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What a man knows not, that he doth require,

And what he knoweth, that he cannot use.

—-Goethe, "Faust"
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Abstract

A dynamical model of an RR Lyrae star has been
constructed which is similar to those of Christy (1) in
its treatment of the envelope interior to the hydrogen
ionization zone but which describes the hydrogen ion-
ization zone and the outer atmosphere in some detail, In
the optically thin region heat transfer is described with
the gray equation of radiation transfer which yields an
integral expression for the heating rate, assuming small
deviations from sphericity.

The model which has been constructed has the

parameters:

My = .76, T, = 6500°K, M = .58M,, ¥ = .30,

The model results of Christy for the same parameters have
been used as initial conditions,

The results have indicated a close connection
between the complex hydrogen ionization zone dynamics
and the observable phenomena in the star, such as rising
branch shocks and the shape of the velocity curve during
the decreasing light phase,

The work done by the hydrogen ionization zone
to maintain pulsation has been found in this calculation

to be in excellent agreement with the figure obtained by
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Christy for this star.

Deviations from radiative eqguilibrium in the
optically thin layers have been found to be confined to
tau less than 0.1 and to high gravity, low temperature
phases, when they may exceed 500° K.

Model atmospheres have been constructed with
the dynamical pressure and temperature distributions
using Mihalas' program (2). The emergent continuum fluxes
obtained show considerable similarity to observed mono-
chromatic light variation, although the amplitudes are
greater and the rise time is less than is observed. The
errors in temperature determinations based on fitting
equilibrium models to the continuum have been found to be
of the same order as fluctuations which appear in obser-
vational determinations of the radius variation,

It has been concluded that the differences be-
tween the model and the observed stars may be due in part
to the omission of convection from the model, since it

may become quite important during high gravity phases.

(1) Christy, R. F. 1966, Ap. J. 144, 108,
(2) Mihalas, D. M. 1963, Thesis, California Institute of

Technology.
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Introduction

The study of pulsating stars is, along with
the explanation of the Hertzsprung-Russell diagram, one
of the major problems of theoretical astrophysics, In
fact, the development of these two subjects has been
quite parallel, Perhaps initially pulsation theory
evolved more rapidly; in Eddington's classic Internal

Constitution (1930) the chapter on variable stars con-

tains more that is accurate in the light of present
knowledge than the chapters on other aspects of stellar
structure, The linear-adiabatic theory which had been
developed by that time would have been adequate to yield
considerable information about the periods and distri-
butions of amplitude in the stars if realistic interior
models had been available,

The following twenty years saw considerable im-
provement in stellar models as accurate knowledge of
nuclear energy sources and radiative opacity was applied.
In pulsation theory there were investigations of stability
by the quasi-adiabatic method, outlined by Eddington (1930,
Sec. 134), as reviewed by Rosseland (1949, Sec. 5.2, 5.6~
5.8), and some discussion of non-linear pulsation (Rosseland
1949, Chapt. 7). These were not notable successes; the

stability calculations were unable to find instability for



appropriate models and the non-linear studies had very
limited success in explaining the observed light and
velocity variations.

In the 1950's the theory of stellar evolution
developed enormously, due largely to the wholesale use
of numerical methods in solving the equations of stellar
structure, leading finally to the approach of Henyey
(Henyey et al 1959). The first use of a realistic giant
model to represent a pulsating star was by Epstein (1950)
and indicated the irrelevance of the core and the con-
sequent importance of the outer envelope in stellar pul-
sation, Cox (1955) used the quasi-adiabatic analysis
on Epstein's model and found a very short damping time in
contrast with previous work, due to the great surface con-
centration of the amplitude in the giant star, However,
the most significant result in the decade was the discovery
by Zhevakin (1953), following Eddington's suggestion (1930,
sec, 137), that a variable heat leak, caused in this case
by the HeII ionization zone, could cause pulsational in-
stability.

Subsequent research in this subject has reflected
the application of detailed numerical methods employing
high-speed computers. Much recent effort has been directed
with these means toward predicting the instability region

in the HR diagram (Baker and Kippenhahn 1962, also Cox 1963,



later Baker and Kippenhahn 1965) using a linear non-
adiabatic treatment, and with considerable success. In
‘the last-mentioned study various models were chosen from
an evolutionary track which had been computed from the
main-sequence into the Cepheid region and for each of
these the linearized structure eguations were solved to
determine all the pulsation properties including the
period and the growth rate of the pulsation.

That work probably represents the ultimate of
what can be done in Cepheid pulsation with a linear theoxry.
It has become clear that any realistic treatment of the
hydrogen ionization zone and the region above, the only
observable part of the star, must be non-linear. This
means that the only feasible way to approach the problem
is with direct numerical integration in time. Recently
results deriving from this approach have been published
by Cox et al (1966) and by King, Cox, and Eilexrs (1966)
for various models of Cepheid variables. These models
confirm the results of Baker and Kippenhahn (1965),
except in the hydrogen ionization zone and above where
the former are probably superior. Unfortunately the large
radius used for the inner boundary in the computation (at
80 percent) and the lack of detail in the atmosphere
prevented obtaining correct periods and realistic surface

variations of luminosity and velocity.



These defects are less in the work of Christy
(1964, 1966a; see also 1966b) on RR Lyrae stars. These
RR Lyrae models are notably successful both in explaining
the dependence of instability on stellar parameters and
in predicting the obserxvable properties of pulsation.

It was my objective in the project I will report
below to improve as much as I could the realization of
this second point. A survey to study instability neces-
sarily represents a compromise between volume of cal-
culation and the accuracy of the atmospheric description,
In Christy's models the coarseness of the mass division
had two effects: It imposed the same coarse structure on
the luminosity and (sometimes) velocity variations, It
also considerably altered some phenomena associated with
the hydrogen ionization zone which are of an essentially
small-scale nature.

Therefore my procedure differed from Christy's
in these respects: The division of the stellar mass into
shells for the computation was done in such a way that
the temperature, density, and velocity distributions were
everywhere accurately represented, and therefore the sur-
face luminosity and Veloéity curves were relatively
accurate, This necessitated having several mass shells
concentrated in the hydrogen ionization region. The other

principal difference was the use of a radiative energy



transfer formula obtained directly from the equation of
transfer rather than the photon-diffusion formula., The
reason for this was the desire to properly represent all

the non-equilibrium effects on the pulsating atmosphere.

The use of the diffusion equation accelerates the relaxation
to equilibrium of an optically thin layer of thickness

AT by a factor (l/AZT)z, and so is unacceptable for a
proper dynamical description of the small optical depth
region,

My specific goal was to construct a relaxed
model with this kind of atmospheric detail for a typical
RR Lyrae star. The atmospheric structure given by the
model could then be used to infer observable atmospheric
properties; the most useful of these is the spéctral
energy distribution, The comparison between the cal-
culated observable quantities and the observations of
RR Lyrae stars hopefully would reveal cexrtain features
in common. With the dynamical model in hand, these
features could be traced to the physical processes res-
ponsible for them: something very difficult to do with
the observations alone, The systematic behavior of
these processes might later be used as a measuring stick
for the stars,

I would like to digress briefly at this point

on the subject of the method of analysis employed in



this study as well as in those of Cox et al and Christy.
The general concept can be called "numerical experimen-
tation" and is an outgrowth of the application of com-

puters to theoretical problems., An excellent reference

on this subject is the Slaught Memorial Paper "Computers

and Computing” (Heller et al 1965), especially the article
on numerical fluid dynamics by Harlow (p. 84).

The basis of the method is the establishment
within the computer of an arithmetic analogy to the
physical object it is desired to study, using the mathemati-
cal description of the object supplied by physical analysis
to replace physical quantities with digitally coded numbers
and to replace the physical interactions with arithmetic
processing, Beginning with values of the stored quantities
which might represent the initial conditions of an experi-
ment on the object the computer is used to follow the
history of the object by finding successive states of the
numerical analogue. Periodically the values of some of
the quantities are transmitted to the output device
{"measurements"), By analyzing these numbers the theoreti-
cian can learn whatever he might learn if it were possible
for him to do the corresponding real experiment, And that,
of course, is either something or nothing, depending on his
interpretive skill and the appropriateness of the experiment,

One example of the usefulness of this method is



the analysis of the formation of lunar craters: What is
the effect of a one kilometer sphere of rock striking a
plain at fifty kilometers per second? The relation
between the diameter of the resulting crater, the mass of
the meteorite, and the physical properties of the rock is
probably unobtainable in any other way. As another ex-
ample I might cite the calculation of the light-amplitude
to velocity-amplitude ratio of a variable star and its
dependence on stellar properties,

The use of numerical experimentation becomes
necessary when to begin with the observational data are
so indirectly related to the information it is desired to
obtain that first a complete model must be constructed and
then matched against the observations. This nécessity is
familiar from, for example, stellar atmospheres, where it
is desired to infer the effective temperature and the
gravity of a star from the observed spectral continuum
properties, When dynamical rather than equilibrium
phenomena are studied and non-linearity prevents Fourier
analysis with respect to time, an initial value problem
must be solved, and that requires a numerical experiment,

This brings me to the subject of a final remark
about the model constructed in this work, The non~linear
vibrations of an unstable star tend toward periodicity

as the amplitude increases (limit-cycle behavior) and the



initial conditions are no longer relevant; the calculations
do the same if they are performed for a sufficient length
of time, leading to the relaxed model I spoke of before.
Unfortunately I found myself severely limited in the number
of cycles I could calculate by the large number of inte-
gration steps required. Thus it was impossible to let my
own calculation relax., Instead I relied heavily for initial
conditions on the excellently periodic results of Christy's
calculation for the same star, which he was kind enough to
supply, augmented by several more periods of his type of
calculation to relax some discrepancies of mass division
and state functions.

The text which follows is divided into four parts:
Part I summarizes the computational procedure used in the
construction of the final model. Part II contains the re-
'sults which are of an essentially physical nature; Part IITI
is devoted to the observationally-directed results, and is
mostly concerned with the model atmosphere description,
Part IV discusses the model deficiencies and convection,
which seems to be a missing ingredient of considerable im-
portance for understanding several problems. Finally there
is a review of what I feel are the principal conclusions

which can be drawn from this work.



Part I, Calculation Procedure

A numerical experiment requires starting with
a mathematical formulation of the problem, a system of
equations which suffices to determine completely the
physical situation to the extent that one is interested
in knowing it, subjéct to the initial and boundary con-
ditions which are the major premise in the physical
question that is asked. These equations are presumably
capable of describing the phenomena which are being
loocked for in performing the "experiment",

In the present instance what is desired from the
model is a simulation of a pulsating RR Lyrae star envelope
and atmosphere., What is not required is any description in-
volving rotation, magnetic fields, turbulence (as it modi-
fies the hydrodynamics), viscosity, non-LTE, ox other such
complications which may play a role, but not a dominant one
in the envelope and atmosphere., In addition, since the in-
teriors of these stars are inert in the pulsation, it is
unnecessary to describe any of the region where the tem-
perature exceeds lO6 degrees, We will describe, then, a
sphericallybsymmetrical envelope in which the only forces
on the material are due to gravity, gas pressure and
radiation pressure, and the energy balance in the material

is established by the energy flux which derives
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from radiation transfer, and, conceivably, convection,
The lagrangian coordinate system is used, so that the
spatial variable is M, . The equation of motion and

energy equation then are (Christy 1964):
Qe o GMe e 2P

~—

2t rnz 2Mp
or w .

de , oV - 9kr
7~%§ Eﬁ% + Fat - oMp

1
1]

!

All the symbols are defined in Appendix A. The thermo-
dynamic functions p and <f are known in terms of T
and V. Lr is found from the structure by means of what-
ever theory of radiative transfer is invoked, and con-
ceivably convective transfer,

The construction of the model is an initial
value problem, The state of the star is specified at
time t = 0 and the foregoing equations are used to find
numerically the evolution of the star with time, The
assumption of this procedure is that sufficient calculation
can be done to yield a solution which is essentially
periodic in time, In practice how well this is realized
with a given amount of computation depends on the care
with which the initial conditions are chosen. How this
was done for the present model will be discussed later,

The boundary conditions which are required to

complete this system of equations must prescribe the motion
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ofy,and energy transfer across, the inner and outer
boundary, At the inner boundary the assumption is

[’ = constant

Lr): [, = constant ,

At the outer boundary the energy flux follows from the
theory of radiative transfer being used while the motion
of the outer boundary depends on an assumption regarding
what type of wave motion can exist,

The division of the stellar mass into finite
units is done as follows. The star is partitioned by
approximately 50 concentric "spheres" into that many
spherical "shells", The material within each shell is
considered thermodynamicélly homogeneous. The shells and
spheres are indexed as shown in Figure 1, The "intrinsic"
variables T, V, p,}CM,<f, %ﬁ etc, are defined in the
"shells", while the "extrinsic" variables R, U, MO, M1,
TAU 1 are defined on the "spheres". Notice that sphere
N is the inside boundary of shell N, Concerning the mass
coordinates, MO is the usual Mr of stellar interiors,

ML is 1n(MT-MO), and both are defined on the spheres,
However, M is the natural logarithm of MT minus MO at the

midpoint (in mass) of each shell, so

M = ln (5 (e ™e ™)),



-12~

inner
surfcce bourndary

v

sphare
N+ N N-1 3 2

Figure 1., Division of the star into spherical shells

and the indexing system
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Ml is significant since the spheres are evenly spaced
with respect to it, except in the H zone and the deep
envelope. The mass elements DM1l, the mass of each shell,

and DM2, the inertia of each sphere, are given by

(I) + -1)
om1(z) = e - e pyarr) = " M

The value of M1l on the surface sphere #N+1
is derived by the following argument: pressure is pro-
portional to the outside mass, and if it is desired that
the pressure by in a geometric progression (which keeps
the sound travel time across the shells fairly constant),
that may be assured if ML (N+1) follows from DM1 (N) as it
would in an infinite progression: if DLGDM1 is the constant

increment in M1 then

MIIN+T)

e — om1n) /(e 1)

In order to minimize the second order truncation
errors due to the finite time step the location of the
various variables in time is staggered according to their
function in the equations. The intrinsic variables <
Vi etc, are located at times tn’ and by inference so are
the extrinsic variables Rj

1

only on the intrinsic variables and not on time derivatives,

and L, since these depend

But time derivatives of these quantities are located at

the midpoints of the time intervals,
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at = l/2(tn+t ); variables of this type are

tn+l/2 n+1l
U, = bRi/ 2t and 34i/dt. The latter variable must
therefore be given as a mean of its values at tn and

t Finally BUi/bt is again located at t . This

n+l°
is diagrammed in Figure 2,

Because of the ability of the hydrodynamical
equations to yield shocks they require some modification
in forming finite~difference analogues. If no modification
is made it is found that when a shock would have occurred
in the continuous fluid the mass shells may cross over each
other in the finite-difference representation and com-
putation becomes impossible. To prevent this, an extra
repulsive force between rapidly approaching spheres is

added to the normal pressure force. This is supplied by

. n
a pseudo—v1scous pressure ql :

n Ca n-4 n-£y\2
4 = S (e (o, ui-uih)
added to pin. The fact that qin is not properly cen-
tered in time is probably not significant since g is
much less than p under virtually all circumstances.
The actual difference equations for the dynamics,

equivalent to those used by Christy (1964 etc.), are:
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<
=
\\n
—
F
N
AV
~—.
0
“\L
=

where

Dln = tmz—” - th-}’; = Zl"(tm,, "tn—r)

.Dth-ki': = th{—l - tVl .

The interior boundary conditions are

h+d
WU,*=z o
RY = constant.

The dynamical surface boundary condition requires some
thought, It is illusory to imagine that there is no
mass exterior to the last sphere: in reality that con-
dition is only realized at infinite radius, an infinite
sound travel time from the body of the star. What is

required is an expression for the mechanical effect of
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the mass exterior to the last sphere on the interior.

