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ABSTRACT 

This dissertation is concerned with the application of 

linearization techniques to the study of the response of non-linear 

dynamical systems subjected to periodic and random excitations. 

A general method £or generating an approximate solution of a 

multi-degree-of-freedom non-linear dynamical system is presented. 

This method relies on solving an optimum equivalent linear sub­

stitute of the original system. 

The applicability of the method £or determination of the 

amplitudes and phases of the approximate steady-state solution of 

a multi-degree-of-freedom non-linear system under harmonic 

monofrequency excitation is considered. The implementation of the 

method for several special classes of non-linear £unctions is dis­

cussed in detail. In addition, the manner in which the method may 

be applied to generate an approximate solution for the covariance 

matrix of the stationary random response of a multi-degree-of­

freedom dynamical system subjected to stationary Gaussian exci­

tation is outlined. 

The potential of the method to treat transient solutions of 

non-linear systems is indicated in the context of the non-stationary 

response of a lightly damped and weakly non-linear oscillator sub­

jected to monofrequency harmonic or to a Gaussian white noise 

disturbance. For both classes of excitation the method produces 

a first-order differential equation governing the response amplitude. 

The results pertinent to the harmonically excited oscillator are 
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compared with existing solutions O A non-stationary solution of the 

Fokker-Planck equation associated with the stochastic differential 

equation governing the response amplitude of the randomly excited 

oscillator is accomplished by perturbation techniques; the stationary 

solution is determined without making any approximation in the 

Fokker-Planck equation. 

The new method for transient response is applied to the 

random response of a Duffing Oscillator and a Hysteretic System. 

The solution for the Duffing Oscillator is compared with data 

obtained by a Monte Carlo study 0 
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I. Introduction

The area of non-linear dynamics has become an interesting 

and challenging scientific branch for the engineer and the applied 

scientist. One major reason for this interest is the fact that it is 

not always possible to disregard non-linearities in today's compli­

cated engineering systems and structures. In situations where a 

more complete understanding of the qualitative and the quantitative 

behavior of systems is required, it is often necessary to include 

non-linear effects. For example, in order to describe the response 

of structures to damaging excitations like earthquakes, consideration 

must be given to non-linear structural behavior. An excellent 

report of available techniques of non-linear analysis oriented 

towards earthquake engineering applications has been given by 

!wan [ l].

Typically, the response of a discrete non-linear dynamical 

system is described by a set of second order ordinary differential 

equations. Although non-linear second order differential equations 

have occupied the mathematician for some time, the techniques for 

exact closed form solution are quite limited. Existence and unicity 

of solutions can be demonstrated under certain conditions, but for 

only an admittedly small number of non-linear equations are exact 

solutions known. A good examination of the existence and uniqueness 

problem for deterministic non-linear differential equations is pre­

sented in reference [2]. 

In recent years considerable interest has arisen for problems 

of non-linear vibrations induced by random excitations. One major 



-2-

incentive for such studies has been the problems which arise in 

the fields of aeronautical and space engineering. Another problem 

area which has also motivated research in the field of random 

vibrations is that of structural response to earthquakes. A common 

characteristic of such problems is that the excitation is usually so 

complex that it can only be described statistically. In addition, 

most physical systems respond linearly only for a limited range of 

external disturbances. Therefore, since under random excitation 

large responses may reasonably occur, a realistic study of system 

behavior under random disturbance must include some sort of non­

linear analysis. 

Usually, the response of a discrete non-linear dynamical sys­

tem subjected to random excitation is modeled by a set of second 

order stochastic differential equations. It is clear that in this case 

the response of the non-linear system can no longer be considered 

as a single deterministic function, but should more properly be 

regarded as a family of functions characterized by some suitable 

statistics. 

The theory of the response of linear systems to random dis­

turbances is quite well developed and is available in common 

reference books [ 3, 4, 5]. However, the response of non-linear 

systems to random excitation is a broader and more complex 

topic. Recently, an excellent state of art report of the theory of 

non-linear random vibrations was presented by Caughey [ 6 J. 

In this reference, among other topics, the existence and unicity 

of solutions of stochastic differential equations and the existence 
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and unicity of solutions of the associated Fokker-Planck equations 

are discussed. 

Solution of the complete Fokker-Planck equation appropriate 

for a non-linear system provides the exact transition probability 

distribution function of the response to a Gaussian white noise 

process [ 7 ] . From the transition probability density function, the 

ordinary probability distribution of the response may be determined. 

Unfortunately, to date there is no systematic way of solving the 

complete Fokker-Planck equation for the general second-order non­

linear system. 

The stationary probability distribution function for the response 

of a non-linear system subjected to Gaussian white noise can be 

found by solving the stationary part of the corresponding Fokker­

Planck equation. The broadest class of non-linear second order 

systems for which such a solution technique can be employed has 

been given by Caughey [ 8]. This class includes systems with 

non-hysteretic non-linear stiffness and non-linear damping which is 

a function of the amount of the energy of the system. This 

class of non-linear dynamical systems comprises all the particular 

problems for which exact solutions for the stationary probability 

density function have been obtained to date. Using this general 

solution, exact solutions may be found for a variety of systems 

including systems with cubic [ 9 ], tangent [10],and arc tangent 

[ 9 J stiffness. Unfortunately, the above class of systems does not 

contain the interesting class of hysteretic systems. The latter 
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class of systems is distinctly important in modeling structural 

behavior during earthquakes. 

The scarcity of exact solutions has necessitated the develop­

ment of approximate analysis techniques for determining the response 

of non-linear systems subjected either to deterministic or to random 

excitations. 

For the case of a single-degree-of-freedom non-linear oscil­

lator subjected to deterministic excitations, most standard approxi­

mate techniques involve assuming a certain solution form containing 

some undetermined parameters. These parameters may be specified 

by minimizing the error residual obtained by substituting the pre­

sumed solution in the original non-linear dynamical system. 

Representative methods of this class are: the PoincarJ-Linstend 

perturbation technique [ 11 J, Krylov-Bogoliubov- Mitropolsky asymp­

totic methods [ 12 ], and Galerkin' s technique [ 13]. One significant 

restriction on most of the above methods is that the first-order 

approximation that they furnish is reliable only for weakly non­

linear dynamical systems. More accurate solutions can be obtained 

by including more terms in the approximation, but the computational 

effort required usually makes this unprofitable. 

For a single-degree-of-freedom non-linear oscillator subjected 

to harmonic excitation, the classical methods of equivalent lineari­

zation, harmonic balance, and energy balance may be used to gene­

rate an approximate first-order approximate solution [ 14]. Another 

approximate technique which produces the same first-order steady­

state response equations as the methods of equivalent linearization, 
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harmonic balance, and energy balance is the method of slowly 

varying parameters [14 ]. The latter method may also be used to 

produce an approximate solution for the transient response of a 

non-linear harmonic oscillator subjected to a harmonic disturbance 

[ 15 J. The interesting common feature of these 11 engineering" 

oriented mathematical techniques is that they can be applied to 

hysteretic systems as well [ 16 , 17 J. 

Naturally, considerable effort has been devoted to adapting 

the above discussed approximate techniques of the deterministic 

theory to the field of random vibrations for single-degree-of­

freedom non-linear oscillators. Very complete coverage of the 

currently available techniques for non-linear random vibration 

analysis may be found in the excellent review studies by Caughey 

[ 6 J and !wan [ 1 ]. One significant advance was the application 

of the classic al perturbation method by Crandall [ 18] to random 

vibration analysis of single-degree-of-freedom oscillators with small 

non-linearity, However, major difficulties arise in the application 

of the perturbation method in the absence of linear viscous damping, 

or when the non-linear oscillator exhibits hysteretic behavior. 

The adaptation of the classical equivalent linearization tech­

nique of the deterministic theory to systems subjected to random 

excitations was independently presented by Booton [ 19 J and Caughey 

[20 J. The principle of the method will be discussed herein during 

the general formulation given in subsequent chapters. 

In addition to the techniques discussed above which are 

directly applicable to the stochastic differential equation, other 
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techniques have been devised for an approximate solution of the 

associated Fokker-Planck equation. These techniques [21] include 

separation of variables and eigenfunction expansions for the resulting 

eigenvalue problem, iterative solutions, numerical solutions, and a 

variety of other special techniques not of general use. 

Undoubtedly, multi-degree-of-freedom non-linear systems are 

more difficult to treat analytically than their single-degree-of­

freedom counterparts. For the class of problems pertinent to the 

steady-state response of harmonically excited non-conservative 

multi-degree-of-freedom non-linear systems there are essentially 

no exact solutions available. As a result, any detailed dynamic 

analysis of such a system must be accomplished using numerical 

integration of the equation of motion. However, this approach is 

generally very expensive. This fact reinforces the need for 

development of techniques for approximate analysis. 

The same need exists for multi-degree-of-freedom non-linear 

systems subjected to random excitation. However, exact solutions 

for the stationary multi-dimensional probability function may be 

obtained for a certain class of problems. This must be done by 

solving the corresponding Fokker-Planck equation. Unfortunately, 

for the application of this method several requirements seldom 

met in physical systems must be satisfied [ 7]. 

Versions of the perturbation techniques, previously discussed 

in the context of a single-degree-of-freedom non-linear oscillator 

subjected to deterministic or random excitation, have also been 

applied to multi-degree-of-freedom non-linear systems [ 12, 22] 

but with rather limited success. 
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Caughey [ 20 ], Foster [23 J, Iwan and Yang [ 9 ], and Atalic 

and Utku [ 24] have extended the method of the equivalent lineariza­

tion technique to encompass approximate solutions of the stationary 

random response of multi-degree-of-freedom non-linear oscillators. 

Recently !wan [25 J extended the method of equivalent 

linearization to apply to multi-degree-of-freedom non-linear sys­

tems subjected to general excitations. ·However, several questions 

are raised by this development pertaining to the existence, unique­

ness, and actual mechanization of the method for a specific class of 

excitations. These questions partially motivated the -present inves..; 

tigation. A second incentive for this dissertation has been the 

formulation and application of the technique of equivalent lineariza­

tion for the examination of the transient response of non-linear 

systems subjected to deterministic and random excitations. 

In Chapter II the formulation of the generalized equivalent 

linearization method given in reference [25 J is followed. However, 

the techniques used for the examination of such issues as the 

existence, uniqueness, and actual determination of an equivalent 

linear system are different from those used in reference [25]. 

The analysis performed in Chapter II serves to answer some of 

the ques�ions raised by the development presented in reference [25 J. 

In addition, a basis for using the equivalent linearization technique 

in the approximate analysis of transient solutions of non-linear 

dynamical systems is introduced. 

In Chapter III the applicability of the method presented in 

Chapter II to the examination of the approximate steady-state 
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monofrequency harmonic or stationary Gaussian response of a 

multi-degree-of-freedom non-linear dynamical system is considered 

in detail. In section 3. 1 a general introduction to the problem is 

given. In section 3. 2 the existence and the uniqueness of an 

equivalent linear system for a multi-degree-of-freedom non-linear 

dynamical system is examined extensively. The principle of sym­

metric and non-symmetric non-linear functions is introduced. 

Procedures are given for the direct determination of an equivalent 

linear system for a class of non-linear systems frequently encoun­

tered in engineering applications. The mechanization of the method 

for the determination of the identification parameters of an approxi­

mate steady-state solution is discussed. 

Section 3. 3 contains a review of the manner in which the 

generalized method of equivalent linearization has been applied to 

generate an approximate solution for the covariance matrix of the 

stationary response of a multi-degree-of-freedom non-linear system 

subjected to random Gaussian excitation. This review is included 

in this thesis mainly for the purpose of completeness of the presen­

tation. However, in addition, certain subtle points pertaining to 

the existence and uniqueness of an equivalent linear system are 

clarified. 

In Chapter IV the method of equivalent linearization is applied 

to produce an approximate solution for the transient response of a 

non-linear dynamical system. In the present thesis, the method is 

applied only to single-degree-of-freedom non-linear dynamical 

systems. 
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In section 4. 1 a general introduction to the problem of 

determining the response amplitude of a lightly damped and weakly 

non-linear oscillator is presented. In section 4. 2 the case of har­

monic monofrequency excitation is discussed. Specifically, an 

approximate first-order differential equation governing the response 

amplitude is obtained by energy considerations for the equivalent 

linear system associated with the harmonically excited non-linear 

oscillator. This equation is compared with the corresponding 

equation for the a1nplitude derived by standard perturbation tech­

niques. 

In section 4. 3 the problem of determining the statistics of 

the amplitude of the response of the non-linear oscillator to a 

Gaussian white noise excitation is considered. Although extensive 

research has been conducted towards the study of the response of 

a randomly excited non-linear oscillator [ 6 J, it appears that only 

very limited work has been directed toward the investigation of the 

amplitude of the response [26, 27]. The concept of the amplitude 

of the response, strictly speaking, has significance only when 

applied to the study of lightly damped weakly non-linear systems 

[26,28,29]. However, this 1s not a major limitation of the present 

method since such systems are frequently encountered in engineering 

applications. 

For the application of the present method to a specific 

problem, the associated equivalent linear system must first be 

determined. Subsequently, a first-order stochastic differential 

equation governing the response amplitude may be obtained. In 
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the present thesis the equation for the amplitude is interpreted in 

the context of energy considerations for the equivalent linear sys­

tem. An approximate non- stationary solution is generated for the 

Fokker-Planck equation associated with the equation governing the 

amplitude. For this purpose the technique of eigenfunctions expan­

sion is used. In addition, the exact stationary solution is deter­

mined by a standard formula [30 J. 

In Chapter V two example studies are conducted. These 

examples are thought to be representative of the manner in which 

the method developed in section 4. 3 may be applied to specific 

problems. 

The response of a lightly damped Duffing oscillator to a 

Gaussian white process is discussed in section 5. 1. The stationary 

probability density function of the response of this system is readily 

available [ 9 ]. However, the problem of determining the non­

stationary solution appears to be amenable only to very special 

[31] or Monte Carlo methods. Furthermore, it appears that

presently there is no exact or approximate method for the deter­

mination of the statistics of the non-stationary response amplitude. 

In section 5. 2 the time dependent mean value and standard deviation 

of the response amplitude are considered for several values of the 

non-linearity parameter of the problem. The stationary values of 

the statistics in discussion are examined even for a Duffing oscilla­

tor with severe non-linearity. 

The response of a viscously damped hysteretic system to a 

Gaussian white process is discussed in section 5. 2. For this type 
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of system several approximate analytical methods based on the 

principle of energy balance [ 32], similar systems, step by step 

linearization [ 33 J, discretization of response variables [ 34], or 

special approaches [ 31,35] have been proposed. Also, analog and 

digital simulation studies have been reported [ 36, 37]. However, it 

appears that very limited research has been directed toward the 

statistics of the non- stationary response amplitude [38 J. As an 

illustration of the potential of the method presented in section 4. 3, 

the time dependent mean value of the response amplitude is cal­

culated for a specific hysteretic model [ 39]. 
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II. Generalized Method of Equivalent Linearization

2. 1 Introduction

In this Chapter a generalization of the concept of equivalent 

linearization will be presented. For the case of harmonic excitation 

the principle of the method was first introduced in reference [ 12]. 

Later, the method was extended to the field of stochastic differential 

equations in references [ 19] and [20]. Recently, a generalization 

of the method of equivalent linearization for multi-degree-of-freedom 

non-linear dynamical systems subjected to general excitation was 

presented in reference [25 J, Herein the general formulation given 

in reference [ 25 J will be summarized. Special attention will be 

given to some subtle points about the existence and unicity of the 

equivalent linear system. In addition, the range of applicability of 

the method will be broadened so as to encompass problems involving 

the transient solutions of non-linear dynamical systems. 

2. 2 Non-Linear System

In this section the response to external load of a non-linear 

multi-degree-of-freedom dynamical system will be considered, The 

mathematical equation which describes the response of the system is 

(2. 1) 

where a dot above a variable denotes differentiation with respect to 

the independent variable t. M, C and K are constant n X n matrices, 

!_(�, �) is an n-vector function of the dependent variable x and its 
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derivative, and �(t) is an n-vector function of the independent 

variable t. 

Because of the scarcity of exact solutions of equation (2. 1) 

when the function £(�, �) is non-linear, attention has been directed 

toward techniques of approximate analysis. For n small and £or 

certain restrictions on �(t) and £(�, �), a number of standard analytic 

techniques can be adapted to the problem of generating an approxi­

mate solution of equation (2. 1). Among these are perturbation 

methods and the methods of energy balance and slowly varying 

parameters. However, for n large or for g(t) and/or £(�,�) of a 

more general form, the standard techniques often break down and 

are at best quite difficult to apply. Herein a systematic and easily 

mechanized method for generating an approximate solution of 

equation (2. 1) will be presented. 

The principle of the method is replacement of the non-linear 

dynamical system (2. 1) by another auxiliary system for which the 

exact analytic formula for the solution is known. The replacement 

is made so as to be optimum with respect to some measure of the 

difference between the original and the auxiliary system. The 

auxiliary system need not necessarily be linear. In fact, for a 

single-degree-of-freedom non-linear oscillator references [ 40 J and 

[41] use non-linear auxiliary systems. However, for the case of

multi-degree-of-freedom systems only the response of linear sys­

tems is readily available. Therefore, it is realistic to deal only 

with the case of linear auxiliary system. Hereafter, this system 

will be called equivalent linear system. 
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2. 3 Equivalent Linear System

2. 3. 1 Formulation

The equivalent linear system of (2. 1) is defined as 

(2. 2) 

where Ce and Ke are t independent matrices. The matrices Ce and

Ke are to be determined so that the difference d between the actual

and the equivalent linear system is minimized for every � belonging 

to a certain class of functions of the independent variable t. The 

difference d may be written as 

d = Mx + Cx + Kx + !_(�,i9 

= f (x, x} - C � - K x- - - e_ a:::

Mx 

(2. 3) 

According to this formulation the matrices Ce and Ke do depend on

�; therefore, if Ce and Ke are determined for that x = �LINEAR

which is the solution of the linear equation (2. 2), it is reasonable 

to expect that this solution will be a fairly good approximate solu­

tion of the non-linear problem (2. I) as well. Since �LINEAR

clearly depends on Ce and Ke, a cyclic relation is established

between Ce, Ke and �LINEAR' Utilizing this cyclic scheme the

solution �LINEAR can be determined. At this stage it is evident

that the smaller the non-linear force !_(�,�) is, the more an 

equivalent linear system is suitable for the description of the 

response of the non-linear system (2. 1). The smallness of.!_(�,�) 

is usually denoted by including a small coefficient e in front of 



-15-

£.(�,j�) in equation (2.1). However, the present formulation will be 

carried out independently of the smallness of £.(�, �). 

