot
Mr, a constant = 1 X 10™2
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I = length of span, feet
D = cable diameter, feet
g = 32.2 feet per second per second
T = tension, pounds
Vw = wind velocity, feet per second

This solution satisfies the conditions of fixity
of the supports and represents a superposition of
2 waves, each having a wave length corresponding
to the forced frequency, each with a node at one
end, and with the proper compensating constant.

It must be realized, however, that the tenta-
tive assumption of negligible damping has been
made. If

sin KI = 0or Vg =

2.7D
: "N T/mandn = 1,2, ...

a condition of resonance exists, and the amplitude
apparently is infinite except at the nodal points
s = rl/n.

However, if the small terms due to damping
had not been rejected, sin Kl is not zero for any
value of K, because K then is complex and approxi-
mately equal to

ol s L.¢
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(12)

p= fj [R + MpDVy]

w = 1.16Vwy/D §
[sin Kllresouance = sinh pl/2a

and the vibration is slightly out of phase with the
impressed force.

ANALYSIS OF VIBRATION DAMPER

A mathematical analysis of the action of a damper
of the Stockbridge? type is possible if certain sim-
plifying assumptions are made.

The usual Stockbridge damper consists of 2
masses supported at the ends of a rod and clamped
to the conductor by means of parallel groove planks.
The masses have weights of about 7 pounds each,
and the distance between them is about 5 feet.
In this analysis it is proposed to replace such a
complex dynamic system by the simpler system of
figure 1.

The approximation is permissible because the
action of the rod is essentially that of a damped
spring at whose ends are connected masses.

PoweER CONSUMED BY DAMPER

Essentially, a damper is a device for extracting
energy. Its action in suppressing vibration is due
to its dissipation of the energy contained in the
transient oscillations which the cable persists in
following even after the action of the wind has
stopped.

The average power consumed by the damper of
figure 1 is: '

P & RM?2D?%* (14)
BT 2[R 4 (oM — p/w)?]

where

D = displacement of cable at the damper

R = damping coefficient of the damper spring

pu = spring constant i

M = moving mass of the damper /

o = 2xf P

f = frequency %

Hence it is apparent that in the steady state the
average amount of energy dissipated in the damper
is much greater at the high frequencies; however,
the higher frequencies have smaller amplitudes D
and the effect balances out.

The maximum power dissipated by the damper

occurs at the resonant frequency Fr = 1/2x Vu/M.
e M2D?wg*
It is P,y = —3R where wg = 27 Fg. It appears

that if R is quite small the damper will extract
considerable energy at the resonant frequency.
A damper should be designed, therefore, so that its

Fig. 2. System of
forces acting on
the end of a span
with movable

1
CONDUCTOR T2

NUMBER 1 CONDUCTOR supports
NUMBER 2

natural or resonant frequency coindi les with the

frequency of the most troublesome vibration. If the

damper contains several springs and masses, a band
of frequencies may be damped. The dynamic
displacement factor D of the cable at the damper
indicates that if the damper be placed at a node, the
energy absorbed will be zero. Because of the irregti-
larity of the wind and slight yielding of the supports,
however, the nodes are not fixed points, and energy



absorption always is taking place. The more funda-
mental action is that of a traveling wave on the
damper which will be discussed later.

By maximizing the expression for the average
power absorbed with respect to the various quanti-
ties the following results are obtained :

1. Optimum R (other constants fixed)

R? = (oM — p/w)? (15)

2. Optimum M (other constants fixed)
M = R*p + p/o?

3. Optimum p (other constants fixed)
u = M

(16)

(17)

The last condition indicates that the spring should
. be adjusted for resonance for best results, and sug-
gests the greater flexibility of a damper whose
spring constant or mass may be adjusted.
. There is, of course, a danger that too great a
"flexibility of the spring may give rise to dangerous
amplitudes and their corresponding destructive
effect on the damper.

REACTION OF DAMPER ON CONDUCTOR

An expression for the dynamic reaction of a
damper on an oscillating conductor shows rather
clearly the mechanism by which energy is abstracted
from the conductor. The expression is:

wMDA/ u? + Rio?

= T AT cos (wt — ) (18)
where
0=9¢+8 ¢=tan—leT?”/‘°

B = tan"1u/wR

in which the quantities have been defined previously.
The point of support of the damper is experiencing
the motion # = D cos ot and the static weight of the
~damper is neglected. With the condition that y = »
a correct expression is obtained for the reactive
force due to a mass M fixed to the conductor. The
energy-abstracting action of the conductor is due
to the phase displacement §. The reactive force is
proportional to the amplitude of the motion and,
at the resonant frequency, to the mass of the damper.

