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2.1 Motivation
Consider the structural architecture of the state-of-the-art deployable mesh reflec-

tor, AstroMesh illustrated in Fig. 2.1. It is composed of three primary components:
two cable nets, a metallic wire mesh, and a deployable perimeter truss. The metallic
mesh is attached to the back side of the front cable net, providing a radio-frequency
reflective surface that approximates a paraboloid. The accuracy of this approxima-
tion depends on the size of the triangular facets, which is determined by the length
of the cable elements and the density of nodes on the paraboloid. Both the front
and rear cable nets are identical, equally prestressed, and attached to the perimeter
truss. Tension ties connecting corresponding node pairs between the front and rear
nets provide the normal forces required to achieve the desired paraboloid shape.

Perimeter
Truss

Front net

Rear net Tension ties

Single facet

Longerons

Battens

Diagonals

Aperture diameter, D

Truss height
H = 2 (s + s0)

Metallic mesh

Figure 2.1: Generalized design terminology: structural architecture of faceted de-
ployable mesh reflector.

The deployable perimeter truss consists of identical repeating parallelogram
units, each formed by two longerons (i.e., horizontal struts in Fig. 2.1), two battens
(i.e., vertical struts in Fig. 2.1), and a diagonal brace that allows for extension
when the truss is folded. The truss operates as a cable-actuated, synchronized
parallelogram. When stowed, it forms a compact, hollow cylinder, with members
secured and preloaded against lightweight hoops that provide stability and debris-
protection. This design allows the truss to gently expand upon the release of tie-
downs during deployment [40]. The deployed and prestressed structure achieves
high stiffness and thermal stability by using high-modulus tubes with a near-zero
coefficient of thermal expansion (CTE) for the truss, and thermally stable high-
modulus tapes for the cable nets. The reflective surface is made of triangular facets
sized according to the operational RF of the reflector. The facet size is chosen
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to achieve the required approximation to the paraboloid, quantified by the surface
root-mean-square (RMS) error, 𝛿𝑅𝑀𝑆.

As described in Section 1.3, the key metrics for evaluating deployable mesh
reflectors include mass and stowed volume (important for launch accommodation),
and natural frequency of vibration (related to dynamic performance during opera-
tion), which become increasingly significant as the reflector size increases. Despite
the importance of mass and stowed volume for large deployable mesh reflectors,
systematic studies are lacking, with most research focusing on RF efficiency. Ex-
isting studies on dynamics are limited, as high-fidelity models lack computational
efficiency.

Given these challenges, this chapter focuses on developing simplified analysis
methods that allow for quick estimation of key parameters for deployable reflec-
tors. This approach is not intended to replace more detailed design methods that
have been presented elsewhere but serves as a foundation for scaling studies. It
extends existing data for deployable mesh reflectors, offering a basis for comparison
with reflectors designed for ISA. A general design framework is established for
faceted mesh reflector antennas, utilizing a simplified geometric approximation to
estimate the maximum facet size and a fundamental approach for designing the facet
geometry.

The study then addresses the required connectivity between the edges of the
faceted surface and the deployable perimeter truss to ensure that the front cable
net can be uniquely prestressed (i.e., to form a statically determinate structure) and
maintain a unique (i.e., a kinematically determinate) shape. Once the structure’s
geometry is determined, the prestress distribution is optimized by adjusting the
tension in the ties, and the structural components are sized to provide sufficient
safety margins against relevant failure modes.

This design methodology is applied to create deployable center-fed mesh reflec-
tors with an operational frequency of 10 GHz and apertures up to 200 meters in
diameter. Scaling laws for mass, stowed volume, and natural vibration frequency
are derived, considering various boundary conditions that determine the behavior of
reflectors on spacecraft with inertia that is either comparable or much smaller than
the reflector. A semi-analytical model is used to significantly reduce computational
complexity of numerical analysis compared to fully detailed models.
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2.2 Geometry, Connectivity, and Prestress
2.2.1 Geometry and Design for Kinematic and Static Determinacy

A paraboloidal reflective surface is used for maximizing antenna directivity [56]. Fig-
ure 2.2 illustrates a circular paraboloid defined by its axis 𝑧, aperture diameter 𝐷,
focal length 𝐹, and 𝑧-offset 𝑠0. The equation for the surface is:

𝑠0 +
(𝑥2 + 𝑦2)

4𝐹2 = 𝑧 (2.1)

which depends on the key geometric parameter, the 𝐹/𝐷 ratio, with higher values
corresponding to shallower reflectors. This study considers reflector designs with
three different values, 𝐹/𝐷 = 0.5, 0.7, and 1.0.

Aperture diameter, D

Focal
length, F

Focus

z

x
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z

z = s0+s

z = s0

Figure 2.2: Geometry of paraboloidal reflector.

For designing a faceted surface, it is convenient to approximate the paraboloid
with a surface of uniform curvature, a sphere. The spherical cap that aligns with the
apex and edge of the paraboloid has a radius 𝑅 as described in [57] and is given by:

𝑅 = 2𝐹 + 𝐷2

32𝐹
. (2.2)

The required size of the triangles for smooth approximation of the reflector
surface is then estimated by analyzing the geometric deviation between a spherical
surface of radius 𝑅 and an equilateral triangle of side length 𝐿, whose vertices lie
on the curved surface. This RMS error of the facet, described in [58] is given by:

𝛿 𝑓 𝑎𝑐𝑒𝑡 =
𝐿2

8
√

15𝑅
(2.3)

and is used to calculate the appropriate facet size for a given 𝑅 and 𝐹/𝐷.
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When a tessellation of equilateral triangles of side length 𝐿 in the 𝑥 − 𝑦 plane
is vertically projected onto a paraboloid, the facets increasingly elongate as they
move away from the 𝑧-axis. However, this elongation is minimal for relatively flat
reflectors and small 𝐿/𝐷 ratios.

In this study, geometric faceting is considered the only source of error, neglecting
other potential error sources, such as thermal distortions, spillover, aperture taper,
cross polarization, etc. The RMS surface error is therefore set equal to the faceting
error in Eq. 2.3, i.e., 𝛿𝑅𝑀𝑆 = 𝛿 𝑓 𝑎𝑐𝑒𝑡 . For a reflector operating at 10 GHz, with
an error limit of 𝜆/50 = 0.6 mm, the maximum allowable facet size is calculated
using Eqs. 2.2 and 2.3. It is important to note that the lengths in Eq. 2.3 are not the
unstressed lengths of the cable net elements, but account for the elastic stretching
caused by prestress.

Figure 2.3(a) shows how the facet size varies with different 𝐹/𝐷 ratios. Larger
facets are feasible for higher 𝐹/𝐷 values as they correspond to shallower reflectors
for the same aperture size. As a general rule, the maximum facet size increases pro-
portionally to

√
𝐷. Figure 2.3(b) shows the net configuration, where, after selecting

a facet size for the given aperture and 𝐹/𝐷, the number of subdivisions 𝑛 in the
hexagonal tessellation is calculated using the relationship:

𝑛 = 0.5𝐷/𝐿. (2.4)
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Figure 2.3: Faceting of paraboloidal surface: a) variation of facet size with diameter
and b) schematic layout of net.