2. 3. 2 Minimization Procedure

In order to determine the matrices Ce and Ke of the equivalent

linear system it is necessary to establish a criterion for the mini­

mization of the difference d. Among the possible minimization 

criteria which include the minimization of the maximum value, the 

mean value, and the mean square value of d, the last criterion is the 

most easily applied. For the case of a single-degree-of-freedom non­

linear oscillator, reference [42] indicates that there is no accuracy sig­

nificant superiority of any of the above criteria over the others. 

Herein the Euclidean norm 11 �J I 2 of the difference d will be used

as a measure of d. The norm I ] � 112 is defined as

(2. 4) 

T 
where � denotes the transpose of the vector d. The minimization

of d is performed according to the criterion 

(2. 5) 

where �(t) belongs to the class of functions of t which are solutions 

of equation (2. 1). In equation (2. 5) G, denotes an averaging operator 

which possesses several properties which assure certain 

characteristics of the equivalent linear system. 
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2o 3. 3 Properties of the Averaging Operator G 

The operator G, is assumed to possess the following properties. 

Property 1: 

Property 2: 

Property 3: 

d 
dt Ci[x(t)] = 0

G[x(t) + y(t)] = Ci[ x(t)] + Ci[ y(t) J

-¥ x(t) /; 0 

Ci[0] = 0 

The operation of G, on an n X n matrix Z is defined as 

Ci[Z] =

where 

z = 

G, (z 11)' • • • • ' G (z ln)

Ci (z 1), .... , G, (z )n nn 

z 11' • • • • ' z ln

(2. 6)
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2. 3. 4 Equations for the Equivalent Linear System Parameters

The necessary conditions for (2.5) to be true are 

a a (�T �) 0= 
eac ..

(2. 7) 

lJ 

and ¥ i, j ; i, j = l,oo•,n

a u (� T d) 0= 
e ak ..

(2. 8) 
lJ 

e e where c .. and k .. are the (i, j) elements of the matrices Ce and
lJ lJ 

Ke respectively. Equation (2.5) can be rewritten as

where 

2 2 
u [ d 1 + 0 • • + dn J = minimum , (2. 9) 

(2. 10) 

Upon using the linearity property of G,, equation (2. 9) can be put in 

the form 

where D. is defined byl 

n 

i=l 

D.2 = 
l 

D.2 = minimuml 

Because of equation (2. 3), equation (2. 12) becomes 

(2. 11) 

(2. 12) 



where 

-18-

D.2 [ �
n e• e ]2= G, £1. - ( c .. x. + k .. x.) 

l � J � J 
j=l 

i= l, ... , n (2. 13) 

(2. 14) 

Examining equation (2. 13) it is seen that D. depends only on c.� 
l lJ 

and k.�, where j = 1, ... , n . Therefore, the minimization criterion
lJ 

(2.9) can be expressed as 

D� = minimum l i=l, ... ,n. 

The necess ary conditions for (2. 15) to be true are 

and 

eac ..
lJ 

j=l, ... ,n 

j=l, ... ,n . 

( 2. 15) 

(2. 16) 

(2.17) 

Expanding equations (2.16) and (2.17) and utilizing equation (2. 14) 

gives 

n

G(x.f.) z:
= J l 

s=l 

and 

n

G,(x.£.) 
� 

= J l 
s=l

e • • e • 
[c. G(x x.) + k. G(x x.)]

1S S J 16 S J 

e • e [c. Ci (x x.)+ k. G(x x.)]
1S S J 1S S J 

(2. 18) 

(2. 19) 
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Using definition (2. 6), equations (2. 18) and (2. 19) can be rewritten 

in the compacted form 

a[£. xJ 
l-

where 

e T 

k. 
1>:c 

Te c. 
l* 

X
= C) 

i=l, ... ,n (2. 20) 

(2. 21) 

e and ki*
e c. are the ith rows of the matrices Ke and Cel* 

respectively. 

2. 3. 5 Examination of the Minimum

From equation (2. 13) it is recognized that the quantity D.2
l 

e e is simply a quadratic polynomial of the parameters c .. and k ...
lJ lJ 

Therefore, its mixed partial derivatives with respect to 

of order higher than 2 vanish . Hence, if the value of 

corresponds to another set of parameters 

,e e e 
c .. 

= c .. + �c .. 
lJ lJ lJ 

k�.e
= k.� + �k.�

lJ lJ lJ

e ec .. and k ..
lJ lJ 

D.2 which

(2.22) 

(2. 23) 

e e is considered, the following Taylor 1 s expansion around c .. and k .. 
lJ lJ 

can be made. 



2 ,e ,e D. (c . .  ,k .. ) = l lJ lJ

j=l, ... ,n 

+ 

2 e e 
D. (c .. , k .. ) +l lJ lJ 

j = 1, ... , n 
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2 n 
(
an. 

L 
l e -- .6.c .. +

<:> e lJ 
. l uC •• 

J = lJ 

n a2n_2
1 

z: 
p,m=l 

n 

l 
e e 

oc. oc. lp lffi 

cln.2

e e.6. C. .6. C. lp lffi 

+ ½ L
l .6.k.e .6.k.e

ok.e ok.e lp lffi 
p,m=l 

n 
+ * L

p, m= 1 

lp 1m 

a2n_2
l 

e e 
oc. ok.lp lffi 

.6. c _e .6.k _elp lffi

an.2 ) 
l .6.k.� e lJ ok . .  lJ 

(2. 24) 

Because of conditions (2. 16) and (2. 17) the first sum in equation 

(2. 24) is zero. By considering once m or e  equation (2. 13), equation 

(2. 24) can further be sim plified as 

2 e, e, D.(c . .  ,k .. )l lJ lJ 

j=l, ... ,n 

2 e e = D .  (c .. , k .. ) +l lJ lJ

j=l, ... ,n 

By property 3 of section 2.3.3, 

Ci [i (.6.c.� i. + .6.k�. x.)] 

2 
> 0

j:;: l 
lJ J lJ J 

(.6.c .. x .  + �k .. x.) e· e 
] 2

lJ J lJ J 

i=l, ... ,n 

for e • e (.6.c .. x. + .6.k .. x .) -/ 0 lJ J lJ J 
j=l 

. (2. 25) 

(2. 26) 
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2 

(6.c.� i. + .6.k.� x]lJ J • lJ J 
J 

= 0 

n 
for 

j=l 

e ·  e {.6.c .. x. + .6.k .. x.)lJ J lJ J 

i=l, ... ,n 

= 0 0 

Because of inequality (2. 26), equation (2. 25) yields 

2 e, e, 2 e e 
D. (c .. , k .. ) -2! D. (c .. , k .. )

1 lJ lJ 1 lJ lJ 

(2. 27) 

(2. 28) 

where the equality holds if and only if equation (2. 27) is true. 

Inequality (2. 28) assures that if a linear system exists with damping 

matrix Ce and stiffness matrix Ke satisfying condition (2. 20), then

the value of G.(i Ti) which corresponds to Ce and Ke is not bigger

than the value of G(i Ti) which corresponds to any other pair of 

damping and stiffness matrices. 

Obviously, relation (2. 27) corresponds to the case that the 

member x of the class of possible solutions of the equivalent linear 

system (2. 2) has linearly dependent components for every value of 

the independent variable t. Hence, if the components are linearly 

independent it can be assured that the value of G.(iT
i) which 

corresponds to Ce and Ke is an absolute minimum.

2. 3. 6 Existence and Uniqueness of the Equivalent Linear System

In this section it will be proved that the linear dependence of 

" 
the components of x is also important for the existence and the
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uniqueness of the equivalent linear system. 

Equation (2, 20) must be solved so that the matrices Ce and

Ke will be found in terms of x. It is easily recognized that equa­

tion (2. 20) is simply a system of Zn equations linear in c.� and k.�. 
lJ lJ 

Therefore, a unique solution of (2, 20) exists if 

t • ["' " T J- • • 1 ma r1x G � � 1s non-s1ngu ar. If the matrix

and only if the 

[" " T J • • 1 G. �� 1s smgu ar, 

a non-unique solution of (2. 20) exists only for special types of non­

linear functions i_(�, �). The following theorem provides a criterion 

for whether or not the matrix G[xxT ] is singular. 

Theorem 

Given an s-dimensional vector space V defined over the set of 

real numbers, the matrix G, (� g? ) is singular if and only if Zn> s, 

where 

Proof: 

Sufficient Condition 

It is assumed that 

i=l, ... ,n 

Zn > s . (2. 28a) 

Therefore, the Zn elements of V are linearly dependent. Conse­

quently, there exist Zn real numbers a., b.; j = l, .. , ,n, not all 
J J 

zero, such that 
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n 
(a.x. + b.x.) = 0 . 

J J J J 
(2. 29) 

j= 1 

Using vector notation equation (2. 29) can be rewritten as 

,..T X •U = 0 (2. 30) 

where 

T u = ( a 1, . . . , an, b 1, .. . , b n) I 0 (2.31) 

Multiplying equation (2. 30) by x from the left gives 

A ,-T XX U = 0 (2. 32) 

Applying the operator G, on both sides of (2. 32) and taking into con­

sideration the properties of G, which were assumed in section 2. 3. 3 

yields 

(2.33) 

Since u I O, the matrix G, (� �T) is singular. 

Necessary Condition 

It is assumed that the matrix Ci (xi?) is singular. Hence, 

there exists a vector �-/ Q_ such that equation (2. 33) is satisfied. 

T Multiplying both sides of equation (2. 33) by u yields

(2.34) 

Because of property 3 of the operator G,, relation (2. 34) implies 

equation (2.30}. Therefore, the Zn elements of V, xi'xi; i=l, ... ,n
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are linearly dependent. Hence, the number Zn must be bigger than 

the dimension s of the vector space V, 

Considering the above theorem and the results of last section, 

it is seen that the necessary and sufficient condition for the exis­

tence and uniqueness of an equivalent linear system is the same as 

the condition which assures an absolute minimum of Q, (i 
T

i). 

2. 3. 7 Conclusions about the Equivalent Linear System

A unique equivalent linear system {2. 2) exists for the n-degree­

of-freedom non-linear system {2. 1) if and only if the condition 

Zn ::;; s is satisfied. The symbol s stands for the dimension of the 

vector space of the approximate solutions of (2. 1). If the above 

condition is satisfied, the value of the quantity G.(iT i) is minimized.

The symbol d stands for the difference between the actual non­

linear system (2. 1) and the equivalent linear system (2. 2). If 

s > Zn, the existence of an equivalent linear system is not assured. 

If such a system with matrices Ce and Ke exists, it is not unique.

However, the value of Q (i 
T

i) which corresponds to this system is

not bigger than the value of Q (iT i) which corresponds to any other

pair of matrices Ce and Ke. Therefore, it can still be considered

as an optimum substitute of the non-linear system (2. 1). 

2. 4 Mechanization of the Method

In this section a brief outline of the manner in which the 

presented method may be applied is given. The details for the 

specific categories of problems will be discussed in subsequent 

chapters. 
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Given the non-linear system (2. 1), it is first necessary to 

specify an acceptable class of approximate solutions �- The selec­

tion of the class of approximate solutions depends on the excitation 

�(t) and the system (2. 1). If, for example, �(t) is a periodic mono­

frequency vector force, it is plausible to assume that the steady­

state periodic solution � of (2. 1) will have the same frequency as 

the excitation �(t). Each member of the solution class must be 

identified by some parameters (amplitude and phase for example 

for the class of harmonic solution functions). For the class. of 

accepted approximate solution functions the equivalent linear system 

(2. 2) must be determined. For this purpose the averaging operator 

G, which is expected to be the most suitable for the specific problem 

is selected. Next the matrices Ce and Ke need to be determined

by solving equation (2. 20). Clearly the matrices Ce and Ke depend

on the identification parameters of �• The last step in this proce­

dure is to solve the equivalent linear system (2. 2) and derive 

equations for the identification parameters of x in terms of the 

matrices Ce and Ke. Evidently, the method provides equations,

either algebraic or differential, for the determination of important 

parameters of the approximate solution of the non-linear system. 

To date the method of equivalent linearization has only been used 

to deduce algebraic equations for the parameters of the response. 

In summary the mechanization of the method requires: 

1. Identification of a class of approximate solution functions and

the parameters defining each member of the class.

2. Selection of the norm of the difference vector d.
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3. Selection of the averaging operator G..

4. Determination of the matrices Ce and Ke of the equivalent

linear system in terms of the identification parameters of �-

5. Solution of the equivalent linear system to obtain equations for

the specification of the identification parameters of x.

2,5 Accuracy of the Method 

No analytical work towards the determination of the accuracy 

of the method will be done. This task appears to be formidable and 

deviates from the objectives of this thesis. For the pure mathema­

tician a question remains open. In what sense does the minimiza­

tion of the difference between the non-linear and the equivalent 

linear system imply minimization of the difference between the exact 

and the approximate solution of the non-linear system? In sub­

sequent chapters the accuracy of the method will be taken up again 

during the examination of specific categories of problems. At that 

time a more detailed discussion of the matter will be presented. 

2. 6 Summary

A general method for derivation of approximate solutions of 

multi-degree-of-freedom non-linear dynamical systems has been 

presented. The principle of the method is to replace the non-linear 

system with an equivalent linear system in such a way that an 

average of the difference between the two systems is minimized, 

Next the solution of the non-linear system is approximated by the 

solution of the equivalent linear system. The minimization of an 

average Euclidean norm of the above mentioned difference is 
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adopted as the criterion for the determination of the equivalent 

linear system. The averaging operator is assumed to possess 

certain properties. Equations for the specification of the parameters 

of the equivalent linear system are derived and the existence and 

the uniqueness of a solution of these equations is examined. The 

existence of the absolute minimum of the averaged norm of the 

difference is examined as well. During these examinations several 

properties of the averaging operator are exploited. A systematic 

procedure for the mechanization of the method is given. 
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III. Application to Steady-State Response of Multi-Degree-of­
Freedom Non-Linear Systems

3. 1 Introduction

In this chapter the generalized method of equivalent lineariza­

tion presented in Chapter II will be applied for the examination of 

the steady-state harmonic and the stationary Gaussian response of 

multi-degree-of-freedom non-linear dynamical systems. This class 

of problems is of importance for practical engineering situations. 

For example, equation (2. 1) may be a fairly good model of a 

multi-story building structure, where the matrices M, C and K are 

respectively the mass, damping, and stiffness matrices of the struc­

ture. The non-linear function!_(�,�) may represent the effect of 

geometrical or material non-linearities. Hysteresis is one example 

of the latter category of non-linearity. One of the advantages of 

the present method is its potentiality to overcome the mathematical 

complexities which are associated with hysteretic systemso It is 

obvious that the hysteretic response of a multi-story structure is

not the only candidate for the application of the method. Other

engineering systems like aircraft, missiles, offshore structures,

ships, and so on often require a non-linear analysis as well.

Considering the stimulus _g_(t) on the right hand side of equa­

tion (2. 1), interest is focused on the cases of harmonic mono­

frequency or stationary Gaussian excitation. 

Interest in harmonic response arises frequently when rotating 

machinery is present or some filtering process reduces the excita­

tion to a monofrequency vector. The identification of structural 



parameters of multi-story buildings through forced vibration tests 

is another example for which the assumption of harmonic excitation 

is justified. 

Because of the random nature of various physical processes 

as earthquakes, acoustical noise, and sea waves, a statistical analy­

sis of their effects on various systems is generally indicated. 

Analysis of a large number of individual records of a random 

process permits determination of the statistical measures which 

can be expected to also characterize future records. If it is 

assumed that the best substitute for an actual record of a random 

process is the average of many similar records, the modeling of 

such a natural process by a Gaussian process would be in accor­

dance with the central limit theorem. Hence, it is thought that the 

study of the response of multi-degree-of-freedom non-linear systems 

subjected to Gaussian excitation is of engineering importance. 

3. 2 Steady-State Harmonic Response

3. 2. 1 Specification of the Equivalent Linear System

Consider the non-linear system (2. 1) for the special case in 

which 

iwt 
= Re(e ) G , (3. 1) 

where 

(3. 2) 

and w is the angular frequency of the excitation. The symbol Re 

denotes the real part of the complex number inside the parenthesis. 
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Because of equation (3. 1) the non-linear system (2. 1) may be 

rewritten as 

(3. 3) 

Presently, no systematic method is available for the derivation 

of the exact solution of equation (3. 3). Any 11exact 11 solutions must

be found by numerical integration of an initial value problem. This 

technique of solution is very expensive if it is to be used to obtain 

a steady-state solution. 

It is here assumed that equation (3. 3) possesses a steady-state 

solution of the form 

where 

iwt x. (t) = Re(X.e ) 
1 1 

i=l, ... ,n 

and X. are complex numbers. Following the analysis given in1 

section (2. 3) the equivalent linear system is defined as 

Mx + (C + C )� (K K ) Re(eiwt) G e- + + e� = 

where Ce and Ke are solution dependent matrices such that the

difference 

(3. 4) 

(3. 5) 

(3. 6) 

(3. 7) 

1s minimized. The Euclidean norm J I� J J 2 of the difference i is

adopted as a measure of the size of d. The norm 11iJ1 2 is defined

as 
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(3. 8) 

The minimization of d is performed according to the criterion 

(3. 9) 

where x(t) is of the form of equation (3. 4). Q, is the averaging 

operator. Since it was assumed that the steady-state solution of 

equation (3. 3) is periodic with period 

2n 
T = (3. 10) 

a logical averaging operator is the average over one period of the 

solution. That is 

Ci [x(t)] = ,i- / 
T 

�(t)dt

0 

(3. 11) 

Clearly, Q, possesses all the properties discussed in (2. 3. 3). The 

operation of Q, on a square matrix is defined as in (2. 6). 

The necessary conditions for criterion (3. 9) to be satisfied 

are 

e 
ac .. lJ 

and 

eok .. lJ 

(3 0 12) 

-v- i,j i, j = l, ... , n 

(3. 13) 
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where c.� and k.� are the (i, j) elements of the matrices C and KelJ lJ e 

respectively O Following the analysis performed in (2. 3. 4) it 1s 

found that the matrices Ce and Ke must satisfy the equation

e T 

J
T 

J
T 

k. 

[��
T

J 
1:❖: 

[£.x] dt 
1- e T 

0 0 c. 

i=l, ... ,n (3 0 14) 

1,:. 

where 

(3. 15) 

e e kh and c i,:. are the ith rows of the matrices Ke and Ce respec-

tively. 

3. 2. 2 Examination of the Minimum 

As indicated in parts (2.3.5) and (2.3.6) the dimension s of 

the vector space V of the approximate solution functions is impor-

tant for the behavior of the quantity ,i, 
T 

f i
T

idt. Since the

components of the approximate steady-state solution have been 

assumed to be of the form (3.5), a basis £or the vector space V 

is the set 

U = { sin wt, cos wt} (3. 16) 

Therefore, the value of s for the case of harmonic response is 

s = 2 (3. 17) 
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According to the general analysis performed in part (2. 3. 5) 

the following conclusions may be drawn for the case of harmonic 

response. 