Two limiting cases are standing-wave conditions and running-
wave conditions. In the latter the pressure is just in
phase with the velocity and this condition can be used to
determine the motion of the surface sphere. However as
Unno (1965) has discussed, due to the small value of the
scale height with respect to the radius the standing wave
condition should prevail in Cepheids (and RR Lyrae stars),

which can be expressed as

jﬂgﬁﬁzz —» constant as Po (Mn) —= O.
Po ( Mr)

This leads to the expression for bp/aMr

(_a_E_)h — P:»—: + ig*l _‘Plc - in/v
oMy N/ T DMZ;}i,

where; using the step DLGDM1l in ln(MT—Mr),

- dLG DM

p/\j’w + (3_:}“ = € (‘P/C + i:‘V)

~DLGDM1

DM 2y, =4 (DMl +¢ DM1,)

This can also be written -

(‘a_f_)n — PA\;‘H‘*‘E_/CH ~P/)\\/"i-£/_

aMf‘”+’ szﬁ’}—l
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with
n n
PN“ *‘Cim-: = 0

-DdDLGDMT
[+ &

DMZywy = DMTy - %: TTT?ETTEZJWTT .

The latter form will be used, since it is more con-
venient to have p+g vanish at the surface.

This type of difference treatment has disadvan-
tages, as will be seen shortly, but it has a great advan-
tage: the existence of a conserved energy-sum., Replacing
the temporal difference quotients by derivatives again in
the 'bUi/aT expression, multiplying by UiDMZi , sub-

stituting bRi/bt, and summing gives

2 . .
g3t = 2590 b2, ~Z 4 etuslpi eg)

+ Z 4rRY W, (pi- +9 i)

l

S 105 Z(R-R])

||

Z/DMM; (pe +Qa)%lg ,
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where use has been made of the identities = 0

Pye1™ Iy
and U, = 0 and of the equation for Vi‘ This equation
expresses conservation of mechanical energy for the dis-
crete system, When finite time differences are used
errors of order (At)2 may be expected in the energy
balance, but no errors related to the mass di?ision. This

expression also yields the proper definition of kinetic

energys:

2
KE == pmz; %

If, in the pseudo-viscosity expression, CQ

is approximately 1 then p?+q? deviates from p? only

when

L n-4
2

' U,L 2(("3)‘

W
(: 4

where Cs is the sound speed. This is the condition for

a shock to exist, If this is the case, it is found that

the shock thickness as represented in the results is about

2«/6; mass spheres,

The condition for stability of this difference

system (ignoring for the time being the heat equation) is:

YRl p: CS, Dt
DM,

< &€ [ = 1,N
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where CSi is the sound speed in shell i, E; is 1 if
shocks can be neglected, but is less if shocks are

important; and in that case depends on C,.: 1if C is

Q Q
increased E: must be decreased to retain stability,
The values used in the present calculations were CQ = 1/2

and £ = 1/2. Because of the thinness of the shells in
the hydrogen ionization zone this condition on Dt 1is
quite severe, It necessitated using much smaller time
steps for the dynamics than for the heat equation, so
that the heat equation was integrated only every 10
dynamic integration steps typically. Therefore, T?

was not always defined; generally the last T,

defined was, say, Tgl. What was done in that case was

to use the following expression for p? :

Log P = Loy 72, V2) (ARt ve- ),

in other words, the pressure was assumed to vary
adiabatically between heat equation steps. This is an
excellent approximation in the deep interior, but less
so in the outer envelope; in any case the effect of this
approximation on the energy integral is estimated not

to be more serious than the O(Atz) terms,
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The differential equation of energy con-

servation is

When Py is replaced by p(T?,V?) + q? » then this equation

must be modified to give
A%
2d; EAA *,(?.é).- SA
T &% "‘Bt ~pPise =), ~ FHz

accounting for the work done by the pseudo-viscous pres-~
sure. The difference equation using the mean of the

advanced and the retarded time derivatives is then

(T2 T2 2080 = (b £ (28 (291 2 mvt,

The integral appearing in this expression is evaluated as

ft%(.dl/l. .ﬁgi (VHH n
N,

n

d
The quantities ( SM )i are calculated using the pres-

sures, temperatures, and so on at tn. These equations

. n+l . n
are’ a non-linear system for Ti , since T, and

V? B V?+l are presumed to be known,

The boundary conditions are implicit in ﬁg%)i'

For example,

(@_g) o Lg-Ly
oty M, :
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In the present case Ll was assumed to be always the
equilibrium luminoéity of the star, Lo At the surface

L is presumed to be expressed in terms of temperatures

N+1
inside sphere ©N+1 only, for example as it might be with

the Eddington approximation:

Lye) = 41 (R} 26(Tw) "

In this study L is given by radiative transfer
only. The very optically thick expression for I as

applied in stellar interiors is

| = 15 frl(fz[)z, Si- = Se
L 2 DTAV; )

where DTAU; (analogous to DMZi) is

3/; (DT‘/‘}U‘IL' -+ DT/‘}U7£~/)

and where

Y DM,
b T T,
D/ H U7L 2 7_,((/6‘.”)2_4,(@‘.)1)

(analogous to DMli). In addition

(the gray body source function in stellar atmospheres,)

Then using these values for L; >

(Q_L_._) ___ LL'H"'L[
oM/ = T bmi ¢
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These expressions were used in the present model for
dL/ 2 M for all shells i, with i ( i, where

DTAUlj { 8 for jp i +1. The following development
was used for the shells with i 2 ige

Assume that r 1is constant, temporarily..

Th oL —_ - .B_E
en __a_;/)__ = % 3=

where F( 7-) is the flux density and is related to the

specific intensity I(/pc) by
(4
Fo=2m [ Iy g
=/

The equation of transfer in the approximation considered

here is

where the frequency dependence is incorporated in the
use of the Rosseland mean opacity X in computing T .

From this it follows that
oF . {_/ 09 3 &) oA -
& AT ZLE,(/LL v/)S(E) AL 5(2*)}

:6‘W{~é~é(a')5(o) 4—%53(?)3—%[3 +éj053(/t—1“/)—§/;% a’f} i

But it is known that the exact solution of the Milne
problem, h(7) = T+ q( T), satisfies

O = 47 (—ZL ooz:i,(/b DA (E)dE - 4 (r)}

00 2
= 477«{~2L E () A0)+5 Ez(f)%‘o *i’ffﬂ/é'f')fz{‘é dt}.
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Therefore we can represent - JL/2 M as
oF _ d
o —%2@{;{«@@)[;5/; %gﬁ ]+ ij,(/{— @/)6&1 5—’%@){)0&}

When we approximate this expression using a finite grid
of 77 it is adequately accurate. and most convenient
to discard the term in surface derivatives. Now if we
reintroduce the variation of r with optical depth in

a convenient manner we f£ind

_oL _ aFot [Zﬂ,b ZV,)a//ﬂ.a/s R*st) 44 )#.

M~ 7 JEVCTE T I dE

It should be noted that if the optical depths are large
the second term in parenthesis is a constant and the
outer derivative can be treated as a constant across the
interval in which E3( 1€ -z/) is appreciable, giving

L d 02
~§ﬁ~" %J&(ﬁﬁ}—%} JWEg[/t-~tf)th

_ /?’2'9 (/,}%s_

which is equivalent to the diffusion formula used in the
optically thick region. The surface boundary condition
is implicit in the use of an integral here,

When the finite set of shells is used we derive

N
'(237%!;)?- = f 21 (C;— ciﬂ)g.f
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where c. = Ri(S;,-S:) — RR (Lo - L)

DTAL, y Cwrr = O
re = (Ruw)Sw
¥

N
A, = TAUL + ;(muz)
Es([TAu: - TAV 1) TRU ¢

7C’;3" - X (Tavt; —73Y4) = X (TAV, - TAU)
DTAUVT; >

Y ()= ] £, (It dt TAU; > |

and as before

DTAUT . — AW Dmi;
’ ¢ = am(RE+RE)D
DTAV; = /}Z(DTAU’IL + DTAUh’—;),

D77M/N+/:;§€DTWL/@V

and

z
TAV; = 5 PTAYG
V77 1a N . 2 DTAUT,
Iq?, - ;25— +PV2}H = §r D/’77 9

The exponential integrals Eg and E4 and the gray body
source function h( ) which are required here and their
derivatives are obtained by the rational approximations

given in Appendix B, All the thermodynamic functions and

opacities are obtained from tables stored in the computer

and the preparation of these tables is described in
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Appendix C.

In order to calculate the luminosity itself,
for example to find the emergent luminosity, the following
expression is used which is compatible with the 23L/oM
formula:

| . =60 pp + Xﬁ"zzcz(ﬁé(Tﬂw-rT‘MQ‘%(Tﬁui”mwi))'
} 3 LN

When the expressions for - 9L/QM are sub-
stituted into the difference heat equation a complicated
non-linear system results fof the new temperatures, as

-we have seen, This is solved with Newton's method of
differential corrections, which yields a linear system
to be solved for each correction. The coefficients in-

volve the derivatives of ( B]Q/BD4)n+l with respect

to each T?+l ; in the transfer case these are too
complex to reproduce, In terms of them, however, the

equations for correcting the Tn+l become

(szl)nw = Tm,) 4+ AT
Z AT [ v ey lrysm)/ Ty ) &
+ Dfm% o ( a‘ﬁ);ﬂ}

= [ oty () ) 2 fgy0)
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where é} is the Kronecker symbol. The manner in which
the matrix of this system is filled is indiéated in

FPigure 3, that is, the matrix is tri-diagonal (the diffusion
region) except for the block in the lower right hand cormer
where the shells are optically thin (the transfer region)
and which is more-or-less completely filled. Because the
limiting form for large optical depth of the transfer
formulation is just the diffusion formulation the matrix
actually becomes smoothly more diagonally concentrated as
one proceeds up the diagonal, It becomes essentially tri-
diagonal at TAUl = 10 to 20,

The iteration was continued until all the tem-
perature corrections were less than lO_4 relatively.
Normally this would require 3 or 4 iterations. If too
many iterations were required for convergence or if the
temperature change in any shell exceeded 10 percent in
the time step, it was reduced and the whole procedure
was repeated, from the last heat equation step. If the
temperature changes when the iteration was finished were
all less than 5 perceént the time step was increased for
the next step. Each iteration required about 0.5 seconds
on a 7094 and the mean time per time step was about 2,4
seconds,

The details of the choice of the mass shells

require some elaboration at this point. The possible



~28-—-

|
1
J
|
j

7

7
7

l
[

|
7
7

l

Figure 3. Configuration of the linear system for the temp-

erature corrections



~290-~

divisions are restricted greatly by the necessity of
providing a suitable scale of T in the critical region
.1 £ T £ 10. A permissable variable of 7  in this range
is 30 percent per shell, If the shells are chosen to
accord with this condition, it is found that about 10 are
needed within 0.1 in 1n(p) of the center of the H zone.
Furthermore this is true at all times in the calculation,
which means that either an enormous number of shells
must be used or the shells must be shifted as the H zone
moves back and forth.

In order to limit the numbexr of shells, then,
it was heceésary to interpolate new ones and discard old
ones every few time steps in the calculation. This inter-
polation was done either linearly or quadratically, in
ML or M, as determined by how sensitive the calculation
was to interpolation noise in the particular quantity in
question: T, R or g%ﬁ . All shells below a certain
optical depth (1000) were left unchanged, as was the
surface sphere.

It was found that for any reasonable accuracy
of the results for T and to avoid excessive errors due
to the assumption about the variation of p between heat
equation steps T must not change by more than 10 percent
in a single heat equation step in any shell. If that is

so, then interpolation takes place every 4 steps approxi-
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mately. This condition on the permissable rate of
change of T poses serious problems in computation time;
this will be discussed again later,

The precise manner in which the shells were
chosen was as follows: Ml (N+l) was derived from
DM1 (N) as was discussed above., Then, proceeding inward
a constant increment DLGDM1 in M1 was used until the
increment in N( T 7 ) = 5.781n(1+5.781n(1+ 77/2)) would
have exceeded 1., At that point and after, M1l was
adjusted to make the increment in N( 77 ) Jjust 1, until
the increment in M1 exceeded DLGDMl again, whereafter
the constant increment DLGDM1 was used again until
(Ri+l_Ri)/Csi >  the sound travel time across the shell,
reached a minimum, then for the remainder the éhells were
chosen so as to make the sound travel time constant. The
innermost shell was found when another could not be in-
serted inside in this manner,

This was the procedure for choosing the mass
division in the equilibrium model., In the dynamic cal-
culations the shells were adjusted in this manner: if
the change in N(77) across any one exceeded 1.7 then
a whole new mesh was intérpolated for all the region
controlled by N(77), in order to make the increments
in N(Z7) equal to 1 again, or to restore the DLGDML

spacing, as appropriate. N( 7 7 ) as given above
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provides for 7 £ 10 a grid of T suited to per-
forming the quadratures. For 7T > 10 the spacing of
the shells increases enormously, so that the region of
DLGDML1 spacing is reached at about 77 = 100.

The equilibrium model was constructed using the
same (spatial) difference expressions given above for the
dynamical calculation, but requiring the time variation

to vanish. The resultant equations

. _ ) -MO;

Pi. = P, +§jl—7};—{€—; DM2;
CL;ica with  RR :]gﬁzLo
LL: Lo

K3 - KB - ;%F Vi.y DT,

- L
were solved in turn, beginning at the surface. While

P;_1 is obtained explicitly, the equation for heat bal-

ance had to be solved iteratively for then R;_

Ti-1

was obtained explicitly. When the mass increment was

1

adjusted, as in the H zone and near the core, a further

iteration on that quantity was performed.
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Part II. Results of the Dynamical Calculations
A, Summary of the Calculations

The model which was chosen for the study is the
one which Christy denotes by 5g (Christy 1966a). The

parameters are:

M = 1.15 x 10° = . 58M_

_ 4 _
L o=15x10%, m _, =.76
T_ = .65 . Be = .775
Y = .30
Z : .002.

The radius is 3434 = 4.9 R® , the surface gravity is 6,58
(log g = 2.82 cgs), the fraction of (potential) convective
flux is .1l according to Christy, and the period is 46,35
or 0.536 days, which implies a Q of ,0373.

This model was chosen from Christy's grid since
the T and Mool fit most closely the values obtained
by Oke et al (Oke 1966a , Oke and Bonsack 1960, and Oke,
Giver and Searle 1962 ) for SU Dra, RR Lyr, and X Ari
while the mass estimates of these stars lie between
.58 M, (59) and .38 M, (4e). Model 5g has a somewhat
larger amplitude than 4e, and since it was desired to

study the larger amplitude, Bailey a-type characteristics,

The units here and elsewhere are cgs as modified by various
powers of 10 to make them more convenient. A tabulation is
given in Appendix D.
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the larger mass was chosen. The characteristics of the
equilibrium model and the runs of the variables are
given in Table I.

In view of the prohibitive amount of computation
time which several pulsation periods of dynamical calcula-
tion using the fine set of mass shells and the transfer for-
mulation would have fequired, it was decided that a relaxed
large amplitude periodic solution to the full transfer
problem could not be obtained. 1Instead the objective was as
follows: the effect of the fine grid and the transfer approach
would not be substantial on the nature of the pulsation in
the layers deeper than the H zone, unless, that is, Christy's
approximate treatment of the H zone were seriously in error.
With this in mind, the final model was obtained by perform-
ing one and one-half periods of transfer calculation with
the methods disdussed in the preceding part (which will be
called the transfer model), using as initial conditions the
relaxed solution of the same equations, except for the
omission of the finely zoned region and the substitution of
diffusion (using Christy's expression for the flux [bhristy

1964]) for transfer in and above the H zone (this will
be called the diffusion model). Tﬁis relaxed solution of
the diffusion problem was obtained by doing eight periods
of this type of calculation using Christy's final constant

amplitude results for this star as initial conditions.
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The methods used here for the diffusion
calculation are formally equivalent to Christy's, but use
entropy rather than internal energy in the heat equation,
and the choice of mass shells and the equation of state
table were somewhat different., To relax these differences
was the purpose of doing additional diffusion calculation
prior to introducing the more complicated atmospheric
treatment.

Calculations of model 5g pulsating in the
fundamental were obtained from Christy which cover approxi-
mately three periods of pulsation after the model had been
driven to slightly more than full amplitude (as evidenced
by a very slight decline in the kinetic energy amplitude ).
Theée calculations include the effects of radiation pres-
sure which were neglected in the earlier version of this
model (Christy 1966a).