EXTREMITIES SUBJECT TO YIELDING

An analysis of the behavior of standing waves
may be carried out when the extremities are sub-
ject to yielding in a vertical direction if it is as-
sumed that the ends of the cable are constrained to
move in a vertical direction by the action of springs
and masses attached to the ends. If the spring con-
stants are denoted by u and the masses by M, and
if it is assumed that there is negligible damping in
the conductor (R = 0), the solution is dependent
upon the equation
o%u oy

— = @2 — where a
Os?
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= VT/m

subject to the conditions:

1. Ats =0 i ?
2o AL =1 = —Tﬂ
os
3. Att =0 u =0
The solution is:

% = (A sin rs + D cos rs) sin rat (19)
in which
TN L 4 B i il
D = rT = an arbitrary constan

T M 242
tan 7l = tan 26 ¢ = tan™*! okt 122

rT

The analysis of the general case thus leads to a
somewhat complicated transcendental equation for
the possible values of ». The accuracy can be

Fig. 3. Formation of vortexes behind a cy;linder ina
moving fuid

checked, however, by considering first whether it
reduces to the correct solution for the rigidly fixed
case. This can be done by placing 4 = « and

M = 0. Theresultis:
tanf = o, 6 = x/2 + 2srands =0,1, ...

tan 20 = tan(w +4s7) = 0 = tan7z!

therefore
A
r = nl—"r and—]s = ©
and
P Ay sin el ri:—at (t_%_ (19a)

This agrees with the solution obtamed for rigid
ends which may be obtained by elementary methods,
and is the solution for standing waves.

SLIGHT MOBILITY OF SUPPORTS

By placing M = 0 and letting u be great, -the
practical case of slight yielding at the supports is
obtained, and the following expressions are appli- -

; s : na 2T
f = frequency of vibration = 7 1 - W
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by which it is indicated that the frequencies of the
harmonics are slightly lowered. The ratio 4/D,
however, yields the important information that
there are no nodes. This is evident from the obser-
vation that even though A/D is large and A4 is
arbitrary, nevertheless D is not zero, and from the
equation

= (A4 sin rs + D cos rs) sin rat (19b)

it appears that there are no true nodes although there
are points at which the displacement # is always
small as a consequence of the smallness of D. Per-
haps this conclusion explains the action of the damper
at almost any point. The solution of the general
case requires a graphical analysis of equation 199,
for which given values of the constants must be
used.

REFLECTION COEFFICIENTS

fundamental position of traveling waves in
heory of vibration suggests the value of an
sis of their reflection at points of discontinuity.
The eomplete derivation of these equations is found
in the appendix.

Reflection of Traveling Wave at End of Span Having
Movable Supports. In this analysis the system of
figure 2 is assumed. The span terminates on a mass
M, which is given a degree of vertical freedom by a

Fig. 4. Diagram
of wind forces
acting on a trans-
mission line con-
ductor

v = velocity of cyl-

inder in u direction

as a result of its oscil-

lation du/dt. Vi = component of wind velocity acting in horizontal

direction at right angles to the span. Vi = velocity of wind relative
to the moving cylinder

spring that is supposed to have a spring constant u
and a viscous resistance coefficient R. For general-
ity it may be assumed that the 2 spans have the
masses per unit length m; and ms, respectively,
and the tensions 7 and 7, It is found that for
the size of cable ordinarily used (about one inch in
iameter) and for frequencies of the order of magni-
the objectionable frequencies present in
jon lines, the effect of rigidity in the reflec-
‘transmission coefficients may be neglected,
%d that the tensions are not such as to allow a
Ceeding 1/, of the span length.
ieral Reflection Coefficient. 1f the incident wave
ng along conductor number 1 of figure 2 be
nted by the equation

The reflected wave along gor
given by .

up @ cos l:w(t 3 ;‘E) 45 o:l
where

-
P=vVa+(8+q)

a=w!M — u

" 4 (20)

ﬂ = w \/ m1T1
i w('\/szz + R) %
6 =6, — 6, e
6, = tan“‘9 4
a
B e i ) i
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This complex expression may be simplified by the
assumption that the adjacent spans are identical;
thatis, m; = myand T; = T, = T, then

0 y—_=kom
P Vot + o¥R + 24/ mT)
. ‘/ WM — p/w?)? + R
VL — /)t + (R + 2V mT)
showing greater reflection at the higher frequencies.

At the frequencies for which the spring and mass at
the ends are in resonance,

(20a)

o = Vu/M and < € L

B R+2\/ T

Since R is small, it is apparent that there is a small
amount of reflection at the resonant frequency.

TRANSMISSION COEFFICIENTS W

span 1 (figure 2) proceeds to span 2. The transmitted

If the supports are movable, a traveling Wavgm
wave is defined by ;
(ztgﬁ)

o AQ:
Utrans. = _
8y

P oS lo(t — s2/v2) + el

in which
P=vVa+ (B + )

a =M — pu

Ql = 20V mT;

vy = o(VmT; + R)

8 = cosm

52=COS172 6 = 1r/2—-93 f0; = tan™ 1

4’

For ordmary spans, the angles n; and m are sn 11,
and the ratio 6— may be taken as unity, if as before,
2

the spans are identical. The expression Q;/P reduces

to
Qi _ 20NV mT
P V(M — iy + (R + 2V mT)



where
m =mg=m and Ty =T, =T

This expression reduces to zeroif p = « or the end
is fixed. At resonance the expression is a maximum,
showing that in this case there is a minimum of re-
flection and a maximum of transmission. If M is
appreciable the reflection coefficient becomes quite
small at the higher frequencies.

_ Since both the reflection and transmission co-
fficients involve the frequency in a nonlinear

panner, it is apparent that when a complex wave,

which may be resolved into simple waves of several
frequenc1es impinges on a movable support it is
partially reflected and partially transmitted in a very
complex manner. Since the transmission coefficient
is highest for the wave that is in resonance with
the movable supports it might be possible in this
manner to build up objectionable vibrations in
several adjacent spans as a result of the discriminat-
ing action of the supports in favor of waves of that
particular frequency.