1. For a single-degree-of-freedom (n = 1) non-linear system,

T 
the value of the quantity ,i- / i 

Ti dt corresponding to

2. 

0

the equivalent linear system is minimized. This result

has been found by other investigators as well L 1 ] .

For a multi-degree-of-freedom (n 2: 2) 

1 /
T T the value of the quantity T � i dt

0 

non-linear systen�, 

corresponding to an 

equivalent linear system with matrices Ce and Ke is not 

T 
bigger than the value of f i Ti dt corresponding to any

other pair of matrices Ce and Ke. 

3. 2. 3 Existence and Uniqueness of the Equivalent Linear System

It was seen in part (2. 3. 6) that the dimension s of the vector 

space V is also important in determining the existence and the 

uniqueness of the approximate solution. The value of s is given by 

equation (3. 17). Utilizing the results of the general discussion 

presented in part (2. 3. 6), the following conclusions may be drawn 

for the case of harmonic response. 

L For a single-degree-of-freedom (n = 1) non-linear system, 

the equivalent linear system (3. 6) exists and is unique. 

This result has been found by other investigators as 

well [ 1 ]. 
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2. For a multi-degree-of-freedom (n ;:: 2) non-linear system,

an equivalent linear system (3. 6) does not in general

exist. This is due to the fact that the matrix

T

f _g_ _g_T dt is singular for n;;:: 2. If an equivalent linear

system with matrices Ce and Ke does exist, this system

will not be unique.

The next task in the present analysis will be the investigation 

of the existence of possible particular solutions of equation (3. 14). 

Transposing both sides of equation (3. 14) gives 

[f.x T ]dt =
1-

Using equation (3. 4), the vector x and its derivative x can be 

expressed as 

and 

where 

T 
X 

• T 
• 

iwt x = Re[ e (Y 1, ... , Y n) ,

Y. = iwX.
1 1 

i=l, ... ,n . 

(3. 18) 

(3. 19) 

(3. 20) 

(3. 21) 

,..Upon using equations (3. 19) and (3. 20), the vector x can be written 

in the form 

(3. 22) 

where 
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(3. 23) 

Next, consider the relation 

(3. 24) 

This relation is valid for any pair of complex numbers z1 and z2.

The symbol Im stands for the imaginary part of the complex num­

ber inside the parenthesis. Using property {3. 24), the expresssion 

T 
f �"�"T dt b f can e manipulated as allows 

0 

= f T Re(eiwt
§_)Re(eiwt

§_
T) dt

0 

= f T 
[Re(eiwt)Re(§_) Im(eiwt)Im(§_) J [Re(eiwt)Re(§_T ) 

0 

It is easily verified that 

f T 
Re(eiwt)Im(eiwt) dt = 0 .

0 

Therefore, equation (3. 25) can be rewritten as 

(3. 26) 
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Re(§)Re(e_T) f T Re 2(eiwt) dt 
0 

I
T 2 iwt - Im(§)Im{§_) Im ( e ) dt 

0 

It may readily be shown that 

f T 

Rez{eiwt) dt 
0 

2 cos ( wt) dt = 

/
T 

2 = sin (wt) dt = 
0 

T 

2' 

Henc e, equation (3. 26a) yields 

T T T

2 [Re(
§_

)Re(§ ) - Im(§_)Im(§_ )]

(3. 26a) 

(3. 27) 

(3. 28) 

The left hand side of equation (3. 18) can be manipulated to give 

I
T 

f.xT dt =
1-

f T 

fiRe(eiwt

§_

T ) dt 

0 

= f T fi[Re(eiwt)Re(§T) - Im(eiwt)Im(§T )] dt 

0 
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Because of equations (3. 28) and (3. 24), equation (3. 18) yields 

T 

Re(§_ T) / fi coswt dt T T Im(§_ ) / fi sin wt dt =

Im(§_)Im(� T)] 

It is obvious that equation (3. 30) is satisfied if 

and 

T /T 

Re(S ) £. cos wt dt =
- l 

0 

T /T 

Im(§_ ) f i sin wt dt =

0 

i= l, ... ,n. (3. 30) 

(3. 31) 

(3. 3 2) 

Cancelling the terms Re(§_ T) and Im(§_ T ) from equations (3. 31) and 

(3. 32) respectively yields 

and 

1 /
T 

T fi cos wt dt = (3. 33) 

i = l, ... , n . (3. 34) 

Observing equations (3. 33) and (3. 34) it is realized that for 

every i = 1, ... , n there exist at least two row vectors k. and c. 
1::i:.: l:� 

for which equations (3. 33) and (3. 34) are satisfied. According to 

the preceding analysis, the existence of a solution of the above 
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equations is a sufficient condition to insure that equations (3. 18) 

determining an equivalent linear system have a solution. Thus, an 

equivalent linear system always exists for the non-linear system 

(3, 3). However, for n :2: 2 this system will be non-unique. 

3. 2, 4 Application for Special Classes of Non-Linear Functions

3. 2. 4. 1 General Remarks

The fact that an equivalent linear system exists, but may not 

be unique, allows a certain freedom in the selection of the system 

which ultimately will be used for obtaining an approximate steady­

state periodic solution of the non-linear system (3. 3). It is logical 

that among all the possible equivalent linear systems the most 

readily derivable should be selected for any specific non-linear 

problem. This possibility will be considered next in the context of a 

specific class of non-linear functions !_(�, �). 

Assume that the components of the vector !_(�, �) satisfy the 

following conditions 

and 

where 

n 
f. (x, �) = 

L h .. (y .. , y .. )
l - - lJ lJ lJ 

j=l

f.(0,0) = h .. (0, 0) = 0
lJ 

T 
J h .. dt = 0 

lJ 

(3. 35) 

(3. 36) 

(3. 3 7) 
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y .. = X. 
lJ l 

x. (3. 3 8) 

For conceptual purposes, equation (3. 35) could be thought of as 

representing the non-linearity effect of a system of mass or nodal 

points interconnected by non-linear elements h .. whose behavior 
lJ 

depends only upon the relative coordinates between these points. 

Non-linear functions of the type presented above are often 

encountered in engineering practice. For instance, the non-linear 

function described by equation {3. 35) may apply to the case of 

multi-story buildings representing the non-linear stiffness and 

damping of the structural elements. It is plausible to assume that 

these forces depend only on the relative displacement of the floors 

and its time derivative, 

Before considering the determination of an equivalent linear 

system for systems with non-linear functions of the form (3. 35), 

further discussion of property (3,37) is in order. 

Averaging equation (3, 3) over the interval [ 0, T] yields 

T 

M f �dt +

0 

T 
C j �dt +

T 

K f �dt +

= G f 
T 

Re(eiwt
) dt

0 

Upon using equation (3,5), equation (3.39) becomes 

(3. 39) 

(3 0 40) 
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Thus, relation (3. 40) must be satisfied if the solution x of the non­

linear system (3. 3) is of the form described by equation (3. 4). It 

is easily verified that, if h .. possesses property (3. 37}, then require-
lJ 

ment (3. 40) is satisfied. Hereafter, a non-linear function which 

possesses property (3. 40) will be called symmetric. If a non-linear 

function does not possess property (3. 40), it will be called non­

symmetric. Figure [3.1.a] gives an example of a symmetric non­

linear function,while Figure [3.1.b] shows a non-symmetric non­

linear function. Systems with non-linearities of the latter type are 

occasionally encountered in ocean and automotive structures. 

3. 2. 4. 2 Systems with Symmetric Non-Linearities

Systems with symmetric non-linear functions (3. 35) will be 

discussed herein. A systematic procedure for the determination of 

an equivalent linear system will be given. 

Because of equation (3.35), equations (3.33) and {3.34) can be 

respectively rewritten as 

n 1 J
T 

L 
j:::0 0 

n 1 J T 
j:::0 0 

h .. cos wt dt ::: 
lJ 

h .. sin wt dt ::: 
lJ 

e e ½[kh, ci,:c]Re(§_)

½ e e [_ki,:, , ci,:Jim(§_)

i::: l, .. ,,n (3,41) 

i::: l,, .. ,n . (3.42) 

Define the numbers y .. and 1 ,t,. .; i, k ::: 1,.,., n, as solutions of the 
lJ lJ 

set of linear equations 

T J h ..
lJ 

cos wt dt ::: 
T 

yij f yij cos wt dt +

0 
y .. cos wt dt 

lJ 
(3. 43) 
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f(X) 

(a} 

f(X) 

(b) 

f(x)-=x+ex3 

f(x)=x+ex2 

Figure 3, l, Symmetric Non-Linearity (a) and 
Non-Symmetric Non-Linearity (b) 
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and 

T 
J h .. sin c.ut dt1] 

T T 
= y .. f y .. sin wtdt + 1-t •• f y .. sin wt dt. (3.44)

� � � � 
0 0 0 

Then, multiplying equations (3. 43) by Re(X. - X .) and equation (3. 44)1 J 
by Im(X. - X .) and subtracting yields 1 J 

T 
f h .. [cos wtRe(X. - X.) - sin wt Im(X. - X.)] dt lJ 1 J 1 J 

T
= y .. j y .. [coswt Re(X.- X.) - sinwtlm(X.- X.)]dt 

lJ lJ 1 J 1 J 
0

T 
+ 1t . . f y .. [cos wt Re(X. - XJ·)-sin wt Im(X. - X.)] dt . 

lJ lJ l l J 

0 

It is easily verified that 

cos 0Jt Re(X. - X.) - sin wt Im(X. - X.) = Y1
·J· l J 1 J 

Therefore, equations (3. 45) can be rewritten as 

Evidently, 

T 
I h .. y .. dt =

lJ l] 

T 

J
T 2 

y .. j y .. y .. dt + it . .  y .. dt 
lJ lJ l] l] lJ 

0 0 

T 

I Y .. y· .. dt = 0 . 
lJ lJ 

0 

(3. 45) 

(3.46) 

(3. 4 7) 

(3. 48) 
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Hence, equation (3. 47) may be simplified as 

1,-(,.. = 
lJ 

T 
J h .. y .. dt 

lJ lJ 

0 

y .. dt 
lJ 

l =

By an analogous procedure it is found that 

T 

f h .. y .. dt
lJ lJ 

0 

JT. 2 
y .. dt

lJ 

i=l, ... ,n . 

It is recognized that equations (3. 41) and (3. 42) simply 

T 
represent decompositions of the quantities f fi cos wt dt and

T 
f fi 

sin wt dt in linear combinations of the amplitudes IX. Il 

(3. 49) 

(3. 50) 

i = I, ... , n. Hence, the set of equivalent linear elements given by 

equations (3. 49) and (3. 50) constitutes an acceptable solution of 

equations (3. 41) and (3. 42). It is understood that in this case the 

e e elements c .. and k .. of the matrices C and Ke will be linear 
� � e 

combinations of y .. and K .. ; i,j = l, ... ,n. 
lJ lJ 

An important fact must be noted herein. According to the 

classical method of equivalent linearization, the elements y .. and it .. 
lJ lJ 

given by (3. 49) and (3. 50) are the equivalent linear a.amping and 

stiffness for the non-linear function h .. (y .. , y .. ) . This means thatlJ lJ lJ 
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for the equivalent linear system defined by equations (3. 49) and 

(3.50), the minimization criterion (3.9) is both satisfied for the 

whole system (3. 3) and for each interconnecting non-linear element 

h. .. In order to summarize the results of the preceding analysis
lJ

the following result is stated. 

Main Result 

Given the dynamical system (3, 3) with symmetric non-linear 

functions of the form (3. 35), an equivalent linear system (3. 6) may 

be obtained by linearizing each interconnecting element h .. (y .. , y .. ) 
lJ lJ lJ 

according to the rule 

h .. (y .. , y .. ) .... y .. y .. + K .. y .. 
lJ lJ lJ lJ lJ lJ lJ 

where 

T T J h .. y .. dt J h .. y .. dt
lJ lJ lJ lJ 

0 0 
'Yij

= and K .. = (3.51) 

JT 2 
lJ 

J
T 

2 
y .. dt y .. dt 

lJ lJ 

0 0 

3. 2. 4. 3 Systems with Non-Symmetric Non-Linearities

At this point attention is focused on dynamical systems with 

non-symmetric non-linearities. 

A single-degree-of-freedom oscillator with a non-symmetric 

non-linear function f(x) = bx2 , b > 0 has been discussed in reference 

[43 ]. There, it is found through perturbation techniques that the 
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steady- state periodic solution of such a system exhibits a constant 

offset, the value of which depends on the amplitude of the oscillatory 

component of the response. Following this general result, it is 

postulated that the steady-state periodic solution of system (3. 3) 

with non-symmetric !_(�1�) will be of the form 

where 

x.(t) = X . + Re(X1
.eiwt)

1 Cl 
i = l, ... , n . 

The numbers X . and X. are real and complex respectively.
Cl 1 

Averaging equation (3.3) over the interval [O, T] gives 

KX +-c 

where 

X
T 

= 

Define the vector �(t) by 

1 
I

T 

T !_(�. �) 

(X l' ... , X )
c en 

= 

Substituting transformation (3. 56) into equation (3. 3) yields 

Define the function .§_ as 

(3. 5 2) 

(3. 53) 

(3. 54) 

(3.55) 

(3.56) 

(3.57) 
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KX + f (X + z, �)-c --c - - (3.58) 

Then, because of condition (3. 54) it is seen that � is symmetric 

with respect to �- Hence, all of the preceding analysis pertaining 

to systems with symmetric non-linearities may be applied for 

system (3. 5 7). 

As an illustration of the method, an equivalent linear system 

for the non-linear system (3. 3) with non-symmetric function f(�, �) 

of the form (3. 35} will be determined. 

The quantities cp .. are defined as 
lJ 

= z. - z. 
1 J 

i, j = l, ... , n . (3. 5 9) 

It is understood that because of the extra term KX in (3. 58), an-c 

equivalent linear system cannot be determined by direct application 

of formulae (3.49) and (3.50). Thus, recoursing to equations (3.41) 

is necessary. 

I 

I 

where 

The integrals I . and I . are defined as 
Cl Sl 

ci =

si =

1 J
T 

T 
�i cos wt

0 

and 

1 

I
T 

�- sin wt T 
0 

i = 1, ... , n 

, 

Equations (3. 41) may be written in terms of I . and I . as 
Cl Sl 

(3.60) 

(3. 61) 

(3. 6 2) 
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I . = }[k.e , c.e ]Im(S) ; 
Sl l* l>:< -

i=l, ... ,n (3. 63) 

i=l, ... ,n . (3. 64) 

Using equation (3. 58) in which the vector function f (Xc, -�--' i} is

defined, expressions (3. 60) and (3. 61) for the integrals lei and Isi

may be simplified as follows 

1 /T

(ti I . = k .. X . + L h. ·) cos wt dt
Cl lJ CJ lJ

j= 1

n 
1 

T 

= 
L T

J h .. cos wt dt (3,65) 
lJ 

j=l 0 

and 

l T
( 

n n 
I = TI 

t:i 

k .. X. + 2: h. ·) sin wt dt
Sl lJ CJ lJ

j=l 

n 
1 

T 
= L T I 

h .. sin wt dt (3. 66) 
lJ 

j=l 0

Because of the final forms of the integrals I . and I . , it is 
Cl Sl 

clear that an equivalent linear system can be constructed for the 

system with non-symmetric non-linear function in the same manner 

as was done for the system with a symmetric non-linear function, 

Specifically, the equivalent linear elements y .. and x. .. are defined 
lJ lJ 

by the set of equations 



T 

f h .. 
lJ 

0 

and 

T 

f h .. 
lJ 

Hence, 

and 
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T 

cos wt dt = 

yij f �ij 
cos wt dt +

sin wt dt = y ..lJ

)t.. = 
lJ 

0 

T 

J �ij 
sin wt dt

0 

T f h .. cp .. dt 
lJ lJ 

0 

T 2 
J cp .. dt 

lJ 

+ 

T 

),(, . . f cp .. cos wt dt 
lJ lJ 

0 

T 

),(, . . f cp. . sin wt dt . 
lJ lJ 

0 

i, j = l, o • •  , n 

T f h .. � .. dt 
lJ lJ 

0 

T 2 
f � .. dt 

lJ 

(3. 6 7) 

(3 0 68) 

(3. 6 9) 

(3. 70) 

It is clear that the offset vector provides only n compensating 

parameters which must be used to satisfy condition (3o54). Obviously, 

the number of distinct non-linear elements h .. is n(n-1/2). Thus, 
lJ 

it is clear that in general condition (3. 54) cannot be satisfied for 

each interconnecting element h .. , but only componentwise for the 
lJ 

whole vector!_(�,�), as in fact is done in equation (3.54). For the 

special case of chainlike systems where 
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if (3. 71) 

condition (3. 54) can be satisfied by determining the offset vector 

X so that this condition is satisfied for every interconnecting-c 

element h ...lJ 

The preceding analysis of the case of non-symmetric non-

linear functions may be summarized in the following result. 

Main Result 

Given the dynamical system. (3. 3) with a non- symmetric 

non-linear function of the form (3.35), an equivalent linear system 

may be obtained by replacing each interconnecting element according 

to the rule 

where 

y .. =lJ 

h .. (y .. ,y .. ) ....
lJ lJ lJ 

T 
f h .. (y .. , y .. )� .. dtlJ lJ lJ lJ 

y .. y .. t K •. y ..lJ lJ lJ lJ 

T 
J h .. (y .. , y

0 

• •  }cp .. dtlJ lJ lJ lJ 
0 

JT 2 
and 1-t .• =lJ 

JT 2 

0 

� .. dtlJ 
0 

cp .. dtlJ 

(3. 72) 

An offset vector X 1nust be included in its steady- state periodic-c 

solution �(t) (3. 53) so that the condition (3. 54) of zero average 

non-linear function is satisfied. 
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3. 2. 5 Mechanization of the Method

For non-linear systems (3. 3) with symmetric non-linearities 

the mechanization of the method is well under stood [ 44, 45 ] . 

Herein a brief outline of the manner in which the method may be 

applied for non-linear systems with non-symmetric non-linearities 

will be given. 

The lack of "symmetricity11 of any of the components f i;

i = 1, ... ,n, of the non-linear function!_(�,�) necessitates the addition 

of an offset vector X to the oscillatory part of the approximate 
-c

steady-state periodic solution of the problem. Therefore, the 

identification parameters of the solution are the quantities 

where 

and 

X .
Cl 

X . and 9. 
01 1 

x. (t) = X . + X . cos (wt+ 9 .) ;
1 Cl 01 1 

1 =1, ... ,n 

i=l, ... ,n . 