For comparison with the later models Figure 4
shows the variation of U, L, T I and R with time,
these quantities having been obtained from the model details
in the same manner as for the later calculations; which is
that U, Ie’ and R refer to the depth T = 2/3, L is the
emergent luminosity and Ty is inferred from I and R.
The choice of 7 = 2/3 rather than the surface for the
reference location of U and 9o Wwas motivated by the

desire to avoid complicating the velocity and gravity
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curves with the effects of the mechanical disturbances

which are apt to occur at very small optical depths, but
to show the velocity and gravity which observations would
probably indicate.

The influence of the coarse mass division is
apparent in the luminosity and temperature curves, both
on the ascending and the descending branch. It is also
marked, for a rather different reason, in the gravity
and velocity curves on the descending branch., This is due
to the low pressure region which should exist just outside
the H zone at this time, about which there will be much
to say later, but which appears and disappears in this
calculation as the H zone crosses the mass shells,

At the phase, just prior to minimum luminosity,
when the luminosity L was constant across the H Zone,
that is, the H zone was approximately at maximum depth,
the values of 1In({( p/pO ), T/TO , and U were found as
a function of exterior mass from Christy's model, where
Py and TO are the equilibrium pressure and temperature
of the same mass shell., These quantities were interpolated
to the mass coordinates of the shells in the diffusion
calculation, which were also, except in the H zone, the
same as the shellé in the transfer model. The inter-
polatéd quahtitites were then' combined with the equilibrium-

values for the diffusion model and the results used to
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Figure 5, The same quantities as Figure 4 for the dif-

fusion model,
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initiate the eight periods of diffusion calculation.

The results from this are indicated in Figure
5 showing the same quantities as in the previous figure.
There is much similarity to Christy's results, as should
be expected, but also a reaction, most visible in the
second luminosity maximum, to the discrepancies which
exist between the two calculations in detail. The most
serious of these was the change in the radius of the
fixed central sphere from 575 in Christy's model to 890
in the other. This reaction decayed in the course of the
calculation so that the last two or three periods show much
better repetition than the first few., It should be noticed
also that the first period, before the discrepancies could
reach the surface, agrees fairly well with the last few,
while the second period is much different.

If the diffusion model is compared to Christy's
the only really noticeable difference is the disappearance
of the bump in the velocity curve at minimum light. In
Christy's model the bump is due to a shock which occurs
at that time and indeed there is a shock about then in the
diffusion model, but it occurs somewhat earlier and doesn't
seem to be detectable in the photospheric velocity. The
difference is most likely due to the extra mass attached
to the surface in the diffusion calculation. This has the

effect of changing the response time of the outer layers
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to a mechanical disturbance because of the reduction in
sound travel time, However the transfer model will show
that the H zone behavior is also related to these pre-
compression shocks and the difference might well be due to
the different choice of mass shells near the H zone.

Finally the diffusion results after eight periods
were summarized with the same quantities at the same phase
as was done with Christy's model. These were imposed on the
transfer model as follows, 1In the guasi-abiabatic region
T > 30,000 degrees, the values of 1n( p/po ), T/TO, and U
were used directly, just as before. However, for the cooler
region it was not possible to use T/To directly, since
approximate flux constancy had to be obtained., Instead
In( p/po) was used directly and an atmosphere in thermal
equilibrium was attached which gave the correct temperature
in the cutermost shell of the inner region. For this
reason the transfer model could only be initiated when the
flux was essentially constant in the cooler region.,

Using these initial conditions 3600 (heat equation)
integration steps were calculated, representing approximately
one and one-half periods of pulsation, A single period
required 2000 steps, 1500 steps on the ascending branch and
500 on the descending branch.

The following is helpful in understanding the

number of steps required. The time increment in a single
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step was adjusted to make the maximum temperature change
about 10 percent. Since this maximum almost always
occurred in the H zone as that region swept back and forth
in the atmosphere, and since the profile of the zone did

not alter greatly as it moved, the time step can be given

by
d4n r)
_ O 1 DQpDJT ml-n — O - ]
At =0 F@Iﬁ‘:—}— s o (&g P)zone T Vmax
ZONE

where ‘zmqn, is the maximum of dlog T/dlog p in the
H zone, If Ny is the number of scale heights the H zone
must traverse each way in a period, the number of steps

required (one way) is given by
ns = /0 Ny Vmax .

Now, mex is given by
~ 3 [wt wp
Vinax = 16 | T H#3 |max
where g 1is the effective gravity. The value of Vivoux

for the equilibrium model is 20, and it varies roughly

as
~& -1
Te g .

If Umax were always 20; then for n, = 3 (as for this

model) we would have n, = 600, Unfortunately the actual
outward motion of the H zone occurs mostly when Tq is
less than the equilibrium value, so that V@m4 is closer

to 50 than to 20, hence ng is 1500 rather than 600
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for the outward swing of the H zone. The inward swing
occurs when T, is hotter on the average, so the number is
500 instead of 1500. Notice: if Vwx never exceeded the
abiabatic value of 0.4, ns would be less than 24! Con-
sequently the H zone would not be the determining factor

in the time step.

B. Physical Description of the Dynamical Model

The remainder of this part will be devoted to
a discussion of the details of the transfer model cal-
culations themselves, The relationship of the model to
real type a RR Lyrae stars will be reserved for the next

part,
1. Exterior Quantities

Figure 6 shows the variation with time of U,
Mbol’ Qe » log I R and KE. U, I’ and R refer
as before to tau = 2/3. U here refers to dr/dt; the
observed radial velocity from weak lines is —QﬂQU, where
M is the direction cosine of the surface normal with
respect to the line of sight. A discussion of the evaluation
of </A> is given in Appendix E, the result being that
reasonable values cluster near .75 if moderate dispersions

are used,
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There is a useful relation between the velocity

and gravity curves, which is

_GHM
%’%*5‘3 TR

which is valid as long as the atmosphere can be considered
to be in guasi-hydrostatic equilibrium. Thus near the
velocity minimum, when U 1is fairly constant, the gravity
oscillates around the equilibrium value, log g = .82, This
can be used to provide a check on the photometrically
obtained gravities.

The irregularities in the velocity and gravity
curves near t = 18 are numerical, They are the equivalent
in this model of the large oscillations at the same phase
in the previous models, They arise here because of inter-
polation errors near tau = 1.

The oscillations from t = 27 to t = 30 are
real, however. They indicate the disturbance in the
atmosphere caused by the shock just referred to interacting
with the ionization front as the latter slowed its inward
motion.

Table II contains a summary of the extrema,
amplitudes and phases for these curves, The phases are
based on the time, 9.70, of luminosity maximum and the
period, 46,35. We notice that the median of M

bol’

agrees very well, in this case, with the luminosity mean

.78,
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Table II

guantity max min med ampl. ¢%ax ¢min ¢hed
.08 1.48 .78 1.40 0 . 913 . 956

"bol .334
U 55,2 ~35.7 9.7 90.9 .026 . 875 . 956
. 341

log Ie 3.65 2.40 - 1.35 . 950 .201 -

(cgs) 3.75 . 976
& .637 .875 . 756 .238 . 995 .898 . 953
e
. 209
R 3727 3126 3426 601 .406 . 950 . 096
' . 743
6 4 6

KE 2.45,10 10 - 2.45,10° .201 . 005 -

. 729 .463
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Mool = .76. The median velocity, 9.7 km/sec greater than
the mean, occurs at the same phases as the median Mbol’
indicative of the classical similarity of these curves.
The Be curve, which generally mimics the luminosity
curve, has a median which is .02 hotter than the
equilibrium value. The radius amplitude is, like the M o1
variation, symmetrical around the mean. The gravity
variation, although rather more complicated than that of
the other quantities, does have some general properties,
The positive excursion is .93 while in the negative
direction it is only -.42, that is, the gravity ranges from
40 percent to 8 times the equilibrium value. Although the
range is large, the descending branch value is high enough
to make the velocity curve slope only about half of GM/R2
and to preserve the validity of the plane-parallel approxi-
mation.

Figure 7 is a comparison of the first period of
transfer calculation with the diffusion model in the
guantities U, Mbol’ and Ia- The time zero point was
adjusted to make the phases of minimum kinetic energy
coincide, It would seem that the two methods do produce
similar results overall; the transfer luminosity curve
falls along the smoothed diffusion version, and the
velocity curve is essentially the same, down to the be-

havior at minimum light. The gravity curves are similar
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bearing in mind the differences near the mininum caused
by the coarse mass division in the diffusion model.

Gross differences appear in the second period.
The luminosity and velocity rise much too quickly and the
luminosity reaches a very high, brief maximum, followed by
a plateau at the level of its first maximum., The velocity
reaches a maximum and declines until a strong shock lifts
it to another maximum. All this can be understood in terms
of the behavior of the ionization zone, and for the present
it suffices to say that the first period is much more rep-
resentative of what could be expected from a relaxed model
than the unpleasantness which follows.

Some interesting details which should be noticed
are the depressions in the luminosity curve, especially
the one which occurs at t = 8,5, and the correlation of
these with peaks in the gravity curve. This is seen very
strikingly also in the Mbol and log g variations during
the second rise. This effect is also responsible for the
major depression in Mbol at the onset of the first com-

pression phase.
2. Internal Dynamics I, The Linear Interior

The figures 8a - 8hh show the variation with
depth (ln(MT—Mr)) of the velocity and PNO = 1n( p/po) at

several phases of the pulsation. The most interesting
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Caption to Figure 8

The succeeding nine pages show 34 "snapshots"
of the distributions of pressure and velocity in the model
star, Figures 8a through 8hh. The variables plotted are
the pressure variation PNO, defined in the text, and the
outward velocity of the mass, U. The abscissa is the
variable M or Ml, which both refer to loge(M—Mr). The
scales are:

in U: -40 km/sec to 40 km/sec in steps
of 10 km/sec

in PNO: -2.5 to 2.5 in steps of 0.5

in M or Ml: O to 16 in steps of 1,0, with
longer ticks at 5, 10, 15,

The number given on each plot is the time, t,
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phenomena evident in the curves are the ionization zone
effects, the H zone appearing as a discontinuity (ion-
ization front) on the scale of these plots. A discussion
of ionization fronts will follow this section, so for the
present attention should be directed to the deeper region.
In the curves for t = 5.02 we see the maximum of PNO at
Ml = 6, which is in the He zone. It is also apparent that
the bulk of the kinetic energy lies in or near the He zone.,
These are obviously the conditions which are favorable for
making the He zone drive the pulsation.

The region below the He zone is guasi-adiabatic
and as can be seen the amplitude drops rapidly through this
region. This is where the linear adiabatic theory is
applicable for determining the period and the amplitude dis-
tribution. To actually make this comparison the spatial
difference equations in continuous time which were used
before to derive the discrete energy law were linearized
(adiabatically) to give a set of linear homogeneous equations
for the pulsation amplitudes on each discrete sphere, with
the square of the frequency appearing as the eigenvalue,

The same boundary conditions which were used in the dynamical
caléulation were applied, suitably linearized, in this case,

The result was the following system:

(a-wtz)fE = o
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in matrix notation, where A = (A(I,J),I,J=2,N+1l) 1is a

tri-diagonal matrix, the elements of which are

—4mR(z) (ﬁCs(I ;)) 4 R (T -1) _

Q(I,I‘ﬂ—* PMZ(T) bpm7{x-1) L>2
Y HTPR(T) 2 41 R*(x)
AlT,I) = DMZCI)[.(/O W

L (PCs(z-0)* TTRAD) ] _ 4G ML)

DMT(E-]) s

— _ _ 4T RE@® Cs (T 4 R3*(x+1)
pf(i;-’/"'T) - DMZ(I)(/O ( )) W‘_)‘ I</V7"/

The first term in the bracket for A(I,I) is omitted for
I=N+1. The off-diagonal elements of A are roughly
~(1/At)2 where At is the sound travel time across a
shell, The diagonal elements are of the same order, but
in addition have a gravity term which is about o.4a)2 s
and is one to two orders of magnitude less than the other
terms, In the H zZone At Dbecomes very small and the
elements become very large, making solving for the eigenvalues
quite difficult. For this reason the approximation
-%E = constant in the H zone had to be used.

The results for the periods of the fundamental

and first harmonic are

P = 45, 96, Py = 33.75, Pl/PO = ,734

which compare well with the period of the dynamical model
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Table IIXI
U U

I R OR max max/dx
1 875.5 0 0 - -
2 1153,9 3.42 .0412 1.20,10
3 1391.8 10.79 L1191 1,10

4 1601.8 24,35 . 3118 1.28

5 1791.1 46, 93 .5816 1.24

6 1963.8 81.3 . 9689 1.19

7 2122.7 131.2 1.400 1.07

8 2269,7 199,3 2,392 1.20

9 2406,1 289 3.556 1.23

10 2531,6 403 4,993 1.24

11 2645,1 537 6.733 1.25

12 2747,2 692 8,675 1.25

13 2839.6 866 10,61 1.23

14 2923.5 1061 12.35 1.16
15 2999,8 1278 14.67 1.15
16 3069, 4 1510 17.56 1.16
17 3132,7 1757 20.65 1.18
18 3189.5 2022 24,02 1.19
19 3239,7 2313 27.70 1.20
20 3282.4 2600 31.01 1.19
21 3318,.6 2821 33.79 1.20

I mass sphere index

R equilibrium radius, 10~ Xkm

dr linear pulsation amplitude in radius (or velocity)
Uax ,: maximum velocity of the sphere in the transfer

U X/5r : the ratio., It is constant in principle. model
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(46.35) and the period ratio expected for this model
according to the correlation observed by Christy (.75,
Christy 1966a ). Table III shows a comparison of the
velocity amplitude br derived by finding the eigen-
vectors of the linear system and the actual maximum
velocities observed in the dynamical model at the same
points., The ratio of the two is seen to be constant
within a few percent for all the points interior to the
He zone, The differences which do exist are probably

due to the harmonic mixture which actually represents the
non-linear pulsation in the linear region. The conclusion
would seem to be that the period and the amplitude in the
interior can be reliably found from this simple type of

calculation,
3. Internal Dynamics II . The Hydrogen Zone and the Exterior

The events which occur above the hydrogen zone
as seen in the first period of the calculation are summarized
in Figure 9, which is a space time diagram, The ordinate is
time, with P indicating the end of one period; the abscissa
is the usual space variable ln(M—Mr).

The motion of the hydrogen and helium ionization
zones and of the layer where 7~ is lO~2 is indicated,
as are the equilibrium positions of the H and He zones,
It is apparent that the motion of the hydrogen zone largely

mimics the effective temperature variation (see Section d),
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while the helium zone follows more nearly the gravity,
that is, pressure, variation,

The wavy lines indicate roughly the paths of the
outgoing compression waves which occur above the H zone,
Of course, the actual velocity field is very complex, and
there must be inward and outward compression and rare-
faction components in the motion, but the outward compression
waves are the easiest to identify in the numerical calcula-
tions so only these are shown. The wave which lasts from
£ = 3 to 6 is the one associated with the pre-rise velocity
bump, when it occurs. The wave near t = 8 is generated
when the rarefaction behind the then almost stationary
ionization front is filled in by outward motion from the
higher pressure helium region (see Figure 8). The double
line shown for the H zone from t = 13 to 25 represents the

I-front, on the right, and the following shock (see Section

¢). After t = 25 the H zone region oscillates and generates
several waves of which the strongest is shown from t = 31 to
40. This is the closest analogue in this cycle of the wave

from 3 to 6 a period before.

The optical depth variation also follows the
temperature variation; T =1, if it were shown, would be
almost coincident with the H zone., The T = lO—2 curve

shows in addition to the temperature dependence some effects

of the waves on the outer layers. At t = 40 the optical
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depths are increased due to the elevation of temperatures
in the very thin layers produced by the wave shown at that

time,

a, Ionization Fronts.

During most of the period the temperature gradient
dlogT/dlogp has a maximum with depth exceeding 10, typically
20 or more, and this occurs in the H zone. This means that
the transition from neutral (8000 degrees) to ionized
(15000 degrees) takes place in only.l0 of a scale height or
less, Therefore the whole zone can be treated as a dis-
continuity, an ionization front or I-front.

Treating it as a discontinuity, then, the con-
servation laws yield the jump conditions (Courant and

Friedrichs 1948, p.l1l24;modified to account for the Jjump in

flux) :
Pl = AU =W
Pt it = Pt U S
s /Em [ (e #puge + )= (ot pofpn +05Y2)]
=L, - L,
where refers to the neutral side and 1 refers to the

ionized side, and v 1is the material velocity with respect
to the front, These jump conditions are valid as long as

the front width is less than other lengths, such as a scale
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height or the distance the front travels before its struc-
ture changes noticeably. Idealizing the equation of state

we can put

::_——3—7’7’ - 3 P
€ =2t A, € 7

giving

1f we choose the states o and 1 as having definite tem-

peratures and molecular weights then

o Z (2 2.