REFLECTION FROM DAMPER

In an analysis of the action of a vibration damper
it is of interest to observe the effect of a damper on a
traveling wave. On the assumption that the fre-
quency of vibration and the size of wire are such
that the effects of rigidity may be neglected as dis-
cussed previously, and that the vibrations are of the
small amplitudes

Uincident = Aeiw(‘_:/”)

Hseflected = BeioU+s/)

Ceim(t —s/v)

because of the linearity of the equations, only the
real parts of the solutions are retained. If equation
18 is used for the dynamic reacting force of the dam-
per the boundary conditions can be defined as usual,
and the reflection and transmission coefficients may
be obtained. Because of the complex character of
the reactive force the expressions for these coefficients
‘are quite involved.

Utransmitted =

REFLECTION COEFFICIENT

If the incident wave is represented by'the equation

= A cos w(t — s/v) where v = ﬁ

m

the reflected wave is defined by

Ak

Ugp = — T/—gos [w(t 4+ s/v) + (e — B1)] (21)
in which
E-— 1
i Jl " 40?R\/mT + 422mT

7? Z2 M?
2= VR + (oM — p/w)? = ViR + p?
S b S ida wM'R;#/w

i
B = tan~l —
Kcos ¢

wR R

oM ‘\/@ oA

4 VR + (oM — poy

The quantities M, R, at
viously for the damper.
of the expression for K/
interpreted as a 90 degree nge of phase in
the reflected wave. The complexity of this expres-
sion makes it difficult to analyze. Since the damp-
ing coefficient R is small, however, it appears that
the denominator of the expression for K/V is
approximately equal to unity if the frequency of the
traveling wave is the same as the resonance fre-
quency of the damper, thus, it appears that traveling
waves having frequencies close to the resonance fre-
quency of the damper are quite strongly reflected.
Of course, perfect reflection does not ceccur in this
case because of the viscous damping coefficient R
of the damper. Much information cannot be ob-
tained from the above equations, however, without
the use of numerical values for the constants. This
reduction may be done in a practical case.

1 = tan™!

denominator
aginary, it is

ENERGY CONSIDERATIONS
OF TRAVELING WAVES
Any vibration suppressing device must

manner extract emergy from the vibrating

mission line. On the hypothesis that the te
of the cable is great in comparison with its mass per
unit length, an expression may be written for the
average energy per unit length of the wire. The ex-
pression for a traveling wave of amphtude A and of
frequency f = w/2r is: 5

This relation shows that the hi
ponents of a complex traveling
preciable amount of energy even
be small. Since the energy va:
the amplitude, it is apparent th
tends to increase the damping eoefficient R has a
great effect in suppressing tramsient oscillations.
This may be seen from the equation of damped
traveling waves

i E‘IL
2 \mT cos w(t — s/a)

In case R is appreciable the amplitude is reduced
rapidly with distance. Any factor such as inter-
strand friction, which tends to inctease R, has great
influence in absorbmg energy md in mitigating

vibration. .
A

“an ap-
heir amplitudes

u = Ae

ErreEcT OF WIND VELOCITY

The amplitude of the forced oscillation is de-
pendent on V in the following ways:

1. The angular itequeflcy w = 1.16 Vw/D varies directly w1th the
wind velocity.



2. The imaginary part of K, or the part that prevents sin KI
from going to zero and limits the amplitude at quasi-resonant values
of w, increases with an increase of w or of wind velocity. This is
due to the wind velocity viscous damping term. See equation 11.

factor My increases somewhat with wind velocities.
ErrFECT OF CABLE CONSTANTS

The weight of the cable appears to lessen the
damping effect of the wind and the damping factor
R of the material. An increase in the weight per
unit length lessens the damping effect; however,
the factor w in the denominator of the expression
for u lessens the amplitude of the nonresonant vibra-
tions.

The equation for K shows the effective lessening
of the damping caused by an increase in tension.

It may be seen that as long as damping is con-
sidered, or K is taken as complex, there are no true
nodes except at the ends. There are, of course,
points of minimum and maximum amplitude, but
they are not true nodes or antinodes. If the wind is
of variable velocity, these false nodal points must
continually shift their positions because of changing
values of w. The amplitude appears to be a func-
tion of the cube of the diameter, suggesting that
cables of large diameter are most prone to large
amplitudes.

The fact that at the resonant frequency

lSin gilremnance = sinh [é J% (R +MpD VW)]

shows most clearly the influence of several line con-
stants on the magnitude of the amplitude at reso-
nance.

HorrLow CABLES

The Swiss engineer, Max Preiswerk, has pro-
posed a theory of a vibrationless cable. He pro-
poses to have a hollow conductor inside of which
is a steel core. The steel core is loose and at a
different tension than the envelope. Preiswerk
argues that in such a system 2 natural frequenc1es
exist and one or the other is always opposing the
establishment of all types of standing waves re-
sulting from an accumulation of traveling waves.
The . situation, he argues, is similar to that of 2

pled vibrating systems which, when coupled to-
get r, have a natural frequency differing from that
of e1ther system taken separately.

A mathematical analysis of this theory produces
many interesting conclusions. Since a mathematical
analysis of a loose core is impossible because of the
discontinuous character of the motion, consideration
will be given to a system that is more responsive
to analysis and less destructive in its action, for it
does not allow the 2 conductors to bump together.

