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Abstract 

Carbon dioxide (CO2) is the most abundant gaseous species in the atmosphere of 

Mars. Phase change of CO2, predominantly between gas and solid, is the most eminent 

feature in the current Martian atmosphere. Correct and thorough understanding of the CO2 

cycle on Mars is crucial to the scientific research of Mars, including (but not limited to) 

climatology, meteorology, paleo-climatology, geomorphology, geology, and astrobiology. 

I modeled the CO2 phase change and couple the process with a Mars General 

Circulation Model (GCM) ― the Mars Weather Forecast and Research (MarsWRF) model. 

Two major forms of the CO2 phase change are included: direct deposition/sublimation 

to/from the surface (exchange with surface frost) and atmospheric condensation/evaporation 

(exchange with “snow”, which later will either precipitate to the ground and become a part of 

the surface reservoir, or evaporate before it reaches the surface). 

The first component has been historically simulated by a surface energy balance 

model. I improved the energy balance calculations in MarsWRF, especially improved the 

physics module associated with subsurface heat conduction. I fine-tuned the GCM by 

changing the values of the seasonal ice cap albedos and emissivities and the total CO2 mass 

in the system. The resulting pressure cycle, which is a good indicator of the atmospheric 

reservoir of CO2 in the system, matches the in situ measurements by the Viking Landers 

extremely well. This linear fitting algorithm can be used for future tuning of other GCMs and 

for searching for more complicated physics. 

The second component can be solved by a simple energy balance model in the 

atmosphere as well. However, it is widely accepted that sophisticated microphysics models 
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may be required for more accurate simulations. I incorporated a complete microphysics 

model, which calculates the nucleation process and ice particle growth process, to MarsWRF. 

Preliminary simulation results show promising agreement with spacecraft data. 

When I include an insolation-dependent frost albedo, as suggested by various 

spacecrafts, to the GCM, MarsWRF is able to produce a perennial CO2 cap near the south 

pole of Mars. This is the first time that any GCM has successfully predicted a residual cap. I 

show that this mechanism is necessary for a simple energy balance model to reproduce the 

perennial ice cap, and may shed some light on the ages and the cycles of the perennial caps. 

I develop a mass balance model to simulate the non-condensable gas mass mixing 

ratio variation during the CO2 phase change. When coupled with MarsWRF, the non-

condensable gas cycle agrees qualitatively with the Gamma Ray Spectrometer data and other 

GCM results. It provides a benchmark check to the GCM itself and an independent way to 

study the dynamics of the Martian atmosphere. 



x 

摘要 

二氧化碳是火星大气层最主要的组成部分。它在气态与固态之间的相变过程也

是火星大气中最显著的特征。建立对二氧化碳循环正确而全面的理解对火星研究的各

个方面——包括气候学、气象学、古气候学、地貌学、地质学和天体生物学，都至关

重要。 

我把一套完整的二氧化碳相变模拟模型整合到一个火星大气环流模型——

MarsWRF，中。这套相变模型一共有两个部分：地表的凝华/生华（大气与地面冰层的

交换过程）和大气层中的凝华/生华（大气与二氧化碳冰雪的交换。冰粒有可能通过降

雪落到地面，也有可能在降落到地表之前完全升华）。 

一般来说，使用简单的地表面能量守恒就能很好的模拟第一部分（地表相变）

的相变。通过改进已有的数值计算方法，我让土壤模型能够解决垂直方向上各向不同

性介质的热传导问题，并通过精细调节地表冰盖的反照率和吸收率以及系统中二氧化

碳的总量对已有数据进行拟合。微调模型后模拟得到的地表压强与维京人号火星登陆

器测量到的数据非常吻合。所使用的线性回归方法也能在其他很多问题上使用，比如

它可以被拓展到关于火星土壤性质的探索。 

第二部分（大气中的相变）也能用类似的能量守恒方程求解。但随着对精确的

需求的提高，学界对微观物理模型也越来越受到重视。我把一套精确的微观物理模型

整合到 MarsWRF 中来计算二氧化碳冰粒的聚核过程和生长过程。在现阶段简化模拟

的结果也与卫星观测基本吻合。 
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如果在 MarsWRF 中假设二氧化碳冰盖的反照度会随着入射太阳光强变化，在

火星南极的附近会产生一个永不消失的结冰区域。这是第一次用火星大气环流模型成

功模拟这一现象。我证明了这一反照度与入射光的关系是解释形成永冻区域的基础。

此结果可能会影响到对火星极区永冻区域存在周期的分析。 

此外，根据质量守恒，我建立了一套模型用来模拟伴随二氧化碳相变的惰性气

体混合度变化。我把用 MarsWRF 模拟得到不凝固气体的周期并同伽玛射线光谱仪的

观测结果和其他模拟结果进行比较。这一工作为进一步检测所使用的大气模型的正确

性和研究火星大气动力学提供了一个独立方法。 
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Chapter 1: Introduction 

 

Mars is the closest neighbor to our very own Earth in the solar system. The earliest 

observation of Mars dates back to the ancient Greece, when Aristotle described it passing 

behind the moon. Telescopic observation of Mars was started by Galileo in 1609. In the 19th 

century, pioneered by Giovanni Schiapareilli and followed by Percival Powell, surface map 

of Mars was compiled. The discovery of canali (channels, mistranslated to canals in English) 

and seasonal polar cap caused great public interest at that time. Most of the speculation was 

about life on Mars1. 

The flyby of Mariner 4 in 1965 marks the beginning of modern Mars exploration, 

which the United States, the Soviet Union (later Russia), Europe, and Japan have put much 

effort into ever since. The booming age of Mars exploration started with the Viking missions 

in 1970s. While the returned data suggested a frigid and life-less Martian environment, the 

attention was moved away from Mars. Starting from late 1990s, a new generation of space 

missions revolutionized people’s view of this red planet. A treasure of data was provided by 

the Mar Global Surveyor, the Mars Pathfinder, the 2001 Mars Odyssey, the Mars Express 

orbiter, the Mars Exploration Rovers, the Mars Reconnaissance Orbiter, and the Phoenix 

Lander. It makes research in Mars’ evolution history, current environment, and even future 

utilization of human possible and valid. 

                                                      
1 http://en.wikipedia.org/wiki/Mars  
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Among many research topics in Mars Science, atmospheric science is one of the most 

interesting and important subjects. This dissertation is devoted to different modeling studies 

related to the phase change of the most abundant atmospheric species, carbon dioxide (CO2), 

on Mars. My work is designated to contribute to human being’s understanding of Mars and to 

improve the current tools available for relevant scientific research. 

 

1.1 Cycles in the atmosphere of Mars 

CO2 is the most abundant gas in the atmosphere of Mars. 95% of the atmosphere is 

comprised of CO2, alone with nitrogen (N2, 2.7%), argon (Ar, 1.6%), oxygen (O2, 0.13%), 

carbon monoxide (CO, 0.07%), water vapor (H2O, 0 to 300 ppm), and methane (CH4, 0 to 50 

ppb) [Krasnopolsky et al., 2004; Mumma et al., 2009; Owen et al., 1977]. 

Phase change of CO2, predominantly between gas and solid, is the most eminent 

feature in the current Martian atmosphere. In this annual (or seasonal) CO2 cycle, up to 30% 

of the atmosphere condenses2 at the winter polar region (in this sense, we address the rest of 

the gaseous species, except for water vapor, “non-condensable” gas as opposed to the 

“condensable” CO2), causing the surface to vary by a few hundreds of Pascal [Hess et al., 

1977; Hourdin et al., 1993; Kelly et al., 2006], which is very different and more volatile 

compared to earth’s atmosphere. On the other hand, as on earth, CO2 is the leading 

greenhouse gas on Mars. The much denser CO2 atmosphere in ancient times is speculated to 

                                                      
2 Strictly speaking, condensation/evaporation refers to the phase change from gas to liquid, while 
deposition/sublimation refers to the phase change from gas to solid (http://en.wikipedia.org/wiki/Phase_change). 
However, the Mars science community has had a history of loosely using the verbs condense/evaporate to 
describe the gas/solid exchange of CO2. Therefore, I will follow the convention of the community by using 
condense/evaporate interchangeably with deposit/sublimate. 
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aid the long term existence of liquid water on the surface of Mars [Mischna et al., 2000]. 

More importantly, CO2 is the dominant gas in the atmosphere, or essentially the atmosphere 

itself. In the air-land system, it is the most active element, which buffers the solar power, 

distributes atmospheric mass, energy, momentum and tracers, and interacts with the surface. 

An accurate understanding of its behavior is crucial to every aspect of scientific research on 

Mars including (but not limited to) climatology, meteorology, paleo-climatology, 

geomorphology, geology, and astrobiology. 

Another important cycle on Mars is that of the airborne dust. The first half of a 

Martian year (Ls3 0° to 180°) is usually characterized by clear air while the second half (Ls 

180° to 360°) is very dusty, sometimes even with global dust storms [Smith et al., 2002]. 

Repeatable cycles with inter-annual variability is evident from spacecraft observations [Smith, 

2004]. Airborne dust increases the air temperature by absorbing solar radiation [Richardson, 

1998] and participates in the cloud formation process as nuclei [Colaprete et al., 2008; Wood, 

1999]. When landed on surface, it may also modify the surface albedos in a global scale 

[Fenton et al., 2007; Szwast et al., 2006]. Much modeling studies about the origin, annual 

variation and inter-annual variability of the dust cycle have been done in previous literatures 

[Basu et al., 2004; Basu et al., 2006; Newman et al., 2002a; b]. In my thesis, if not specified, 

I usually model the dust cycle on Mars using climatology data ensemble from satellite 

observation and exclude the inter-annual variability for radiative calculations. 

                                                      
3 Ls, an abbreviation to solar longitude or heliocentric longitude, is used to define the location of a planet on its 
elliptical orbit. A year is divided to 360° of Ls. Once the planet is at the northern vernal equinox, Ls is defined 
as 0°; consequently, 90° for northern summer solstice, 180° for northern autumn equinox and 270° for northern 
winter solstice. It roughly maps to the 365 days on earth. A Martian year has roughly 669 sols (Mars days), 
therefore 1 degree of Ls is roughly 2 sols. 12 months can be defined as each month contains 30° of Ls. See also 
http://www-mars.lmd.jussieu.fr/mars/time/solar_longitude.html  
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Water vapor is released from the northern cap in northern spring and summer. It 

allows the formation of a water ice cloud belt over the equatorial region during northern 

summer [Smith, 2002; 2004]. The water cycle has also been explored by modeling studies 

[Richardson and Wilson, 2002b; Richardson and Mischna, 2005]. However, due to its 

relatively small amount, I consider its impact to the current Mars climate as second order, 

especially when compared to the CO2 and aerial dust. 

Argon (Ar) in the atmosphere of Mars makes another noticeable cycle [Sprague et al., 

2004]. Phase change of CO2 modifies the local mass mixing ratio of Ar (and other non-

condensable gases). Further atmospheric convection and diffusion mix the gases and 

redistribute them around the planet. The entire non-condensable gas group can be considered 

as a passive tracer assuming that they are well mixed within themselves. It is another 

indicator of the Martian general circulation. 

 

1.2 CO2 phase change on Mars 

Under certain conditions, usually extremely cold, the major constituent of the Martian 

atmosphere, CO2, starts to condense out from the atmosphere and become dry ice. In other 

environments, usually warm, dry ice sublimates and becomes CO2 gas. There are two major 

components of CO2 phase change on Mars: 1. direct deposition/sublimation to/from the 

surface frost (exchange with surface reservoir); 2. atmospheric condensation/evaporation 

(exchange with “snow”, which will either precipitate to the ground and become a part of the 

surface reservoir, or evaporate therefore rejoin the atmosphere before it reaches the surface).  
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The first component dominates the mass exchange. It is historically simulated by a 

surface energy balance model (described in Chapter 2). Such model has been proved to be a 

very simple but efficient way to capture the majority of the annual atmospheric behavior 

correctly, including matching the surface pressure records from the Viking Landers (VLs) 

[Forget et al., 1999; Leighton and Murray, 1966; Wood and Paige, 1992], which is a good 

indication of the total atmosphere abundance. The energy balance is among the incoming 

solar radiation, the surface emission, the latent heat exchange during CO2 phase change, 

sensible heat of the atmosphere, and the subsurface heat conduction. Each segment 

contributes to the energy balance in a significant way that more precise characterizations of 

these segments are constantly being demanded. As a result, much labor in this dissertation 

has been devoted to improve the modeling methods and parameterizations in a Mars General 

Circulation Model (GCM4), the Mars application of the planetary Weather Research and 

Forecast (MarsWRF) model, accompanied by experiments with different segments trying to 

explain the associated myths that have not yet been solved. 

The second component can also be treated as a simple energy balance in the 

atmosphere. However, it is widely accepted that sophisticated microphysics models may be 

required for more accurate simulations, especially for modeling snowing events, convective 

available potential energy, radiative effects, and surface processes [Colaprete and Toon, 

2002; Colaprete et al., 2005; Colaprete et al., 2008; Forget et al., 1998]. Building on the 

foundation of previous researchers, I have coupled a complete microphysics model [Wood, 

                                                      
4 GCM usually refers to earth GCM. In this dissertation, unless specifically specified, GCM (sometimes MGCM) 
is used to denote Mars GCM.  
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1999], which calculates the nucleation process and the ice particle growth process, to 

MarsWRF. 

When the mass exchange between CO2 solid and gas is determined, the mass mixing 

ratio change of the non-condensable gas can simply be determined by mass conservation. I 

implemented such treatment after finishing the phase transit calculations in corresponding 

physics subroutines in MarsWRF. The mass mixing ratio field of CO2 is then fed to the 

internal convection and diffusion schemes of the dynamic core as a tracer. 

 

1.3 Dissertation overview 

Chapter 2 provides the description of the models that are used in the dissertation, 

including the GCM (MarsWRF), the energy balance model, the non-condensable gas 

exchange model, and the microphysics model that simulates the CO2 cloud formation. I also 

provide an overview of how they coupled to each other in MarsWRF. 

In Chapter 3, I fine tune MarsWRF by changing the values of the seasonal ice caps’ 

albedos and emissivities and the total CO2 mass in the system. The resulting pressure cycle, 

which is a good indicator of the atmospheric reservoir of CO2 in the system, matches the in 

situ measurements by the VLs extremely well. This is the best fit for the surface pressure 

cycle by a GCM so far in the published literature. The fitting algorithm can be utilized to 

future GCM tuning and can be considered as a roadmap to unveiling relevant physics. For 

example, it is later extended to explore the effects of subsurface water ice. 
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In Chapter 4, I incorporate a linear relationship between the surface CO2 frost albedo 

and the incident solar insolation (which is supported by observations) to MarsWRF. I then 

show how this insolation-dependent albedo leads to perennial CO2 ice on the ground of Mars. 

Experiments with various orbital parameters and surface boundary conditions are presented 

to show their contribution to permanent CO2 frost. This study may potentially shed some 

light on the lifetime and the cycles of the perennial CO2 ice cap. 

Chapter 5 presents the modeling effort for the non-condensable gas cycle and 

comparison with the Gamma Ray Spectrometer data and other GCMs. This is an independent 

check for the CO2 cycle and a diagnostic for the atmospheric dynamics in the GCM. The 

results suggest that the GCMs may be excessively diffusive for tracer transportation, 

especially in southern winter near the south polar regions. 

Chapter 6 describes the microphysics model for CO2 cloud formation and how I 

integrate it to MarsWRF. Preliminary results from 1D and 3D simulations are shown and 

discussed. 

The numerical simulations of this dissertation are performed on the Dell cluster 

(CITerra) in the Division of Geological and Planetary sciences, California Institute of 

Technology. 
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Chapter 2: Numerical models 

 

Modeling works represent the state-of-the-art physical knowledge of human being. 

For phenomena that are too difficult to observe with existing instruments, too expensive to 

reconstruct in laboratories, or too time-consuming to record in one’s lifetime, people 

especially have to rely on theoretical models. Recent advances in modern computational 

techniques make complicated and intensive numerical simulations feasible. The creation of 

General Circulation Models (GCMs) specifically allows human being to start exploring long 

term global change of climate. On the other hand, before any conclusion is drawn from the 

model results, thorough understanding of the physical models is crucial, especially in 

defining the achievable scientific goals. In this chapter, I present a brief introduction to the 

models that I have been using for my thesis. Major components of the model and their 

interactions are discussed. It provides an overview to the readers who are less familiar with 

the Mars atmosphere models. It also sketches the advantages and limits of the different 

segments of the simulation. 

 

2.1 MarsWRF 

For atmospheric science and climate research, GCM is arguably one of the most 

useful tools. It provides long-term climatology results (such as temperature, pressure, 

humidity, wind field, etc.) with complete coverage of the atmosphere, the surface, and the 

subsurface. For my thesis research, I used a Mars GCM, MarsWRF, which is the Mars 
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application of the planetary Weather Research and Forecast (WRF) model [Richardson et al., 

2007]. The WRF model was originally a mesoscale model developed by the National Center 

for Atmospheric Research (NCAR) and was later modified by Professor Mark Richardson’s 

research group to be a global model. On top of the robust dynamic core provided by NCAR, 

the model provides complete and convenient physics modules (or subroutines) and interfaces, 

including radiative transfer, microphysics, tracer advection, subsurface physics, etc. It can be 

configured to perform 1D (in vertical direction), 2D (on horizontal plane), and 3D 

simulations, as well as mescoscale experiments. Other superb features include the “rotated 

pole” calculation, which redefine the projection of the model space to reduce numerical 

errors in the polar region, and nesting calculation, which allows a “zoom in” to smaller scale 

features. 

A typical 3D setup of MarsWRF contains a grid structure yielding 36 × 64 × 40 

(latitude, longitude, vertical) points. This setting provides a global coverage of Mars with the 

top of the model reaching up to 0.006 Pa, or about 80 km above the surface. Its horizontal 

resolution is 5.0 degree of latitude by 5.6 degree of longitude. Broad band radiative 

calculation covers visible and infrared spectral region with climatology aerial dust 

background. Boundary conditions, including topography, surface albedo, thermal inertia, 

terrain slope and slope orientation, are taken from spacecraft measurements. The temperature 

at the lower boundary of the subsurface layer is obtained from previous long-term 

simulations and stays fixed. Therefore, the subsurface reaches thermal equilibrium in a 

relatively short period of time (usually less than 100° of Ls). Nevertheless, data starting at the 

second year (after 360° of Ls) is typically used for the analysis in this dissertation. 
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2.1.1 Energy balance model for CO2 phase change 

Energy balance models are usually utilized to resolve the CO2 annual cycle. The 

instantaneous surface energy balance equation when CO2 frost exists on the surface is 

S (1 – a) cos(i) – εσT4 + k dT/dz + L dm/dt + H = 0,    (2.1) 

where S is the incoming solar flux at the current Mars-Sun distance; a is the albedo, either 

that of bare soil or frost; i is the solar incidence angle; ε is the surface emissivity, either that 

of bare soil or frost; σ is the Stefan-Boltzmann constant for black body emission; T is the 

surface temperature, either that of bare soil or fixed to the frost temperature when the surface 

is covered by CO2 ice; k is the thermal conductivity of the soil; dT/dz is the vertical 

temperature gradient at the surface with z positive downwards (therefore, k dT/dz  is the 

upward conductive heat flux at the surface); L is the latent heat of CO2 phase transfer 

between gas and solid; dm/dt is the CO2 frost deposition/sublimation rate; H represents the 

sensible heat contribution induced by the atmosphere. The thermal conductivity of a material 

is related to its thermal inertia (I) by the equation I2 = kρc, where ρ is the density and c is the 

heat capacity [Wood and Paige, 1992]. The product of ρ and c is assumed to be 1.26×106 J 

kg m-6 K-1 for the soil in MarsWRF. The atmospheric sensible heat (H) is usually smaller 

than the rest of the component in Equation 2.1 and earlier model even ignores this term 

completely (e.g. Leighton and Murray [1966] and Wood and Paige [1992]). However, it 

represents the advantage of the GCM compared to simpler models. 

At any given time and location, when the radiative and sensible heating terms are 

negative, latent heating is required to balance the cooling and maintain the temperature at the 

frost point (the temperature remains at the condensation point because any infinitesimal 
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temperature drop would yield a drop in the required saturation vapor pressure. The difference 

between the actual surface pressure and the infinitesimally lower saturation vapor pressure 

would drive CO2 from the atmosphere onto the surface, liberating latent heat that would tend 

to bring the temperature back up to the point where the atmospheric pressure and the 

saturation vapor pressure again agree). As a result, negative net radiative and sensible heating 

yields CO2 gas conversion to ice and deposition on the surface. When net heating is positive 

and CO2 ice is present on the surface, some amount of CO2 frost becomes gas until the 

surface is exhausted of all its CO2 ice cover. These phase exchange processes are usually 

assumed to be instantaneous in GCMs. 

Similar model can be applied to the atmospheric condensation process. We write 

dmN = Cp MN (TcN – TN) / L,       (2.2) 

where Cp is the specific heat of the Mars atmosphere, MN is the atmospheric mass of the N-th 

layer, TN is the model projected temperature of the layer, TcN is the critical temperature of the 

layer. dmN amount of atmosphere is transferred to CO2 ice and put to the ground 

instantaneously, and the temperature of this layer is reset to TcN. Note this model assumes 

zero initial atmospheric CO2 ice, therefore is only active when TN is lower than TcN, i.e., it 

only calculates condensation but not evaporation. Similar treatment has been used in 

previous literatures, such as Forget et al. [1998], Pollack et al. [1990], and Wilson and 

Hamilton [1996]. 
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2.1.2 Subsurface heat conduction 

The third term in Equation 2.1 describes the upward conductive heat flux at the 

surface. Within the soil, the one-dimensional heat conduction equation 

dT/dt = k (ρc)-1 d2T/dz2       (2.3) 

is solved numerically [Wood and Paige, 1992]. For a homogenous conductor, finite element 

differentiation for such second order derivative is standard. At some other situations, 

however, an inhomogeneous conductor is sometimes required. More attention is needed at 

the transition layer when numerically solving Equation 2.3. This equation can be rewritten as: 

dT/dt = (ρc)-1 dF/dz,        (2.4) 

where F = k dT/dz is the local heat flux. The finite differentiation therefore should treat the 

flux, which contains inhomogeneous heat conductivity at different grids, as the differentiable 

quantity. 

 

2.1.3 Noncondensable gas concentration adjustment   

We group all non-condensable gases together as a tracer. Its mass mixing ratio (qtra) is: 

qtra = 1 – qvCO2,        (2.5) 

where qvCO2 is the mass mixing ratio of CO2 vapor. This is simply a mass conservation of the 

tracers and the CO2 vapor. When there is CO2 phase change, the mass mixing ratios of CO2 

vapor is adjusted accordingly (to be described shortly). Assuming a constant mixing ratio of 

Ar (qAr) within the non-condensable tracers, we have 
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qAr = c qtra,         (2.6) 

where c is the mass fraction of Ar in the entire non-condensable gases. We set c = 0.458 

assuming the non-condensable gases are dominated by N2 and Ar [De Pater and Lissauer, 

2001]. Thus we can always calculate the mass mixing ratio of Ar as long as we know the 

mass mixing ratio of CO2, which is carried as a tracer in MarsWRF. 

When CO2 condenses to the ground, we calculate the amount of CO2 gas dm that 

needs to be converted to ice: 

dm = dms + ∑ dmN ( N = 1, 2, … 40 ),     (2.7) 

where dms is the direct surface condensation provided by solving Euqation 2.1. qtra is then 

adjusted accordingly in the surface layer. If this amount (dm) is larger than the amount of 

CO2 available in the lowest layer (m1 = qvCO2,1×M1, qvCO2,1 being the mass mixing ratio of 

CO2 vapor in layer 1, M1 being the atmospheric mass of layer 1), we set the mass mixing 

ratio of CO2 in the lowest layer (qvCO2,1) to zero and remove dm’ of CO2 in the layer above 

where 

dm’ = dm – m1 = dm − qvCO2,1 M1.      (2.8) 

qvCO2 is changed accordingly in the layer above. This adjustment keeps going 

upwards recursively if the next layer does not contain enough CO2 to match dm’. When there 

is sublimation, the reverse adjustment of qtra is only performed for the lowest layer of the 

atmosphere. This algorithm guarantees column mass conservation for both CO2 and the 
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tracers while holding σ values5 constant. It also ensures the mass mixing ratio profile of Ar to 

be a function decreasing with height, which was not achieved by Nelli et al., [2007]. The 

tracer field is then coupled to the atmospheric advection and molecular diffusion in 

MarsWRF. 