/01 —"CI 9 7/?0;_ — Ca

and
Li-Lo = 4t (24 2 (F=C2) 45 (2= 02%))

and

/% U? ::/A% d:

A0+ cr) = Al v+ cf)
so

G (vrrel) = (v <2)

This equation or one similar to it has been extensively
studied by Kahn (1954), who classifies the solutions as

weak or strongand of R type or D type as follows:
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R if v ,2

D if vo
weak if vl > cl

strong if vy ¢ ¢4

If Va3 4 v £ v
as M type,

present case

> %
évd<éo
or (cl as

or >cl

vo >Co

vo > co

oxr <Co

as or (co.

the conditions are referred to

with v

D front

but cannot exist at a real I-front. For the
U, = C,n«—m — 24 Fmisec
2t kwm /.

Uy = -Jer-at = 2 km/sec

= 7 km/sec and cy = 13 km/sec.

The actual relations which obtain in each case are:

weak R or strong D

A ::tg —x// — C2

I o /

)0/:_-:(); I wc/

/52 vy ? F% = _a: Z;

strong R or weak D

U’1+ cr UG+ G4
— =] o - + 2_
Lﬁ A 4/77_;b6 -9 y f/a"J/% as be %QPe.

Two important limiting cases are a weak R front

o > V. and a weak D front with vV, K Vg. For the
2 2.
_ < [ S c?
KVUg  implies 205 (z ccoz/zf/;)l) :-C;'zU; )
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2
Ohd/ /% == Eﬁ 7% _
2z

In other words, when the front propagates much more slowly
than the sound speed the pressure is almost continuous
across the front, and the equilibrium density ratio exists,

For the R front

Us 2>(J; —> U]:i.U:

In this case the front sweeps over the material too

rapidly for the pressure to adjust, so the density is

almost continuous, while there is a large pressure ratio.
For completeness the other two 1imiting cases

are a very strong R front

PR
s > VL U7='\r-*c )“C’

k)

and a very strong D front

-,
U << Uy U’,:§9~

b
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In Kahn's very complete analysis he shows that
D-fronts other than the critical one are likely to be
unstable, in the sense that they cause rarefactions fo
proceed them into the neutral material (he considers only
the case of a front propagating into the neutral gas,
backed by a vacuum) with the result that Vo increases to
make the front critical. If the conditions in the neutral
gas are such that vy > \Z (M-type) a compression wave or
shock will travel ahead, lowering Vs to the critical
value. His analysis is probably no longer valid if the
ionized region is not bounded by a vacuum. In the more
general case it seems to be possible to have D-fronts
traveling at less than the critical speed.

Figure 10 shows all the possible solutions,
plotting the neutral Mach number vo/cO versus the com-
pression ratio /O,ék% on log~log scales, The two
brandes are the D and R type fronts, and the maximum and
minimum of these, respectively, give the critical cases.
The dashed vertical line represents Py =P, - For the
case mentioned above, C, = 7, cq = 13, the critical

conditions are:

R critical U /Co = 3.4y P /p, =183

D critical Vo [C, =27 5 f%//é = //%-6 .
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For comparison the isobaric density ratio is

for P=Po y SilPo=CPcF=1/3¢ .

There is an analogous discussion in Courant
and Friedrichs for chemical reactions in gasses. In their
notation an R-front is a detonation and a D-front is a
deflagration, weak or strong as defined here, The critical
cases are called Chapman-Jouwuet processes, and a theorem
is proved forbidding weak detonations and strong deflagrations.
The analysis is similar to that used to forbid rarefaction
shocks, which these fronts in fact resemble. This is not
valid for the case in which energy transfer exists, however,
In fact, weak R-fronts and strong D-fronts are of definite
interest in the application to pulsating stars,

b, The Rising Branch,.

The compression phase of pulsation is also the
phase when the hydrogen zone moves outward through the
atmosphere, At the end of the expansion phase, when the
luminosity curve and the velocity curve are near theirx
minima, the pressures in the atmosphere are depressed
from the static values and the effective temperature is
also low with the consequence that the hydrogen zone is
very deep in the envelope, since the overlying mass per

unit area varies approximately as

#//3 I ¢

M-Mr 7
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At this point compression begins to raise the pressures.
A basic fact of RR Lyrae stellar models is that the
helium zone contains several times as much mass as the
layers above it, so that from the hydrogen zone's view-
point it is a piston pushing the layers above it up and
then letting them fall., At this time it begins accelera-
ting them upward. When the material between the H and He
zones is compressed it allows the luminosity to increase,
causing the H zone to absorb more energy than it emits.
This differential increases as compression continues, so
that for example in the model at t = 7,47, when the

radius is near minimum, the luminosity differential is
AL = 2.0-/0% units,

30 percent greater than the mean luminosity. As the energy
equation written above shows, the H zone moves outward as

the energy is ah@g&bed in ionizing the material., The rate
at which it moves is given by
AL

X + (G- C2) +£ (V505

%ﬁ R

- AL
L] 2 *
where ;Z’ = 1/2 (50 km/sec) dominates the other terms.
This value of A4, (/, is rather independent of con-

ditions in the H zone itself, being fixed mostly by the
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layers below,
As the outer layers and the H zone fall and are

compressed both g and AL. hence 4 U,, tend to

increase. There are then two possibilities., The first is
that /% increases rapidly enough to prevent (J;.
from exceeding L@; , so the I-front is always D-type

and in fact weak D type is what is expected, since as the
compression proceeds in the regular way there is no reason
for a large /ﬁg/%Z to develop. After maximum compression
the AL across the front diminishes as the pressures fall
in the layers below the front at the same time as the emer-
gent luminosity rises due to the thinness of the layer

above the front. Consequently the front ceases its outward
course and as the contained energy escapes it begins to
progress inward again.,

What has just been described is the sequence of
events during the first compression phase in the transfer
model. Examining the U, PNO profiles in Figure 8 of any
of the models from 5,02 to 7.47 reveals the same features:
a relative PNO maximum in the He zone, a PNO minimum in
the intermediate region, a velocity and PNO discontinuity
at the H zone and quasi-equilibrium conditions in the
atmosphere above. Examining t = 7.47 in more detail,
we find that the I-front velocity is

U front = 2.6 km/sec.
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so that

vy = 1.6 km/sec , v, = 6.6 km/sec

/Ooépl = 4,1 , po/pl = 1,2 .

The I-front is followed closely by a rarefaction wave
which lowers U and PNO to the values seen in the plot

on the ionized edge of the H zone., We see that indeed
that U;(:ZO::-(E; . The conditions that are observed
here do actually refer to a .weak D-front.,

At t = 8,12 we see that thenemergent luminosity
has risen and the front has slowed. At this time the
pressure minimum between the H and He 2zones is dis-
appearing as a compression wave makes its way outward
from the He zone. After T = 8,54 until just before
maximum light the H zone is fairly static, The compression
wave just referred to appears as a maximum in the gravity
curve at t = 8,6 and simultaneously as a notch in the
Mbol curve,

The other possibility is caused by AL
increasing more rapidly than Py » causing Vs to exceed
vy - This type of M-front condition is not possible and
the result is a shock in the layers above the front,
deriving its energy from the flux excess. The pressure

in the outer layer then exceeds the value necessary to
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reverse the downward velocity in the length of time the
He zone requires. The effect is that the material above
the front accelerates outward faster than the material
below it, The rarefaction produced below the front causes
the luminosity there to be even larger, aggravating the
situation, Because the density in the neutral region

has been increased the front now propagates at or below
the critical speed AT These conditions last as long
as the front moves outward until the compression is
relieved and the low pressure region radiates -in a brief
flash the energy which has been contained there. Now the
very strong rarefaction which has followed the front
sweeps through the visible atmosphere and the velocity

of the photosphere drops. But following the rarefaction
is a strong shock running from the He zone into the low
pressure region, When this reaches the photosphere the
velocity curve attains its maximum and the expansion
phase begins,

As it happens, these are the events which take
place on the second rise, The pressure at t = 51 in
the layer above the H zone is too low to prevent the
conditions at the front from being M-type. The shock
in the outer region is visible in the gravity and
luminosity curves near t = 53 and very nicely as it is

just forming in the U and PNO profiles at t = 53,1547,
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Following this time the U, PNO profiles show the very
strong rarefaction accompanying the I—frontl. The
luminosity flash happens near t = 54.0 and soon after
that the rarefaction reaches the surface. At t = 54,53
the major shock is traveling into the low pressure region
and reaches the photosphere at 55,2, After this time the
atmosphere is in suéh a disturbed state that computation
was discontinued at 57. 34.

Needless to say, the shock and the luminosity
flash are very wasteful of pulsation energy. Whenever
strong shocks have occurred during the process of
relaxing a model they have represented only transitory
reactions to changes of the conditions, and have not
persisted in the relaxed state, at least in this type of
model, This is what would be expected also in this case
were it possible to continue the calculation at some
length, The model would adjust itself in order to make
the pressure at the beginning of compression high enough
to prevent a strong D-front from forming.

c. The Descending Branch.

At maximum light Te is, naturally, rather

large; thereforé since V max is - small at that time

it is not correct to speak of an ionization front until

lA weak D-front blended with a rarefaction shock is in fact
just a strong D-front., Except for some spatial separation
of these components, that appears to be what existed on the
second rise,
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T, has decreased somewhat. By that time, say one third
of the way down the descending branch, the front is al-
ready quite a bit deeper than it was just before maximum
light. And at that tiﬁe the emergent flux may exceed
the flux into the front from below by the whole mean
luminosity of the star. The front must be traveling in
through the atmospheric material at a rate comparable to
that at which it went outward before., An important dif-
ference, however, is that the pressure is very'much less
than what it was at that time. It is so much less, in
fact, that Vs exceeds the critical speed of an R-front,
Vi = 24 km/sec. Under these conditions a weak R-front is
2

expected, with £1 =,°O s Vo= vy but pl/po = ci/co 3.6,

Il

Thus a low pressure region is created in the neutral region
adjoining the front. A region of such low pressure cannot
extend all the way to the surface so a shock runs into it
from the higher pressure surface region. Since the weak
R-front moves supersonically relative to the neutral material
(as well as relative to the ionized material) the shock is
not able to overtake the front until the pressure in the
atmosphere increases or the luminosity differential de-
creases, slowing the front and allowing the shock to catch
up.

In the model the weak R-front becomes evident

at t = 13, At t = 17 to 19 the shock which follows it is
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actually located in the visible part of the atmosphere,
hence the fluctuations in the velocity and gravity curves;
it is always located not far from optical depth unity.

A possible explanation for this is the balance between the
work done in compressing the material passing through the
shock and the radiation losses: if the optical depth were
greater the temperature would be greater and the losses
larger, but if the optical depth were less the loss would
be much less due to the finite optical thickness.

The best illustration of the behavior of the
atmosphere during this period is in the U, PNO curves
for 20.87. The low pressure region is bounded below by
the I-front, which trails inward, and above by the very
sharp shock discontinuity. The velocity jump across the
shock is 18 km/sec and the pressure ratio is 6.7:1, The
velocity jump across the I-front is about 9 km/sec. More
exactly,

vy =-24 kmn/sec, v, = ~-15 km/sec,‘pl[po = 1.6,

We see that this front is in fact roughly R-critical.
These figures are quite approximate since the high T
boundary of the front is not too well defined,

Not long after, at t = 25, the shock begins to
overtake the front which its slowing its inward progress.

By 26,5 the shock has begun to reflect from the higher



=79~

pressure material below the front. At 29.5 this reflection
is very apparent., During this period a series of waves

are generated in the vicinity of the H zone which cause the
oscillations seen in the velocity and gravity curves. The
reflected shock requires until t = 40 to reach the surface.
It can be seen in a well developed state at 38,16, The
profiles at 42.58, 50.05, and 51.32 show the result of the
reflected shock on the atmosphere just before the next
compression begins: a rarefaction has been produced at the
surface. This is the explanation of why the pressures are
depressed compared to the same phase one period earlier.

To elaborate somewhat this point, let's compare
what occurred here with what occurred in the diffusion
model with its lack of H zone resultion. In that model
the low pressure region adjacent to the H zone was visible
at times, as a single mass shell with a low pressure, but
at other times it was not apparent, due to the location of
the H zone with respect to the mass shells. This variation
is obvious as the peaks in the gravity curve. When the
H zone slowed its inward progress not very much happened,
since no shell had a very low pressure at that time, and
since the zones were thick enough to prevent a rapid
response. As a result there was no reflected compression
wave, only a small bump in the velocity curve. The pressure

in the atmosphere remained low for quite a bit longer than
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in the transfer model before a compression wave raised it
just in time for the rising branch to begin. Obviously
this was the accomodation of the relaxed diffusion model
to the strong D-front problem. But the greater resolution
in the H zone in the transfer model caused these phenomena
to occur in a different way, requiring further relaxation,

The implication of all this is that bumps on the
descending branch in a relaxed model or a real star may be
intimately related to the motion of the ionization front,
both inward and outward.

d. Luminosity Modulation by Gravity.

An effect of some interest which only became
obvious when the fine mesh was used in the H zone is the
modulation of the emergent luminosity by variatiqns in
the surface gravity. This effect has obvious consequences
for the interpretation of small fluctuations in the light
variation of real variables., The nature of the effect is
that if the material overlying the H zone is compressed,
the emergent luminosity drops, and remains low as long as
the compression continues or until the contained flux
can work its way through the H zone. Alternatively the
gravity may decrease, and the luminosity rises and
remains high until the gravity increases or the available
energy is exhausted.

The explanation of this effect is found in the

processes determining the temperature distribution in the
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neutral layer. We can find an approximate solution in the

neutral layer as follows:

put

9 =

dt *
with V

P ::?ﬁa}@ Z 7 3

which is appropriate for H ™ dominated opacity

with the electrons supplied by ionization of hydrogen,

and T LT 2)

sO

= 2. 3/ ?/ 2 4 o
B 1 3’**&“<~%J$J.

We see that as T — 00 p approaches a limit, which

represehts the pressure in the H zone, That is
s
Wik 7 - ‘r‘ }(a "‘)”/d

Taking n to be a constant, typically 12, we have

1/3 7:3’

P~ F e

so the overlying mass per unit area is

My~ g P
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Now suppose this region is compressed, Due to its very
large heat capacity the H zone itself remains at the

same mass level., The neutral region very quickly reaches
radiative equilibrium, however (neglecting the very
optically thin part). Therefore, since My is the same

and g 1is greater, Te must decrease, as given by

—-—0,0
To ~ 7

The most obvious example of this is the com-
pression phase as a whole, As the gravity rises when
compression begins, the luminosity drops, as we expect.

It remains down for a while (producing the depression

from t = 2 to 7) and then slowly rises as the flux

from below reaches a maximum and the zone moves rapidly

éut through the atmosphere. When the gravity drops after
minimum radius the luminosity shoots up to the maximum

(the same effect in the opposite direction ), The luminosity
drops again only when the energy excess in the interior is
depleted,

Superimposed on this is another example, the
notch in the luminosity at 3/4 maximum caused by the
gravity peak associated with the compression wave rising
from the He zone. There are many other, less significant,
examples to be found and also the violent cnes which

occurred on the second rise,.
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4, TInternal Dynamics III, Driving Energy

The energy integral of the equations governing

the star is p
M .
2 (7 _am, _f 2V fy -
at£(2 T)C’/M'““fgz _r’

which implies that when the motion is periodic
: M A M
jé;%/(‘f-%@")a% dt = © :fdﬁiz‘(ﬂa/l/ :ﬁMP wes
I} o 0

The amount of energy any shell adds to the pulsation is
ij{,oa'v = ij(n/f.

For the model investigated here, 5gF, Christy shows the-
run of this quantity with shell number (1966a,Figure 21 ),
There are slight modifications to the numbers due to the
inclusion of radidtion pressure and a somewhat larger
amplitude in the more recent model which was used in

this calculation, but the curve is essentially the same,
The minimum (maximum damping) is in the shell near

75, 000 degrees, and the two maxima are at 50,000

degrees, in the He zone, and at a shell near 10,000

degrees, in the H zone,
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a. The Damping Region and the Helium Zone.