(3. 73) 

(3.74) 

The ultimate goal of the method is to determine the quantities 

X ., X . and e .; i = 1, ... , n. An initial relation between X . and 
Cl 01 1 Cl 

X . is given by condition (3. 54) which insures the zero average of 
01 

non-linear function. By transformation (3.56) the original non-

linear system (3. 3) is written as (3. 5 7). For this system an equi­

valent linear system can always be constructed by selecting any 

two matrices Ce and Ke which satisfy the indeterminate system of

equations (3.33) and (3.34). If the non-linearity of the system is of 

the form (3.35), an equivalent linear system can be constructed 
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directly according to equation (3. 72). As it was indicated in the 

general analysis of the method performed in Chapter II, the para­

meters of the equivalent linear system depend in general on the 

quantities X . , X . and e . ; i = I , ... , n. 
01 Cl 1 

Next the steady-state periodic solution of the equivalent linear 

system (3. 6) must be generated. This is readily accomplished by 

substituting in the equivalent linear system the expression for the 

solution vector �(t) and equating the coefficients of the functions 

cos <.0t and sin (vt to zero. By this procedure Zn algebraic equations 

in terms of X ., X . and e .; i = I, ... , n, are obtained. The above 
01 Cl l. 

equations coupled with the conditions of zero average non-linear 

function constitute a set of 3n algebraic equations with 3n unknowns. 

It is rare that these equations can be solved analytically. It is 

most probable that recoursing to a digital computer will be 

necessary. For this purpose, methods of modern numerical 

analysis, as Newton's techniques and its modifications, are readily 

available. It is indisputable that the computer time which will be 

consumed for the numerical calculation of the amplitudes, the 

phases, and the offset parameters will be overwhelmingly less than 

the computer time which is necessary for a direct integration of 

the non-linear system (3. 3). This is due to the fact that the deter­

mination of the amplitudes, the phases, and the offset parameters 

of the response by way of generalized equivalent linearization, 

requires the solution of 3n non-linear algebraic equations, while 

the direct integration of system (3. 3) must be carried out up to 

an appropriately long time so that the solution becomes periodic. 
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3. 2. 6 Accuracy of the Method

In this disseration no work towards the examination of the 

accuracy of the method was done. For the case of a single­

degree-of-freedom non-linear oscillator, interesting analytical work 

toward this end has been done in references [ 46] and [ 47]. In 

general, application of either contraction mapping or iterative pro­

cedures leads to a bound on the solution error. In reference 

[ 46 J it was found that the above techniques applied to the case 

of a Duffing oscillator significantly overestimated the actual solution 

error determined by direct numerical integration, 

In reference [ 45 J the accuracy of the method was examined 

for the case of a uniform ten-mass chainlike structure with a 

bilinear softening terminal. The approximate response was com­

pared with the 11exact'' solution found by direct numerical computa­

tion. According to this analysis the difference between the 11exact11

and the approximate solution was less than 5 % in both amplitude 

and frequency. 

It is worthy to comment on the relation between the method of 

equivalent linear ization and the perturbation techniques. Usually, 

in problems which are amenable to perturbation analysis the non­

linear function is multiplied by a small parameter. For a single­

degree-of-freedom non-linear oscillator subjected to harmonic exci­

tation, the solutions obtained by the method of equivalent linearization and 

by a first-order perturbation analysis are identical [ 14]. Therefore, 

if the herein discussed small parameter is sufficiently small, the 

method of equivalent linearization furnishes a very accurate solution. 
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However, this is only a sufficient condition and should not be con­

sidered as a limitation of the method, since it has been formulated 

independently of any concept of perturbation. 

3. 2. 7 Summary

The applicability of the generalized method of equivalent 

linearization to multi-degree-of-freedom non-linear systems has 

been examined. The system is subjected to harmonic mono-fre­

quency excitation and an approximate steady-state harmonic response 

is sought. The general formulation of the method, presented in 

Chapter II, is applied £or the present case using as operator G the 

average over one period of the solution. For systems with symme­

tric non-linearities the identification parameters of the solution 

vector are the amplitudes and the phases of its components. For 

systems with non-symmetric non-linearities a constant offset vector 

is added to the oscillatory part of the response. 

It is found that a non-unique equivalent linear system always 

exists. All the equivalent linear systems will result in the same 

1 

J
T 

T 
value of the quantity 

T 
i i dt. For spring-mass systems with 

symmetric non-linearities an equivalent linear system may be con­

structed by linearizing independently each interconnecting non-linear 

element. Modification of the above rule to account for non-symme­

tric non-linear functions is made as well. The mechanization of 

the method for the latter type of systems is briefly outlined. 
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3. 3 Stationary Random Response

3. 3.1 Non-Linear System

Herein the stationary random response of a multi-degree-of­

freedom non-linear system which is excited by a stationary Gaussian 

random vector G(t) is considered. For this special case the general 

equation (2. 1) can be written as 

Mx + Cx + Kx + !_(�,�) = G (3. 75) 

where 

(3 0 76) 

The components g.; i = 1, ... , n, of the vector G are stationary r 

l 

Gaussian processes. 

An exact method for studying the stationary random response 

of non-linear dynamical systems is the solution of the associated 

Fokker-Planck equation. If the excitation is a Gaussian white noise, 

the transition probability density of the response satisfies the 

Fokker-Planck equation. It is well known that this transition 

probability density completely defines the response process. 

Unfortunately at present there is no systematic way of solving the 

complete Fokker-Planck equation for every second order non-linear 

system. 

Because of the scarcity of exact solutions of problems of 

practical importance, attention has been turned to methods of 

approximate analysis. If the effect of the non-linearity on the 

overall response of the system is small, several approximate 

techniques can be used. One of these is the normal mode approach 
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in which an approximate solution is generated by solving several 

single-degree-of-freedom non-linear systems. This method 

is not generally applicable and certain rather restrictive conditions 

must be satisfied by the system and the excitation as well [20 J. 

Another technique for generating an approximate solution is 

the perturbation approach [ 22]. This method is suitable for prob­

lems in which the non-linear terms of the system are small com­

pared to the linear terms, and the level of excitation is also 

sufficiently small. The method is a direct adaptation of the well 

established technique for non-linear systems under deterministic 

excitation. According to this method the exact solution is expressed 

as a power series in the non-linear parameter. The coefficients 

of the series are determined by solving linear differential equations. 

These equations are derived by substituting the power series repre­

sentation of the solution into the original equation and equating the 

coefficients of line powers of the nonlinearity parameter. To date, 

there exists no proof of convergence of the above mentioned series. 

Furthermore, the non-linear parameter must be quite small if 

reliable results are to be obtained. 

In the next section the manner in which the method of 

generalized equivalent linearization may be applied to system 

(3. 75) will be outlined, 

3. 3, 2 Equivalent Linearization

It is assmned that the non-linear system (3. 75} possesses a 

stationary solution. 
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The equivalent linear system is defined by the linear differen­

tial equation 

(3. 77) 

where the matrices Ce and Ke must be such that the difference d

between systems (3. 76) and (3. 77) is minimized for every � which 

belongs to the class of solutions of system (3. 78). The difference d 

is defined by 

(3 0 78) 

Since the excitation G of the linear system is assumed Gaussian, it 

is well known that the response x will be Gaussian as well. 

Therefore, the matrices Ce and Ke must be such that the

difference d is minimized for every stationary Gaussian random 

vector x. 

Clearly, all the steps of the procedure presented in the 

development of the general method apply herein. Consequently, 

only 11technical11 details remain to be discussed. 

The Euclidean norm (iT
!:!)½ of i is used in the procedure 

of minimization of d. As averaging operator Q, the operator E 

which yields the ensemble mean is used. Obviously, this operator 

possesses all the properties which were discussed in (2. 3. 6). The 

final form of the minimization criterion is 

E (!:! T !:!) = minimum {3 0 79)
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According to section (2. 3. 4) the necessary conditions for 

(3. 79) to be true are 

where 

and 

a (Di
2} e 

ac .. 
lJ 

a (D.
2}e l ok .. 

lJ 

D.z =
l

0 j = l,, .. ,n 

0 j=l, ... ,n 

i = l,.,.,n 

(3. 80) 

(3. 81) 

(3. 82) 

(3. 83) 

By virtue of the analysis given in (2. 3. 4), equations (3. 80) and 

(3. 81) can be rewritten as 

E[f.x] 
1-

i = 1, ... , n 

where 

and ki::<, ci::< are the ith rows of the matrices Ke and Ce

respectively. 

(3 0 84) 

(3. 85) 

The question of whether or not a solution of the set of equa­

tions (3. 84) makes the quantity E(� �T) a true minimum has been 
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answered in {2.3.5) for the case of a general averaging operator 

G,. According to the general result of (2.3.5) the value of E(iTi) 

corresponding to any matrices Ce and Ke which satisfy equation

(3.84) is not bigger than the value of E(�Ti) corresponding to any 

other pair of matrices Ce and Ke. Therefore, any linear system

(3. 77) with matrices Ce and Ke satisfying equation {3. 84) is con­

sistent with the philosophy of the equivalent linearization method. 

The existence and uniqueness of the equivalent linear 

d d h f h • E (" "T) If th t •system epen s on t e nature o t e matrix � � . e ma rue 

E(��T) is non-singular, there exists a unique equivalent linear 

system. I£ this matrix is singular, an equivalent linear system, if 

one exists, is non-unique. 

According to the general result of (2. 3. 6), adapted for the 

operator E and the class of Gaussian random vectors .x, the matrix 

E(§ § T) is singular if and only if the components of the vector x 

are linearly dependent. This possibility cannot be excluded a priori. 

Consequently, the matrix E(i §T) may be singular for some Gaussian 

random vector x. This fact implies obvious complexities if a 

numerical approach is used for the determination of the matrices 

Ce and Ke.

The direct numerical solution of equation (3. 84) was first proposed 

in reference [ 23 J. Later, analytic formulae for the determination of Ce 

and Ke were given in reference [ 9]. The approach presented in the last 

reference is well suited to spring-mass systems with non-linear 

functions !_(�, i�) of the form (3. 35). For this type of system 

it was proved that equation (3. 84) is satisfied by the matrices Ce
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and Ke which are obtained by applying the method of equivalent

linearization to each interconnecting element h .. o Each of theselJ 

non-linear elements depends solely on the relative displacement y 

and velocity y .. of the masses of the system.lJ 

Specifically, using the mathematical properties of the multi-

dimensional Gaussian distribution, it was proved in reference [ 9 J 

that each non-linear element h .. (y .. , y .. ) may be replaced by a
. lJ lJ lJ 

combination of linear elements according to the rule 

where 

and 

h .. (y .. , y .. ) ... y .. y .. + "'-··Y·· lJ lJ lJ lJ lJ lJ lJ 

Y·· = 

lJ 

11, • • = 

lJ 

[ • • J/ . 2 E h .. (y . . , y .. )y.. E(y .. )lJ lJ lJ lJ lJ 

. 
I z E[h .. (y .. , y .. )y .. ] E(y .. )lJ lJ lJ lJ lJ 

(3. 86) 

(3. 87) 

(3. 88) 

Recently, a direct analytic formula for the determination of the 

matrices Ce and Ke was given in reference [24]. This formula is

applicable for every non-linear system with single-valued non­

linear function !_(�,x) subjected to a Gaussian random vector. 

Specifically it was proved that, if a pair of matrices C� and Ke

is constructed with elements c .. and k .. given bylJ lJ 

C . .lJ i, j = 1, ... , n 

and 

(3. 8 9) 
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1J 
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i,j=l, ... ,n (3. 90) 

then equation (3. 84) is satisfied and an equivalent linear system is 

found. 

The approaches of both references [ 9 J and [ 24] are mainly 

based on the special form of the probability density of the multi­

dimensional Gaussian distribution, 

Zn -1 i ,..T "
= (Zrr) det (0 ) exp (-2� 0 �) (3. 91) 

where 

(3. 92) 

Prolonged efforts of the writer to derive either equations (3. 87) 

and (3. 88) or equations (3. 89) and (3. 90) by the same technique 

which was used for the deterministic case were not fruitful. 

From equations (3. 91) and (3. 92) it is obvious that the para-

1neters of the equivalent linear system (3. 77) depend on the 

statistics of the response. If during the determination of the 

elements of the equivalent linear system higher order joint 

moments appear, they can be expressed in terms of the second 

order moments by repeated application of the relation 

(3. 93) 

where 

(3. 94) 
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and y is any jointly Gaussian random vector with zero mean. This 

relation is proved in reference [24 J.

Upon determination of the matrices Ce and Ke' the linear

system (3. 77) can be solved by any of a number of available 

analytical techniques. This procedure will yield non-linear alge­

braic equations in terms of the second order moments of the 

response and its time derivatives. At this stage the procedure 

of the equivalent linearization has been completed. It is noted that 

the matrix E(g_ �T) totally describes all the statistics of the

stationary Gaussian solution vector �- Depending on the complexity 

of the algebraic equations, closed form or numerical solutions may 

be obtained. 

Genera,lly, approximate solutions obtained by the generalized 

equivalent linearization technique are most dependable for weakly 

non-linear systems, However, it has been reported [ 9 J that the 

1nethod produces reasonable results even £or some severe non­

linearities. Specifically, in reference [ 9 J the method was applied 

to spring-mass multi-degree-of-freedom chain-like non-linear sys­

tem with a cubic hardening non-linearity. In that investigation, 

the difference between the exact solution and the approximate solu­

tion was reported to be no more than 7. 5 % even for very large 

values of the coefficient of the cubic non-linearity. 
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IV. Application to Transient Response of Single-Degree-of­
Freedom Non-Linear Systems

4. 1 Introduction

In Chapter Ill the method of equivalent linearization was used 

to provide algebraic equations for the identification parameters of 

the steady-state or stationary response of a multi-degree-of-freedom 

non-linear system. For the case of monofrequency harmonic exci­

tation, the identification parameters were the amplitudes and the 

phases of the vector response. For the case of stationary Gaussian 

vector excitation, the identification parameters were the elements 

of the covariance matrix of the response. 

In this chapter the method of equivalent linearization will be 

utilized for the derivation of differential equations which describe 

the change of certain parameters of the response in terms of the 

independent variable of the specific problem. Certain assumptions 

will be made £or the dynamical systems under consideration. These 

assumptions are plausible for a wide range of practical engineering 

problems. The potentiality of such an approach is evident. Approxi­

mate transient solutions of certain parameters of the response can 

be derived. Through this analysis various important questions of 

practical interest can be answered. For example, the time required 

£or the system. to reach its steady-state response may be deter­

mined. 

In the following sections the equivalent linearization will be 

used specifically £or the analysis of the transient response of a 

lightly damped single-degree-of-freedom non-linear oscillator. Both 
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the cases of deterministic harmonic and stationary Gaussian white 

excitation will be considered. 

Since the system under consideration is assumed to be lightly 

damped and weakly non-linear, it can be proved that its response 

exhibits pseudo-sinusoidal behavior [12,48]. The amplitude and the 

phase of the response are not constant but slowly varying functions 

of the independent variable of the problem. For apparent reasons, 

knowledge of the amplitude of the response is highly desirable for 

the engineering applications. Equations which describe the amplitude 

of the transient response will be derived, 

4. 2 Harmonic Excitation

4. 2. 1 General Remarks

Herein the transient response of a lightly damped and weakly 

non-linear dynamical system subjected to harmonic excitation will 

be considered. 

Usually, the 11weakness11 of the non-linearities is represented 

by a small parameter which is the coefficient of the non-linear 

function of the system. For this classical problem several versions 

of the perturbation techniques originally introduced by Poincare' are 

available. If a first-order steady-state solution only is desired, the 

problem may be analyzed by the method of equivalent linearization 

[ 14 J. Herein, it will be shown that the method of equivalent 

linearization can be used for the analysis of the transient solution of 

the problem as well. The results will be compared with those 

generated by the perturbation method. 
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4. 2. 2 Formulation

For the purpose of the present discussion it will be assumed 

that the rion-linear equation of motion has the form 

mx + ex+ kx + ef(x,x) = F cos vt ( 4. 1) 

where e If (x, x) I is small compared to ex + kx for all X and x. The 

last condition may be interpreted as requiring that the solution of 

the non-linear problem differs only slightly from that of the linear 

problem obtained by neglecting all non-linear terms. The following 

additional assumptions about the damping of the system c, the 

angular frequency v and the amplitude F of the excitation are 

made 

C 

O(e) (4. 2) -

=m 

v2 k 
[l + O(e)] (4. 3) m 

where e << 1 (4. 4) 

and F 
O(e} (4. 5) = 

m 

In reference [ 491 it is shown that the external force contri­

butes to the first approximation of the solution of equation ( 4. 1) 

only if condition (4. 3) is satisfied. 

In view of the smallness of the external force, the damping 

coefficient and the non-linear term, the oscillation during a single 

cycle will be nearly harmonic. That is 

X = a COS (vt + 0) (4. 6) 
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and 

dx
dt = x = -av sin (vt + 0) (4. 7) 

where a and 0 are slowly varying functions of the variable t. 

If equations (4. 6) and (4. 7) are solved, considering as 

unknown quantities the variables a and 0, the following relations 

are obtained 

2a (4. 8) 

and 

0 
-1 X

( • ) = tan vx 
- vt • (4. 9) 

It is recognized that the right hand side of (4. 8) is propor­

tional to the total energy of the system. The mechanism of the 

viscous damping, the non-linearity and the external excitation are 

the only causes of any change of the energy of the system. Since 

the coefficient of the damping, the parameter e, and the amplitude 

of the exciting force were assumed to be small, the rate of change 

of the energy of the system will be small. Therefore, the rate of 

change of the amplitude a is small which means that a is a slowly 

varying function of the independent variable t. 

Analogous analysis can be made for the phase angle e. From 

equation (4. 9) it is clear that e represents the phase difference 

between the excitation and the solution of system (4. 1). Actually, 

since v is assumed to be close to the natural angular frequency 
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(4. 10) 

of the system, e represents the 11 detuning11 of the solution from w
0

.

The only terms of (4. 1) which could cause any change of e are the 

damping mechanism, the non-linearity, and the excitation. Hence, by 

the same argument given for the amplitude a, the phase e is a 

slowly va1·ying function of t. In fact, in reference [ 12] it is proved 

that 

(4. 11) 

and 

(4. 12) 

According to the preceding analysis, the amplitude a and the 

phase e of the approximate solution can be assumed to be almost 

constant during one cycle of oscillation. The solution x and its 

derivative x are given by (4. 6) and (4. 7) respectively. Since the 

form of the approximate solution is known, the construction of an 

equivalent linear system for the non-linear system (4. 1) is a 

straightforward matter. The non-linear function d(x, x) can be 

replaced according to the rule [ 14 J 

(4. 13) 

where 

1 
vna 

Zn 

J f ( a cos 14t , -av sin '¥ ) sin 14t d $ ( 4. 14) 
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and 

1 
na 

211 

f f(a cos $, -av sin $) cos $ d$ ( 4. 15) 

0 

Hence, the equivalent linear system of (4. 1) is 

(4. 16) 

with solution x and its derivative x given by (4.6) and {4.7). 