 

2.1.4 Microphysics model for CO2 cloud formation 

I developed a microphysics module for CO2 cloud formation and incorporated it in 

MarsWRF. There are two sequential parts of this microphysics model: a nucleation model 

and a particle growth model [Wood, 1999]. The nucleation model calculates the number 

density of nuclei in 15 size bins depending on the ambient environment, including the super 

saturation ratio of the condensing gas, the potential number density of potential nuclei, and 

the size of the nucleus assuming they are spherical. Two kinds of possible nucleation 

mechanisms are considered: homogeneous nucleation, which does not require a core to 

nucleate to, and heterogeneous nucleation, which requires a nucleating core. At a given time 

step, the mechanism yielding higher nucleation rate is assumed. Knowing the number density 

distribution of the nuclei, the iterative growth model predicts the growth rates of ice particles 

of different sizes. Atmospheric temperature and mass are adjusted based on the latent heat 

and mass exchange. Details of this microphysics driver are provided in Chapter 6. 

Heterogeneous nucleation usually generate larger nucleation rate with relatively low 

super saturation ratio [Maattanen et al., 2005]. Martian aerial dust is a perfect candidate for 

                                                      
5 σ coordinate system is commonly used in GCMs. σ value is defined by the pressure at any given model grid 
divided by the surface pressure. Therefore at the surface, the σ value is 1 while 0 at the top of the model. A 
series of σ value is usually prescribed for a GCM; the in situ pressure can be derived from the surface pressure. 
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the nucleation core. Ideally, the nucleation model should be coupled with the dust cycle in 

the GCM. Such coupling is very complicated and will significantly slow down the model. I 

made some simple assumptions about the distribution of the potential nuclei. A fixed 

background of dust weight density is prescribed. I assume the size distribution of the dust 

particles is log-normal, with an average size of 2 micron [Newman et al., 2002a; b]. I also 

assume there is no replenishing source for this background dust species. 

 

2.2 The full GCM 

A schematic map, Figure 2.1, is provided to show how the different segments couple 

to each other in MarsWRF. This figure is reproduced and updated after Figure 1.1 of Wood 

[1999]. For the Mars GCMs, solar power, atmospheric dynamics, radiative transfer, surface 

and subsurface physics, and CO2 physics are the most fundamental and necessary parts. As 

discussed before, the CO2 physics has close interactions with the energy exchange of the 

atmosphere, the tracer transport, the aerosol distribution, and the radiative effects. Indeed, my 

dissertation focuses on the CO2 physics and its interaction with other parts of MarsWRF. 

Nothing more needs to be said about the complexity of the GCMs. Many of the 

aspects were heavily simplified, sometimes with naïve parameterizations and sometimes with 

less or zero verified assumptions. In principle, preciseness of each segment is attainable with 

careful tuning, comparison with observations, and eventually data assimilation. Indeed, much 

effort is currently being devoted to polish the GCMs. While the details of different GCMs 

may differ, or should them have different advantages and weakness, the ability of predicting 

long term climatology is the most essential. 
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As noted earlier, this chart may not be the complete view of an idealized GCM that 

“solves” the planet completely. More components relevant to the climate are currently being 

unveiled. The next chapter can be considered as a general roadmap for this unbundling 

process. As the human being’s physical knowledge advances and the computation technology 

matures, GCMs will definitely improve in every aspect over the foreseeable future.  
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Figures 

 

Figure 2.1: Schematic flowchart of MarsWRF.
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Chapter 3: Modeling the Viking Lander pressure cycles 

 

Abstract 

We present a systematic attempt to fit the Viking Lander surface pressure cycle using 

a Mars General Circulation Model, MarsWRF. High-precision fitting was achieved by tuning 

five time-independent parameters: the albedo and emissivity of the seasonal caps of the two 

hemispheres and the total CO2 inventory in the atmosphere-frost system. We used a linear 

iterative method to derive the best-fit parameters: albedo of the northern cap = 0.795, 

emissivity of the northern cap = 0.485, albedo of the southern cap = 0.461, emissivity of the 

southern cap = 0.785 and total CO2 mass = 2.83×1016 kg. If these parameters are used in 

MarsWRF, the smoothed surface pressure residual at the VL1 site is always smaller than 

several Pascal through a year. As in other similar studies, the best-fit parameters do not 

match well with the current estimation of the seasonal cap radiative properties, suggesting 

that important physics contributing to the energy balance not explicitly included in 

MarsWRF have been effectively aliased into the derived parameters. One such effect is likely 

the variation of thermal conductivity with depth in the regolith due to the presence of water 

ice.  Including such a parameterization in the fitting process improves the reasonableness of 

the best-fit cap properties, mostly improving the emissivities. The conductivities required in 

the north to provide the best-fit are higher than those required in the south. A completely 

physically reasonable set of fit parameters could still not be attained. Like all prior published 

GCM simulations, none of the cases considered are capable of predicting a residual southern 

CO2 cap. 
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3.1 Introduction 

In every atmospheric General Circulation Model (GCM), one of the first and 

foremost issues to consider is the total mass of the atmosphere. Its value affects all 

subsequent calculations performed in the GCM, including dynamics, radiative transfer, tracer 

and energy transport, chemical reactions, etc. When a component of the atmosphere is 

volatile (changes state for commonly encountered environmental conditions), the surface 

pressure may be affected. For the Earth, where the abundance of water vapor is modestly 

high, many GCMs include the varying contribution of water vapor partial pressure when 

calculating the full surface pressure. For planets where their major atmospheric constituents 

condense (such as Mars, Triton, and Pluto), consideration of the role of phase change in 

varying the surface pressure is important. 

Carbon dioxide (CO2) is the leading gaseous species on Mars, comprising 95% of the 

atmosphere [Owen et al., 1977]. Throughout a Martian year, up to 30% of the total CO2 

condenses onto the surface in winter polar regions [Kelly et al., 2006]. The condensation of 

CO2 occurs because the Martian atmosphere is sufficiently thin that transport of sensible heat 

is unable to sustain the winter polar atmosphere. As a result, the temperatures fall until the 

frost point of CO2 (also loosely referred to as “condensation point”, although condensation 

usually refers to the phase change from gas to liquid) is reached, after which thermal infrared 

losses are buffered by latent heating. 

The Viking Landers (VLs) provide the only inter-annual records of surface pressure 

on Mars. These records contain variability on several different time scales. Variations on 

timescales of seconds, hours, and days are associated with boundary layer turbulence, 
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thermal tides, and large-scale weather systems, for example. However, when the high 

frequency component is ignored, the surface pressure variation at a specific location on Mars 

(Figure 3.1) is largely determined by the bulk mass of atmosphere, though small 

contributions due to standing systems over long periods like the condensation flow and the 

inter-tropical lows and sub-tropical highs are also present. Therefore, to some significant 

degree of precision, the VL pressure records can be taken as topographically shifted records 

of the bulk atmospheric mass [Hess et al., 1977]. Fitting the observed VL pressure cycle also 

establishes a baseline for climate studies, both short-term and long-term. As shown in Figure 

3.1, the dominant long period signal is the very repetitive annual cycle that can be identified 

with the atmosphere freezing out to form the seasonal polar caps, followed by the caps’ 

decay due to sublimation back to the atmosphere [Hourdin et al., 1993]. Models are often 

tuned to match this annual cycle, though small errors in amplitude and (especially) phase are 

often tolerated, depending on the interests of a particular study [Forget et al., 1998; Haberle 

et al., 2008; Hourdin et al., 1993; Pollack et al., 1993; Richardson and Wilson, 2002a]. 

Indeed, the quality of fits in GCMs is in some sense surprisingly poor. For a system that 

should be driven primarily by radiative, latent, and thermal conductive heating processes at 

the caps, it would seem that a near perfect fit should be attainable. An accurate simulation of 

the pressure cycle would also be desirable for many applications where good prediction of 

the surface pressure is needed as a boundary condition, such as surface wind stress 

calculation, spacecraft entry-descent-landing analysis, etc. In reality, the main reason that 

ideal fits have not been attained is due to the computation involved: the problem reduces to 

one of searching for the best-fit parameters using a relatively large number of simulations 

(certainly “large” by standards prior to the early 2000’s). 
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There are historical attempts to “fit” the CO2 cycle. Wood and Paige [1992] proved 

that it is possible to fit the VL data to within several Pascal using a one-dimensional (1D) 

diurnal and seasonal thermal model without any explicit atmospheric contribution to the heat 

balance. The albedos and emissivities of the northern and southern seasonal CO2 caps and 

total mass of CO2 in the system were tuned and kept constant with time. In their 1D study, 

the residual between the modeled pressure in the best case scenario and the observed was as 

small as a few Pascal. However, their best-fit parameter values differ from the current 

estimates for the caps’ radiative properties. If values from Wood and Paige [1992] are used 

in a GCM, the resulting pressure curves are not unreasonable, but the lack of an atmosphere 

and the use of constant thermal inertia translates to offsets that yields a GCM cycle notably 

worse than what the same parameters produces in the 1D model. 

It is clear from 1D modeling that tuning of the cap properties will allow the modeled 

CO2 cycle to be improved. It seems the standard for Mars GCMs is to accomplish this tuning 

“by-eye”. However, the resulting parameters are not physical compared with spacecraft 

observations. For example, the cap albedos have to differ dramatically between the poles, 

with the northern values required to be much higher than observed [Haberle et al., 2008; 

Kieffer et al., 2000; Kieffer and Titus, 2001]. One possible way to improve the 

reasonableness of the parameters is to include other effects, such as the thermal conductivity 

induced by subsurface water ice [Haberle et al., 2008]. However, to date there has not been 

an attempt to systematically determine the cap properties needed in a GCM to produce a 

seasonal pressure cycle within the VL instrument error. Here, we present a recipe that can be 

used to calibrate a GCM pressure cycle, and we provide some discussion of what areas of 

uncertainty still remain in the understanding of the CO2 cycle on Mars. 
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In this chapter, we describe the development and execution of a benchmark study for 

reproducing the observed surface pressure cycle in a Mars GCM. We specifically use the 

Martian implementation of the planetWRF model [Richardson et al., 2007]. The reason that 

Wood and Paige [1992] were able to generate excellent fits of the VL pressure cycle is that 

their 1D model is simple and computationally cheap: hundreds of runs were made to cover 

the parameter space so that a best fit can be identified. Hundreds of runs for any sophisticated 

GCM is generally not feasible in a reasonable amount of time, nor are such runs necessary 

with our proposed method. Our technique involves the creation of an ensemble of 

simulations that are used to understand how the model’s representation of the VL surface 

pressure cycles responds to perturbations of different parameters. Knowing these 

relationships, we use an iterative linear method to find the best set of parameters to fit the VL 

data. The method can fit the VL data with a very high degree of accuracy ― comparable to, 

if not better than, the fit using the simpler 1D model [Wood and Paige, 1992]. This approach 

is non-model specific and is suggested as an efficient means of finding the parameters for a 

best-fit pressure cycle for any GCM. After demonstrating the method for the set of 

parameters chosen by Wood and Paige [1992], we proceed further to study how changes in 

soil thermal properties due to subsurface water ice affect the model’s representation of the 

VL surface pressure record.  

The fact that Wood and Paige [1992] were able to fit the pressure cycle using a 

simple model has profound meaning. It suggests that the physics included in the model, 

namely the surface heat balance at the poles, is the controlling physics for modeling the CO2 

and pressure cycles. The non-physicality of the cap parameters retrieved from the Wood and 

Paige [1992] scheme does not invalidate the approach – instead it demonstrates that there 
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exists a range of processes that affect the polar energy balance that are not incorporated 

(“resolved”) in the model and hence their effects are “aliased” (or “bundled”) into the 

estimated best fit parameters ― for example, an unrealistically high albedo value may 

effectively compensate for model missing clouds. Further progress in understanding the CO2 

cycle, which is tantamount to understanding the polar energy balance, is now a question of 

unbundling the various processes that are aliased into the retrieved parameters. The way this 

can be done is by applying models with more complete sets of explicit physics. Applying the 

same fitting routines within a hierarchy of increasingly complex models will allow the 

progressive unbundling of important physics affecting the polar heat balance. Where will it 

all end? At some point a set of physically plausible radiative parameters (potentially in the 

form of time and spatially varying parameters defined by a physical understanding of the ice 

microphysics and formation history) will signal the completion of the unbundling process. 

For example, in this study, we apply a GCM to the problem studied in 1D by Wood and 

Paige [1992]. Explicit treatment of atmospheric dynamics, spatially varying topography, 

regolith albedo, and thermal propertie of soils can thus be unbundled from the parameters 

found by Wood and Paige [1992]. The complexity of implementing this task arrives from the 

very large number of runs required to find excellent data fits. Such a brute-force method is 

not available when running computationally expensive GCM simulations. Hence, much of 

our discussion in this chapter is in the demonstration of a method to allow data fitting with a 

relatively small number of runs. In principle, modified versions of this approach can be 

applied to fit various other data sets (e.g., temperature). In essence, it is a limited 

implementation of a prototype form of data assimilation (here we are pursing “parameter 

estimation” while most data assimilation attempts “state estimation”). Obviously, an ideal 
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approach would be to simultaneously fit the surface pressure data along with records of air 

temperature, dust, water ice, etc. This in fact would require a full parameter-and-state data 

assimilation system, which is a future goal of our research. That notwithstanding, the 

approach and schemes presented here allow some new insight into the CO2 cycle without 

having to resort to a full data assimilation system. 

In section 3.2, we discuss the relevant physical processes contributing to surface 

energy balance, and we present the initial sensitivity study for several important contributing 

parameters. In section 3.3, we introduce the iterative linear fitting method. We show the 

fitting results in section 3.4. Physical interpretation of the best-fit parameters is discussed in 

section 3.5. Section 3.6 concludes this chapter. 

 

3.2 Surface energy balance and sensitivity study 

3.2.1 Surface energy balance 

The key physics for the Martian annual CO2 cycle is the surface energy balance. The 

instantaneous surface energy balance equation when CO2 frost exists on the surface is: 

S (1 – a) cos(i) – εσT4 + k dT/dz + L dm/dt + H = 0,    (3.1) 

where S is the incoming solar flux at the current Mars-Sun distance; a is the albedo, either 

that of bare soil or frost; i is the solar incidence angle; ε is the surface emissivity, either that 

of bare soil or frost; σ is the Stefan-Boltzmann constant for black body emission; T is the 

surface temperature, either that of bare soil or the frost temperature when frost presents; k is 

the thermal conductivity of the soil; dT/dz is the vertical temperature gradient at the surface 
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with z positive downwards (therefore, k dT/dz  is the upward conductive heat flux at the 

surface); L is the latent heat of CO2 frost; dm/dt is the CO2 frost deposition/sublimation rate; 

H represents the sensible heat contribution induced by the atmosphere. The thermal 

conductivity of a material is related to its thermal inertia (I) by the equation I2 = kρc, where ρ 

is the density and c is the heat capacity [Wood and Paige, 1992]. The product of ρ and c is 

assumed to be 1.26 × 106 J kg m-6 K-1 for the soil in MarsWRF. This is a simplified view of 

the problem. The GCM contains additional terms associated with the atmospheric 

components that contribute to this energy balance, which are usually much smaller when 

compared to the rest. Thus for simplicity without losing clarity to the readers, we will refer to 

this equation, which captures the majority of the physics. 

At any given time and location, when the radiative and sensible heating terms in 

Equation 3.1 are negative, latent heating is required to balance the cooling and maintain the 

temperature at the condensation point (the temperature remains at the condensation point 

because any infinitesimal temperature drop would yield a drop in the required saturation 

vapor pressure. The difference between the actual surface pressure and the infinitesimally 

lower saturation vapor pressure would drive CO2 from the atmosphere onto the surface, 

liberating latent heat that would tend to bring the temperature back up to the point where the 

atmospheric pressure and the saturation vapor pressure again agree). As a result, negative net 

radiative and sensible heating yields CO2 gas conversion to ice and deposition on the surface. 

When net heating is positive and CO2 ice is present on the surface, some amount of CO2 frost 

becomes gas until the surface is exhausted of all its CO2 ice cover. These phase exchange 

processes are usually assumed to be instantaneous in GCMs. 
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Extensive work has been done examining water ice cloud and CO2 ice cloud 

formation. Modeling studies found evidence showing their importance in the polar energy 

budget by influencing the surface properties, temperature, and dynamics [Colaprete et al., 

2005; Colaprete et al., 2008; Richardson et al., 2002]. Because the microphysics modeling of 

clouds in the Martian atmosphere is a subject under investigation, we do not include CO2 

cloud formation or a water cycle in this study (these processes will await further unbundling 

at a future date). 

In selecting parameters to use for the fitting of the CO2 cycle, we take into account 

what variables are going to have a major effect on the polar energy balance and also what 

aspects of the model are relatively well constrained. For the radiative transfer, we use our 

standard solar and thermal infrared radiative heating schemes and also chose to prescribe the 

dust opacity distribution with the Mars Climate Database “MGS” scenario parameterization. 

Global soil albedo, emissivity and surface thermal inertia are used as derived from spacecraft 

observations [Richardson et al., 2007]. The parameters chosen to vary for the simulation are 

those associated with the seasonal caps and the bulk inventory of CO2: the albedo and the 

emissivity of the seasonal CO2 ice caps (potentially separate values for each pole), the global 

CO2 mass (both gaseous and solid phase), and the thermal inertia of the polar regolith, which 

is a mixture of soil and water ice. All the parameters are crucial to the energy balance and the 

pressure cycle. In the sections following, we first discuss the conventional tuning parameters, 

namely albedo, emissivity, and total CO2 inventory. Then we discuss the less-studied varying 

thermal property of the subsurface. 
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3.2.2 The usual suspects: albedo, emissivity, and total CO2 inventory 

The albedo determines the fraction of incoming solar energy reflected back to space. 

In general, increasing the albedo decreases the absorbed energy available to the land-air 

system. In the Martian polar winter, as temperatures drop to the CO2 frost point and CO2 

deposits on the surface, the high (bright) ice albedo further lowers solar heating, and more 

CO2 freezes out. The magnitude of this feedback effect depends on the value of the frost 

albedo. Thus, surface pressure tends to lower as a result of an increased CO2 cap albedo, and 

vice versa. We note that this effect is only relevant when CO2 frost is present and it is 

receiving insolation (an example of this is shown in panel (a) of Figure 3.3, discuss later). 

The emissivity of the seasonal caps participates in maintaining surface energy balance 

differently than albedo does. The larger the emissivity of a CO2 frost cap, the more energy it 

releases to space. Thus a larger emissivity yields a larger energy deficit, which in turn 

requires more condensation of CO2 to release latent heat and compensate for the energy 

deficit. The net effect is that an increase in emissivity leads to a decrease in the surface 

pressure. Similarly to albedo’s effect, we note that the effect of emissivity on surface 

pressure is only relevant when CO2 frost is present, though it can operate throughout polar 

night (this is also present in panel (a) of Figure 3.3, discuss later). This means that the effects 

from albedo changes and from emissivity changes have different longevity and prominence: 

while albedo only acts when the seasonal caps are exposed to the sun, emissivity acts as long 

as the surface frost exists. Therefore, the albedo “footprint” (the effect on the surface 

pressure cycle due to variations of albedo) for a given pole is non-zero only later in its season 

of frost coverage, whereas the emissivity footprint is present throughout the frost coverage 

season. 
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The total mass of CO2 in the system influences the surface pressure cycle in a very 

linear manner. Since none of the terms in Equation 3.1 is very sensitive to total atmospheric 

mass, the surface frost amount changes very little when total mass of CO2 is changed (this is 

also present in panel (a) of Figure 3.3, discuss later). Of course, one should not make very 

large perturbations to the CO2 inventory lest the planet migrates to another climate regime 

[Mischna et al., 2000]. It should also be noted that since the model does not predict the 

development of a residual CO2 ice cap (nor does any published GCM), increasing the surface 

pressure is possible by increasing the total CO2 inventory. 

 

3.2.3 Water ice in the subsurface layer 

In Equation 3.1, the vertical heat flux is determined by the temperature gradient near 

the surface and the soil’s thermal conductivity. Subsurface thermal structure is determined by 

the energy input from the surface and the thermal property underneath. Typically, the 

subsurface thermal conductivity is assumed to be the same as that of the surface. It has 

recently been suggested that the subsurface water ice would affect the exchange of CO2 

between the atmosphere and the seasonal caps greatly [Haberle et al., 2008]. The presence of 

water ice increases the thermal conductivity of the soil. In the summer, when the surface is 

not covered by frost, more heat conducts downward compared to the situation where 

homogenous dry soil is assumed. When this extra amount of heat is released in the winter, 

surface CO2 ice formation is reduced, and surface pressure increases accordingly. Changing 

the thermal inertia (equivalent to the thermal conductivity) of the regolith changes the 

thermal structure and heat flux of the soil. Eventually, it changes the surface pressure cycle. 
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In order to investigate how subsurface water ice affects the CO2 cycle, we modified 

the subsurface model in the MarsWRF to handle vertical gradients of soil thermal 

conductivity. At depth where water ice becomes stable and has significant mass, we increase 

the thermal conductivity of the soil. This is similar to the two layer model used by Haberle et 

al. [2008], in which the regolith beneath a certain depth (8.05 cm for the northern hemisphere 

and 11.16 cm for the southern hemisphere) was fully filled by a water ice table from 55° to 

90° latitude (Figure 3.2, panel (b)); however, we do not use fixed depths across the two 

hemispheres. 

In order to parameterize the three-dimensional distribution of water ice in the 

subsurface, we include the water ice content map provided by the Mars Odyssey Gamma Ray 

Spectrometer (GRS) [Boynton et al., 2002; Feldman et al., 2002; Feldman et al., 2004] and 

the depth of the permanently stable subsurface water ice predicted by Schorghofer and 

Ahronson [2005] to MarsWRF (Figure 3.2). Water ice is only seasonally stable at mid-

latitudes [Schorghofer and Aharonson, 2005], and the available water vapor in the 

atmosphere does not seem to be enough to fill meters of regolith [Smith, 2002]. Therefore, 

we set the water ice table depth to be the cutoff line of the permanently stable water ice, 

which changes with latitude and longitude. 

The other parameter to decide upon is the thermal conductivity, or equivalently the 

thermal inertia, of the soil mixed with water ice (hereafter, we loosely call it a water ice table 

even though it is not pure water ice). Viking Infrared Thermal Mapper (IRTM) observations 

show that the apparent thermal inertia of the dry Martian surface ranges from 46 to 630 J m-3 

K-1 , with a global average of 275 J m-3 K-1 [Paige, 1992]. This agrees with observations 

from the Thermal Emission Spectrometer (TES) on board of the Mars Global Surveyor 
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(MGS) [Putzig et al., 2005]. Pure water ice has a thermal inertia of 2200 J m-3 K-1. Assuming 

a mixture has 80% of water ice, the thermal inertia of the mixture can range from 100 to 

1200 J m-3 K-1, depending on the thermal inertia of the host regolith. These numbers provide 

physical constraints for the fitting parameters in later sections. We do not assume the water 

content provided by GRS for the water ice table because that data set is not vertically well 

resolved. The water information from GRS is only used for the geographical distribution. We 

set the threshold for water content to 9% in order to cover the latitudes of 55° and poleward. 

Of course, we do not have to limit ourselves to these numbers in the sensitivity study. 

We find that the VL pressure cycle is very sensitive to the thermal inertia assumed for the 

water ice table (panel (b) of Figure 3.3). A change in the assumed water ice table thermal 

inertia changes the VL pressure cycle significantly. As expected, larger thermal inertia leads 

to higher surface pressure. We find that the water ice table thermal inertia shows a very 

similar footprint to that of the emissivity: the increasing phase of their signals lasts from Ls 

210° to 360° in the northern winter and from Ls 30° up to 180° in the southern winter; the 

decreasing phase of the thermal inertia signal ends shortly before that of the emissivity. 

However, we find that thermal inertia does not project a change on the surface pressure cycle 

as linearly as emissivity does. For example, doubling the thermal inertia perturbation does 

not necessarily double the resulting pressure change. In addition, changing the thermal inertia 

modifies the phase of the pressure signal. Also of note, the sensitivity to thermal inertia 

evidently saturates: when we extend the thermal inertia above some certain amount, the 

pressure cycle fails to respond. At that point, the soil in the model contains the maximum 

possible amount of heat it can. Fortunately for the prospect of fitting the pressure cycle, with 

the current depth of soil, MarsWRF seems to reach that extreme for a thermal inertia value 
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larger than 5000 J m-3 K-1, which is much larger than most of the possible material in the 

regolith including pure water ice. Nonetheless, we need to be careful when we perform the 

linear retrieval later, where we assume the pressure cycle always responses linearly to all the 

perturbations. 

The average thermal inertia of dry Martian soil has an annual skin depth around 1 

meter, which is usually deeper than the stable water ice depth. Our subsurface model in 

MarsWRF covers more than 7 meters, deeper than the annual skin depth of pure water ice 

(thermal inertia of 2200 J m-3 K-1, skin depth 5 meters). The stable water ice depth was 

calculated assuming the soil porosity being about 70%. The pressure cycle is not very 

sensitive to the assumption of the underlying soil porosity. This is because the stable ice 

depth does not change much with soil porosity near the poles, where the low temperature 

allows subsurface water ice to preserve easily. 