It was not the purpose of this calculation
to investigate the region beneath the H zone, and in fact
the resolution used here for that region is about 30 per-
cent poorer than that which Christy employed. As a con-
sequence his figures for the damping and the excitation
in that region are to be preferred.

To see the degree to which the results differ
examine Figure 12, showing a temperature-entropy diagram
for one cycle of each calculation for the same mass
layexr, M = 6,33, located at the He maximum., The entropy
plotted for Christy's model is calculated from his tem-—-
perature and pressure with the equation of state used
for the present models, The curves are quite similar,
although the enclosed area is slightly different, The

area for the present calculation is

/¢r77d;g = 61,1 (km/sec)2

while for Christy's it is

j§ Tdd

j{pC{V/ = 60.5 (km/sec)2

Il

66.5 (km/sec)2

or
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Figure 12, Temperature~entropy loops for corresponding mass
elements (in the helium zone) in Christy's model

and the transfer model
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The discrepancy between _j§7?£f and }[f”¥b/ for
Christy's model is indicative of the equation of state
differences which exist between the two calculations.

The following figure, Figure 13, is a similar
plot for a shell located at the damping maximum. In
comparison with the previous figure some differences are
obvious. The entropy amplitude is 8 instead of 50 (as
for the He zone) due to the tendency toward adiabacy with
depth, and the curve is more elliptical as non-linearities
diminish., Most apparent of all, the loop is counter-
clockwise rather than clockwise, indicating damping. 1In
this case the agreement between the two calculations is
poorer, although at least some of the disagreement might
be due to the different thermodynamic functions. The

figures for the areas are

jg 77J<P ==13.5 (km/sec)2 present
72/4) = -15,6 (km/sec)2 Christy

56/001’\/

-17.2 (km/sec)2 Christy.

Il

Another explanation for the difference may be the
coarser mass division and the difference of the inner
boundary radius, which cause the distribution of amplitude
to be somewhét different. A difference of a few percent
in the energy production itself represents ohly of the

order of a tenth of a percent of the kinetic energy per
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period. Such an error is not likely to affect the pulsation
in the exterior region during the one period or so cal-
culated here,

b. Work Production in the Hydrogen Zone.

The hydrogen zone is of more interest in the
present calculations since the method used to treat it was
more detailed and presumably more accurate than in the
earlier work., Figure 14 shows as in the other two cases a
comparison of the T—Kf loops of this calculation with
Christy's model for a shell at the same mass layer. = The
agreement is similar to that obtained for the helium
zone. The values for the work integral obtained variously

are

il

}fibe? 862 (km/sec)2 present
/@fﬁ/f = 830 (km/sec)? Christy
ché pdv

Here also the agreement is very satisfactory. We can

784 (km/sec)2 Christy.

il

conclude from this that it is quite unlikely that Christy's
calculations of work production in the hydrogen zone are
very much in error, ét least due to lack of resolution in
mass., The error expected from this source is likely to

be less than the contribution to work production from the
shells at the edges of the region covered by the H zone

and which therefore do not pass through the whole ionization

loop.
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In order to determine the total work production
in the H zone as well as the distribution of it with depth
it is necessary to examine the T,Ap curves for each mass
layer. Figure 15 shows the T,<f curves for masses
M= 1n(M T-M) of 1.5, 2.0, 2.5, 3.09, 3.5, 4.0, 4.1, and
4.34, The first of these refers to the farthest outward
progress of the zone and the last refers to a layer just
inside the farthest inward progress, as indicated by the
lack of any extension of the curve below T = lO4 degrees,
Planimetry of these curves gives the work integral jf?k&f
at each layer, These are plotted as the dashed curve in
Figure 11, showing the depth dependence of work production.
When the work integrals are multiplied by &M they become
the solid curve, and the area under this cdrve is just the
work produced. Identifying the interval from M = 1.5 to
4,1 as the H zone work producing region, we find the total

to be

/O/M,, }érc/j = 38,300 units.
H-Reqion

Since the pulsation energy is 2.45 x 106 units, the work
production by the H zone is 1.56 percent of the pulsation
energy per period,

The figure shows that although the maximum of the
work integral per unit mass occurs near the equilibrium
H zone (shown by the arrows), in fact two-thirds of the

total work is produced below that depth. Furthermore, the
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energy required to ionize the entire region above the
equilibrium H zone is only 30,000 units, which is less
than the total work produced.

For comparison the histogram also shown in
Figure 11 indicates the work production of each shell in
Christy's calculation, and is directly comparable with the
solid curve, The distribution with depth is about the
same, although there is still some work produced by his
model in the shell extending from 4.2 to 4.6. The total
of all the shells outside M = 4,6 is 3.90 x lO4 units,
or 1.55 percent of the pulsation energy per period. This
figure is uncertain since it is doubtful whether or not
the 4.2 to 4.6 shell should be counted as part of the H
region, since the minimum temperature it attained was
12,400 degrees., It does seem, however, that this calculation
in general supports the earlier result for H zone work
production,

c. The Hydrogen Zone, a Quasi-Linear Theory

Due to the uncertainties expressed about H zone
work production, for example in Christy (1966b), it may
be of interest to give an approximate treatment, valid
when the H zone can be treated as an ionization front and
when otherwise the amplitude is small., Recalling the
I-front jump conditions, we expect that when the amplitude

is small the transition from the ionized to the neutral
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state takes place at constant pressure, from a temperature
TO near 8000 degrees‘to a temperature Tl near 15000
degrees., The T,‘é7 diagram should look liké Figure 16
where the T,,f segments from TO to Tl are isobars
at pressures P_ . (TO to Tl) and P, Supposing the
amplitude to be small, the area of the loop is essentially
the area of the section between To and Tl . That area

is given by

i 7
/fo /( Pw - /%ur){gﬁ-?)ra’f -‘-‘[;PW‘ ]%db)/— (%/,)P)d-}—
= (Bt = Pur)( V7, p) - V(T 1)
- (Poul: - Pm){/’é"‘— /—/0;) .

To find the total work done by the H zone this must be
integrated over the mass the H zone sweeps over during
the cycle with the appropriate POut and Pin sub-
stituted.

The motion of the H zone is governed by the

energy jump condition, which is

L/—Ao - %/V.’p)

;K being the jump in specific enthalpy across the
zone. In the linear case we may take Aén to be the
time derivative of &M, a small displacement of the
zone in mass, and let it vary as e feol . When the

luminosities are linearized as well,
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Figure 16, Temperature-entropy loop for a mass element

crossed by the H-zone in quasi-linear pulsation
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L—o = L(a)(/v“éoel"wb), L, = Lo (/?“»é/ G‘Wt/,

the result is

Loyl -4,) = LwX M,

The material whose displacement from the equilibrium H
zone is /8M/Cos & passes from outside to inside when

the pressure is

P::?%Uf = Fg/f# Cﬂm§(ﬁﬂﬂ(f)"afj<éw0 “55)

where P = Po(l+p) defines the pressure variation p as
in Baker and Kippenhahn (1965, called B&K Dbelow) and
where p 1s a complex variable whose phase is arg(p).

Similarly the value of P.n is given by
P = P el Cos(arg(p) -arq(6#) + F)

Therefore the total H zone work is

/gM/ Blpl (#*?%)fog‘;ﬁ%%[@s(avgqo)—ws (6)-g) — (os (ary()
-aryem)+ )]
= 2[dn 'P/PO(,%'“?!;)ZZE Sin (ary(p) -arg(am))

- ~77’Po(/éj‘;ol:)(ﬁ”(7b%5/w) .
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Substituting for &M 1in terms of l1 - lO , this becomes

W= Tle EEE) ge(40-4).

The values of Xﬁ and ,é; which appear here
must in principle be obtained from a solution of the
nonadiabatic problem as was done by Baker and Kippenhahn,
using the appropriate boundary conditions at the center and
surface and applying the differential eguations through the
H zone itself, Howéver as Equations (11) and (12) of BgK
show, in the region where Vratd = {;%%%; is very
large, that is, in the H zone, the nonadiabatic problem
becomes very nearly singular. As a consequence the luminosity
variations Ay and ,éc » tend to be well determined by
conditions in the neutral and ionized regions separately;
and do not depend very much on conditions in the H zone
itself, The H zone functions only as an inner or outer
boundary which moves in accordance with the energy jump
condition. These conclusions break down Qhen (%qd is
small enough to allow interactions through the zone, as
when convection dominates or when T, is sufficiently high.

We see that, as we-expected, the work is propor-
tional to the amplitude squared, or to the pulsation energy.

The work is positive when the excess of flux entering the

zone over the flux leaving is in phase with the pressure,



—-98-~

Because of the pressure modulation discussed earlier., it
is expected that Ke [%’*/Zo] { O, that is, 2, is
out of phase with the pressure. The expectation is confirmed
by the results shown by B&K. However, /[, refers to a
region where Kramers type opacity is valid and so ,22 is
in phase with the pressure, at least to the extent that

723,[?%”t24] > O . Thus the work is positive, as the
w-integral of B&K shows.

To compare the results of the exact linear theory

of B&K with this quasi~linear, linear except for the
ionization front, treatment, we can identify the linear

work in the H zone as the jump in the w-integral:

Wi = 4TRSS [p* (K- X)]
while L/
Mg = T2 B2 1 [p700-0)]

/
Woew _ Loz -4) B[ pra-)
Wew T T e X i (DX =%)]

and inserting values obtained for model #7 of B&K gives

VVQL/A/ L
Weive 7 0. 6? *

Thus is seems that the H zone is somewhat less efficient

in the finite-but-small amplitude case than in the
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infinitesimal case.

Since the H zone work is not sensitive to the
width of the zone, as it might be affected by convection,
but is affected (proportionally) by changes in the pres-
sure amplitude in the zone, the earlier result of B&K (1962)
in which they omitted convection but required p to wvanish
at the surface and found the H zone work to be small is
explained by the latter condition rather than the former.

Returning to the first expression for the H zone

work,

1/\/'_.‘_“_“’77"}D 75“/?0)0/)14 _/0)“;/]4)
and inserting /%2 and ~, in terms of Pos Co s Cp o
we have

W = - (300(/@%7/5@0)7‘) Jm(f*g/w) ,

When the amplitude increases this expression is no longer
proportional to the pulsation energy. First, p 1is likely
to increase faster than the velocity amplitude due to the
shorter duration of the compression phase and to the for-
mation of weak R fronts which lower Pl (effectively).
And as OM approaches and surpasses the amount of mass
exterior to the H zone it tends not to vary with the
velocity amplitude. But &M is still determined by ,Z/,

ing all the mass which the flux excess /Z/ L(q)
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can ionize during the compression phase. But AZ/ itself
is likely to be proportional to the pressure amplitude.
Finally, then, we can understand why the H zone work pro-
duction increases more rapidly than the pulsation energy
for large amplitudes. The thing most likely to alter this
trend at very large amplitudes is the formation of shock-
type lonization fronts, strong R or D type, such as appeared

in the second compression phase of the present calculation,
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Part III

Relationship of Dynamical Models to Observations
A. Non-equilibrium Model Atmospheres

At this point it is well to recall the ob-
jective of the calculations: to make a dynamical model
from which it would be possible to infer some of the
observable atmospheric properties. The model which was
discussed in the preceding part is the basis for attaining
this objective, but the atmospheric description in these
envelopes is not refined enough for the purpose of making
the desired predictions. Instead the deviations from
equilibrium were extracted from the envelope models and
imposed on detailed-atmosphere models,

These deviations were épecified by PNO, the

lagrangian variation of 1ln(p), given as a function of tau,

3 1.¥(t+9(t)

which gives the temperature distribution in terms of the
equilibrium temperature distribution for the same effective
temperature, The PNO values were converted to gravities

by z
pz) = Wf)[em' ALY jt = M) (%)

where m( /) 1is the mass per unit area overlying the depth



-102-

T 5 «r is the radius in the dynamical model at that
depth, r, is the equilibrium radius for that mass shell.
The state of the atmosphere at a given time, then,was
specified using the results of the dynamical calculation
by giving T, and the runs of

£ 7%
’7%¢FE?3§75i7 and 57 (17)

To illustrate the deviations of the "source

function" 4 T4 )

3 Tt

from the equilibrium function the ratio of these as given
by the dynamical calculation is shown for various times
during the period in Figure 17. The parameter is the time
t. It can be seen immediately that the range .1 £ T £ 10
is more nearly in equilibrium than either 7 > 10, which
is in the H zone, or T < 0.1 which is too thin to
relax quickly. The deep region shown a rise in the source-
function ratio when the zone is moving outward and a
decline when it is moving inward. The outer region, 77< 0.1,
shows temperature deviations due to incomplete relaxation
of the work input to this material,.

The degree of deviation to be expected can be
estimated as follows, Since the relaxation time of the

optically thin material is
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and if work is being done on the material at a rate, per

unit mass,

C, Lo ‘., ~ =
14 t W w 5 )

the temperature excess is given by

— Cv
Al Zr J _cv
T Tw TG 7RI

Near the isothermal surface we can put

so B ‘
2T s e sy X PGt K pECh
""7':’ ~ Z - 0”7’0‘4 3T 257;4 Jr 0‘7(‘2‘/- .

The second factor in the last expression is a measure of
the possible local convective flux compared to the

total flux. Thus the assumption that convection is neg-
ligible in the photosphere is equivalent to the neglect
of nonequilibrium effects on the temperature distribution,
For the models at t = 7.47 and 20.87 the run of AT/T

is as follows:
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7.497 20.87
T AT/T T AT/T
.001 3.7 . 001 .4
.01 2.4 .01 .2
.05 1.2 .05 12
.1 .8 .1 .09
.2 .5 .2 .06
.5 .2 .5 .03
1.0 .1 1.0 .06

The difference between the relaxation rates of
the two atmospheres is obvious, This difference is quite
apparent in Figure 16 where the high gravity models 5.02,
5.53, 7.47, 38,16 and 51,32 show much more deviation from
equilibrium than the low gravity models at 10.06 and 20.87.
The source of the disturbance in models 5.02 and 5.53 is
the pre-rise compression wave which, in Christy's model,
produces the bump seen then in the velocity cufve. The
same effect is present a period later at 38.16, but, as
we discussed, it comes earlier in the cycle,

The calculation of detailed model atmospheres
given the temperature and pressure distributions implied
by the dynamical model was done using basically the model
atmosphere program written by Mihalas, which is described
quite fully in Mihalas (1963) and (1965a). The program
as it presently exists at Caltech has been slightly modi-
fied, in accordance with Mihalas' suggestions, and it has

been translated from FORTRAN II into FORTRAN IV.
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The procedure for the most part was identical
with Mihalas' and will not be discussed here, but some
modifications were necessary. While Mihalas used )65000
to define the standard optical depth, - it was necessary
for compatibility with the dynamical model to use the
Rosseland mean opacity. Mihalas' monochromatic opacity
routines were used to compute a table of log (‘}ﬁRoss
and tabular interpolation in log Pa and £ was used
in the program to give the standard opacity. The equation
of hydrostatic equilibrium,

_a,/—e?:i“o"/fr
AT Y dT

was replaced with

,D?,:; )1’)(’[“)3(2‘) -—:—3/—(17"[7; where dﬁ o 5/{

The integration of the latter equation was initiated by

finding m at tau = .0005 from the equation

dr w_____,z__,____—
d oy P - g
Jhe 2K(A, e(o)) (ZZ

Py (o0os) = m(-0005) () = La7%0)

and

assuming pg = 0 at tau = 0. With T(tau) , hence &(7),

given from the dynamical model, the eqﬁation for nﬁﬂt),
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hence pg (tau) was integrated as in Mihalas' pro-
cedure. In these models convection was ignored. Once
the run of physical variables had been obtained the
equation of transfer was integrated to give the mono-
chromatic fluxes and intensities. In this Mihalas' pro-
cedures were used intact, assuming the blackbody function
B, (T) for the source function § y (tau).