Assume that some material of an elastic character
is inserted between the inner and outer cables.
For the purpose of analysis, assume that this mate-
rial p}:oduces an interaction between the cable and
the eore proportional to the difference of the abso-
lute ﬁtsplacements at right angles to the lengths of

Pris

the conductors. Assume also that the packing
material absorbs energy in such a way as to produce
viscous damping proportional to the relative veloci-
ties between the inner and outer cables. 3

Let all quantities with a subscript 1 refer to the
inner cable, and all quantities with a subscript 2
refer to the outer hollow cable. Then let

u: = transverse displacement of the inner cable from the nor-
mal catenary form as position of static equilibrium

my = mass per unit-length of the inner cable

T, = tension of the inner cable

k = elastic coefficient of the packing material

R = damping coefficient of the packing material

t = time

s = distance measured along the conductor

A, = amplitude of impressed force per unit length acting on
outer cable

w; + B = frequency and phase constant

Under the assumption that the tension is prac-
tically constant throughout the span length, and that
the amplitudes of the transverse vibrations are
small, the equations of motion are:

%y
my o = T; + k(uz == ul) + R — ( = ul) (22a)
% 0% o)
m2'6?'=T2§+k(ul—u2)+Ra(ul_u2)+ _\

A, cos (ot + Bs) (23a) ‘

Since the inner and outer conductors must hang |
in identical catenary curves in the static state, each;
static curve must be equal to y = H/w cosh (xw/H)
in which m = w/g, and g is the constant of accelera-
tion due to gravity. To a great degree of accuracy
for a taut cable H = 7. The static curves musti
identical so that there will not be a static stress, afc
the condition that

T xm. T xm 3
—L cosh .. ~% cosh = . .

g Ty Mg T,

must be valid for all values of x. If, in particular,
x = 0 then Ty/mg = Ty/meg or Ty/my, = Ty/m, = a’
This equality satisfies all values of x. :

STANDING WAVES

Eliminating #; from equations 22a and 23a, placing
A, = 0 for the freely vibrating case, and assuming a
solution of the type u = Cé&‘“ *#) produces the fol-
lowing solution for #,: B

~ . mant want . awns
Uy = E Ansm——l— nCOST sm—l +
A

0

© i

e~ Rt/2m E (Cyp sin apt + Dy cos ant) si—
O §

1 1 k a’n’r? R2
= o+ = ap = §/— +
m o my M m 12

Ay, By, Cy, Dy = arbitrary constants

4m?

! = span length

Use has been made of the fact that the supports
are rigid and are nodal points. The first summation

:



in t@g;golutlon for u, represents the usual standing
lution for a span with undamped vibration.
resents the trivial case in which the inner
er cables are wibrating in such exact syn-
chronism that they do not react with one another.
Since " force tending to cause the system to
oscillate necessarily acts on the exterior conductor,
asymmetry is introduced from the beginning of the
motion, and synchronism cannot exist.

The second summation represents the actual
physical case when the 2 cables react one against
the other, but it will be noticed that the whole dis-
turbance dies out because of the factor e %/2™,
If the damping coefficient R of the packing material
is large, the quantity «, is imaginary for small
values of %, showing that in such a case vibrations
having great loop lengths do not occur. In any
case the exponential damping term soon nullifies the
entire motion.

DISTINCTION BETWEEN
DISTRIBUTED AND LUMPED SYSTEMS

It is evident that there is a difference between
coupled systems having lumped constants and sys-
tems having distributed constants. In lumped
systems the coupling causes the natural frequency
of the resulting system to be removed from that of
the individual systems, but in distributed systems
both uncoupled systems have an infinite number of
natural frequencies, and so does the coupled system.
It does not seem possible, therefore, by coupling 2
cables to remove the natural frequency of the sys-
tem beyond the range of the most prevalent objec-
tionable frequency of the system produced by wind
eddies.

The chief advantage resulting from the type of
system here considered is the fact that a material
having a large damping coefficient R may be em-
ployed; hence, vibrations of a transient character

are tefluced promptly
TRAVELING WAVES

Before analyzing the forced vibration it is of

interest to study the behavior of a traveling wave on
the system under consideration. If a traveling wave
of angular frequency w and velocity v is considered,
the following solutions are applicable:
1. Inner and QOuter Cables in Exact Synchronism.
This represents the trivial case in which synchronism
between inner and outer conductors is so perfect
that there is no interaction.

u; = A cos w(t — s/v) + B cos w(t + s/v) (24)

2. Loose Coupling or High Frequencies. If the
spring effect of the packing is not excessive, it may
be assumed that k/w?n is much less than unity. The
solutlcm is:

t A
- = [, +M] .
A wa

Rws

< 2 _
Be  2man/wt—Eim cos w l:t - M] (25)
wa

This equation indicates damped traveling waves
whose damping and velocity of propagation depend
upon the frequency; hence, a complex wave would
suffer distortion.

3. Frequency o Approximately Equal to \/ k/m.
In this case the waves are of the form

Uy = Ae™ % cos w[t — B1S] +
Be*S cos wlt + Bis]

R _l‘ﬁ
a\/~ anBl_\/éw—m

and distortion is produced as before.

4. Low Frequencies or Close Coupling. This case,
which may be approximated closely in practice,
represents waves traveling with a velocity » =
2aV'km/R which is great, since in general R is
small. The attenuation in this case is extremely
great, and there is no distortion.

- (26)

where

uy = Ae”* cos w[t — Bs] + i
L@
Be™*S cos wlt + Bs] g L
in which »? < k/m, « = (1/a)V k/m and
= R/2maV'k/m.