 

3.2.4 Mathematical representation 

In order to simplify the discussion and the description of the linear fitting method, we 

introduce the following mathematical notation. In the initial experiments, five parameters in 

MarsWRF are tuned: the albedo and emissivity of the seasonal CO2 caps for both the north 

and south poles, and the total mass of CO2 in the system. The linear methodology discussed 

in section 3.3 relies on making relatively small corrections; hence we constructed a baseline 

case with parameters similar to those used in Wood and Paige [1992]. The northern cap 

albedo is set to 0.770, northern cap emissivity to 0.570, southern cap albedo to 0.500, 

southern cap emissivity to 0.800 and total CO2 mass to 2.90 × 1016 kg of CO2 (we use an 
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index number 1.00 hereafter to represent this reference total CO2 amount). We denote the 

parameter vector as A, a column vector whose rows contain the parameters used in an 

experiment in the order just mentioned. For the baseline case, we write: 

 A0 = [0.770 0.570 0.500 0.800 1.00]T,      (3.2) 

where superscript T denotes the vector transpose. The values in this parameter vector are 

used in MarsWRF to yield its corresponding baseline model atmosphere. After the model 

reaches a steady state (taken to be a Martian year - note that the initial subsurface 

temperature were taken from the results of a prior decadal simulation and were thus very 

nearly in balance from the outset), a Mars year of surface pressure output is diagnosed for its 

predicted values of the Viking Lander 1 (VL1) data record. This diagnosis requires 

interpolating within the output to find the surface pressure at the actual latitude, longitude, 

and elevation of the lander (grey line in Figure 3.1). It is evident that the model’s predicted 

pressure cycle has larger short term variations in the second half of the year, and this is 

consistent with observations and previous GCM studies. Details of those short term 

variations are beyond the scope of this study. For the purpose of tuning the uncertain 

parameters in our vector, we are only interested in the long term trend. Hence we apply a 9-

sol running averaging to the model output’s predicted surface pressure record to remove the 

undesired high frequency components. This smoothed pressure cycle, X0, a column vector 

with 669 rows (each row represents a sol) is plotted in Figure 3.1 as the dashed magenta line. 

We write 

 X0 = I(W(A0)) ≡ F(A0),       (3.3) 
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where operator I denotes all the required interpolations and smoothing, and operator W 

denotes the MarsWRF model when run with the parameters included in A0. We can combine 

these two operators into one effective operator, F, that maps a given parameter vector to a 

predicted smoothed VL1 pressure record. 

In order to sensibly compare our smoothed model predicted pressure cycle to the 

observations, which also exhibit high frequency variations due to tides and baroclinic 

weather systems, we have used a smoothed, continuous representation of the VL1 

observations in non-dust storm conditions. Instead of applying the same 9-day running 

average as we have to the model output, we use the polynomial fit of the non-dust storm VL1 

pressure curve [Tillman et al., 1993]. Using a polynomial allows us to compare the model to 

the data in regions where there are gaps in the VL1 data record. The smoothed VL1 

observations are presented by the dashed blue line in Figure 3.1, with one value of VL1 

surface pressure per sol (669 values in a Martian year). We follow the same practice with the 

VL2 observation, shown in Figure 3.1 as the red dashed curve, though we do not use the VL2 

observations within the linear fitting method. 

As is evident in Figure 3.1, the smoothed pressure cycle generated using the baseline 

parameter set (magenta dashed line for VL1 and green dashed line for VL2) differs from the 

observations (blue dashed line for VL1 and red dashed line for VL2). The largest differences 

are in northern summer (or southern winter), where phase errors are evident. The residual, 

defined as the model predictions less the VL observations, vary from 0 to 20 Pa throughout 

most of the year, with an average of 8.2 Pa and a standard deviation of 7.0 Pa at the VL1 site. 

The root mean square (RMS) of the residual at the VL1 site is 10.8 Pa, or 1.2 to 1.6% of the 

seasonal cycle. 
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To estimate the sensitivities of MarsWRF to the parameters within A0, we make five 

additional MarsWRF model runs, one for each element in A0. Each run adds a small 

perturbation to the value of one parameter in A0 while keeping the other values unchanged. 

Once completed, we apply the same interpolation and averaging to obtain the five predicted 

smooth pressure cycles at the VL1 location associated with the five perturbed parameter 

vectors. We denote the perturbed parameter vectors as Ai ( i = 1, 2, 3, 4, 5 ), and analogously 

to Equation 3.3, their resulting pressure records are  Xi ( i = 1, 2, 3, 4, 5 ). To be clear, the 

order of the perturbations associated with the i index follows the order of parameters within 

A0: northern seasonal cap albedo, northern cap emissivity, southern cap albedo, southern cap 

emissivity, and the index number of the total CO2 mass in MarsWRF, respectively. We chose 

the following set of perturbed parameter vectors Ai: 

  A1 = [0.820 0.570 0.500 0.800 1.00]T,      (3.4) 

 A2 = [0.770 0.670 0.500 0.800 1.00]T,      (3.5) 

 A3 = [0.770 0.570 0.600 0.800 1.00]T,      (3.6) 

 A4 = [0.770 0.570 0.500 0.900 1.00]T,      (3.7) 

 A5 = [0.770 0.570 0.500 0.800 1.06]T.      (3.8) 

These vectors are related to the baseline parameter vector through 

 Di = Ai – A0, ( i = 1, 2, 3, 4, 5 ).      (3.9) 

Similarly, we define the perturbation pressure vectors 

 Pi = Xi – X0 = F (Ai) – F (A0), ( i = 1, 2, 3, 4, 5 ).     (3.10) 
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While a matrix whose columns are the Di vectors is a 5-by-5 diagonal matrix, a 

matrix whose columns are the Pi vectors is 669-by-5 and potentially has non-zero entries 

everywhere. The Pi vectors are shown in panel (a) of Figure 3.3, and one can see that they are 

in general non-zero, except for the vectors associated with perturbed albedo and emissivity 

when they are not contributing to the surface energy balance. 

This same procedure for gauging the model’s sensitivity to uncertain parameters can 

easily incorporate other components. Later in this study, we extend the parameter vector to 

include the water ice table thermal inertia. This requires defining a new baseline case with 

parameter vector 

 Ae
0 = [0.770 0.570 0.500 0.800 1.00 1.20 1.20]T,     (3.11) 

where the definitions of the first five elements of this vector are the same as before, and the 

sixth and seventh elements correspond to the thermal inertia of the subsurface layer in the 

northern polar region and the southern polar region, in units of 1000 J m-3 K-1. We use the 

same notation for the operators that map a given parameter vector to a predicted smoothed 

pressure curve for VL1: 

 Xe
0 = I(W(Ae

0)) = F(Ae
0).       (3.12) 

To be clear, in the experiments where only the first five parameters are varied, 

MarsWRF still runs with assumed values for the sixth and seventh parameters. However, 

their values are not available for modifying to better fit the VL1 pressure data. When the 

parameters for subsurface thermal inertia in the two hemispheres are available for change, we 

specify two new parameter vectors: 
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 Ae
6 = [0.770 0.570 0.500 0.800 1.00 1.50 1.20]T,     (3.13) 

 Ae
7 = [0.770 0.570 0.500 0.800 1.00 1.20 1.50]T.     (3.14) 

These extended perturbed parameter vectors logically extend to the definitions of  De
6, 

De
7, Pe

6 and Pe
7 via Equation 3.9 and 3.10. The corresponding perturbation pressure vectors 

for Pe
6 and Pe

7 are shown in panel (b) of Figure 3.3. This panel also shows one additional 

perturbation pressure vector (Pe
extra) obtained from running MarsWRF with  

Ae
extra = [0.770 0.570 0.500 0.800 1.00 1.50 1.50]T.  

This is included to demonstrate that Pe
extra is roughly the sum of Pe

6 and Pe
7, thereby 

demonstrating these parameters behave fairly linearly. Note that Pe
extra is not used in the 

fitting method described in the next section. 

 

3.3 Linear fitting methods 

We chose to fit the pressure cycle at just one of the VL sites, reserving the other as an 

independent resource to check the retrieved set of parameters. Since the VL1 pressure record 

is much less susceptible to local weather disturbances and large global dust storms, and is 

more complete in turns of time coverage than the VL2 record, the VL1 data is taken to be the 

preferable target for model fitting, as was usually used in earlier studies [Forget et al., 1998; 

Wood and Paige, 1992]. It should be noted, however, that the method we employ can easily 

include VL2 data simultaneously. 

The Viking pressure transducers were calibrated to about 2 Pa [Tillman, 1988]. This 2 

Pa instrument error is the only meaningful number that one can ascribe to “good enough” in 
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regards to fitting the observations. To fit better than 2 Pa could be unwarranted and to fit 

worse than 2 Pa betrays shortcomings in the model. Without some reference to a meaningful 

numerical value, all fits are more or less qualitative. 

In order to fit the smoothed VL1 pressure cycle, we use a simple linear method to 

first construct a best-fit pressure curve from the baseline scenario plus a linear combination 

of the 5 perturbation pressure vectors Pi. We then assume, as a consequence of linearity, the 

resulting best-fit MarsWRF parameters are equal to the baseline parameters plus the same 

linear combination of the perturbation parameter vectors, Di. If the linearity assumption holds, 

then we should find that nonlinearly validating the best-fit parameters (by running MarsWRF 

with those values and applying the interpolation and smoothing operators) yields a pressure 

cycle very similar to both the best-fit pressure curve found from the linear combination of Pi, 

and the smoothed VL1 measurements. 

To illustrate the assumptions and consequences of our linearity assumption, consider 

a vector of perturbations, δA, to the baseline parameter vector. If the nonlinear operator F is 

applied to this perturbed parameter vector, then 

 X0 + δX = F(A0 + δA).        (3.15) 

Performing a Taylor series expansion of the right hand side of Equation 3.15 about 

the baseline vector: 

 X0 + δX = F(A0) + FδA + O(||δA||2),      (3.16) 

where F is the Jacobian matrix of partial derivatives of F(A0) with respect to the elements in 

A, evaluated about A0. Note that in our case F is a 669-by-5 matrix. If the vector of parameter 
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perturbations is small, where “small” is defined by the ratio of the vector norms of δA and A0 

being less than 1, then one can safely neglect the higher order terms in Equation 3.16, 

represented by O(||δA||2). Neglecting these terms and subtracting the relation in Equation 3.3 

yields: 

 δX = FδA,         (3.17) 

which is a linear relationship between perturbations in parameters and their resulting 

perturbations in the pressure curve. An immediate consequence of this linear relationship is 

that a constant factor change in δA gives the same factor change in δX. 

The potential complexity of Equation 3.17 is contained within the matrix F (which 

itself is defined in Equation 3.3 and 3.16). While it is theoretically possible to evaluate the 

Jacobian matrices of MarsWRF (W) with respect to specific parameters (i.e., the derivative of 

the model variables with respect to the parameters) and also for the interpolation and 

smoothing operators (I) for MarsWRF output, it is a difficult feat requiring lots of code 

development. Instead of attempting to explicitly calculate F, we approximate it by way of our 

explicit introduction of small perturbations to the parameters within A0 (as described in the 

previous section). Hence, the columns of F are related to the perturbation pressure vectors 

and the magnitudes of parameter perturbations: 

 Fi = Pi / ||Di||, ( i = 1, 2, 3, 4, 5 ),      (3.18) 

where Fi are the columns of the F matrix. Alternatively, since the matrix with Di as its 

columns, which we denote D, is diagonal, then F = PD-1, where P is the perturbation matrix 

with Pi as its columns and the superscript “-1” denotes the matrix inverse. 
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To fit the smoothed VL1 data, we assume: 

 Y = X0 + Pα + ε,        (3.19) 

where Y denotes the smoothed VL1 data, α is a column vector (5-by-1) of linear combination 

coefficients, and ε is a column vector (669-by-1) of residuals. We find the best-fit linear 

combination coefficient via an iterative method that minimizes the L2 norm (the root mean 

square) of ε. Hence, we define a quadratic cost function that gauges the (possibly weighted) 

magnitude of the residual vector: 

 C(α) = 0.5 × εTWε = 0.5 × (Y – X0 – Pα)TW(Y – X0 – Pα),   (3.20) 

where W is a diagonal matrix that can be used to assign uneven weights to elements of the 

noise vector at different times of the year (if desired). The cost function in Equation 3.20 is 

of a standard form and can be easily minimized by many different algorithms; because α has 

only 5 or 7 elements here, we employ a straightforward downhill simplex method. When the 

minimizing algorithm reaches a (possibly local) minimum for the cost function C, the 

corresponding α = αf minimizes ε. The obtained best-fit for Y based on the linear 

combination is then 

 Xf  = X0 + Pαf.         (3.21) 

As the ultimate goal of this method is to find the MarsWRF parameter set that best-

fits the smoothed VL1 record, we need to relate Xf in Equation 3.21 to Af, the best-fit 

parameter set. If the linear truncation of the Taylor series in Equation 3.16 holds, then 

changes in X can be linearly related to changes in A, as in Equation 3.17. Hence, we assume 

that the best-fit parameter vector is related to the baseline parameter vector by the same 
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linear combination coefficients that relate the best-fit pressure cycle to the baseline pressure 

cycle prediction: 

 Af  = A0 + Dαf.         (3.22) 

In order to gauge the success of the fitting method, and thus the validity of the 

linearity assumption, one must run MarsWRF with parameters Af and apply the interpolation 

and smoothing operator to the output: 

 X’f  = F(A0).         (3.23) 

If X’f is very similar to the linear method prediction, Xf (and eventually Y), then we 

can be assured the linearity assumption was valid. If X’f and Xf (Y) differ substantially, then 

one must re-evaluate use of this method, though we have found that for poorly chosen 

baseline parameters, successive applications of the method can eventually yield an acceptable 

solution for Af. 

When we write X = F(A), we consider the surface pressure to be a function of the 

albedo and the emissivity of the polar caps, and the total mass of CO2 in the system (the 

extended vector also considers the thermal inertia of the subsurface ice table). By virtue of 

the linearity assumption, this method effectively “retrieves” these parameters Af, from 

observations of surface pressure, even though the involved operators (I and W) are non-linear. 

In this respect, this linear fitting method is not new. The method is essentially a standard 

practice in atmospheric spectroscopy data retrieval (e.g., [Guo et al., 2007]) and data 

assimilation (e.g., [Menemenlis et al., 2005]). 
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3.4 Results 

3.4.1 Standard fitting with emissivity, albedo, and total CO2 mass 

We obtain a positive perturbation matrix, P+, to replace P in Equation 3.19:  

 P+ = [P1 P2 P3 P4 P5].        (3.24) 

We describe it as “positive” because all the columns in P+ were obtained by setting 

one of the five parameters larger than that in the baseline case and differencing the resulting 

pressure cycles. Similarly, we can construct a negative perturbation matrix P− based on 

negative perturbations. We fit the VL1 pressure record with these two perturbation matrices 

and obtain two best-fit parameter vectors (also listed in Table 3.1): 

 A+
f 4.1 = [0.796 0.484 0.467 0.787 0.978]T, and    (3.25) 

 A−
f 4.1 = [0.793 0.485 0.454 0.784 0.978]T.     (3.26) 

The values in these two parameter vectors are very close. We average the two best-fit 

parameter sets to get the average best-fit parameter vector:  

 Af 4.1 = [0.795 0.485 0.461 0.785 0.978]T.     (3.27) 

The two linear fits corresponding to A+
f 4.1 and A−

f 4.1, and their average are shown in 

the upper panel of Figure 3.4; their residuals are shown in the lower panel. All fitted curves 

match very closely with the smoothed VL1 data. The largest mis-fits are found in the 

northern winter, when baroclinic waves are the most active [Hess et al., 1977]. The largest 

error is less than 10 Pa, or about 1% of the annual maxima. 
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We use the average parameter vector Af 4.1 to drive MarsWRF. Figure 3.5 shows the 

resulting model output. The pressure cycles corrected for VL positions are indicated by the 

black and the grey curves in the upper panel. The smoothed model surface pressure cycles 

(green and magenta dashed curves) show great agreements with the smoothed VL data (red 

and blue dashed curves) at both landing sites (note that only the VL1 data was used for the 

fit). The lower panel of Figure 3.5 shows the difference between the smoothed simulation 

and the smoothed data. For the VL1 site, the error is always less than several Pascal. The 

residual mean is 0.3 Pa and the standard deviation is 3.2 Pa. The RMS of the residual is 3.2 

Pa, or 0.35 to 0.48% of the seasonal cycle. MarsWRF predicts slightly higher surface 

pressure near Ls 20° and 240°, lower surface pressure near Ls 150° and 270°. Similar, if not 

identical, residual patterns can be found in the linear fit (blue dashed line in the lower panel 

of Figure 3.4). It suggests that our final perturbation to A0 is small enough for linearity to 

hold (Equation 3.19). In this regime, the operator F can be considered close to linear. The 

translation back to the parameter space is therefore valid and reflected directly in the forward 

model (i.e., MarsWRF) output. 

We notice that the smoothed surface pressure cycle at the VL2 site follows the 

observation closely in most of the year, but does not line up perfectly with the observations 

in the northern winter and around Ls 50°. Because we do not perform the pressure fitting for 

the VL2 data, such discrepancy is not surprising. Nonetheless, the fact that the model agrees 

with data even at the VL2 site for the majority of the year is impressive. It suggests that the 

hydrostatic assumption and the dynamics in MarsWRF are consistent with what actually 

happens on Mars. If pressure records at both VL sites are to be fit simultaneously, we would 

need to include the VL2 pressure responses in the perturbation matrix and in the definition of 
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the cost function. A trade-off of accuracy between the two landing locations is therefore 

expectable. For the reasons discussed at the beginning of section 3.3, we decided to perform 

the fitting only for the VL1 pressure cycle. 

If achieving a better fit for a desired time frame is the goal, we can adjust the 

weighting assigned to different periods of time by modifying matrix W in the definition of 

the cost function (Equation 3.20). In Figure 3.4 and Figure 3.5, one can find a subtle phase 

error at the pressure minima near Ls 150°. In order to improve the fitting quality at this 

season, we weight this period relatively more in the calculation of the cost function. We 

chose to assign 50 times the normal weighting to southern winter (Ls 125° to 175°), 10 times 

to southern summer (Ls 225° to 275°) and normal weighting at all other times. With the 

updated weight matrix, the following best-fit parameter vectors are given by the linear fitting 

method (also shown in Table 3.1): 

 A+
f 4.2 = [0.814 0.424 0.461 0.744 0.966]T, and    (3.28) 

 A−
f 4.2 = [0.820 0.434 0.433 0.764 0.971]T.     (3.29) 

We average the two to obtain: 

 Af 4.2 = [0.817 0.429 0.447 0.754 0.968]T.     (3.30) 

This parameter vector provides an excellent linear fit as well, with residual mean of 

0.5 Pa and standard deviation of 4.6 Pa. When validated using MarsWRF, the RMS of the 

residual is 4.8 Pa, or 0.53 to 0.70% of the pressure level. In both linear fit and model output, 

the residual in the southern winter (Ls 125° to 175°) is smaller and the phase shift is less 
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evident. The trade off, however, is that the errors at other seasons become larger, which leads 

to a larger total RMS error. 

The experiments above suggest that the southern seasonal cap has low albedo and 

high emissivity, while the northern seasonal cap has high albedo and low emissivity. There is 

no intuitive explanation for why the two seasonal CO2 caps would have opposite radiative 

properties. Observation from TES and Viking IRTM do not support such a dichotomy in 

general [Kieffer et al., 1977; Kieffer and Titus, 2001; Paige et al., 1994; Paige and Keegan, 

1994]. With just the fitting parameters used in this section, the southern parameters seem to 

match the observation from spacecrafts much better than those retrieved for the north. 

 

3.4.2 Fitting with extended parameterization of subsurface water ice 

Since the conventional five parameter fit does not provide physically sound seasonal 

cap albedos and emissivities, especially in the north, we try to improve the picture by 

including the subsurface layer thermal property as fitting parameters. As demonstrated in 

section 2.3, sensitivity studies show that the water ice table thermal inertia has a similar 

footprint to that of the emissivity. On the other hand, it does not project a change in the 

surface pressure cycle that is as “linear” as that of emissivity. However, as long as the 

perturbation is not too large, we can tentatively assume that the linear relationship holds. 

First, we try to extend the parameter vector to seven dimensions by adding the 

thermal inertia of the water ice table in the two hemispheres to the parameter vector. We 

extend the baseline parameter by two more dimensions as well and re-write the baseline 

parameter vector as 
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A0 = [0.770 0.570 0.500 0.800 1.00 0.275 0.275]T. 

The first five dimensions are defined as before. The sixth and seventh dimensions 

correspond to the thermal inertia of the water ice table in the north and south. In the baseline 

case, the subsurface is completely filled with dry soil. Therefore, the thermal inertia of the 

water ice table is assumed to be 275 J m−3 K−1, which is a value for average dry Martian soil. 

The perturbation vector P is also extended to 

P = [P1 P2 P3 P4 P5 Pe
6 Pe

7].       (3.31) 

Note that Pe
6 and Pe

7 were calculated with a different baseline value of the water ice 

table thermal inertia. In order to perform the linear fitting, we need to assume that these two 

pressure perturbation vectors do not change regardless of the baseline value. Undertaking a 

sensitivity study, we find that this is a reasonable assumption for the baseline values of 275 

and 1200 J m−3 K−1 (later in this section, we will see a case in which this assumption needs to 

be re-evaluated). Therefore, we use the same linear fitting method and obtain a new best-fit 

parameter vector 

Af4.3 = [0.790 0.505 0.474 0.788 0.977 0.523 0.300]T.   (3.32) 

This parameter vector has no essential difference to what we obtain from the 

conventional five-dimensional fit (Af4.1). The corrections to the parameters are just a few 

thousandths. When validated with MarsWRF, the residual pattern is very similar to before 

with slightly higher RMS error (about 3.97 Pa). It suggests that including a water ice table 

thermal inertia as fitting parameters will not produce a great improvement in the fitting. Thus, 

the conventional five-dimension fit is sufficient for most atmospheric studies, in which the 

important thing is to obtain a surface pressure cycle that is within instrument error, while the 
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accuracy of the retrieved frost radiative properties are considered less relevant (and indeed, 

obviously incorrect values can be tolerated, on the assumption that non-modeled physics are 

aliased in these values). 

As discussed by Haberle et al. [2008], the significance of including subsurface ice is 

in a desire to gain physical consistency, i.e., being able to fit the VL pressure cycles with 

reasonable frost properties. An experiment with subsurface water ice is initiated using unity 

frost emissivity, relatively small frost albedos, and fixed and uniform depths to the water ice 

table (Figure 3.2) as suggested by Haberle et al. [2008]. We find that MarsWRF is able to 

produce a pressure cycle reasonably close to that measured by VL1 (Figure 3.6, consistent 

with prior “by-eye” fitting but not as close as our five-parameter retrieval). While the 

amplitude of the cycle agrees well with the observation, the major discrepancy between the 

simulation and data is in the first half of the year, where the phases of the two curves do not 

perfectly agree. The same mismatch in phase can be identified in the NASA Ames Research 

Center (ARC) Mars GCM simulations. 

The depth to the ice table will not be uniform in latitude or longitude, yet the depth to 

the ice table would seem relatively readily predicted by simple 1D water exchange models. 

Following the philosophy of trying to find the most physically reasonable fit parameters, we 

decided to employ latitudinally-varying depths to the water ice table derived by Schorghofer 

and Aharonson [2005]. When we used these depths values and reduce the thermal inertia for 

the water ice tables from 2200 J m−3 K−1, MarsWRF is able to reproduce a reasonable fit to 

the VL pressure cycles (Figure 3.7). The quality of the fit is similar to that using the ARC 

GCM setup, with the same phase mismatch during the northern summer. In this simulation, 

the water ice table top depends on latitude, and the thermal inertia assumed for the water ice 
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table is not as high as pure water ice, with larger values in the north. If the same mixing ratio 

of water to dry soil in the water ice table is also assumed, we found that the thermal inertia of 

the dry soil in the north is higher than the south, which agrees with IRTM and TES surface 

thermal inertia maps. 