In order to assess the effects of the deviations
from equilibrium on the model atmospheres, S models were
constructed,with temperature distributions given by the
exact gray-body formula and pressure distributions in
hydrostatic equilibrium,which form a 3x3 grid in tem-
perature and gravity, including the equilibrium values for
the chosen RR Lyrae modeljand spanning the range of con-
ditions encountered in the dynamical calculation, The
procedure followed was the same as outlined above for tle
non-equilibrium case to make comparison meaningful. Then
13 non-equilibrium models corresponding to selected phases
in the first pulsation period of the dynamical calculation
were made,

The results of the calculation for the equilibrium
model which corresponds to the static RR Lyrae star are
given in Table IV. The independent variable is the
Rosseland mean optical depth and the other quantities are

mostly self-explanatory. The radiation pressure is computed
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as l/3aT4. The quantity given as KAPPA (4444) is the
interpolated value of >£Ross , and KAPPA BAR is
the same thing computed afterwards from the monochromatic
opacities. The columns H I, H PLUS, HE 1, HE 2 are the
fractions of H and He in the indicated stage of
ionization., The radiative and adiabatic gradients refer
to
v = dlogT
dlogPp
and the radiative gradient is the actual gradient in this
case, The convective velocity and flux are computed from
the actual temperature gradient using the mixing length
theory without radiative losses. They were ignored in the
model calculations.
Table V gives, for all the models, the results

for the monochromatic magnitudes defined by

M{L) = 51.682 - 2,5 logy (47TR2FV )

where F ), 1is the physicél flux per unit frequency interval

and R is the radius derived from the dynamical model,

both in cgs units. The constant has been adjusted so that

M( IV ) at 5500 Angstroms will agree with the Johnson Vb

magnitudes, according to Willstrop's calibration (1960).
These quantities are directly comparable with

Spectrophotometry of actual stars. Figure 18 shows mono-
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chromatic light curves for A = 5400R, 4475a, 3647 A. The
horizontal lines mark the magnitudes of the equilibrium
model, For comparison Figure 19, which is reproduced

from Oke, Giver and Searle (1962), shows monochromatic
light curves at A = 4255A and 3636A for the Bailey a
type RR Lyrae star SU Dra. The similarity is apparent,
although the amplitudes are not the same. Of some interest
is the indentation in the blue curve and the notch in the
ultraviolet curve on the ascending branch. The following
figure, Figure 20, shows a similar set of light curves

for SW And (Oke 1966b ), another a type RR Lyrae star
but one which has somewhat different properties. In this
star the rising branch notch is less conspicuous, as is
the bump near minimum light., The model is probably a
better fit in these respects to SW And than to SU Dra.

Two definite features of the observed mono-
chromatic light curves which are predicted by the model,
in addition to their general shape, are the depression at
minimum light and the depression, or notch, or stillstand,
at mid-rising light., Both these effects are dué to the
gravity modulation as we have seen,

The technique used by Oke et al to determine
the radii of RR Lyrae stars relies on fitting the spectrél
distribution, expressed by the blue-visual continuum slope

and the Balmer jump, to an equilibrium model atmosphere,
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Variation of the absolute monochromatic mag-
nitudes for the model. The horizontal lines

indicate equilibrium values.
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hence determining the temperature, gravity, and the
flux per unit area of the star. The integrated velocity
curve and the apparent light curve then yield the absolute
radius curve,

The gquantities which we can use to fit the
temperature and gravity are C and D defined by

_M .
0= ﬂf,—vi%”f——i,’—"‘li y D= Magyg- -

Twu7s 5772

”@éqyf .

The values of C and D for the grid of equilibrium
atmospheres are given in Table VI, These can be used to
predict ¢ and D for a given ©, and log g by quad-
ratic interpolation in &, and log g. For a given pair,
C and D, €& and log g can be iterated until the
proper values are obtained, Using this procedure the
temperature and gravity were found for all the dynamical
atmospheres as if they were in equilibrium. In Table VII
are collected the values of C and D, the fitted &
and log g (denoted by *), the true values and the dif-
ferences., By the true gravity is meant g(2/3), with

g(tau) as defined earlier; the true & is determined

J e

by the actual flux from the dynamical model,

The two largest discrepancies in €, occur at
5.02 and 7.47, during the compression phase, The PNO
curves for these models (Figure 8) show the atmosphere to

be essentially in quasi-hydrostatic equilibrium in each
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Table VI

Oe log g C D

.875 1.60 ~.762 . 623
.875 2.82 ~.754 .367
.875 3.80 ~.764 .215
.775 1.60 ~.301 1.195
.775 2.82 ~.388 .796
.775 3.80 ~.455 .510
.638 1.60 . 250 1.632
. 638 2.82 . 177 1.469
. 638 3,80 .075 1.184
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Table VII
t c D e 1og g* e logg AES ANlog g
O. -.709 .42 ,862 2,82 . 862 2,78 0 .04
5,02 -.791 .33 ,886 2.78 .874 3.02 .012 -.24
6.41 ~.687 .35 .852 3.35 . 849 3.36 .003 -.01
7.47 ~-.392 .60 ,759 3.71 . 769 3.63 ~-,.010 .08
8.12 -~,144 .97 .70 3.40 . 700 3.54 .001 -, 14
8.54 -,112 .98 ,689 3.55 . 686 3.72 .003 -.17
10.06 157 1.43 .640 2,94 . 640 2.98 0 -.04
17.15 -.150 1.22 ,729 2.15 .734 2.40 ~.005 -, 25
20,87 =-.307 1.02 ,765 2.26 .771 2.40 -.006 -. 14
28,73 -,565 .65 ,.825 2.54 .823 2.29 ,002 .25
38,16 -,673 .50 .,853 2.63 . 852 2,55 .,001 .08
42,58 -,716 .42 ,864 2.77 . 859 2.79 .005 ~.02
51,32 -,722 .39 ,866 2,90 . 858 2.94 ,008 -,04
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case, PNO is constant to * ,02 from tau = .1 to 10.
But as we see in Figure 17 these models are noticeably
out of radiative equilibrium, both show a temperature
gradient with respect to the equilibrium model having
the same flux. At 5,02 the gradient was such that the
surface was too hot while the region tau =1 to 4 was
too cool. Since it happens that Tu(T) at 4000A is
less than at 6000A, this non-equilibrium gradient makes
the continuum look cooler, that is relatively less
emission appears in the blue than in the red; as a con-
sequence E@*- Be is +.012, At 7.47 the gradient
in the opposite sense exists and €%f-' Be is ~-.010,
The magnitude of these effects is obviously
not very great, A change of ,01 in theta, or 1.5 percent,
means a change of 6 percent in the total luminosity and a
similar change in the visual flux (which is determined
mostly by the actual temperature at T = 2/3, and is
not sensitive to the gradient )., Since the visual flux
determines the radius, a 3 percent change in the radius
is possible., This figure is typical of the fluctuations
apparent, for example, in the radius curve of SU Dra
obtained by Oke, Giver and Searle. As the earlier dis-
cussion of equilibrium deviations pointed out, the most
likely phase for deviations is the early compression phase

when log g is high and Ty is low. Referring to Oke, Giver
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and Searle again, we see that the high gravity phase
does indeed present anomalies in the radii, of the
proper magnitude, It is tempting to identify these with
non-equilibrium effects, although there are several other
uncertainties, such as inadequacies in the models, con-
vection, photometric calibration, which are also important,
Since a substantial body of RR Lyrae star
observations consists of two and three-color broad-band
photometry it is of interest to compute the magnitudes on
the UBV system from the monochromatic fluxes, In doing
this we encounter the well-known difficulty of representing
the empirical UBV magnitudes by iﬁtegrals over the spectral
distribution., The method of Matthews and Sandage (1963)
was used, employing a program written by J. B. Oke, with
the response functions, including two aluminum reflections,
and the atmospheric extinction as given by Melbourne (1959).
Matthews and Sandage transformed the theoretical u-b and

b-v to Johnson U-B and B-V with expressions of the type

UW-B =a(u-t), +b, B-V=c(d-v), +d.

The subscript, o or 1, is the number of air-masses of
atmospheric extinction used in the cal culation, To detex-
mine the transformation coefficients the colors were com-
puted for several stars for which observed monochromatic

fluxes were available, The results for three stars used
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by Matthews and Sandage, & Lyr, HD140283 and 10 Lac,
agreed fairly well with those given by Matthews and

Sandage., The transformations derived are

B-V = toz(l-v), + 0. 94

U~-B= o??(w#)/ - /34 .

In order to calibrate the V magnitudes to make
them correspond with M& the result, quoted earlier,
by Willstrop for a star with B~V = 0,3 was used,

The values derived for Mv’ B~-V, and U-B of the
grid of equilibrium models and for the dynamical models are
given in Table VIII. The extrema and amplitudes are sum-
marized in Table IX. Figure 21 shows the Mv’ B-V, and
U-B curves drawn from this data; Figure 22 is the two-
color diagram showing the loop formed by the dynamical
models and the main-sequence relation, The diagonal
straight lines are rough metal and hydrogen line-blanketing
vectors, that is, lines connecting the estimated positions
of log g = 4,4 models with the main sequence relation at
the same temperature; Most of the difference, at least
for bluer models, is due to the omission of the effects
of the Balmer line confluence.

With respect to the U-B, B-V loop it should be
pointed out that the fact that there is one, while no

strong shock occurs to affect the colors, rules out the



0
5.02
6.41
7,47
8.12
8.54

10.06
17.15
20,87
28.73
38.16
42,58
51,32

B

. 875
. 875
.875
. 775
. 775
. 775
. 638
. 638
. 638

*Using the equilibrium radius,
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Tabl
Yo B-v)
15,857 -.488
16,035 -.453
15,928 -.501
15,456 -. 641
14,992 -.759
14,888 -.769
14,523 -.896
14.892 -.759
15,078 -.686
15,371 ~-.559
15.633 -.509
15,748 -.481
15,937 ~-.480
log g Vs (b-v)
1.60 15,852 -.458
2.82 15,887 -.468
3.80 15,911 -.463
1.60 15,188 -, 685
2,82 15,246 -, 645
3.80 15,285 -.605
1.60 14.350 -. 930
2,82 14,369 ~. 906
3.80 14,397 -.856

e VIIT
(u-b), M
1.169 1.598
1l.164 1.776
1.110 1.669
1.062 1,197
1,102 0.733
1.092 0.629
1.143 0.264
1.193 0.633
1.195 0.819
1.203 1,112
1.187 1,374
1,173 1.489
1.158 1,678
o (u—b)l MG
1.345 1.593
1.175 1,628
1.078 1.652
1.270 0.929
1,152 0.097
1.058 1.026
1,182 0.091
1,149 0.110
1.094 0.138
3434 units

B-v

.44
.48
.43
.29
.16
.15
.03
.17
.24
.37
.42
.45
.45

B-v

.47
.46
.47
.24
.28
. 32
-.01
.02
.07

-.21
-, 21
-.26
-.31
-.27
-.28
-.23
-.18
-.18
-.17
-.18
-.20
-.22

U-B

~-.04
-.20
-.29
-.11
-.22
-.31
-.19
~-.23
-.28



quantity
B-V

U-B

max
.25
.03

-.31
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Table

min
1,77
.48

. 17

IX

med
1.01
.26

~.24

ampl
1.52
.45

.14

equil.,
.98
.28

~.22
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relation, the grid of equilibrium model colors
and the locus of the dynamical model, The
arrows indicate how a main-sequence star would

move if all lines were removed.
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suggestion of Abt (1959) that shock-induced continuum
emission is responsible for the presence of the loop.

The dynamical calculations bear out the alternate hypo-
thesis that all the continuum features are predictable from
equilibrium models of appropriate temperature and giavity.

If not very much is said about phencomena in the
line spectrum in this discussion, it is not because the
subject would not be fruitful, on the contrary; but
because first the information which can actually be ob-
tained about lines from the model is rather gualitative,
since the optical depth scale doesn't extend low enough
with adequate resolution to give guantitative results;
second, the behavior of very high layers in the atmosphere
is extremely sensitive to the high frequency content of
the pulsation, that is, that only a very well relaxed
model could be used to describe these layers with any
certainty.

If a shock did occur, raising material behind it
to a temperature of 40,000 degrees or so, the opacity in
HY would be so great that H )~ could be optically
thick through less than lO—4 of the surface shell of
the present model (Whitney and Skalafuris 1963), in
other words the shock could occur many scale heights
beyond ‘the last mass shell considered in this calculation

and still affect the Balmer lines. On the other hand,
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because the velocity rise time is considerably more than
the atmospheric resonance time C/g it is difficult to

form a shock wave (barring the assistance of critical
phenomena in the H zone) without allowing it to develop
through several scale heights. Consequently H ¥ emission
might or might not occur in this model, but it would require
adding many more mass shells on the outside to actually

find out.

B, Comparison with Properties of Actual Stars

Turning to a direct comparison of the model
with actual RR Lyrae stars, Table X contains some para-
meters which can be reasonably be inferred from the obs-
ervational data for the three well observed stars SU Dra,
X Ari, and SW Andi, in addition to the equivalent data forx
the model. It is a misfortune of the disposition of
RR Lyrae stars in the sky that all the stars brighter
than 9" at maximum have nearly the same amplitude,
about lm. The data given here for the stars have been
drawn from Preston {1964) and from the publications of
Oke et al,

Using the observed periods and Christy's period

gravity relation with a mass of l.OxlO9 = 0,5 M@ the

14 RR Lyrae might have been included in this list except for
the large 41 day period effects,
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Table X
Star SU Dra X Ari SW And Model

Property

Period Y660 . 651 . 442 .536
AV Tog . 98 . 94 1.52
A (B=V) .31 .26 . 34 .45
aut 81 km/sec 71 83 o1

2 5.4 units 5. 4 8.4 6.5

R 3600 units 3360 2250 3434
mass> 1.04,10°% v .93 .64 1.15
AR/R .16 .15 .18 .15
{T.) 6425°K 6550 (6600) 6500
A @rise® .069 .070 .053 .059
geff5 20 units 18 41 40
I(H}(em)/:tC .8: 1.1 .2 ?
1

using §M) = 3/4 as derived in Appendix E.

from Christy's period-gravity relation,

from the radius and the gravity.

the period times the velocity amplitude divided by geff'-

the maximum slope of the velocity curve on the rising branch,
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gravities are obtained as given, The values of the radii,
obtained from Oke, yield the masses given, The integrations
of the velocity curves together with the radii give the
relative radius amplitudes., In view of the small mass and
large radius amplitude obtained for SW And perhaps a larger
radius ought to have been-used, although clearly it should
be less than that of the other stars as indicated by the
larger gravity. All three stars have similar effective
temperatures, within the error of the determinations, re-
flecting the similar amplitudes, and the temperature of

the model is also the same. Judging by the temperature and
radius, the model is quite like SU Dra or X Ari, except for
having a larger mass, giving it a gravity intermediate
between these stars and SW And,

Turning to the various amplitudes, the model
obviously exceeds all these stars in visual and color am-
plitude., The velocity amplitude, hewever, is only slightly
excessive, and the relative radius amplitude is comparable
to the stars', As a consequence the velocity to visual
amplitude ratio is only 42 kn/sec/mag instead of 61 as
determined by Preston and Paczynski, Another parameter
of interest is the rise time A?ﬁrise of the velocity
curve, defined as the velocity amplitude divided by the
slope of the steepest part of the outward-acceleration

section of the velocity curve, in terms of the period.
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This is correlated with the gravity, so that the lower
gravity stars have the longer rise times, Here the model
resembles SW And more than the other stars. A closely
related quantity is the intensity of emission, if any,

in the H f’ line during the rising branch, SU Dra and
X Ari show strong emission and SW And very weak emission,
according to Preston and Paczynski. As for the model, as
far as the present calculations are able to predict the
model would not show H ¥ emission, If this is true, the
model would resemble SW And in this respect also.

