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ABSTRACT

This thesis performs a linear resolvent analysis (McKeon and Sharma, 2010), and a
novel quantitative non-linear analysis of the triadic interactions, to study the large-
scale structures in wall-bounded turbulence.

First, resolvent analysis is applied to a flow over spanwise periodic roughness, to
model the large-scale counter-rotating rolls. The experimental data (Wangsawijaya
et al., 2020) is utilized to examine both the predictive and data compression capabil-
ities of the resolvent. The improvements by the inclusion of an eddy viscosity and a
crude boundary geometry model are also demonstrated. Standard resolvent is able
to qualitatively predict the shape of the counter-rotating rolls. The inclusion of eddy
viscosity improves the quantitative predictions and combined with the boundary
geometry model is able to efficiently represent the data with small differences using
only a fraction of the degree of freedom.

Next, we developed a novel framework to quantitatively analyze the triadic non-linear
contributions in a turbulent channel. We incorporated the linear resolvent operator
to provide the missing link from energy transfer between modes to the effect on
the spectral turbulent kinetic energy. The coefficients highlight the importance
of interactions involving large-scale structures, for both the large and small-scale
forcing and response, providing a natural connection to the modeling assumptions of
the quasi-linear (QL) and generalized quasi-linear (GQL) analyses. Specifically, it
is revealed that QL and GQL are efficiently capturing important triadic interactions
in the flow, and the inclusion of small amounts of wavenumbers into the GQL
large-scale base flow quickly captures most of the important triadic interactions.

Finally, by performing spatio-temporal analyses of the triadic contributions to a
single mode, we demonstrated the spatio-temporal nature of the triadic interactions
and the effect of the resolvent operator. It is shown that the energetic triadic
interactions are concentrated in temporal frequencies around a plane where all
three wavespeeds are the same, allowing for a truncation of the important triadic
interactions. We also demonstrated the linear amplification mechanism of the
resolvent, allowing certain triadic interactions to generate a stronger response even
with a weak forcing, underscoring the different perspectives offered by the inclusion
of the linear resolvent operator into the analyses of the non-linear triadic interactions.
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C h a p t e r 1

INTRODUCTION

From running water faucets to sailing cargo ships and soaring airplanes, from the
geological movements that produce weather on Earth to the astrological formation of
galaxies, turbulence is everywhere. In many engineering applications, turbulence is
often associated with an increase in friction drag on vehicle surfaces, which accounts
for more than 50% of the total drag force on modern airliners and even more for large
oil tankers and submarines (Marusic et al., 2010a). It is also estimated that about 5%
of the CO2 produced by mankind is the result of wall-bounded turbulence (Jiménez,
2013). However, despite more than a century of research, turbulence remains a
challenging problem for both engineers and scientists.

At the core of the mathematical descriptions of fluid motions is the Navier-Stokes
equations (NSE), which govern the evolution of fluid flows through the conservation
of mass and momentum. In the case of incompressible flows of interest in this thesis,
the Reynolds number 𝑅𝑒, a non-dimensional number, parameterizes the NSE. The
Reynolds number, which is the ratio between inertial to viscous forces, is the key
parameter that separates laminar and turbulent flow. At low Reynolds numbers,
the flow remains laminar, and begins to transition to turbulence when the Reynolds
number exceeds a critical value. The friction Reynolds number, 𝑅𝑒𝜏, describes the
ratio between the largest length scales in the flow to the smallest length scales of
the flow and is on the order of 104 − 106 for flows in industrial applications and
environmental/atmospheric flows. This huge separation between the smallest and
largest length scales in the flow is extremely challenging for experimental measure-
ments, requiring both a huge facility and accurate small-scale measurements, and
even more so for computational studies. Direct numerical simulations (DNS), where
the smallest length scales in the flow are resolved, require computational resources
that scale with 𝑅𝑒4

𝜏. Wall-resolved large eddy simulations (LES), where the effect
of unresolved small scales on the large scales are modeled, are estimated to scale
as 𝑅𝑒1.8

𝜏 and wall-modeled LES to scale as 𝑅𝑒0.2
𝜏 (Smits and Marusic, 2013). In

addition to the computation costs, the amount of data generated from high Reynolds
number simulations also becomes a burden for storage, transfer, and analysis. The
state-of-the-art DNS are performed with 𝑅𝑒𝜏 ≈ 5200 for a channel flow (Lee and
Moser, 2015), still lower than the 𝑅𝑒𝜏 of typical industrial relevant flows. More
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geometrically challenging studies such as boundary layers are often limited to even
lower Reynolds numbers.

In addition, the complexities in the boundary conditions beyond those of the canon-
ical smooth wall no-slip and no-penetration conditions introduce additional chal-
lenges. For example, surface features are known to have the capability of altering
the near-wall turbulent flow and therefore changing the turbulent drag significantly,
and are of great industrial interest. Schultz et al. (2011) studied the US Navy Arleigh
Burke-class destroyers and showed that the biofouling level typically found on the
hull resulted in an increase of 10.3% in fuel consumption, equating approximately
$92M per year of extra fuel. On the other hand, numerous studies on surface fea-
tures have shown that well-designed geometries such as riblets have the potential
to reduce turbulent drag. The experimental work by Bechert et al. (1997) showed
that with carefully optimized dimensions, simple blade riblets achieved a 9.9% drag
reduction. If this drag reduction can be applied to the shipping industry, the marine
bunkers alone can result in a saving of $8 billion in 2018 and a significant reduction
in carbon emission (World Oil Outlook 2018). In attempts to control the turbulence
or reduce the drag, recent studies have also utilized a number of different boundary
conditions, such as compliant walls (Luhar et al., 2015; Wang et al., 2020; Huynh
et al., 2021), opposition control (Luhar et al., 2014; Toedtli et al., 2019; Toedtli et al.,
2020), and spanwise oscillation of the surface (Marusic et al., 2021). These different
types of boundary conditions all increase the challenges in both experimental and
numerical studies.

However, turbulence, despite appearing to be highly randomized at first glance, actu-
ally contains many robust and dominant structures upon detailed examination (Smits
et al., 2011). These structures, known as coherent structures, are dynamically im-
portant in wall-bounded turbulent flows (Marusic et al., 2010b; Jiménez, 2018). The
previously discussed challenges in high Reynolds number turbulence motivate the
need for extracting these coherent structures from the flow. These coherent struc-
tures can be extracted from available data using data-driven tools such as proper
orthogonal decomposition (POD), dynamic mode decomposition (DMD), or spec-
tral proper orthogonal decomposition (SPOD). POD modes are spatially coherent
structures that can optimally capture the flow energy, DMD modes are the approxi-
mate eigenmodes of the Koopman operator, and SPOD modes are coherent in both
space and time (Lumley, 1970; Schmid, 2010; Taira et al., 2017; Towne et al., 2018).
These data-driven methods are extremely useful in extracting structures from large
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amounts of data obtained from experiments or simulations, without using the gov-
erning equations (potentially unknown in other fields). In this thesis, however, we
will focus mainly on equation-driven methods, which have the advantage of requir-
ing much less data by utilizing the known governing equations. Specifically, we will
utilize the linear resolvent analysis (McKeon and Sharma, 2010), which requires
only a mean profile, and explore methods to enhance its capabilities through the
incorporation of some information about the non-linearity.

The beauty and complexity of turbulent fluid flow arise largely from the non-linear
convective terms in the NSE and these non-linear terms remain an essential and
challenging part of our understanding of turbulence. The most important role
of the non-linearity is the transfer of energy between the vast range of scales in
turbulence (Jiménez, 2012). Recent experimental studies on turbulence control by
Marusic et al. (2021) demonstrated that actuating the near wall small scales directly,
although capable of drag reduction, is unable to result in a net power saving due
to the high actuation power, while actuating the large scales results in a net power
saving. The large-scale actuation also leads to a broadband attenuation of turbulent
fluctuations, a result of the energy transfer through non-linear interactions. This is
just one example of the importance of the relatively less understood non-linearity
in turbulence and motivates the more detailed quantitative study of the non-linear
interactions in this thesis.

The goal of this thesis is to contribute to the advancement of modeling and under-
standing of turbulence in mainly two ways. First, we aim to extend the capabilities
of linear analysis by incorporating some non-linear modeling and also analyze the
predictive and data compression capabilities. Secondly, by analyzing the non-linear
interactions in turbulence, we aim to improve the understanding of the non-linear
mechanisms and provide a quantitative tool to characterize the importance of differ-
ent types of interactions. This will be useful in identifying improved modeling of
the non-linearity for future modeling and computational studies.

1.1 Linear Analysis
Although turbulence is a non-linear phenomenon, linear dynamics still play an
important role (Kim and Lim, 2000; Jiménez, 2013). Early works started with
linear stability theory, where the flow is linearized around a base flow. With
the assumption of infinitesimal perturbations around the base flow, the non-linear
terms can be neglected, and an eigenvalue problem can be derived to study the time-
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asymptotic stability of the perturbations (Schmid and Henningson, 2001). However,
linear stability theory fails to predict the correct critical Reynolds number in some
flows due to the linearized Navier-Stokes operator being non-normal. The non-
normal operator, having non-orthogonal eigenvectors, leads to possible transient
growth even when all eigenmodes are asymptotically stable, and can trigger non-
linear mechanisms leading to transition to turbulence (Trefethen et al., 1993; Schmid
and Henningson, 2001; Schmid and Brandt, 2014). Following the work on transient
growth, Farrell and Ioannou (1993), Jovanović and Bamieh (2005), and Hwang and
Cossu (2010) studied the Navier-Stokes operator under external stochastic forcing
for Couette, Poiseuille and turbulent channel flows. These studies analyzed the
properties of the linear resolvent operator, which is a transfer function that maps
the input forcing to the output velocity responses. McKeon and Sharma (2010)
extended the use of the resolvent analysis to turbulent flows and treated the non-
linear convective terms in the NSE as forcing to the linear operator.

1.1.1 Resolvent Analysis
The resolvent analysis of McKeon and Sharma (2010) utilizes a turbulent mean
profile for the construction of the linear operator and analyzes the turbulent pertur-
bations around this mean. Instead of studying external forcing, the non-linear terms
in the NSE are considered as endogenous forcing, forming a closed, self-sustaining
loop for the governing equations. The linear resolvent operator is a transfer function
between the non-linear forcing 𝒇 and the velocity responses 𝒖. The velocities then
feedback to the system through the non-linearity as illustrated in Figure 1.1.

Figure 1.1: Input-output framework of the resolvent analysis.

A singular value decomposition (SVD) is then performed on the resolvent operator to
obtain the left and right singular vectors, ranked by the singular values. The left and
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right singular vectors are the response and forcing modes that form spatio-temporal
basis functions for the response and forcing respectively, and the singular values
represent the linear energy amplification of the resolvent for each mode. Previous
studies have shown that the resolvent operator is low-rank at most of the energetic
regions of the flow, with the first (few) singular values being dominant. Therefore,
low-rank approximations using the first (few) response modes are able to qualitatively
reproduce key coherent structures and statistics of turbulent flows (McKeon and
Sharma, 2010; Moarref et al., 2013; Sharma et al., 2017; McKeon, 2017). For flows
with a single non-homogeneous direction such as pipes and channels, the resolvent
modes can be generated within seconds on a laptop and are efficient basis functions
for representing the dominant structures, and therefore are useful low-cost tools that
can provide predictive and reduced order modeling capabilities (McKeon, 2017).

1.1.2 Modeling Boundary Conditions in Resolvent Analysis
The resolvent analysis is originally developed for smooth wall boundary conditions
with no-slip and no-penetration at the wall in McKeon and Sharma (2010). Recent
studies have extended the analysis to more complex boundary conditions, for ex-
ample compliant walls, where a linearized relationship between the velocities and
pressure is utilized at the boundaries (Luhar et al., 2015; Huynh et al., 2021) or
opposition control, where the wall-normal velocity at the boundary is set to be neg-
atively proportional to the wall-normal velocity at a sensing location (Luhar et al.,
2014; Toedtli et al., 2019; Toedtli et al., 2020). Additionally, Chavarin and Luhar
(2020) introduced the volume penalization method (Khadra et al., 2000) into the
resolvent to study the drag-reducing capabilities of streamwise aligned riblets. In
this analysis, a permeability function is added to the resolvent. This permeability
function is set to infinite in the solid region, driving the velocities to 0, and set to 0
in the fluid region, recovering the original resolvent operator. This method enables
the resolvent to model general surface geometries and will be explored in Chapter 3
of this thesis.

1.1.3 Resolvent Analysis with Multiple Non-homogeneous Coordinates
Additionally, the resolvent analysis has been extended to more complex flow cases
where more than one non-homogeneous direction is present. For example, resolvent
analysis has been applied to turbulent jets (Schmidt et al., 2018; Towne et al., 2018;
Pickering et al., 2021), streamwise developing boundary layers (Sipp and Marquet,
2013; Rigas et al., 2021; Barthel et al., 2022), cavity flow (Gómez et al., 2016)
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and airfoils (Yeh and Taira, 2019). For these studies, in the non-homogeneous
directions, the flow is discretized in the physical domain instead of performing the
Fourier analysis. This results in a larger resolvent matrix and higher computation
costs, which will be further discussed in Chapter 2.

Of particular interest to this thesis is the work of Rosenberg and McKeon (2019a),
Chavarin and Luhar (2020) and Padovan et al. (2020). These studies enhanced
the linear analyses with additional non-linearity important to the problem being
studied. For example, when analyzing spanwise periodic exact coherent states
in (Rosenberg and McKeon, 2019a) or streamwise aligned, spanwise periodic riblets
in Chavarin and Luhar (2020), the authors utilized a base flow that is periodic
in the spanwise direction to extend the resolvent analysis with non-linearity that
couples different spanwise wavenumbers through this base flow. On the other hand,
Padovan et al. (2020) utilized a base flow that is periodically in time and introduced
the harmonic resolvent, which allows for non-linear cross-frequency interactions.
These studies differ from the aforementioned cases due to the periodicity in these
non-homogeneous directions, which still enables the Fourier transform to be applied.
In this thesis, a spanwise periodic resolvent will be utilized in Chapter 3 to study
flow over spanwise periodic rough surfaces.

1.1.4 Eddy Viscosity in Resolvent Analysis
The non-linearity in the resolvent analysis may be treated crudely as a broadband
input to analyze the properties of the linear operator or with more sophistication
such as a colored forcing arising from nonlinear modal interactions to address the
turbulence closure problem (McKeon, 2017). The eddy viscosity, a model for the
mean Reynolds stresses, is originally derived to provide closure for the Reynolds-
averaged Navier-Stokes equations (Reynolds and Tiederman, 1967). It introduces
extra viscosity to model the energy transfer from the large scales to the small
scales, where the majority of the viscous dissipation occurs, known as the energy
cascade (Jiménez, 2012). The eddy viscosity is a widely used method to include a
partial model for the nonlinear forcing in the linearized equations of the resolvent
formulation. Previous studies have demonstrated the improvements obtained by
the inclusion of eddy viscosity, especially alleviating the tendency in the standard
resolvent to over-predict the streamwise velocity while under-predicting spanwise
and wall-normal velocities, resulting in the generation of more efficient resolvent
basis functions (del Álamo and Jiménez, 2006; Hwang and Cossu, 2010; Huynh et
al., 2021; Fan et al., 2024; Illingworth et al., 2018; Symon et al., 2021; Morra et al.,
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2021). Recent studies have also developed an eddy viscosity model for turbulent
boundary layers (Fan et al., 2024), and utilized data-driven approaches to obtain
optimal eddy viscosity profiles (Pickering et al., 2021). In Chapter 3 of this thesis,
we utilize the resolvent with eddy viscosity to model a flow over spanwise periodic
roughness and evaluate the increase in predictive accuracy and data compression
capabilities.

1.2 Non-linearity in Turbulence
Non-linearity is essential in turbulence. In turbulence, energy is transferred from the
large scales to the small scales and dissipated at the small scales through viscosity.
This is known as the energy cascade (Jiménez, 2012) and relies on the non-linear
terms to transfer energy between different scales. However, the non-linear terms,
due to the quadratic nature and the presence of gradients are very difficult to char-
acterize until recent advancements in numerical simulations. Recent studies first
utilized statistics of the flow response to infer the forcing statistics. Moarref et al.
(2014) utilized an optimization algorithm to compute the forcing required to match
the DNS energy spectra, and McMullen et al. (2020) performed a similar convex
optimization but instead utilized the Orr-Sommerfeld and Squire decomposition
of the resolvent operator. Zare et al. (2017) showed that white-in-time (uncorre-
lated) forcing is insufficient for capturing the turbulent statistics, necessitating a
color-in-time forcing, obtained using optimization to complete the partially known
covariance matrix. More recent studies such as Morra et al. (2021) and Nogueira
et al. (2021) directly computed the forcing statistics in a turbulent channel flow
and turbulent Couette flow from simulation data. The authors were able to verify
the linear relationship between the velocity and forcing cross-spectral density. It
was also observed that due to the low-rank nature of the linear resolvent operator,
a low-rank approximation can capture the bulk of the response, while the linearly
optimal forcing modes are not representative of the true nonlinear forcing. Despite
recent advancements, the non-linearity is still relatively less understood, especially
the triadic interactions that are essential for the understanding of it.

1.2.1 Triadic Interactions
Under a classical Reynolds decomposition, i.e. the definition of turbulent fluctua-
tions relative to a temporally- or spatio-temporally-averaged mean field, the quadratic
non-linearities in the incompressible NSE manifest themselves as a convolution of
triadically compatible, i.e. resonant, interactions in the Fourier domain, linking a
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pair of interacting scales to nonlinearity at a third scale. Such interactions have
been studied in the spatial domain (e.g. Cheung and Zaki, 2014) and in the context
of spatial and spectral fluxes, for example, Marati et al. (2004). The coherence
between spatial scales can also be studied through the skewness of the velocity and
amplitude modulation of the small scales by large ones, e.g. Marusic et al. (2010a),
both of which can be expressed as a measure of the relative phase between modes
(Duvvuri and McKeon, 2015). Similarly, Schmidt (2020) proposed the bispectral
mode decomposition to study coherence in the velocity signals among spatial triads
and analyzed the interacting frequency components using maxima in the mode bis-
pectrum. Karban et al. (2023) have investigated the key triads underpinning minimal
Couette flow. Cho et al. (2018) investigated triadic interactions in the spanwise di-
rection and their contributions to spectral energy transfer in a turbulent channel flow,
and revealed that the dominant transfer mechanism is the classical energy cascade,
with evidence of inverse cascade near the wall.

However, previous studies on triadic interactions have mostly focused on the energy
transfer between scales without sufficient analysis linking the energy transfer to the
change of spectral turbulence kinetic energy (TKE) or the change in the velocity
response. In this thesis, we aim to include the linear resolvent operator into the
analysis of non-linear energy transfer, to quantitatively characterize the spatio-
temporal nature of the triadic interactions and their influence on the resulting velocity
response.