FoRrRCED VIBRATION

of constant amplitude throughout the length ¢
conductor and of an oscillatory character act

Fig. 5. Forces
acting on a cable
in a condition of
equilibrium

every point of the outer cable, the following equa-
tion is obtained for the vibration of the outer cable in
the steady state:

(B — wmy) + R%?

4,
oF \/[m’ml = (1 4 '—"—‘)kT % R2w2(1 o @>2
Mo My

cos (wt + 6;) (28)

where

R/m1
0 = fan=t————-0r 0, =
- k/m1 — w? :

wdR
— ok

1
61 — 6, = 0 8 =—
m

The transient solution must be added to equatio:
28 in order to satisfy the boundary values.
complex expression gives an approximate indi
of the behavior of the system under the action of a‘
hypothetical wind.

It will be noticed that in every case it is the factor
R that is active in reducing the vibration. This is
only a special application of the principle that
energy must be absorbed in order to damp vibra-




St

‘tion. The energy absorption in the case of Preis-
werk’s loose core cables must come from the shock
of bumping, and, of course, this action must be de-
structive. In the above case no such destructive
action exists.

Appendix

DERIVATION OF EQUATIONS

The equation of the catenary curve, which is the static equilibrium
position of the cable, is:

xw
= —icosh —
2 w H

As a typical case for a cable having a diameter of one inch and a
span length of 1,200 feet, let

H = the horizontal component of T’
T = tension

w = weight per unit length

! = span length

but

H = 8,500 pounds = T approximately
w = 0.858 pounds per foot

then

w . 0.858 10~ et
ST
7" ss approximately

and the equation of the span can be taken to be approximately that
of a parabola

y = wx?/2H

then '

L e
i H dx* H

The curvature of this span is given by

d2y/dx? w

=@

approximately, since for all points (wx/H?) may be neglected in
comparison to unity. Thus it is seen that the curvature of the
static curve may be regarded as having the small constant value
w/H, or the radius of curvature R as the large constant value T/w
for a typical span.

The fact that the equilibrium curve can be considered with very
little error as a circle of large radius of curvature 7'/w simplifies the
analysis greatly.

Let s be the position of static equilibrium of the cable and measure
u in the normal direction to the static position of equilibrium s.
Now consider the shearing force H at the point s (figure 5) and the
shearing force H + AH at the point S + AS.

Since small deviations are being considered from the static posi-
tion’.of equilibrium, which takes into account the weight of the cable,

the ht of the cable may be neglected and components of shear-
ing and tension may be taken in the direction % normal to the
ca.bﬁlft the point s. Consider, in addition, an outside force N per

unit lgﬂgth acting normal to the cable.
Equating forces in the « direction,
Tsin 6 + Hcos § = Tsin (6 + Af) +
(H 4+ AH) cos (6 + A6) + NdS

1] o%u
im 0+ A6 in 6 + — dS
L%n( + Af) = sin 6 + et

linicos (6 + A8) = cos 6
A6—>0

hadi A

then 3
&%
T M dS + AH + NiS =
s gy
s g 3
and g
du  dH
Q52 —b—s st

Since only transverse vibrations are of importance heré; the
components of force along s need not be written.
There is another condition expressing the fact that there is no

Ax

of a conductor vibrating transversely

tendency to turn the element about an axis parallel to the z-a
Suppose that the moment of all the normal forces 4x on o
of a differential element is —G and at the other end i

b—fds as indicated in figure 6.

Taking moments about o

G=G+AG+HA2—S+(H+ AH)%-s

then
e onal (@

' oG OH G
B S

The moment G may be considered as a result of the stresses
longitudinal fibers of the cable in bending. Consider a bent se¢
of wire so that it has a radius of curvature R and let g'be the distance
of a given fiber from the neutral surface. Since the neutral surface
is the surface at which the fibers are in a state of equilibrium,

stretched length i, 12

unstretched length & R R

Let E be Young’s modulus of elasticity for the material of t
wire, then

E
normal stress = 4y = — el

R

The moment about the elastic surface o0-o (figure 7) is:

E
— - — 2
j: A xqdS st‘fq dS

butffg’ds is the moment of inertia I of the plane gz %
. .

normal cross-sectional area of the conductor with respee
diameter o-o.

It has been found that for a typical static span the curval
very small, being of the order w/T; hence, any appreciable curva-
ture must be due to the dynamic wave. For the radius of curvature
of the dynamic waves occurring on a tightly stretched transmission
line 1/R = 0%/0S?* and the unbalanced force N is defined by

10



principle —N = m 0%/ di?— F where m is the mass per

oy OH oH G o)
—N = Tb—2+ > where —S; = —;andG EIb—‘
and the equation of motion becomes
b U )
m 67 + E 34 T— + F(s, ) (1)

The EI term involves the effect of rigidity. Monroe and Templin?
have made some measurements of EI for a cable subjected to tension.

TRAVELING WAVES

Placing F = 0, assuming # = cos w(¢—s/v) and substituting in

% Otu %

—— — i l
meae - Bl 3 T o (1a)
where

=1/v T/m = g*and EI/m = p?

produces the following result:

i a? at 4
e Yoo T s
Expanding, ¢ = =1/a or v = =aV/ T/m provided that x? is
negligible in comparison with x when f = frequency, w = 2xf and
4EImw?
X =
T2

If m = wpr?and I = =xr*/4 in the above expression,

4pmErsf?
G i

The units used are the foot and the pound. E must be expressed
in pounds per square foot and I in (feet)%.