Our sensitivity study has already shown that the seasonal cap emissivity and the water 

ice table thermal inertia have very similar footprints in the VL pressure cycle. In other words, 

the role of emissivity in the linear fitting may be replaced by the water ice table thermal 

inertia (and by extension, the emissivity from the conventional five-parameter fit may 

include aliased effects of thermal inertia variations). Therefore, we proceed to do the 

numerical fitting with unity emissivity for the seasonal caps and instead vary the water ice 

table thermal inertia. In this case, the parameter vector still has five dimensions but the two 

dimensions corresponding to the seasonal cap emissivity are replaced by the thermal inertia 

of the water ice table in the north and south (their depth derived by Schorghofer and 

Aharonson [2005]). We construct a new perturbation matrix: 

 P = [P1 P3 P5 Pe
6 Pe

7].        (3.33) 

We perform the same linear fitting and obtain a parameter vector  

 Af4.4 = [0.696 0.528 0.994 2.90 1.60]T.     (3.34) 

The five parameters now correspond to the northern cap albedo, the southern cap 

albedo, the total CO2 mass, the thermal inertia for the northern water ice table, and the 

thermal inertia for the southern water ice table, respectively. The quality of this fit is lower 

than the former five-dimensional experiments. The annual RMS error is 11.4 Pa, larger than 

the fits before. When validated using MarsWRF, this parameter vector does not generate a 
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pressure cycle close to that of VL1 measurement as the linear fitting method predicts. We 

notice that in the new best-fit parameter, the projected thermal inertia for the subsurface layer 

reaches 2900 and 1600 J m−3 K−1. In the northern hemisphere, the projected value is so far 

away from the baseline of 1200 J m−3 K−1 that it is likely that the linear approximation is no 

longer valid. 

In order to fix the breakdown of the linearity assumption, we introduce two new 

parameter vectors: 

 A4.5 = [0.696 0.528 0.994 3.50 1.60]T, and     (3.35) 

 A4.6 = [0.696 0.528 0.994 2.90 2.20]T.     (3.36) 

We use the parameter vector Af4.4 specified in Equation 3.34 as the new baseline 

parameter vector and calculate two new pressure perturbation vectors (Pe”
6 and Pe”

7) 

associated with perturbation parameter vector A4.5 and A4.6. Pe”
6 and Pe”

7 are the surface 

pressure response to water ice table thermal inertia with respect to a new baseline pressure. 

We find that Pe”
6 and Pe”

7 do differ from Pe
6 and Pe

7, and therefore we updated the fourth and 

fifth columns in the perturbation matrix (Equation 3.33) accordingly. By updating the 

perturbation matrix, we hope to limit the final perturbation in thermal inertia to a relatively 

small amount. With the new perturbation matrix P and the new baseline pressure cycle, we 

perform the linear fitting again. The best-fit parameter vector thus retrieved is: 

 Af4.7 = [0.731 0.546 0.948 3.90 1.80]T.     (3.37) 

Notice that the project thermal inertia values are close to the new baseline values. 

This helps maintaining the linearity of this problem. The new fitting result is shown in Figure 
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3.8. The RMS error of the residual is roughly 6.9 Pa. When these parameters are used in 

MarsWRF, we are able to replicate the VL1 record very well (shown in Figure 3.9). The 

RMS of the error is 8.7 Pa, slightly larger than that of the linear combination residual or the 

retrieval or prior five-parameter fit, but satisfactory. No obvious phase disagreement between 

the two smoothed curves can be found. 

In summary, we succeed in fitting the VL data with the values of the albedos of the 

seasonal caps, the total CO2 inventory and the subsurface layer thermal inertia, along with an 

assumption of unity seasonal cap emissivity. Although the retrieved albedo of the northern 

seasonal cap is still higher than the south, the albedo values are closer to the observation. The 

linear fitting results suggest that polar regolith with a higher thermal conductivity (due to 

subsurface water ice) is able to represent (at least a significant proportion of) the extra heat 

source in autumn and winter that used to be provided by excessively low cap emissivity in 

studies prior to Haberle et al. [2008]. The best-fit thermal inertia values are very different in 

the two hemispheres, mainly to explain the different pressure levels during northern and 

southern winters. The predicted thermal inertia of the northern water ice table is much larger 

than that of the south, suggesting some sort of dichotomy in the thermal property between the 

two hemispheres. We will discuss this issue in the following section. 
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3.5 Discussions of parameterization 

3.5.1 Albedo and emissivity 

Although albedo and emissivity may be model dependent parameters, their physical 

interpretations are universal. By definition, albedo describes the fraction of solar energy 

reflected back to space while emissivity measures the fraction of energy in the black body 

curve for a surface of given kinetic temperature that is released from that emitter. If we first 

look at the retrievals without consideration of subsurface water ice, the five parameter linear 

fit suggests that the southern seasonal cap has lower albedo (0.461) and higher emissivity 

(0.785) than the north (0.795 and 0.485 respectively). For these experiments, MarsWRF was 

not run in a mode to account for activities that change the effective albedo and emissivity 

(such as clouds, dust storms, etc.). Therefore, the best-fit parameters not only characterize the 

seasonal caps but also provide hints as to other physical processes implicitly important to 

MarsWRF in the polar regions. 

 

3.5.1.1 Southern seasonal cap 

When surface CO2 ice is mixed with dust, its albedo and emissivity change 

significantly. Assuming the same grain size of ice, a dustier deposit can produce a much less 

reflective and much more emissive surface material [Kieffer et al., 2000]. Hence, we expect 

that we can attribute many of the albedo and emissivity characteristics to the dust activity, 

which is usually stronger in the southern hemisphere [Basu et al., 2004; Martin, 1986; Smith, 

2004]. However, it is less clear that increases in dust result in a generally darker and more 

emissive cap [James et al., 2000]. 
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Isotropic albedo (usually slightly higher than Lambert albedo) was mapped by TES 

[Kieffer et al., 2000]. The southern seasonal cap in general had albedos of 0.45 to 0.5, with 

lower values (about 0.3) in the so-called “Cryptic regions” and higher values (0.6 to 0.7) in 

the bright cap. On average, TES observations agree very well with the albedo predicted by 

the linear fit model for the south pole. Lambert albedo was also mapped by IRTM aboard the 

Viking orbiters. It ranged from 0.2 to 0.5 in the south [Paige and Keegan, 1994]. The region 

with an albedo 0.5 corresponded to the residual cap rather than the seasonal cap. Since the 

southern residual cap is believed to consist of mostly CO2 ice [Paige and Ingersoll, 1985], 

the IRTM observations for the CO2 cap are also consistent with our linear fit prediction. The 

Hubble Space Telescope has reported higher southern seasonal cap albedos for the bright cap 

region [James et al., 2005]. 

We did not account for atmospheric CO2 cloud formation and precipitation with 

microphysical calculations in this version of MarsWRF (when the atmospheric temperature 

falls below the saturation point temperature for CO2 condensation, the model instantaneously 

deposits the corresponding condensed CO2 ice on the ground). It is believed that atmospheric 

CO2 condensation may affect the atmospheric state [Colaprete et al., 2008] and CO2 snowfall 

could contribute to the low brightness temperature or equivalently the low emissivity 

observed by various missions [Colaprete et al., 2005; Forget et al., 1999]. Some models 

have made efforts to relate the change in surface (seasonal cap) emissivity to the amount of 

condensed CO2. Forget et al. [1998] used an empirical function to adjust the seasonal cap 

emissivity based on the atmospheric CO2 condensation and precipitation rate. Using Equation 

3.5 of that paper, we calculate an average adjustment to the seasonal cap emissivity due to 

CO2 snow. For the southern cap, this correction is about 0.15. When subtracted from the 
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reference value of 0.95, the effective emissivity is about 0.8, which is very close to our best-

fit value. In other words, if CO2 snow is important, our time-constant parameterization may 

be effectively capturing this physical phenomenon while avoiding complexity in computation. 

 

3.5.1.2 Northern seasonal cap 

Measurements of the northern seasonal cap albedo made by TES [Kieffer and Titus, 

2001] are lower than our best-fit value, and so are the IRTM observations [Paige et al., 1994; 

Paige and Keegan, 1994]. The polar hood cloud, which is usually seen in the winter time 

[James et al., 1992; James et al., 1994; Wang and Ingersoll, 2002], could contribute to the 

excessively high retrieved albedo of the northern cap. Furthermore, polar hood clouds are 

seen much less often in the southern hemisphere, and the retrieval results show that little 

correction is needed for the albedo of the southern cap, which stays relatively close to the 

observations. Although the radiative effects of hood clouds are not modeled by MarsWRF, 

the five-parameter set predicts the atmospheric mass budget for Mars very well. If hood 

cloud effects are significant, the retrieval scheme is effectively capturing (and aliasing) these 

effects into the northern seasonal cap retrieved albedo by increasing the best-fit albedo by 0.3 

to 0.4 relative to the observations. 

When the effect of dust on the surface CO2 ice cap is ignored, emissivity can be 

considered as a function of the porosity of the CO2 frost: more porous ice tends to have lower 

emissivity [Eluszkiewicz et al., 2005]. Our best-fit emissivity in the north is much lower than 

that in the south, suggesting a potentially much more porous CO2 ice slab in the north. 

Porosity data of the two seasonal caps, which would provide a direct evaluation of our 
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argument, are not yet available. However, the implication is at least consistent with the 

extremely low density of the northern seasonal cap [Aharonson et al., 2004]. 

Finally, it should be noted that a good fit to the VL pressure data can still be obtained 

when the northern cap emissivity is assumed to be unity as long as subsurface water ice 

effects are included. Thus the degree to which the low northern emissivities must be 

explained is itself questionable. 

 

3.5.2 CO2 inventory 

3.5.2.1 Annual variation 

The global CO2 inventory cycle divided into different reservoirs is plotted in Figure 

3.10. Our best-fit cases suggest that the total CO2 in the surface-atmosphere system is about 

2.83×1016 kg, which agrees to within 5% of the NASA ARC GCM [Kelly et al., 2006]. Up to 

26% of the total CO2 (7.45×1015 kg) participates in the seasonal exchange between the 

atmosphere and the caps, slightly larger than the ARC GCM predictions, but consistent with 

earlier estimation [James et al., 1992; Kelly et al., 2006]. 

As discussed in the sensitivity study, the amount of surface CO2 ice in MarsWRF is 

mainly determined by the albedo and emissivity of the corresponding seasonal caps. The 

prediction of surface CO2 in the southern hemisphere by MarsWRF matches closely with the 

GRS observations. In the north, our prediction is slightly higher than GRS observations 

[Kelly et al., 2006]. Ideally, GCMs should be able to simulate both surface CO2 deposition 

and VL site pressure cycles that agree well with the available observations, thus yielding an 
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estimate of the total “active” CO2 budget in the system. Slight disagreements in 

simultaneously fitting the seasonal cap masses and lander pressure curves could result from 

interpolation errors given the relatively poor model resolution (5° × 5.625°), missing sources 

and sinks of CO2 (regolith), or instrument error. 

 

3.5.2.2 Permanent Polar Caps 

A permanent CO2 cap exists at the Martian southern pole [Kieffer et al., 1977]. No 

published GCM predicts the existence of such a residual cap, and instead a residual cap must 

be prescribed in the model boundary conditions (often simply as a fixed surface temperature 

at the CO2 frost point). We have found that permanent CO2 caps will appear in MarsWRF 

only if extreme parameters (e.g., very high albedo values) are used, which agree with Wood 

and Paige [1992].  

The best-fit parameter sets, which lead to good replications of the VL pressure cycle, 

do not produce permanent CO2 caps. This is not unexpected. Other GCMs do not produce 

permanent caps while trying to fit the VL pressure cycles [Haberle et al., 2008]. As stated in 

the introduction, Wood and Paige [1992] used a simple one dimension model for the thermal 

calculation to find the best parameter set to fit the VL pressure cycle. They pointed out that 

with their best-fit values, the permanent cap is absent in both poles. We verified their 

conclusion once again using a much more sophisticated model (a GCM) that something 

“special” is happening in the heat balance at the south residual cap to somehow allow its 

existence. This is possibly due to an insolation-dependent albedo [Guo et al., submitted-b; 

James et al., 1992].  
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3.5.3 Subsurface water ice 

As discussed in the sensitivity study, most of the subsurface water ice layer’s 

footprint on the VL pressure cycle can be represented by a linear combination of the seasonal 

cap albedo and emissivity. Fitting using subsurface water ice (via the effects on subsurface 

conductivity) does not give particularly better fits. Rather, the advantage of fitting using 

surface ice is in retrieving cap properties that are more physically plausible. Subsurface water 

ice contributes directly to the seasonal energy balance, which is the driver of the CO2 annual 

cycle. Larger thermal conductivity provides the missing heat source in the energy balance in 

local winter, which before was represented by unrealistic frost albedo and emissivity. Its 

potential was already demonstrated in the GCM study by Haberle et al. [2008]. 

The biggest difficulty in completing the picture is that we do not know precisely how 

deep the water ice is buried, what the water content is in the ice table, and how things change 

over time. The current assumptions in MarsWRF and ARC GCMs are more or less arbitrary. 

They are not backed up by many systematic observations, although the Phoenix Lander 

observations do support the kind of ice table depth modeling undertaken by Mellon and 

Jacosky [1993] and Schorghofer and Aharonson [2005]. On the other hand, given very 

accurate measurements of the albedo and emissivity of the seasonal caps, we would likely be 

able to use the technique we have described to retrieve the (bulk) properties of subsurface 

water ice. 

The fit with CO2 albedo, total CO2 mass, and water ice table thermal inertia suggests 

much higher thermal conductivity for the subsurface layer in the north, to at least several 

meters below the surface. Since the spatial coverage of the water ice table is very different in 

the two hemispheres according to the GRS measurements (Figure 3.2), the difference in the 



56 

conductive properties per unit mass of the regolith must be even larger. This is potentially a 

constraint on the nature of the Martian near-surface regolith. The crusts of the two 

hemispheres have long been known to differ [Neumann et al., 2004; Watters et al., 2007], it 

therefore may not be surprising to find they have different thermal conductive properties (or 

different abilities to accommodate highly conductive water ice). 

GRS reported hydrogen content and equivalent water content distributions (Figure 3.2) 

near the Martian surface [Feldman et al., 2004]. Assuming water ice occupies all the pores in 

the soil, and knowing the densities of water ice (900 kg/m3) and Martian crust (2900 kg/m3 

[Zuber et al., 2000]), we can back out the porosity of the soil. If we make two more 

assumptions: first, the subsurface maintains the same porosity through the vertical column 

considered and that the pores are completely filled with water ice; second, the dry soil 

thermal conductivity in the subsurface is the same as the surface, whose equivalent thermal 

inertia is provided by TES [Putzig et al., 2005], we can derive the thermal inertia of the 

subsurface mixture of soil and water ice (shown in Figure 3.11). An obvious north-south 

dichotomy in thermal inertia map can be seen. Zonal average subsurface thermal inertia 

ranges from 300 to 1400 J m−3 K−1 in the north, with a maximum of 1730 J m−3 K−1. In the 

south, the zonal average varies between 220 and 540 J m−3 K−1; this is on average about two 

to three times smaller than in the north. This dichotomy is due to the combined effects of 

high water ice content and high soil thermal inertia in the northern polar region. We notice 

that the values of thermal inertia obtained from this calculation are smaller than suggested by 

the retrieval scheme. There are ways to reduce this gap since the best-fitted thermal inertia 

values could be misleading: MarsWRF assumes constant density and thermal capacity for the 

subsurface material. A decrease in dry soil density and/or heat capacity will decrease the 
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thermal inertia while keeping the thermal conductivity the same. One may also argue that the 

GRS may under-predict the water ice content and therefore the soil porosity. Setting those 

possibilities aside, there is an important common message from these two independent 

studies, i.e., there exists a significant north-south dichotomy in the subsurface thermal 

conductivity in the polar regions. 

When we fix the seasonal cap emissivity to unity, we still need to adjust the seasonal 

cap albedos in order to make the seasonal pressure cycle phase match observations. This 

suggests that the inclusion of the water ice table, while improving physicality, is not the 

panacea ― we do not yet have a complete and satisfactory understanding of the processes 

controlling the CO2 cycle. In order to build a better Mars GCM, we need to build more 

physically-based prognostic models for the frost albedo and emissivity, capturing processes 

now implicitly aliased into our retrieved cap properties. 

 

3.5.4 Limitation of the linear fitting method 

As we discussed in section 3.3, the linear fitting algorithm assumes the response in 

surface pressure scales linearly with the perturbation of the fitting parameters. In MarsWRF, 

this assumption becomes less valid when the perturbation is large, especially for 

perturbations to the water ice table thermal inertia. For example, in panel (b) of Figure 3.3, 

when we perturb the thermal inertia baseline by 1000, 2000 and 3000 J m−3 K−1, the 

responses of the latter two are not simple multiples of the first. The perturbation matrix may 

change greatly when the baseline parameter vector moves to a different state. It may 

influence the calculation of the cost function and the iterative method ― the last case from 
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section 3.4.2 provides a good demonstration of these effects. If this is the case, we need to 

recalculate the pressure perturbation vectors to maintain linearity. 

The pattern of the perturbation matrix changes drastically in extreme situations. More 

specifically, MarsWRF does not respond to further change of parameters after critical values 

are reached. For instance, in Figure 3.3, raising the water ice table thermal inertia by 3000 J 

m−3 K−1 does not increase the surface pressure much more than raising it by 2000 J m−3 K−1. 

In another situation where the frost albedo is too high, a permanent cap will form in the 

corresponding pole. One can easily imagine that the pressure response would have a very 

different pattern. 

Another related limitation of the iterative algorithm is that it is sensitive to the choice 

of the starting parameter vector. Starting the fitting with Y1 = F(A1) may produce a different 

best-fit parameter vector than starting with Y2 = F(A2), but both may yield comparable RMS 

errors. When used in MarsWRF, however, they may correspond to very different VL 

pressure cycles and RMS errors. Some are closer to the observations than the others. We 

have to choose the desired sets based on their performances in the GCM and their physical 

soundness. 

Ideally, we should force the perturbations to be very small and re-calculate the 

perturbation matrix for each iterative step. However, this would make the fitting extremely 

slow due to the greater number of required iterations and, more importantly, more GCM runs 

to calculate the perturbation matrices. Fortunately, we can assume the perturbation matrix 

does not change for most of our retrievals. We also carefully selected the starting point of the 

iteration to make the process stable. 
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3.6 Conclusions 

We provide a method to obtain close fits to the VL surface pressure data using a 

chosen subset of “tunable” parameters within Mars General Circulation Models. We 

construct a set of basis vectors by perturbing five parameters in the GCM, including albedo 

and emissivity for the seasonal CO2 caps in both poles and the total amount of CO2 in the 

system. We utilize an iterative method to find the best linear combination of the basis vectors 

that minimizes the least squares error between the fit and the VL data. The coefficients for 

the linear fit are then projected back to parameter space and a best-fit parameter set is 

obtained. When used in MarsWRF, this parameter set yields a pressure cycle very close to 

the VL observations as predicted by the linear method. (In this sense, our method is related to 

ensemble data assimilation) 

The method described in this chapter provides a first rigorous and quantitative means 

for fitting the seasonal pressure cycle with a GCM. As designed, we expect that this method 

would be useful for calibrating the CO2 cycle in any model and thus could provide a 

benchmark method for tuning GCMs. The study confirms the idea that a simple 

parameterization has the potential to capture most of the underlying physics of the CO2 cycle 

[Wood and Paige, 1992]. In the linear fit, the best-fit parameters qualitatively show footprints 

of the physical processes that are not explicitly represented in MarsWRF but effectively 

captured by the parameterization, such as the presence of cloud, precipitation of atmospheric 

CO2 ice, surface frost with different porosity, etc. 

While the mathematics of the approach is elegant, the retrieved parameters are not 

guaranteed to be in agreement with direct observations. For instance, the cause of the big 
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difference in the retrieved radiative properties of the two seasonal caps is not thoroughly 

understood. Attributing the differences to specific un-modeled physical process will require 

further work, along the philosophical lines laid out in the Introduction. However, our method 

provides a road map for the procedure of unveiling all relevant physics. We start with the 

simplest parameter set that fits the data well. Wherever the retrieved parameters differ from 

observed or physically sound values, we must look for further unresolved (un-modeled) 

physical processes. For example, parameterizations of clouds, dirty frost, etc., are likely still 

required. The soil thermal property change due to the presence of subsurface water ice is one 

such piece of physics we added in this study. Both MarsWRF and the NASA ARC Mars 

GCM have verified that including the subsurface ice improves the physical soundness of 

retrieved cap properties. 

Our simulations suggest that the northern subsurface layer has higher thermal 

conductivity than the south. This argument is also supported by GRS and TES observations. 

This bias in the inferred thermal conductivity may be related to differences in the water cycle, 

in the ability of the regolith materials in the two hemispheres to accommodate water, and/or 

in the regolith conductivity itself.  

Finally, none of the retrievals reproducing reasonable pressure curves are able to 

simultaneously yield a residual CO2 ice cap at the south. This may suggest that assumptions 

such as the temporally constant values of the retrieved cap properties may not be completely 

valid. 
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Tables 

Table 3.1 

Methods 

Parameters 

Northern 

cap albedo 

Northern 

cap 

emissivity 

Southern 

cap albedo 

Southern 

cap 

emissivity 

Total mass 

of CO2 in 

system* 

Positive 

perturbation, 
0.796 0.484 0.467 0.787 0.978 

Negative 

perturbation, 
0.793 0.485 0.454 0.784 0.978 

Average, constant 

weighting (Af4,1) 
0.795 0.485 0.461 0.785 0.978 

Positive 

perturbation, non-
0.814 0.424 0.461 0.744 0.966 

Negative 

perturbation, non-
0.820 0.434 0.433 0.764 0.971 

Average, non-

constant weighting ° 

(Af4,2) 

0.817 0.429 0.447 0.754 0.968 

 

* Mass index number, 1.0 corresponds to total mass 2.90 × 1016 kg of the baseline case. 



62 

Figures 

 

Figure 3.1: Upper panel, annual cycles of the surface pressure at the VL sites for the control 

case (northern seasonal cap albedo: 0.77; northern seasonal cap emissivity: 0.57; south 

albedo: 0.5; south emissivity: 0.8; total CO2 mass index: 1.0). Grey line: MarsWRF outputs 

(separate by 6 hours, or 4 output per sol) at VL1 location; magenta dashed line: smoothed (9 

sol running average) MarsWRF outputs at VL1 location; black line: MarsWRF output at VL2 

location; green dashed line: smoothed MarsWRF outputs at VL2 location; blue dashed line: 

polynomial fit to the VL1 observations; red dashed line: polynomial fit to the VL2 

observations [Tillman et al., 1993]. Lower panel, difference between the polynomial fits of 

VL measurements and MarsWRF simulation: Blue line:  VL1 site; red line: VL2 site. 
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Figure 3.2: (a) Color: subsurface ice content from GRS; white contour: depth of permanently 

stable water ice in meters suggested by Schorghofer and Aharonson [2005]. (b) Black curve: 

zonal average of the depth of permanently stable water ice table; blue curve: ice table depth 

suggested by Haberle et al. [2008]. 
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Figure 3.3: Response of MarsWRF surface pressure at VL1 location to positive perturbations. 

Panel (a): response to perturbation at north seasonal cap albedo (thin black line, P1), north 

emissivity (thin grey line, P2), south albedo (thick black dash line, P3), south emissivity 

(thick grey dash line, P4), and total CO2 mass (thick black line, P5). Panel (b): perturbation to 

the thermal inertia of the water ice table at the north polar region by 600 J m−3 K−1 (thin black 

dash line, Pe
6), south by 600 J m−3 K−1 (black line, Pe

7), both by 600 J m−3 K−1 (thick grey 

line, Pe
extra), both by 1000 J m−3 K−1 (thick black line), both by 2000 J m−3 K−1 (thick black 

dash line), and both by 3000 J m−3 K−1 (thick grey dash line). The last tow curves only appear 

partially because of the scale limit. 
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Figure 3.4: Upper panel: the linear fit of surface pressure cycle at VL1 site. Grey line: 

smoothed VL1 data; green dashed line: linear fit result using positive perturbation matrix P+; 

red dashed line: linear fit result using negative perturbation matrix P−; blue dashed line: the 

average of the previous two linear fits. Lower panel: residuals. Green dashed line: residual in 

the fit using P+; red dashed line: residual in the fit using P−; blue dashed line: the average 

residual. 
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Figure 3.5: Same as Figure 3.1, except MarsWRF outputs are generated using the best-fit 

parameters (northern seasonal cap albedo: 0.795; northern seasonal cap emissivity: 0.485; 

south albedo: 0.461; south emissivity: 0.785; total CO2 mass index: 0.978). 



67 

  

Figure 3.6: Same as Figure 3.1, except fitting parameter are the same as Haberle et al. [2008]. 