1.2.2 Quasi-linear and Generalized Quasi-linear Analysis
One approach to reduce the cost and complexity associated with the nonlinear terms
in the NSE is to employ a quasi-linear (QL) model, in which the resolved nonlinear
interactions are restricted to those either involving or resulting in the zero streamwise
wavenumber (streamwise constant modes) (Farrell and Ioannou, 2007). This results
in fully non-linear governing equations for the means flow (the streamwise constant
modes), where all triadic interactions are retained, and linear governing equations
for the perturbations, where the interactions between small-scale perturbations are
neglected (or modeled). The approach rests on the admitted interactions capturing
the key elements of the nonlinearity, while the remaining unresolved interactions are
neglected or approximated with a suitable model (Gayme et al., 2010; Farrell and
Ioannou, 2012). Self-sustaining simulations can be achieved with flow features that
resemble those obtained from direct numerical simulations (DNS), thus providing a
cost-efficient model alternative to DNS of the full NSE (Thomas et al., 2015; Farrell
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et al., 2016).

Generalized quasi-linear (GQL) analysis is an extension to QL: instead of only
including the streamwise constant mode in the base flow, the streamwise large-scales,
with streamwise wavenumber 𝑘𝑥 ≤ Λ, are included into the base flow. Similar to
QL, the governing equations are non-linear for the base flow (large scales), and are
linear for the perturbations (small scales) around the base flow. Compared to QL,
more modes in GQL are included in the base flow, and therefore undergo non-linear
interactions and constitute the resolved modes. Additionally, due to the presence
of non-zero wavenumbers in the base flow, the small scales are now capable of
spectrally non-local energy redistribution between each other through scattering
off non-zero wavenumbers in the base flow. GQL can also be interpreted as an
interpolation between QL (Λ = 0) and DNS (Λ → ∞), serving as a systematic
way of improving QL (Marston et al., 2016). Farrell and Ioannou (2007) and
Marston et al. (2016) demonstrated the success of GQL on zonal jets in atmospheric
turbulence, which are 2D jets with dominating large-scale modes. Hernández et al.
(2022a) demonstrated the success of GQL in the streamwise direction for a turbulent
channel flow at 𝑅𝑒𝜏 ≈ 1700, and later also in the spanwise direction (Hernández
et al., 2022b). The authors showed that QL in a turbulent channel flow is not
sufficient to capture the turbulent statistics while including a few modes in GQL
can rapidly improve the performance. However, the authors also demonstrated that
GQL requires more resolved wavenumbers in the spanwise direction to achieve
similar performance compared to the streamwise direction. Finally, the selection of
Λ in GQL currently largely relies on trials and comparisons with the baseline direct
numerical simulations (DNS) or large eddy simulations (LES), and could benefit
from a quantitative analysis of the important triadic interactions. To our knowledge,
the importance of the resolved nonlinear interactions relative to the unresolved
(neglected or modeled) ones in QL and GQL has not been fully quantified or
explained, which is one motivation for the present work.

1.3 Thesis Outline
In this thesis, we will focus on the linear and non-linear interactions involving large-
scale structures. In Chapter 2, we will start with the mathematical formulation for
the linear resolvent analysis that is central to the entire thesis, including a discussion
of the role of the non-linear forcing and models for it. Chapter 3 will explore the
linear resolvent analysis, including enhancements of eddy viscosity and a crude
boundary geometry model. The resolvent is applied to an experimental data set



10

over a spanwise periodic rough surface and the predictive and data compression
capabilities are studied, highlighting the improvements offered by the additional
models. Chapters 4 to 6 focus on the non-linear interactions. Chapter 4 presents the
simulation data, including details of the temporal filter, temporal Fourier analysis,
and verification of the data processing methods. Chapter 5 presents a novel method to
quantify the importance of different triadic interactions on the forcing and response.
The results highlight the importance of large-scale structures in triadic interactions
and provide a natural connection to the QL and GQL frameworks. Chapter 6
presents analyses of triadic interactions that contribute to a representative mode of
the near-wall cycle. The results demonstrate the spatio-temporal nature of the triadic
interactions and the effect of the linear resolvent operator. We conclude in Chapter 7
with a discussion of the significance of our results and directions for future research.
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C h a p t e r 2

RESOLVENT ANALYSIS AND NON-LINEAR INTERACTIONS
IN TURBULENCE

In this chapter, we start by formulating the resolvent analysis, followed by a dis-
cussion of the non-linear forcing in Fourier space, which highlights the triadic
interactions. Finally, we discuss methods that can be used to (partially) model the
non-linear forcing including the eddy viscosity model and the 2D resolvent.

2.1 Resolvent Formulation
We consider an incompressible, fully developed, turbulent channel or turbulent
boundary layer, with the streamwise, wall-normal and spanwise coordinates given
by 𝑥, 𝑦, 𝑧, and the corresponding velocity components 𝑢, 𝑣,𝑤, as shown in Figure 2.1.
Vectors 𝒙 = [𝑥, 𝑦, 𝑧] and 𝒖 = [𝑢, 𝑣, 𝑤] are the spatial coordinate and velocity vectors
receptively. Normalization of the coordinates and velocities are performed using
the outer scales: channel half height ℎ, channel centerline velocity𝑈𝐶𝐿 or boundary
layer thickness 𝛿98, and boundary layer free stream velocity 𝑈∞ unless otherwise
specified.

Figure 2.1: Sketch of a turbulent channel flow (left) and a turbulent boundary layer
(right), with the coordinate system and the spatio-temporal mean profile𝑈 (𝑦).

The flow field is then decomposed into a mean profile and the fluctuations around
the mean. For a fully developed channel flow studied in Chapters 4-6 with homoge-
neous streamwise and spanwise directions, the spatio-temporal mean profile 𝑈 (𝑦),
obtained by averaging in 𝑥, 𝑧, 𝑡 is a natural selection. On the other hand, for spatially
developing flows, previous studies have applied the global resolvent analysis to study
flows such as jets (Schmidt et al., 2018; Towne et al., 2018; Pickering et al., 2021),
streamwise developing boundary layers (Sipp and Marquet, 2013; Rigas et al., 2021;
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Barthel et al., 2022), cavity flow (Gómez et al., 2016), and airfoils (Yeh and Taira,
2019). In these studies, the streamwise developing flow is discretized in the physical
domain for both the streamwise direction and the wall normal direction (or radial
direction in the case of jets) and the streamwise developing mean profile is used.
In Chapter 3, a boundary layer is analyzed with the quasi-parallel flow assumption
applied in the streamwise direction by neglecting the streamwise development of
the flow, mainly due to the fact that experimental data is only available at a single
streamwise location.

A boundary layer with quasi-parallel assumption or a channel flow is decomposed
into the spatio-temporal mean profile 𝑈 (𝑦), averaged in 𝑥, 𝑧, 𝑡 and shown in Fig-
ure 2.1, and the perturbations 𝒖(𝑥, 𝑦, 𝑧, 𝑡) relative to the spatio-temporal mean. The
perturbation equations can then be obtained by subtracting the mean equations from
the full Navier-Stokes equations (NSE):

∇ · 𝒖 = 0, (2.1)
𝜕𝒖

𝜕𝑡
+ (𝒖 · ∇)𝑈 + (𝑈 · ∇)𝒖 = −∇𝑝 + 1

𝑅𝑒
∇2𝒖 + 𝒇 , (2.2)

where 𝑝 is the pressure fluctuations and 𝒇 is the non-linear forcing defined in
physical space as:

𝒇 (𝒙, 𝑡) = −𝒖(𝒙, 𝑡) · ∇𝒖(𝒙, 𝑡). (2.3)

The nonlinear forcing is a result of grouping all terms that are non-linear with respect
to the perturbations stemming from the non-linear convection term in the NSE. It
may be treated crudely as a broadband input to analyze the properties of the linear
operator or with more sophistication such as a data-driven forcing (Towne et al.,
2020) or an eddy viscosity to address the turbulence closure problem (Hwang and
Cossu, 2010; McKeon, 2017).

A Fourier decomposition is then employed in the homogeneous directions of 𝑥, 𝑧,
and 𝑡:

𝒖(𝒙, 𝑡) =
∭ ∞

−∞
𝒖(𝒌, 𝑦)𝑒𝑖(𝑘𝑥𝑥+𝑘𝑧𝑧−𝜔𝑡)𝑑𝑘𝑥𝑑𝑘𝑧𝑑𝜔, (2.4)

where we have introduced a wavenumber-frequency triplet 𝒌 = [𝑘𝑥 , 𝑘𝑧, 𝜔]. Here
𝑘𝑥 , 𝑘𝑧 are the streamwise, spanwise wavenumbers, and 𝜔 is the temporal frequency.

The Fourier-transformed perturbation equations are then written in an input-output
form, where the non-linear term 𝒇 = [ 𝑓𝑥 , 𝑓𝑦, 𝑓𝑧]𝑇 is considered as an input forcing
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to the resolvent operator H𝑝 (𝒌, 𝑦):[
𝒖(𝒌, 𝑦)
𝑝(𝒌, 𝑦)

]
= H𝑝 (𝒌, 𝑦) 𝒇 (𝒌, 𝑦). (2.5)

2.1.1 The Resolvent Operator
Following McKeon and Sharma (2010), the primitive form resolvent operator
H𝑝 (𝒌, 𝑦), which maps the forcing 𝒇 to the velocity and pressure [𝒖, 𝑝]𝑇 can be
written as:

H𝑝 (𝒌, 𝑦) =
©­­«−𝑖𝜔


𝑰

0

 −

L𝒌 −∇𝒌

∇T
𝒌 0


ª®®¬
−1 

𝑰

0

 , (2.6)

with 𝑰 as the 3× 3 identity matrix, ∇𝒌 = [𝑖𝑘𝑥 , 𝑑𝑑𝑦 , 𝑖𝑘𝑧]
T, ∇T

𝒌 the Fourier-transformed
gradient and divergence operators, and L𝒌 defined as:

L𝒌 =


−𝑖𝑘𝑥𝑈 + Δ𝒌

𝑅𝑒
− 𝑑𝑈
𝑑𝑦

0

0 −𝑖𝑘𝑥𝑈 + Δ𝒌
𝑅𝑒

0

0 0 −𝑖𝑘𝑥𝑈 + Δ𝒌
𝑅𝑒


, (2.7)

where Δ𝒌 = 𝑑2

𝑑𝑦2 − 𝑘2
𝑥 − 𝑘2

𝑧 is the Fourier-transformed Laplacian. Note that the
primitive form resolvent operator H𝑝 (𝒌, 𝑦) defined in equation (2.6) is a 4 × 3
operator, mapping the three forcing components to the three velocity components
plus the pressure. Since pressure is not studied in this thesis, the last row of H𝑝

can be removed to obtain the 3 × 3 operator, H(𝒌, 𝑦), mapping the three forcing
components to the three velocity components without giving the pressure.

Alternatively, similar to Moarref et al. (2013), the wall normal velocity 𝑣 and wall
normal vorticity 𝜂 = 𝑖𝑘𝑧𝑢 − 𝑖𝑘𝑥𝑤 can be used to eliminate the pressure and rewrite
the NSE into:
−𝑖𝜔Δ𝒌 − L𝑂𝑆 0

𝑖𝑘𝑧
𝑑𝑈
𝑑𝑦

−𝑖𝜔 + L𝑆𝑄



𝑣(𝒌, 𝑦)

𝜂(𝒌, 𝑦)

 =


−𝑖𝑘𝑥 𝑑𝑑𝑦 −𝑘2 −𝑖𝑘𝑧 𝑑𝑑𝑦
𝑖𝑘𝑧 0 −𝑖𝑘𝑥

 𝒇 (𝒌, 𝑦) = 𝑩 𝒇 ,

(2.8)
where 𝑘2 = 𝑘2

𝑥 + 𝑘2
𝑧 , and the Orr-Sommerfeld and Squire operators defined as:

L𝑂𝑆 = 𝑖𝑘𝑥
𝑑2𝑈

𝑑𝑦2 − 𝑖𝑘𝑥𝑈Δ𝒌 +
Δ2
𝒌

𝑅𝑒
, (2.9)

L𝑆𝑄 = 𝑖𝑘𝑥𝑈 − Δ𝒌

𝑅𝑒
. (2.10)
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The inverted matrix can then be written as:

H ′ =


−𝑖𝜔Δ𝒌 − L𝑂𝑆 0

𝑖𝑘𝑧
𝑑𝑈
𝑑𝑦

−𝑖𝜔 + L𝑆𝑄


−1

=


H𝑣𝑣 0

H𝜂𝑣 H𝜂𝜂

 , (2.11)

with the submatrices computed using:

H𝑣𝑣 = (−𝑖𝜔Δ𝒌 − L𝑂𝑆)−1 , (2.12)

H𝜂𝜂 =
(
−𝑖𝜔 + L𝑆𝑄

)−1
, (2.13)

H𝜂𝑣 = −𝑖𝑘𝑧H𝜂𝜂

(
𝑑𝑈

𝑑𝑦

)
H𝑣𝑣 . (2.14)

Finally, the velocities can be recovered from the wall-normal vorticity by:

𝒖(𝒌, 𝑦) = 1
𝑘2


𝑖𝑘𝑥

𝑑
𝑑𝑦

−𝑖𝑘𝑧

𝑘2 0

𝑖𝑘𝑧
𝑑
𝑑𝑦

𝑖𝑘𝑥



𝑣(𝒌, 𝑦)

𝜂(𝒌, 𝑦)

 = 𝑨


𝑣(𝒌, 𝑦)

𝜂(𝒌, 𝑦)

 . (2.15)

Combining 𝑨, H ′, 𝑩 defined in equations (2.15), (2.11), and (2.8), the resolvent
operator H that maps the forcing 𝒇 to the velocities 𝒖 can be alternatively written
as:

H = 𝑨H ′𝑩, (2.16)

which differs from the primitive form resolvent operator H𝑝 only in that H does
not produce the pressure fluctuations, and is the same as H𝑝 with the last row
removed. However, equation (2.16) has the advantage that utilizing the block
triangular structure, individual sub-blocks can be inverted on their own, resulting
in the inversion of two 1 × 1 operators instead of one 4 × 4 operator, which is more
computationally efficient.

2.1.2 Singular Value Decomposition of the Resolvent Operator
The discrete resolvent operator H(𝒌, 𝑦) is constructed using 𝑁 Chebyshev colloca-
tion points in 𝑦 for a channel or a rational transformed Chebyshev grid for a boundary
layer. A singular value decomposition (SVD) can then be performed on the discrete
operator:

H(𝒌, 𝑦) =
∑︁
𝑞

𝜓𝑞 (𝒌, 𝑦)𝜎𝑞 (𝒌)𝜙∗𝑞 (𝒌, 𝑦), (2.17)

where 𝜓𝑞 are the singular response modes (henceforth referred to as resolvent
modes), 𝜎𝑞 are the (ordered) singular values, and 𝜙𝑞 are the singular forcing modes.
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Superscript ∗ denotes a complex conjugate. Velocity Fourier modes can then be
expressed as:

𝒖(𝒌, 𝑦) =
∑︁
𝑞

𝜒𝑞 (𝒌)𝜎𝑞 (𝒌)𝜓𝑞 (𝒌, 𝑦), (2.18)

where 𝜒𝑞 (𝒌) = 𝜙∗𝑞 (𝒌, 𝑦) 𝒇 (𝒌, 𝑦) are the non-linear weights obtained by projecting
the nonlinear forcing (if known) onto the singular forcing modes. Without detailed
knowledge of the non-linear forcing, the non-linear weights can be determined
using data-driven methods such as the least squares regression explored in detail in
Chapter 3. Other methods of obtaining the non-linear weights include optimization
algorithms, where the non-linear weights are computed by minimizing the difference
between the resolvent represented statistics and the available DNS statistics (typically
the energy spectra) (Moarref et al., 2014; McMullen, 2020). Alternatively, the
resolvent based estimation, which performs a least squares regression on the cross-
spectral density (CSD), can be utilized to estimate the CSD for unknown locations or
states from available data, essentially obtaining the CSD of the non-linear weights
𝜒 (Towne et al., 2020; Amaral et al., 2021). Finally, Barthel (2022) performed
non-linear interactions using the resolvent modes, obtaining a set of polynomial
equations for 𝜒, which were solved using convex optimization.

The computation of the resolvent modes can be performed separately at each
wavenumber-frequency triplet of interest. The analysis at each triplet costs less
than a second on a laptop computer for the cases considered in this study employing
a quasi-parallel flow assumption, making the resolvent a low-cost computational
tool for modeling and data compression.

2.2 Non-linear Forcing in the Navier-Stokes Equations
The non-linear (quadratic) terms 𝒇 are defined in physical space in equation 2.3
through a point-wise multiplication, while in (discrete) Fourier space the non-linear
forcing at a wavenumber-frequency triplet 𝒌3 can be written in terms of a convolution
of the velocity fields and velocity gradients at 𝒌1 and 𝒌2:

𝒇 (𝒌3, 𝑦) = −
∑︁

𝒌1+𝒌2=𝒌3

𝒖(𝒌1, 𝑦) · ∇𝒖(𝒌2, 𝑦). (2.19)

The requirement of 𝒌1+ 𝒌2 = 𝒌3 is the triadic compatibility or resonance constraint,
a result of the quadratic nature of the non-linearity.

In the resolvent formulation, the Fourier-transformed NSE are written in an input-
output form, where 𝒇 (𝒌, 𝑦) is considered an input forcing to the resolvent operator
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H(𝒌, 𝑦) as shown in equation (2.5). It can be seen that the linear operator does not
modify the scale of the input, such that each wavenumber-frequency triplet operates
independently from each other. On the other hand, equation (2.19) shows that the
non-linear forcing is responsible for the coupling of different scales, and therefore
the distribution of energy between scales.

The triadic interactions are visually depicted in Figure 2.2, where the velocity fields
at 𝒌1 non-linearly interacts with the velocity gradients at 𝒌2, generating part of the
forcing at 𝒌3 = 𝒌1 + 𝒌2. The full forcing is a convolution sum of all pairs of 𝒌1 and
𝒌2 that are triadically compatible with 𝒌3, which is then passed through the linear
resolvent operator to generate the velocity response at 𝒌3. This triadic interaction
will be explored further in Chapter 5.

Figure 2.2: Diagram for the triadic interactions. The velocity and velocity gradient
at 𝒌1 and 𝒌2 interact non-linearly to generate part of the forcing at 𝒌3 = 𝒌1 + 𝒌2.
The full forcing is a convolution sum of all pairs of 𝒌1 and 𝒌2 that are triadically
compatible with 𝒌3, which forces the resolvent operator to generate the response.

2.2.1 Helmholtz Decomposition
The non-linear forcing can be decomposed into irrotational and solenoidal parts
(Rosenberg, 2018; Morra et al., 2021):

𝒇 (𝒌, 𝑦) = 𝒇 𝑖 (𝒌, 𝑦) + 𝒇 𝑠 (𝒌, 𝑦) = ∇𝜉 (𝒌, 𝑦) + ∇ × 𝜻 (𝒌, 𝑦), (2.20)

where the irrotational part 𝒇 𝑖 (𝒌, 𝑦) can be written as the gradient of a scalar field and
the solenoidal part 𝒇 𝑠 (𝒌, 𝑦) can be written as the curl of a vector field. Therefore,
the irrotational part of the forcing can be absorbed into the gradient of the pressure
fluctuations, and have no effect on the resulting velocity fields.