The front and rear reflector nets consist of inner net cables forming the regular
hexagonal tessellation, indicated by black solid lines in Fig. 2.3(b) and boundary net
cables connecting the triangles to the perimeter truss, indicated by red solid lines in
Fig. 2.3(b). The inner net consists of free nodes connected by tension ties between



16

the front and rear nets. Although the inner net geometry is unique for a given facet
size, the boundary net design can vary based on the number of bays in the perimeter
truss and the number of connection points between the perimeter truss and the inner
net. Figure 2.4 presents three different boundary net designs with identical number
of edge subdivisions (𝑛 = 7), but varying connections between perimeter truss nodes
and free nodes. It is important to note that in the design of the boundary cables, it is
assumed that each node of the perimeter truss is connected to an equal number of
free nodes, denoted as 𝑛𝑐. The number of subdivisions in one-sixth of the perimeter
truss is denoted by 𝑛𝑡 . A similar approach was previously adopted in [59].

(b) (c)
Non-triangular facets

nt = 4, nc = 2 nt = 5, nc = 3 nt = 6, nc = 2

Cross wires
(a)

Figure 2.4: Three different net configurations with a) non-triangular facets, b) cross
wires, and c) complete triangular tessellation.
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Figure 2.5: Pin-jointed bar model of front net for 𝑛 = 3, 𝑛𝑡 = 2, 𝑛𝑐 = 2.

To ensure that the reflector has a unique shape and prestress distribution, the
degrees of kinematic and static determinacy are analyzed using the pin-jointed bar
model of each cable net, as depicted in Fig. 2.5. This analysis, based on Maxwell’s
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extended equation and equilibrium matrix rank [4], [60], [61], shows that these prop-
erties depend on the net geometry. For example, non-triangular facets (Fig. 2.4(a))
result in a kinematically indeterminate structure, while cross-wired boundary nets
(Fig. 2.4(b)) lead to static indeterminacy. Only configurations with triangular facets
and no cross-wires (Fig. 2.4(c)) are both kinematically and statically determinate,
making them the preferred choice for the structural architecture of the reflector.

For reflectors designed in this manner, the number of subdivisions of the hexag-
onal tessellation is related to the number of free nodes connected to each node of
the perimeter truss and the subdivision of the perimeter truss by the relationship:

𝑛 − 2 = (𝑛𝑡 − 1) (𝑛𝑐 − 1) . (2.5)

In this study, the perimeter truss is designed to have half the density of the net,
with each batten supporting three free nodes through boundary cables (i.e., 𝑛𝑐 = 3
in Eq. (2.5)). The lengths of the truss members; longerons, battens, and diagonals,
are determined based on the designed net geometry.

2.2.2 Prestress Optimization of Cable Nets
Optimizing the prestress of the reflector is crucial since the prestress directly

impacts the structural mass. A higher prestress leads to increased loading on the
structural elements, which in turn requires them to be larger and therefore heav-
ier. This effect is particularly pronounced in the elements of the perimeter truss
that experience compression due to prestress. It will be demonstrated that, for
large-diameter reflectors, designs utilizing optimal prestress are substantially lighter
compared to those with non-optimized prestress.

Given the structure’s statically determinate design, the prestress distribution is
uniquely defined by the equilibrium equations for the nodes once the tension tie
forces are applied. For example, the equilibrium equation in the 𝑥-direction for each
free node, 𝑖, connected to 𝑁 nodes, 𝑗 , is (see [4] for more details) given by:

𝑁∑︁
𝑗

𝑥𝑖 − 𝑥 𝑗

𝐿𝑖 𝑗

𝑝𝑖 𝑗 = 𝑡𝑖,𝑥 (2.6)

where,
𝐿𝑖 𝑗 is the length of cable 𝑖 𝑗 , and hence 𝐿𝑖 𝑗 =

√︃(
𝑥𝑖 − 𝑥 𝑗

)2 + (
𝑦𝑖 − 𝑦 𝑗

)2 + (
𝑧𝑖 − 𝑧 𝑗

)2;
𝑝𝑖 𝑗 is the tension in cable 𝑖 𝑗 ;
𝑡𝑖,𝑥 is the component of the tension tie force applied to node 𝑖, in the 𝑥-direction.
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The simplest approach involves computing the prestress for a single tension tie
force value at all free nodes. However, this method results in several cables near
the transition between the inner and boundary nets being under compression (and
in practice, slack). To achieve a purely tensile prestress distribution, the tie forces at
the free nodes in the transition region must be increased by a suitable factor, 𝛼 > 1,
from their nominal value.

Figure 2.6(a) illustrates the prestress distribution in the cable net for 𝐷 =

200 m, 𝐹/𝐷 = 1.0, and 𝛼 = 1.7. This value was determined through trial and
error. This approach of applying two distinct tie forces led to a reduction in overall
structural mass, suggesting that further mass reduction could be achieved through a
more formal optimization of general prestress distributions.
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Figure 2.6: Comparison of cable prestress distributions for 𝐷 = 200 m, 𝐹/𝐷 = 1.0
corresponding to (a) 2 distinct tension tie forces, and (b) (n + 1) rings of tension tie
forces.

Theoretically, varying the tie forces at each free node could be explored, but this
is impractical. To simplify practical implementation, six-fold rotational symmetry of
the hexagonal tessellation was assumed. Therefore, the number of distinct tension tie
forces was set to the number of rings (see Fig. 2.7) in the tessellation, i.e., 𝑛+1. This
approach can be extended to offset reflectors, for which the assumption of six-fold
symmetry is not valid, by considering larger sets of cable tensions for each ring of
tension tie forces.

A basis for independent tension tie forces, 𝑇 , was considered by computing the
distribution 𝑇 𝑘 that corresponds to unit tension tie forces at all free nodes on ring 𝑘

and zero forces at all other free nodes. Denoting the resulting prestress distribution
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in equilibrium with 𝑇 𝑘 as 𝑃𝑘 , the following two matrices were defined:

𝑇 =
[
𝑇1 𝑇2 . . . 𝑇𝑛+1] (2.7a)

𝑃 =
[
𝑃1 𝑃2 · · · 𝑃𝑛+1] . (2.7b)

Ring n
Ring (n-1)

Figure 2.7: Definition of rings in inner net.

A general tie force distribution is 𝑇𝛼, with corresponding cable tensions 𝑝𝑖 𝑗

given by 𝑃𝛼, where the coefficients 𝛼𝑘 > 0 to ensure that all tension tie forces are
positive.

An additional constraint is that a sufficient level of pretension must be applied to
all cables to keep them both under tension and sufficiently straight when loaded by
the prestressed metallic mesh. The minimum required tension is [62]:

𝑝𝑖 𝑗 ≥ 10𝜎𝐿𝑚𝑎𝑥 (2.8)

where,
𝜎 is the biaxial prestress in the metallic mesh;
𝐿𝑚𝑎𝑥 is the maximum cable length in the net.