Next, the equivalent linear system (4. 16) will be used for the 

derivation of differential equation which governs the amplitude of 

the transient response of system (4. 1). For this purpose the 

energy of the equivalent linear system is considered. 

During one cycle of oscillation, energy is imparted to the 

system by the external excitation and energy is dissipated out 

through the damping mechanism. The difference between these two 

energies represents the change of the total energy of the system. 

The energy per unit mass which is imparted to the system by the 

excitation may be expressed as 

2n 

E ·t t· = f Vexc1 a 10n 
0 

F- sin vt xdt m = -na !:_ cos em ( 4. 17) 

The energy per unit mass which is dissipated from the system 

through the damping mechanism may be expressed as 

Zn 

Edissipated 

c+ece .2 
---x dt = 

m { 4. 18) 
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At the end of one full cycle of oscillation the total energy per 

unit mass of the system will have changed by an amount equal 

v2 2 
2 (a + 6.a) v2 

2 2 

2 a � a6av . (4. 18) 

Clearly, the energy balance equation of the system can be written 

as 

6Etotal = Eexcitation - Edissipation ( 4. 19) 

Upon using the corresponding expressions for the energies, equation 

(4. 19) can be written as 

2 F V a6a = -TTa - COS 0m (4. 20) 

The change 6a of the amplitude a during one cycle of oscilla­

tion with period T = 2TT/v is small. Consequently, the derivatives 

of a with respect to the independent variable t can be approximated 

by 

da 6a 
dt � T 

6a 
2rr/v 

Because of equation (4. 21), equation (4. 20) can be written as 

da 
dt 

= F a - 2mv cos 8

(4. 21) 

(4. 22) 

Equation (4. 22) describes the amplitude response of system (4. 1). 
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Equation (4. 22) agrees to the first order of e with the equa­

tion derived in reference [ 12] for the amplitude a of the response 

of system (4. 1). Reference [ 12] approaches the problem by 

classical perturbation techniques. 

During the generation of this dissertation an equation which 

governs the change of the phase 0 was also derived. This equation 

agrees to the first order in e with the equation derived in reference 

[ 12] by perturbation techniques. However, the procedure of the

derivation of the equation governing 8 by considering the equivalent 

linear system was not as direct as that given above for a. 

Specifically, it was necessary to use the mathematical relationship 

between a, a, e and 8 which is implied by assumptions (4. 6) to 

relate a, a, 0 and 0. Subsequently, the mechanisms of energy input 

and dissipation associated with the equivalent linear system were 

considered. Finally, the principle of averaging was used to derive 

an equation for 0. Interpretation of the derived equation in the 

context of the reactive energy of the equivalent linear system was 

not successful. It is felt that the analysis for the phase e does not 

add appreciably to the understanding of the herein presented method. 

Therefore, it is not included in this thesis. 

4. 2. 3 Summary

The purpose of the preceding analysis was to further indicate 

the potential of the method of equivalent linearization. Previously, 

the method was applied only for approximation of the steady-state 

response of non-linear dynamical systems. This approach yields 
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non-linear algebraic equations for the amplitudes and the phases 

of the steady- state approximate response. The present extension 

of the method allows application of the method for the derivation 

of equations which govern the transient response of the system. 

The lightly damped and weakly non-linear system (4. 1) has 

been considered herein. The response of this type of system 

exhibits pseudo-sinusoidal behavior with amplitude a and phase e.

For this class of solution functions the equivalent linear system 

(4. 14) is constructed, The equivalent linear elements are given by 

equations (4. 12) and (4. 13), By consideration of the energy balance 

of system (4. 14) over one cycle of oscillation, differential equation 

(4. 22) for the amplitude is derived. This equation agrees to first 

order with the equation which is derived by classical perturbation 

techniques. Therefore, it is possible to avoid many of the calcu­

lational complexities of the perturbation techniques by using the 

method of equivalent linearization and applying energy principles. 

In addition to overcoming the calculational burden of the pertur­

bation techniques ,it is thought that the herein presented approach 

provides a better "engineering11 understanding of what is really 

happening in the system. 

4. 3 Gaussian White Noise Excitation

4. 3. 1 General Remarks

In this section the method of equivalent linearization will be 

used for the study of the non-stationary amplitude response of a 

non-linear oscillator which is excited by a Gaussian white process. 
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The oscillator is assumed to be lightly damped and weakly non­

linear. The level of excitation is also assumed to be relatively 

small. It was mentioned in the Introduction of this chapter that 

under the above assumptions the response of the system exhibits 

pseudo- sinusoidal behavior. The amplitude a and the phase 0 of 

the response are therefore slowly varying random processes of the 

independent variables of the problem. 

Knowledge of the amplitude of response of ·a certain system 

provides an envelope for the actual response. This knowledge 1s 

important for any design procedure which is probabilistically 

oriented. Currently, there is no sytematic method for the analysis 

of non-stationary amplitude response of non-linear second order 

dynamical systems. The existing methods cover only the area of 

the stationary amplitude response. Typically for this purpose, the 

variance of the actual response is calculated by any of the existing 

techniques [ 6 J and subsequently the density of the amplitude dis­

tribution is approximated by Rayleigh distribution. 

4. 3. 2 Formulation

For the purpose of the following discussion it will be assumed 

that the response of the non-linear system. is described by the 

equation 

mx + ex + kx + d(x, x} w(t) (4. 23) 

The symbol w(t) stands for a Gaussian white process with spectral 

density S constant over all the frequency domain from minus 
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infinity (-00) to plus infinity (+ 00). The autocorrelation function of 

w(t) is given by the formula 

R(T) = E[w(t)w(t + T)] = 2nS.S(T) (4. 24) 

where E represents the expectation operator and .S(T) is the Dirac 

delta function. It is assumed that the quantity I ef(x, �) \ is small 
. 

compared to ex + kx for all x and x. The last condition may be 

interpreted as requiring that the solution of the non-linear problem 

differs only slightly from that of the linear problem obtained by 

neglecting all non-linear terms. The following additional assumptions 

about the damping of the system, and the spectral density S of the 

excitation are made 

C = 0(€) m ( 4. 25) 

and 

S = 0 (e:) . (4. 26) 

In view of the smallness of the spectral density of the excitation, 

the damping coefficient and the non-linear term, the oscillation 

during a single cycle will be nearly harmonic. Hence, 

and 

x = a cos (wt+ 0) (4. 27) n 

(4. 28) 

where a and e are slowly varying functions of the variable t. The 
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symbol w stands for the natural angular frequency o: the non­n 

linear system (4. 23). 

If equations (4. 27) and (4. 28) are solved, considering as 

unknown quantities the variables a and 0, the following relations 

are obtained 

and 

e 

2a 
. 2 
X 

n 

(4. 29) 

(4.30) 

The set of equations (4. 29) and (4. 30) provides another way to 

check the assumption of slowly varying amplitude a and phase e.

By analogy to the discussion given in section (4. 2) for the case of 

harmonic excitation, herein, it is claimed that since the damping 

coefficient, the non-linearity parameter and the spectral density of 

the exciting random process are small, the rates of change of the 

energy of the system and the phase difference between the solution 

and the natural phase ,0 t are also small. Therefore, the amplitude 
n 

a and the phase 0 are slowly varying functions of the independent 

variable t. 

It must be noticed that the effect of the non- linear function 

d(x, x) on 9 has implicitly been considered through the change of 

the angular frequency of the syste1n. Specifically, the natural 

angular frequency w of the non-linear system (4. 23) has been 
n 

assumed to be different from the angular frequency 
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(4. 3 1) 

of its linear part. 

According to the preceding analysis, the amplitude a and the 

phase 0 of the approximate solution of problem (4. 23) can be 

assumed to be almost constant during one cycle of oscillation. 

The solution x and its derivative x are given by (4. 27) and (4. 28}. 

Since the form of the approximate solution is known, the construc­

tion of an equivalent linear system for the non-linear system is a 

straightforward matter. The non-linear function d(x, x} can be 

replaced according to the rule [ 14) 

where 

and 

1 
na 

1 2.n 

f f(a cos t,

0 
-aw sin ljl) sin ljld,jin 

2-rr 

J f(a cos 1jl, -awn sin w) cos 1jld1jl
0 

Therefore, the equivalent linear system of (4. 23) is 

(4. 32} 

( 4. 33) 

(4. 34) 

(4.35) 

The natural angular frequency of system (4. 35) is given by 

the relation 
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(4.36)

The expression given by equation (4. 36) is also defined as the

natural angular frequency of the non-linear system (4. 23).

The solution of the non-linear system (4. 23) and the equiva­

lent linear system (4.35) as well is approximated by (4. 27). The 

equivalent linear system (4. 35) being derived, further analysis of 

the solution x can be made by using all the techniques which are

applicable to linear systems excited by Gaussian white noise.

In Appendix A analysis of the amplitude response of a second

order weakly damped linear dynamical system is made. The

dynamical system is excited by a stationary wide-band random 

process, the spectral density of which is of o rder of the ratio of

critical damping of the linear system . The major result of

Appendix A is that the equation governing the amplitude of the

response is not coupled with the phase. By applying this result

to the equivalent linear system (4. 35) the following equation is

derived for the amplitude a of the solution (4. 27).

a = a +
TT� 2 + ( nS)2 

Tl (t)
2am w wnm 

where T](t) is a delta correlated process with zero mean

E[T](t)] = 0

and

E[Tj(t)Tj(t + T)] = 6(T) .

( 4. 3 7)

(4.38)

(4. 39) 
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It is noticed that equation (4. 37) is of first order. There­

fore, one immediate consequence of the present analysis is the 

reduction of the order of the equation which must be solved to 

obtain adequate information about the response of the non­

linear system. (4. 23). Of course, equation (4. 37) describes only 

the amplitude and not the phase of the response. This limitation is 

of minor importance however, since the amplitude of the response 

is what is most significant for almost all technical applications. 

4. 3. 3 Fokker-Planck Equation

At the very beginning of the preceding analysis certain 

assumptions about the damping of the non-linear system and the 

spectral density of the excitation were made. These assumptions 

besides being vital for the derivation of (4. 37) are important for 

the nature of the random process a(t). Specifically because of 

assumptions (4.25) and (4.26), equation (4.37) can be written as 

a =  sr[a,Tj(t)] (4. 40) 

where ef[a,Tj(t)J represents the right hand side of (4.37). 

In reference [50] it is proved that if T\(t) is a delta corre­

lated random process and e is a small parameter, the random 

process a(t) governed by the differential equation (4. 37) can be 

regarded as Markovian. Therefore, its transition probability 

density function is governed by the Fokker-Planck equation which 

is associated with equation (4. 37). 
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It is well known [ 51] that if only the linear part of the non­

linear system (4. 2 3} is considered, the standard deviation o- of the 

stationary response can be estimated to be 

2 
(T = 

where w
0 

is given by (4. 31) and C is defined by

Using equation (4.41), equation (4.37) can be rewritten as 

(4. 41) 

(4. 42) 

(4. 43) 

The Fokker-Planck equation which is associated with (4. 43) 

is [26 J 

� 
at 

a 
aa 

+ a 
aa 

2
(

wo 
)

2 

ap 2 a 
(

wo )

2 

Cw o- - - + .1.,-w o- p- -
0 w aa ? lo O aa w n n,

(4. 44) 

where p(a, t) is the probability density describing a(t). If the non­

linearity parameter e is equal to zero, the quantity e ce(a) equals 

zero and the ratio w0/ w equals unity. Therefore, for e = 0 equa-

tion (4. 44) can be written as 



&p 
at 
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(4. 45) 

Further analysis of (4. 44) and (4. 45) requires specification of 

boundary and initial conditions for a. Since a represents the ampli­

tude of the response x(t), it cannot take negative values. There­

fore, its boundaries are defined by 

(4. 46) 

If the above boundary conditions are imposed, equation (4. 45) has 

eigenvalues given by [ 5 2 ] 

and eigenfunctions proportional to [ 5 2] 

A (a) = 1 ae-a2
/ 2er

2 

L (a
2

) n n! 2 n 
2 

2 
er er 

(4. 4 7) 

(4.48) 

where L is the Laguerre polynomial of order n. The completen 

solution of (4. 45) is therefore given by 

p(a, t) = z: 
n=O 

- A t T A (a)e n .n n ( 4. 49) 

The coefficients T must be calculated using the initial con-n 

dition. It is assumed that the system is initially (t = 0) at rest. 

Prob�bilistically speaking, this means that a equals zero at t = 0 

with probability 1. In terms of the probability density the last 
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condition is written as 

p(a, 0) = 6 (a) (4. 50) 

where the symbol o(a) stands for the one sided Dirac delta function. 

Because of condition (4. 50) it can be proved easily that 

Therefore 

It is 

T = 1 n 

(4.49) can be rewritten 

p(a, t) = 
2 2 a -a / 2 rr 

ze 
IT 

evident that 

lim p(a, t) 
t -- 0:, 

0:, 

L 
n=0 

= 

n = 0, ... 

as 

� L (_L)e-zn,w0t 

n. n Z rr
2 

2 2 a -a /2rr 
ze 
IT 

(4.51) 

. (4.51a) 

( 4. 5 2) 

which is the required process describing the probability distribution 

of the amplitude of a stationary Gaussian process. It is felt that 

this provides a certain measure of the applicability of the method 

used. 

Since the solution of equation (4. 44) for e equal zero is read ily 

available, it appears that perturbation techniques provide a convenient 

vehicle for the solution of equation (4. 44). In reference [53 J this 

method was used extensively for solving the Fokker-Planck equation 

associated with fir st-order stochastic differential equations. Before 

any further work toward this end, some simplification of the non­

linear expression (4.36) for wn is necessary.
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Using equation (4. 31), equation (4. 36) can be rewritten as 

or putting 

n 

2 w (a) =e 

equation (4. 53) can be written as 

k (a) 
e 
m 

( 4. 5 3) 

(4.54) 

(4. 55) 

It was crucial for the analysis of part 4. 3. 2 that the contribution of 

the non-linear term ef(x, x) to the response of the system (4. 23) be 

small. Since a is a random process, it is clear that this condition 

should be interpreted stochastically. The amplitude can take any 

value between zero and infinity with finite probability. The ampli­

tude probability density of the linear part of the system (4. 23) is 

a delta function at t = 0 and spreads to a Rayleigh distribution at 

t = 00 
• From Figure 4. 1 it is seen that for a Rayleigh distribution 

the most probable value of a is er, the mean value of a is ✓ n/2 c,, 

and the probability that a takes a value greater than 3cr is equal to 

0.0111. All the above statistical parameters show that the major 

contribution of the amplitude probability distribution corresponds to 

ordinates from zero up to 3cr. With this guideline from the linear 

oscillator, equation (4. 44) will be solved for those values of a for 

which the assumption 
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0.6 

p(a) 
l a2 

p(a)=�e-2<i! 

0.4 f(O)=�<J' 

0.2 

=0.0111 

0 (j 20" JCT 40" 

Figure 4. 1. Rayleigh Probability Density Function 
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2 
ew (a) << l e (4. 56) 

Because of assumption (4.56), equation (4.55) implies that 

2 
w (a)e 1 - e --2-

wO 

(4. 57) 

Equation (4.57) is correct up to O(e). Using equation (4.57), equa­

tion (4. 44) can be rewritten 

[ 
2 2 

+ e - ---- E _ __ +l a c;(T" 
we (a) 

( 
op) 

aa WO 
a aa 

pc (a)a 2 
�} e i � � [ w 

2 (a) J 2m - 2 w da e 0 

Equation (4. 5 8) will be solved by using the technique of 

separation of variables. A solution of the form 

p(a,t) 

( 4. 5 8) 

(4. 5 9) 

is sought. Substituting expression (4. 59) in equation (4. 58) the 

following equation is obtained 

2 
'w

o
�l 

d 
:�

L 
+ (;wO :a 

[ (a - :
2 

)�L
] + ANL ANL " e HNL (4.60) 

where HNL is given by 
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2 
CCT ANL d 2 

] 2 -d [w (a)] •
w0 

a e 

(4.61) 

If e: equals zero, equation (4. 60) has eigenvalues and eigenvectors 

given by (4. 47) and (4. 48) respectively. For the determination of 

the eigenvalues and eigenfunctions of equation (4. 60) for non-zero 

value of e, the classical perturbation technique which is discussed 

in [54 J will be used. 

An asymptotic expansion to O(e) for the eigenfunctions and eigen­

values of equation (4. 60) will be obtained by assuming expansions of 

the form 

A = A + eB NL,m m m (4.62) 

and m=O, ... ,n 

;\ = ;\ + epmNL,m m (4.63) 

where A and Ji. are given by equations (4. 48) and (4. 47) respec-
m m 

tively. Substituting expressions (4. 62) and (4.63) into the differential 

equation (4. 60), collecting terms with like powers of e, and equating 

each group to zero, the following set of equations is derived 

+ A A m m  = 0 (4.64) 

A B = -p A + Hm m m m m

(4.65)
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where H is given by the relationm 

m 

A c (a)+ m e 
2m 

2 

� 

�o- Am d 2 
2 -d [ w (a)] (4.66)w0 a e 

Equations (4. 64) and (4. 63) may be used for the determination of 

B and p . According to Appendix B, the following orthonormality 
m m 

condition is true. 