Additionally, the 𝑩(𝒌, 𝑦) matrix defined in equation (2.8) is used to eliminate the
pressure term in the NSE to arrive at the velocity-vorticity formulation of the NSE
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in equation (2.8). As similarly derived in Morra et al. (2021), it can be show that
𝑩(𝒌, 𝑦) also eliminates the irrotational part of the forcing in the same manner:

𝑩(𝒌, 𝒚) 𝒇 𝑖 (𝒌, 𝑦) =
[
−𝑖𝑘𝑥 𝑑𝑑𝑦 −𝑘2 −𝑖𝑘𝑧 𝑑𝑑𝑦
𝑖𝑘𝑧 0 −𝑖𝑘𝑥

] 
𝑖𝑘𝑥
𝑑
𝑑𝑦

𝑖𝑘𝑧

 𝜉 (𝒌, 𝑦) = 0. (2.21)

Combining with equation (2.16), we can arrive at:

𝒖(𝒌, 𝑦) = H(𝒌, 𝑦) 𝒇 (𝒌, 𝑦) = H(𝒌, 𝑦) 𝒇 𝑠 (𝒌, 𝑦). (2.22)

In other words, without studying the pressure in this thesis, the irrotational part of
the forcing is naturally eliminated when multiplied by the resolvent operator, and
only the solenoidal part of the forcing is active.

2.2.2 Energy Transfer by the Non-linear Forcing
We start by defining the spectral turbulence kinetic energy (TKE) as 𝑒(𝒌, 𝑦) =

|𝑢(𝒌, 𝑦) |2 + |𝑣(𝒌, 𝑦) |2 + |𝑤(𝒌, 𝑦) |2, which is the energy of Fourier modes at given
𝒌. An equation for the spectral TKE can be written as:

Re
{
𝑢∗(𝒌, 𝑦)𝑣(𝒌, 𝑦)𝑈′(𝑦)

}
︸                             ︷︷                             ︸

Production

+ 𝑘2

𝑅𝑒
𝑒(𝒌, 𝑦) + 1

𝑅𝑒

𝑑

𝑑𝑦
𝑢∗𝑖 (𝒌, 𝑦)

𝑑

𝑑𝑦
𝑢𝑖 (𝒌, 𝑦)︸                                              ︷︷                                              ︸

Viscous Dissipation

+Re
{
𝑑

𝑑𝑦
[𝑣∗(𝒌, 𝑦)𝑝(𝒌, 𝑦)]

}
︸                             ︷︷                             ︸

Pressure Transport

− 1
2

1
𝑅𝑒

𝑑2

𝑑𝑦2 𝑒(𝒌, 𝑦)︸               ︷︷               ︸
Viscous Transport

= Re
{
𝑢∗𝑖 (𝒌, 𝑦) 𝑓𝑖 (𝒌, 𝑦)

}
︸                      ︷︷                      ︸

Turbulent Transport

, (2.23)

where Re {·} indicates the real part, and the summation notation is used with the
subscripts 𝑖. The derivation is given in appendix A.1.

The turbulent transport term can be alternatively written as:

𝑢∗𝑖 (𝒌, 𝑦) 𝑓𝑖 (𝒌, 𝑦) =𝒖∗(𝒌, 𝑦) 𝒇 (𝒌, 𝑦)

= − 𝒖∗(𝒌, 𝑦)
∑︁

𝒌1+𝒌2=𝒌

𝒖(𝒌1, 𝑦) · ∇𝒖(𝒌2, 𝑦), (2.24)

which shows that the turbulent transport is the only term that involves the non-
linear forcing, and therefore the only term that transports energy between different
wavenumber-frequency triplets 𝒌. Additionally, Schmid and Henningson (2001)
and Barthel (2022) have demonstrated that the non-linear turbulent transport is
energy conserving on a triad by triad basis.
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Alternatively, the resolvent formulation 𝒖(𝒌, 𝑦) = H(𝒌, 𝑦) 𝒇 (𝒌, 𝑦) can be utilized
to obtain:

𝑒(𝒌, 𝑦) =𝒖∗(𝒌, 𝑦) H (𝒌, 𝑦) 𝒇 (𝒌, 𝑦)

= − 𝒖∗(𝒌, 𝑦) H (𝒌, 𝑦)
∑︁

𝒌1+𝒌2=𝒌

𝒖(𝒌1, 𝑦) · ∇𝒖(𝒌2, 𝑦). (2.25)

The formulation of equations (2.23) and (2.25), both derived from the NSE, are
mathematically equivalent, yet they have slightly different interpretation. Equa-
tion (2.23) is an energy balance equation. The energy transported into or out of 𝒌
through non-linear interactions (the turbulent transport term), is balanced by 4 other
mechanisms, and is therefore not directly correlated to the increase or decrease
of the spectra TKE at this 𝒌. Equation (2.25) on the other hand, considers the
non-linearity as a forcing that drives the turbulent perturbations and activates the
linear mechanisms of production, pressure, and viscosity (all contained in the linear
resolvent operator H ), therefore providing a direct link between the non-linearity
and the spectral TKE.

2.3 Methods to Partially Model the Non-linear Forcing
We briefly introduce two methods to model part of the non-linear forcing in the
resolvent that will be explored in this study: an eddy viscosity model and the 2D
resolvent.

2.3.1 Eddy Viscosity Model
The energy cascade is an important feature in turbulence where energy at the large
scales is transferred to the small scales through non-linear interactions and dissipated
at the small scale by viscosity (Jiménez, 2012). As a result, for the large-scale
structures, the viscosity alone is insufficient for modeling the energy dissipation,
and an additional model that captures the extraction of energy by the Reynolds stress
is desired.

The eddy viscosity, a model for the mean Reynolds stresses in terms of the mean
velocity gradient, is originally derived to provide closure for the Reynolds-averaged
Navier-Stokes equations (Reynolds and Tiederman, 1967). An analytical model for
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the channel flow is given by:

𝜈𝑇 (𝑦) =

1
2

{
1 +

[
𝜅𝑅𝑒𝜏

3

(
2𝑦 − 𝑦2

) (
3 − 4𝑦 + 2𝑦2

) (
1 − exp

(
( |𝑦 − 1| − 1) 𝑅𝑒𝜏

𝐴

))]2
}1/2

+ 1
2
,

(2.26)

where 𝜈𝑇 (𝑦) is the total effective viscosity, which includes both the molecular and
eddy viscosity, and is normalize by the molecular viscosity 𝜈. 𝜅 is the Karman
constant, 𝐴 is a constant in van Driest’s wall law, and 𝑦 ∈ [0, 2] is the wall normal
coordinate for the channel, normalized by channel half height, with walls located
at 𝑦 = 0 and 𝑦 = 2. Reynolds and Hussain (1972) later utilized this eddy viscosity
model to relate the oscillating Reynolds stress to the oscillating strain rate in a
turbulent channel flow with waves induced by vibrating ribbons. Many recent
studies have further utilized the eddy viscosity as a method to introduce a partial
model for the nonlinear Reynolds stress in the linearized equations of the resolvent
formulation, with the goal of generating more efficient resolvent basis functions (del
Álamo and Jiménez, 2006; Hwang and Cossu, 2010; Huynh et al., 2021; Fan et al.,
2024; Illingworth et al., 2018; Symon et al., 2021). In these previous works, the
viscous term in the original momentum equations are replaced to include the eddy
viscosity:

1
𝑅𝑒

∇2𝒖 −→ 1
𝑅𝑒

∇ ·
[
𝜈𝑇

(
∇𝒖 + ∇𝒖𝑇

)]
. (2.27)

The results showed that the standard resolvent tends to over predict the streamwise
velocity 𝑢 while under predicts 𝑣 and 𝑤, while the inclusion of the eddy viscosity
profile improves the performance. However, Illingworth et al. (2018) showed that
this scale independent eddy viscosity profile (no dependency on 𝒌) only works
to improve the resolvent performance for the large scale structures, while for the
intermediate and small scales, this is not a suitable model.

In the language of section 2.2, the eddy viscosity is modeling the interaction between
two small scales (large 𝒌1, 𝒌2) affecting a large scale (small 𝒌3), visually represented
by the Feynman diagram in Figure 2.3. This method of enhancing the resolvent with
eddy viscosity is explored in details in Chapter 3.

2.3.2 2D Resolvent Analysis
A similar class of problems involving flows with periodic spanwise or temporal
variations such as spanwise periodic exact coherent states (Rosenberg and McKeon,
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Figure 2.3: Feynman diagram depicting the type of triadic interaction modeled by
the eddy viscosity.

2019a), spanwise varying riblets (Chavarin and Luhar, 2020) or airfoils with tempo-
ral periodicity (Padovan et al., 2020) can be studied using the 2D resolvent analysis,
which utilizes mean profiles with a spanwise or temporal variation. Owing to the
periodicity, the analysis can still be performed in Fourier domain for the spanwise or
temporal coordinate. However, wavenumber-frequency triplets at different 𝑘𝑧 or 𝜔
are now non-linearly coupled together through the mean profile, and must be solved
simultaneously, unlike the 1D resolvent analysis. The 2D resolvent are including
triadic interactions between the large/slow scales contained in the mean profile and
any scale of interest, depicted in Figure 2.4.

Figure 2.4: Feynman diagram depicting the type of triadic interaction modeled by
the 2D resolvent.

Of particular interest to this work is the method presented in Chavarin and Luhar
(2020), where the volume penalization formulation is used in the resolvent frame-
work to study the drag reducing abilities of streamwise aligned, spanwise periodic
riblets. This formulation allows for the inclusion of a boundary geometry in the
resolvent, allowing for non-linear interactions between modes through the imposed
boundary geometry. This method is adapted for this study, without utilizing a span-
wise varying mean velocity profile, and only utilizes the volume penalization to
model the effect of the boundary geometry. We start by considering the perturbation
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momentum equation with a volume penalization term:

𝜕𝒖

𝜕𝑡
+ (𝒖 · ∇)𝑈 + (𝑈 · ∇)𝒖 = −∇𝑝 + 1

𝑅𝑒
∇2𝒖 + 𝒇 − 𝐾−1𝒖, (2.28)

where the parameter 𝐾 (𝑦, 𝑧) → ∞ in the fluid region, therefore recovering the
original NSE, and 𝐾 (𝑦, 𝑧) → 0 in the solid region, to force the flow velocity to
0. We then apply a Fourier transform in the spanwise direction on the volume
penalization term:

𝐾−1(𝑦, 𝑧) =
𝑀∑︁

𝑚=−𝑀
𝑎𝑚 (𝑦) exp {𝑖𝑚 · 𝑘𝑧0 · 𝑧} , (2.29)

where 𝑘𝑧0 is the spanwise fundamental wavenumber of the surface geometry. With
a streamwise and temporally constant surface geometry, the wavenumber frequency
triple of the surface can be defined as 𝒌0 = [0, 𝑘𝑧0, 0]. After the Fourier transform,
the volume penalization term becomes a convolution, which can be incorporated
into the resolvent analysis by modifying equation (2.5):

H(𝒌, 𝑦)−1

[
𝒖(𝒌, 𝑦)
𝑝(𝒌, 𝑦)

]
−

∑︁
𝑚

𝑎𝑚 𝒖(𝒌 − 𝑚𝒌0, 𝑦) = 𝒇 (𝒌, 𝑦), (2.30)

where multiple triplets of interest are coupled together through the boundary ge-
ometry described by 𝑎𝑚. However, the coupling of the triplets indicates that the
resolvent analysis has to be performed for multiple triplets simultaneously, therefore
increasing the computation cost. This method will be explored in Chapter 3 to
model the surface geometry of interest.

Finally, we briefly discuss the increase of computation costs associated with the
biglobal and 2D resolvent analysis. Starting with the 1D resolvent analysis, the
linear system is of size 𝑁𝑞𝑁𝑦 where 𝑁𝑞 is the number of state variables and 𝑁𝑦 the
number of discretization points in the wall normal direction 𝑦. Using 𝑀 streamwise
discretization points for the global resolvent or 𝑀 𝑘𝑧 or 𝜔 Fourier modes in the 2D
resolvent, the linear system becomes size 𝑀𝑁𝑞𝑁𝑦. The computation cost scales
with the size of the system with power 1 < 𝑎 ≤ 3, 𝑂

( (
𝑀𝑁𝑞𝑁𝑦

)𝑎 ) , with the value
of 𝑎 depending on the numerical algorithm (Duff et al., 2017). Recent studies have
made improvements to the algorithm to reduce computation costs. For example,
Moarref et al. (2013) utilized the randomized SVD and reported a cost reduction by
a factor of two, and Ribeiro et al. (2020) utilized sketching of the linear operator
combined with randomized SVD to achieve an order-of-magnitude cost reduction.
Sparse differentiation schemes can also be used to sparsify the operator and utilize
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sparse matrix solvers (Mattsson and Nordström, 2004; Barthel et al., 2022; Gomez,
2024). Kamal et al. (2020) and Towne et al. (2022) developed a method using
spatial marching to approximate the resolvent modes for flows with slowly varying
mean profile instead of matrix inversions. Barthel et al. (2022) developed the
variational resolvent analysis which removes the dependency on the inversion of
the linear operator, achieving an order-of-magnitude cost reduction. In Chapter 3,
symmetries in the resolvent are utilized for the computation of the 2D resolvent
mode, improving the computation efficiency, while other algorithms are not utilized
due to the manageable computation costs.
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C h a p t e r 3

RESOLVENT MODELING OF A FLOW OVER SPANWISE
PERIODIC ROUGH SURFACE

In this chapter1, we utilize the resolvent analysis on a experimental data set2 of a
turbulent boundary layer with spanwise alternating rough surface, where large-scale
flow structures are observed. We start with a brief discussion of the experimental
data set and the mean profile used for the construction of the resolvent matrix.
We then discuss a method to reconstruct the flow field using resolvent modes and
explore the validity of using an eddy viscosity as a partial non-linear model to
enhance the resolvent and a 2D resolvent model that includes a crude model for the
boundary geometry. Next, we present the results of the least squares regression using
the resolvent modes on the experimental data, showcasing both the predictive and
reduced-order modeling capabilities of the resolvent, followed by a brief discussion
of future modeling directions.

3.1 Experimental Study of a Flow Over Spanwise Periodic Rough Surfaces
In this chapter, data from the experimental studies of Wangsawijaya et al. (2020),
involving a turbulent boundary layer over a spanwise varying rough surface is
analyzed. The experiments were performed on a streamwise aligned rough surface
constructed out of strips of alternating cardboard (smooth patch) and sandpaper
(rough patch) of equal width 𝑆, forming a surface with a spanwise wavelength of
2𝑆. This chapter focuses on the case of 𝑆 = 100 mm, with a Reynolds number
of 𝑅𝑒 ≈ 7.27 × 104. All velocity measurements are taken 4 meters downstream
with both hot-wire anemometry (HWA) and stereoscopic particle image velocimetry
(SPIV).

The HWA data provided by Wangsawijaya et al. (2020) were taken with hotwires
on a grid with 31 logarithmically spaced wall-normal (𝑦) locations, 12 spanwise (𝑧)
locations across a half-wavelength, and reflected across 𝑧 = 0 owing to the presumed
periodicity in the spanwise direction. The measurements were then time-averaged
to obtain the mean streamwise velocity profile in the 𝑦 − 𝑧 plane. The SPIV data

1Part of this chapter has been published in Huang et al. (2024).
2The author would like to thank Dr. Dea Wangsawĳaya and Dr. Nicholas Hutchins for making

the experimental data available and the valuable insights.
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Figure 3.1: Temporal mean velocity 𝑼(𝑦, 𝑧) = 𝑼(𝑦) + 𝑼(𝑦, 𝑧) from SPIV, with
the contour plot showing the streamwise component and the quiver plot showing
the spanwise and wall-normal components. The white and black patches at the
bottom of the figure correspond to smooth and rough strips, respectively. The
spanwise coordinate 𝑧 is re-normalized with the strip width 𝑆, while maintaining
the aspect ratio of the figure. Figure from Wangsawijaya et al. (2020), reproduced
with permission.

was post-processed on a uniform grid of 144 (𝑦) × 209 (𝑧) measurement points
across one wavelength (2𝑆) of the spanwise varying rough surface. The streamwise
velocity component agrees well between both datasets, with HWA providing finer
grid resolution near the wall, and SPIV providing data for the wall-normal and
spanwise velocity components.

A triple decomposition is performed on the flow field normalized by the free stream
velocity𝑈∞:

𝒖̂(𝑥, 𝑦, 𝑧, 𝑡) = 𝑼(𝑦) +𝑼(𝑦, 𝑧) + 𝒖′(𝑥, 𝑦, 𝑧, 𝑡), (3.1)

where𝑼(𝑦) is the spatio-temporal mean obtained by averaging in 𝑧, 𝑡, with the mea-
surements taken at a single streamwise 𝑥 location. Note that the perturbation defined
for the resolvent in Chapter 2 includes two terms from this triple decomposition:
𝒖(𝑥, 𝑦, 𝑧, 𝑡) = 𝑼(𝑦, 𝑧) + 𝒖′(𝑥, 𝑦, 𝑧, 𝑡). The temporal mean 𝑼(𝑦, 𝑧) = 𝑼(𝑦) +𝑼(𝑦, 𝑧)
is obtained by averaging in time, from which the spanwise varying component of the
temporal mean 𝑼(𝑦, 𝑧), induced by the periodic rough surface, can be computed.
𝑼(𝑦, 𝑧) is shown in Figure 3.1, and a pair of counter-rotating rolls near the transition
regions between the smooth and rough strips can be observed. This dominant large-
scale structure induced by the surface geometry motivates the use of a few resolvent
modes to model the flow and extract this feature.
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The goal of this chapter is to utilize knowledge of the spatio-temporal mean 𝑼(𝑦)
to obtain information about the spanwise variations of the temporal mean 𝑼(𝑦, 𝑧),
rather than utilizing the temporal mean 𝑼(𝑦, 𝑧) = 𝑼(𝑦) + 𝑼(𝑦, 𝑧) to study the
turbulent perturbations 𝒖′(𝑥, 𝑦, 𝑧, 𝑡), such as the work of Chavarin and Luhar, 2020.

3.2 Spatio-temporal Mean Profile for Resolvent Construction
For the construction of the resolvent operator, a mean profile is a required input.
Here we use the spatio-temporal mean, 𝑈 (𝑦), noting that this does not explicitly
account for the spanwise variation associated with the roughness strips, which is
the target of our modeling effort. Due to the limited resolution of the experimental
measurements near the wall, the experimental profiles cannot be directly used for
the resolvent computations. However, an analytical model for the spatio-temporal
mean with a few tuning parameters can be used to generate a profile that best fits
the experimental results. The profile of Chauhan et al. (2009) is used in this chapter
and is composed of the law of the wall, a buffer region, the log law, and a wake
profile, with 𝑅𝑒𝜏, log layer shift and wake strength being the tuning parameters.
The optimal parameters are found by minimizing the difference with the spatio-
temporal mean from HWA as it provides data closer to the wall than SPIV. The
resulting optimal analytical profile is compared to both HWA and SPIV results in
Figure 3.2, where little difference is observed in the majority of the boundary layer.
The larger differences at locations close to the wall could be attributed to difficulties
in obtaining accurate near-wall measurements in the experiments, and potentially
the lack of boundary geometry information in the analytical model. However, these
differences are not expected to significantly influence the resolvent output.