Different objective functions were evaluated for optimization using MATLAB’s
fmincon function, focusing on two metrics: the maximum compressive forces in
the perimeter truss and the range of cable tensions, (𝑃)𝑚𝑎𝑥

(𝑃)𝑚𝑖𝑛
. Both metrics contribute

directly to the overall structural mass, as discussed in Sections 2.3 and 2.4. The
results, presented in Table 2.1, show that all variants considered improve both
metrics. Remarkably, five out of seven different objective functions resulted in a
32% reduction in mass and a 41% reduction in the range of cable tensions. Among
these, the average batten force in the perimeter truss was chosen as the objective
function for prestress optimization.
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Visual comparison of the cable force distribution for the initial two-tension tie
force solution, Fig. 2.6(a), with the optimal distribution obtained in this manner,
Fig. 2.6(b), for 𝜎 = 5 N/m is interesting. It reveals that the optimal solution results
in significantly lower cable tensions.

Table 2.1: Comparison of Objective Functions for 𝐷 = 200 m, 𝐹/𝐷 = 1.0

Objective Function 𝑃𝑚𝑎𝑥

𝑃𝑚𝑖𝑛
Maximum Compressive Mass (kg)

Force (kN)
RMS Deviation of cable tensions 10.546 145.25 13,259
Range of cable tensions 10.027 138.71 13,039
Maximum longeron force 12.816 138.42 13,030
Average longeron force 12.816 138.42 13,030
Maximum batten force 12.816 138.42 13,030
Average batten force 12.816 138.42 13,030
Sum of tension tie forces 12.816 138.42 13,030

Solution with two distinct 21.775 379.47 19,061
tension tie forces

2.2.3 Potential Modifications to the Minimum Tension Requirement
In Eq. 2.8, the minimum tension requirement for the cable elements is governed

by the maximum cable length in the net, 𝐿𝑚𝑎𝑥 , for a given 𝜎. Examining the original
net configuration for 𝐷 = 100 m in Fig. 2.8(a) reveals that 𝐿𝑚𝑎𝑥 is predominantly
determined by the boundary cable elements, regardless of the subdivision 𝑛 of the
central hexagon.

One possible modification to address this issue is to shift the outermost rings of
the central hexagon outward (see [63] for similar approaches). This was attempted,
as shown in Fig. 2.8(b), by positioning the centers of the two outermost (𝑛 + 1 and
𝑛) cable rings at one-third of the maximum radial distance between the 𝑛 − 1𝑡ℎ

ring and the perimeter truss, while distributing the remaining nodes equally in the
radial direction. Mapping the tessellation in this manner preserves the original con-
figuration of the perimeter truss, along with its static and kinematic determinacy,
while maintaining the surface accuracy dictated by the subdivision 𝑛 in the cen-
tral hexagon. At the same time, it enhances the surface accuracy in the boundary
net. However, if all cable net rings are shifted outward, as shown in Fig. 2.8(c), the
surface accuracy at the center is compromised, and the fabrication of the cable net
becomes more complex due to the lack of straight cable elements running across the
entire diameter, unlike the nets in Figs. 2.8(a) and (b).



21

(b) (c)(a)

 Inner net  Boundary net Truss joints Perimeter truss

Figure 2.8: Cable net configuration for 𝐷 = 100 m, 𝑛𝑡 = 13, 𝑛𝑐 = 3: a) original
configuration, b) mapped configuration 1, and c) mapped configuration 2.

Table 2.2 presents the optimization results for the prestress distributions, com-
paring the original cable net configuration with the mapped version shown in
Fig. 2.8(b). The objective function used for this comparison is the average bat-
ten force, as chosen in Section 2.2.2. The results demonstrate that reducing 𝐿𝑚𝑎𝑥 ,
and consequently lowering the minimum tension requirement, leads to a substantial
reduction in key metrics of interest, including structural mass. Although this map-
ping approach offers no advantages for smaller apertures, the benefits are significant
for larger apertures, as shown in the results for 𝐷 = 200 m.

Table 2.2: Comparison of cable net configurations for 𝐷 = 100, 200 m, 𝐹/𝐷 = 1.0

Cable net Radius of 𝑃𝑚𝑎𝑥

𝑃𝑚𝑖𝑛
Maximum Compressive Mass (kg)

configuration Longeron (mm) Force (kN)
𝐷 = 10 m
Original 6.145 3.308 1.07 22.5
Mapped 6.297 4.338 1.15 22.9
𝐷 = 100 m
Original 45.434 6.060 29.18 2,479
Mapped 38.956 6.598 18.40 2,184
𝐷 = 200 m
Original 94.102 12.816 138.42 13,030
Mapped 68.742 10.060 53.96 9,815

However, the original cable net configuration was chosen for the rest of the
analysis presented in this thesis due to its much simpler fabrication of the inner net
using only straight cable elements, compared to the complex mapped version.
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2.3 Structural Design
2.3.1 Metallic Mesh and Cable Net Design

For the reflector design, a knitted gold-plated molybdenum wire mesh with
an areal density 𝜌𝑚𝑒𝑠ℎ = 0.025 kg/m2 was chosen, with a biaxial prestress 𝜎 =

5 N/m. The front and rear nets are composed of thin CFRP (carbon fiber reinforced
polymer) strips made from M55J carbon fiber in a thermoplastic matrix [64]. This
composite material has a density 𝜌𝑛 = 1, 786 kg/m3 and a longitudinal modulus
𝐸𝑛 = 325.4 GPa. A rectangular cross section of 6 mm width and 150 𝜇m thickness
was selected for all reflector apertures. The smallest separation between the front
and rear nets (denoted 2𝑠0) was kept constant at 0.1 m across all reflector designs
considered in this study, as larger separations would increase the batten lengths. The
pretension in the cable nets was derived from the optimization process described
in Section 2.2.2. Using the net prestress, the resulting compression forces in the
perimeter truss were determined through the equilibrium equations of the truss
joints. The prestress analysis results for reflectors with apertures 𝐷 = 10 m, 100 m,
and 200 m are presented in Table 2.3.

Table 2.3: Prestress range (Nets: tension; Truss: compression), for 𝐹/𝐷 = 1.0

Nets (kN) Truss (kN)
𝐷 (m) Inner net Boundary net Longerons Battens

10 0.042 ∼ 0.114 0.045 ∼ 0.139 0.947 ∼ 1.072 0.046 ∼ 0.052
100 0.357 ∼ 2.160 0.357 ∼ 1.838 25.794 ∼ 29.182 0.484 ∼ 0.567
200 0.700 ∼ 8.967 0.700 ∼ 7.000 120.220 ∼ 138.420 1.545 ∼ 1.859

2.3.2 Perimeter Truss Design
Due to the significant compressive forces acting on the perimeter truss, tubes

with circular cross sections were selected for all structural members. A minimum
diameter of 5 mm was chosen to avoid impractically small tube sizes.