In the general case in which x is not small, the above equation
may be solved for k, and since & = 1/v,

AR

4ETmes? 4 (2)
T2

STANDING WAVES ON RiGID CONDUCTORS

Equation la may be solved by the usual method of separation of
variables with the assumption that » = ¢(S)¢(¢). Making use of
the boundary conditions # = oats = oand ¥ = o0 at s = / leads
to an extremely complicated transcendental equation for =, as
follows:

sinh f[l sin I’ql 2_11,_/3 I
1 — cosh 1l cos 7 5l a?

where

a? 1 |a* 4n? a* 1 Jat = 4n?
nges tiVet e "7 (552_—\/34"'_)

It is found for the usual constants of a transmission line that 7,
is large and 7, is small; therefore, the approximations cosh i} = sinh
ri) and cos 7l — 1 are justifiable.

The above expression then reduces to

2n, n
tan 7l = gud where ;! = —
a? a?

&
St

vty b v .
and is subject to the very accurate ai%proximate ‘solution

m [r( 2 [B
G m(1+l\/T) 3)
or
n r ?‘ 2 EI
2:‘27\/;(1*';\/7)

in which» = 0,1, 2, ....

DAMPED VIBRATIONS

In this case the important results are the values of v in the travel-
ing wave solution # = A cosw(t—s/v). By substituting these
values in the equation md%/di? = T0%/ds?—ROu/dt, making
use of the exponential form for the trigonometric relations, and
assuming that the damping factor R is small, it is found that

Rs [T

u=de 2 VT o o(t — s/a) (S)

STANDING WAVES WiTH DAMPING

2

An approximate general solution of the equation md*u/di? =

T3 /ds’— ROu/dt may be obtained by making the substitution
Ri

u = (s, t)e 2m which produces the expression

oy, B L8y

ot? 4m? g m Os?

Since R/m is small, however, this term may be neglected on the
supposition that y is small. Then

oy T ay
ot m ds?

whose solution is:

y = ¢i(s — at) + ¢x(s + af)
Hence
Rt

T 2m [¢u(s — at) + ¢as + ad)] (6)

U =€
STANDING WAVES

The solution for standing waves with damping may be obtained
easily by the method of separation of variables. The boundary

Fig. 7. Normal
cross section of a
vibrating conduc-
q tor, showing the
quantities in-
volved in the
derivation of the
dynamic  equa-

tions |

ds /Ax

L X ¥ h N

|
conditions of fixity at the extremities must be imposed, and with |
the condition that R is small
_ & Zm nws %
U= ¢ 2m (A, sin Byt + Cu cos Bat) sin—:- (7)
1

1 [4ntr%? R?
Bn = 5
B om
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' FORCED OSCILLATIONS

I Consider the equation
Z)”u ou ou
Ot’ + R 5 T + MTDVW cos wt — MpDVy 'b‘; (10)
Let
1 M
p=- [R e MDDVW] =T/mand 4 = == DVy®
m m
then
o*u ou 2
b— +p57 = a’b—;-i-Acoswt
Assuming # = v(s)e/** and retaining only the real part of the
solution,
%u ou o%u :
By —_— ey A Jwt
REE R g T A
if

1
K* = — [o* — jop]

then
d A
— K%y = — —
&s? + a?
or
] A
= (i cos Ks + Cpsin Ks — aK
The boundary conditions are: 1. Ats =o90,v =0. 2. Ats =1,
R = o
Then
9= -——A— [sin Ks + sin K(I — s) in K]
T @Kisin K © s
where
w o
=, [0 —jp]
a

It is required that
[0 = P17/t = W[l = Yajp/w + Ysp¥/e? ...
Since in general

<3

\M}

[ —wl"’ = WL — 1/2jb/o]

and

K =»"+‘ [1 = Ysip/ul

for p;actlcal purposes. However

sin (x — jy) = sin x cosh y — j cos x sinh y

l !
= smcicosh— — jcos — smhji
a 2a a 2a

At rﬁance frequency sin (wl/a) =0 (wl/a) =nxr n=0,1,...
::mdfﬁ’t (n/20)N T/m

In addition, cos(wl/a) =
even. Then

=1 depending upon whether # is odd or

/) 1
[sin 2 Lrasanance = sinhl B2 = sink 35 o/ (R & MnD Ver)
2a 2\ T
The imaginary part of the other terms is of no interest, and may
be neglected in the solution

A
= 22K? 5in KI [sin Ks + sin K(I — s) — sin Kl] cos wt
It will be noticed that sin Kl never can equal zero and that its
imaginary part may be neglected except in the discussion of reso-
nance; hence,

!
B Ve Bl i Smii
a 2a

The phase angle which should be introduced in the cos wf term also
may be discarded as having no bearing on the discussion, sincg
@ > p in the practical case.

Hence

_ 23.8 M.D®

- [sin Ks + sin K(} — s) — sin Kl] cos wi
w sin Kl

by obvious transformations and changes in units.
ENERGY CONSIDERATIONS

General expressions for the energy of transverse vibrations in an
oscillating span may be obtained easily for the usual case in which
the tension is great in comparison to the mass per unit length. The
kinetic energy per unit length is seen to be !/;m(du/dt)? g
general principles.