3.3 Resolvent Modeling of the Experimental Data
We start by impose the no-slip and no-penetration conditions at 𝑦 = 0 for the
resolvent, i.e. the smooth wall boundary condition, and seek to approximate the
influence of the complex rough wall geometry via the resolvent model. With a
focus on modeling the 𝑼(𝑦, 𝑧) component, which contains the largest structures in
the streamwise direction, we utilize the 𝑘𝑥 = 0 (streamwise constant) and 𝜔 = 0
(temporally constant) resolvent modes with 𝑘𝑧 = 𝑝 · 𝑘𝑧0, 𝑝 = 1, 2 . . . , where
𝑘𝑧0 = 2𝜋𝛿98/(2𝑆) is the spanwise fundamental wavenumber of the periodic rough
surface. Inserting 𝑘𝑥 = 𝜔 = 0 into equations (2.5)-(2.7), and multiplying the 𝑧
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Figure 3.2: Comparison of the spatio-temporal mean profiles 𝑈 (𝑦) between the
analytical profile (solid blue lines), the experimental results of HWA (red circles),
and SPIV (yellow crosses).

momentum equation with 𝑖, the resolvent formulation can be further simplified into:

𝑢(𝒌, 𝑦)

𝑣(𝒌, 𝑦)

𝑖𝑤(𝒌, 𝑦)

𝑝(𝒌, 𝑦)


=



−Δ𝒌
𝑅𝑒

𝑑𝑈
𝑑𝑦

0 0

0 −Δ𝒌
𝑅𝑒

0 𝑑
𝑑𝑦

0 0 −Δ𝒌
𝑅𝑒

−𝑘𝑧

0 𝑑
𝑑𝑦

𝑘𝑧 0



−1 

𝑓𝑥 (𝒌, 𝑦)

𝑓𝑦 (𝒌, 𝑦)

𝑖 𝑓𝑧 (𝒌, 𝑦)

0


, (3.2)

resulting in a real resolvent matrix and further reducing the computation cost.

Utilizing equation (2.18) and the inverse Fourier transform with 𝑁𝑘𝑧 spanwise
Fourier modes and 𝑁𝑠𝑣𝑑 singular vectors in the SVD, 𝑼(𝑦, 𝑧) can be written as
an expansion:

𝑼(𝑦, 𝑧) =
𝑁𝑘𝑧∑︁
𝑝=1

𝑁𝑠𝑣𝑑∑︁
𝑞=1

2 · 𝑅𝑒𝑎𝑙
(
𝜒𝑝,𝑞𝜎𝑝,𝑞𝜓𝑝,𝑞 (𝑦) · 𝑒𝑖𝑝·𝑘𝑧0·𝑧

)
, (3.3)

where the subscript 𝑝 is used as a short hand for quantities at 𝒌 = [0, 𝑝·𝑘𝑧,0, 0]. Only
the positive 𝑘𝑧 modes are included in this equation, with the hermitian symmetry
utilized for the negative 𝑘𝑧 resolvent modes. The non-linear weights 𝜒𝑝,𝑞 will be
obtained via least squares regression using the experimental data later in this chapter.
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3.3.1 Partially Modeling the Non-linear Forcing with Eddy Viscosity
As presented in section 2.3, the eddy viscosity is a well know method to incorporate
part of the non-linear forcing to improve the resolvent analysis. Following Fan
et al. (2024), an analytic approximation for the turbulent eddy viscosity for a bound-
ary layer is constructed by combining the approximation for turbulent channels
by Reynolds and Tiederman (1967) near the wall where the dynamics is expected to
be similar between a boundary layer and a channel, and a model based on Prandtl’s
mixing-length hypothesis in the outer region:

𝜈𝑇 (𝑦) =
1
2

{
1 +

[
𝜅𝑅𝑒𝜏

3
(
2𝑦 − 𝑦2) (

3 − 4𝑦 + 2𝑦2) (
1 − exp

(
−𝑦𝑅𝑒𝜏
𝐴

))]2
}1/2

+ 1
2 , for 𝑦 ≤ 0.7,

𝑅𝑒 · 𝑙2𝑚
��� 𝑑𝑈𝑑𝑦 ��� + 1, for 𝑦 ≥ 0.7,

(3.4)

where 𝜈𝑇 (𝑦) is the total effective viscosity, combining the molecular and eddy
viscosity, normalized by the molecular viscosity 𝜈. The mixing length 𝑙𝑚 is chosen
such that the profile is continuous at the matching location of 𝑦 = 0.7, and the
constants 𝜅 = 0.426 and 𝐴 = 25.4 are chosen following previous studies (del Álamo
and Jiménez, 2006). In this form, the wall normal coordinate 𝑦 is normalized
with boundary layer thickness 𝛿98 with the wall located at 𝑦 = 0. The spatio-
temporal averaged Reynolds stress −𝑢𝑣 from the SPIV measurements is compared
with the predicted stress using the eddy viscosity model 𝑅𝑒−1(𝜈𝑇 − 1) (𝑑𝑈/𝑑𝑦) in
Figure 3.3(a), where reasonable agreement is observed. However, in this study, the
resolvent is tasked with the generation of spanwise varying modes. To understand the
performance of eddy viscosity for spanwise varying modes, the temporal-averaged,
spanwise varying −𝑢𝑣(𝑘𝑧) Reynolds stress at different spanwise wavenumbers are
compared between the SPIV measurements and the corresponding predictions using
the eddy viscosity profile in Figure 3.3(b) for 𝑘𝑧 = 𝑝 · 𝑘𝑧0 with 𝑝 = 1 − 4. It
can be observed that the overall structure of the −𝑢𝑣(𝑘𝑧) Reynolds stress is well
captured at all four wavenumbers, indicating that the eddy-viscosity profile is a
decent model for the large-scale modes considered in this study. Better agreement
could be obtained by tuning the parameters in the eddy viscosity model or utilizing
data-driven approaches to obtain optimal eddy viscosity profiles, which are shown
in Pickering et al. (2021) to improve the large scale structures obtained from the
resolvent analysis. However the additional required experimental measurements
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would impact the simplicity of the model we seek.

Figure 3.3: Comparison of experimental Reynolds stress −𝑢𝑣 and −𝑢𝑣(𝑘𝑧) (solid
lines) with the modeled Reynolds stress using the eddy viscosity profile and the
SPIV mean velocity gradient (dashed lines) for (a) the spatio-temporal averaged,
and (b) the spanwise varying components at 4 different 𝑘𝑧 values. In subplot (b),
the blue, red, yellow, and purple lines correspond to 𝑘𝑧 = 𝑝 · 𝑘𝑧0 with 𝑝 = 1, 2, 3, 4,
respectively.

Different from previous studies, where the eddy viscosity is included in all 3 momen-
tum equations, in this study, we only include the eddy viscosity in the 𝑥 momentum
equation for the following reasons. First, the original Reynolds-Tiederman eddy
viscosity model was developed only for the 𝑢𝑣 Reynolds stress (Reynolds and Tie-
derman, 1967), and is demonstrated to agree well with the 𝑢𝑣 Reynolds stress in
previous computational studies (Fan et al., 2024; Hou et al., 2006), with experimen-
tal results in Figure 3.3, while little evidence showing the success of utilizing it for
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the other Reynolds stress components exist. Secondly, the 𝑢𝑤 and 𝑣𝑤 components
are significantly smaller in magnitude than 𝑢𝑣; therefore, it is justifiable to neglect
those in the eddy viscosity enhancement of the resolvent. Finally, previous stud-
ies utilizing eddy viscosity enhanced resolvent all focused on convecting modes,
where the wavespeeds 𝑐 = 𝜔/𝑘𝑥 are non-zero. These modes are characterized by a
strong critical layer mechanism within the boundary layer (McKeon, 2017), while
the stationary modes studied here do not. Including the eddy viscosity in all three
momentum equations as the previous studies results in an overly viscous boundary
layer compared to the free stream. As a result, only the viscous operator Δ𝒌

𝑅𝑒
in the 𝑥

momentum equation is replaced by:

𝜈𝑇Δ
2
𝒌

𝑅𝑒
+ 1
𝑅𝑒

𝑑𝜈𝑇

𝑑𝑦

𝑑

𝑑𝑦
, (3.5)

to include the eddy viscosity while the 𝑦 and 𝑧 momentum equations are unchanged.

3.3.2 Enhancing the Resolvent with Boundary Geometry Modeling
As previously introduced in section 2.3.2, the spanwise periodic 2D resolvent with
volume penalization is a useful method to encode boundary geometry into the
resolvent framework. However, different from previous work such as Chavarin
and Luhar (2020) or Rosenberg and McKeon (2019a) where a spanwise varying
mean profile 𝑼(𝑦, 𝑧) is used to construct the 2D resolvent, we utilize only the
spatio-temporal mean 𝑈 (𝑦) in the resolvent construction, as the spanwise varying
component is the target of our modeling effort. In addition, with the eddy viscosity
demonstrated to be a suitable model for the modes of interest in the previous section,
we retain the eddy viscosity model as previously described.

A crude model for the boundary geometry is employed by modeling the rough
patches of the spanwise varying surface as streamwise aligned riblets. The riblet
tips are set to line up with the smooth surface at 𝑦 = 0 and the riblet height set to
0.1𝛿98, which are reasonably representative of the experimental setup. On the other
hand, each rough strip is modeled with three streamwise aligned riblets, which is
a simplification of the actual geometry by ignoring the streamwise variation of the
rough surface and using a spanwise grain size larger than the actual rough surface.
The volume penalization coefficient in equation (2.28) is set to 10−4 in the solid
region. The Fourier transform of𝐾−1(𝑦, 𝑧) in the spanwise direction utilizes𝑀 = 28
in equation (2.29) to obtain 𝑎𝑚, and the resulting distribution of 𝐾−1(𝑦, 𝑧) is plotted
in Figure 3.4. In the figure, the dark regions, with large 𝐾−1 values represent the
solid region, while the white region with 𝐾−1 ≈ 0 represents the fluid region. In
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the figure, above 𝑦 = 0 where no solid exist, 𝐾−1 = 0, and the original resolvent is
recovered. Below 𝑦 = 0, the alternating smooth and rough surface can be observed,
with the vertical dashed lines demarcating the transition between. The smooth strips
(𝑧 ·𝛿98/𝑆 ∈ [−0.5, 0.5]) are represented by a continuous piece of solid, and the rough
strips (𝑧 · 𝛿98/𝑆 ∈ [−1.5,−0.5] ∪ [0.5, 1.5]) represented by alternating solid and
fluid regions in the form of square riblets. The transition between solid and fluid
regions results in a step change in 𝐾−1, causing Gibbs phenomenon in the Fourier
representation, observed as the imperfect transitions in Figure 3.4.

Figure 3.4: Volume penalization coefficient 𝐾−1(𝑦, 𝑧) in the 𝑦-𝑧 plane. Area with
large values indicate the solid region and small values indicate the fluid region. The
vertical dash lines demarcate the transition between rough and smooth strips, with
the smooth strip in the middle (𝑧 ∈ [−0.5, 0.5]).

It should be noted that the eddy viscosity models the effect of interacting small
scales on the large scales being studied, and the 2D resolvent models the interaction
between the large scales being studied and the large scales of the boundary geometry
affecting another large scale, as demonstrated in sections 2.3. Therefore, the two
methods are modeling different types of non-linear interactions, are not conflicting,
and can be included together. To the best of the author’s knowledge, this is the first
study to combine the eddy viscosity with a spanwise varying 2D resolvent analysis.

Similar to Chavarin and Luhar (2020), the 2D resolvent is then discretized using
a split domain grid in 𝑦, with 30 Chebyshev collocation point below 𝑦 = 0, and
a rational transformed 401 point Chebyshev grid above 𝑦 = 0. The values and
derivatives at 𝑦 = 0 are matched between the two domains and a no-slip boundary
condition is applied to the bottom of the domain at 𝑦 = −0.1. The resolvent operator
is then constructed for modes at 𝑘𝑧 = 𝑝 · 𝑘𝑧0 with 𝑝 = 1, 2, . . . 𝑀 , with diagonal
blocks being 1D resolvent with the addition of 𝑎0, and off-diagonal blocks including
the 𝑎𝑚 coefficients. The 2D resolvent matrix is larger than the 1D resolvent and takes
a longer time to compute. To reduce computation costs, the matrix sizes are reduced
by computing the symmetric (about 𝑧 = 0) and anti-symmetric modes separately,
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with the entire computation completed under 1 hour on a desktop machine. Further
efficiency improvements can be utilized such as taking advantage of the sparse
matrix, using randomized resolvent analysis (Ribeiro et al., 2020) or variational
resolvent analysis (Barthel et al., 2022).

3.4 Least Squares Regression Using Resolvent Modes
To determine the non-linear weights in the resolvent 𝜒𝑝,𝑞 used for the construction
of𝑼(𝑦, 𝑧) in equation (3.3), a weighted least squares regression is used to obtain the
solution that best fits the experimental data. For the HWA data, with a non-uniform
measurement grid, the resolvent response modes are first transformed into physical
space onto the experimental grid. The resolvent modes are orthonormal to each
other with respect to the 𝐿2 norm:

∫ ∞
0

∫ ∞
−∞ · 𝑑𝑧𝑑𝑦. The integration weights are

obtained using a trapezoid rule and used as the least square weights to account for
the non-uniform experimental grid. For the SPIV data, with a uniform grid, the
experimental results are Fourier transformed in the spanwise direction, and least
squares is performed for each spanwise wavenumber 𝑘𝑧 in the Fourier space.

In order to select the most suitable combination of 𝑁𝑘𝑧 and 𝑁𝑠𝑣𝑑 in equation (3.3),
the least squares analysis is performed using different combinations of 𝑁𝑘𝑧 = 1 ∼ 8
and 𝑁𝑠𝑣𝑑 = 1 ∼ 4 on the streamwise velocities from HWA. The resulting RMS error
in 𝑈 (𝑦, 𝑧) over the 𝑦 − 𝑧 plane together with the maximum relative error compared
to the HWA measurements are computed and plotted in Figure 3.5 for a portion of
the studied cases. The RMS error decreases monotonically as the number of modes
increases, since it is minimized by the least squares regression, while the maximum
relative error does not necessarily decay monotonically. As 𝑁𝑘𝑧 increases, the
reduction of RMS error plateaus at 𝑁𝑘𝑧 = 3, while the maximum relative error
shows a minimum point at 𝑁𝑘𝑧 = 4. On the other hand, as 𝑁𝑠𝑣𝑑 increases, the
RMS error decreases but the maximum relative error increases. Using both studies,
𝑁𝑘𝑧 = 4, 𝑁𝑠𝑣𝑑 = 2 is selected to achieve a relatively good balance of both types of
error.

A total of five cases are analyzed to study the predictive and data compression
capabilities of the resolvent and analyze the improvements provided by the inclusion
of the eddy viscosity and the boundary geometry. The standard resolvent modes are
used for case 1, the eddy viscosity enhanced resolvent modes are used for cases 2 and
3a/b, and the 2D resolvent with eddy viscosity enhancement for case 4. Cases 1 and
2 use the HWA data which only has streamwise velocity measurements to analyze
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Figure 3.5: RMS error (blue circles) and maximum relative error (red triangles) in
the streamwise direction compared to the HWA measurements using (a) 𝑁𝑠𝑣𝑑 = 2
with 𝑁𝑘𝑧 = 1 ∼ 8 and (b) 𝑁𝑘𝑧 = 4 with 𝑁𝑠𝑣𝑑 = 1 ∼ 4.

the predictive capability of the wall-normal and spanwise velocity components and
cases 3a/b, 4 use the PIV data with all 3 velocity components to study the data
compression capability. The four cases are summarized in table 3.1.

Table 3.1: Summary of the five studied cases.

Case Resolvent Formulation 𝑁𝑘𝑧 𝑁𝑠𝑣𝑑 Input data

1 Standard 4 2 HWA𝑈 (𝑦, 𝑧)2 Eddy Viscosity 4 2

3a Eddy Viscosity 4 2
SPIV𝑈,𝑉,𝑊3b Eddy Viscosity 10 8

4 2D with Eddy Viscosity – 40



33

3.4.1 Standard Resolvent Approximating the Counter Rotating Rolls
We start by utilizing the standard resolvent modes and only the streamwise velocity
measurements from HWA to explore the predictive capabilities of the resolvent
analysis. The resolvent reconstructed velocities are plotted in Figure 3.6(a), with
the streamwise velocity as a contour plot and the wall-normal and spanwise velocities
as overlaying vector plots. Figure 3.6(b) shows the difference between the resolvent
reconstructed streamwise velocity and that from the HWA:𝑈𝑟𝑒𝑠 (𝑦, 𝑧) −𝑈𝐻𝑊𝐴 (𝑦, 𝑧)
and Figure 3.6(c) shows the relative error:

[
𝑈𝑟𝑒𝑠 −𝑈𝐻𝑊𝐴

]
/𝑈𝐻𝑊𝐴, where ±2%

relative errors are highlighted with black dashed contour lines, and ±5% relative
errors with black solid contour lines. From the error plots, it is clear that the
resolvent modes can faithfully represent the streamwise velocity field with less than
2% error in the majority parts of the flow field, with the exception of larger errors
located mainly in regions close to the wall. This is expected, as the oversimplified
smooth wall resolvent analysis employed here does not use the correct boundary
conditions at the wall. In addition, for the near wall region where the effect of the
roughness is expected to be the strongest, the experiments do not offer enough data
points to ensure the analytical spatial-temporal mean𝑈 (𝑦) used for constructing the
resolvent is a good representation of the near wall region. The resulting streamwise
velocity field has an RMS error of 0.0103, a maximum difference of 0.0544, and a
maximum relative error of 11.8%.

The wall-normal and spanwise velocities𝑉 (𝑦, 𝑧) and𝑊 (𝑦, 𝑧) plotted in Figure 3.6(a)
are predicted from the streamwise velocity measurements using resolvent modes.
Compared with the SPIV results shown in Figure 3.1, the location, shape, and direc-
tion of the counter-rotating rolls match with the SPIV results fairly well. However,
the𝑉,𝑊 velocities are roughly 2 orders of magnitude smaller than the experimental
results, highlighted by the 0.02% 𝑈∞ arrow size legend in Figure 3.6(a) instead
of the 2% 𝑈∞ arrow size legend in Figure 3.1. This is a known issue observed
in Moarref et al. (2014) that the standard resolvent over-predicts the 𝑢𝑢 spectrum
and under-predicts the 𝑣𝑣 and 𝑢𝑣 spectra.