Assuming pin-ended conditions, the global critical buckling load, 𝑃𝑐𝑟 , for a thin-
walled circular tube with length 𝑙, cross-sectional radius 𝑟, and thickness 𝑡 is given
by:

𝑃𝑐𝑟 =
𝜋3𝑟3𝑡𝐸

𝑙2
(2.9)

where 𝐸 is the longitudinal modulus.

The longerons, which experience the highest compressive forces, were sized
first. Their thickness was set to 1.0 mm, and the radius was calculated using Eq. 2.9,
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with a safety margin of 2. The battens and diagonals were then designed with the
same cross-sectional radius as the longerons to simplify and lighten the joints of the
perimeter truss. The minimum thickness for the battens was set at 1.25 mm, and it
was confirmed that the buckling load from Eq. 2.9 exceeded the compressive forces
acting on them.

Although the diagonals theoretically do not experience compression, they are
loaded in bending during deployment. Thus, their size was simply set to match the
longerons, but with a thickness of 0.75 mm.

The radius and thickness values for the longerons, battens, and diagonals for
reflectors with apertures 𝐷 = 10 m, 100 m, 200 m are presented in Table 2.4.

Table 2.4: Size of perimeter truss members, for 𝐹/𝐷 = 1.0

𝐷 (m) Radius of Longeron/ Thickness of Thickness of Thickness of
Batten/Diagonal (mm) Longeron (mm) Batten (mm) Diagonal (mm)

10 6.15 1.00 1.25 0.75
100 45.43 1.00 1.25 0.75
200 94.10 1.00 1.25 0.75

2.3.3 Joint Design
The mass of the perimeter truss joints was estimated for a general aperture 𝐷

and varying values of 𝐹/𝐷 using a parametric design process based purely on
geometry. The structure consists of two types of joints: Type-1, which connects
five structural elements (longeron, diagonal, batten, diagonal, and longeron), and
Type-2, which connects three structural elements (longeron, batten, and longeron),
as illustrated in Fig. 2.9(a).

The general configuration of both joint types is depicted in Figs. 2.9 and 2.10. The
design features two parallel plates made of CFRP (with the same material properties
as the struts and cable net elements) connected centrally to a plate made of 6061
aluminum alloy (𝜌𝐴𝑙 = 2700 kg/m3, 𝐸𝐴𝑙 = 69 GPa). This central plate is securely
fastened to the batten, while the longerons and diagonals are attached to appropriate
locations on the side plates via 6061 aluminum alloy sleeves and steel pins and bolts
(𝜌𝑆 = 7800 kg/m3, 𝐸𝑆 = 210 GPa). These connections allow rotational movement,
facilitating stowage and deployment.

Once the diameter of the longerons was determined, as discussed in Section 2.3.2,
the positions of the pins attaching the longerons and diagonals to the plates were
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meticulously planned to ensure adequate clearance, allowing the members to rotate
freely around the pins. Note that the battens are rigidly connected to the joints. The
thicknesses of the plates and sleeves were selected based on allowable margins for
hole bearing failure at the pin attachments (∼thickness ≥ 3× hole diameter [65]).

Longeron
Batten
Diagonal

Stowed

(b)(a)

5 tubes 3 tubes

Joint Type 1 Joint Type 2

Deployed

H

e W

S

h

Figure 2.9: Perimeter truss: a) fully deployed and stowed configurations, and b)
relative position of members in stowed configuration.

Both joints were designed with the CAD software SolidWorks and the mass of
each joint type was obtained from SolidWorks. Figure 2.10 shows the Type-1 and
Type-2 joints and the end sleeves that stiffen the tubular elements.

(a) (c)

(b) (d)

Figure 2.10: CAD images of a) Type-1 joint with 5 struts, b) Type-1 joint strut
sleeves, c) Type-2 joint with 3 struts, and d) Type-2 joint strut sleeves.
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The mass of the joints for apertures of 𝐷 = 1 m, 10 m, 100 m, and 200 m, and
𝐹/𝐷 = 1.0, is presented in Table 2.5.

Table 2.5: Joint masses for 𝐹/𝐷 = 1.0

Joint Mass (g)
𝐷 (m) Type-1 Type-2

1 18.0 10.3
10 45.2 23.2
100 2, 272 1, 076
200 10, 780 5, 284

2.4 Scaling of Mass and Volume
2.4.1 Estimating Mass and Stowed Volume

The total mass of the reflector was estimated by summing the contributions from
the cable nets (𝑚𝑛), metallic mesh (𝑚𝑚𝑒𝑠ℎ), perimeter truss (𝑚𝑡𝑟𝑢𝑠𝑠), tension ties
(𝑚𝑡𝑡), joints (𝑚 𝑗 ), and deployment actuators (𝑚𝑑𝑒𝑝):

𝑚𝑡𝑜𝑡𝑎𝑙 = 𝑚𝑛 + 𝑚𝑚𝑒𝑠ℎ + 𝑚𝑡𝑟𝑢𝑠𝑠 + 𝑚𝑡𝑡 + 𝑚 𝑗 + 𝑚𝑑𝑒𝑝 . (2.10)

The mass of each component was calculated based on the structural design
described in Section 2.3. The mass of the cable net was determined from the cross-
sectional area of the strips, multiplied by their total length and material density. The
metallic mesh mass was calculated assuming full coverage of the front net’s surface,
where the area of the paraboloid was multiplied by the mesh’s areal density. The
perimeter truss mass was derived from the design of the longeron, batten, and
diagonal members, as detailed in Section 2.3.2. The mass of the joints was estimated
by linear interpolation of the values in Table 2.5. For the tension ties and seams in the
mesh, 𝑚𝑡𝑡 , it was assumed to be twice the mass of the metallic mesh (2×𝑚𝑚𝑒𝑠ℎ). The
mass of the deployment actuators was assumed to be 10% of the total reflector mass.

The stowed envelope of the reflector was assumed to be of cylindrical shape, as
illustrated in Fig. 2.9(a). The diameter of this cylinder is determined by the perimeter
of the stowed configuration, where adjacent joints are in contact. The height of
the cylinder is defined by the lengths of the battens and longerons. Figure 2.9(b)
presents a schematic showing the relative positions of the truss members at the
joints and the design parameters influencing the stowed dimensions. In Fig. 2.9(b),
𝐻 represents the total height of the fully deployed perimeter truss, while ℎ defines
the distance between the bottom edges of the Type-1 and Type-2 joints in the folded
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configuration. The length of a Type-1 joint, the distance between the center of
the hinge of the longeron and the edge of the joint, and the distance between the
centers of the hinges of the longerons in a Type-2 joint are defined as 𝑊 , 𝑒, and 𝑆,
respectively. The perimeter of the stowed reflector 𝑃𝑠𝑡𝑜𝑤𝑒𝑑 is then calculated as:

𝑃𝑠𝑡𝑜𝑤𝑒𝑑 = (𝑊 + 𝑆 − 2𝑒) × (3𝑛𝑡) (2.11)

and then the diameter in the stowed configuration is given by 𝐷𝑠𝑡𝑜𝑤𝑒𝑑 = 𝑃𝑠𝑡𝑜𝑤𝑒𝑑/𝜋.
The height of the stowed configuration is 𝐻𝑠𝑡𝑜𝑤𝑒𝑑 = 𝐻 + ℎ.