The potential energy equatxon requires a little more care. L@ s
be the length of the cable in the normal catenary form as the posiﬁén
of equilibrium and s; be the dynamic length of the cable.

Since the weight per unit length is small compared to the tension,
the potential energy is the work necessary to stretch agamsﬁ!d&e
tension because of the loops formed by the oscillation. Potet*tral
energy stored in bending is neglected.

The potential energy V per unit length is:

ek g
V= T(Z—zl—l)butds,=\/dsz+du’a—? = ‘/1+(°“)

s
and
ST g
os Os 2\ 0s &
then L:?
1 [ou\? %
V = E (3;) T ;:iV

du/ ds is small but not zero and lower order quantities have*been |
neglected. B .

Assume now a traveling wave of the form # = A cos(wt
where 8 and w must be such as to satisfy mo%/0t* = T
By carrying out the above differentiations and averaging thr
a cycle it is found that average energy per unit length

W = 1/imw?A2,

ANALYSIS OF VIBRATION DAMPER

Let the damper be represented schematically as in figure 8, ‘and
let
xp = absolute displacement of the damper frame relatxve;to a
point fixed in space
xp = displacement of the mass M from the point of ethbnum
relative to the frame

x4, = absolute displacement of the mass M relative to a,,ﬁxed
point in space o

u = combined spring constant of both springs %

R = damping coefficient of the springs

The equations of motion are:

dxA dxM
Mdtz-*-R'_-l-uxM—O

12 : < IR



TR e it

e that the cable is vibrating in such a manner that at the
‘at which the damper is attached it is performing an oscillation

of theﬁtype xp = D cos wt

Then the equatwn of motion is

dixM R dxM 9

e S =L T

an 7 dt -I— xM w?D cos wt
which has the steady state solution
MwD sin (ot — ¢) oM — plw

= andtang = ——

VR A (oM — u/w)? £
Po CONSUMED

W be the amount of energy dissipated in the damper. From

fundamentals dW = FdS. Now at time ¢

dxM
- d F=R——
Xy an at

mu, integrated through a complete cycle and divided by the

ela, - time of the cycle, The result of these operations is:
RM2D2 4

Pay = (14)

2
2|:R2+(wM—JE):|
w
,'va.nous expressions given by equations 15, 16, and 17 for the
optimum values of the constants may be obtained by maximizing
equation 14.

REAC’ﬁON OF DAMPER oN CONDUCTOR

ﬁﬁv
Tl’s}ez%reactxon of the moving mass of the damper on its frame,
wh&]&f is equivalent to its reaction on the conductor, if the mass of
the f‘fa;me be neglected, is defined as

' MDA\ i* + Rt 4
F =iMxM + R w—’\/—;fiw— cos (wt —:4; —B) (18)
. " VR (M — pla)? :
where
M =
¢ = tan™! w_R_M/_w and 8 = tan™! y/wR

-
by obvious transformations.

EXTREMITIES SUBJECT TO YIELDING

The vertical component of tension at the support (figure 9) is

 — Tsin (0 + @ = — T (sin 6 cos @ + cos 0 sin )
' but @ is small; therefore cos @ — 1, sin @ — 0 and the vertical
component of tension is

@

—T | sin6 4+ cosf | —
o s Js=0

The first term of this expression represents the downward pull
due to the weight of the cable and the second term represents
fluctuations in force due to the dynamic oscillation of the cable.
For the usual cable span the angle 0 is quite small, as may be seen
from the equations of the catenaries in which these spans lie; there-
fore, the approximation cos 8 = 1 is valid.

The boundary equations at the extremities are:

o%u ou
M— + =T — =
o MU A at s o
o%u ou
_ = —-T vt =
M o + uu > ats =1

where the supports are constrained to move in a vertical line and

M and p are the mass and the spring constant of the support, re-

spectively. The wave equation md%/0t? = T0%/0ds?* must be
solved subject to these boundary conditions. By the usual method
of separation of variables, the solution is

= (4 sin rs 4+ D cos rs) sin rat (19)
where 4 is arbitrary, but is connected to D by the relation

é = Mr2a?

D rT

and the possible values of 7 are given by the complicated trans-
cendental equation

tan 7l = tan 2¢
where i
— Ma? s
¢ = tan™! s e i 4:
¥ %

Having determined r, use may be made of the principle of super-
position, which always applies to linear equations, and a partict

solution capable of expressing any arbitrary initial configuration
will result. The case of slight immobility has been discussed pre-
viously. P

REFLECTION OF TRAVELING WAVES FROM MOVABLE SUPPORTS

Consider 2 adjacent spans connected by a movable support
that has some degree of freedom in a vertical line. Let this support
have a mass M which is constrained to move in a vertical line by a
spring having a spring constant u and a damping coefficient R.

Let

T; = the tension in span 1

T, = the tension in span 2 %

m; = the mass per unit length of span 1

ms = the mass per unit length of span 2

H;, = the shearing force exerted on the support as a consequence of
rigidity of cable 1

H, = a similar quantity for cable 2

6; = angle with the horizontal made by the catenary of c Ie 1
at the point of support

6; = similar quantity for cable 2

POINT FIXED IN SPACE ~

e

8

‘o

B

Fig. 8. Diagram
of one type of
vibration damper
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Note that the angles 6, and 6; are given respectively by

l
0; =‘tan*1 [smh l;l]

1

l
0, ==.LY tan—1! l:smh %:I

1 and J; and w, and w, are the respective lengths and weights
t length of the 2 cables. In general, it may be seen that these
§ are quite small.