0 

A A 
� n da =

0 
(4. 67) 

where 6 is the Kronecker delta symbol. In other words themn 

set of functions A ; m = 0, ... , constitute an orthonormal basis inm 

terms of which the function B can be expressed asm 

(4.68) 

where B k are coefficients determined by the following relation, m, 

m=O,l, ... 
k=O,l, ... (4. 69) 

Substituting expression (4. 68) into (4. 65) and using relation 

(4. 64) for m = 0, 1,, .. the following relation is derived 

k=O 

-p A + H m m m (4. 70) 
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Multiplying both sides of equation (4. 70) by Ak/A0, integrating from 

zero (0) to infinity (co) and using the orthonormality condition (4. 67) 

gives 

� k( A - >..k) m, m 
= -pm J 

0 

AmAk !
co 

A da + 

0 0 

Applying equation (4. 71) for m = k yields 

H A m m d A a
0 

HmAk 
A da

0 

If k / m, equation (4. 71) may be rewritten as 

(4.71) 

( 4. 7 2) 

(4. 72a) 

It is clear that the coefficient B cannot be determined from mm 

equation {4. 7 2). In fact, it is easily seen by direct substitution in 

(4. 65) that any finite value for 8 will be acceptable for the mm 

perturbation analysis. This should be expected, because by the 

perturbation analysis essentially the non-linear eigenfunction ANL, m 

is expressed as a linear combination of the eigenfunctions A ; m 

Clearly the product of ANL with any constant num-1 ,m 

ber is again an eigenfunction of order m. Therefore, even if the 

coefficients j3 k for m / k are determined, the coefficient m, 

1 + e � of A is indeterminate.mm m 
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The complete solution of the Fokker-Planck equation (4. 58) is 

given by the expression 

pNL(a, t) = �
k=0 

(4. 73) 

where TNL, k are coefficients to be determined by the initial condi­

tion (4. 50). It is noticed that condition (4. 50) does not contain any 

function of €. Similarly to the case of typical perturbation problems 

[55], herein the initial condition (4. 50) will be satisfied by the 

zeroth order terms of expansion (4. 73). Subsequently, the undeter­

mined coefficients s of the first order in e terms will be deter-· mm 

mined so that the overall condition (4. 50) is satisfied. 

Using equation (4. 73), the initial condition (4. 50) can be 

rewritten as 

co 

6(a) = , T A (a)� NL,k NL,k 
k=0 

( 4. 7 4) 

Multiplying both sides of ( 4. 74) by ¾/ A0 and integrating from

zero (0) to infinity (o:.,) yields 

Ak(0)

A
0

(0) = TNL, k + e:

co 

( 4. 75) 

r=0 

For the derivation of (4. 75) the orthonormality property (4. 67) has 

been used. By using formula (4. 28) for Ak(a) it is easily seen that
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= 1 k = 0, ... 

Therefore, equation (4. 75) can be rewritten as 

l = TNL, k + e ' TNL � k •L,_ ,r r, 
r=0 

(4. 76) 

(4. 77) 

According to the preceding analysis, condition (4. 50) will be 

satisfied by requiring that 

= 1 k = 0, ... (4. 78) 

and 

k = 0, ... (4. 79) 

r=O 

Equation (4. 79) can be rewritten as 

�mm = m = 0, ... ( 4. 80) 

At this point all the steps of the solution of Fokker-Planck equa­

tion (4. 4) by the perturbation techniques have been completed. 

It is worth noticing that the stationary solution of 

(4. 44) can be found without using any approximate technique. Let 

A(a) 
€ C (a)e 
�Z�m--a ( 4. 81) 
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and 

.6.(a) (4.82) 

Thus, equation (4. 44) can be written as 

(4. 83) 

The stationary solution p of (4. 83) satisfies the differential equation 
s 

Equation (4. 84) is directly integrable. 

the formula [26] 

= 0 . (4. 84) 

The solution p is given bys 

(4.85) 

where 0 is a constant determined by the condition 

p (a)da = 
s 

1 . (4. 86) 

Obviously, the solution (4.85) should agree up to O(e) with ANL,O

which represents the stationary part of the non-stationary probability 

distribution pNL(a, t) derived by perturbation techniques. This

requirement is checked in the specific example problems w hich are 

presented in a subsequent chapter of this thesis. 
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From a practical point of view, there is a question of how to 

calculate the integrals in equations (4. 72) and (4. 72a} which are 

necessary for the determination of p and � k. Besides them m, 

answer of resorting to numerical calculation by digital computer, 

it was felt that certain analytic work should be done toward this 

goal. The results of this study are summarized in Appendix B. 

There, analytic formulae for determining the values of integrals 

"" A A f 2s n-7< 
of the forms a A da , 

0 
0 

Jc,;) 

2 
and a Akda are

presented. Iterative schemes for evaluating An(a) and dAn(a)/da

are also presented. Repeated usage of the formulae of Appendix B 

will be made in the solution of specific example problems which 

will follow. 

4.3.4 Summary 

The method of equivalent linearization has been utilized for 

the derivation of a first order stochastic differential equation 

which governs the amplitude of the non-stationary response of a 

system with small non-linearity. The system is asymptotic to a 

linear lightly damped oscillator with Gaussian white noise excitation. 

The fact that the differential equation which governs the response 

amplitude is of first order, makes the problem amenable to the 

techniques which are available for first-order non-linear stochastic 

differential equations. 

Since it has been assumed that the non-linearity, the damping, 

and the spectral density of the excitation are small and that the 
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excitation is delta correlated, an approximation of the amplitude of 

response by a Markovian process is justified. Subsequently the 

Fokker-Planck equation for the probability density of the amplitude 

is considered. The stationary solution of this equation is readily 

found by existing formulae. The governing Fokker-Planck equation 

is asymptotic to a partial differential equation, the eigenvalues and 

eigenfunctions of which are known analytically. Therefore, per­

turbation techniques are used to obtain an approximation of the 

non-stationary distribution of the amplitude of the response. In 

accordance with this approach, the coefficients of an accurate, 

up to O(e), series representation of the eigenvalues and the eigen­

functions of the non-linear problem are determined. The stationary 

probability density distribution of the amplitude is found by direct 

integration of the time independent part of the corresponding 

Fokker-Planck equation. 



-91-

V. Example Studies

5. 1 Example of Duffing Oscillator

5. 1. 1 General Remarks

The objective of th�s example study is to utilize the general 

method developed in section ( 4. 2} for the examination of the non­

stationary random response of a lightly damped hardening Duffing 

oscillator. This specific type of non-linearity is selected because 

many interesting non-linear problems can be modeled by the cubic 

non-linearity. The system is excited by a Gaussian white process. 

Approximate expressions for the statistics of the non-stationary 

amplitude response of the system will be given. Comparison of 

the theoretical analysis with the results obtained by Monte Carlo 

simulation will be made. 

All of the symbols used in the following analysis represent 

the same physical quantities as for the general analysis given in 

Chapter IV. 

5. 1. 2 Formulation

Consider a Duffing oscillator excited by a Gaussian white 

process. The differential equation which governs the response of 

the system is 

• ( v 2

) mY + c'±' + k'±' 1 + e 
7 

= w(t) (5. l} 

If the small non-linear parameter e is zero, the standard deviation 

<T of the stationary response is given by equation (4. 41). For the 

purpose of obtaining results in terms of dimensionless parameters, 
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the following transformation is introduced. 

X = 

'i' 

CT 
(5. 2) 

Using transformation (5. 2) the non-linear dynamical system (5. 1) 

can be rewritten as 

mx + ex + kx(l + ex2) = w(t)
CT 

(5. 3) 

Clearly, system (5. 3) belongs to the general class of systems 

represented by equation (4. 23). Therefore, the analysis which was 

performed in section (4. 2) for the case of the general problem 

(4. 23) is applicable herein as well. For the present case the 

non-linear function f(x, x) is 

f(x,x) = kx3 

and the spectral density of the excitation is replaced by 

s .... 
s 

2 

(5. 4) 

(5. 5) 

The solution x and its derivative dx/ dt are given in terms of the 

amplitude a and the phase 0 by equations (4. 27) and (4. 28). 

The equivalent stiffness of the system may be determined 

by formula (4. 34). This gives 

1 

na 1
2,,. 

3 
ka 

0 

3k 2 
= 4 a (5. 6) 
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The equivalent linear system for the non-linear system (5. 3) 

therefore becomes 

mx. + ex + k ( 1 + ¾ e a 2) x = w(t) (5. 7) 

The natural angular frequency of the equivalent linear system (5. 7) 

is 

(5. 8) 

The stochastic differential equation governing the amplitude of 

the response of (5. 3) is given by the general formula (4. 37). This 

gives 

• C a = - 2m 
a + ;s z z + 

(TTS)� Tl(t)
2am w a- wnmo­

n 

(5. 9) 

where Ti(t) is a delta correlated process with zero mean, Using 

the ratio of critical damping C, equation (5. 9) can be rewritten 

as 

T]( t) (5. 10) 
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5. 1. 3 Fokker-Planck Equation

The Fokker -Planck equation which is associated with equation 

(5. 10) is given by formula (4. 44) as 

ap 
= a: {+w0 (a a ( I : � ea z)] 

}at 
+ a { 'wo ap 

+ 1'"oP a: C + � 
eaz )}

(5. 11) 
aa l d 2 aa + 4 ea 

A first order non-stationary solution of (5. 11) will be next 

determined. The derived solution will be valid for those values of 

a such that 

3 2 ".i ea << 1 . 

Because of assumption (5. 12), the term 1/ (1 + ¾ e a2 ) can be

rewritten as in equation (4. 57). Namely, 

1 
21 +¾ea 

3 2 
= 1 - 4 ea 

(5. 12) 

(5. 13) 

Equation (5. 13) is correct up to O (e). Exploiting approximation 

(5. 13) the Fokker-Planck equation (5. 11) can be written as 

(5. 14) 

For e = O, equation (5. 14) becomes 
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(5. 15) 

It is assumed that the same boundary and initial conditions hold for 

the present example as they did for the general case. The eigen­

values and the eigenfunctions of equation (5. 15) are given by equa­

tions (4. 47) and (4. 48) for o- = 1. 

Following the general analysis performed in section 3. 2 a 

first order solution of equation (5. 15) may be found. For this 

purpose the general formulae of section 3. 2 will be used. The 

ultimate goal is to calculate the quantities pm and �n, k of _the

perturbation solution which are given by formulae (4. 72), (4. 72a), 

and (4.80). Observing equations (4. 72) and (4. 72a) it is understood 

that the expression H defined by equation (4. 66) must be deter-m 

mined so that coefficients p and � k can be calculated. Con-m m, 

sidering equation (5. 14) it is easily verified that 

m = 0, ... (5.16) 

Using formula (B3 l )  of Appendix B equation (5. 16) can be 

rewritten as 

m 

(5. 1 7) 
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Again, applying formula (B 3 l), equation (5. 17) can be written as 

H m 
3 = 2 cw0 [2(m+l)(m+2)Am+2 - (m+l)(4m+3)Am+l

+ m(2m+l)A ]
m 

Using the gener al formula (4. 72) and the orthonormality 

relation (B8), it is found that 

= J 
0 

H A m m  da =
AO 

m=O,l, ... 

(5. 18) 

(5. 19) 

Using the gener al formula (4. 72a) and the orthonormality relation 

(B8), it may further be shown that 

co H A 
flm,m+l 

1 
J 

m m+l da ¾ (m+l)(4m+3) = 
" AO

= 
- A m+l m 0

m = 0, ... 

f 
H A m+2

flm,m+2 
m da -� (m+ l)(m+2)= = 

Am - 1'm+2 0 Ao

m = 0, ... 

fl k = 0m, 
k I- m+ ,m+l,m 

Using formula (4, 80) gives 

= - [ -¾ m(m-1) + ¾ m[ 4{m- l) + 3]} 

9 2 
= 4m m = 0, ... 

(5. 20) 

(5. 21) 

(5. 22) 

(5. 2 3) 
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The coefficients p and 8 , � and � +2 being cal-in • m,m m,m+l m,m 

culated, the first order solution of equation (5. 14) is given by 

equation (4. 73). 

The stationary solution of equation (5. 11) is given by the 

general formula (4. 85). Applying this formula to the present case 

it is found that 

where 

./\(a) 

and 

e exp {2f /1(a) } 
L:!.(a) da ,

/'E(ay 

L:!.(a) = 
;;; 2 •1 + 4 e:a 

(5. 24) 

(5. 25) 

(5. 26) 

Substituting expressions (5.25) and (5.26) in equation (5.24) it is 

seen that 

p (a) = s 

e 

3 4-ue:a 

(5 . 2 7) 

da 

If e: = 0, formula (5. 27) yields the classical Rayleigh 

probability distribution for the amplitude. Fr om equation (5. 27) 

it is seen that the non-line_arity of the system acts to suppress the 

probability of big values of the amplitude a for e: > 0. 
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It is interesting to compare the fir st order representation of 

(5. 27) with the eigenfunction ANL, 0 corresponding to m = 0, deter­

mined by the perturbation technique. Using formulae (5. 21), (5. 22) 

and (5. 23) it is found that 

where 

�00 
= 0

t, 0 1 
and 

t302 
= 

- 2
. 

Therefore, equation (5. 28) can be rewritten as 

Using the general formula (4.48) gives 

A -
0 - ae

-a/2

(5. 28) 

(5. 2 9) 

(5. 30) 

(5. 3 1) 

(5. 3 2) 

(5.33) 

(5 0 34) 

(5. 35) 

Substituting the above expressions for A
0

, A
1 

and A2 in equation

(5. 3 2) yields 

A NL,O 

2 
-a /2 [ 1= ae - 3e

( 4
Ra 

2 2a - 4)] (5. 36) 
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To first order in e it may be seen that 

✓ 2 2 1 + 4 ea 

3 4= 1 - lb ea 

for (ea 2 < 1) . 

Using these approximations in equation (5. 27), it is found that 

0 

� .I 
2

ae -a /2 [ 1
2 

2a )]da 

= 1

(5. 3 7) 

(5. 38) 

(5. 3 9) 

Using equations (5.37), (5.38) and (5.39), equation (5.27) yields 

p (a)s 
2 

2a - 4) J (5. 40) 

By equations (5. 36) and (5. 40) it is confirmed that the first order 

solutions for the stationary probability density function as deter­

mined either by perturbation techniques applied to the general 

equation (5. 10) or by direct application of formula (5. 24) are, as 

they should be, identical. 

5 . 1. 4 Numerical Calculations 

Expression (4. 73) is a first order in e solution of equation 

(5. 14). Therefore, strictly speaking, good agreement of (4. 73) with 
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the exact solution of (5. 14) should be expected only for small 

values of the non-linearity parameter e. However, expression 

(5. 27) is the exact stationary solution of equation (5. 14); therefore 

good agreement of expression (5. 27) with the actual probability 

distribution of the amplitude of the response of system (5. 1) should 

be expected even for large values of e. 

It is important to note that the coefficient of the non-linear 

2 
function in system (5. 1) is divided by a- ; therefore the actual non-

2 
linearity parameter of system (5. 1) is the product ea- • This simply 

means that if the spectral density of the excitation is sufficiently 

small so that er is small as well, the solution expressed by equa­

tion (4. 73) is reliable even for significantly large values of e. 

The non-stationary solution represented by equation (4. 73) 

was used for the computation of the time dependent mean value and 

standard deviation of the amplitude of the response of the non­

linear system (5. 1). Equation (5. 27) was used for the determina­

tion of the steady-state values of the above statistical parameters. 

By· a careful inspection of equation (5. 14) which must be 

solved for the determination of the non-stationary probability den­

sity function of the amplitude of the response of system (5. 1), 

it is recognized that the ratio of critical damping C and the non­

linearity coefficient e can be used to identify the problem (5. 1). 

Specifically, by the transformation represented by equation (5. 2), 

the amplitude of the response of the system (5. 1) is normalized by 

the standard deviation er of the stationary response of the linear 

part of system (5. 1). In this manner, the dependence of the actual 
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solution of system (5. 1) on the spectral density S of the excitation 

the mass m, the damping c and the stiffness k is accounted for 

through a-. Furthermore, it is easily verified that the time 

dependence of the solution of equation (5. 14) can be expressed m 

terms of the dimensionless time 

where 

t' 
t 

= T 

Zn 
T = 

(5. 41) 

(5. 42) 

In this manner the explicit dependence of the solution of equation 

(5. 14) on w0 is eliminated.

The value of the ratio of critical damping , of system (5. 1)

was taken herein to be: 

c = 0.02 . (5, 43) 

Varicus values were assigned to the non-linearity parameter e. 

For the computation of the mean value E(a), the values of 

the integrals aA da; n = 0, ... , were computed by the explicitn 

iterative scheme represented by equation (B38) of Appendix B. 

For the computation of the standard deviation it was necessary to 
co 

determine the values of the integrals / a 2 An; n = 0, . . . For

this purpose, formulae (B43), (B44) and (B45) were used" Figures 

5. 1 to 5. 6 show the computed time dependent mean value and
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standard deviation for various values of the non-linearity parameter 

e. 

The stationary probability density function of the amplitude 

p (a) is given by equation (5. 27). This expression was used for 
s 

the computation of the stationary mean value and standard deviation 

of a. The range of e was extended up to values representing 

severe non-linearities. Figures 5. 7 and 5. 8 show respectively the 

stationary mean value and standard deviation of a as functions 

of e. 

For the purpose of checking the results of the present 

analysis, a simulation study of system (5. 3) was performed. The 

model given in reference [ 5 ] was used for simulation of the 

white Gaussian process. Specifically, for the generation of a sample 

function of the excitation, a sequence of normally distributed 

numbers G
1

, ... , G
n 

is first generated. Subsequently, the values 

G1, ... , Gn are assigned to n successive ordinates spaced at equal

intervals 6.t along a time abscissa. Linear variation of ordinates 

over each interval is assumed. The initial ordinate G0 is assumed

equal to zero and is located at t = t0, where t0 is a random

variable having a uniform probability density distribution of inten­

sity 1/ 6.t over the interval 1 < t
0 

< 6.t. 

A complete ensemble of m such sample functions a (t) 
r 

(r = l, ... , m) can be obtained by repeating the above procedure m 

times, thereby generating a stationary Gaussian process. If the 

intensity of this process is changed by multiplying each ordinate G. 

by the normalization constant (2nS/ 6.t)2 , the power spectral of the 
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new process is [ 5 J 

S(w) = S 
6 - 8 cos (wllt) + 2 cos (2wllt) 

{wll t )  
4 (5. 43a) 

According to reference [ 5 J this function is flat within 5 percent 

error for jwlltj < 0.57 and to within 10 percent error for jwlltj < 0.76. 

The function drops to 50 percent of its maximum value S at 

wllt = 2. 0. 

For the purpose of the herein discussed simulation study, the 

dimensionless variable defined by equation (5. 41) was introduced in 

system {5 o 1) o The time interval was taken to be 

Llt
1 = 0.01 (5. 44) 

From the simulation study the time dependent mean value and 

the standard deviation of the amplitude of the response of the non­

linear system (5. 1) were computed. The same values of the non­

linearity parameter € used for the theoretical solution were used 

for the simulation study as welL The stationary values of the 

above statistical parameters were also computed for large values 

of the non-linearity parameter €. 

The statistical parameters of the response determined by 

the simulation procedure are compared with the theoretical solu­

tion in Figures 5. 1 to 5 o 8. 

A note about the computer time consumed £or the computation 

of the solutions plotted in Figures 5, 1 to 5. 8 is in order herein. 