2.4.2 Mass and Stowed Dimensions Results
The variation in the equivalent areal density of different reflector components is

plotted in Fig. 2.11 against the aperture size, for 𝐹/𝐷 = 1.0. A comparison of the two
graphs highlights the superior mass efficiency achieved with the optimal prestress
distribution. For the design with two distinct tension tie forces (Fig. 2.11(a)), the
areal density increases nonlinearly as the reflector diameter grows. This is mainly
due to the rapidly rising mass of the battens and diagonals in the perimeter truss. In
contrast, the design with the optimal prestress distribution, shown in Fig. 2.11(b),
results in smaller compressive forces in the perimeter truss compared to the two-
tension design. The difference between the two approaches is minimal for apertures
below 50 m but, as the diameter increases, the lower prestress in the truss leads to
smaller member sizes and nearly a one-third reduction in areal density for apertures
around 200 m.

Net Mesh + Tension Ties Longerons Battens Diagonals Joints Total mass

(b)(a)

50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

50 100 150 200

Ar
ea

l d
en

si
ty

 [k
g/

m
2 ]

Aperture Diameter, D [m]

Ar
ea

l d
en

si
ty

 [k
g/

m
2 ]

Aperture Diameter, D [m]

Figure 2.11: Areal density of reflector components (𝐹/𝐷 = 1.0): a) non-optimal
prestress design, and b) optimal prestress design.
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Figure 2.12 presents the overall mass, stowed diameter, and height of the reflector
for 𝐹/𝐷 = 1.0 across a diameter range of 10 m to 200 m.

Two launch vehicles, Falcon Heavy [66] and Starship [67], were selected to
assess the feasibility of launching large-aperture mesh reflectors. In Fig. 2.12(b) and
(c), the pink and blue solid lines represent the payload capacity limits for Falcon
Heavy and Starship, respectively. According to the respective Users’ Guides, the
maximum payload mass limits to geostationary transfer orbit (GTO) are 26, 700 kg
for the Falcon Heavy and 21, 000 kg for the Starship. Even the largest reflectors
considered in this study remain well within these mass limits. However, launch
envelope constraints, particularly the stowed diameter, are much stricter. Reflectors
with apertures larger than 70 m exceed Falcon Heavy’s payload capacity, while
100 m is the maximum aperture limit for launch aboard Starship.
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Figure 2.12: Scaling of deployable reflectors for 𝐹/𝐷 = 1.0: a) total mass, b)
stowed diameter, and c) stowed height.

This scaling analysis provides valuable insights into the challenges of launching
large-scale deployable mesh reflectors, showing that launch feasibility is primarily
constrained by the stowed diameter of the reflector, followed by its height. The
launch mass limit, in contrast, is not as restrictive. Given that extremely large space-
borne deployable reflectors are impractical within current launch vehicle limitations,
there is a clear need to explore alternative strategies, such as on-orbit assembly, to
overcome these volumetric payload constraints.

2.4.3 Analytical Scaling Laws
The results presented in Section 2.4.2 can be used to establish analytical scaling

laws for the mass and stowed envelope of deployable mesh reflectors designed with
the optimized prestress distribution described in Section 2.2.2.
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To derive a mass scaling equation, the reflector components were categorized
into three groups that scale similarly according to the structural design procedure;
the mass of the perimeter truss including the joints, the mass of the cable net, and the
mass of the mesh and tension ties. Each mass category was expressed as a separate
power function of the aperture diameter 𝐷, as illustrated in Fig. 2.13. The mass
data of each category were fitted to this power law using MATLAB’s curve fitting
algorithm, ensuring a 95% confidence interval for the results. The coefficients of the
power law terms, 𝑐1, 𝑐3 and 𝑐5, were scaled to reflect the mass of the deployment
actuators, which was set at 10% of the total mass. The resulting scaling law for the
mass (in kg) of reflectors with 𝐹/𝐷 = 1.0 is:

𝑚𝑡𝑜𝑡𝑎𝑙 = 0.022𝐷2.452 + 0.054𝐷1.492 + 0.067𝐷2. (2.12)

Total Mass (Reflector)

Perimeter truss Net Mesh + Tension ties

Scaling law of the mass

Curve fitting
2

1
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3
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5c D

2 4 2
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totalm          c D c D c D= + +

Figure 2.13: Process of establishing a scaling law for the total mass.

The perimeter truss is clearly the largest contributor to the mass, with 𝑐2 > 2,
followed by the mesh and tension ties, and finally the cable net. Figure 2.12(a) plots
the detailed mass of reflectors with 𝐹/𝐷 = 1.0 alongside this analytical expression,
demonstrating that Eq. 2.12 closely follows the total mass of the reflector.

When considering the stowed diameter and height of the deployable reflector,
the contributions from the cable nets, mesh, and tension ties are negligible, see
Fig. 2.9. Instead, the stowed envelope size is primarily influenced by the perimeter
truss members and joints. Consequently, single-term power functions were used to
derive the following analytical expressions for the diameter and height:
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𝐷𝑠𝑡𝑜𝑤𝑒𝑑 = 0.011𝐷1.464 (2.13)

𝐻𝑠𝑡𝑜𝑤𝑒𝑑 = 0.286𝐷0.877 (2.14)

which have been plotted in Fig. 2.12(b) and (c).

2.4.4 Scaling Studies for Deeper Reflectors
Mass and stowed volume scaling plots for 𝐹/𝐷 = 0.5, 0.7, generated using the

same overall design methodology, are presented in Fig. 2.14. The corresponding
joint masses for apertures of 𝐷 = 1 m, 10 m, 100 m, and 200 m are listed in
Table 2.6. In the plots, black circular dots and red crosses represent the quantities
calculated for 𝐹/𝐷 = 0.5 and 𝐹/𝐷 = 0.7 reflectors, respectively.
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Figure 2.14: Scaling of deployable reflectors for 𝐹/𝐷 = 0.5 and 0.7: a) total mass,
b) stowed diameter, and c) stowed height.