As was commented before the surface gravity seems
to be a sensitive pérameter controlling the presence or
absence of H Y  enmission, The best explanation for this
is probably to be found in the I-front theory:>If the
gravity is too low, then the atmospheric density is low at
the beginning of compression and there is likely to be a
shock generated in order to compress the neutral material
enough for D-front conditions to prevail. However, this
theory will require constructing relaxed models with fine
H zone structure before it can be verified,

In view of the apparent contradiction between
the model results and the discussion of Preston, Smak and
Paczynski (1965) regarding shock-produced Balmer continuum
emission in RR Lyrae stars perhaps some comment on these

authors' result is desirable. They find a correlation
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between the amplitude A(U-B) of the U-B curve, as
measured from its minimum to the value at minimum light,

and corrected for the gravity effect by

(SJY‘O.V' = o.7 (/poj awax - 3-20)

and for differential blanketing, and the H )}~ emission
strength., It is not clear why they chose the value
3.20, which seems excessive if it is supposed to be the
gravity at minimum light, The effect is that é%rav is
too small by a factor 3, if a more reasonable value, 2,7
were used instead for the minimum light gravity. We can
see from their Table 7 that, quite apart from ¢ (U-B),
log g g¢ s well correlated with I(H a/)/Ic so that
incorrect compensation for the gravity effect produces
a correlation of A(U-B) with I(H X')/Ic. The 109 g_c¢
correlation confirms what was said before: the star with
the higher (mean) gravity has the shorter rise time and
hence the higher log PRy and this star has the smaller
HY emission, It seems fair to say that the existence
of Balmer continuum emission has still not been proven
in RR Lyrae stars.

If the curve of U-B versus time in Figure 21
is compared with Preston's and Paczynski's results for
the singly periodic type a variables, it is seen that the

agreement is qualitatively satisfactory, a substantial
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peak in U-B being present at mid-rising light, which is
not due to either differential blanketing or to Balmer
continuum emission from a shock but merely to the high

gravities which exist at that time.
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Part IV. Convection and the Model Deficiencies
A. Discussion of the Amplitudes

The principal discrepancy with the observations
is simply that the light amplitude is too large., Some
of the other discrepancies, such as the shortness of the
luminosity rise compared to the velocity rise, are in
fact also related to this. It would seem that the hydrogen
zone in the model is actually too efficient at retaining
the flux during compression to allow favorable comparison
with the stars. To see whether this might not be due to
having chosen poor parameters for the model it is necessary
to muster the systematic properties of RR Lyrae' star
amplitudes and compare them with the model grid of Christy.

The most useful observational data bearing on
this point are the period-amplitude and color-amplitude
relations for cluster RR Lyraes. Referring to Figure 4b,
the color-magnitude diagram, of Roberts' and Sandage's
study of M3 variables (1955), we see that they fall into
two more~or-less distinct luminosity groups, each group
having a dispersion of about Mo5. If the stars of each
luminosity group are identified in the period-amplitude
diagram, Figure 6, they are seen to form two parallel
relations, the more luminous stars being shifted to

higher periods. In the color-amplitude relation the
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difference is largely removed, and the relation which
exists can be considered to be the amplitude-temperature
relation, since each luminosity group is probably homo-
geneous in mass and composition, in addition to luminosity.
If the maximum and minimum mean CI for the ab
stars are converted to effective temperatures using the

relations

B~V - C I + ./9
&y = .62 +.5/(B-V)

the first given by Sandage (1959), and the second derived
by Oke for SU Dra, the Te range for ab stars is found to
be 5970 to 6740 degrees, while ¢ stars extend to 7130
degrees,

Figure 23 shows a comparison of the approximate
locus in AMbol and Tq of the ab stars in M3 with the
Christy models in sequences 4, 5, 8, 9, which all have
Mbol = ,76 (close to the determinations for M3) and
masses and helium contents as shown. Of all the sequences,
number 5 gives the worst agreement with the M3 stars, and
its lower mass equivalent, sequence 4, is also poor in
this respect. The highef helium sequences 8 and 9 are
much superior., These are ruled out, however, by the
reasoning Christy employed in his discussion (1966a).

If the abundance were 45 percent then the c¢'s should

extend to 7400 degrees. With a maximum T, of 6750
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for the ab's the mass would be .SOM@. Since the c's do not
appear to be hotter than 7100 degrees the helium abundance
must be less., With 30 percent a reasonable representation
of the temperatures of the c's and the ab's is found for
M = .58M@. This identification depends somewhat on whether
the stars pulsate as c¢'s or ab's in the crossover region,
Thus this argument again leaves us with sequence 5. It
should be noted that the exclusion of 45 percent is not
altered if there is a range of masses, and that the con-
vection uncertainties and the problems in finding the mean
color are least important for the c's on which the argument
rests, Also, if the temperature scale were shifted upward
by 300°K then sequence 8 would no longer represent the M3
variables at all, and even more helium would be indicated,
Let's proceed then on the assumption that
sequence 5 has the proper parameters to represent the M3
variables and try to understand why the amplitude is T
too great, and why the models are unstable for temperatures
which are far less than those of the observed stars, Com-
pare in Christy's Table 3 the characteristics of models
5g and 9f , which differ only in helium content. The
pulsation energy is the same, the radius and velocity
amplitudes are 11 percent and 20 percent higher, res-
pectively, for 5g, but both are similar to the observed

values, The bolometric magnitude amplitude is 1.48 for
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5g compared to .90 for 9£, however. Finally, we see that
the He zone work is similar (.020 for 5g to .022 for 9f)
while the H zone work is 3 to 1 in favor of 5g (.015 to
.0058). The inference from this is that the increase in
AMbol’ at least, in 5g is the result of the greater work
production in the H zone. Extrapolating this conclusion
to lower Te's we expect that a surplus of H zone work
production is responsible for the instability of sequence
5 where the observations indicate stability. The most
likely factor to limit hydrogen zone work production, es-

pecially at low temperatures, is convection.

B. Convection in the RR Lyrae Models

The rate of energy transfer through a sphere by

convection can be written as
4TI P Ur R

where V.. is the radial component of the turbulent velocity
and h is the specific enthalpy, assuming that the kinetic
energy and the pressure fluctuations are negligible. In

a linear theory an upper bound to the flux per unit area

is -é:/c’di 59%

where V.. and é§h are semi~amplitudes. If as upper bounds
to V. and o6h we use 1/2CS and 1/2 X , where Cq is the

sound speed and X is the ionization energy, we have
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5

F< 1§10~ units:

while the total flux is 1.0 x lO_'4 units, Thus con-
vection would represent 16 percent of the total flux in
the equilibrium model in the H zone, a figure comparable
to that which Christy gives in Table 2 of (1966a).

The next question is the behavior of convection
during pulsation. The characteristic time of the con-
vection cells is one scale height divided by the sound
speed, or equivalently the sound speed divided by the
gravity, In the equilibrium model the convection time
to the period is as the sound time across one scale
height to the sound time from center to surface, that is,
much less than 1. Specifically the time for model 5g at
equilibrium is

/0 :
e S . Unt TS
te= 4 = gg = /5wt

while the period is 46,35 units. During the expansion
phase g is as small as 2 making Zi: as large as 5

time units, However due to the low densities, convection
is not likely to be important then, During the compres-
sion phase g is essentially duU/dt where U is the photo-
sphere velocity, so ifc is the time required for U to
change by Cg- Since in general U changes by 7 to 10
times CS, the duration of the compression phase is that

many times the convection time. The conclusion is that
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convection should be able to adjust to the higher density
existing during compression. This density exceeds the

equilibrium density by a factor of 5 or more, making con-
vection very competitive with radiation, perhaps dominant.

We see then that in perhaps most of the Bailey
ab stars convection operates effectively as a mechanism
for transporting heat during compression, when radiative
transfer is much impeded, and ineffectively during ex-
pansion, when radiation is efficient. fThus it Jjust
counteracts the effectiveness of the H zone driving
mechanism, which is the necessary conclusion to explain
the excessive amplitudes and the instability at low tem-
peratures which contradict the observations,

Other than to reduce work production in the
hydrogen zone it is not really possible to tell what
effect convection will have on the pulsation without
actually making models including it. One effect would
probably be to make the luminosity rise more gradual,
in accordance with the observations, Whether it would
also produce the more pronounced stillstand on the
rising branch is impossible to tell,

Parenthetically, if the scale height were not
small compared to the radius as is the case in RR Lyrae
stars, and if on the rising branch the atmosphere did

not respond quasi-hydrostatically to compression, which
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follows from the first condition, then convection might
not adjust to the pulsation, and much cooler models
could be unstable because of the H zone mechanism, As
Baker and Kippenhahn have found, convection which does
not interact with the pulsation does not prevent hydrogen
zone driving. The stars which are in mind in this con-
nection are the red giant and K supergiant variables in
which instability in fact seems to be very common. But
for the higher gravity RR Lyrae stars it would appear
that convection does exist and does interact with pulsation
and does limit the amplitude and establish the low Te
boundary of instability.

In order to see how convection would change
the determinations of temperature and gravity, three
equilibrium models including the effects of convection
were constructed, using the values of Gb and log g
which applied in the models at t = 7.47, 9.56 and
38.16, These models represent maximum compression,
maximum temperature and a typical phase on the lower des-
cending branch. An additional model might have been con-
structed for 20.87 but convection would be actually neg-
ligible in it due to the very low pressure in the H zone,

The method used to construct the models is the

same as described by Mihalas (1966b) for the first
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approximation used by him in obtaining constant flux
models, As before the Rosseland mean was used as the

standard opacity, rather than These models

}CSOOO'
assume the gray temperature distribution until con-
vection begins, then find the temperature distribution

by keeping the sum of radiative and convective flux
constant, where the diffusion equation is used for the
radiative flux and the mixing length theory with

¢/H = 1 including radiative losses is used for the con-
vective flux., Under certain circumstances the convective
flux may exceed the upper bound given earlier, but the
radiative losses prevent the excess from being ridiculous;
in any event the models indicate what convective effects
can be expected,

The results are given in Table XI. The maximum
amount of convective flux and the maximum convective
velocity are given, together with the details of the slope
and Balmer jump fit as before., We see that the errors
made in assuming that the models are radiative are of the
same order of magnitude as the radiative equilibrium
deviations found before, but here they are always toward
lower temperatures and higher gravities, which is what
is expected from a reduction in the temperature gradient,
These effects should be largest during compression and

disappear just after maximum light, so that they introduce
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Table XI

t 7.47 9.56 38.16
Ea 769 . 640 . 850
log g 3.69 3.12 2.55
C ~-.457 . 120 -. 689
D .499 1.358 .453
o . 775 . 645 . 857
log g* 3.84 3.12 2,77
A e . 006 . 005 .007"-
Alog g .16 0 .22
(Fc/Fo)max .95: .22 . 97:
(Vt)max 3.4 km/sec 6.7 | 4,2
Vmax 2,36 3.45 3.75
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systematic errors as a function of phase in the radius

determinations, if these are based on radiative models,

C. Other Limitations and Inaccuracies

The most serious limitations on the usefulness
of the model that was made in this study are those which
have already been discussed: lack of relaxation and
omission of convection, There are other problems, some
of which are probably not important for this type of star,
which in any case must be examined and rectified if pos-
sible in future work,

One of these, which was actually troublesome
here, is the availability (or lack thereof) of opacities
for both the interior and the atmosphere which.are
accurate and consistent. For the envelope dynamical cal-<
culation Christy's analytical approximation to the Cox
opacity tables was used, whereas for the atmospheres the
Mihalas monochromatic opacity routines were used. These
are not consistent, in fact, and in addition neithexr agrees
exceptionally well with the published Cox values, which are
to be preferred,.

Table XIT showsla comparison of some of the
available opacities at several sample points. In the first
part of the table the Cox, Stewart and Eilers (1965)

opacities for the Aller mixture are compared with Mihalas-~



log )(Ross:
Source
Y

Z

©, log Pqg
1.0 -1.
1.0 0.
1.0 1.
1.0 2.
0.8 ~1.
0.8 0.
0.8 1.
0.8 2.
0.4 4,

for ¥ = .384,
e log Pg
1. 0

.6 3.

02 4-

.101 5,494

Table XII
Cox Mihalas
.384 . 354
.020 . 044
lines
~2.538 20%
-1.591 10
~0.558 16 -0.639
0.468 15 0.307
-1,372 3
-1,591 8
~-0.854 13 -~0.879
0.209 20 0.004
2,212 17
Zz = ,020
log Vv log >6Cox
7.27 -1,.591
6.80 0.908
8.16 0.836
6.00 2,487
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Mihalas Vardya Vardya
. 300 . 326 .333
. 002 .022 . 002

-2,450 ~2.481 ~-2,470
-1.538 ~1.573 -1.554
~-0.601 -0.600 ~-0,612
0.082 0.314 0.064
-1.309 -1.328 ~1.321
-1.510 -1.535 -1,527
~-0,817 -0.852 -0.842
0.079 0.028 0.041
2,012 1.992 2.000
log Xeypm Alog X
~1.612 -, 021
1.004 . 096
0.876 . 040
2.308 -.179
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program-generated Rosseland mean opacities for the
Kippenhahn I mixture (which is about the.same) and for
the composition used here, and with Vardya (1964) values
for a composition similar to the Aller mix and one
similar to the mixture used here, The percentage effect
of lines on the Cox opacities is also indicated. The
consensus is that Mihalas agrees with Vardya to * 3
percent. Vardya agrees with Cox to 5 to 10 percent
except where lines are most important, the errors there
rising to 50 percent, The second part. compares Cox
opacities for the Aller mix with opacities calculated
with Christy's formula at four selected points., The
electron pressures used in the formula were derived
from Cox's tables., It would seem that overall the for-
nula agrees with the table to 10-20 percent, although
at the highest temperature the difference is larger., At
B, = .4 and log Py = 4, where the line effects are large,
the formula gives 1log X = 2,014, which lies midway
between Mihalas and Vardya on the one hand and Cox and
Stewart on the other, differing by 25 percent from each,
Rather than using a formula it would probably
be better to intérpolate,more or less directly in the
table, It would be desirable, of course, if accurate
values could by obtained for low Z, high Y compositions

which are lacking at this time. Since it is inaccurate
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to use low order interpolation in the course grid of
temperature and density given by Cox and Stewart, it
would be desirable to first refine the grid with high
order interpolation, then obtain opacities as required
with linear interpolation in the denser grid.

Another problem to consider is the deviation
from planarity of the atmosphere, If a measure of that
deviation is the ratio of the atmospheric scale height
to the radius, we can see that this parameter is identical
to the convection time compared to the period, and we
have already seen that that is small for RR Lyrae stars,
although it is probably not small for the cool variables,
In the present model at maximum expansion the extent of
the atmosphere from 7 = 1073 to =1 is 34 units
while the radius is 3728 units, so the ratio is 0,91
percent, which is obviously ﬁegligible. |

It should be pointed out that the approximation
to sphericity that was incorporated in the integral ex-
pression for JL/9M leads to an incorrect equilibrium
temperature distribution at small optical depth in a very
extended atmosphere. The argument of Chapman (1966) using
moments of the transfer equation leads to the asymptotic

source-function

~ H(l7L (/) /6/7’2/2,7‘({ ’C:)
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The formula used here leads to

—— ,t’
J = [ 3terg(e)
[~4
Taking the case X~ /2> the correct expression

for small tau is

/ _—
T~G(i+re) = o(t)
while the other formula would have approximately

T = O(Tdg7T).

It is clear that the approximation becomes
erroneous in a very extended atmosphere., The problem
of extended atmospheres is one which must be solved
before atmospheric phenomena in the cool variables can
be investigated.

The question of including frequency dependence
in handling radiative transfer has an importance limited
to atmospheric problems, since the Rosseland mean treat-
ment 1s accurate in optically thick material. Even in
the atmospheres non-gray effects are not severe in cool
stars, due to the importance of H in the opacity. The
most likely circumstance requiring a non-gray treatment
in pulsation is a strong photospheric shock, as indicated
by Whitney and Skalafuris (1963)., Since the cost of
calculation is proportional to the number of independent

frequency intervals, this improvement is not likely to be
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made soon.

