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ABSTRACT

Human nature is inherently driven by the desire to build; advancing from primitive
shelters to skyscrapers, and extending this relentless pursuit of progress to space
through technological innovations. As space missions require larger and more com-
plex structures, traditional deployable systems face challenges due to constraints
on launch mass, volume, and complex deployment mechanisms. In-space assembly
(ISA) offers a promising solution for constructing large structures, such as telescopes
and satellites, directly in space.

This thesis introduces a novel ISA concept with a centralized ‘truss builder’ for
autonomous assembly of polygonal-ring structures, using simple, repetitive opera-
tions and focusing on scalable mesh reflectors for communication and imaging. Uti-
lizing the standard AstroMesh architecture, a rapid generalized design method is
developed. Through the analysis of reflector geometry, optimized cable prestress,
structural design, and a high-fidelity finite element model, analytical scaling laws
are derived for mass, stowed envelope, and natural frequency based on aperture
diameter. A semi-analytical homogenization model is introduced to efficiently pre-
dict fundamental natural frequencies. Stowed volume is a key limitation for large
deployable reflectors, approaching current and future launch capacity limits, while
the proposed ISA reflectors face no such constraints for apertures up to 200 meters.

A two-dimensional finite element model simulates the assembly kinematics of
large ring-like structures with the proposed ISA concept, enhancing understanding
of the process and evaluating key design aspects of a stationary robot assembling
scalable ring-like trusses. The model provides insights for optimizing autonomous
assembly systems and underscores the need for advanced numerical simulations to
ensure smooth assembly and stability during ISA, especially as structures scale.

Lab-scale prototype testing validates the ISA concept, with results aligning qual-
itatively with simulations. Both experiments and simulations reveal a range of viable
solutions, demonstrating flexibility for future mission designs. This research offers
crucial insights into the design and scaling of mesh reflectors, setting the stage
for comparing ISA with traditional deployable systems. The proposed ISA concept
presents a practical solution for building high-precision, large-scale structures in
space, advancing the field of space construction and supporting future extended
space missions.
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NOMENCLATURE

Space Legos. Modular components engineered for assembling structures in space.

Stationary Robot. A robot that remains fixed in position relative to the spacecraft
and does not traverse across or along the structure being assembled.