Northern seasonal cap albedo: 0.6; northern seasonal cap emissivity: 1.0; south albedo: 0.5; 

south emissivity: 1.0; total CO2 mass index: 1.003. Water ice table starts at 8.05 centimeter in 

the northern hemisphere and 11.16 centimeter in the southern hemisphere. Thermal inertia of 

ice table is 2200 J m−3 K−1. 
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Figure 3.7: Same as Figure 3.1. Except the driving parameters are northern seasonal cap 

albedo: 0.6; northern seasonal cap emissivity: 1.0; south albedo: 0.5; south emissivity: 1.0; 

total CO2 mass index: 1.003; thermal inertia of the ice table is 1800 J m−3 K−1 in the northern 

hemisphere and 900 J m−3 K−1 in the south. Boundary between the dry soil and the water ice 

table is set to the boundary of permanently stable water ice suggested by Schorghofer and 

Aharonson [2005]. 
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Figure 3.8: Upper panel: polynomial fit to the VL1 pressure cycle (grey line) and the fitted 

pressure curve (dash line) using albedo of the two seasonal caps, total CO2 inventory, and the 

thermal inertia of the water ice table at two different hemispheres. Lower panel: residual 

(fitted curve minus VL data). 
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Figure 3.9: Same as Figure 3.7. Except the driving parameters are northern seasonal cap 

albedo: 0.731; northern seasonal cap emissivity: 1.0; south albedo: 0.546; south emissivity: 

1.0; total CO2 mass index: 1.077; thermal inertia of the ice table is 3900 J m−3 K−1 in the 

northern hemisphere and 1800 J m−3 K−1 in the south. 



71 

  

Figure 3.10: CO2 budget in MarsWRF using the best-fit parameters (northern seasonal cap 

albedo: 0.795; northern seasonal cap emissivity: 0.485; south albedo: 0.461; south emissivity: 

0.785; total CO2 mass index: 0.978). Red line: total CO2 in the system, blue line: mass of 

CO2 in the atmosphere, black line: mass of CO2 on the surface, magenta line: surface CO2 in 

the southern hemisphere, green line: surface CO2 in the northern hemisphere. 
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Figure 3.11: Hypothesized subsurface thermal inertia (in J m−3 K−1) map and zonal average. 
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Chapter 4: Modeling the perennial CO2 ice caps 

 

Abstract 

A perennial ice cap has long been observed near the south pole of Mars. The surface 

of this cap is predominantly composed of carbon dioxide ice. The retention of a CO2 ice cap 

results from the surface energy balance of the latent heat, solar radiation, surface emission, 

and subsurface conduction. While models conventionally treat surface CO2 ice using time 

constant ice albedos and emissivities, such an approach fails to predict the existence of a 

perennial cap.  Here we explore the role of insolation-dependent ice albedo, which agrees 

well with Viking, Mars Global Surveyor, and Mars Express albedo observations. Using a 

simple parameterization within a General Circulation Model, in which the albedo of CO2 ice 

responds linearly to the incident solar insolation, MarsWRF is able to predict the existence of 

a perennial CO2 cap at the observed latitude and only in the southern hemisphere. Further 

experiments with different total CO2 inventories, planetary obliquities and surface boundary 

conditions suggests that the location of the residual cap may exchange hemispheres favoring 

the pole with the highest peak insolation. 
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4.1 Introduction 

Carbon dioxide (CO2) is the leading gaseous species on Mars, comprising 95% of the 

atmosphere [Owen et al., 1977]. Throughout a Martian year, up to 30% of the total CO2 

condenses on the surface in winter polar region and forms frost caps [Kelly et al., 2006]. 

While the discovery of seasonal ice caps at the poles of Mars dates back to the eighteenth 

century, the existence of a perennial CO2 ice cap6 at the south pole of Mars was first 

discovered by the Viking spacecraft [Kieffer et al., 1977; Kieffer, 1979; Paige et al., 1990]. 

The southern residual cap also contains small amounts of water ice [Bibring et al., 2004]. 

The annual CO2 cycle on Mars can be explained by the varying components in the 

surface energy balance of the caps, including the latent heat exchange, solar radiation, 

surface emission, atmospheric sensible heat, and subsurface conduction [Guo et al., 

submitted-a; Paige, 1992]. Ideally, General Circulation Models (GCMs) should be able to 

simultaneously predict the atmospheric budget and the surface budget of CO2 correctly, e.g. 

fitting the Viking Lander (VL) pressure cycle while reasonably predicting the CO2 caps 

(including seasonal and perennial caps). Indeed, most GCMs are able to fit the atmospheric 

budget and the seasonal caps reasonably well [Forget et al., 1999; Guo et al., submitted-a; 

Haberle et al., 2008; Kelly et al., 2006]. However, simulating the residual CO2 cap remains 

more challenging because simple energy balance models (and all published GCM results) do 

not predict its existence; more accurately, the time-invariant albedo and emissivity values 

preferentially chosen to fit the VL pressure cycles are not able to support a residual CO2 cap 

in the southern summer. GCMs understandably give priority to fitting the atmospheric budget 
                                                      
6 It is also referred as residual cap or permanent cap in the community. In this dissertation, “perennial” and 
“residual” will be used interchangeably to describe this permanently frozen region. 
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because of the induced seasonal pole-to-pole flow and because of the influence of total mass 

variations on other components of the circulation and climate. Paige and Ingersoll [1985] 

suggests that the only reason that the southern residual cap can endure the southern summer 

is the very high albedo it attains near solstice. These late season southern cap albedos are 

much higher than those used in GCMs to obtain good fits to the CO2 cycle, especially for the 

southern cap. 

 Wood and Paige [1992] suggested that in order to maintain the southern residual cap 

a higher albedo or a lower emissivity or both is required. While one finds little evidence 

supporting the idea that CO2 ice emissivity is very different from unity, there is abundant 

evidence that the albedo of the CO2 ice changes: Viking Orbiter observations suggest that the 

albedo of the southern residual cap changes with time [James et al., 1992; Paige and 

Ingersoll, 1985]; while the Thermal Emission Spectrometer (TES), Mars Orbiter Laser 

Altimeter (MOLA), and the Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité 

(OMEGA) also found evidence that the albedo of the seasonal caps evolves [Byrne et al., 

2008; Kieffer et al., 2000; Kieffer and Titus, 2001; Schmidt et al., 2009]. These changes are 

of unknown origin, but are possibly related to microphysical processes, such as dust-ice 

interaction and/or frost grain size evolution with insolation. Schmidt et al. [2009] suggest that 

the CO2 sublimation in the southern polar cap is mainly controlled by albedo at both global 

and local scales. More interestingly, the Viking observations suggest that the residual CO2 

cap albedo responds to the incident solar flux in a very linear way. This relationship is likely 

key to explaining the existence of the perennial cap [Paige, 1985]. 

Given the complete failure of constant albedo models to predict a residual CO2 ice 

cap at the south, this study is focused on asking whether the introduction of an insolation-
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dependent albedo of CO2 ice can predict such a cap. The residual cap is largely irrelevant to 

the current climate insofar as it lacks sufficient mass to consequentially buffer the 

atmosphere [Byrne and Ingersoll, 2003], but this would not have been true at various earlier 

stages of Martian climate history. Questions relating to the timing of atmospheric collapse for 

thicker atmospheric states, and the triggering of cap formation at different values of obliquity, 

orbital parameters, and total CO2 reservoir will be of consequence for understanding 

plausible paleo-climatic states. For situations in which the occurrence of residual ice caps is 

of interest, it would seem that being able to predict a residual CO2 ice cap for the current 

climate would be a prerequisite test for any model. We thus undertake an initial exploration 

of how insolation-dependent albedo influences residual cap development for these 

parameters. 

We perform a systematic study using a Mars GCM, the Mars Weather Research and 

Forecasting (MarsWRF) model, to explore the possible environments conducive to perennial 

CO2 cap formation. We perform simulations with and without incident solar insolation-

dependent albedo in order to isolate the effect of varying albedo as observed. We also 

explore the effects of different total CO2 inventory, different planetary obliquity and different 

topographic setups. Section 4.2 provides an introduction to the MarsWRF model and then we 

present the model results in section 4.3 followed by discussions and conclusions in section 

4.4. 
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4.2 Model description and experiment setup description 

In this dissertation, we use the MarsWRF model, the Martian implementation of the 

planetWRF model [Richardson et al., 2007]. We calibrate the GCM by tuning the albedos 

and the emissivities of the seasonal dry ice caps and the total CO2 inventory in the system to 

reproduce the VL1 surface pressure cycles. At the steady state, the model predicts a pressure 

cycle that matches the VL records very closely [Guo et al., submitted-a]. The predicted mass 

of the seasonal caps is consistent with other GCMs and observations [Kelly et al., 2006]. 

However, like all the other models trying to fit the VL pressure records, a residual CO2 cap in 

the south pole is not predicted by MarsWRF with this setup (as a side note, most models 

include the thermal effects of a residual ice cap by “hard wiring” surface temperature at the 

south pole to the CO2 frost point). 

The Viking orbiter observations suggests that the albedo of the southern residual CO2 

cap changes with time [James et al., 1992; Paige and Ingersoll, 1985]. More usefully, the 

relationship between the residual CO2 cap’s albedo and the incident solar flux is very linear 

(Figure 4.1). When a least square linear regression method is applied to this dataset, we 

obtain an empirical equation that predicts the surface CO2 frost albedo based on the 

insolation: 

 A = 0.532 + 8.72×10−4 × Fs,       (4.1) 

where A is the albedo of the CO2 ice cap and Fs is the incident solar flux in W/m2. This linear 

model fits the Viking albedo observations for the southern residual cap extremely well, with 

only several percent of fitting error. In the absence of a proven physical model for the 

dependence of albedo on insolation or other environmental factors, this empirical relationship 
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is potentially very important for reproducing a perennial cap in a GCM. Larger albedo 

creates a larger energy deficit that has to be compensated by more surface CO2 ice 

condensation (or less sublimation). Equation 4.1 implies that the albedo is the largest in the 

summer when the incident solar flux is the most intense, which is ideal for the CO2 ice to 

endure the summer. 

We incorporate this relationship into MarsWRF. For each time step, if the surface is 

covered by enough CO2 ice (for all simulations, a threshold mass coating of CO2 ice is 

required in the GCM for modification of the albedo – the value is chosen such that the albedo 

is changed only when the abundance of CO2 ice can reasonably be expected to dominate the 

reflection of sunlight over the scale of a grid cell), we calculate the instantaneous incident 

solar flux and use Equation 4.1 to determine the surface albedo for the subsequent radiative 

calculations. We also experimented with different total CO2 inventories and different 

obliquities, and also undertook sensitivity studies to determine the influence of topography, 

thermal inertia distribution, and other factors on the existence and location of the residual cap. 

Results of model runs are shown in the next session. In all cases, output from the second year 

of model simulations is shown. 

 



79 

4.3 Model results 

4.3.1 “Control case” ― constant albedo, current CO2 inventory and 

orbital parameters 

We first present the control or baseline scenario with time constant albedo. Time 

constant albedos and emissivities are assigned to the northern and southern CO2 ice caps. The 

total CO2 mass in the system was set to 2.83 × 1016 kg [Guo et al., submitted-a]. As 

mentioned before, this setup generates a pressure cycle at the VL1 location agreeing with the 

VL1 records very well (Figure 3.5), but without a residual cap at either pole. The annual 

variation of the zonally averaged surface CO2 frost is shown in the panel (a) of Figure 4.2. 

 

4.3.2 Albedo responses to solar insolation 

Next we show an experiment in which the surface CO2 ice albedo is determined from 

the local incident solar flux according to Equation 4.1 while keeping the rest of the model 

unchanged (note that albedo of CO2 ice present at any location on the surface is locally 

determined via this formula). We show the corresponding CO2 ice surface deposition annual 

cycle in the panel (b) of Figure 4.2.  

Following the seasonal cap evolution, starting with the onset of polar night in each 

hemisphere, CO2 begins to deposit at the winter poles. At this time of the year, the season cap 

areal coverage in both hemispheres does not differ greatly in the time-varying albedo 

experiment compared to the control case. This is expected because during the polar nights the 

surface albedo is not relevant to the surface energy balance. When the surface frost is 
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exposed to the sun, the abundance and the longevity of the surface CO2 ice starts to differ 

from the control case. In the northern hemisphere, the albedo determined by Equation 4.1 is 

usually comparable or slightly smaller than the value used in the control case. As a result, the 

CO2 ice in the north in the varying albedo case sublimates at the same rate or slightly faster 

than in the control case. More dramatic change can be found in the southern hemisphere. As 

the southern seasonal ice cap is exposed to sunlight as the spring wears on, the albedo is 

driven to higher values than in the north, and to higher values than those used in the south in 

the control simulation. This brightening of the southern cap leads to less solar energy 

absorption and thus reduces the cap sublimation rate. Indeed, thanks to the high albedos 

generated by Equation 4.1, the CO2 ice at the southern pole is able to endure the summer and 

forms a perennial reservoir. 

The reason for the existence of perennial CO2 ice in the GCM is consistent with the 

Paige and Ingersoll [1985] study of the heat balance of the residual cap.  The perennial ice 

reservoir produced by the GCM is slightly displaced from the geographical south pole, and is 

longitudinally asymmetric, agreeing with observations [Colaprete et al., 2005; Kieffer et al., 

1977]. However, while the observed southern residual cap is confined in the area between 

84° S and 90° S, tilted towards 300° E longitude, our simulation has only one gird point 

representing the residual cap centered at 81.2° S and 73° E (Figure 4.3). Although the 

latitude and the area of the perennial caps in the simulation are similar to the observation, the 

longitudinal distribution is not. We will further discuss this asymmetry in later sections. 

It should be noted that the use of Equation 4.1 to determine albedo for any and all 

CO2 surface ice deposits introduces an error into the fitting of the VL pressure curves.  

Equation 4.1 was defined only for the area of the residual cap, and its applicability to the 



81 

whole planet is questionable [Kieffer and Titus, 2001]. Indeed it seems that geology and the 

history of the nature of the ice deposition (whether direct surface deposition or snowfall) 

influence the geographical distribution of the albedo-insolation relationship. For example, we 

could limit the application of Equation 4.1 between 85° S and 90° S and fix the rest of the 

values to those used in the controlled case. Because the mass in the residual cap is relatively 

small, it has little or no impact in the surface pressure, which is a measure of the total 

atmospheric mass. However, given the initial nature of this study, and the lack of a physical 

model for the geographical distribution of the albedo-insolation relationship, we think it is 

clearer here to explore the consequences of a simple, consistent relationship and to focus 

primarily on the ability of such a relationship to predict residual cap formation. 

 

4.3.3 Varying CO2 inventories with insolationindependent albedo  

Using the time-constant (insolation independent) albedo and emissivity values of the 

frost caps from the control simulation, we experiment with different total CO2 inventories. 

We vary the total mass from a third to 100 times of the current amount. Associated surface 

CO2 ice annual cycles are shown in Figure 4.4. 

The frost coverage patterns wax and wane from one experiment to another: while the 

latitudinal coverage does not change much, the surface ice densities increase then decrease as 

the total CO2 inventory increases, as do the durations of the frost covering period in both 

hemispheres. These variations are caused by two competing processes. First, increasing the 

totally CO2 inventory increases the (partial) pressure of CO2 gas in the atmosphere. In 

response, the critical temperature for CO2 condensation goes up (black solid line in Figure 
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4.6), which makes it easier for CO2 to condense and persist as ice. Second, the enhanced 

greenhouse effect due to a denser atmosphere makes the planet warmer (grey line with 

diamonds in Figure 4.6), which tends to reduce CO2 condensation (and speed sublimation). 

Therefore, when the first mechanism is dominating, adding to the total CO2 inventory helps 

the formation of CO2 frost in the winter (notice the increasing trend in the frost deposition 

from panel (1) to (5) of Figure 4.4). On the other hand, when the second mechanism is 

dominating, increasing the total CO2 inventory reduces the formation of frost. The CO2 

surface frost amount decreases from panel (5) to (8) of Figure 4.4 and completely disappears 

in both hemispheres when 100 times the current mass is used in the system (not shown in 

Figure 4.4). The transition CO2 amount separating these two regimes seems to be around 10 

times the current inventory. Finally, we notice that none of these experiments predicts a 

perennial CO2 ice cap. 

 

4.3.4 Varying CO2 inventories with insolationdependent albedo  

We perform another set of experiments by combining the two modifications to 

MarsWRF described above. We change the CO2 inventory while letting the CO2 cap albedos 

response to the incident solar flux following Equation 4.1. The corresponding surface CO2 

ice annual variations are shown in Figure 4.5. 

Akin with the results found in Section 3.3, the latitudinal coverage of the CO2 frost 

does not change much. In general, for the same reasons, the frost deposition responds to the 

total CO2 inventory similarly to what was described above. More interesting differences are 

notable in the southern high latitudes. In the middle of the sequence of experiments, the CO2 
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ice coverage is much greater and longevity extended during southern summer. One can find a 

series of experiments that predict CO2 ice persisting throughout years (panels (2), (3), (4), 

and (5) of Figure 4.5). Some experiments with higher inventory predict perennial caps in 

even lower latitudes (panels (3), (4), and (5) of Figure 4.5). Again, the perennial CO2 ice caps 

turn seasonal, and even completely absent, if enough CO2 gas is added to the system, due to 

the greenhouse effect of the CO2. 

These simulations suggest that the time varying albedo is the decisive factor in 

predicting the perennial cap. Although the increase of CO2 critical temperature due to higher 

(partial) pressure helps the frost last longer in the spring and early summer, the environment 

is just not in sufficient energy deficit for the CO2 ice to endure the entire summer with the 

kind of insolation or time invariant albedo values typically used in models (see Figure 4.4).  

The enhanced albedos in the southern hemisphere create the energy deficits required by the 

perennial CO2 frost, which is clearly demonstrated in Figure 4.6. Compared to the time-

constant frost albedo (grey line with diamonds in Figure 4.6), the insolation-dependent 

albedo system has the effect of reducing near surface temperature significantly as runs with 

successively more CO2 are examined (black line with crosses in Figure 4.6). Eventually, the 

enhanced greenhouse effect overwhelms all other effects in the system and reduces and then 

prevents CO2 ice cap formation (terminating them when roughly 100 times current inventory 

is used). It is very interesting to notice that the current Martian atmospheric mass is just large 

enough to maintain one southern residual cap at its current latitude. 
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4.3.5 Influence of obliquity on residual cap formation and location 

The secular perturbations due to all other planets in the Solar System causes the orbit 

of Mars to change chaotically [Laskar, 1990]. Different orbital parameters, including spin 

axis obliquity and eccentricity result in different patterns of surface insolation [Laskar et al., 

2002], which modifies the CO2 cycle by its direct impact on the surface energy balance. We 

experiment with different obliquity values assuming this change would not cause any other 

surface properties to vary. We hold the eccentricity of the Martian orbit constant in these 

experiments. Corresponding surface CO2 ice annual variations are shown in Figure 4.7. 

The column of panels on the left hand side of Figure 4.7 shows the CO2 ice cycles 

from simulations assuming the control case time-constant (insolation-independent) albedo. 

For low obliquity simulations, the lack of incoming solar energy in the summer makes the 

polar region ideal for the CO2 ice to persist through the local summer. For example, in the 

simulation with 10° obliquity (panel (1) of Figure 4.7), permanent caps form at both poles. 

As the obliquity increases, seasonal CO2 frost advances to lower latitudes as the location of 

the maximum reach of polar night extends equator-ward. On the other hand, summer 

insolation becomes larger. Stronger sublimation reduces the amount and longevity of CO2 

frost, and eventually eliminates the perennial cap (panels (3), (5), and (7) of Figure 4.7).  

Again, the prediction from this class of models is that current Mars does not correspond to a 

state with a perennial CO2 cap at either pole. 

If we assume the frost albedo responses to the solar insolation according to Equation 

4.1, the surface CO2 ice cycles behaves differently, as shown by the column on the right hand 

side in Figure 4.7. At low obliquity, we also find perennial CO2 ice caps in both hemispheres 

for the same reasons described above. As the obliquity increases, the effects of higher 
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insolation and higher albedo start to compete in the summer. Although slowly, summer CO2 

ice retreats in the southern polar region with increasing obliquity and reaches a minimum at 

an obliquity of 30° (panel (6) of Figure 4.7). However, further increase of obliquity helps the 

albedo effect to gain dominance. At an obliquity of 45°, the summertime CO2 ice is more 

extensive and thicker than at 35° (panel (8) of Figure 4.7). The comparison between these 

two sets of experiments supports our argument that the response of the frost albedo to the 

solar insolation is crucial to predicting the permanent CO2 ice cap. Further, the insolation 

dependence may guarantee that the south would possess a residual CO2 cap regardless of the 

obliquity if all other factors remained fixed (inventory, eccentricity, etc.) 

 

4.3.6 The asymmetric location of the residual cap 

 Paige and Ingersoll [1985] and James et el. [1992] hypothesized that the time-

varying and relatively high albedo of the southern residual cap must be related to an ice-

microphysical processes. However, geographical variations in the behavior were hard to 

explain without an understanding of what might cause geographical variations in the 

microphysical processes (or initial conditions). Colaprete et al. [2005] suggested that the 

skewed location of the perennial cap is due to the asymmetry in air temperatures during the 

formation of the ice cap, which is a consequence of the asymmetric atmospheric dynamics 

driven by the topography. They showed that the longitudinal climate asymmetry vanishes as 

Tharsis, Hellas and Agyre are removed from the model.  The longitudinal variations in air 

temperature map to differences in the fraction of surface CO2 ice formed by direct deposition 

versus snowfall. While the model simulations shown by Colaprete et al. [2005] did not 
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include any surface ice microphysics related to the deposition, the idea provides a solid 

concept of how microphysical evolution may vary geographically (in this case because small 

particles deposited as snow may evolve very differently from sheet ice deposited directly at 

the surface). Schmidt et al. [2009] also suggested that the asymmetry of the southern seasonal 

polar cap recession around the geographic south pole is only due to the albedo asymmetry. 

Assuming the CO2 frost albedo responds to the solar insolation according to Equation 

4.1, our model predicts a residual cap that is not symmetric in the longitudinal direction. 

Further simulations with MarsWRF show that surface boundary conditions, such as thermal 

inertia, surface slopes and soil temperature, have very limited, if any, effects on the location 

of the perennial cap. On the other hand, changing the total CO2 inventory, or the obliquity of 

the planet results in migration of the location of the southern perennial cap (Figure 4.8 and 

4.9). It is not clear why the location is sensitive to the inventory and obliquity, but changes in 

the spatial distribution of the surface energy balance resulting directly from these changes or 

indirectly via changes in the atmospheric circulation and its influence on the surface energy 

balance may be responsible. When we use the zonal averaged topography in MarsWRF, a 

zonally symmetric residual cap can be found at the south pole (see Figure 4.10). This is 

consistent with previous works, which suggest the most important boundary condition that 

forces the circulation structure is the topography [Colaprete et al., 2005; Richardson and 

Wilson, 2002a]. Mild asymmetry can still be found in the CO2 ice distribution. It suggests 

that wave activity is also contributing, but those issues are beyond the scope of this 

dissertation. Nevertheless, the experiments above assert that the relationship between the 

perennial cap and the dynamic structure is very intimate, probably more so than with the 

surface properties. 
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4.3.7 The influence of other surface properties 

An important aspect of the current Martian climate system is that the CO2 perennial 

cap dwells at the south pole. While the control case predicts no residual cap at all, a perennial 

cap is generated only for the south (panel (b) of Figure 4.2) if we include the insolation-

dependent albedo. However, there are issues with the control case that require some further 

investigation. 

There is a concern that the control case may bias against a northern cap because we 

used a relatively low emissivity (0.485) for this cap (although in reality, this low emissivity is 

merely aliasing the effects of subsurface heat transport associated with neglected subsurface 

water ice, and that the resulting modeled surface energy balance – which is all that really 

matters here – is in fact rather close to that which obtains on Mars [Guo et al., submitted-a]). 

In any case, low emissivity reduces the energy that the cap gives away, therefore reduces the 

CO2 condensation in winter and increases its sublimation in summer. We consequently 

performed a simulation in which we matched the northern CO2 ice emissivity with that of the 

south (0.785). The resulting surface CO2 ice cycle is shown in the panel (a) of Figure 4.11. 

As expected, the northern cap now contains more CO2 ice with longer life time. However, the 

increase of northern cap emissivity does not have sufficient impact as to turn the northern 

seasonal cap into a perennial cap. Combined with the fact that we believe the low northern 

cap emissivity actually better represents the northern cap energy budget, these results suggest 

that a low northern cap emissivity is not responsible for the failure of the control case to 

generate a northern residual CO2 ice cap. 

The thermal conductivity of the northern regolith may be higher than the south, which 

gives disadvantage to the northern hemisphere in retaining surface CO2 ice [Guo et al., 



88 

submitted-a; Haberle et al., 2008; Putzig et al., 2005]. In order to test the importance of the 

subsurface conductive heat, we performed an experiment in which we applied the global 

average regolith thermal conductivity at all locations (emissivities for CO2 ice in both 

hemispheres were still set to 0.785). The corresponding surface CO2 ice cycle is shown in the 

panel (b) of Figure 4.11. Little change can be found between panels (a) and (b). The north 

polar regolith in the control case has a relatively large thermal conductivity. Reducing the 

thermal conductivity increases the amount of CO2 ice, but only slightly. The decrease of ice 

abundance in the southern summer is barely discernable, where the thermal conductivity is 

slightly raised. It suggests that for this magnitude of change, the subsurface heat conduction 

plays a less important role in the surface energy balance. 