The vertical component of force exerted by the cables (figure 10)
on th& support is

,'.:'i“ sin ('a—S: — 02) + Hz sin (5‘ — 02) +
bul
o = ¢1> + H, sin (2 T ¢1)

1 and % are measured at right angles to the static position of

)

The boundary conditions are:

wi [ T 0 A ™
ing — — = u s
1 S! \ 2 1 9 SIN 2

and

ML R 4y, = F,

Let
Uy = Uz cos B, = uycos fpand w1 = u; + ug
where

ur = incident wave traveling on Span number 1
up = reflected wave traveling on span number 1
u, = the refracted wave on span number 2

Then

ur = A cos (t + 5s1/v:1) = real part of Aefw(t +51/vm)
ur = B cos w(t—s1/v)) = real part of Befo(t—s/un)
us = C cos w(t—si/v2) = real part of Cefot—s:/v2)

Substituting in the boundary conditions,

Fy = ej“’(‘_s’/”)[— M + Rjw + ul
Making use of the expression for the shearing force H,
- G d%u
- - - —bTS' W osd
Let

dus duy Qus

== —> — and cos — 2
o axs sy . As3
sinee)‘OSclllatlons of small amplitude are being considered. The
exp:aslon for the vertical components of forces becomes

s W, and W, represent 1/, the weights of the cables of span
1 and span number 2, respectively. These quantities repre-
b a static load on the spring assumed at the supports, and do not
enice the dynamic condition.

tituting the assumed wave solutions of the differential equa-
f motion, and equating the above 2 expressions for Fy, it is

Bszij + 61T1].¢|)(A = B)

U2 N

14

2 e
=

R e i e RO 7 L.
e - P H e A

81(4 4+ B) = 8C, 8, = cos 6, and 8, = cos 6, i.'

in which the effect of the shearing force H has been l:u':glectetrl‘;vL
cause

Hy = — 1 2% _ ¥ cput—am)
a 3 ¥ 8

It has been indicated previously that v, = \/Ty/m; and for the ‘
usual size of cable and frequency of vibration this term may
neglected with respect to the term, T0u;/ds; provided that w Q@
and EI < T.

Solving the 2 equations above for C and B in terms of A a.nd re-
taining only the real part of the solutions results in equations ﬁb
20a, and 205. )

REFLECTION FroM DAMPER i

The calculation of the reflection from the damper proceeds in t&e
same manner as above. As a boundary condition the force ofixe-

i

Fig. 9. Diagram of the end sugpprt

of a transmission ||n¢$§“m
= (Qu/ds)s=oand 6 = ]

angle wl%
honzontal made by the catenary in th%
tion of equilibrium at the supports

—_—————

O

Fig. 10. Force diagram of adjacent spans con-

nected by a movable support
action of the damper as calculated in equation 18 (converted to.the '
exponential form) must be equated as follows:
oMCV i + Rt . dur dur | dug\
% =T — ) —-T|—+— y
VR + (oM — pfw)? os Os Os i
where i "}j

b )%
6 = —(¢ +B)and ur =

ur + ug

s

ek
Equation 21 is produced by substituting the assumed expressi@ns
for the traveling waves, satisfying the boundary equations, retaining
only the real terms, and making certain trigonometric and algabl‘(ié
reductions.
HorrLow CABLES

The analysis of coupled hollow cables is merely a solution ,
simultaneous equations

pu = a’c’uy + Ki(uy — 1) + Eip(us — u)
Puy = a%uy + Ky(ui — ws) + Eap(ur — us) +
A4, cos (wt + Bs)

where

Tty

Ly e

my

and

. i
P—bt a—bs m

If u, is eliminated from these 2 equations, and only the real




are retained, the solution is:
e + (s + Dadluy = 4z (—o? + a?8? + Ky + Ejw)ed @ + 89
where the operators are defined as

a=p? —qa%? O =K, + Epands = my/m,

FREE VIBRATIONS, STANDING WAVES

In this case 4, is zero and the expression

[ae2 + (s + 1)abdlus = 0
must be solved by the assumption that
Uy = Cellwt+Bs)

The boundary condition of fixity at the extremities produces the
result
B = nx/lwheren =0,1,2, ... (28)

Equation 28 connects w with 8. Using the principle of super-
position because of the linearity of the equation

©

: t t
D (usin ™ 4 ycos )72+
0

‘ ©
E (Cp sin ayt + Dy cos axt) sin "T“
0
where
1 1 1 B amix? R
= and = 4= Pt 0
m " * ms o Jm + 12 4m?

TRAVELING WAVES

Substitute the expression #y = A&/ —5/7) representing a traveling

AN A e

“Hai
wave, in the equation [a? + (s 4+ 1)adlu; = 0. This substitution
produces the expressions

a? 1 "
v = =*gand— =1 — — (¢ + Rjw)
v? w?m

Solving for v in the second expression and substituting the result
in the above assumed solution, introduces the various expressions
of equations 24, 25, 26, and 27 with the approximations that are
mentioned in connection with them.

FORCED VIBRATIONS

In the case of forced vibrations 4; is not zero and the equation
[a* + (s + Dadlus = 4o —o? + a?8? + K1 + Errw)ed @+ 69
must be solved. This is easily done by assuming

u; = Cellwt+Bs)

and substituting and solving for C. If the real value of the expression
is retained and simplified, the result is equation 28.
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