Finally some thought should be given to the
truncation error of the difference system, As far as the
equation of motion and the diffusion equation are con-
cerned there is little to be added to what was said by
Christy (1964). 1In the present calculations Aln(MT—Mr)
was 0.5 which is worse than the value 0.34 used by Christy.
The large spatial steps do not affect the energy balance
because of the way the difference eguations were set up,
but do mask short wavelength phenomena such as shocks
(or ionization fronts). Furthermore near the center where
the step in radius becomes large the variation of velocity
from point to point can be substantial, no doubt causing
errors., Because the amplitude is small in this region,
however, the effect on the pulsation should be slight. The
same reasoning applies to the location of the rigid inner
boundary in the present case at 25 percent of the exterior
radius, The sound travel time from the center to the sur-
face would lengthen by about 4 percent if the inner boundary
were much closer to the center. This could very well change
the harmonic composition of the pulsation,

Regarding the accuracy of the quadrature formula
for the optically thin region, a test case was calculated
in which the flux was found as a function of optical depth,

using a similar formula and perhaps 20 percent more points,



~149-

for the exact gray body solution, The answers were
correct to about 0.5 percent in the mean,

Two other error sources are the adiabatic pres-~-
sure extrapolation and the interpolation when changing the
mass division, The latter caused errors of only a few
percent in any variable, while the former might make the

H zone pressures 10 percent in error locally,
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Conclusion

To what extent do the results achieve the
objectives of this enterprise? To begin.with, a
relaxed model containing the full physical treatment
outlined in the introduction could not be obtained, for
economic reasons., The hope that aperiodicities present
in the one or two cycles which could be calculated could
be minimized by using a well relaxed diffusion model for
initial conditions was not well realized either. The
inference is that the additional accuracy of the physical
description used in this model did have significant con-
sequences, and it was of some interest to investigate
these, However, due to the transient reaction to the
difference the actual results of the model calculation
must be considered preliminary in that agreement or dis-
agreement of the calculations with the overall behavior
of a star may not be significant. What the calculations
do provide is a model of the possible behavior of an
RR Lyrae star, Specific features of the calculations
which agree with observations can be used in the regular
way to give insight into the mechanisms operating in the
stars,

In my opinion the most interesting phenomena
which appeared in the calculations are those connected

with the motion of the H-zone., It has become my impression
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after analyzing the results that many surface features
are caused by H-zone dynamics. I have already discussed
the connection of the H-zone with rising-branch shocks
through the reaction to M-front conditions and through
the dependence of the pre-rise atmospheric state on the
H~zone-connected behavior on the descending branch, It
is also possible to see a connection between the shape
of the descending (i.,e. inward acceleration) branch of
the velocity curve, and the existence of the R-front,
which disappears at the midpoint of the branch, and the
subsequent compression waves in the atmosphere. The des-
cription of these events is not reliable in the absence
of fine H~zone resolution in the model. More extensive
calculation of this type will surely be helpful in inter-
preting and calibrating the observed velocity (and lumin-
osity) curves.

The results of the calculation which could be
compared with Christy's model in all cases compared favor-
ably. In particular the hydrogen zone work production
was the same as Christy found it to be,

The deviations from radiative equilibrium in
the optically thin layers, which the transfer formulation
was used to describe, are gquite sensitive to the fluc-
tuations in dynamical quantities and therefore were severely

affected by the lack of relaxation., The extent of the dev-
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iations which occurred indicated that while they are not
a dominant effect they are significant and probably will
- help explain some anomalies in the radius-curve deter-
minations,

The energy distributions calculated with the
models are qualitatively the same as the observed distri-
butions but quantitatively they indicate, by large am-
plitudeé and shorter rise times, excessive efficiency of
heat retention by the H-zone.

These differences cannot be ascribed to lack of
relaxation or to errors in the parameters chosen for the
model, and must rather be due to some lacking or erroneous
ingredient in the models., The indications are that this
ingredient is convection.

| I think this calculation has been productive in
indicating directions in which to proceed in achieving
better explanation of the features of RR Lyrae stars, The
most important thing which should be done next is the cal-
culation of relaxed models including fine H-zone detail and
convection; these need not include transfer effects which
are likely to become significant only after the amplitudes
and general appearance of the observations are reproduced
by the models. The form which convection should take in
the models is of secondary importance; more important is

the calculation of a sufficient number of models including
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a plausible representation of it to see what can be

expected from more careful work.
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Appendix A. Symbols

Interpretation

g% ot /dMp

adiabatic sound speed

source function gradient less gray value
pseudo~viscosity constant

specific heat at constant volume

normal increment in M1l

mass of a shell

mass associated with a sphere

optical depth increment between shell centers
optical depth increment across a shell
internal enexrgy

kernel in sum for JL/Jd M

enerqgy flux per unit area

gravitational constant

X + g(x), the gray body source function
specific intensity of radiation
diffusion constant

luminosity at radius r

luminosity of static model

mass interior to radius r

log _  of mass exterior to the midpoint of a
shell

loge of mass exterior to a sphere
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Svimbol Interpretation

MT or M total mass of the star

N total number of shells

N (x) function used to choose optical depth scale,

= 5,781n (1+5.781n (1+. 5x))

P pressure
q pseudo-viscous pressure
q (x) function appearing in gray body source function
r or R radius variable
R or RT photospheric radius
RR 2s(z)/h(r) at T =0
<F specific entropy
S source function (blackbody function), = %;7’¥
t time
T temperature
TAU or T optical depth at the midpoint of a shell
TAUL or T1 optical depth at a sphere
U velocity
\Y% specific volume, = 1/p
Y opacity
/py direction cosine of radiation to line of sight
Y density
g Stephen-Boltzmann constant
X ionization energy

X

X(X) / By (| x [)dx
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Appendix B.
Exponential Integral Approximations

The flux formulae require values of Ez(x),
E3(x), and E4(x). Since many evaluations of these are
required, rational approximations had to be found. From
the definition,

20 —xt
En(X) :f‘*—*“e t(){t

the asymptotic expansion

Pewsy ~ (1 ¢ P aeilae )

can be derived (Abramowitz and Stegun 1964), which suggests

arational approximation of the form

.
e En) = 5o

where Pr is a polynomial of order r, Q.1 @ polynomial of
order r+l. The coefficients were determined according to
the method of Hastings (1955) to minimize the absolute

error in eXEn(x). The results for E and E

are
3

a4
2

% a0+alx+a2xA _

e"Ey (x) = T 6.66 x 10

b + Db 2% x2+b x3
1772 3
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a, = .49993344 bl = 6,0160198

a; = 2,5278369 b2 = 5,9324547

a, = 1.1897942 b3 = 1,1969649
a_+a,x+a x2

¥Ey (x) =212 ¥ 3.66x 107"

l+blx+b2x +b3x

a, = .33331891 bl = 2,5767983

a, = . 69333060 b2 = 1,4134852

a, = . 18408381 b3 = ,18466785,

In addition to E3 and E4 R E2 and E3 must

be computed at the same time, respectively. The expressions

used for these are

E2(x) 1+1,3455964x
= +0.014
E3(x) .51368752+1,2469102x%
and
E3(x) 1+,67682642%
= + . 0042
E4(x) . 67085261+, 64670958x%

All these rational fractions are expressed as finite con-
tinued fractions for computational efficiency when they
are actually evaluated.

The gray body source function h(x) = x+q(x)

was approximated in the same way, with the result
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.13263853+2.5344511x~. 60569702x2

h(x) = x+,70998880-

1+28.269877+69. 458442x2+75. 4592 7lx3

+ 4.6 x 1074

1.189

and h' (x) =l+m .
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Appendix C. Equation of State

Assembled below are the formulae used to define
the thermodynamic state of the stellar material., If
N(I,J) is the number density of element I in ionization

stage J, the Saha equation gives

N(Z,T) | % g Kmr /T 2(he h ] 9(=,3)
= 7 4
N(Z,T-1) Ne :m,a EICERD)
where the symbols have their standard meanings, g(I,J)
being the partition function replaced by the ground state

statistical weight., With the definitions

= 7%”’) 3/2_ — §,7:_5/2‘
02(37_77‘;%2) ’ Cr= Ne

CHI(T, T)"*%j%

then
~CcHI(Z ,7) /T
( ) M(T 'J") g(i T)E -
GMI,T) = ———t = T —- HE(L,T)/T
5/\/(1: 7) jgc, qET)Ee :

The entropy per unit volume of species (I,J) is

N(z .3’)/% [g, S+ joﬂ ﬂ@: ,T) + Lfﬁoj T’ﬂo:) M, 3) +6LC (12]

where

GLCL;):'%f%ﬂ “%WCQ)

an-H2

and m(I) is the atomic mass of element I. If X(I) is

the number abundance fraction of element I, the mean
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molecular weight of the neutral mixture is

Ay =5 AE) X(D)

where A(I) is the atomic weight of element I in amu. So

that the number per unit mass of (I,J) is

//‘d/; X (x) GN(T,T)

where N, is Avogadro's number; therefore the number per

unit volume is

Nz, 5) =% x(r)6nix,T)
//QV
and furthermore the electron density is

= ’Aé T ::Zéﬁé .
- G SN2 e ) =55 - 4

where C(I,J) 1is the charge of ion (I,J). The total

entropy per unit maés, then, including the electrons is
& = f/‘éi?,—{;%(l) [GLc(@ +§@A/(I,T)-
‘(/Ojf{(r,:r) —fo; NV, J“))J + 2.5+ /-5/@7“
+ A (254 g O}

where ka is the same as the gas constant é,. The

pressure and internal energy per unit mass are

b = /OéT (1+4)
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and

E= /W{/ S(1+4) + -Zx(r>§’cm<r eu(E. f)}.

If we define F and G by the following expressions

oo Z'x(l){ ZCQ(I)T)GN@’T) - (%’C(I,T)Q(V(LU))Q}
T T

= <<c“‘(z,°r)>r ~ <c(:\:r)>;">l
— <<CCI;T)CHI(I, J”)>T -~ <C(I)T)>T(CHI(I, I)>T>I

then (2%Ah) _ LEF +G/T
TP = [+ A
(BIOjNe) - _A
20by P )  FrA

‘ Ne
)
(B85, = - 7
P 1+#4 FrA
and if we define
DLNFAC = /,5,_73%/%/%_/{%)0

(?ﬁ%%@)ﬁ = DLNFAC - C(I,;3) + CHI(T,T) /T

— = [DUVFAC -Cx,3) + cr(r,3) /) 6M(E, ) = DM(E,T),
Y

then
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Therefore the specific heat per unit mass at constant

volume is

Cy= %/ {/-5[/+/4}(/+(-9§%i/7%)o)]

+ 7—’: <<CHI(I, ) DN (T, T)>3‘>_7:}.

The other common thermodynamic guantities all follow from

A

these: ol
F AT 5 ,17)
’“JL"T_

( 21’03/

"= (kR = 25

Csﬂ/‘}’f.

When radiation pressure is included (it was, in the present

)

calculations) the following corrections are made:

+o add.
- STt
4

4 QT?

—_——

3 <
art
E. =
c 4ar?
v 3/0
and the other corrections may be inferred.

In these calculations the given arguments were

usually T and “/9 and Ne was adjusted by iteration to ™
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satisfy the equation for - The relative abundances
of the heavy elements used are given in Table C.I as
adopted from Mihalas (1965a). For each of these three
ionization stages were treated explicitly and the
remainder were handled statistically.

After the electron pressure had been found for
the given temperature and density Christy's formula was
used to give the opacity (1966a).

This procedure was used to construct a table
giving 1n()})), 1ln(p), <V s (CSZ/T) with 1n(T) and
1n(Vv) as arguments. The region of 1n(T) and 1n (V)
covered by the table was diagonal in shape, the range in
lOglOv being 3.0 at each T but with the upper and lower
limits varying with T, so that roughly V A/l/T3. The
table spacing in loquV was 0.3 and in ioglOT: .02 for
-.3¢ loglO(T/lO4'K)$ 1.0, .05 outside that range.

In the dynamical calculations (including the
equilibrium model) ), EM-X , and Cq were obtained by
interpolation in the corresponding table linearly versus
InT and 1nVv. Where 1lnp and 1InT were the given
arguments inverse interpolation was used to obtain lnv,
and then the other interpolations proceeded as in the
other case, Whenever derivatives were required they were
obtained by differencing in the tables, Linear extra-
polation was used whenever the arguments fell outside the

table.
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12
13
14
16
20
26
28

~-164-

Table

Element

C
N
o)
Na
Mg
Al
Si
S
Ca
Fe
Ni

c.1l

Relative Abundance
(by number)

. 3266

. 05923
. 56086
.00123
. 01541
.00098
.01972
.01233
. 00086
.00228
. 0005
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The System of Units

Following Christy the system of units used in

the calculations and which has been found quite useful for

general computation in RR Lyrae stars is the cgs system

modified by powers of 10 to make certain guantities take on

convenient values.

The following table summarizes the re-

lation to the cgs system.
Quantity Cgs unit unit in modified system
length 1 centimeter 108 cm
mass 1 gram 1024 gm
time 1 second lO3 sec
velocity 1 cm/sec 105 cm/sec
density 1 gm/cm3 1 gm/cm3
pressure 1 erg/cm3 1010 erg/cm3
energy 1 erg 1034 erg
power 1 erg/sec 1031 erg/sec
. . 3 2 -6 3 2
gravitational 1 cm™ /gmsec” (G=6.70x 10 cm”/gmsec” (G=.067)
constant 1078)
flux 1 erg/cm2 sec lO15 erg/cmzsec
temperature 1" Kelvin lO4 'K
s . 6 .
specific heat, 1 erg/gm'K 10 erg/gm’ K

entropy

Stephan-Boltz~ 1
mann Constant

specific energy 1

1 day is 86.4 time units,

erg/cmzsec('K)4
(0 =5.6692x1072)

erg/gm

lO—lerg/cmzsec('K)4
(0 =5.6692x10"4%)

10

107" erg/gm

1 km/sec is 1 velocity unit, ,the

specific energy to ionize hydrogen is 1302.54 (km/sec)”.
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Appendix E. The Velocity Projection Factor

If a spectral line is formed in an atmosphere
expanding radially with a velocity U, and if in the ab-
sence of expansion the observed profile can be represented

by
L ALV
€Z(AM) , AXD ~;\U£

e

then if the continuum limb darkening and the center-limb
variation of the line strength are known, the profile

that one would expect to observe from the expanding at-
mosphere can be computed. This profile will have a maximum
at a displacement corresponding to a velocity _Z/LmaxU’
and this velocity is close to what a person measuring the
spectrum would call the radial velocity. A slightly better
approximation would be the velocity at the midpoint of the
chord drawn through the profile at 80 percent of maximum,
for example, but this makeé very'little difference.

With a limb-darkening law

T, .
=45 = A (1~

and a center-limb variation law

WH)
*’W—- | = a (- /M)
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files and values bf were computed correspondin
pro A p po g

to

%%CL = 0.2, 0.6, 1,0

ﬁ%CLr-= +0.1
and for

Y =0.5 1.0, 2.5, 3.5, 5.0, 10.0,
where
v = XL
= %

The results are given in the following table.

Table E. I
/Xmax

Rta .2 .2 .6 .6 1.0 1.0
y Ra -1 .1 -.1 .1 ~-.1 .1
0.5 . 685 .675 .716 . 703 . 760 , 742
1.0 . 688 .678 .719 . 706 .762 . 745
2.5 .707 . 698 .738 .726 . 774 ., 762
3.5 .728 .719 .756 . 747 . 787 .778
5. . 762 . 755 ., 785 .779 . 808 . 803
10. .839 .836 .851 , 849 .863 .861

To determine the limb darkening, values of
I(_/%,) were calculated for each dynamical model atmos-—
phere which was constructed as described in Part III. The

o
results for %k at 4475A , were, for example,
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eguilibrium .78

t = 5.02 .78
10.06 .70
38.16 .83 .

The values of a to be expected could be positive or
negative and perhaps .25 in magnitude, but for the purpose
here it is probably best to merely use 0. So for k = .78

and a = 0 we find the following table by interpolation

" _tmax

. 728
. 730
. 748
. 766
. 792
. 855

uunmoun

ounwbhE

The contributors to vy the line width expressed
as a velocity, are the thermal velocity, which is only
about 1 or 2 km/sec for metal lines, the micro-turbulent
and rotation velocities, which are typically 10 km/sec,
and the resolution of the spectrograph expressed as a
velocity, which is about 1.4 d where d is the dispersion

in A/mm. Consequently, v is about 10 km/sec for 5 A/mm

d
or less, about 17 km/sec for 10 A/mm, and 28 km/sec for
20 A/mm, With a value of U of 40 km/sec, which is rep-
resentative of RR Lyrae stars, the values of T? are

4, 2.3, and 1.4. The corresponding values of /L(max are

.77, .75, and ,73.
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From this it would seem that the best (and
simplest) projection factor to use is 3/4, although un-
certainties of 2 percent or so seem to be inevitable
because of the number of variable determining factors.
For comparison the value usually used, which refers to
the centroid of the profile for k = 0.6, a =0, and

is independent of line width, is 17/24 = ,708.
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