Table 2.6: Joint masses for 𝐹/𝐷 = 0.5, 0.7

Joint Mass (g)
𝐹/𝐷 = 0.5 𝐹/𝐷 = 0.7

𝐷 (m) Type-1 Type-2 Type-1 Type-2
1 18.0 10.3 18.0 10.3
10 40.5 21.2 45.2 23.2
100 2, 343 1, 107 2, 217 1, 051
200 18, 448 9, 290 15, 381 7, 687

These plots show that both the mass and stowed envelope increase as the reflectors
become deeper, i.e., as 𝐹/𝐷 decreases. Reflectors with 𝐹/𝐷 = 0.5 and aperture
diameters greater than 140 m are constrained by the payload mass capability of
the launchers. As with the 𝐹/𝐷 = 1.0 case, the primary challenge is not the mass,
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but the launch envelope restrictions. However, for 𝐹/𝐷 = 0.5 and 𝐹/𝐷 = 0.7,
the stowed height becomes the most restrictive factor, as opposed to the stowed
diameter, due to the increased depth of the cable nets. For reflectors with 𝐹/𝐷 = 0.5,
an aperture diameter of 50 m is the limit for the Falcon Heavy, while the Starship
can accommodate up to 60 m. For 𝐹/𝐷 = 0.7, the aperture limit increases to 60 m
for the Falcon Heavy and 80 m for the Starship.

Analytical scaling laws for the mass and stowed envelope of reflectors with
𝐹/𝐷 = 0.5 and 𝐹/𝐷 = 0.7 were established using a similar approach to that used
for 𝐹/𝐷 = 1.0, which involves grouping reflector components into three distinct
categories. However, it was observed that reflectors with 𝑛 ≥ 32 exhibit different
trends compared to those with 𝑛 < 32. As a result, separate analytical expressions
were formulated for each case, and are plotted on Figs. 2.14(a-c). Specifically, for
𝐹/𝐷 = 0.5, reflectors with 𝐷 ≥ 110 m have 𝑛 ≥ 32, while for 𝐹/𝐷 = 0.7, reflectors
with 𝐷 ≥ 150 m have 𝑛 ≥ 32.

The analytical expressions for the total mass (𝑚𝑡𝑜𝑡𝑎𝑙), stowed diameter (𝐷𝑠𝑡𝑜𝑤𝑒𝑑),
and stowed height (𝐻𝑠𝑡𝑜𝑤𝑒𝑑) for 𝐹/𝐷 = 0.5 are as follows:

𝑚𝑡𝑜𝑡𝑎𝑙 =

{
0.014 × 𝐷2.767 + 0.064 × 𝐷1.5 + 0.063 × 𝐷2 (𝑛 < 32)
0.003 × 𝐷3.572 + 0.064 × 𝐷1.5 + 0.063 × 𝐷2 (𝑛 ≥ 32)

𝐷𝑠𝑡𝑜𝑤𝑒𝑑 =

{
0.0097 × 𝐷1.557 (𝑛 < 32)
0.0006 × 𝐷2.155 (𝑛 ≥ 32)

𝐻𝑠𝑡𝑜𝑤𝑒𝑑 =

{
0.370 × 𝐷0.9368 (𝑛 < 32)
0.363 × 𝐷0.9411 (𝑛 ≥ 32).

(2.15)

The analytical expressions for the total mass (𝑚𝑡𝑜𝑡𝑎𝑙), stowed diameter (𝐷𝑠𝑡𝑜𝑤𝑒𝑑),
and stowed height (𝐻𝑠𝑡𝑜𝑤𝑒𝑑) for 𝐹/𝐷 = 0.7 are as follows:

𝑚𝑡𝑜𝑡𝑎𝑙 =

{
0.024 × 𝐷2.500 + 0.059 × 𝐷1.485 + 0.061 × 𝐷2 (𝑛 ≤ 32)
0.002 × 𝐷3.052 + 0.059 × 𝐷1.485 + 0.061 × 𝐷2 (𝑛 ≥ 32)

𝐷𝑠𝑡𝑜𝑤𝑒𝑑 =

{
0.00922 × 𝐷1.531 (𝑛 ≤ 32)
0.00004 × 𝐷2.633 (𝑛 ≥ 32)

𝐻𝑠𝑡𝑜𝑤𝑒𝑑 =

{
0.319 × 𝐷0.910 (𝑛 ≤ 32)
0.294 × 𝐷0.926 (𝑛 ≥ 32).

(2.16)
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2.5 Scaling of Natural Frequencies of Vibration
2.5.1 Finite Element Model and Boundary Conditions

A geometrically nonlinear, high-fidelity finite element model was developed in
ABAQUS/CAE 2017 to analyze the natural frequencies of vibration for deployable
mesh reflectors. The model incorporated all structural components, each individually
represented, as described below.

The front and rear nets were modeled using truss elements (T3D2), where each
edge of a triangular facet consisted of a single truss element. The perimeter truss
members—longerons, battens, and diagonals—were modeled with 20 beam ele-
ments (B31). Pin joints, allowing relative rotation, were used to connect adjacent
elements. The metallic mesh was represented as point masses distributed across the
nodes of the front net. Additionally, the mass of the joints and deployment actua-
tors was modeled as point masses connected to the joints of the perimeter truss. A
PREDEFINED STRESS FIELD was assigned, corresponding to the prestress levels
for each structural component, as determined in the optimization process in Sec-
tion 2.2.2. Tension tie forces were applied to the inner nodes of both the front and
rear nets. The model was set up in the operational geometric configuration of the
reflector, with the prestress applied, ensuring minimal geometry changes during the
geometrically nonlinear iteration to reach the prestressed equilibrium configuration.

The first step involved performing a static equilibrium analysis under the pre-
defined stress field and tension tie forces. This provided the deformed geometry and
stiffness of the reflector. A subsequent modal analysis was then carried out for the
structure under the boundary conditions of interest and at equilibrium, to determine
the natural frequencies and their corresponding mode shapes.

Two boundary conditions were considered. The first assumed that the reflector
was attached to a massive spacecraft via a prime batten, designed to avoid inter-
ference with the perimeter truss deployment. This batten, shown in Fig. 2.15(a),
was connected to the perimeter truss at three joints in the upper truss layer and one
joint in the lower layer. In ABAQUS, this batten-supported boundary condition was
implemented by restricting the six degrees of freedom (DoFs) at these four joints,
as depicted in Fig. 2.15(b).

The second boundary condition assumed a free-free scenario, capturing the
increasing dominance of the reflector’s dynamics relative to the spacecraft as its size
increases.
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Figure 2.15: Batten-supported boundary condition: a) prime batten, and b) bound-
ary conditions in finite element model.

2.5.2 Natural Frequencies and Mode Shapes
Key results from the finite element modal analysis for reflectors with 𝐹/𝐷 = 1.0

are presented in Fig. 2.16. The log-log trend for the lowest natural frequencies,
shown in Fig. 2.16(a), forms a straight line with a negative slope, indicating that the
frequencies follow a negative power law as the reflector diameter increases. Typical
mode shapes are illustrated in Fig. 2.16(b) and Fig. 2.16(c), respectively, for the
batten-supported and free-free boundary conditions.

For the batten-supported boundary condition, two dominant mode shapes emerge:
a lateral mode, where the structure rotates around the prime batten, and a vertical
mode, where the structure behaves as a cantilever, moving primarily in the 𝑧-direction
as it vibrates up and down. The natural frequencies of these modes are rather close
to each other, with the vertical mode being dominant for reflectors with 𝐷 < 25 m,
while the lateral mode becomes dominant for 𝐷 > 25 m.