3.4.2 Improving Predictions with Eddy Viscosity
In order to improve the under-predicted 𝑉 and 𝑊 magnitudes, the resolvent modes
generated with the eddy viscosity are used in case 2. The least squares regression
is performed in the same manner as case 1 on the streamwise data from HWA, and
the reconstructed results are plotted in Figure 3.6(d). The streamwise velocity dif-
ference and relative errors are plotted in Figure 3.6(e-f ), with very similar behaviors
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Figure 3.6: Resolvent reconstructed temporal mean profile 𝑼(𝑦, 𝑧) and associated
errors compared to the experimental data for case 1 (a-c) and case 2 (d-h). Subplots
in the first column (a, d) are the resolvent reconstructed temporal mean profile,
with the streamwise component𝑈 (𝑦, 𝑧) plotted as a contour plot sharing the legend
on top. 𝑉 (𝑦, 𝑧) and 𝑊 (𝑦, 𝑧) components are plotted as quiver plots on top of the
contour plots. Filled contour plots in the second column (b, e) are the differences in
the streamwise component between the resolvent and the HWA data: 𝑈𝑟𝑒𝑠 −𝑈𝐻𝑊𝐴,
with a common legend on top. Filled contour plots in the third column (c, f ) are the
relative differences in the streamwise component, with a common legend on top.
The dashed contour lines mark the 2% relative error, and solid lines mark the 5%
error. The contour line plot (g) is a comparison between the resolvent reconstruction
(red contour lines) and the SPIV data (black contour lines) of𝑉 (𝑦, 𝑧). Solid contour
lines are for ±0.2 of the maximum value of each dataset and dashed contour lines
are for ±0.5. Subplot (h) is for𝑊 (𝑦, 𝑧), with the same format as subplot (g).
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compared to case 1. The resulting streamwise velocity field has an RMS error of
0.0117, a maximum difference of 0.0568, and a maximum relative error of 17.1%,
which are almost the same, but slightly worse than the results from case 1.

However, for the 𝑉 and𝑊 velocity components, case 2 maintains the mostly correct
location, shape, and direction predictions of the counter-rotating rolls from the
previous case, while improving the magnitude predictions. The𝑉 (𝑦, 𝑧) and𝑊 (𝑦, 𝑧)
predictions are now on the same order of magnitude as the experimental results.
The experimental and resolvent predicted 𝑉 (𝑦, 𝑧) have maximum amplitudes of
0.0205 and 0.0171 respectively, showing good agreement. On the other hand,
the experimental and resolvent predicted 𝑊 (𝑦, 𝑧) have maximum amplitudes of
0.0332 and 0.0098, and, although still being under-predicted, are nevertheless an
improvement from the previous case without eddy viscosity.

To quantitatively compare the 𝑉 (𝑦, 𝑧) distributions, contour lines for 𝑉 (𝑦, 𝑧) are
plotted with the experiments in black, and the resolvent predictions in red for
comparison in Figure 3.6(g). The solid lines are contour levels of ±0.2 of the
maximum amplitude of each dataset, and the dashed lines are for contour levels of
±0.5. The𝑉 distribution reasonably agrees between the experimental measurements
and the resolvent predictions, roughly matching the location of the upwards motion
in the middle and the downwards motion near the transition region. However, near
the edge of the boundary layer (𝑦 ≈ 1), the resolvent predicted a non-negligible
downward motion which is not observed in the experimental results. For 𝑊 (𝑦, 𝑧),
Figure 3.6(f ) is plotted in the same format. A strong𝑊 component is observed near
the wall in the experimental results, which is generated through the imbalance of wall
shear stress generation of the rough patches and the smooth patches (Wangsawijaya
et al., 2020). This uncaptured physics is most likely the reason behind the near
wall peak in𝑊 not being captured accurately by the resolvent modes and the under-
prediction of the maximum amplitude of 𝑊 , which is located near the wall in the
experimental results.

3.4.3 Reduced Order Modeling Using Resolvent with Eddy Viscosity
Next, in cases 3a/b, the reduced order modeling ability of the resolvent with eddy
viscosity is explored. The least squares regression is now performed using all three
velocity components from the SPIV measurements. The RMS values for 𝑈 (𝑦, 𝑧),
𝑉 (𝑦, 𝑧),𝑊 (𝑦, 𝑧) are 0.028, 0.0045, 0.0054 from the SPIV measurements. Therefore,
to account for the lower magnitude of 𝑉 and 𝑊 , they are given weights of 5 in the
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least squares regression, so that all three velocity components are optimized roughly
evenly. In addition, due to the slight asymmetry across 𝑧 = 0 for the SPIV data,
𝜒𝑝,𝑞 retains the complex form in equation (3.3), with small imaginary parts (from
components asymmetric about 𝑧 = 0) relative to the real parts (from components
symmetric about 𝑧 = 0). Case 3a uses 𝑁𝑘𝑧 = 4 and 𝑁𝑠𝑣𝑑 = 2, the same as cases 1
and 2, while case 3b uses 𝑁𝑘𝑧 = 10 and 𝑁𝑠𝑣𝑑 = 8. For case 3a, the total degrees
of freedom is reduced to eight complex mode weights from the SPIV measurement
grid of 144 × 209 with three velocity components, which equates to 0.018% of the
original degree of freedom. For case 3b, the reduced degree of freedom equates
0.18% of the original experimental results. The results are plotted in Figure 3.7
using the same formats as Figure 3.6, with case 3a plotted in (a-e) and case 3b in
(f-j).

For case 3a, the error in the streamwise direction increased slightly compared with
cases 1 and 2, due to the least squares optimizing for 𝑉 and 𝑊 as well. However,
the relative error remains around 2% for the majority parts of the flow except for
the near wall region. On the other hand, improvements in the 𝑉 distributions
can be observed for case 3a, with the location of the up and downwards motions
matching better with the experimental results. Furthermore, the large downward
motion located near 𝑦 = 1 observed in case 2 is reduced, matching better with the
experimental observations. For 𝑊 , with the near wall peaks not being captured by
the resolvent modes, the improvements in the distribution are relatively minimal.

For case 3b, with a 10 times increase in the number of resolvent modes used,
improvements are observed for all three velocity components. The𝑈 error is further
reduced, with a RMS error of 0.0114, a maximum difference of 0.0613, and a
maximum relative error of 12.4%. The distribution of 𝑉 and 𝑊 are improved as
well, matching the experimental results quite well. However, it should be pointed
out that the 𝑉 and𝑊 amplitudes are still under-predicted, with values of 0.0137 and
0.0106, compared to the experimental values of 0.0205 and 0.0332.

Finally, it should be pointed out that with more data utilized in case 3a and 3b (more
grid points in the SPIV and all three velocity components), the risk of rank deficiency
(difficulties in distinguishing multiple resolvent modes on the experimental grid) is
less than in cases 1 and 2 where the HWA data is used, allowing for case 3b with
𝑁𝑘𝑧 = 10 and 𝑁𝑠𝑣𝑑 = 8 to be explored. However, the grid used to generate the
resolvent modes is much finer than both experimental results, and 𝑁𝑘𝑧 , 𝑁𝑠𝑣𝑑 cannot
be indefinitely increased without running into issues with rank deficiency in the
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Figure 3.7: Resolvent reconstructed temporal mean profile 𝑼(𝑦, 𝑧) and associated
errors compared to the experimental SPIV data for case 3a (a-e) and case 3b (f-j),
with the same format as Figure 3.6.
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least squares regression.

3.4.4 Reduced Order Modeling Using 2D Resolvent
Finally, in case 4, the reduced order modeling ability of the 2D resolvent with eddy
viscosity and boundary geometry modeling is studied. For the 2D resolvent, each re-
solvent mode consists of multiple spanwise wavenumbers. The modes are therefore
inverse Fourier transformed in the spanwise direction and the least squares regres-
sion is performed using all three velocity components from the SPIV measurements
on the measurement grid in physical space. The same as in case 3a/b, 𝑉 and𝑊 are
given weights of 5 in the least squares regression. Different from previous cases,
the number of Fourier modes 𝑁𝑘𝑧 is now set by the 2D resolvent formulation, and
the total number of modes used for the least squares regression is controlled by
𝑁𝑠𝑣𝑑 = 40 alone. Using 40 symmetric (about 𝑧 = 0) and 40 anit-symmetric (about
𝑧 = 0) modes, the total degree of freedom is 80, which is 0.089% of the original
SPIV degree of freedom. The resulting resolvent reconstruction with the associated
comparisons and errors are plotted in Figure 3.8.

In the streamwise difference and relative error plots of Figure 3.8(b, c), it can be
observed that the difference is reduced compared to previous cases, with a RMS
error of 0.0089, and a maximum relative error of 6.7%. But more importantly, the
wall-normal and spanwise components 𝑉 (𝑦, 𝑧) and𝑊 (𝑦, 𝑧) see a big improvement,
not only improving the location and distribution as seen in Figure 3.8(d, e), but
also the magnitude of the reconstructed velocities as evident from Figure 3.8(f -k).
𝑉 (𝑦, 𝑧) now has relatively small differences throughout the domain, and𝑊 (𝑦, 𝑧) has
small differences except near the wall, where improvements from previous cases can
be observed, but still with relatively large differences.

3.5 Discussion
The results showcased the ability to use the resolvent analysis to predict the wall-
normal and spanwise temporal mean velocity components from just the streamwise
temporal mean measurements. The resolvent modes used for the predictions are
generated without directly encoding the rough wall boundary conditions, yet the
predictions (cases 1 and 2) are in good agreement with the experiments, especially
when the eddy viscosity is included. However, it should be noted that although the
resolvent modes do not contain information on the spanwise varying structure of
the rough wall, that information is partially encoded into the streamwise temporal
mean 𝑈 (𝑦, 𝑧), which is a direct result of the spanwise varying surface geometry.
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Figure 3.8: Resolvent reconstructed temporal mean profile 𝑼(𝑦, 𝑧) and associated
errors compared to the experimental SPIV data for case 4, using the 2D resolvent with
eddy viscosity. Subplots (b, c) are the difference and relative errors in the streamwise
direction in the same format as Figure 3.6(b, c). Subplots (d, e) are contour line
comparisons for 𝑉 (𝑦, 𝑧) and 𝑊 (𝑦, 𝑧) in the same format as Figure 3.6(g, h). For
subplot (f -k), the three columns are SPIV measurement, resolvent reconstruction,
and the difference, each column sharing the colorbar at the bottom, with the third
row (f -h) for 𝑉 (𝑦, 𝑧) and the fourth row (i-k) for𝑊 (𝑦, 𝑧).
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Therefore, the least squares regression, which uses 𝑈 (𝑦, 𝑧), encodes information
about the surface geometry into the resolvent predictions, which contributes to the
success of predicting the counter-rotating rolls observed in the experiments.

However, for cases 1-3, a portion of the near-wall physics is not included in the
resolvent model using a smooth wall boundary condition, resulting in relatively big
differences located near the wall. First of all, the near wall portion of the spatio-
temporal mean profile𝑈 (𝑦) used to construct the resolvent operator is extrapolated
from the experimental measurements in the log region using an analytical profile.
Therefore, the near wall behavior of 𝑈 (𝑦) cannot be verified and might be missing
important physics such as the virtual origin induced by the rough wall geometry.
More importantly, it has been proposed that the counter-rotating rolls are the result
of an imbalance of shear stress generated between the rough and smooth patches,
where turbulence is transferred from high-stress areas to low-stress areas, inducing
the observed flow pattern (Wangsawijaya et al., 2020). This imbalance of stress is
not included in the resolvent modeling with a smooth wall boundary condition and
is likely the culprit behind the under-prediction of the spanwise velocities near the
wall as observed in Figure 3.7(e, j).

When including just a crude model for the boundary geometry in case 4 using the 2D
resolvent, an improvement was observed in Figure 3.8, with better agreeing 𝑉 (𝑦, 𝑧)
and𝑊 (𝑦, 𝑧) magnitudes and improved agreement in all 3 velocity components near
the wall. This again showcases the importance of the wall geometry and the resulting
non-linear coupling in this problem being studied. However, the imbalanced shear
stress is still not included in the current study, and could be the cause of the slightly
under-predicted𝑊 (𝑦, 𝑧) near the wall in case 4.

3.6 Conclusion and Future Directions
In this chapter, the predictive and data compression capabilities of the resolvent
framework without utilizing detailed knowledge of the surface geometry are stud-
ied using experimental data with spanwise varying rough surfaces. The standard
resolvent modes are able to approximate the location, shape, and direction of the
counter-rotating rolls, while under-predicting the magnitude. The addition of an
eddy viscosity into the resolvent framework improved the amplitude predictions and
is able to generate modes that can efficiently represent all three velocity components
from the experiments with a reduction in degree of freedom to 0.018% and 0.18%
of the original experimental results. The 2D resolvent with eddy viscosity, which
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includes a crude model of the surface geometry, is able to further improve the ef-
fectiveness of the resolvent modes especially near the wall, and is able to represent
all three velocity components with relatively small differences using only 0.089%
of the original degree of freedom. For the large scale structures being studied, the
inexpensive linear resolvent analysis performed well in both modeling the structure
and being used as basis functions for data compression, especially when including
an eddy viscosity to model the non-linear Reynolds stress and with the inclusion of
a crude boundary geometry model.

It should be emphasized again, that the goal of this chapter is to utilize knowledge
of the spatio-temporal mean 𝑼(𝑦) to obtain information about the spanwise vari-
ations of the temporal mean 𝑼(𝑦, 𝑧). Both 𝑼(𝑦) and the modeling target of this
study 𝑼(𝑦, 𝑧) are required in 2D resolvent studies that utilize the temporal mean
𝑼(𝑦, 𝑧) = 𝑼(𝑦) +𝑼(𝑦, 𝑧) to study the turbulent perturbations 𝒖′(𝑥, 𝑦, 𝑧, 𝑡), for ex-
ample Chavarin and Luhar, 2020. The results from this study can also be utilized in
future 2D resolvent studies, especially for 2D/3C type studies (Gayme et al., 2011),
to extend experimental data closer to the wall, alleviating the difficulties in obtaining
accurate experimental data close to the wall.

For future studies, one improvement that can be applied to the current study is a
better eddy viscosity profile. The profile currently in use, although continuous, has
a discontinuous first derivative, which causes Gibbs oscillation when differentiating
spectrally with the Chebshev differentiation matrices. An eddy viscosity profile that
blends the two profiles together more smoothly, giving a continuous first derivative,
can alleviate this issue.

Further studies on the effect of the boundary geometry model in the case of the 2D
resolvent are also important. The height of the riblets, the number of riblets and the
shape of the riblets can all be modified to better match the experimental setup, such
as using triangular riblets of smaller spanwise sizes. The effect on the performance
of the resulting resolvent modes is of great interest, and could potentially provide
more physical insight into the effect of different roughness geometries on the flow.

Finally, it will also be valuable to explore methods that allow for encoding the
spanwise variation of the wall shear stress, which is the proposed mechanism that
generates the flow structure of interest (Wangsawijaya et al., 2020), into the 2D
resolvent. This could further improve the near-wall performance of the method, and
provide more evidence for the proposed theory.
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C h a p t e r 4

DIRECT NUMERICAL SIMULATION OF A TURBULENT
CHANNEL

This chapter describes the Direct Numerical Simulation (DNS)1 of a turbulent
channel flow, including the data acquisition and the preliminary signal analyses
that laid the groundwork for the subsequent analyses of the non-linear interactions
in Chapters 5 and 6. We start with an overview of the simulation algorithm and
parameters, with verification of the statistics against previous studies. Next, the
temporal filter, which is necessary to prevent aliasing in the non-linear forcing
is introduced, followed by a description of the temporal Fourier analysis using the
Welch method with proper corrections for the effect of the window function. Finally,
we end this chapter with a verification of the temporal Fourier analysis.

4.1 Simulation Overview
The simulation is carried out using a modified DNS code of Flores and Jiménez
(2006). The channel geometry is plotted in Figure 2.1(a), with a channel half height
of ℎ, a domain size of 4𝜋ℎ × 2𝜋ℎ, and a friction Reynolds number 𝑅𝑒𝜏 = 𝑢𝜏ℎ/𝜈
of approximately 551. The code uses a spectral discretization in the streamwise
(𝑥) and spanwise (𝑧) directions, with the non-linear terms computed in the physical
space with 2/3 dealiasing, and a compact finite differences scheme in the wall-
normal direction (𝑦). Quantities normalized with inner-units, using the viscous
length scale 𝛿𝜈 = 𝜈/𝑢𝜏 and friction velocity 𝑢𝜏 are indicated with superscripts ‘+’.
Otherwise, normalization is performed with channel center-line velocity 𝑈𝑐𝑙 and
channel half-height ℎ. The simulation parameters are similar to previous studies
and are compared to studies of Lee and Moser (2015) and Flores and Jiménez
(2006) in table 4.1. Although the simulation box size of 4𝜋ℎ × 2𝜋ℎ is relatively
small, it is a commonly utilized size in previous studies, and is less expensive for
computation and data storage. The maximum wavenumbers retained by the DNS
are 𝑘𝑥 = ±127.5, 𝑘𝑧 = ±255. The time stepping is performed using a third-order
Runge-Kutta scheme with constant step sizes ofΔ𝑡 = 0.00185, and sampled every 20
time steps with a sampling time of Δ𝑡𝑠 = 0.0369, both normalized by𝑈𝑐𝑙 and ℎ. The

1The author would like to thank Dr. Simon Toedtli for the valuable guidance provided on the
setup of the DNS.
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sample rate is selected to capture most of the energetic frequencies while keeping
the data size manageable. A total of 6144 DNS snapshots are collected, with a total
eddy turnover time of 𝑇𝑢𝜏/ℎ = 10.78. Turbulence statistics are in good agreement
with previous studies as shown in Figure 4.1 for the spatio-temporal mean profile
and in Figure 4.2 for the temporal averaged 𝑢𝑢 and 𝑢𝑣 power spectra. All analyses
performed on the DNS data set, including the resolvent analysis, utilize identical
spatial grids and spatial differentiation schemes as the DNS, while in the temporal
domain, a Fourier analysis is utilized instead of time stepping, the implementation
of which is discussed later in this chapter.

Table 4.1: Comparison of simulation parameters used by Lee and Moser (2015)
(LM15), Flores and Jiménez (2006) (FJ06) and the current study. 𝐿𝑥 , 𝐿𝑧 are the
box size in the streamwise and spanwise directions, with grid spacing in inner scale
given by Δ𝑥+ and Δ𝑧+. Δ𝑦+𝑤 and Δ𝑦+𝑐 are the wall normal grid spacing at the wall
and at the channel centerline, with a total of 𝑁𝑦 grid points. 𝑇𝑢𝜏/ℎ is the total
simulation time.