The computation of any of the theoretical non- stationary solutions 
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required computer time of the order of 10 sec in an IBM370/158 

digital computer. For the same problem and by using the same 

cornputing machine the generation of an ensemble solution of size 

250 required computer time of the order of 1 hour. The numerical 

computation of the steady-state values of the mean value and the 

standard deviation by using the solution given by equation {5. 17) 

required computer time of the order of 10 sec. 

5. 1. 5 Discussion

The fact that the non- stationary probability density function of 

the amplitude of the response given by equation (4. 73) is only a 

first order solution of equation (5. 14) is emphasized by Figures 

5.1 to 5.6. Specifically, it is seen that as far as the mean value 

and the standard deviation of the amplitude of the response are 

concerned, good agreement exists between the theoretical and the 

simulated response for e =0.0 and e =0.1 (Figures 5.1 to 5.4). 

Not only are the proper trends observed but the actual numerical 

values given by the two approaches are in close agreement. For 

e = 0. 2 (Figures 5. 5 and 5. 6) the theoretical solution predicts the 

correct qualitative nature of the response but the quantitative agree­

ment with the simulation results is rather poor, 

It appears therefore that the theoretical solution can be used 

to obtain reliable quantitative results only for values of e less than 

0. 2. This is not a great limitation on the applicability of the

method. As far as the stationary values of the mean value and 

the standard deviation of the amplitude of the response of the 
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system (5, 1) are concerned, the probability density function given by 

equation (5. 27) is more reliable than the solution represented by 

equation (4. 73), especially for large values of the non-linearity 

parameter e. This is due to the fact that the probability density 

function given by equation (5. 27) does not involve any of the 

approximations resulting from the perturbation solution of the 

Fokker-Planck equation. 

The stationary values of the mean value and the standard 

deviation of the normalized amplitude a of system (5. 1) are plotted 

respectively in Figures 5, 7 and 5.8, versus the non-linearity para­

meter e. From Figures 5, 7 and 5. 8 it is observed that even for 

large values of e the values of the mean value and the standard 

deviation determined by the theoretical solution are in good agree­

ment with the corresponding values determined by the simulation 

study. It is important to note that according to the data repre­

sented by Figures 5. 7 and 5. 8 the theoretical values are conser­

vative in the sense that they are bigger than the corresponding 

values determined by the simulation study, 

5. 2 Example of Hysteretic System

5. 2. 1 General Remarks

The objective of this example- study is to indicate the applica­

tion of the general method developed in section 4. 2 to the non­

stationary random response of a hysteretic system. 

Structural systems subjected to dynamic loading usually exhibit 

hysteretic behavior for response amplitudes corresponding to damage. 
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In order to study the effect of hysteresis on system performance it is 

desirable to have a mathematically tractable model of the system in 

question. It must be emphasized that since the restoring force of a 

hysteretic system depends not only on the instantaneous displacement, 

but also on its past history, the analytical modeling of such a system 

under random excitation is not a straightforward matter. 

Among the various models available in the technical literature to 

descirbe the hysteretic behavior,the distributed-element model [39] 

will be used herein. A lightly damped hysteretic system excited by a 

Gaussian white noise will be considered. Approximate expressions for 

the statistics of the non-stationary amplitude of response of the system 

will be given. All the symbols used herein represent the same quan­

tities as for the general analysis of Chapter IV,

5. 2. 2 Formulation

Consider a viscously damped hysteretic system excited by a 

Gaussian white process. The differential equation governing the 

response of the system is 

m'±' + c'±' + h('f, f) = w(t) . (5, 45) 

where h('f, 'f) represents the hysteretic restoring force. Using trans­

formation (5 . 2) in equation (5. 45) yields 

h('±', -.Y) w(t) 
rnx + ex + -.a.--'- = 

O" O" 
(5. 46) 

It is assumed that the solution x and its derivative dx/ dt are 

given in terms of the amplitude a and the phase 0 by equations (4, 27)

and (4. 28). 
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Before any further application of the general analysis pre­

sented in section 4. 3 to the non-linear system (5. 46), an equivalent 

stiffness and damping of the hysteretic element h('f, '±') must be 

determined. For this purpose the distributed element model dis­

cussed in reference [39] will be used. 

For the development of the distributed element model for the 

hysteretic system it is assumed that the system is composed of a 

series of Jenkin' s elements. Each Jenkin I s element consists of a 

linear spring with stiffness k/N in series with a Coulomb damper 

which has a maximum allowable force f::</N, where N is the total 
l 

number of elements, Clearly, if the loading of the hysteretic sys-

tem is such that the force on each element does not exceed the 

corresponding maximum allowable force f.* /N, the system behaves1 

linearly with stiffness. k. If the load on any of the Jenkin' s 

elements exceeds the corresponding maximum value £.* /N the whole1 

system behaves non-linearly. 

In reference [ 39] it is shown that if the total number of 

elements N becomes very large, it is no longer necessary to know 

the value of the yield force for each. particular member but only 

the relative occurrence or distribution of the individual yield 

forces. In this case the hysteretic system will have a tota.l "yield 

force" given by the expression 

(5. 47) 

, >:< _,_ 

where cp(f )df"' is the fraction of the total number of elements having 
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f:C :,;; f. :,;; £* + di<. Typical force-deflection loops of a hysteretic sys-1 

tern are shown in Figure 5. 9. 

In reference [ 39] it is claimed that almost any continuous 

function cp(f':<) could be used for the herein discussed model, pro­

vided that the quantity fy defined by equation (5. 4 7) is finite. For 

the purpose of the present analysis it will be assumed that the 

distribution function cp(f':<) is of the form shown in Figure 5. 10. 

The distribution function having been selected, the equivalent 

linear stiffness and damping of the hysteretic system can be deter­

mined by direct application of the appropriate formulae given in 

reference [39]. Specifically, the equivalent damping c:{a) and 

the equivalent stiffness k,:< (a) may be calculated by the equationse 

and 

where 

sin ze *><i> (f*) di
" + f 00 <i>(f" )df''] 

ko-a 

(5. 48) 

(5. 49) 

(5.50) 

Substituting the distribution function cp(e) shown in Figure 5 .10 

in equations (5. 49) and (5. 50) and after some tedious algebraic 

manipulations, it is found 

(5. 5 1) 
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Figure 5. 9. Yielding Hysteretic System 

I 
f*y 

fy = ; fy 

___ ....., _____ _ 

t* 

Figure 5. 10. Distribution Function for a Hysteretic Model 
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and 

(5. 5 2) 

It is also found that 

(5.53) 

The equivalent linear system for the hysteretic system (5. 46) is 

mx. + (c + C *)x + k ,:,x = 
w(t)

e e o-
(5. 54) 

It will be assumed that the spectral density S of the excitation 

and the quantities k and fy of the hysteretic system are such that

ko-/£;' << l . (5. 55) 

Physically, assumption (5.55) implies that the system is far from the 

failure state. Define the non-linearity parameter e and the sym-

bols Ce and ke as 

and 

k 2 ce = 6nwn 
a

(5. 56) 

(5.57) 

(5 . 5 8) 

Using the definitions expressed by equations (5.56), (5.57) and (5.58)

the system (5. 46) may be rewritten as 
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(5. 5 9) 

The natural angular frequency of the equivalent linear system (5. 54)

is 

(5. 60) 

The stochastic differential equation governing the amplitude of 

the response of system (5. 59) is given by the general formula 

( 4. 3 7). This gives 

a = - 2m a - E:
k/6nw n

2m 
nS + (nS)2 

Tl(t) 2 2 2. W mo- 'I 2am w a- n 
(5. 61) 

where 'T](t) is a delta correlated random process with zero mean. 

Introducing the ratio of critical damping , and substituting equation 

(5.60) in equation (5.61) yields 

C (a) e 
e-- a + Zm 

5. 2. 3 Fokker-Planck Equation

(5. 6 2) 

The Fokker-Planck equation associated with equation (5. 62) is 

ap 
:a 

{+wo(a -= 
at 

+ 
a { 

(;wo
aa l 5 

- Mea 

1 
+ 

ce(a)
] }E:-- a 5 2 ) 2m 

a ( 1 
-Mea ) 

2 
£.E.+ 1 a

( aa 2<:wop aa l

1 
)} 5 2 

- M ea 

(5.63) 
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A first order non- stationary solution of equation (5. 63) will be 

determined. This solution will be valid for those values of a such 

that 

5 2 
64 ea << 1 . (5. 64) 

Because of the assumption expressed by equation (5. 64), the following 

first order approximations can be made 

C (a) 
WOe (5.65) e 2m = e 12TT

and 

1 1 5 2 (5.66) 5 2 = + 
64 

ea 
l -

64 
ea 

By virtue of approximations expressed by equations (5. 65) and 

(5. 66) the Fokker-Planck equation (5. 63) can be written as 

wo a z 
+ e 12n aa (a p) •

_E.._ (az op) _ a(ap)] + e wo _E.._ (a3 ) aa aa aa 12n aa p 

] 
� 

2 
) a p 5 a a dp - -(-) + T7bW e ---aa a o4 0 aa aa 

(5. 6 7) 

Herein, it is assumed that the boundary and initial conditions 

expressed by equations (4. 46) and (4. 56) hold for the function p(a, t). 

For the purpose of determining a first order solution of equation (5, 67) 



-121-

the coefficients p and � k given by formulae ( 4. 7 2) and ( 4. 7 2a) m m, 

must be calculated. To achieve this, the form of the general 

expression H introduced in section (4. 2) by equation (4. 66) must m 

be determined for the present problem. Considering equation (5. 66) 

it is readily verified that 

5 d ( 2 d.Am) H = - -6 ,w - a --m 4 0 da da 
WO d 3 - - - (a A } 12rr da m m = 0, ... {5. 68) 

Comparing equation (5. 68) with equation (5. 16) it is noticed that 

the first term of the sum on the right hand side of equation (5. 68) 

can be obtained by multiplying the right hand side of equation (5. 16) 

by -5/48. Therefore, the contributions p * and � * k of the term m m, 

- i
4 

cw0 :
a (a 2 Am) to the coefficients pm and �m, k can be readily

determined by multiplying the right hand sides of equations (5. 19), 

(5.20), (5.21), (5.22) and (5.23) by -5/48. In this manner it is 

found that 

::',< 5 
�m,m+l = - b4 (m+l)(4m+3) 

>:< 5 
�m, m+Z = b4 (m+ l)(m+Z) 

m = 0, ... 

m = 0, ... 

m = 0, ... 

k
f m+Z, m+l, m 

m = 0, ...

(5. 69) 

(5. 70) 

(5. 71) 

(5. 72) 

(5. 73) 

The second term of the sum of the right hand side of equation 

(5.68) is 



-122-

H m (5. 7 4)

Using formula (B25) for the derivative dAn/da, equation (5. 74) can

further bz manipulated to yield

(5. 75)

Next the coefficients p and j k associated with the function
m m, 

H will be determined. Using the general formula (4. 72) and them 

relations (B 13) and (B 14) it is found that

=f 
H A m m  da =A

O 

m = 0, ... (5. 76)

Applying the general formula (4. 72a) to the present problem and

using relations (Bl3), B( l4) and (BlS) yields

B =m,m+2 

�m,m+l =

I 
- 12nC (m+ l)(m+2)

I
= bnf (m+l)(3m+2) m = 0, ...

�m,m-1 = A _\ I m m-1 0

H A m m-1 da =A
O 

1 
- -r-::-m (m-1)one 

(5. 77)

(5.78)

(5. 79)
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= 0 k / m+Z,m+l ,m,m-1 (5. 80) 

Using herein the general formulae (4. 80) yields 

1= - 4n, 
m(m-1)

m = 0, ... (5. 81) 

The coefficients p ,:, -p i=i * and r:i k being calculated,m' m' 1-'m, k' 1-'m, 

the fir st order solution of equation (5. 64) is given by equation 

(4. 73), where 

::il'( 

pm = 

pm + pm m = 0, ... 

and 

Pm,k = �* + �m k m=O,.o. m,k ,

5. 2. 4 Discussion

(5. 82) 

(5. 83) 

Expression (4. 73) was used for the numerical computation of 

the normalized by CT non-stationary mean value E(a) of the ampli­

tude of the response of the non-linear hysteretic system (5. 45). 

The discussion presented in part (5. 1. 4) concerning the actual 

implementation of the numerical calculations related to the Duffing 

oscillator, covers the case of the hysteretic system (5. 45) as well. 

The results of the numerical computations are shown in 

Figure 5. 11 for various values of the non-linearity parameter 

ka-/f':'. The value of the ratio of critical viscous damping wasy 

taken to be 
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' = 0.04 • (5.83) 

From Figure 5. 11 it is seen that the higher the non-linearity 

parameter, the smaller the m_ean-value of the amplitude of the 

response of the hysteretic system, and the faster a steady-state 

value is reached. These observations may be interpreted in the 

context of the physical meaning of the equivalent linear stiffness 

and viscous damping of the model for the hysteretic system. 

From equation (5. 5 2) it is seen that the hysteretic system 

represents a softening type non-linearity. This means that the 

stiffness of the system becomes weaker as the non-linear para­

meter kcr/f ':< is increased. This characteristic of the model, con-y 

side red independent! y of any other effects, would imply an increase 

in the amplitude of the response as the parameter ka/f isy 

increased. It can easily be verified from equation (5. 51) that the 

equivalent viscous damping also increases as ko-/fy increases.

This effect tends to cause a decrease in the response amplitude 

with increasing value of the nonlinearity parameter. Therefore, 

the softening of the stiffness is counteracted by an increase in the 

energy dissipation as the value of the non-linearity parameter 

increases. 

The softening-spring effect and the energy dissipation due to 

yielding have been discussed in references [ 33 J and [ 35J in the 

context of the hysteretic response of structures to earthquakes. 

The same effect has been discussed in reference [ 36] in the con­

text of the stationary response of a bilinear hysteretic system. In 



-126-

that study, it has been found by electronic-analog techniques that 

for large values of the non-linearity parameter ko/fy the softening­

spring effect dominates and the overall response is increased. 

This trend of the response of a hysteretic system as the non­

linearity effect becomes large cannot be examined by the model 

presented herein. This is due to the fact that formulae (5. 51) and 

(5. 5 2) providing the equivalent linear stiffness and viscous damping 

of the hysteretic system are valid, according to reference [39 J, 

only for small values of the non-linearity parameter ka-/fy.

For the range of values of the parameter ko-/fy considered

in the present study, data on the stationary response of a bilinear 

hysteretic system [36 J indicate that the energy dissipation due to 

yielding dominates the spring- softening effect. Hence, the overall 

response of the system decreases with increasing ko-/fy. This

experimental evidence supports the trend predicted by the 

theoretical results presented herein. 

The domination of the energy dissipation due to yielding, 

for small values of the non-linearity parameter, may also be a 

plausible explanation of the observed faster rise time as the para­

meter ko/fy is increased. This effect of the non-linearity para­

meter on the rise time of a hysteretic system has also been 

noticed during simulation studies of the non-stationary response 

of a bilinear hysteretic system excited by a Gaussian white process 

[37]. 

According to the preceding analysis the trend of the theore­

tical solution shown in Figure 5. 11 agrees with the available 
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experimental results in that it predicts the same general behavior 

of the hysteretic system for small values of the non-linearity para­

meter ka-/fy.

It appears that there are no theoretical or experimental 

investigations which can be compared directly with the results of 

the present study. This is due to the fact that to date very lin1ited 

research has been performed towards the determination of the 

amplitude of the non-stationary response of a non-linear system 

subjected to random excitation. In reference [38 J Monte Carlo 

simulation was used to generate the statistics of the maximum of 

the non-stationary response of a bilinear hysteretic system excited 

by a Gaussian white process. Unfortunately, besides the fact that 

a different model for the hysteretic system was used, rather large 

values were assigned to the non-linearity parameter of the problem. 

Consequently, there is no meaningful way to compare quantitatively 

the results of the simulation study with the results of the present 

study which were derived by assuming small values for the non­

linearity parameter ko-/fy-
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VI. Concluding Remarks

Due to the fact that rather detailed summaries have been

given at the end of each of the main sections of the preceding 

chapters, the goal of this chapter will be a critical evaluation of 

the potential of the generalized equivalent linearization method. 

Only a general synopsis of the work presented in the preceding 

pages will be included herein. 

In Chapter II a general method for determining an approxi­

mate solution of a multi-degree-of-freedom non-linear dynamical 

system is discussed. The principle of the method is the approxi­

mation of the exact solution of the non-linear system by the solu­

tion of a mathematically tractable equivalent linear system which 

is as close to the original as possible. The last requirement is 

satisfied in Chapter II by minimizing an average of the Euclidean 

norm of the difference between the linear and the equivalent linear 

system. It is understood that different criteria will result in 

different equivalent linear systems. Consequently, the determination 

of the best criterion must be subject to further investigation. 

From the analysis performed in Chapter II it is seen that 

the elements of the equivalent linear system depend on the identi­

fication parameters of the members of the class of approximate 

solutions. In that sense, it is inherently assumed in the formula­

tion of the method, that the approximate solution belongs to a class 

of functions or processes each member of which may be identified 

by a relatively small number of parameters. This is true for 

example for the classes of harmonic functions, Gaussian and 
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narrow-band random processes. However, this is not the general 

rule. For example, to date it has not been possible to approximate 

properly the transient solution of a multi-degree-of-freedom non­

linear system by a finite number of parameters. Therefore, it 

appears that investigations directed toward broadening the class of 

functions identifiable by a small number of parameters is in order. 

The problem of obtaining a theoretical estimation of the 

accuracy of the method is very formidable o For a specific problem 

it appears more realistic to compare the approximate solutions 

determined by the method with an '' exact" solution computed 

numerically. 

In Chapter III the method is considered in the context of the 

stationary response of a multi-degree-of-freedom system excited 

by a harmonic monofrequency or by a stationary Gaussian random 

vector. The identification parameters of the approximate solution 

of the harmonically excited system are the amplitudes and the 

,phases of each component of the solution o Ultimately, non-linear 

algebraic equations for the determination of the amplitudes and the 

phases of the response are generated by the method of equivalent 

linearization. Clearly, if all of the components of the forcing 

function were not oscillating at the same frequency, the components 

of the steady-state response would no longer exhibit monofrequen cy 

harmonic behavior described by an amplitude and a phase. This 

note emphasizes the dependence of the applicability of the method 

on the form of the approximation solutions which can be postulated 

for a specific class of problems. 
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The elements of the covariance matrix are taken as the 

identification parameters of the solution of the multi-degree-of­

freedom non-linear system subjected to Gaussian random excitation. 

Ultimately, non-linear algebraic equations are derived for the 

determination of these elements by applying the generalized method 

of equivalent linearization. 

It is interesting to note that the method of equivalent lineari­

zation cannot be applied to multi-degree-of-freedom hysteretic 

systems excited by a Gaussian excitation. This is due to the fact that 

to date it has not been possible to postulate an approximate solu­

tion form which is on the one hand mathematically tractable and 

on the other hand accounts for the complexities of the hysteretic 

system. 