Under the free-free boundary condition, the fundamental mode exhibits a saddle-
like shape, as depicted in Fig. 2.16(c). Notably, the fundamental frequency in the
free-free case is significantly higher—about an order of magnitude—than in the
batten-supported scenario.

The modal analysis results were fitted to power laws, as shown in Fig. 2.16(a),
with RMS errors of 0.014, 0.003, and 0.116 Hz for the lateral, vertical, and saddle
modes, respectively. The analytical expressions for the natural frequencies (in Hz)
for 𝐹/𝐷 = 1.0 are as follows:

𝑓𝑙𝑎𝑡𝑒𝑟𝑎𝑙 = 217.2 × 𝐷−1.699

𝑓𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 = 88.43 × 𝐷−1.419

𝑓𝑠𝑎𝑑𝑑𝑙𝑒 = 738.1 × 𝐷−1.357.

(2.17)
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Figure 2.16: Natural frequencies and mode shapes for 𝐹/𝐷 = 1.0: a) frequency
trends, b) first two mode shapes for prime-batten support condition, and c) first
mode shape for free-free condition.

The prestressed modal analysis for mesh reflectors with 𝐹/𝐷 = 0.5 and 𝐹/𝐷 =

0.7 followed a similar procedure as the one used for 𝐹/𝐷 = 1.0. The corresponding
scaling laws for natural frequencies were derived and are presented in Fig. 2.17.

For the batten-supported boundary condition, the first two natural frequencies
correspond to the lateral and vertical modes, respectively. Unlike the 𝐹/𝐷 = 1.0
case, the lateral mode is the fundamental mode across all aperture diameters for
both 𝐹/𝐷 = 0.5 and 𝐹/𝐷 = 0.7. Under the free-free boundary condition, the
fundamental vibration mode is saddle-like, with frequencies significantly higher
than those observed under batten-supported conditions.

In log-log space, all natural frequencies form straight lines with negative slopes,
indicating a similar power-law relationship as for the case of 𝐹/𝐷 = 1.0 where the
natural frequencies decrease as the reflector diameter increases. The results from



34

the modal analysis have been fitted to power laws as before, and the corresponding
analytical expressions for reflectors with 𝐹/𝐷 = 0.5 is as follows:

𝑓𝑙𝑎𝑡𝑒𝑟𝑎𝑙 = 218.1 × 𝐷−1.839

𝑓𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 = 158.3 × 𝐷−1.477

𝑓𝑠𝑎𝑑𝑑𝑙𝑒 = 1005 × 𝐷−1.407.

(2.18)
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Figure 2.17: Natural frequency trends: a) 𝐹/𝐷 = 0.5, and b) 𝐹/𝐷 = 0.7.

For reflectors with 𝐹/𝐷 = 0.7, the analytical expressions are:

𝑓𝑙𝑎𝑡𝑒𝑟𝑎𝑙 = 241.6 × 𝐷−1.780

𝑓𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 = 114.0 × 𝐷−1.425

𝑓𝑠𝑎𝑑𝑑𝑙𝑒 = 933.4 × 𝐷−1.377.

(2.19)

2.5.3 Semi-Analytical Models for Fundamental Frequencies
While the high-fidelity modal analysis provides precise estimates of natural

frequencies and mode shapes for reflectors of various apertures, the computational
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demands become substantial for larger reflectors due to the increasing number of
structural elements. For instance, the high-fidelity models for 𝐷 = 100 m and 𝐷 =

200 m contain approximately 15000 and 32000 structural elements, respectively. A
semi-analytical model offers a faster yet accurate alternative for estimating these
modal parameters.

Figure 2.18 illustrates the semi-analytical approach. The concept is to homoge-
nize the mesh reflector to an edge-stiffened circular elastic plate. The cable nets are
modeled by a flat continuum disk with equivalent stiffness, while the perimeter truss
is represented as an equivalent hoop attached to the disk’s outer edge. This approach
can be applied to all mode shapes, though the model details vary. Here, the semi-
analytical model for the lateral mode (the lowest frequency mode for larger apertures
under batten-supported boundary condition) and the saddle mode are presented.

High-fidelity model

Homogenization

Reflector

Cable net Equivalent disk

Perimeter truss Equivalent hoop

Edge-stiffened
circular plate

Continuum model

Figure 2.18: Semi-analytical modeling scheme.

For the batten-supported boundary condition, the lateral mode corresponds to
an in-plane vibration where the reflector rotates about the three fixed joints in the
perimeter truss that are constrained by the prime batten. This mode can be modeled
as a 1-DoF mass-spring system, as shown in Fig. 2.19(a), where 𝑚𝑒𝑞 is the total
mass, and 𝐼𝑒𝑞 is the moment of inertia of the reflector around a horizontal axis
through its center of mass. The equivalent torsional stiffness, 𝑘𝑒𝑞, of the torsional
spring attached to the rigid bar of length 𝐷/2 is derived from an elastic analysis
of the equivalent edge-stiffened continuum disk subjected to the same boundary
conditions as the reflector, and loaded by an external couple, as shown. The three
supports of the disk represent the constraints imposed by the prime batten on the
upper ring of longerons.

Figure 2.19(b) illustrates the homogenization of the front net’s stiffness. The rear
net is not considered, as the lower ring of longerons is effectively free to rotate. The
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truss elements of the front net are assumed to be coplanar, with a uniform tessellation
of equilateral triangles, with edge length 𝐿. The equivalent homogenized stiffness
matrix for a single-layer truss tessellation, 𝐴𝑆𝐿 , is calculated by superposition of
three parallel trusses [4], Fig. 2.19(b), with modulus 𝐸𝑛 and cross-sectional area 𝐴𝑛:

𝐴𝑆𝐿 =
3
√

3𝐸𝑛𝐴𝑛

4𝐿
. (2.20)
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Figure 2.19: Semi-analytical model to estimate lateral mode: a) 1-DoF model, and
b) homogenization of the net.

The equivalent continuum Young’s modulus, 𝐸∗, and Poisson’s ratio, 𝜈∗, are (see
Appendix A for details):

𝐸∗ =
2
√

3𝐸𝑛𝐴𝑛

3𝑡𝑛𝐿
, 𝜈∗ =

1
3
. (2.21)

To complete the semi-analytical model of the edge-stiffened disk, a circular hoop,
representing the longerons positioned along the perimeter of the front net and match-
ing their cross-section, is attached to the disk’s edge. As illustrated in Fig. 2.19(a),
the equivalent torsional stiffness of the complete model, 𝑘𝑒𝑞, is estimated by evalu-
ating the rotation of this model under a given moment. The moment of inertia is the
sum of 𝐼𝑒𝑞 and the parallel axis contribution, and the natural frequency is calculated
from this system as follows:

𝑓𝑙𝑎𝑡𝑒𝑟𝑎𝑙 = 2𝜋

√︄
𝑘𝑒𝑞

𝑚𝑒𝑞𝐷
2/4 + 𝐼𝑒𝑞

. (2.22)
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Figure 2.20 compares the natural frequencies computed from the finite element
analysis with those obtained from the semi-analytical approach. The results, also
presented in Table 2.7, show that the lateral mode frequencies align well with the
high-fidelity model, with errors reaching up to 22.27% for the largest diameters. This
error is primarily due to differences between the actual cable net stiffness and the
homogenized disk model. It is important to note, however, that Eq. 2.22 is applicable
for all values of 𝐹/𝐷, unlike the high-fidelity approach, which necessitates a separate
model (and the associated computational costs) for each variation in 𝐹/𝐷.
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Figure 2.20: Natural frequency corresponding to lateral mode.