𝑅𝑒𝜏 𝐿𝑥/ℎ 𝐿𝑧/ℎ Δ𝑥+ Δ𝑧+ Δ𝑦+𝑤 Δ𝑦+𝑐 𝑁𝑦 𝑇𝑢𝜏/ℎ
LM15 544 8𝜋 3𝜋 8.9 5.0 0.019 4.5 384 13.6
FJ06 556 4𝜋 2𝜋 10.2 – 0.8 7.0 – –

Current Study 551 4𝜋 2𝜋 9.0 4.5 0.69 6.0 272 10.78

Figure 4.1: Comparison of the spatio-temporal mean in inner scales𝑈+(𝑦+) between
the results of Lee and Moser (2015) (black solid line) and the current DNS study
(red dashed line).
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Figure 4.2: Comparison of the temporal averaged pre-multiplied power spectra
between the results of Lee and Moser (2015) (black solid lines) and the current DNS
study (red dashed lines) in outer scales. The 𝑢𝑢 power spectra is plotted in (a) 𝑘𝑥-𝑦
plane and (b) 𝑘𝑧-𝑦 plane. The 𝑢𝑣 power spectra is plotted in (c) 𝑘𝑥-𝑦 plane and
(d) 𝑘𝑧-𝑦 plane. Contour lines are plotted at the same levels between the results of
Lee and Moser (2015) and the current study. The + markers in figure (a) located at
𝑘𝑥 = 4 and in figure (b) at 𝑘𝑧 = 28 mark the peak in the 𝑢𝑢 power spectra, which
are the representative wavenumbers for the near wall cycle.

4.2 Temporal Filtering to Remove Temporal Aliasing in the Forcing
Although the selected sampling rate captures most of the energetic frequencies of the
velocity fluctuations, it is insufficient to capture all the frequencies of the non-linear
forcing, due to the quadratic nature resulting in higher frequencies. To prevent
aliasing, a temporal filter is required to limit the frequency content before down
sampling during the DNS run.

A low pass filter (LPF) with cutoff frequency 𝑓𝑐 is inserted into the DNS before
sampling the velocities, and only frequencies in the range of [− 𝑓𝑅, 𝑓𝑅] from the
temporal Fourier transform of the sampled data are retained (discussed later in
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section 4.3). The resolved frequency range is required to be smaller than the cutoff
frequencies 𝑓𝑅 ≤ 𝑓𝑐, and additional requirements come from consideration of the
quadratic forcing terms. Assuming a LPF with infinite roll-off at 𝑓𝑐, the non-linear
forcing will have its highest frequency at 2 𝑓𝑐 aliasing to 2 𝑓𝑐 − 2 𝑓𝑠,𝑁𝑄 , which should
remain outside of the resolved zone:

2 𝑓𝑐 − 2 𝑓𝑠,𝑁𝑄 ≤ − 𝑓𝑅, (4.1)

where 𝑓𝑠,𝑁𝑄 = 1
2Δ𝑡𝑠 is the sampling Nyquist frequency. When setting 𝑓𝑅 = 𝑓𝑐, the

2/3 dealiasing result of 𝑓𝑅 ≤ 2
3 𝑓𝑠,𝑁𝑄 is obtained, similar to that used in the spatial

dimensions. However, to account for the LPF having a finite roll-off at the cutoff
frequency, some buffer is introduced by selecting:

𝑓𝑅 =
1
2
𝑓𝑠,𝑁𝑄 . (4.2)

This filter design is guaranteed to remove all aliasing in the forcing under the worst-
case scenario. Practically, very little energy content is present for the forcing at the
very high frequencies, and the filter criterion could be relaxed slightly to retain more
of the higher frequencies, with the trade-off of allowing small amounts of energy at
the high frequencies to cause aliasing.

Additionally, no phase distortion of the filtered signal is desired, requiring a linear
phase filter, where the filter phase response is a linear function of frequencies.
This results in a filtered signal with all frequencies having the same constant time
delay compared to the unfiltered signal, or in other words, no phase distortion (see
appendix A.2). An order 2000 filter is designed using MATLAB fircls1 function
(MATLAB, 2023), with the maximum amplitude deviation set to 10−4 for the pass
band [0, 𝑓𝑅], and 10−3 for the stop band. The resulting filter amplitude and phase
are plotted in Figure 4.3, which shows the resolved frequency range with very little
amplitude deviation from 1 and a perfectly linear phase response.

To demonstrate the necessity and effect of the filter, two short DNS runs are con-
ducted with the same parameters as the main computation. The first run does not
include the LPF, while the second one includes the LPF as described above. The
two runs are initialized using the same initial conditions with the time delay in-
duced by the LPF properly corrected, ensuring the two runs are properly aligned in
time. The power spectra of the wall-normal velocity and vorticity forcing 𝑓𝑣 and
𝑓𝜔𝑦

are computed for both runs and compared in Figures 4.4 and 4.5 at 𝑦 = 0.91
(𝑦+ = 500). 𝑓𝑣 and 𝑓𝜔𝑦

are the forcing utilized in the velocity-vorticity resolvent
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Figure 4.3: (a) Amplitude and (b) phase for the order 2000 linear-phase low pass
filter. The vertical lines correspond to the resolved frequency range 𝑓𝑅 = 1

2 𝑓𝑠,𝑁𝑄 ,
and the largest frequency that does not cause aliasing 2

3 𝑓𝑠,𝑁𝑄 .

formulation introduced in equation (2.8), which is defined as:[
𝑓𝑣

𝑓𝜔𝑦

]
=

[
−𝑖𝑘𝑥 𝑑𝑑𝑦 −𝑘2 −𝑖𝑘𝑧 𝑑𝑑𝑦
𝑖𝑘𝑧 0 −𝑖𝑘𝑥

]
𝒇 (𝒌, 𝑦) = 𝑩 𝒇 (𝒌, 𝑦). (4.3)

The is the solenoidal part of the forcing, which excludes the irrotational part that
is not responsible for driving the velocities (see the Helmholtz decomposition dis-
cussed in section 2.2.1, Rosenberg and McKeon (2019b), and Morra et al. (2021)).

In Figures 4.4 and 4.5, the black dash lines denote the critical layer, where the
wavespeed 𝑐 = 𝜔/𝑘𝑥 is equal to the local spatio-temporal means velocity 𝑐 =

𝑈 (𝑦) (McKeon and Sharma, 2010). The frequencies beyond the sampling Nyquist
frequency are aliased to the resolved frequency range, which manifests as the “S”
shaped part of the dashed lines in Figures 4.4 and 4.5, due to the log scaled axes. The
energy in the forcing can be seen to concentrate around the critical layer consistent
with previous studies (Rosenberg, 2018). Starting from 𝑘𝑥 ≈ 40, significant energy
content can be observed near the aliased “S” shaped part of the dashed lines in the
unfiltered results presented in the first column. This aliased energy content corrupts
the results starting from 𝑘𝑥 ≈ 40, showing the necessity of the LPF in the DNS for
studying the non-linear forcing. From the power spectra of the filtered run presented
in the second column of Figures 4.4 and 4.5, and the difference between the filtered
and unfiltered results presented in the third column, it can be observed that the
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aliased energy in the forcing is completely removed by the introduction of the LPF,
while the non-aliased energy is correctly preserved.

Figure 4.4: The wall normal velocity forcing 𝑓𝑣 power spectra in 𝑘𝑥 − 𝜔 space at
𝑦 = 0.91 (𝑦+ = 500) for (a, d) the unfiltered DNS, and (b, e) the filtered DNS. The
third column (c, f ) is the difference between the unfiltered and filtered spectra. The
top row (a-c) is for positive 𝜔 and the bottom row (d-f ) for negative 𝜔. The black
dashed line in all six subplots denote the critical layer 𝑐 = 𝜔/𝑘𝑥 = 𝑈 (𝑦 = 0.91) with
the 𝜔 frequencies beyond the sampling Nyquist frequency aliasing into the resolved
frequency range, manifesting as the “S” shaped part of the dashed lines.

It is also observed that the aliased energy predominately resides in regions with
𝑘𝑥 ≥ 40 for 𝑦+ = 500 as shown in Figures 4.4 and 4.5. Therefore, removing all 𝑘𝑥
wavenumbers above a critical value 𝑘𝑥,𝑐 could potentially be utilized as an alternative
method to inserting a LPF into the DNS code. This critical streamwise wavenumber
𝑘𝑥,𝑐 differs for each wall-normal location, and can be best estimated using the
critical layer location: 𝑘𝑥,𝑐 (𝑦) = 𝜔𝑠,𝑁𝑄/𝑈 (𝑦), where 𝜔𝑠,𝑁𝑄 is the sampling Nyquist
frequency. However, this method will not remove the aliased energy as cleanly as
the LPF, and does not guarantee the complete removal of all aliased energy. In cases
where rerunning the simulation with a LPF in the code is not feasible, this might
serve as an alternative method.

4.3 From Time to Frequency
To perform the spatio-temporal analyses, the time domain DNS data needs to be
transformed into the Fourier domain. For this purpose, the Welch method is applied



48

Figure 4.5: The wall normal vorticity forcing 𝑓𝜔𝑦
power spectra in 𝑘𝑥 − 𝜔 space at

𝑦 = 0.91 (𝑦+ = 500) in the same format at Figure 4.4.

where the 6,144 DNS snapshots are segmented into 5 segments of 2,048 snapshots
each, with 50% overlap. The Hann window function is then applied to each temporal
segment before taking the temporal Fourier transform, and the frequencies between
±𝜔𝑅 = ±2𝜋 𝑓𝑅 = ±42.53 are retained. Finally, the results are averaged across all
5 temporal segments, the validity of which is discussed in appendix A.3 for the
quantities of interest in Chapter 5. To analyze the effect of the window function,
similar to Nogueira et al. (2021) and Morra et al. (2021), the momentum equation is
multiplied by the window function 𝑤(𝑡), and the spatial dimensions are temporarily
ignored as they do not play a role in this analysis of the temporal window function:

𝑤(𝑡) 𝜕
𝜕𝑡

𝒖(𝑡) + 𝑤(𝑡)L𝒖(𝑡) = 𝑤(𝑡) 𝒇 (𝑡). (4.4)

In this equation, L is the linear part of the Navier-Stokes operator, and the equation
can then be rewritten as:

𝜕

𝜕𝑡
[𝑤(𝑡)𝒖(𝑡)] + L [𝑤(𝑡)𝒖(𝑡)] − 𝒖(𝑡) 𝑑

𝑑𝑡
𝑤(𝑡) = [𝑤(𝑡) 𝒇 (𝑡)] . (4.5)

Performing the Fourier transform in time on the signals with the window function
applied: 𝒖(𝜔) = F [𝑤(𝑡)𝒖(𝑡)] , 𝒇 (𝜔) = F [𝑤(𝑡) 𝒇 (𝑡)] and defining the spurious
forcing: 𝒔(𝜔) = F

[
𝒖(𝑡) 𝑑

𝑑𝑡
𝑤(𝑡)

]
, the above equation can be rewritten using the

resolvent operator H :
𝒖(𝜔) = H ( 𝒇 (𝜔) + 𝒔(𝜔)) , (4.6)
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which can be reorganized as:

𝒖̃(𝜔) = 𝒖(𝜔) − H 𝒔(𝜔) = H 𝒇 (𝜔). (4.7)

𝒖̃(𝜔) are the velocity Fourier modes corrected for the spurious forcing due to the
window function, which satisfies the input-output form of the resolvent analysis
introduced in equation (2.5).

Additionally, the forcing Fourier modes, 𝒇 (𝜔) = F [𝑤(𝑡) 𝒇 (𝑡)], can be computed
in two equivalent ways:

𝒇 (𝜔) = F [𝑤(𝑡)𝒖(𝑡) · ∇𝒖(𝑡)] = F
[√︁
𝑤(𝑡)𝒖(𝑡)

]
∗ F

[√︁
𝑤(𝑡)∇𝒖(𝑡)

]
, (4.8)

where ∗ denotes the convolution operator. The first method computes 𝒇 (𝑡) in
physical time, then applies the window function and takes the Fourier transform,
while the second method computes 𝒇 (𝜔) in the Fourier space through a convolution.
Note that to ensure the equivalence between the two methods, the second method
requires the use of the

√︁
𝑤(𝑡) as the window function applied to the velocity and

velocity gradients.

The 𝑁-point periodic Hann window function is utilized in the analyses, where
𝑁 = 2048 is the length of each temporal segment. In discrete space, 𝑛 = 0, . . . , 𝑁−1,
and the window function, its time derivative, and its square root are written as:

𝑤 [𝑛] = sin2
(𝜋𝑛
𝑁

)
, (4.9)

𝑤′[𝑛] =
2𝜋
𝑁Δ𝑡𝑠

sin
(𝜋𝑛
𝑁

)
cos

(𝜋𝑛
𝑁

)
, (4.10)√︁

𝑤 [𝑛] = sin
(𝜋𝑛
𝑁

)
. (4.11)

The window function and Fourier transform are applied to the streamwise velocity
modes to compute the streamwise power spectra 𝜙𝑢𝑢 (𝑐, 𝑦; 𝑘𝑥), plotted as a function
of 𝑘𝑥 , 𝑦, and the wavespeed 𝑐 = 𝜔/𝑘𝑥 for two representative large scales: 𝑘𝑥 = 0.5, 1
in Figure 4.6(a) and (b), and a representative small scale at 𝑘𝑥 = 30 in Figure 4.6(c).
The black dashed lines in each subplot show the streamwise mean velocity profile,
𝑈 (𝑦). It can be observed that the energy contained in the large scales is distributed
in 𝑦, extending almost throughout the entire channel height, and predominantly
located at high wavespeeds. On the other hand, the small scales (large 𝑘𝑥) have
most of the energy located at smaller wavespeeds and have an energy distribution
that is mostly localized near the wall and in a 𝑦 range that is centered around the
local mean velocity.
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Figure 4.6: Contour plots of streamwise power spectra as a function of 𝑘𝑥 , 𝑦, and
the wavespeed 𝑐 = 𝜔/𝑘𝑥 . Figures (a, b) are the large scales with 𝑘𝑥 = 0.5, 1, and (c)
is a small scale with 𝑘𝑥 = 30. The black dash lines are the spatio-temporal averaged
streamwise velocity profile𝑈 (𝑦) and are also marking the critical layer locations.

4.4 Verification of Temporal Fourier Analysis
Finally, for verification of the temporal Fourier analysis, the following two quantities
are computed utilizing the Welch method and the Hann window function described
in section 4.3 for all wavenumber-frequency triplets 𝒌:

𝑉 (𝒌) = E
{
⟨𝒖̃(𝒌, 𝑦), H(𝒌, 𝑦) 𝒇 (𝒌, 𝑦)⟩𝑦

}
, (4.12)

𝐸𝑢 (𝒌) = E
{
⟨𝒖̃(𝒌, 𝑦), 𝒖̃(𝒌, 𝑦)⟩𝑦

}
, (4.13)

where E {·} is the expected value operator, indicating an average over all temporal
segments. 𝐸𝑢 (𝒌) is defined as the spectral turbulent kinetic energy of 𝒖̃(𝒌) at a
given wavenumber-frequency triplet 𝒌 and the weighted inner product ⟨𝑎(𝑦), 𝑏(𝑦)⟩𝑦
is defined as the integral over a certain 𝑦 range in the continuous domain and
approximated in the discrete space using a weight matrix 𝑊 with the appropriate
integration coefficients on the diagonal:

⟨𝑎(𝑦), 𝑏(𝑦)⟩𝑦 =
∫
𝑦

𝑎∗(𝑦)𝑏(𝑦) d𝑦 ≈ 𝑎∗𝑊𝑏, (4.14)

with the superscript (·)∗ indicating the conjugate transpose. Utilizing equation (4.7),
the two quantities should be equal with 𝑉 (𝒌)/𝐸𝑢 (𝒌) = 1. A similar demonstration
of this agreement between 𝒖̃ and H 𝒇 is performed in Morra et al. (2021), where
the agreement is characterized using the power spectral density as a function of 𝑦
for selected modes. Here, we elect to demonstrate the agreement in a 𝑦-integrated
sense for all computed wavenumber-frequency triplets.

In Figure 4.7, the quantities 𝐸𝑢 (𝒌) and 𝑉 (𝒌)/𝐸𝑢 (𝒌) are plotted in the 𝑘𝑥 − 𝑘𝑧

planes for two representative low frequencies 𝜔 = 0, 0.166 and one high frequency
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𝜔 = 25.088 to examine the agreement between𝑉 (𝒌) and 𝐸𝑢 (𝒌). The black contour
lines in all figures denote the energy level of 10−12, which is a few orders of
magnitude weaker than the most energetic modes in the flow. From Figure 4.7(d)
and (e), it can be observed that for the low frequencies, 𝑉 (𝒌) and 𝐸𝑢 (𝒌) agree very
well with each other, especially in the high energy regions enclosed by the black
contour lines. As the frequency increases, the agreement degrades. Although still
in relatively good agreement in the high energy regions, the low energy regions
start to show increasing errors. This behavior is expected for mainly two reasons:
first, as the frequency increases, the spectral TKE of the modes decreases, leading
to higher sensitivity to numerical errors when normalizing by the spectral TKE in
𝑉 (𝒌)/𝐸𝑢 (𝒌). Additionally, high frequency modes are expected to receive more
contributions from the non-linear interactions involving high frequencies (further
demonstrated in later sections), part of which are removed by the low pass filter for
sampling, resulting in larger errors. The consequence of these errors will be further
analyzed in Chapter 5 for the quantities of interest. Finally, although only the results
averaged over all temporal segments are shown in Figure 4.7, the agreement for each
temporal segment is roughly the same as the averaged results.

Figure 4.7: Contour plots of the comparison between 𝐸𝑢 (𝒌) and 𝑉 (𝒌). The top
row (a - c) are 𝐸𝑢 (𝒌), the spectral turbulent kinetic energy of 𝒖̃ with a log scale
colorbar, and the bottom row (d - f ) are 𝑉 (𝒌)/𝐸𝑢 (𝒌) with a linear colorbar. The
three columns are 𝜔 = 0, 0.166, 25.088, and the black contour lines in all subplots
are the energy level of 10−12.
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4.5 Conclusion
In this chapter, the modified direct numerical simulation necessitated by the non-
standard data requirements is discussed. The Fourier space analysis benefits from
the constant time stepping of the DNS which provides equally spaced time snapshots.
Additionally, the high sampling rate allows for the resolving of most dynamically
relevant temporal frequencies and the large amount of snapshots allows for the
averaging over multiple temporal segments for improved convergence. Finally, a
low pass filter in time is inserted into the DNS code prior to down-sampling to
remove aliasing, which is a method not utilized in previous numerical simulations.
These modifications to the DNS result in a good agreement between the left and
right hand sides of the input-output formulation: 𝒖̃ = H 𝒇 . This good agreement is
demonstrated in this chapter for a range of wavenumber-frequency triplets, validating
our numerical simulation and Fourier analysis.
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C h a p t e r 5

SPATIO-TEMPORAL CHARACTERISTICS OF THE TRIADIC
INTERACTIONS

In this chapter, the non-linear triadic interactions are analyzed to provide new
insights. We start by defining the forcing and response coefficients for each triadic
interaction, which are used to quantify the importance in terms of the amount
of contribution to the forcing and the velocity responses. We then discuss the
physical interpretation and properties of the coefficients, followed by the relation
to the bispectrum. We then compute these coefficients for the turbulent channel
DNS introduced in Chapter 4, and analyze the different types of triadic interactions.
Finally, the coefficients are utilized to quantitatively analyze the triadic interactions
captured in quasi-linear and generalized quasi-linear analyses1.