 

4.3.8 The influence of argument of perihelion and eccentricity 

The current eccentricity of the orbit of Mars is relatively large (0.093), and given the 

timing of perihelion near the southern summer solstice, the insolation received in the two 

polar regions during their respective summers is very different. In the southern summer near 

the south pole, the insolation is up to 45% larger than that in the northern summer near the 

north pole. Such change projects to a difference of up to 0.2 in the insolation-dependent 

albedo using Equation 4.1. This seems to be the decisive factor in explaining why the 

residual cap is located in the south. To examine this argument, we first setup a simulation in 

which the CO2 ice albedo changes with insolation according to Equation 4.1, the ice 

emissivity is fixed to 0.8, and the regolith thermal conductivity is set to the global average. 

When modeled with the current orbit of Mars, the resulting surface ice cycle is shown in 
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panel (c) of Figure 4.11. The pattern is very similar to what is shown in panels (a) and (b). 

We then perform another experiment, which has the same setup except that the timing of 

perihelion and aphelion are swapped by 180 degrees relative to the present. Corresponding 

CO2 ice annual variation is shown in panel (d) of Figure 4.11. Now the northern polar region 

experiences much stronger insolation during its summer than does the south.  As a result of 

Equation 4.1, the northern cap yields higher ice albedo, and as a result a perennial cap is 

formed in the north. The situation for the southern polar region is exactly the opposite, 

causing the perennial ice to vanish in the southern summer. As a result, we are left with the 

rather counter-intuitive result that the extremely volatile CO2 ice more readily survives at the 

pole experiencing the more intense solsticial sun light.  

One implication of our results is that if the CO2 ice albedo follows the relationship 

indicated by Equation 4.1, the existence of a perennial cap near the south pole is primarily 

dependent on the current orbit of Mars. If the orbit were different, and specifically the 

argument of perihelion, the pattern of the insolation annual variation will be different, and the 

residual ice cap may switch to the opposite hemisphere. Interestingly, the physics of this 

control are opposite to those that control the location of the residual water ice cap. For CO2 

stability, maximizing peak insolation is critical, whilst for water, it is minimizing insolation 

that is key [Jakosky, 1983a; b; Richardson and Wilson, 2002b]. As a result, we would expect 

water and CO2 residual ice caps to swap hemispheres as the argument of perihelion 

progresses. 
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4.4 Conclusions and discussions 

Viking orbiter data suggests an empirical linear relationship between the CO2 ice cap 

albedo and the incident solar flux. When we include this relationship in MarsWRF, a GCM 

specifically design for the study of the Martian atmosphere, we are able to reproduce a CO2 

cap that persists throughout the full year near the south pole. This perennial cap is not located 

exactly at the geographical south pole, nor is it zonally symmetric, which agrees with the 

observations. On the other hand, the predicted perennial cap is not at the same longitude as 

seen in the observations. 

As the atmospheric mass in the model initially increases, the condensation 

temperature for CO2 increases, which makes it easier for CO2 to condense and persist. 

However, the enhanced greenhouse effect introduced by the increase of the total atmospheric 

mass will ultimately outpace the increase of CO2 critical temperature and eventually prevents 

the presence of CO2 frost in the summer (and eventually even in the winter). With increased 

CO2 inventory, we still need the frost albedo responding to the sunlight as described by 

Equation 4.1 in order to create an energy deficit required sufficiently large to form a 

perennial CO2 ice cap. From our simulations, it is interesting to note that if the relationship 

between the surface CO2 ice albedo and the incident solar flux holds, the current Martian 

atmospheric mass may be just large enough to maintain the southern residual cap at its 

current latitude. Obliquity is an important factor for determining the extents of the seasonal 

ice caps, but does not result in a residual southern cap until obliquity falls below roughly 15 

degrees, in agreement with prior studies [Newman et al., 2005].  



91 

Similar to other GCM studies of the perennial cap, none of our simulations were able 

to replicate the longitudinal location of the perennial cap asymmetry, as seen in the Viking 

observations. However, we do not include any spatial variation in the insolation-dependence 

of albedo that may result from the distribution of snowfall versus direct surface deposited 

CO2 ice [Colaprete et al., 2005]. A “complete” model of the CO2 ice caps, seasonal and 

perennial, will have to combine both the time varying and spatially varying nature of the 

albedo, hopefully within the context of a physically-based model of the CO2 ice cap 

microphysics. 

Given the insolation dependence of CO2 ice albedo, the existence of a permanent CO2 

ice cap at the south is related directly to the occurrence of peak insolation during southern 

summer rather than northern summer. It also requires the albedo-insolation function to 

increase the albedo sufficiently quickly with insolation that Fs(1 – a) decreases as Fs 

increases (where Fs is the insolation and a the albedo). An important consequence of this 

function is a prediction that the residual CO2 ice cap will switch hemispheres as the argument 

of perihelion progresses and alternately results in peak insolation in the north and the south. 

Interestingly, the CO2 residual ice cap will be driven to the pole with highest peak insolation, 

while prior work on the Martian water cycle suggests that the residual water cap will always 

migrate to the pole with minimum peak summer insolation [Richardson and Wilson, 2002b]. 

Thus Mars may remain with a very similar configuration of poles as we see it today (with 

just one CO2 ice residual cap and one water ice residual cap), albeit periodically turned on its 

head as the perihelion timing changes. 

Various spacecraft data, including Viking, MOC, TES, MOLA and OMEGA, provide 

evidence for this monotonically increasing relationship between the albedo of CO2 ice cap 
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and the insolation. Regardless of the details of the slope or shape of the albedo-insolation 

function, the fact that the albedo is an increasing function of the insolation is the key in 

explaining the existence of the perennial CO2 ice cap and the cap’s preferential dwelling at 

the pole with higher peak insolation. 
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Figures 

 

Figure 4.1: Southern residual cap albedo as a function of incident solar insolation. Open 

circles: observations from the Viking spacecraft; dashed line: the line from the linear fitting 

of the Viking data (Equation 4.1). 
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Figure 4.2: Annual variation of zonally averaged surface CO2 ice deposition. The grey scale 

indicates the density of the deposition in kg/m2. From the lower latitudes to the polar region, 

the grey contour lines indicate the deposition levels of 1 kg/m2, 100 kg/m2, 500 kg/m2 and 

1000 kg/m2 respectively. Panel (a): the calibrated case, with time-constant CO2 frost albedos 

and emissivities, the CO2 inventory of the system is 2.83×1016 kg; panel (b): The setting of 

this experiment is identical to that of panel (a), except the frost albedo is calculated using 

Equation 4.1 in each time step. 
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Figure 4.3: A snap shot of the southern hemisphere at Ls 350.58°. Color map represents the 

surface CO2 ice abundance in kg/m2. Black contours indicate the Mars Orbiter Laser 

Altimeter topography data embedded in MarsWRF, with solid contours indicating positive 

values and dashed contours indicating negative values. 
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Figure 4.4: Same as Figure 4.2. Each panel corresponds to a different experiment with 

different total CO2 inventory. For these experiments, the frost albedos and emissivities are 

time-constant and fixed to the values used in the calibrated case (albedo of the northern cap = 

0.795, emissivity of the northern cap = 0.485, albedo of the southern cap = 0.461, emissivity 

of the southern cap = 0.785). 
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Figure 4.5: Same as Figure 4.4, except the CO2 frost albedos insolation-dependent according 

to Equation 4.1. 
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Figure 4.6: Annual near-surface atmospheric temperature variations near the south pole for 

experiments with different CO2 inventories. The black solid line shows the critic temperature 

for CO2 condensation. The grey line with open diamonds shows the annual average 

temperature for experiments with time-constant frost albedo (0.795 in the north, 0.461 in the 

south); the grey dashed lines indicate the temperature annual maxima and minima. The black 

line with crosses shows the annual average temperature for experiments with insolation-

dependent frost albedo; the black dashed lines indicate the temperature annual maxima and 

minima. The shaded area covers the CO2 inventories with which the MarsWRF predicts a 

southern perennial CO2 cap if the CO2 frost albedo is insolation-dependent. 
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Figure 4.7: Annual variation of zonally averaged surface CO2 deposition for simulations with 

different obliquity. The column of panels on the left hand side (panels (1), (3), (5), and (7)) 

are for simulations assuming controlled time-constant frost albedo (0.795 in the north, 0.461 

in the south). The column on the right (panels (2), (4), (6) and (8)) are for simulations 

assuming insolation dependent frost albedo. 
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Figure 4.8: Same as Figure 4.3, except the total CO2 inventory in this simulation is 1.53×1017 

kg. 
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Figure 4.9: Same as Figure 4.3, except the obliquity of Mars in this simulation is 35°. 
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Figure 4.10: Same as Figure 4.3, except the zonal average value for topography and thermal 

inertia was used, and the total CO2 inventory is 1.53×1017 kg. 
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Figure 4.11: Same as Figure 4.2. Panel (a) shows the zonal averaged CO2 ice annual cycle for 

the simulation which has the same setup as panel (b) of Figure 4.2 except the northern cap 

albedo is set to 0.785. Panel (b) is for the same setup as panel (a) except the regolith thermal 

inertia is set to the global average (216 J m−3 K−1). Panel (c) is for an experiment in which the 

CO2 ice albedo is decided by insolation according to Equation 4.1, ice emissivity is set to 0.8, 

regolith thermal inertia is set to 216 J m−3 K−1 and the current orbital parameters for Mars is 

used. Panel (d) is for an experiment whose setup is the same as for panel (c), except the 

perihelion and the aphelion is swapped. 
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Chapter 5: Modeling the noncondensable gas cycles 

 

Abstract 

We model the annual variation of non-condensable tracer gases in the atmosphere of 

Mars. Non-condensable trace gas (mostly nitrogen, N2, and argon) mass mixing ratios are 

affected by the phase change of CO2 and by atmospheric transport processes. The distribution 

of argon (Ar) abundance has been observed by the gamma ray spectrometer. A simple 

condensation scheme has been incorporated into MarsWRF. The model is able to 

qualitatively reproduce the Ar observations, including the seasonal evolving latitudinal 

distribution. However, the modeled magnitudes of maximum enrichment are much lower 

than observed. Whilst within measurement error, we suggest that an extra buoyancy term in 

the model may account for the underestimation. This missing process in the model dynamics 

should result from the vertical gradient in mean molecular mass as Ar mass mixing ratio 

increases near the surface. Smoothing Ar enrichment in the vertical should reduce 

susceptibility to transport by near-surface, off-cap circulation. Increasing the model 

resolution in the polar region also reduces the numerical diffusion and helps achieving the 

observed enrichment. 
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5.1 Introduction 

In addition to the seasonal CO2 cycle we have introduced in the previous chapters, 

another interesting phenomenon caused by the phase change of CO2 is the argon (Ar) mass 

mixing ratio annual cycle. When CO2 gas condenses onto the ground, the non-condensable 

gas is left behind in the atmosphere, leading to an enrichment of its local mass mixing ratio, 

and vice versa when CO2 ice sublimates. Its distribution is further modified as a result of the 

atmospheric circulation. Since Ar does not react (in a fast pace) with any other known 

species in the atmosphere of Mars, its seasonal and geographical variations is a great 

indicator for tracking the motion of the atmosphere. 

Ar abundance has been measured by the gamma ray spectrometer (GRS) [Boynton et 

al., 2002] on the Mars Odyssey orbiter [Saunders et al., 2004] for one and half Martian years. 

Because of the technical difficulties in instrumentation, only zonally averaged distributions 

of Ar have been reported assuming homogenous vertical distribution (latitudinal and 

temporal variations are available). Nonetheless, this data is extremely valuable. Successful 

modeling of the observed Ar cycle with a GCM is useful both as estimate in its own right and 

as a constraint on Mars GCMs [Sprague et al., 2004; Sprague et al., 2007]. 

Nelli et al. [2007] used the NASA Ames Research Center (ARC) Mars GCM to study 

the Ar enhancement in the Martian atmosphere. It was the first attempt to model the non-

condensable gas cycle with a full 3D Mars GCM. They were able to reproduce the 

enrichment dichotomy in the two different poles observed by GRS. They also showed that 

the dichotomy was due to the different strength and timing of transient eddy diffusion 

between the two hemispheres. However, the simulated magnitude of enhancement in the 
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south pole during the southern winter season was only a half as much as observed. They 

argued that this miss match may be a result of the local maximum at about 0.5 mbar level 

instead of a decreasing non-condensable gas profile as a function of height. 

We incorporate a simple CO2 condensation scheme to MarsWRF [Richardson et al., 

2007] to study the formation of seasonal polar CO2 ice caps. We parameterize the non-

condensable gas mass mixing ratio change as a result of CO2 condensation/sublimation and 

allow the tracer gas to be carried around in the atmosphere by resolved dynamic processes 

and by diffusion (representing sub-grid scale motions). Meanwhile, we use MarsWRF 

outputs, most surface pressure cycle to provide column atmospheric mass, to calibrate the 

GRS data and obtained the enhancement cycle of Ar. Comparing model outputs with 

calibrated observations provides a useful way to study the tracer gas transportation in 

addition to testing the validity and completeness of the GCM parameterizations of physical 

processes. 

In section 5.2, we briefly introduce the model we use for this study, including an 

overview of the MarsWRF settings, the simple surface condensation scheme, the treatment 

for the non-condensable gas, and the convective adjustment method. Model results and 

discussions are shown in section 5.3. Efforts to further refine the simulations are presented in 

sections 5.4 and 5.5. Section 5.6 provides conclusions and discussions. 
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5.2 Model descriptions 

5.2.1 MarsWRF setups 

As stated in Chapter 2, we utilize MarsWRF for this dissertation. See Richardson et 

al. [2007] for a detailed description of the GCM. For the experiments presented in this 

chapter, we use the current Martian orbital parameters. Mars Global Surveyor (MGS) 

Thermal Emission Spectrometer (TES) dust opacity climatology is approximated by an 

empirical function and is fed to the radiative transfer calculations in MarsWRF. We include 

the simple energy balance model for CO2 phase change for both surface condensation and 

atmospheric condensation as described in Chapter 2. Due to its small mass, water cycle is not 

included because we expect it to introduce trivial, if any, effects to the Ar cycle. CO2 clouds 

and water ice clouds are not simulated. 

We start with a grid structure yielding 36 × 64 × 40 (latitude, longitude, vertical) 

points. This setting provides a global coverage of Mars with the top of model reaching up to 

0.006 Pa, or about 80 km above the surface. Its horizontal resolution is 5.0 degree of latitude 

by 5.6 degree of longitude. In addition, we experiment with other horizontal resolutions 

including 18 × 32, 72 × 128, and 144 × 256 in order to test the numerical issues related to 

number of grid cells of the model. A unique feature of MarsWRF is that it has a “rotated 

pole” mode, which allows the polar dynamics to be much better represented than the typical 

cylindrical projection models because the polar Fourier filter will no longer cause problems. 

We leverage this rotated pole ability for some of the experiments in this study. 
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5.2.2 CO2 condensation 

From the surface energy balance described by Equation 2.1, we work out the amount 

of CO2 gas (δms) that is involved in the phase change at the surface. This amount can be 

either positive (condensation) or negative (sublimation) depending on the net energy flux. In 

the atmosphere, when the model predicted layer temperature in the N-th layer (TN) goes 

below the critical temperature (Tc,N), which is a function of local pressure and vapor mixing 

ratio, δmN amount of atmosphere is transferred to CO2 ice and the temperature of this layer is 

reset to Tc,N. We have 

δmN = Cp MN (Tc,N – TN) / L,       (5.1) 

where Cp is the specific heat of the Mars atmosphere, MN is the atmospheric mass of the N-th 

layer. Similar treatment for CO2 phase change has been used in previous works [Forget et al., 

1998; Pollack et al., 1990; Wilson and Hamilton, 1996]. 

For simplicity, we assume this amount of CO2 is instantaneously put onto the surface 

and considered as surface condensation for the calculation of the non-condensable gas 

abundance. It reduces the computation work while introducing very limited amount of bias 

because the atmospheric condensation is much smaller than the surface condensation. The 

primary importance of including the atmospheric condensation is to prevent the atmospheric 

temperature from going below the critical temperature [Christensen et al., 1998; Clancy et al., 

2000; Leovy, 2001]. Another neglected aspect of atmospheric CO2 condensation is the 

microphysics and radiative effects of CO2 clouds [Mischna et al., 2000]. Model the ratiative 

effect of clouds is a subject under investigation in the community. A more complete CO2 ice 

cloud formation scheme, including nucleation and particle growth will be discussed in 
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Chapter 6. From the perspective of mass exchange involved, CO2 cloud formation is likely to 

be overwhelmed by the surface phase exchange, therefore is excluded in this study. Same 

argument holds for water ice cloud. 

 

5.2.3 Noncondensable gas 

Besides CO2, the Martian atmosphere is mainly comprised of N2, Ar, CO, H2O, and 

O2. The predominant species, N2 and Ar, do not condense in winters. We therefore denote 

them as non-condensable gas (or non-condensables) as oppose to the condensable CO2 or 

H2O vapor. We have 

qtra = 1 – qvCO2,        (5.2) 

where  qtra is the mass mixing ratio of all the non-condensable tracers and qvCO2 is the mass 

mixing ratio of the CO2 vapor (note this equation holds regardless the mixing ratio is for a 

single grid, for a series of grid, or for the column integral). This relationship is guaranteed 

simply by mass conservation. When there is CO2 phase change, we adjust the mass mixing 

ratios of CO2 vapor accordingly. Assuming a constant mixing ratio of Ar (qAr) within the 

non-condensable gas, we have 

qAr = c qtra,         (5.3) 

where c is the mass fraction of Ar within the non-condensable tracers. We set c = 0.458 

assuming the non-condensable gases are mainly N2 and Ar and using their volume mixing 

ratios given in Table 4.3 in De Pater and Lissauer [2001]. From (5.2) and (5.3), we can 



110 

always back out the mass mixing ratio of Ar from the mass mixing ratio of CO2, which is 

carried in MarsWRF as a tracer. 

When CO2 condenses to the ground, we calculate the total amount of CO2 gas dm that 

needs to be converted to ice. 

dm = dms + ∑ dmN ( N = 1, 2, … 40 ),     (5.4) 

where dms is the mass of the surface condensation, dmN is the atmospheric condensation in 

the N-th layer (layer 1 is at the bottom of the atmosphere). qvCO2 is then adjusted accordingly 

in the first layer. If this amount (dm) is larger than the amount of CO2 available in the lowest 

layer (m1 = qvCO2,1×M1, qvCO2,1 being the mass mixing ratio of CO2 vapor in layer 1, M1 being 

the atmospheric mass of the layer 1), we set the mass mixing ratio of CO2 in the lowest layer 

(qvCO2,1) to zero and remove dm’ of CO2 away in the layer above, where 

dm’ = dm – m1 = dm − qvCO2,1 M1.      (5.5) 

qvCO2 in the layer above is then modified accordingly. This adjustment keeps going 

upwards recursively if the next layer again does not contain enough CO2 to match dm’. On 

the other hand, when sublimation occurs, the reverse adjustment of qtra is only performed for 

the lowest layer of atmosphere. This algorithm guarantees column mass conservation for 

both CO2 and the tracers while holding σ values (see footnote 5 in page 14) constant. It also 

ensures the mass mixing ratio profile of Ar to be a function decrease with height, which was 

not achieved by Nelli et al. [2007]. Sensitivity shows that the majority of the depletion of 

CO2 results from surface CO2 deposition event. As a result, whether to assume all the 

condensation occurring at the surface does not affect the long term climatology. 
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By advection and diffusion, the dynamic core of MarsWRF generates fluxes of CO2 

that tend to reverse this depletion. The inflow of CO2 gas has to be fast enough to maintain 

CO2 frost formation in the winters in order to match the observed pressure cycle. At the same 

time, the inflow of CO2 will dilute the relative non-condensable concentration. 

 

5.2.4 Buoyancy and convective adjustment 

We propose a mechanism that may be related to an un-modeled vertical mixing 

process. We suspect that vertically mixing Ar away from the surface would make Ar less 

susceptible to equator-ward transport from the polar atmosphere. The proposed vertical 

mixing (sketched in Figure 5.1) is driven by the vertical gradient in the atmospheric mean 

molecular (and molar) mass between CO2 (44 g/mol) and non-condensables (N2 28g/mol, Ar 

40 g/mol. Non-condensable being lighter mainly due to the existence of N2). Buoyancy is 

introduced by this discrepancy of molecular mass in the vertical direction, and could cause 

convection in a thermally-stratified atmosphere. Similar ideas due to the presence of water 

vapor have been suggested by previous literatures [Ingersoll, 1970; Weiss and Ingersoll, 

2000]. We do not present simulations with this process included, since it would require a 

rewriting of the model dynamical core to allow for a spatially and temporally variable 

average gas constant R (J kg−1 K−1) and implication of virtual potential temperature [Holton, 

2004]. We intend to investigate such a modification in the future. 

In addition to the buoyancy caused by surface condensation, the convective available 

potential energy (CAPE) introduced by atmospheric CO2 condensation may also contribute 

to mixing in the vertical direction [Colaprete and Toon, 2003; Colaprete et al., 2008]. We do 



112 

not include a microphysics model to simulate cloud formation in this version of MarsWRF, 

yet do account for atmospheric condensation in terms of energy balance. Because CAPE 

boosts vertical mixing and CO2 cloud forms mostly during polar winter times, we have more 

incentive for the inclusion of extra vertical mixing. 

Indeed, we introduce a simple convective adjustment algorithm to the non-

condensable tracer profile calculation. When there is CO2 phase change near the surface, we 

calculate the tracer profile using the method described in the previous section. If the net 

phase change of CO2 is from gas to solid, i.e., net condensation, we make the tracer mass 

mixing ratio uniformly distributed throughout the entire corresponding atmospheric column 

while holding the integrated column masses of both condensables and non-condensables 

constant. This is equivalent to forcing an infinitely fast (compared to the time step used in 

MarsWRF) vertical mixing when air parcels near the surface is the lightest. On the other 

hand, if the net phase change is from solid to gas, i.e., net sublimation, no further action is 

taken because the newly released CO2 from the frost makes the lowest layer even heavier 

therefore providing a stable scenario. In this scenario, the non-condensable tracer is more 

diluted near the surface. Similar convective adjustment practices for tracers are frequently 

used in earth GCMs when excessive dynamical mixing is needed but could not be 

represented by GCM numerics. 

For MarsWRF, this convective adjustment increases the enrichment of non-

condensables near the south pole during the southern winter by 10 to 15 percent, depending 

on the coordinator system setup. Such adjustment may be favorable because it only matters 

the Ar cycle and helps the GCM migrate at the desirable direction. We will discuss why the 
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change of Ar vertical distribution results in this increase in section 5.5. Meanwhile, all the 

runs shown in the next section are simulated with this convective adjustment method. 

 

5.3 Model results  

In this section, we present the annual cycles from the second Martian year of the 

MarsWRF simulations. By this time, the modeled CO2 (and Ar) cycle has already reached 

equilibrium, which takes about 200 sols to attain (we initiate the soil in MarsWRF with 

previous model results, which has been integrated for so long that the subsurface layers have 

already reached equilibrium. Hence, dynamically, the model spins up in a few tens of days, 

so CO2 cycle equilibration dominates the timescale). 

 

5.3.1 Surface pressure 

The surface pressure cycles in MarsWRF near the two VL landing sites are shown in 

Figure 5.2. These outputs have been corrected for the difference in elevation resulting from 

the non-perfect alignment of the numerical model grid point with the actual lander locations. 

The pressure cycles have larger short term variation in the northern fall and winter (the curve 

is more noisy during these seasons), which agrees very well with the VL data. Additionally, 

the phases of the two cycles match closely with that of the VL data. There are two peaks 

every year: the higher peak appears between Ls 240° and 270°, while the lower one appears 

near Ls 60°. The decrease of surface pressure after the two peaks is due to the surface 

condensation in the northern and southern hemispheres, respectively. Over the course of a 
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year, one can find a small phase shift and some disagreements of the absolute values between 

the model and the observation. The features above were also reported by other GCM studies 

[Forget et al., 1998; Haberle et al., 2008; Hourdin et al., 1993], and MarsWRF compares 

well with previous GCM models of the CO2 cycle and surface pressure observations. While 

better pressure cycle can be done via tuning of seasonal CO2 ice emissivity, albedo, and total 

CO2 inventory in the system [Guo et al., submitted-a], whose physical meaning can be 

explained by the aliasing of physical processes, the setup used in the chapter assumes same 

emissivities and albedos for ices in different hemispheres, providing physical consistency. 