Study of the harmonic and the Gaussian response of a multi­

degree-of-freedom non-linear system has indicated that the existence 

and the uniqueness of an equivalent linear system depend on the 

properties of the class of approximate solutions. In addition, in 

Chapter III it was shown that the properties of the class of approxi­

mate solutions can occasionally be used for a more direct deter­

mination of the equivalent linear system. 

In Chapter IV the present method is applied to the study of 

the transient response of a lightly damped and weakly non-linear 

oscillator subjected to a harmonic monofrequency or to a Gaussian 

white process. The key to the development is the assumption that 

the response is pseudo-sinusoidal with slowly varying amplitude 

and phase. This assumption allows the construction of an 



equivalent linear system which in turn may be used to derive a 

first-order differential equation describing the response amplitude 

as a function of time. It is thought that the interpretation of this 

equation in terms of the energy of the equivalent linear oscillator 

contributes to a better understanding of the engineering aspects of 

the problem. The results of the present investigation indicate that 

no conceptual difficulties should be anticipated in any future 

extension of the energy method to problems involving non-white 

and non-stationary excitations. 

The examples studied in Chapter VI serve to indicate the 

qualitative and quantitative reliability of the method. The qualitative 

results for both the Duffing oscillator and the Hysteretic System 

are in agreement with trends that would be expected based on 

common engineering considerations O In addition, the numerical 

results for the Duffing oscillator are in agreement with corres­

ponding results generated by a Monte Carlo simulation study. This 

simulation study emphasizes the first-order nature of the non­

stationary solution, while demonstrating the applicability of the 

stationary solution to dynamical systems with quite severe non­

linearitieso 
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Appendix A 

Simplified Equations for the Amplitude and the Phase 
of the Response of a Randomly Excited Linear Oscillator 

Reference [ 56] has been used extensively for this appendix. 

Consider the equation of motion of a linear oscillator 

mx + ex + kx = w(t) 

where w(t) is a stationary wide band random process with 

E[w(t)] = 0

E[ w(t) w(t+T) J = K(T) 

and spectral density S(w) given by 

S(w) = 
-iwt

K(T)e d-r . 

(Al) 

(A2) 

(A3) 

(A4) 

The natural angular velocity wn and the ratio of critical damping C

are given by 

and 

and 

2 k 
w = 

n m 

C 

m 

The variables a and 9 are introduced as 

(AS) 

(A6) 

(A?) 



-138-

x = -aw sin (w t + e) 
n n 

(AS) 

It is seen that transformations (A 7) and (AS) represent the relations 

which would hold for a sinusoidal wave and its derivative in terms 

of the amplitude a and the phase 8, Solving equations (A 7) and (AS), 

it is easily shown that 

and 

e 

Differentiating equation (A9) gives 

0 .. . xxxx+z
w n 

a 

Using equation (Al) the last equation can be rewritten as 

a = -[--½- x + w(t
�]� ,

mw mw n n 

A9) 

(AIO) 

(Al 1) 

(Al2) 

Because of transformation (AS), equation (Al2) can be put in the 

form 

a = C a sin2 (w t + 8) - w(t) sin (c.: t + 8)m n mw n n 
(A13) 
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Differentiating equation (Al4) it is seen that 

X 
--

w X 

de 
n 

9 = 
dt 

= 

l +

-

. 2 
X -

-z 
W X n 
. 2 

w 
n 

w n 

Using equation {Al), this equation may be written as 

{Al4) 

(A 15) 

Because of transformation (A 7), equation (A 15) can be put in the 

form 

8 = ---
mw n

sin {w t + 9) cos (w t + 6) -n n 
w(t) 

cos {w t + 0) 
maw n (Al6) 

At this stage, additional assumptions about the problem are 

made. It is assumed that the damping of the system and the spec­

tral density of the excitation are small. Mathematically these 

assumptions may be expressed as 

' << 1 (Al 7) 

and 

S = O(C) (Al8) 

It is noticed that the right-hand sides of equations (A 13) and 

(Al4) are periodic with respect to the variable e, hence a = O{C) and 

0 = 0 (C). Thus, a and 9 are slowly varying functions of t because 
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, is small; hence, they change very little during the time T = 

2rr/wn. Therefore, the quantities sin2 
(w t + 0), cos2 (w t + 0) and n n 

sin (w t + 0) cos (w t + 0) may be approximated by their averagesn n 

over the interval [t,t+T]. Doing so, equations (A13) and (Al6) can 

be rewritten as 

and 

C a = ---a
2m 

w(t) sin (w t + e)mw n 

e = 

n 

w(t) cos (w t +e) .maw n 
n 

Attention is now focused on the processes 

and 

$ 1 (t)

-w(t) sin (w t + 9)n 

= -w(t) cos {w t + 0) . n 

(Al9) 

(A20) 

(A2 1) 

(A2 2) 

The analysis given in reference [56 J will serve as a guide. More 

rigorous discussions may be found in references [57 J and [29]. 

Obviously the phase e is correlated with the values of the random 

function w(t). This fact complicates in general the calculation of 

the statistical parameters of 111 (t) and s 1 (t). However, w(t) is a

wide band random process; therefore, its autocorrelation function 

K(T) is non-zero for values of T only very near to zero. In fact 

if w(t) is white noise, it is delta-correlated. Therefore, the values 

of a and e which correspond to slightly shifted times t ± �t will be 

effectively statistically independent of w(t), and hence it is possible 
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to perform an ensemble average over w(t) and 0 _6t separately.

The symbol e _6t is defined as

= 0 - w 6tn 

Equations (A2 l) and (A22) can be written as 

and 

s l (t) = -w(t) cos (wnt + 0 -At+ 60)

Since 6t is assumed to be small 

cos 60 � 1 

and 

sin 60 � 60 

(A23) 

(A24) 

(A25) 

(A26) 

(A27) 

Therefore equations (A25) and (A26) can be rewritten respectively 

as 

(A28) 

and 

(A29) 
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Because of relation (A2) and the statistical independence of 

w(t) and 8 -�t• the following expressions for the expectations of the

processes �l and s1 may be derived 

(A3O) 

and 

(A3 l) 

Since the amplitude a(t) and the phase 0 (t) are slowly varying 

processes, it can be assumed that they do not manage to change 

appreciably during the small time interval �t. Therefore, it is 

possible to replace e -�t by 0 in {A3O) and (A3 l). In that case,

equations (A3O) and (A3 l) can be rewritten as 

and 

-cos (w t + 0) E(w�e)n 

Next, equation (A2O) for the phase is integrated giving 

which implies 

1 
=---

mw n 

= - -- .6.t w(t + r)
I 

--'----=-- cos [w (t+r)+8Jdr 

-f:\t
a n 

(A32) 

(A33) 

(A34) 



E(w.6.0) = 

1 
2mw n
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J
l>t 

E [ 
w(t):(t + T) cos [wn(t + ,) + 0 J] dT

-.6. t
(A35) 

Once again exploiting the fact that a(t) and 9 (t) differ only slightly 

from the values a±.6.t and 9 ±.6.t which are effectively independent of

w(t) and w(t + 'T), equation (A35) can be rewritten as 

E(w.6.0) = 2mw an 
E[w(t)w(t+-r)] cos [ w (t+T)+e] dT .n (A36) 

The limits of integration in equation (A36) may be extended to ± co 

because the process w(t) being wide band, the autocorrelation func­

tion E[w(t)w(t+T)] is essentially zero for ]-rl > \.6.t\. According 

to this approximation, equation (A36) can be rewritten as 

E(w.69) = 1 
2mw an 

co 

- co
E[w(t)w(t+-r)] cos [w (t+T)+9 ]d-r .n 

Using expression (A37) for E(w.69) in equations (A32) and (A33) 

gives 

00 

E(T] 1) 1
f E[w(t)w(t + T)] cos [w (t + T) + 9] cos (w t + e )dT= 

2mw a n n 
- 00 

and 

1 
00 

E(s 1) = 2mw a f E[w(t)w(t + 'T )] cos [w (t + 'T) + e] sin (w t + e )dTn n n 
-oo 

(A37) 

(A38) 

(A39) 
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It will be noted that 

cos� {t+T)+e]cos{w t+e) = ½[cos[Z{w t+e)+w T] + cos w T}n n n n n (A40) 

and 

cos[w {t+T)te] sin{w t+e) = ½{sin[Z w (t+T)+e] - sin w T} .n n n n (A41) 

Substituting the non-oscillatory terms of expressions {A40) and {A41) 

respectively in equations (A38) and {A39) yields [56] 

co 

E ('fl 1}
1 

I E[ w(t + T )w(t) J cos w T dT (A42) 4mw a n n 
-CO 

and 

co 

E(s; 1) 
1 

J E[w(t + T)w(t)J sin w ,-dT (A43) = 4mw a n n 
_co 

Since the process w(t) is stationary, the autocorrelation func­

tion is even [ 4 J. Hence, equations (A42) and (A43) can be 

rewritten as 

and 

1 
Zmw an 

E[ w(t + T)w(t)] cos w ,-dTn (A44) 

(A45) 

In terms of the spectral density S(w), equation (A44) can be expressed 

as [ 4 ] 
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(A46)

Next, the autocorrelation functions of the zero mean processes

• Tl = 111 - E ('111)

and

are determined. Since in each of equations (A28) and (A29) the

presence of the second term on the right affects only the mean

values, equations (A47) and (A48) can be written as

and

(A47)

(A48)

(A49)

(A50) 

According to the preceding analysis, the random excitation w{t) acts

as if it were uncorrelated with e -�t; therefore, the actual auto­

correlation function can be replaced by one shaped like a delta

function [ 56 J. That is

ErT)(t}1](t + 'f)] .... 6(1") / E[1){t)1)(t + 1")] d'f . (A5 l} 

-co 

The intensity coefficient is chosen to be E[ T] (t)'T) (t + 'f)] so that

integration with respect to 'f of both sides of equation (AS l) gives

the same result. Taking account of equation (A49} it is found that
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co co 

E['ll(t)'fl(t+ T}]dt 
= f E[w(t)w(t+T)] sin (w t+e )  sin[w (t+T) +e]dT 

n n 

-co 

co 

= 
½ /

E[w(t)w(t+ T)] cos w TdT n 

+ oscillatory terms . (AS2) 

Neglecting the oscillatory terms, equation (A52) can be rewritten 

in terms of the spectral density S(w ) as n 

/ E['fl(t)T](t + T)] dT = 
-CO 

TTS(w ) . n 

Similarly, the expression E[ s(t);(t + T)] can be replaced as 

E[s(t}s(t + T)J _. o(T) / E[�(t)s(t + T)JdT. 

Using equation (A50) yields 

0:, co 

-co 

(AS3) 

(A54) 

J E[; (t)s (t + T)] = f E[w(t)w(t + T )J cos (wnt + e) cos [wn(t + T) + e] dT 
-oo -co 

- 1 

- 2

-co 

E[w(t)w(t+T)] cos (w T)dT n 

+ oscillatory terms (ASS) 

Neglecting the oscillatory terms, equation (A55) can be rewritten 

as 
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0:, 

(A56) 

According to the preceding analysis, equations (A 19) and (AZO) 

can be simplified as 

and 

where 

• C a = - -aZm 

rrS (w ) 
, n 

T 2 2 +Zam w 

[ rrS(w ) J2 
e = n 

amw n

[ rrS(w ) ]2
n 

mw Tlz (t) (AS?) 
n 

(A58) 

A(59) 

(A60) 

(A6 l) 

A(62) 

It is interesting to notice that if the zero mean value process 

Tl 2 (t) is neglected in (AS 7), the remaining part simply expresses the

power balance of the system. Specifically, the rate of change 
2 . 

of the energy per unit mass of the system w
n 

aa, equals the balance 

of the average power per unit mass -(c/2m)a2,} dissipated through then 

damping mechanism plus the average power per unit mass [ 58] 

rrS(w )/m2 imparted to the system by the excitation w(t).n 
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The most important feature of the preceding simplification 

procedure is that equation (AS 7) governing the amplitude a(t) 

becomes uncoupled with e.
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Appendix B 

Some Properties of a Class of Modified 
Laguerre Polynomials 

The eigenvalues :>.. n and the eigenfunctions An of the partial

differential equation 

ap a 1 �at = 
aa[µ(a-a)] + µ 

�

are given by [5 2 ] 

µ. > 0 

n = O,l, ... 

and 

A 1 
= n! 

where 

Ln(
a:) = e 

- a2/z 

-a2/2 (a 
2

) ae L -
n 2 

d

2

n

)

n 
[(\z re-aZ/z]

d(\

n=O,l, ... 

n=0,1, ... 

is the Laguerre polynomial of order n. When n = 0

2 -a /2 
= ae 

Therefore, relation (B3) can be rewritten as 

A = _!_ A L (a 2
)n n! 0 n 2 

According to reference [5 9 J 

n = O,l, ... 

(B 1) 

(B2) 

(B3) 

(B4) 

(BS) 

(B6) 
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n�m! o mn (B7) 

where o is the Knonecker delta symbol. Using relations (BS) mn 

and (B6), equation �B7) can be rewritten as 

0 

A A m n da =

Applying relation (BS) for m = 0 and n -/ 0 gives 

/ Amda = 0 

0 

m = 1, ... 

According to reference [59 J

= (2n+l _ a2

)L (a2

)-nL (a2

) 
2 n 2 n-1 2 

n=O,l, ... 

Because of relation (B6), equation (B 10) implies that 

n=0,1, .... 

(BS) 

(B9) 

(B 10) 

(B ll) 

Equation (B 11) is clearly very useful if numerical calculation 

of eigenfunctions A is desired. Multiplying both sides of equation n 

{Bl1) by ¾/A0 and integrating yields 
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0 
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co 

(Zn+l) J 
0 

(B 12) 

By virtue of the orthonormality relation (B8), equation (B 12) for 

k = n implies 

n=O,l, .. o 

for k = n+ 1 implies 

co 

0 

2 a A A +l 
� 

n da =
0 

-2(n+l) n=O,l, .. o 

and for k /. n+ 1, n- 1 implies 

J k /. n+ 1, n, n- 1 n=O,l, ... 

2 Multiplying both sides of relation (B 11) by a �/ A0 and

integrating yields 

(B13) 

(Bl4) 

(B 15) 



00 

(n+l) f 
0
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(Zn+l) J 
'o

- n I (B 16)

Applying relation (B16) fork =n and using relations (B13) and (B14)

gives

2 -Z(n+l) = 2(2n+I)2 
- ½ J

0 

2 
+ Zn . (B 17) 

After calculational manipulations equation (Bl 7) can be rewritten

as

00 

n=O,l, .. , {B 18) 
0

Applying relation (Bl 6) £or k = n+l and using relations (Bl 3), (Bl 4)

and (B 15) yields

2(n+l)(2n+3) = -2(2n+ l)(n+ 1) - ½ /
0 

a4A A n n+l d A a
0 

(B 19) 

After calculational manipulations equation {B 19) can be rewritten

as



co 

0 

4 a A A 
+l 

� 
n da =

0 
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2 -16(n+l} n=O,l, ... (B20) 

Applying relation (B 16) for k = n+2 and using relations (B 14) and 

(B 15) gives

co 

- 2(n+2)(n+ 1)

4 a A A +
2 n n d A a 

0 

(B2 l} 

After calculational manipulations equation (B21) can be rewritten 

as

co 4 a A A +2 
� 

n da = 
0 

4(n+2)(n+ 1) n=O, l, ... (B22) 

Applying relation (Bl6) fork/ n+2,n+l,n,n-l,n-2 and using equa­

tion (Bl5) gives

0 

where 

n=O,l, ... 

k f. n+2, n+l, n, n-1, n-2 . 

(B23) 

Clearly, the above procedure could be followed for the cal­

culation of any integral of the form 

I
s ,k,n = J 

0 

a2sA A 
n k d 

A 
a 

0 

s =O,I, ... (B24) 
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For the solution of the example problems which are included in 

this thesis it was necessary to calculate I k for s = 0 and s = 1. 
s, , n 

Next, the derivative dA /da will be expressed in terms ofn 

An+ 1 
and An. Differentiating equation (B3) gives

n 
da 

Using equation (B3), equation (B25) can be rewritten as 

dA n n = 
da a n 

1 -a2/z dLn 
+ -ae --

n! da 

According to reference [ 60] 

Clearly, 

dL n
da = a 

dL n

Therefore equation (B27) can be rewritten as 

1 n Zn n n-1 dL 
[

L L 
] 

n! da = 
a n! - (n-1) !

(B25) 

(B26) 

(B27) 

(B28) 

(B29) 

By virtue of equations (B3) and (B29), relation (B26) can be put in 

the form 



dA 
n = 

cia" 
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aA + Zn (A - A )n a n n-1 (E30) 

Using the recursive formula, equation (Ell), the last equation can 

be rewritten as 

dA 
n

da = 1 - [2(n+l)A +l - (2n+l)A ]a n n n =O,l, ... 

Another useful form of equation (El l) is 

( +l)(A A ) = n(A - A 1) - � A n n+ 1 - n n n- 2 n 

If relation (E32) is used repeatedly the following formula is 

obtained 

2n(A - A 1)n n-

This formula could be used to study the behavior of 

Next, consider the integral 

I = 
n,l aA dan 

This integral may also be expressed (E34) as 

aA dan 

2 (X) 

=�AI 2 n 0

r 
I: A. 
j=O J 

(E3 l) 

(B32) 

(E33) 

as r ... 00• 

(E34) 

(B35) 
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-156-

Hence, equation (B35) can be rewritten as 

= 0 . 

Upon using formula (B3 l) for the derivative dA / da in equationn 

(B37) gives 

1n+ 1, 1 = 
n-½ I
n+l n,l 

n=O,l , ... 

(B36) 

(B37) 

(B38) 

Relation (B38) can be used for recursive calculation of I . Forn 

n = 0 it is easily shown that 

= I 
0 

It can easily be proved that 

lim In 1 = 0
n-+co , 

JT 

Attention is now turned to the integral 

= f 
0 

2 a A da
n 

(B39) 

(B40) 

(B41) 
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Integrating both sides of equation (B 11) gives 

(n+ 1) = (Zn+ 1) A dan 

00 

- n /

0 

A 1da ,n-

Because of (B9), equation (B42) implies that

and 

I = O 
n,2 

n =2,3, ... 

00 

1/ 
2 

0 

2A a da 
n 

It is clear from the preceding analysis that the integral 

00 

I = j a sAndan, s s = 3, ... 

0 

(B42) 

(B43) 

{B44) 

(B45) 

{B46) 

may be calculated by the same techniques used for the calculations 

of the integrals I 1 and I 2.n, n, 
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