5.1 Formulation
As introduced in section 2.2, equation (2.5) shows that the linear resolvent operator
does not modify the scale of the input, while equation (2.19) shows that the non-
linear forcing is responsible for the coupling of different scales, and therefore the
distribution of energy between scales. The triadic interactions are visually depicted
in Figure 5.1. First, the velocity fields at 𝒌1 non-linearly interact with the velocity
gradients at 𝒌2, generating part of the forcing at 𝒌3 = 𝒌1+ 𝒌2. This triadic contribu-
tion to the forcing is studied using the forcing coefficients 𝑃(𝒌1, 𝒌2) (defined later).
The forcing at 𝒌3 is then passed through the linear resolvent operator to generate the
velocity response at the same wavenumber-frequency triplet 𝒌3. This triadic contri-
bution to the velocity response, which involves both the non-linear convolution and
the linear resolvent operator, is studied using the response coefficients 𝑅(𝒌1, 𝒌2)
(also defined later).

5.1.1 Triadic Contributions to the Forcing
The contribution from the interaction between a pair of triplets 𝒌1 and 𝒌2 to the
resulting forcing at 𝒌3 = 𝒌1 + 𝒌2, can be quantified through a forcing coefficient

1The author would like to thank Dr. Gregory Chini for the valuable insights provided on
quasi-linear and generalized quasi-linear analyses.
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Figure 5.1: Diagram for the triadic interactions. The red inner box contains the tri-
adic contributions to the non-linear forcing, studied using the coefficients 𝑃(𝒌1, 𝒌2),
and the black outer box contains the triadic contributions to the response, studied
using the coefficients 𝑅(𝒌1, 𝒌2).

𝑃(𝒌1, 𝒌2):

𝑃(𝒌1, 𝒌2) = −E
{
⟨ 𝒇 (𝒌1 + 𝒌2, 𝑦), 𝒖(𝒌1, 𝑦) · ∇𝒖(𝒌2, 𝑦)⟩𝑦

}
, (5.1)

which is the inner product between −𝒖(𝒌1, 𝑦) · ∇𝒖(𝒌2, 𝑦) and 𝒇 (𝒌3, 𝑦) = 𝒇 (𝒌1 +
𝒌2, 𝑦). The inner product ⟨𝑎(𝑦), 𝑏(𝑦)⟩𝑦 is previously defined in equation (4.14) and
E {·} is the expected value operator, indicating an average over all temporal segments
(or different realizations). In this chapter, three separate wall-normal (𝑦) ranges will
be used, loosely corresponding to the near-wall 𝑦+ ∈ (0, 30), overlap 𝑦+ ∈ (30, 200),
and wake regions 𝑦+ ∈ (200, 550), to study the wall-normal variations of these
coefficients.

The intentionally un-normalized coefficients take the forcing magnitude into con-
sideration, e.g. a large fractional contribution to a small magnitude forcing is treated
as unimportant. Note that these coefficients, defined for DNS Fourier modes, differ
from those, e.g. in McKeon (2017), which are defined for the interactions between
resolvent modes. To facilitate computation and visualization of 𝑃(𝒌1, 𝒌2), we define
𝑃𝑘𝑥 , 𝑃𝑘𝑧 , and 𝑃𝜔 by summation in 4 of the 6 dimensions:

𝑃𝑘𝑥 (𝑘𝑥1, 𝑘𝑥2) =
∑︁
𝑘𝑧1

∑︁
𝑘𝑧2

∑︁
𝜔1

∑︁
𝜔2

𝑃(𝒌1, 𝒌2), (5.2a)

𝑃𝑘𝑧 (𝑘𝑧1, 𝑘𝑧2) =
∑︁
𝑘𝑥1

∑︁
𝑘𝑥2

∑︁
𝜔1

∑︁
𝜔2

𝑃(𝒌1, 𝒌2), (5.2b)

𝑃𝜔 (𝜔1, 𝜔2) =
∑︁
𝑘𝑥1

∑︁
𝑘𝑥2

∑︁
𝑘𝑧1

∑︁
𝑘𝑧2

𝑃(𝒌1, 𝒌2). (5.2c)

𝑃𝑘𝑥 defined in equation (5.2a) describes the interaction in the streamwise direction
between 𝑘𝑥1 and 𝑘𝑥2, summed over all possible 𝑘𝑧 and 𝜔 interactions. Similarly,
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𝑃𝑘𝑧 (𝑘𝑧1, 𝑘𝑧2) describes the interaction between 𝑘𝑧1 and 𝑘𝑧2, and 𝑃𝜔 describes the
interaction between 𝜔1 and 𝜔2.

Using the Hermitian symmetry of the velocity Fourier modes, it can be shown that
the forcing coefficients are also Hermitian functions. However, they are asymmetric
about their two arguments, due to the action of the velocity gradient tensor. The
forcing coefficient satisfies:

𝑃(𝒌1, 𝒌2) = 𝑃∗(−𝒌1,−𝒌2) ≠ 𝑃(𝒌2, 𝒌1), (5.3)

with 𝑃𝑘𝑥 , 𝑃𝑘𝑧 , and 𝑃𝜔 satisfying the same property. We retain the two separate
coefficients associated with each combination of (𝒌1, 𝒌2) to maximize the informa-
tion about the dominant interactions within each triad, which will be lost under a
combined symmetric coefficient.

Utilizing equation (2.19), we can obtain the summation property of the forcing
coefficient: ∑︁

𝒌1

𝑃(𝒌1, 𝒌3 − 𝒌1) = ⟨ 𝒇 (𝒌3, 𝑦), 𝒇 (𝒌3, 𝑦)⟩𝑦 , (5.4)

where the right-hand side of the equation is the spectral energy of the forcing at 𝒌3,
and is a real positive quantity. As a result, the forcing coefficients can be interpreted
as the triadic contributions to the forcing spectral energy. The positive and negative
real parts of the coefficients represent energy injection and extraction respectively,
while the complex parts of the coefficients cancel out due to the Hermitian symmetry
described in equation (5.3), resulting in a real positive sum. Similar properties can
be obtained for 𝑃𝑘𝑥 , 𝑃𝑘𝑧 and 𝑃𝜔:∑︁

𝑘𝑥1

𝑃𝑘𝑥 (𝑘𝑥1, 𝑘𝑥3 − 𝑘𝑥1) =
∑︁
𝑘𝑧3

∑︁
𝜔3

E
{
⟨ 𝒇 (𝒌3, 𝑦), 𝒇 (𝒌3, 𝑦)⟩𝑦

}
, (5.5a)∑︁

𝑘𝑧1

𝑃𝑘𝑧 (𝑘𝑧1, 𝑘𝑧3 − 𝑘𝑧1) =
∑︁
𝑘𝑥3

∑︁
𝜔3

E
{
⟨ 𝒇 (𝒌3, 𝑦), 𝒇 (𝒌3, 𝑦)⟩𝑦

}
, (5.5b)∑︁

𝜔1

𝑃𝜔 (𝜔1, 𝜔3 − 𝜔1) =
∑︁
𝑘𝑥3

∑︁
𝑘𝑧3

E
{
⟨ 𝒇 (𝒌3, 𝑦), 𝒇 (𝒌3, 𝑦)⟩𝑦

}
. (5.5c)

5.1.2 Triadic Contributions to the Velocity Response
To study the triadic contribution from the interaction between a pair of triplets 𝒌1

and 𝒌2 to the resulting velocity response at 𝒌3 = 𝒌1 + 𝒌2, including the effect of the
linear resolvent operator, we will pass −𝒖(𝒌1, 𝑦) · ∇𝒖(𝒌2, 𝑦) through H(𝒌3, 𝑦) and
then take the inner product with the resulting velocity response 𝒖̃(𝒌3, 𝑦) to define
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the response coefficient:

𝑅(𝒌1, 𝒌2) = −E
{
⟨𝒖̃(𝒌1 + 𝒌2, 𝑦), H(𝒌1 + 𝒌2, 𝑦) [𝒖(𝒌1, 𝑦) · ∇𝒖(𝒌2, 𝑦)]⟩𝑦

}
,

(5.6)
where 𝒖̃(𝒌3, 𝑦), defined in section 4.3, are the velocity Fourier modes with a correc-
tion to remove the effect of the window function in the temporal Fourier transform.
The coefficients are again intentionally un-normalized to take the response magni-
tude into consideration. For the response coefficients, this also has the added benefit
of rejecting the errors discussed in section 4.4, as relatively large errors are observed
to predominately reside over areas with small energy, and would contribute very
little to the un-normalized response coefficients defined here.

Similar to the previous section, the 2-dimensional coefficients 𝑅𝑘𝑥 , 𝑅𝑘𝑧 , and 𝑅𝜔 are
defined by summation in 4 of the 6 dimensions:

𝑅𝑘𝑥 (𝑘𝑥1, 𝑘𝑥2) =
∑︁
𝑘𝑧1

∑︁
𝑘𝑧2

∑︁
𝜔1

∑︁
𝜔2

𝑅(𝒌1, 𝒌2), (5.7a)

𝑅𝑘𝑧 (𝑘𝑧1, 𝑘𝑧2) =
∑︁
𝑘𝑥1

∑︁
𝑘𝑥2

∑︁
𝜔1

∑︁
𝜔2

𝑅(𝒌1, 𝒌2), (5.7b)

𝑅𝜔 (𝜔1, 𝜔2) =
∑︁
𝑘𝑥1

∑︁
𝑘𝑥2

∑︁
𝑘𝑧1

∑︁
𝑘𝑧2

𝑅(𝒌1, 𝒌2). (5.7c)

The Hermitian symmetry and the asymmetry about the two arguments are also
satisfied by the response coefficient:

𝑅(𝒌1, 𝒌2) = 𝑅∗(−𝒌1,−𝒌2) ≠ 𝑅(𝒌2, 𝒌1), (5.8)

with 𝑅𝑘𝑥 , 𝑅𝑘𝑧 , and 𝑅𝜔 satisfying the same property.

Utilizing equations (2.19) and (4.7), the summation properties of the response
coefficient can also be obtained:∑︁

𝒌1

𝑅(𝒌1, 𝒌3 − 𝒌1) = E
{
⟨𝒖̃(𝒌3, 𝑦), 𝒖̃(𝒌3, 𝑦)⟩𝑦

}
, (5.9)

where the right-hand side of the equation is the spectral turbulent kinetic energy of
the velocity response at 𝒌3, and is again a real positive quantity. As a result, the
response coefficients can be interpreted as the triadic contributions to the spectral
turbulent kinetic energy (TKE). The positive and negative real parts of the coeffi-
cients represent the injection and extraction of spectral TKE at a given wavelength
or frequency, while the complex parts of the coefficients cancel out due to the Her-
mitian symmetry described in equation (5.8). Similar properties can be obtained for
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𝑅𝑘𝑥 , 𝑅𝑘𝑧 , and 𝑅𝜔:∑︁
𝑘𝑥1

𝑅𝑘𝑥 (𝑘𝑥1, 𝑘𝑥3 − 𝑘𝑥1) =
∑︁
𝑘𝑧3

∑︁
𝜔3

E
{
⟨𝒖̃(𝒌3, 𝑦), 𝒖̃(𝒌3, 𝑦)⟩𝑦

}
, (5.10a)∑︁

𝑘𝑧1

𝑅𝑘𝑧 (𝑘𝑧1, 𝑘𝑧3 − 𝑘𝑧1) =
∑︁
𝑘𝑥3

∑︁
𝜔3

E
{
⟨𝒖̃(𝒌3, 𝑦), 𝒖̃(𝒌3, 𝑦)⟩𝑦

}
, (5.10b)∑︁

𝜔1

𝑅𝜔 (𝜔1, 𝜔3 − 𝜔1) =
∑︁
𝑘𝑥3

∑︁
𝑘𝑧3

E
{
⟨𝒖̃(𝒌3, 𝑦), 𝒖̃(𝒌3, 𝑦)⟩𝑦

}
. (5.10c)

5.1.3 Alternative Forms of the Forcing and Response Coefficients
To compute the 2-dimensional coefficients 𝑃𝑘𝑥 , 𝑃𝑘𝑧 , 𝑃𝜔, 𝑅𝑘𝑥 , 𝑅𝑘𝑧 , and 𝑅𝜔, the
definitions presented in equations (5.2a)-(5.2c) and (5.7a)-(5.7c) cannot be directly
utilized as the computation of the original six-dimensional 𝑃(𝒌1, 𝒌2) and 𝑅(𝒌1, 𝒌2)
would require petabyte levels of storage with computation power and memory re-
quirements beyond currently available systems. In this section, alternative forms
of the coefficients are derived to simplify computation and provide an alternative
physical interpretation of the coefficients.

Utilizing the discrete Fourier transform pairs and the orthogonality of Fourier modes,
equivalent forms for the 2-dimensional coefficients 𝑃𝑘𝑥 , 𝑃𝑘𝑧 , and 𝑃𝜔 can be obtained
in the (𝑧, 𝑡), (𝑥, 𝑡), and (𝑥, 𝑧) domains:

𝑃𝑘𝑥 (𝑘𝑥1, 𝑘𝑥2)

= − 1
𝑁𝑧𝑁𝑡

∑︁
𝑧

∑︁
𝑡

E
{
⟨ 𝒇 (𝑘𝑥1 + 𝑘𝑥2, 𝑦, 𝑧, 𝑡), 𝒖(𝑘𝑥1, 𝑦, 𝑧, 𝑡) · ∇𝒖(𝑘𝑥2, 𝑦, 𝑧, 𝑡)⟩𝑦

}
(5.11a)

𝑃𝑘𝑧 (𝑘𝑧1, 𝑘𝑧2)

= − 1
𝑁𝑥𝑁𝑡

∑︁
𝑥

∑︁
𝑡

E
{
⟨ 𝒇 (𝑥, 𝑦, 𝑘𝑧1 + 𝑘𝑧2, 𝑡), 𝒖(𝑥, 𝑦, 𝑘𝑧1, 𝑡) · ∇𝒖(𝑥, 𝑦, 𝑘𝑧2, 𝑡)⟩𝑦

}
(5.11b)

𝑃𝜔 (𝜔1, 𝜔2)

= − 1
𝑁𝑥𝑁𝑧

∑︁
𝑥

∑︁
𝑧

E
{
⟨ 𝒇 (𝑥, 𝑦, 𝑧, 𝜔1 + 𝜔2), 𝒖(𝑥, 𝑦, 𝑧, 𝜔1) · ∇𝒖(𝑥, 𝑦, 𝑧, 𝜔2)⟩𝑦

}
.

(5.11c)

Note that 𝒖(𝑘𝑥1, 𝑦, 𝑧, 𝑡) here denotes the velocity Fourier transformed only in 𝑥, and
differs from 𝒖(𝒌1, 𝑦) in equation (5.1), which is Fourier transformed in 𝑥, 𝑧, and 𝑡.
These alternative forms are in essence an extended form of the convolution theorem.
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𝑃𝑘𝑥 and 𝑃𝑘𝑧 can now be computed in the temporal domain, while 𝑃𝜔 requires a
Fourier transform in time, the implementation of which is discussed in Chapter 4
section 4.3. Additionally, to ensure consistency across all three computations, 𝑃𝑘𝑥
and 𝑃𝑘𝑧 computed in the time domain employ the same temporal segmentation,
window functions (

√︁
𝑤(𝑡) for 𝒖 and ∇𝒖, 𝑤(𝑡) for 𝒇 as discussed in section 4.3) and

averaging over the temporal segments even though a temporal Fourier transform
is not utilized. The validity of applying the Welch method, which averages over
multiple temporal segments is discussed in appendix A.3.

These forms provide alternative physical interpretations of the forcing coefficients:
𝑃𝑘𝑥 (𝑘𝑥1, 𝑘𝑥2) can now be interpreted as quantifying the importance of interactions
between 𝑘𝑥1 and 𝑘𝑥2 averaged over all spanwise locations and time instead of a
summation over wavenumbers and frequencies in the Fourier domain. Similarly,
𝑃𝑘𝑧 describes the 𝑘𝑧 interactions averaged in 𝑥, 𝑡, and 𝑃𝜔 the𝜔 interactions averaged
in 𝑥 and 𝑧. Additionally, for the numerical computations, these alternative forms in
equations (5.11a)-(5.11c) ensure that the original 6 dimensional 𝑃(𝒌1, 𝒌2) is never
computed, reducing computation cost, memory and storage requirements, enabling
the computation to be completed on currently available systems.

For the response coefficients, we first simplify the notation utilizing the matrix form
of the inner product with weight matrix 𝑾, and introduce 𝒉(𝒌3, 𝑦):

𝒉∗(𝒌3, 𝑦) = 𝒖̃∗(𝒌3, 𝑦)𝑾H(𝒌3, 𝑦), (5.12)

which is computed in the Fourier domain for each 𝒌3. The response coefficient
𝑅(𝒌1, 𝒌2) can then be rewritten as:

𝑅(𝒌1, 𝒌2) = −E {𝒉∗(𝒌1 + 𝒌2, 𝑦) [𝒖(𝒌1, 𝑦) · ∇𝒖(𝒌2, 𝑦)]} . (5.13)

Substitute the inverse Fourier transforms into equations (5.7a)-(5.7c) for 𝑅𝑘𝑥 , 𝑅𝑘𝑧 ,
and 𝑅𝜔 and utilize the orthogonality of the Fourier modes again, and we can obtain:
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𝑅𝑘𝑥 (𝑘𝑥1, 𝑘𝑥2)

= − 1
𝑁𝑧𝑁𝑡

∑︁
𝑧

∑︁
𝑡

E {𝒉∗(𝑘𝑥1 + 𝑘𝑥2, 𝑦, 𝑧, 𝑡)𝒖(𝑘𝑥1, 𝑦, 𝑧, 𝑡)∇𝒖(𝑘𝑥2, 𝑦, 𝑧, 𝑡)} . (5.14a)

𝑅𝑘𝑧 (𝑘𝑧1, 𝑘𝑧2)

= − 1
𝑁𝑥𝑁𝑡

∑︁
𝑥

∑︁
𝑡

E {𝒉∗(𝑥, 𝑦, 𝑘𝑧1 + 𝑘𝑧2, 𝑡)𝒖(𝑥, 𝑦, 𝑘𝑧1, 𝑡)∇𝒖(𝑥, 𝑦, 𝑘𝑧2, 𝑡)} , (5.14b)

𝑅𝜔 (𝜔1, 𝜔2)

= − 1
𝑁𝑥𝑁𝑧

∑︁
𝑥

∑︁
𝑧

E {𝒉∗(𝑥, 𝑦, 𝑧, 𝜔1 + 𝜔2)𝒖(𝑥, 𝑦, 𝑧, 𝜔1)∇𝒖(𝑥, 𝑦, 𝑧, 𝜔2)} , (5.14c)

all resembling the alternative forms for𝑃𝑘𝑥 , 𝑃𝑘𝑧 , and𝑃𝜔 presented in equations (5.11a)-
(5.11c). These forms also provide the alternative interpretation of averaging in the
physical domain instead of summation over wavenumbers and frequencies. Simi-
larly, the alternative forms provide significant reductions in computation cost and
memory requirements, with 𝑅𝑘𝑥 and 𝑅𝑘𝑧 computed in the time domain employing
the same temporal segmentation, window functions, and averaging over the tem-
poral segments to ensure consistency with 𝑅𝜔. However, it should be pointed out
that 𝒉(𝒌3, 𝑦), due to the presence of the resolvent operator, is first computed in the
Fourier domain before being inverse Fourier transformed back to the physical time
domain for the computations of 𝑅𝑘𝑥 and 𝑅𝑘𝑧 using equations (5.14a) and (5.14b).