Besides, the resulted surface pressures are within 5% of the observed value recorded by the 

VLs. Such surface pressure error is likely to be good enough for resolving the Ar cycle. 

 

5.3.2 Surface CO2 ice deposition 

The zonally averaged CO2 ice surface deposition is shown by the black contour lines 

in Figures 5.3 and 5.4. At both poles, CO2 frost forms during the winter season. The southern 

seasonal cap extends a little further to the mid-latitude region than the seasonal cap in the 

north. The surface density of CO2 ice is higher in the south, where it reaches 1085 kg/m2, 

corresponding to a thickness of 70 cm. It agrees very well with the Mars Orbiter Laser 

Altimeter (MOLA) measurement of the seasonal elevation change in the southern polar 

region [Smith et al., 2001]. The maximum density in the northern pole is roughly 800 kg/m2, 

which is consistent with other model predictions and GRS observations [Aharonson et al., 

2004; Feldman et al., 2003]. 
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5.3.3 Annual cycle of Ar 

The annual cycle of zonally averaged column Ar mass mixing ratio (qAr) is shown in 

Figure 5.3. The averaged mass mixing ratio of Ar agrees with what was measured by the VLs 

[Owen et al., 1977]. As expected, enrichment of Ar in terms of its mass mixing ratio is seen 

during the growing phase of CO2 frost. After the winter solstices, the seasonal caps start to 

retreat and qAr decreases accordingly due to the sublimation of CO2 ice, which dilutes the 

non-condensables. As soon as the polar caps are completely gone, terminating the supply of 

pure CO2 at the surface, further decrease of qAr also halts. Instead, qAr increases because of 

the mixing with air from lower latitudes. The annual process is also evident in Figure 5.4, 

which shows selected latitudinal cross sections derived from Figure 5.3. 

We notice that the qAr cycles at different latitudinal bands transit in phase steadily. In 

the tropical regions, the cycles at opposite hemispheres do not diverge a lot in phase. Starting 

from the equator, the higher peak moves to the later part of a year as the sampling location 

moves to the north; and vice versa, the higher peak moves to the earlier part of a year as the 

sampling location moves to the south. For instance, in Figure 5.4, the thin blue curve (7.5°N) 

and the thick dashed blue curve (7.5°S) are very close to each other. The thin red curve 

(82.5°N) and the thick dashed red curve (82.5°S) are out of phase by roughly 180 degree, 

which is simply due to the timing of seasons at different poles.  

In the equatorial regions, the qAr cycle has an obvious negative correlation with the 

surface pressure cycle (see Figure 5.2). The troughs/peaks in the qAr cycles coincide with the 

peaks/troughs in the surface pressure cycles. The lower troughs of qAr are evident at the 

period when the higher peaks of the surface pressure present. Notice in a hydrostatic model 

atmosphere, surface pressure is simply the mass of air in a column times the gravity divided 
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by the surface area. Therefore, this negative correlation between the qAr cycle and the surface 

pressure cycle suggests that the total Ar mass in low latitudes is relatively constant.  

The peak value of qAr near the south pole is much higher than that near the north pole. 

This dichotomy of enrichment between two different poles is the most obvious in Figures 5.3 

and 5.4. This dichotomy has been reported by observation teams and simulated using other 

GCMs [Nelli et al., 2007; Sprague et al., 2007]. The cause is thought to be the different 

behavior of eddy activities at different hemispheres. Stronger pole-ward transient eddies near 

the south polar region during souther winters help build up the high enrichment. On the other 

hand, during northern winters, strong stationary waves, transient eddies, and the zonal 

averaged transports tend to cancel each other. As a result, the total transport in the north pole 

is very stable and not much enhancement of the Ar can be built up during that period of time 

[Nelli et al., 2007].  

The zonally averaged column Ar mass per unit area (mAr) annual variation is shown 

in Figure 5.5. In general, mAr is larger in the northern hemisphere because of the different 

atmosphere thickness resulting from the topography. The Hellas basin introduces an increase 

of Ar mass between 30°S and 60°S. In the tropical region (between 30°N and 30°S for 

example), the column Ar mass does not change much in a Martian year. At higher latitudes 

(60°N/S or more), we see enrichment of mAr in the beginning of the winter seasons, which 

indicates transportation of Ar from the lower latitudes to the polar regions. This additional 

amount of Ar, combined with the decrease of total air mass is responsible for the increase of 

qAr. Similarly, a deficit of Ar mass can be found when the surface CO2 frost starts to 

sublimate. It suggests an equator-ward flow transporting Ar away from the polar regions. 

When the sublimation is over, the meridional mixing brings Ar back to the poles and the 
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cycle starts over. Notice the enrichment dichotomy is less obvious when viewed as total 

column mass. It is offset by the huge atmospheric mass difference because of the huge 

elevation difference between the two hemispheres. 

We represent our simulation in terms of the enhancement factors (EFs) and compare 

with calibrated data from GRS [Sprague et al., 2004; Sprague et al., 2007] in Figure 5.6. The 

EF is essentially the column mass mixing ratio normalized by the reference value given by 

the VLs. It tells us the relative enrichment of non-condensable gas as to the “standard” VL 

value near the equator (the definition of EFs was provided by Nelli et al. [2007]). The 

comparison of MarsWRF results and GRS data are presented in Figure 5.6. A similar annual 

pattern in the southern polar region (black dashed curve in Figure 5.6) can be identified. Both 

curves dwell above average between Ls 30° to 150°; and the small dip at Ls 70° is evident. 

The peak EF in MarsWRF outputs, however, is much smaller compared to the GRS record. 

The maximum EF is almost 10 times as much as the minimum value for the GRS records, 

while the difference is about 2 to 3 folds in the MarsWRF simulations. The peak EF of GRS 

is 6 while MarsWRF predicts 1.6 near the south pole, even lower than what has been reported 

by the ARC MGCM [Nelli et al., 2007]. 

This mismatch is seemingly a result of excessively fast meridional mixing of Ar in 

the simulation for the southern hemisphere, which dilutes the qAr faster than it actually occurs. 

The increase of qAr after the complete sublimation of the southern seasonal CO2 cap is much 

more abrupt than what the observations show. It suggests that the modeled polar vortex may 

have disappeared too rapidly, or may have not been strong enough, allowing excessive 

meridional mixing. In addition, the seasonal variation we found in the northern polar region 

is not obvious in the data. Even though our absolute values are within the detection error of 
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the GRS measurement, it seems at least plausible from the data that there may be different 

mechanisms controlling the dynamics of Ar in different hemispheres. 

 

5.4 Transportation in polar region and effects of model resolution 

In winter times, CO2 ice condensed on the surface locks the surface temperature at the 

poles to the frost point, significantly lower than the soil temperature away from the seasonal 

caps. Because of this big thermal contrast between high and mid latitudes, strong circum-

polar jets form. These high speed winds circling the seasonal caps form a polar vortex, 

cutting the Hadley circulation at 50 to 60 degree latitude [Forget et al., 1999; Richardson 

and Wilson, 2002a]. It is almost universally agreed that the edge of the polar vortex forms 

some kind of barrier, so that the air in side it is to some extent isolated [Sobel et al., 1997]. 

The dash lines in Figure 5.7 show the EFs at the two poles if there is absolutely no 

atmospheric motion. The underlying assumption for this thought experiment is that when 

CO2 condenses, the non-condensables will be left behind, idling at the same location (latitude) 

where the condensation happens. For the southern hemisphere, the gradient of this 

“imaginary” curve keeps with the GRS observation from Ls 0° to 90°. It essentially suggests 

that for this period of time, the polar vortex is so strong that the atmosphere over the south 

pole does not leak any non-condensable gas away. In other words, the meridional 

transportation during this period is completely shut down. After Ls 90°, the two curves start 

to diverge. The zero-transport curve eventually over-shoots the observed curve, suggesting 

the containment vessel for the non-condensables breaks down. 
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Transportation of material across the polar vortex edge has been studied on earth and 

many numerical methods have been proposed [Sobel et al., 1997; Waugh and Plumb, 1993; 

Waugh et al., 1997]. A quantitative calculation, however, of such transportation has not been 

well established. In MarsWRF and many other GCMs, even if the vortex itself is not leaky 

(which is doubtable), wind represented in a finite number grid box coordinate system 

numerically strips materials away from the wall of the polar vortex. Accumulated in time, 

such numerical error will introduce significant but false equatorial transport of tracer, so 

called numerical diffusion [Eluszkiewicz, 2002].  

In order to test the numerical behavior of MarsWRF in polar transportation, we vary 

the model resolution in high latitudes. Better resolution would improve the representation of 

the wind field and therefore reduce the numerical diffusion described above (and vice versa). 

There are two ways to increase the model resolution near the poles. One is simply using more 

grid points. This method is limited by computing power and storage space. The other method 

is leveraging the “rotating pole” capability of MarsWRF. There are two advantages of the 

latter method. Firstly, it provides more grid cells of rectangular shape at high latitudes in the 

“rotated” coordinate system, which is exactly what we desire. Secondly, it further reduces the 

numerical error due to the Fourier filter applied to the polar region in the normal cylindrical 

projection coordinate system. These two method can be combined (i.e. rotated pole with 

more gird points) to create even more desirable grid structure for polar simulations. 

The standard MarsWRF runs uses a grid structure yielding 36 × 64 × 40 (latitude, 

longitude, vertical) points. We experiment with other horizontal resolutions including 18 × 

32, 72 × 128, and 144 × 256 in both ordinary mode and “rotated pole” mode with the vertical 

convective adjustment. The calculation for the 144 × 256 cases take more than 4 weeks to 
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finish on a 64 processor parallel system. Further increase of number of grid cell will require 

unrealistic computation time and storage space, therefore has not been carried out. Results 

from these runs are compared as follows.  

Figure 5.8 shows the EFs at the polar regions produced by the model using the 

ordinary cylindrical map projection but with different horizontal resolutions. It is clear that 

better resolution in the polar region helps the south polar region retaining more Ar during the 

southern winter. Near the south pole (upper panel of Figure 5.7), when less grid points (blue) 

are used, the EFs during the southern winter are even smaller than those of the standard case 

(red). The maximum of the blue curve reaches only 1.4. If the grid points are doubled in the 

horizontal directions (green), an obvious increase of EFs for the first half of the year can be 

identified. The peak value for that season rises from 1.6 to 2.1. Further increase of the 

number of grid points to 144 × 256 boosts the maximum EF to 2.7 (magenta). Meanwhile, 

for all the runs above, the EFs in the second half of the year remains the same, except for the 

half resolution case. For the northern pole (lower panel), all cases show similar annual 

behavior, except for, again, the low resolution case. 

When compared with GRS measured EFs (grey curve with errorbars), we indeed 

identify the improvement in the southern winter time at the south pole. Even though the 

model predictions are still not close to the observed values, they approach the observation 

when more gird points are utilized. The maximum EF of the highest resolution case reaches 

2.7, close to what Nelli et al. [2007] predicted, though the timing of the maximum is different. 

ARC MGCM predicted the maximum EF at 82.5°S to appear near Ls 120°, while MarsWRF 

predicts this peak to arrive 20 to 30 degrees of Ls later. Nonetheless, some features likely 

with higher frequencies are resolved by MarsWRF, such as the local minima near Ls 120° 
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and Ls 68°, which were not captured in the previous literatures. For the northern polar region, 

every MarsWRF simulations show EFs in general agreement with Nelli et al. [2007] and 

GRS measurements, except the coarse resolution case (blue), which has smaller variation 

than the rest. 

The results of the rotated pole mode simulations are shown in Figure 5.9. In this 

mode, when coarse grids are used (18 × 32, blue), akin the ordinary coordinate system we 

find less enhancement for both poles through a year. The EFs with the standard resolution 

(red) is already improved in the south pole during the south winter. The maximum is 2.1 

compared to 1.6 of the normal coordinate system simulation. On the other hand, it does not 

possess the same short term variability. Further increase of grid points (green and magenta) 

does not further lift the EF by much. The maximum increases from 2.1 to 2.2 (for both green 

and magenta). However, it does introduce more shorter-period variability in the winter times 

for both hemispheres. 

From the analysis above, we conclude that the current tracer transportation 

calculation in MarsWRF is sensitive to the choice of horizontal grid size. In general, runs 

with finer grid sizes match the GRS observation better, and vice versa. It is likely that in 

order to resolve the polar vortex edge and represent the transportation correctly during the 

southern winter, MarsWRF needs to have grid boxes smaller than some critical size. This 

critical size could be different for different projection modes, i.e., the normal cylindrical 

projection and the “rotated pole”. The size of a grid box near the pole in a standard number 

normal projection mode is smaller than that in a standard number “rotated pole” mode, yet 

the former produces less enrichment of Ar during southern winter that the latter. In this sense, 

the “rotated pole” mode of MarsWRF has a great advantage in polar tracer transportation 
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studies (or in other polar atmospheric studies). It reaches comparable quality of answer to the 

normal projection mode with less grid points, which requires less computation power and 

storage space. If we are only interested in the seasonal variation of Ar, the use of standard 

number of mesh grids (36 × 64 × 40) in a “rotated pole” setup would suffice. 

Although we have advanced the enrichment of Ar near the south pole during the 

southern winter by increasing the number of grids, we still do not match the GRS 

observations. The maximum EF from MarsWRF is at least two times too small. Further 

increase of model resolution is not realistic computationally, nor does it seem to solve this 

problem. For example, the 72 × 128 and the 144 × 256 cases differ only slightly, if any of the 

difference is significant. We sense that we have almost approached the limit of MarsWRF in 

simulating the enrichment of non-condensable gas with the current tracer transportation 

scheme. We tend to conclude that near the south pole during southern winter, the achievable 

upper bound of Ar EF by MarsWRF should be about 3, which agrees with previous literature 

[Nelli et al., 2007]. 

Of course, this simulation could be further refined by utilizing better transportation 

scheme, which is currently under investigation. In addition, the “rotated pole” mode is a 

pioneer in the modeling community and needs further validations. These issues, however, are 

beyond the scope of this dissertation. The next generation of MarsWRF is under investigation 

by the Richardson group and NCAR. Some of the intrinsic shortness will hopefully be 

improved in the latest version of WRF. 
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5.5 Vertical distribution of noncondensable gas 

As stated at the end of section 5.2, after introducing the convective adjustment, the 

peak EF during southern winter simulated by MarsWRF increases 10% to 15%. Colaprete et 

al. [2008] has shown that after the inclusion of vertical mixing due to CAPE, the column 

non-condensable gas can be further enriched during southern winter. Nelli et al. [2007] using 

the same GCM (without vertical convection and CAPE) mentioned that Ar has an unphysical 

concentration up in the atmosphere. A common character among these runs which better 

represent the enhancement is evident: the non-condensable gas is more dispersed vertically. 

If the non-condensable gas is no longer concentrated near the surface, where it is most 

susceptible to transport by near-surface, off-cap circulation, the column Ar can be more 

enriched than before because of less meridional transportation. Similar idea has been brought 

up by Colaprete et al. [2008]. 

However, both GCMs (MarsWRF and ARC MGCM) under-predict the enhancement 

compare to GRS observation. One possibility is that the simulated vertical distribution of Ar 

was not perfectly physical and the GCMs had missed some significant processes. Because the 

meridional transportation behaves differently at different altitudes, the total column Ar cycle 

may be sensitive to the vertical profile. In order to understand how the annual Ar cycle 

responses to different vertical Ar distributions, we perform some idealized experiments. 

When CO2 condensates to the surface, we designate the Ar enrichment which used to focus 

near the surface to selected heights while keeping the wind field for advection the same. By 

comparing the resulted Ar EF annual cycles, we try to gain some insights about the relative 

importance of meridional transportation at different heights. 
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We test four concentrating layers: experiment 1: during condensation, Ar 

concentrates between 0 to 5 km (denote it as layer 1); experiment 2: between 5 to 20 km 

(layer 2); experiment 3: between 20 to 40 km (layer 3); experiment 4: between 40 km to 

model top (about 70 to 80 km at different latitudes, layer 4). The model uses the standard 

number of grid cells and the normal cylindrical projection. The results are shown in Figure 

5.10. In the experiments that Ar is concentrated in either 0 to 5 km or 20 to 40 km, we see 

larger enhancement in winter seasons than the standard run with convective adjustment. The 

EFs near the south pole reach 2.0 in exp. 1 and 2.4 in exp. 3. However, near the north pole, 

they also go up to 1.7 in exp. 1 and 3.2 in exp. 3. Slight increase of EF can be found in the 

winter for exp. 4. As a summary, near the south pole, the tracers are better contained in the 

south pole during the southern winter in layer 1 (0 to 5 km) and layer 3 (20 to 40 km), while 

they are more vigorously transported northward in layer 2 (5 to 20 km). Near the north pole, 

the tracers can be sealed in the north pole efficiently in layer 1 for most of the northern 

winter; more efficiently in layer 3 for a part of the north winter starting at Ls 240°; and for a 

small fraction of winter in layer 4 (40 km and above). By contrast, the tracers are rapidly 

transported southward in layer 2. These behaviors suggest that in layer 3, the polar vortex 

edge is the least permeable to tracers, even though the zonal wind is not the strongest. On the 

other hand, the excessively low EFs in exp. 2 imply that the tracers are transported most 

vigorously equator-ward at this pressure level, where zonal wind is not the weakest. In our 

simulations with the convective adjustment, the excessive equator-ward transportation in 

layer 2 is probably cancelled by the better containment in the other layers 

A local maximum of non-condensable gas found in the ARC MGCM results was 

believed to be the cause of the low EF in winter [Nelli et al., 2007]. Interestingly, the local 
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enrichment is at 0.1 to 0.8 mbar, which is contained in the second layer of our experiments 

above. We have just shown that the equatorial transportation in layer 2 is the most active. If 

the concentration of Ar in layer 2 can be reduced, less equatorial transportation should 

increase the column EFs. 

 

5.6 Conclusions and discussions 

The Ar cycle presented in this chapter obtained from MarsWRF using a simple model 

of CO2 condensation/sublimation qualitatively confirms our ideas about the dynamics 

associated with CO2 surface condensation. When CO2 condenses out in the winter seasons, 

non-condensable gases are left behind in the atmosphere, which increases the observed Ar 

mass mixing ratio. The pole-ward transportation of Ar in winter further enhances this 

increase. The polar enrichment dichotomy, i.e. the higher peak EF in the south, due to 

different dynamics in different hemispheres is resolved. When compared with GRS 

observations, we found that Ar is more vigorously transported in the polar regions than the 

tropics. 

The modeled EF in the north polar region is within the detection error of GRS. We 

devote most of our effort trying to minimize the gap between the simulations and GRS 

measurements in the south. With aid of the convective adjustment, increased resolution in the 

polar regions, and the unique “rotate pole” feature provided by MarsWRF, we are able to 

increase the maximum EF from 1.6 to 2.7. This maximum agrees with previous literature, 

though both modeling work under-predict the peak EF by at least 100%. Further increase 
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seems to be limited by computation power and, more likely, the horizontal advection 

algorithm. 

One needs to be extremely careful when consider a new advection driver. For 

MarsWRF, heat and momentum are also transported using the same horizontal advection 

algorithm and they seem to behave correctly (and physically, it should be the case). Tuning 

the transport of Ar to match the GRS observation may result in wrong distribution of energy 

and momentum, thus ruin the major purpose of the GCM. 

There is still room to improve with the current advection scheme. The convective 

adjustment is simple and can be more sophisticated when varying gas constant is included. 

The “rotated pole” feature of MarsWRF is not extensively validated. With help of the next 

version of MarsWRF, we should be able to utilize much more computation power and better 

numerical methods for tracer transport. 

From the comparison of EFs between a perfectly sealed polar region and the GRS 

observation (Figure 5.7), one may draw the conclusion that from Ls 0° to 90°, the air is 

perfectly contained by the southern polar vortex. It is very difficult to imagine that the 

atmosphere can be as efficient as a solid container in keeping gases from escaping. GCM 

simulations support this argument. This could potentially suggest brand new physical 

phenomenon or spacecraft measurement error. 
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Figures 

 

Figure 5.1: Sketch of the buoyancy effect of the non-condensable gas. 
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Figure 5.2: Pressure cycles at the VL landing sites. Grey dashed line: smoothed VL1 (22.5°N, 

50°W) surface pressure data; black dashed line: smoothed VL2 (48.3°N, 225.9°W) surface 

pressure data (these two smoothed curves are polynomial fit to the VL observations provided 

by Tillman et al., 1993); grey solid line: MarsWRF surface pressure cycle near VL1 site; 

black solid line: MarsWRF surface pressure cycle near VL2 site. 
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Figure 5.3: Annual Ar variation. X-axis: Ls in degree. Y-axis: north latitude. Color: Column 

mass mixing ratio of Ar (qAr, unitless), zonally averaged. Black contour: seasonal variation of 

CO2 ice surface density (kg/m2), zonally averaged. 
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Figure 5.4: Seasonal variation of the zonally averaged column mass mixing ratio of Ar (qAr) 

at different latitudinal bands, whose central latitudes are 82.5°N (thin red), 57.5°N (thin 

green), 32.5°N (thin black), 7.5°N (thin blue), 82.5°S (thick red), 57.5°S (thick green), 

32.5°S (thick black), 7.5°S (thick blue). 
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Figure 5.5: Same as Figure 5.3, except the color shows the zonally averaged column mass of 

Ar per unit aera (mAr, kg/m2). 
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Figure 5.6: Enhancement factors (EFs) annual variation at high latitudes. Dashed lines: EFs 

of Ar at 82.5°S (black) and 82.5°N (grey) produced by MarsWRF. Solid lines with errobars: 

EFs of Ar at 82.5°S (black) and 82.5°N (grey) given by GRS observations calibrated with 

MarsWRF outputs. 
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Figure 5.7: EF annual variation at high latitudes. Dashed lines: EFs of Ar at 82.5°S (black) 

and 82.5°N (grey) if there is no meridional transportation. i.e. for any amount of CO2 ice 

deposited on the surface, the mass of Ar left in the atmosphere is proportional to the mass of 

the newly formed CO2 frost. The ratio is preset to the mass mixing ratio given by VL data 

(1.45%). Solid lines with errobars: EFs of Ar at 82.5°S (black) and 82.5°N (grey) given by 

GRS observations calibrated with MarsWRF outputs. 
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Figure 5.8: EFs at 82.5°S (upper panel) and 82.5°N (lower panel) produced by MarsWRF 

using the standard cylindrical map projection with the same vertical resolution (40 layers) but 

different horizontal spatial resolution. Blue: horizontal resolution is 18 (south-north) × 32 

(east-west), or half of the standard resolution; red: 36 × 64, the standard MarsWRF setup; 

green: 72 × 128; purple: 144 × 256. Grey curves with errorbars: GRS measured EFs, 

calibrated with MarsWRF standard run surface pressure data. 
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Figure 5.9: Same as Figure 5.7, except that MarsWRF is run in the “rotated pole” mode. 

MarsWRF data used to calibrate GRS measurement is the same. 
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Figure 5.10: Same as Figure 5.8, different colors are for different experiment setup. Blue: 

with convective adjustment, Ar distributed evenly through the vertical column; red: exp 1, Ar 

concentrates between 0 to 5 km (layer 1); black: exp 2, Ar concentrates between 5 to 20 km 

(layer 2); purple: exp 3, Ar concentrates between 20 to 40 km (layer 3); green: exp 4, Ar 

concentrates between 40 km to model top Ar (layer 4); light blue: standard vertical 

distribution, Ar concentrated near the surface. Grey curves with errorbars: GRS measured 

EFs, calibrated with MarsWRF standard run surface pressure data. 
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Chapter 6: Modeling the CO2 ice clouds 

 

Abstract 

In certain environments, CO2 gas becomes dry ice crystals in the atmosphere of Mars. 

Consequently formed dry ice clouds may later precipitate to the ground, if not re-sublimate 

completely on the way down. In terms of mass and energy exchange, the atmospheric 

deposition/sublimation is seemingly trivial compared to the phase change at the surface, 

which predominately controls the seasonal CO2 cycle. Albeit their direct impact seems small, 

CO2 clouds may be important in altering the radiative transfer and the air dynamics, therefore 

having larger influence on the climate of Mars. Meanwhile, the Mars sciences have matured 

to a stage such that sophisticated modeling and experimental work of the microphysics 

process of CO2 ice is on high demand. Some GCMs have already initiated the inclusion of 

corresponding treatments. In this chapter, I present my attempts to include microphysical 

calculations for CO2 ice cloud formation to MarsWRF. The inherited microphysical model 

takes various nucleation and accumulation mechanisms into account and computes the ice 

particle growth rate for different atmospheric conditions. For each grid cell in the model 

atmosphere, I use discrete size bins to characterize the distribution of ice particles. This 

procedure could potentially be useful to future radiative transfer models and surface 

microphysics models. Preliminary results show promising agreements with spacecraft 

observations. 
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6.1 Introduction 

The discovery of CO2 ice clouds dates back to the Mariner’s era when spectral 

signature of CO2 ice was found in the upper atmosphere of Mars [Herr and Pimentel, 1970]. 