Table 2.7: Natural frequency of lateral mode (high-fidelity model vs. semi-analytical
model)

Natural frequency (Hz)
𝐷 (m) High-fidelity model Semi-analytical model Error (%)

10 4.346 4.371 0.58
50 0.276 0.294 6.54
100 0.086 0.095 10.30
150 0.041 0.046 12.39
200 0.022 0.027 22.27

As opposed to the lateral vibration mode, the saddle mode involves an out-of-
plane motion under free-free boundary conditions, requiring the bending stiffness
of the equivalent model to estimate 𝑘𝑒𝑞. The semi-analytical model is therefore
modified to estimate the bending stiffness of the prestressed nets and the perimeter
truss’s contribution. The bending and torsional stiffnesses of the continuum model
are calculated by multiplying the in-plane continuum stiffness of each net by the
square of the local distance between the nets [4].
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This model can be further refined by accounting for the fact that the 𝑥, 𝑦 plane
projections of the triangles connecting the inner net to the perimeter truss are
not equilateral. The in-plane stiffness of the central hexagonal region, composed
of identical equilateral triangles, remains 𝐴𝑆𝐿 as before. The area between the
perimeter truss and the central hexagon features a coarser cable pattern, as illustrated
in Fig. 2.21(a). The equivalent material properties of the disk were derived by
considering these distinct cable patterns, allowing for differences in angles and
distances between the cables in the boundary region. The angle between the cables,
𝛽, is expressed as:

𝛽 = tan−1
(
𝐿

𝑔

)
= tan−1 ©«

4
(
2 +

√
3
)
𝐿

𝐷

ª®®¬ . (2.23)

Center region

Truss bay

Perimeter truss

z

L

z

x

y

x

y

Equivalent I-beam

Boundary region

(a) (b)

2L

β
g

α

β

Figure 2.21: Semi-analytical model for free-free saddle mode: homogenization of
a) net, and b) perimeter truss.

The 𝐴𝐵𝐷 stiffness matrix for the equivalent disk was then obtained following
the derivation for double-layer space frames outlined in [4]. Since the front and rear
nets are identical, 𝐴 ≈ 2𝐴𝑆𝐿 and 𝐷 ≈ 𝐴𝑆𝐿 (2𝑧)2, where 𝑧 is the distance between
the two nets. Substituting Eq. 2.1 and using 𝑟2 = 𝑥2 + 𝑦2, the 𝐴𝐵𝐷 matrix at a radial
distance 𝑟 from the axis of the paraboloid is expressed as:

𝐴𝐵𝐷 (𝑟) =
[

𝐴 𝐵

𝐵𝑇 𝐷 (𝑟)

]
=

[
2𝐴𝑆𝐿 0

0
(
2𝑠0 + 𝑟2

2𝐹

)
𝐴𝑆𝐿

]
(2.24)

where the 𝐵 matrix is zero, for symmetry.



39

The perimeter truss consists of identical bays, as shown in Fig. 2.21(b). In the
proposed semi-analytical model for the saddle vibration mode, the perimeter truss
was homogenized to an equivalent I-beam, having the same second moment of area
as a bay for all axes. This equivalent hoop was again attached to the edge of the
equivalent disk, and a modal analysis was performed on the continuum model using
ABAQUS/CAE 2017.

Figure 2.22(a) compares the saddle mode frequencies obtained from the high-
fidelity simulations with those from the semi-analytical model. The mode shape
produced by the semi-analytical approach shows good qualitative agreement, as
illustrated in Fig. 2.22(b), and the corresponding numerical values are provided in
Table 2.8.
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Figure 2.22: Natural frequency of free-free saddle mode: a) frequency comparison,
and b) mode shape comparison.

Table 2.8: Natural frequency of saddle mode (high-fidelity model vs. semi-analytical
model)

Natural frequency (Hz)
𝐷 (m) High-fidelity model Semi-analytical model Error (%)

10 32.473 26.153 19.85
50 3.702 3.535 5.56
100 1.430 1.393 3.26
150 0.764 0.875 13.93
200 0.452 0.579 28.10

2.6 Chapter Conclusions
This chapter has presented the design and analysis of deployable mesh reflectors,

spanning aperture sizes from 10 to 200 meters. The reflector geometry is tailored to
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meet the stringent surface accuracy requirement of 0.6 mm, necessary for operation
at a 10 GHz RF frequency. Through a comprehensive investigation of the reflector’s
kinematic and static properties, it was determined that a design composed entirely
of triangular facets—without cross-wires—ensures both kinematic and static deter-
minacy. This approach guarantees a unique shape and unique equilibrium solution
under prestress. The prestress distribution across the structural elements is optimized
by adjusting the tension tie forces applied to the net. Across all aperture sizes, the
optimized designs exhibit a lower standard deviation in cable tension and reduced
compressive forces on the perimeter truss compared to non-optimized designs.

The structural design methodology has been detailed, with mass and volume
analyzed at the component level. For optimized designs, the areal density remains
nearly constant as the reflector diameter increases, while non-optimized designs
display a rising areal density with increasing size. Scaling laws for mass and volume
are derived as functions of aperture diameter. The study concludes that the designed
reflectors are feasible for launch with diameters up to approximately 70-100 meters
using commercially available launch vehicles. More importantly, the findings em-
phasize that stowed volume, rather than mass, poses the primary constraint on the
launch envelope, underscoring the necessity for innovative design approaches for
ultra-large space structures.

Additionally, the natural frequencies of the reflector have been examined un-
der two boundary conditions: batten-supported and free-free. Scaling laws for the
fundamental frequencies are proposed based on high-fidelity simulations. A semi-
analytical model has been developed for both boundary conditions, utilizing a ho-
mogenization technique that approximates the net and perimeter truss as equivalent
continua. The semi-analytical model’s predictions closely align with high-fidelity
simulations while offering a substantial reduction in computational time (from about
48 hours to just a few minutes), with its validity extending to all 𝐹/𝐷 ratios.

This study has achieved its overall aim of providing practical insights into the
design and scaling of deployable mesh reflectors, evaluating existing design ap-
proaches, and advancing the understanding of key metrics for assessing these struc-
tures for future applications. Moreover, this study has extended key metric data
beyond the 25 m aperture presented in previous studies, thereby establishing a base-
line for comparing large deployable mesh reflectors with ISA concepts, as discussed
in Chapter 3.