Subsequent space missions have provided both direct and indirect evidences for its existence 

in the Martian atmosphere [Neumann et al., 2003]. Since then, many physical phenomena on 

Mars have been attributed to the CO2 ice clouds. For example, CO2 ice was thought to be 

closely associated with the energy cycle. In earth’s atmosphere, radiative effect of clouds and 

aerosols is an important contributor to the energy balance. Unfortunately, it is also the most 

uncertain part because of complicated feedbacks in the earth system. In the current climate of 

Mars, direct radiative effects of CO2 ice clouds may be too small to make a global impact. 

Nonetheless, it may alter the atmospheric dynamics by providing energy to vertical 

convections [Colaprete et al., 2008] and contribute to the energy cycle by modifying the 

(effective) surface emissivity [Byrne and Ingersoll, 2003; Colaprete et al., 2005; Guo et al., 

submitted-b; Kieffer et al., 2000]. Moreover, CO2 cloud formed in ancient Martian 

atmosphere may introduce greenhouse effects significant enough to allow the existence of 

liquid water on the surface of Mars [Colaprete and Toon, 2003; Mischna et al., 2000]. 

Atmospheric CO2 condensation usually happens in extremely cold condition, which 

makes passive infrared detection difficult. Active measurements such as LIDAR detection 

are not as plenty due to the limitations in deep space mission instrumentation. Microphysics 

models and laboratory experiments therefore become important alternatives. Many GCMs 

have started to incorporate microphysics module to simulate CO2 cloud formation [Colaprete 

and Toon, 2002; Tobie et al., 2003]. To avoid computation complexity, the air grid is usually 

characterized with a single ice particle size, or a few moments (e.g. the mean and the 
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standard deviation) to describe the size distribution and to aid subsequent radiative 

calculations. 

I adopt the microphysics models developed by Wood [1999] and integrate them to 

MarsWRF. Instead employing a few moments to describe the size distribution of ice particles, 

15 size bins are used to cover particle sizes ranging from 10−10 m to 10−2 m with number 

density information. This setup should be useful to future radiative transfer and surface 

microphysics calculations. Although the work is still at its preliminary stage, promising 

results have already been generated. 

I provide a brief overview to the CO2 microphysics models in section 6.2. Section 6.3 

and 6.4 present the preliminary model results from 1D and 3D simulations, respectively. 

Summaries and discussions of this chapter are given in section 6.5. 

 

6.2 Microphysics model 

Most of the theoretical details of the nucleation model and the particle growth model 

can be found in Wood [1999] and the literatures referred in that work. A similar nucleation 

model have also been discussed by [Maattanen et al., 2005]. Selected background 

information is provided to help the reader of this dissertation to understand relevant physics 

concepts and model implementation. 
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6.2.1 Nucleation 

There are three potentially active nucleation mechanisms in the atmosphere of Mars: 

homogeneous nucleation, heterogeneous nucleation and ion nucleation. Homogeneous 

nucleation refers to the formation of ice particles directly from the vapor phase. It usually 

requires several hundred percent of super-saturation 7 . Heterogeneous nucleation, which 

involves a foreign substrate as the nucleus, generally requires much smaller super-saturation 

ratio, but the value depends critically on the nature of the condensate-substrate interface. Icon 

can also promote nucleation by forming small clusters of vapor molecules bounded by 

electrostatic force which allows nucleation at super-saturations typically intermediate to 

those required for homogeneous nucleation and heterogeneous nucleation. However, ion 

distribution is neither modeled nor prescribed in MarsWRF. I simply ignore the ion 

nucleation in the following discussion. 

For an environment that the partial pressure of the (CO2) vapor and the ambient 

temperature are known, the equilibrium pressure is decided. The homogeneous nucleation 

rate (Jhom) and the size of the cluster (r*) can therefore be determined. The free energy of 

formation of a spherical cluster of molecules with radius r is given by  

ΔFhom = (−4πr3 / 3Ω) kT lnS + 4πr2σ,      (6.1) 

where Ω is the molecular volume in the condensed phase, k is the Boltzmann constant, T is 

the temperature, S is the saturation ratio and σ is the surface energy. The critical radius r* of 

                                                      
7 Saturation ratio S is defined as S = Pv/Pv,eq(T), where Pv is the partial pressure of the vapor, Pv,eq(T) is the 
equilibrium vapor pressure over a float condensate surface at ambient temperature T. Super-saturation, s, is the 
saturation exceeding unity, i.e., s = S – 1. 
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the nucleus, beyond which the free energy decrease therefore favors growth, is derived by 

taking the derivative of the right hand side of Equation 6.1 and set it to zero: 

r* = 2Ωσ / kT lnS.        (6.2) 

The corresponding critical free energy is 

ΔF* = 16πΩ2σ3 / 3(kT lnS)2.       (6.3) 

The homogenous nucleation rate, which has a unit of m−1s−1, is given by 

Jhom = ξ4πr*2(RT / 2πMv)1/2 (ΔF* / 3πkTn*2)1/2 fδTNv [Nv exp(−ΔF* / kT)], (6.4) 

where ξ is the sticking coefficient (taken to be 1), or probability that an impinging condensate 

molecule will stick to the critical nucleus, Mv is the molecular weight of the vapor, n* is the 

number of molecules in a critical cluster, fδT is a unitless factor that accounts for the fact that 

the nucleus is not isothermal, Nv is the number density of the molecule in the vapor phase. 

If the size, shape (assumed to be spherical) and number density of the substrate 

(usually assumed to be aerial dust) is also provided, one can calculate the heterogeneous 

nucleation rate by 

Jhet = 4π(rCN)2 (ZRTdr*sinθ / fvMv) fδTNCN(Nv)2 exp[(2ΔFdes – ΔFsd – fΔF*) / kT], 

          (6.5) 

where rCN is the radius of the foreign substrate, Z is the Zeldovich factor defined as Z = (ΔF* 

/ 3πkTn*2)1/2, d is the mean jump distance of an adsorbed molecule, θ is the contact angle 

between the angle and the nucleus, v is the vibration frequency of the adsorbed molecule, 

NCN is the number density of the condensation nuclei (taken to be the number density of dust 
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grains), ΔFdes and ΔFsd are the free energies of activation of desorption and surface diffusion 

respectively,  f is a factor defined by 

f = 1/2 + 1/2 [(1 – Xm) / g]3 + 1/2 X3 [2 – 3(X – m) / g + [(X – m) / g]3] + 3/2 X2m[(X − 

m) / g − 1],          (6.6) 

where g = (1 + X2 – 2Xm)1/2, X = rCN / r*, and m = cosθ. Heterogeneous nucleation is only 

favored when rCN > r*. The net nucleation rate is a combination of Jhom and Jhet.  

 

6.2.2 Particle growth 

The nucleation model provides the size and number density of the nuclei. Subsequent 

crystal particle growth model determines how fast the CO2 ice accumulates to the nuclei, 

with information of the ambient temperature, pressure and saturation ratio. There are two 

potential crystal growth mechanisms: two-dimensional nucleation and screw dislocation 

growth, each providing different kinetic coefficients for different growth rate, which are 

probably the upper and lower bounds for a given super-saturation. Figure 6.1 shows the 

evaporation and condensation rates with the two assumptions (with units of μm/s) for a given 

atmospheric pressure, vapor mixing ratio, and nucleus size. The growth rate is considered a 

function of the super-saturation ratio s (in this case, a function of temperature) and a small 

change in s may results in big change in the growth rate. There are limitations to the growth 

model. For instance, the shape of the snow flakes on Mars remains largely unknown and we 

assumed them to be spherical, which is obviously not the case for earth. Such assumption 

simplifies the growth model and may provide practical information for potential radiative 

calculations. The actual growth mechanism in the Martian atmosphere, single ledge or two-
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dimensional, is unknown. Practical compromise was given to the single ledge nucleation 

since it is activated a much lower super-saturation ratio. Finally, the model only predicts 

accurate evaporation rate at certain atmospheric conditions. In the other environments, 

arbitrary evaporation rate values have to be assigned according to the super-saturation. 

Fortunately, for any supers-saturation ratio less than zero, relatively fast evaporation can be 

assumed. Meanwhile, coagulation is completely ignored. 

There are mass and latent heat exchanges involving with the CO2 phase exchange, 

which have the potential to modify the temperature, pressure, and super-saturation of the 

atmospheric grid. As evidently shown in Figure 6.1, the growth rate is very responsive to the 

super-saturation. A slight change in super-saturation may result in a sizeable change in 

growth rate, even from condensation to evaporation. Therefore, I utilize an iterative method 

to support a dynamically adaptive computation for the particle growth in a GCM time step 

(180 seconds for standard MarsWRF simulations). The growth rate is first assumed to be 

valid for the entire time step, after which it is recalculated. If the new growth rate is 

significantly different from the old one, meaning the atmospheric condition is heavily 

modified if the assumption is true, I reduce the time scale to a third of the original and see 

how big the difference is. When the change of the growth rate is acceptable (less than some 

pre-decided threshold), I update the size of ice particle, the pressure and temperature of the 

atmosphere and repeat the procedure for the remaining of the time step. 
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6.2.3 Species array 

In the physical world, there are probably only three kinds of solid particles in the 

atmosphere of Mars: dust grains, CO2 ice crystals and water ice crystals (latter two very 

likely with dust cores, water ice is ignored in this chapter). For 3D numerical simulations, 

there are more “species” involved with CO2 ice physics conceptually: aerial dust particles 

which also have the potential to become condensate nuclei and accumulate CO2 ice; ice 

crystals which is comprised of two species: pure CO2 ice and the dust core. In MarsWRF, 

these four species (dust, nuclei, ice, and core) are described by species arrays, each 

containing 15 elements. Each element of a given species array indicates the mass mixing 

ratio for particles of the corresponding size. When the atmosphere is super-saturated, the 

nucleation driver transfers the dust particles of associated sizes to the array of “nuclei”. The 

growth model then calculates how much ice is accumulated to the nuclei. The amount of 

accumulated ice is passed to the “ice” array and the mass of the dust is passed to the “core” 

array. Notice the “ice particle as a whole” can be new nuclei and should be used in the 

growth calculation, therefore the mass of ice and core was made separately additive. Ice 

particle growth/evaporation requires rearrangement of the “ice” array and “core” array. 

Consequently, core of multiple sizes may end up in ice particles of a same size. Keeping 

track of that information (core size) is too expensive computationally. Therefore, only the 

mass in the “core” array is recorded. When evaporation drives the CO2 ice away completely, 

the mass in the “core” array is redistributed to the “dust” array assuming a log-normal size 

distribution with a mean radius of 2 microns [Newman et al., 2002a]. 

Atmospheric circulation and precipitation will potentially modify the species arrays in 

both the horizontal direction and the vertical direction. The utilization of the size bins will 
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provide precise information about the size distribution of dust and ice in a given atmospheric 

grid cell. It slows down the GCM integration significantly, but contains the required 

information for subsequent calculations, such as radiative transfer and surface microphysics. 

The species arrays have not yet been coupled with the current atmospheric transport 

driver or sedimentation driver yet due to their incompleteness. Nor are the radiative and 

surface microphysical effects of the CO2 ice cloud included. The Richardson research group 

is currently working closely with NCAR on higher quality numerical methods for these 

simulations. 

 

6.3 1D simulation results 

MarsWRF is setup to perform 1D simulation without atmospheric circulation at 60°N. 

Surface energy balance is removed from this run because the lack of sensible heat and mass 

input from the lower latitude will cause the atmosphere to collapse completely in winter. 

Radiative forcing drives the annual cycle of atmospheric temperature and pressure. The dust 

climatology for radiative transfer calculation is parameterized according to spacecraft 

measurement. A separate “dust” array which assumes the role of the potential nuclei is 

initialized with a column integrated optical depth of 0.1, assuming the dust’s mass decreases 

exponentially with pressure and has a log-normal size distribution with 2 micron mean size. 

The modeled atmosphere has 25 layers. Once formed, the ice particles are suspended at the 

location of the formation. Obviously, this simulation is merely a showcase for different 

behaviors of the microphysics driver in various atmospheric conditions rather than an attempt 

to reproduce the actual atmosphere.  



146 

Model results are shown in Figure 6.2 and 6.3. Figure 6.2 presents some relevant 

annual cycles. Panel (a) shows the annual cycle of the temperature, panel (b) shows the 

super-saturation ratio in the atmosphere, and panel (c) shows the mass mixing ratio of CO2 

ice. CO2 ice starts to form when the atmosphere becomes super-saturated (super-saturation 

ratio is positive). The formation process is fast and very responsive to super-saturation ratio. 

The ice abundance gets as high as 10% of the current amount of atmospheric weight. It 

seems that lower super-saturation ratios are required for the formation of ice particles in the 

lower atmosphere. CO2 ice crystals do not completely disappear until the air is rather warm, 

suggesting a very small saturation is sufficient to maintain the existence of ice crystals once 

they have formed. 

Panel (c) of Figure 6.3 shows the annul cycle of surface pressure, which is an 

indication of the total CO2 gas in the atmosphere. Because of the removal of the CO2 

exchange at the surface, the surface pressure does not change until atmospheric condensation 

activates. When the condensation starts in higher atmosphere, the decrease of surface 

pressure is slow. As soon as CO2 begin to condense in the lower atmosphere, a quick and 

large drop in surface pressure can be found. In a hydrostatic atmosphere, pressure is higher at 

lower altitudes. Same mass mixing ratio at different pressure level corresponds to different 

mass. For instance, ice mass mixing ratio at in layer 13 has similar maximum as in layer 23, 

however, the corresponding mass is very different. This is why the pressure drop associated 

with lower altitude phase change is much larger. 

Panels (a) and (b) of Figure 6.3 present some snap shots of the “dust” arrays and the 

“ice” arrays at different altitudes at Ls 300°, well into the northern winter. For layers 23, 18 

and 3, the “dust” arrays maintain the log-normal distribution, suggesting in these layers the 
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particle growth is not intense enough to change the ice crystal size significantly due to the 

relatively small super-saturation. Dust particles smaller than 10−4 m are almost absent in 

layer 8 and 13, indicating much stronger particle growth moves the dust grains to larger size 

ice crystals. The “ice” arrays show interesting distribution. The ice particles are either very 

large (~tens of microns to tenths of millimeters) or very smaller (<10−8 m). Recall that I have 

not considered precipitation (or “snowing”) in this experiment. If proper treatment for 

sedimentation is included, large ice particles are possible to fall to the ground while tiny ones 

may hang in the air. The larger ones are not very likely to reform due to the lack of 

condensation nuclei, unless some other mechanisms replenish the aerial dust at heights. 

Further simulations show that the total mass of CO2 ice formed, or equivalently the 

maximum decrease of surface pressure, is rather sensitive to the assigned background dust 

abundance. Double the “dust” array causes roughly twice the CO2 ice mass increase or twice 

the surface pressure decrease throughout a Martian year. It suggests that for this setup, the 

cloud formation is still far from “saturation”. Because the surface condensation process is 

absent in the simulation, the pressure is relatively high, resulting in relatively large super-

saturation. When the much more hefty surface condensation is included, or the number of 

nuclei is large enough, the in situ pressure would change significantly, and the associated 

saturation ratio would have been strongly influenced, leading to different (probably reduced) 

nucleation rate and growth rate. 
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6.4 3D simulation results 

This section shows the preliminary results of MarsWRF with CO2 microphysics. The 

surface energy balance model is included in the 3D simulations, which guarantees the 

modeled atmosphere with more realistic pressure and temperature cycles. The “dust” array is 

prescribed and will not be replenished. Experiments in this section are designed for the 

exploration of possible distribution and morphology of CO2 clouds in the Martian 

atmosphere. It costs about 24 hours on 16 CPUs for MarsWRF to integrate one Martian year 

without the CO2 microphysics driver. When the microphysics module is included, the 

simulation is about seven times slower. 

 

6.4.1 Control case 

Figure 6.4 shows an instantaneous map of the CO2 ice in layer 15 at Ls 107.37°, when 

the southern hemisphere is in winter. CO2 ice cloud contains a few percent of the 

atmospheric mass and completely covers the southern polar region up to 50° S. The boundary 

of the cloud roughly follows the critical temperature contour. Higher concentration of ice 

tend to focus on higher latitudes, where the temperature is the lowest, though some patchy 

highs can be found near 60° S, which may be related to wave activities. 

Figure 6.5 provides a zonal view of the CO2 ice and temperature for the same time 

step. There seems to be two “cloud decks” over the southern pole. The lower cloud deck 

peaks at 3 to 4 km above the surface, extends to 60° S, and is probably associated with the 

low temperature induced by the surface frost coverage. The higher one concentrates at 10 to 
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11 km above the surface and is mostly confined to 75° S and pole-ward, which seems to be 

associated with a temperature low at that location.  

Figure 6.6 shows the CO2 ice map in layer 15 at northern winter. Northern winter is in 

general warmer than the southern winter because of the thicker atmosphere, which does not 

favor the formation of the CO2 ice cloud. Cloud coverage is not continuous for the northern 

winter sky and the concentrations are slightly lower (negative values are due to the 

imperfections of the numerical Fourier filters and should be discarded). The zonal average 

(Figure 6.7) suggests that the northern winter cloud is thinner than its southern counterpart. It 

is mostly confined to the surface because the atmospheric temperature is 20 K warmer than 

the southern winter. 

Direct detection for CO2 ice cloud is very scarce. Mariner 6 and 7 first returned 

spectral evidence for solid CO2 in the upper atmosphere of Mars [Herr and Pimentel, 1970]. 

The Mars Orbiter Laser Altimeter (MOLA) instrument received echo from above the Mars 

surface and attribute the strong and brief reflections to the CO2 snow events [Ivanov and 

Muhleman, 2001; Neumann et al., 2003]. The Mars Climate Sounder (MCS) also detected 

aerosols in the polar sky that can not be explained by dust or water ice grains [Heavens, 

personal communication]. The latitudes and altitudes of the ice clouds reported by MOLA 

and MCS are consistent with MarsWRF predictions. 

 

6.4.2 Higher obliquity 

The secular perturbations of all other planets in the Solar System causes the orbit of 

Mars to change chaotically [Laskar, 1990]. Different orbital parameters, including spin axis 
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obliquity and eccentricity result in different surface insolation annual variation [Laskar et al., 

2002] and modifies the climate. We experiment with a higher obliquity (40°) assuming its 

change would not cause any other boundary conditions in MarsWRF to vary. We also 

assume the eccentricity of the orbit of Mars remain the same in these experiments. 

Figure 6.8 shows the atmospheric CO2 ice distribution in the southern winter. With 

higher planetary obliquity, the polar winter night reaches to lower latitudes. As a result, the 

cloud coverage extends to lower latitudes. The boundary of the clouds shows a good 

correlation with the atmospheric temperature contours. On average, the concentration seems 

similar to the control case in this layer, but the maximum value is higher. When viewed in 

zonal average (Figure 6.9), the clouds maintain the “two deck” structure. Both decks extend 

to lower latitudes with higher abundance, while the lower concentration levitates to 10 km 

above the surface. These changes can be tied to the extension of cold regions in the high 

obliquity case. 

In the northern winter, the clouds show similar pattern of change, i.e. advancing to 

lower latitude with higher abundance. In addition, one can find small amount of ices 

developing 20 km above the surface in the equatorial region and over the south pole. The 

equatorial clouds seem to be correlated with a temperature low while the southern polar 

reservoir may have developed due to the thermal wave induced high super-saturation. 

 

6.5 Summaries and discussions 

I incorporated a state-of-the-art microphysics model to MarsWRF. The work is still in 

its preliminary phase and lots of compromises have yet been made. However, the model has 
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already worked mechanically and provided results that are physically sound. It is capable of 

generating seasonal cycle of CO2 ice clouds and reasonable size spectrum of ice crystals. As 

expected, heterogeneous nucleation dominates the nuclei generation and the crystal growing 

processes responds very fast to the super-saturation, which is mostly driven by air 

temperature and pressure. Our simple 3D simulations show good agreement with spacecraft 

observation even without sedimentation and advection. It may suggest that the sedimentation 

is negligible in the Martian atmosphere, which is probably not true for larger particles, or the 

re-formation of ice crystals is very fast. The latter implication requires a fast nuclei replenish 

mechanism. 

There is much to be done to improve the physicality of the cloud formation scheme. 

The most urgent task is to fix the sedimentation routine and the advection routine. Such effort 

would give us more confidence in examining the morphology and spatial variation of the 

clouds. As for the current model setup, the background dust is fixed in MarsWRF. This fixed 

dust species is used as the potential condensation nuclei. In this scenario, when a dust particle 

becomes the core of an ice grain and later precipitate to the ground, it is lost from the 

atmosphere from then on. This is an extremely naïve assumption. The actual dust cycle on 

Mars will obviously change with time and its size distribution may also differ from the log-

normal shape. Research on the dust cycle itself is a challenging topic in the Mars science 

community. The simulated dust storms usually vanish later than what have been observed 

[Newman et al., 2002b]. There is hypothesis that the early turn-off may be a consequence of 

the scavenge effect due to the CO2 ice formation.  

Ideally, we should couple the dust cycle with the CO2 cloud cycle perfectly given 

good dust cycle driver and good transport driver. The real challenge arises when we bring 
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water ice on stage. Microphysics of water ice formation also requires dust particles as nuclei. 

As a result, the water ice will compete with the CO2 ice for nucleus. Moreover, the water ice 

particle itself can be the nucleus for CO2 ice formation, and vice versa, the CO2 ice particle 

may be coded with water ice. Coupling these three species may be an extremely complicated 

and computationally expensive, yet in principal attainable. 

The other important aspect of CO2 ice cloud is its radiative effect. In the current 

climate regime, the direct radiative effects of the CO2 ice clouds may be less intense 

compared to that of the tropical water ice cloud belt, because it concentrates mostly in the 

polar night, where incoming sunlight is the weakest. On the other hand, modification of 

surface ice albedo and emissvity due to CO2 snow and surface microphysics may have 

profound impact to the energy cycle [Guo et al., submitted-a] and may explain the existence 

of the residual CO2 cap in the south pole [Colaprete et al., 2005; Guo et al., submitted-b]. 

The cooling or heating effect of CO2 ice cloud may be more important for a denser Martian 

atmosphere [Mischna et al., 2000]. The microphysics model is ideal for precise radiative 

calculation because it provides the size information along with the geographic distribution. 

All the published CO2 microphysics models have only been partially validated 

[Maattanen et al., 2005; Wood, 1999]. As we mentioned earlier, direct detection of CO2 ice 

cloud is scarce, so is the laboratory experiment to constrain the nucleation and growth model. 

This is a much harder task than writing down the physical formulations and may require 

another Ph.D. dissertation as a first attempt. 
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Figures 

 

Figure 6.1: Ice particle growth rate for given condition, reproduction of Figure 8.7 in Wood 

[1999]. Ambient pressure is 90Pa, CO2 vapor mixing ratio is 90%, size of the crystal is 0.1 

micron. 
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Figure 6.2: Annual cycles in the one dimensional MarsWRF at 60°N latitude. Panel (a): 

temperature annual cycle (layer number 25 is the closest to the surface); panel (b): super-

saturation ratio annual cycle shown in log scale, truncated at 0.01; panel (c): CO2 ice mass 

mixing ratio annual cycle shown in log scale. 
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Figure 6.3: 1D simulation results. Panel (a): snap shot of the “dust” arrays at Ls 300° for 

different layers; panel (b): snap shot of the “ice” array; panel (c): surface pressure annual 

cycle.  
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Figure 6.4: CO2 ice cloud and atmospheric temperature distribution. The x axis shows the 

eastern longitude while the y axis shows the northern latitude. Color map shows an 

instantaneous mass mixing ratio map of the CO2 ice at layer 15 at Ls 107.37°. Contour lines 

indicate the atmospheric temperature. 
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Figure 6.5: Zonal average of CO2 ice mass mixing ratio and temperature at Ls 107.37°. The x 

axis shows the northern latitude and y axis shows the altitude. 



158 

 

Figure 6.6: Same as Figure 6.4, except the time is at Ls 279.83°. 
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Figure 6.7:  Same as Figure 6.5, except the time is at Ls 279.83°. 
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Figure 6.8: Same as Figure 6.4, except the obliquity of Mars is set to 40°. 
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Figure 6.9: Same as Figure 6.5, except the obliquity of Mars is set to 40°. 
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Figure 6.10: Same as Figure 6.6, except the obliquity of Mars is set to 40°. 
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Figure 6.11: Same as Figure 6.7, except the obliquity of Mars is set to 40°. 
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