5.1.4 Relation to Triple Correlation and Bispectrum
The forcing and response coefficients studied here may be related to the more well-
known triple correlation and bispectrum. Following Lii et al. (1976), the three-point
spatial triple correlation for three state variables 𝑞𝑙 , 𝑞𝑚, and 𝑞𝑛 can be defined as:

𝑅𝑙𝑚𝑛 (𝒓, 𝒓′) = ⟨𝑞𝑙 (𝒙)𝑞𝑚 (𝒙 + 𝒓)𝑞𝑛 (𝒙 + 𝒓′)⟩𝒙 , (5.15)

where ⟨·⟩𝒙 represents a spatial average. Two triple spatial Fourier transforms of
𝑅𝑙𝑚𝑛 (𝒓, 𝒓′) in 𝒓, 𝒓′ lead to the three-dimensional spatial bispectrum:

𝐵𝑙𝑚𝑛 ( 𝒌̂, 𝒌̂′) = 𝑞∗𝑙 ( 𝒌̂ + 𝒌̂′)𝑞𝑚 ( 𝒌̂)𝑞𝑛 ( 𝒌̂′). (5.16)

The forcing coefficients proposed in this work in equation (5.1) can be seen as
a spatio-temporal extension of the bispectrum, considering the spatio-temporal
wavenumbers, 𝒌, that is suitable for the analysis of wall-bounded flows with ho-
mogeneous directions of 𝑥, 𝑧, and 𝑡 rather than the spatial wavenumbers, 𝒌̂. An
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additional difference is that forcing coefficients in this work are specifically designed
to study the contribution of an interacting pair on the resulting forcing, which to
our knowledge has not been studied before. The three contributing terms to the
interaction coefficients are the velocity 𝒖, velocity gradient ∇𝒖, and forcing 𝒇 in
contrast to previous studies that focused more on the three terms being the same
flow quantity, for example, 𝜕𝑢/𝜕𝑥 in Lii et al. (1976) to study the non-linear energy
transfer between scales and velocity 𝒖 in Schmidt (2020), where the bispectral mode
decomposition is introduced to compute modes associated with triadic interactions
through maximization of the integral bispectral density.

On the other hand, the response coefficients proposed in equation (5.6) can be
considered as a weighted version of the spatio-temporal extension to the bispectrum,
which includes the effect of the linear resolvent operator, acting as the weight matrix.
Traditional bispectrum analyses such as ⟨𝑢(𝒌1 + 𝒌2, 𝑦), 𝑢(𝒌1, 𝑦)𝑢(𝒌2, 𝑦)⟩𝑦 or the
extension ⟨𝒖(𝒌1 + 𝒌2, 𝑦), 𝒖(𝒌1, 𝑦) · ∇𝒖(𝒌2, 𝑦)⟩𝑦 are directly related to the turbulent
transport term in equation (2.23), and identifies the transfer of energy between
different triplets. However, without the linear resolvent operator, the effects of other
terms in the spectral TKE equation (2.23), such as viscosity, pressure, and production
by the mean shear are not accounted for. For example, energy transfer from one
pair of (𝒌1, 𝒌2) to 𝒌3 = 𝒌1 + 𝒌2 with energy distributed mainly at a wall-normal
location with strong mean shear could potentially increase the mode amplitude at this
location and induce a stronger production, resulting in some energy amplification,
therefore contributing more significantly to the spectral TKE at 𝒌3, while another
pair transferring energy to the same 𝒌3 but with energy distributed mainly at another
𝑦 location with weak mean shear will not have this effect. The inclusion of the linear
resolvent operator as a weight matrix accounts for these mechanisms, and therefore
provides a new and more complete picture of the effects of the triadic energy transfer
on the resulting spectral TKE. Additionally, as shown in equation (2.22), when the
forcing is multiplied by the resolvent operator, the irrotational part, which does
not affect the velocity response, is naturally eliminated. Therefore, the response
coefficient defined in equation (5.6) naturally removes the effect of the inactive
irrotational forcing, which differs from both the forcing coefficients defined in
equation (5.1) and the bispectrum analyses.

5.2 Spatio-temporal Characteristics of the Nonlinear Interactions
In Figure 5.2, Feynman diagrams depicting important triadic interactions are plotted.
These six different types of interactions represent different regions in Figures 5.3,
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5.4, and 5.5, which are the magnitude of the streamwise, spanwise, and tempo-
ral coefficients respectively. In Figures 5.3-5.5, subplots (a - d) are the forcing
coefficients and (e - h) are the response coefficients, corresponding to different 𝑦
integration ranges for the inner product defined in equation (4.14): all 𝑦, followed
by limits corresponding loosely to the near-wall, overlap, and wake regions.

The streamwise, spanwise wavenumbers and temporal frequency for the velocity
fields, 𝑘𝑥1, 𝑘𝑧1, 𝜔1, are on the vertical axis of all figures, and 𝑘𝑥2, 𝑘𝑧2, 𝜔2 for the
velocity gradients are on the horizontal axis. Lines with a slope of −1 correspond to
constant 𝑘𝑥3 = 𝑘𝑥1 + 𝑘𝑥2, 𝑘𝑧3 = 𝑘𝑧1 + 𝑘𝑧2, and 𝜔3 = 𝜔1 +𝜔2 for the resulting forcing
or response; the extremum values of 𝑘𝑥3 = ±127.5, 𝑘𝑧3 = ±255, and 𝜔3 = ±42.53
reflect the maximum 𝑘𝑥 , 𝑘𝑧, and 𝜔 retained by the DNS and the temporal Fourier
analysis. Four quadrants of (𝑘𝑥1, 𝑘𝑥2), (𝑘𝑧1, 𝑘𝑧2), and (𝜔1, 𝜔2) are shown in subplots
(a, e) for completeness, while the symmetry discussed in equations (5.3) and (5.8) is
exploited for subsequent subplots (b - d) and (f - h) in which only 𝑘𝑥1, 𝑘𝑧1, 𝜔1 ≥ 0 are
shown. To highlight the details of the coefficients, the same logarithmic color scale
spanning multiple orders of magnitude is used throughout the different 𝑦 integration
ranges. It should be noted that part of the differences in magnitude between subplots
(b - d) and between subplots (f - h) are simply attributed to the different sizes of
the 𝑦 integration domains. The inserts in subplots (a, e) of Figures 5.3-5.5 are
representations of the central rectangular regions enclosed in the dotted white lines
using linear colorbars. The diagonal white dotted lines with −1 slopes in subplots
(a, e) in Figures 5.3-5.5 mark the locations of [𝑘𝑥3, 𝑘𝑧3, 𝜔3] = [4, 28, 2.492],
a representative mode for the near wall cycle used in Chapter 6. This mode has
a wavespeed of 𝑐3 = 𝜔3/𝑘𝑥3 = 0.62, and corresponds to 𝜆+𝑥 = 865, 𝜆+𝑧 = 124,
𝜔+

3 = 0.0953, and 𝑐+3 = 𝜔+
3 /𝑘

+
𝑥3 = 13 in inner scales. In the inserts of subplots

(a, e), the lines are plotted with black dashed lines instead for better contrast in the
figures.

Figures 5.3-5.5 reveal three dominant bands with high magnitudes for all coefficients:
the horizontal, vertical, and diagonal bands, centered around 𝒌1, 𝒌2, and 𝒌3 ≈ 0
respectively. These bands are all nonlinear interactions involving the large/slow
scales of the flow and are visually represented by Feynman diagrams in Figures 5.2(a
- c).

In this chapter, we are focusing on the averaged result over all five temporal seg-
ments. In Appendix C, we will study the variation of these coefficients over the
different temporal segments and demonstrate that the overall structures of these
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results are robust and sufficiently converged. However, we will also demonstrate in
Appendix C that some of the transitional regions between constructive and destruc-
tive interference will require more data to reduce the variations for future studies
focusing on these regions.

Figure 5.2: Feynman diagrams depicting the important triadic interactions observed
in the forcing and response coefficients. Subplots (a), (b), (c) are for the horizontal,
vertical, and diagonal bands of high magnitudes shown in Figures 5.3-5.5. Subplots
(d), (e), and (f ) are for the central region, the top-left corners, and the left or right
corners of the horizontal bands in Figures 5.3-5.5.

5.2.1 Triadic Interactions in the Streamwise Direction
Starting with the streamwise forcing and response coefficients

��𝑃𝑘𝑥 (𝑘𝑥1, 𝑘𝑥2)�� and��𝑅𝑘𝑥 (𝑘𝑥1, 𝑘𝑥2)�� in Figures 5.3(a, e), a dominant horizontal band is observed for the
forcing, while in the response, it has relatively high magnitude without being the
most dominating band. This horizontal band, centered around 𝑘𝑥1 = 0, corresponds
to the interaction between the streamwise large-scale velocity modes with velocity
gradients at all scales, depicted in the Feynman diagram in Figure 5.2(a).

For the forcing coefficient in Figures 5.3(a - d), the high values in the horizontal
band are not surprising, as the streamwise large-scale structures at 𝑘𝑥 = 0 and ±0.5
are the most energetic modes in the flow field. In addition, these modes have a tall
wall-normal extent as shown in Figure 4.6, and therefore are capable of interacting
with modes of any size, centered at any 𝑦 location. The combined effect leads to
a significant amount of forcing energy generated across a range of scales by these
large-scale modes, manifesting as the energetic horizontal band. Additionally, the
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Figure 5.3: Heatmaps of the magnitude of (a - d) the streamwise forcing coefficients��𝑃𝑘𝑥 (𝑘𝑥1, 𝑘𝑥2)��, and (e - h) the streamwise response coefficients
��𝑅𝑘𝑥 (𝑘𝑥1, 𝑘𝑥2)��.

Subplots (a - d) except the insert shares the same logarithmic colorbar, same for
subplots (e - h). The insert in (a) and (e) corresponds to representations of the
rectangular regions enclosed in the dashed white lines using linear scale colorbars.
The 𝑦-integration limits for the inner product in equation (4.14) are: (a, e) all 𝑦+; (b,
f ) 𝑦+ ∈ (0, 30); (c, g) 𝑦+ ∈ (30, 200); and (d, h) 𝑦+ ∈ (200, 550). The streamwise
wavenumber for the velocity fields, 𝑘𝑥1, is on the vertical axis; 𝑘𝑥2 for the velocity
gradient is on the horizontal axis; 𝑘𝑥3 = 𝑘𝑥1 + 𝑘𝑥2 for the resulting forcing and
response is constant along lines with slopes of −1. The diagonal white dotted lines
in (a, e) and the black dashed lines in the inserts mark the location of 𝑘𝑥3 = 4
(𝜆+𝑥 = 865).
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values in this horizontal band decay relatively slowly as |𝑘𝑥2 | increases (away from
the center), due to the compensation by the gradients, despite the velocity modes
becoming less energetic with increasing |𝑘𝑥2 |. Finally, comparing the wall-normal
variation of the horizontal band across Figures 5.3(b - d), it can be observed that
𝑃𝑘𝑥 exhibits a significant presence across all 3 𝑦 ranges due to the tall large scale
modes. However, for the left and right corners of the horizontal band (large |𝑘𝑥2 |,
Feynman diagram in Figure 5.2(f )), less energy is observed for the wake region in
Figure 5.3(d), due to the small scales having less energy at regions far from the wall.

On the other hand, in Figures 5.3(e - h), the horizontal band of the response coef-
ficient although prominent, is not the most energetic band. Further comparing the
left and right corners (large |𝑘𝑥3 |) of the horizontal band between Figures 5.3(a)
and (e), it can be observed that significant forcing is present while resulting in very
little response energy. This showcases the effect of the linear resolvent operator,
where the small scales are less amplified than the large scales. As a result, the
horizontal band of the response coefficient 𝑅𝑘𝑥 decays faster moving away from the
center (as |𝑘𝑥3 | increases), resulting in a less prominent horizontal band compared
to the forcing coefficient 𝑃𝑘𝑥 . This is consistent with Jiménez (2012), where it is
demonstrated that the energy is transferred from the large scales to the small scales
through nonlinear interactions and dissipated at the small scales through viscosity.

Focusing instead on the contributors to the small scales with high |𝑘𝑥3 | (45◦ regions
near the dash lines of 𝑘𝑥3 = ±127.5), it can be observed that the left and right cor-
ners of the horizontal bands are the dominant contributors for both the forcing and
response coefficients. These regions represent the nonlinear interactions between
large-scale velocity modes (small |𝑘𝑥1 |) and small-scale velocity gradients (large
|𝑘𝑥2 |), generating forcing and response at small scales (large |𝑘𝑥3 |), with Feynman
diagram depicted in Figure 5.2(f ). High values and dominant contributions to the
small scales from these long-range interactions (in 𝑘𝑥) indicate coherence between
the large and small scales, consistent with the superposition and modulation mech-
anisms observed in Marusic et al. (2010a).

Lower values of
��𝑃𝑘𝑥 �� and

��𝑅𝑘𝑥 �� are observed along the vertical band, centered around
𝑘𝑥2 = 0, (Feynman diagram in Figure 5.2(b)). Compared to the horizontal band, in
the vertical band, the modes contributing to the velocity and velocity gradient are
reversed in equations (5.2a) and (5.7a) (swapping 𝑘𝑥1 and 𝑘𝑥2). Spatial derivatives
for the large scale are weaker and the energy of the small scales is lower than for the
horizontal band, underscoring the asymmetry of interactions within a given triad.
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For the diagonal band with 𝑘𝑥3 ≈ 0 (Feynman diagram in Figure 5.2(c)), a weak
signature of interactions between two similar size modes generating a streamwise
large-scale forcing can be observed for the forcing coefficients in Figures 5.3(a - d).
For the response coefficients in Figures 5.3(e - h), this diagonal band is stronger,
and is the most dominant band of 𝑅𝑘𝑥 , due to the preferential amplification of the
large scale modes by the linear resolvent operator.

Within this diagonal region, forcing coefficient 𝑃𝑘𝑥 for interactions between two
large scales in the central region (Feynman diagram in Figure 5.2(d)) is stronger
than the interactions between two small scales in the corner regions (especially
evident in the linear scale inserts). This is consistent with the findings of Morra
et al. (2021), where it is demonstrated that large-scale forcing modes are mostly
the result of interactions by large-scale structures, although with a relatively weak
influence from the interactions between the smaller scales. In addition, the forcing
components generated from small-scale interactions are almost non-existent in the
outer region (shown in Figure 5.3(d)), due to the small scales having little energy
presence far from the wall. On the contrary, the response coefficient 𝑅𝑘𝑥 , with an
energetic diagonal band extending all the way to the corners in Figures 5.3(e - h),
shows that this type of interaction between small scales affecting the large scales
(Feynman diagram in Figure 5.2(e)), although having a relatively weaker influence
on the velocity response, is not a negligible effect. This phenomenon is also
demonstrated in the work of Illingworth et al. (2018) and Chapter 3 of this thesis,
where it is shown that including an eddy viscosity into the resolvent framework,
which is intended to model the effect of this type of interactions, improves the
performance of the resolvent analysis for the large scales. It should be pointed out
that Figure 5.3 examines only the magnitude of the interaction coefficients, where
large values show strong importance. The direction of energy, whether energy
injection or extraction will be examined later using the phase of the coefficients,
and it will be shown that this type of interaction between small scales weakens the
spectral TKE of the the large scales, consistent with the energy cascade (Jiménez,
2012).

Finally, it should be noted that the three bands having peak values at 𝑘𝑥1, 𝑘𝑥2, 𝑘𝑥3 = 0
is an artifact of the current numerical simulation. With the current 𝑥 domain length
of 4𝜋, energy from the unresolved large scales manifests as streamwise constant
structures at 𝑘𝑥 = 0, making it the most energetic wavenumber. It should also be
pointed out that these are still the mean-subtracted velocity fluctuations, that are
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streamwise constant, yet non-constant in spanwise direction (𝑘𝑧 ≠ 0) and/or non-
constant in time (𝜔 ≠ 0). For simulations with longer 𝑥 domain lengths, capable
of resolving the longest streaks, all three bands are likely to display dual-band
structures with large values located at 𝑘𝑥1, 𝑘𝑥2, 𝑘𝑥3 = ±𝑘𝑥𝑙 , where 𝑘𝑥𝑙 ∈ (0, 0.5) is
the streamwise wavenumber of the most energetic large scale streak. As the box
size approaches infinity, providing higher and higher resolution for the streamwise
wavenumber, these bands are expected to display some width in 𝑘𝑥 where multiple
wavenumbers very close to ±𝑘𝑥𝑙 displaying high levels of importance, with ±𝑘𝑥𝑙 as
the peak.

5.2.2 Triadic Interactions in the Spanwise Direction
The spanwise forcing and response coefficients

��𝑃𝑘𝑧 (𝑘𝑧1, 𝑘𝑧2)�� and
��𝑅𝑘𝑧 (𝑘𝑧1, 𝑘𝑧2)��, in

Figure 5.4, behave very similarly to the streamwise coefficients, with the exception
that the three bands no longer show single-banded structures located around 𝑘𝑥 ≈ 0,
but instead shows dual-band structures located at 𝑘𝑧 ≈ ±3. This is as expected since
the large-scale structures, which are the most energetic modes in the flow field, with
𝑘𝑥 = 0 and 𝑘𝑥 = 0.5 are also most energetic at 𝑘𝑧 ≈ ±3. The dual-banded structures
are very prominent for the energetic horizontal band of 𝑃𝑘𝑧 and diagonal band of
𝑅𝑘𝑧 , while less obvious for the less energetic bands.

A teardrop shaped region at high 𝑘𝑧2 and 𝑘𝑧3 values with very small magnitude is
observed in the forcing coefficient 𝑃𝑘𝑧 in Figures 5.4(a - d). This region is believed
to be not very well converged using the current data. First of all, this region involves
the highest spanwise wavenumbers in the DNS (significantly smaller scales than the
near wall cycle located around 𝑘𝑧 = 28 (𝜆+𝑧 ≈ 100)), and these wavenumbers are not
expected to be well-resolved by the DNS due to the limited number of grid points
per period. Secondly, the forcing coefficients in this region have magnitudes that are
orders of magnitude smaller, making it sensitive to numerical errors. Although the
corner areas of the results involving extreme 𝑘𝑧 values are less robust quantitatively,
the overall structure of the results is expected to remain consistent.

5.2.3 Triadic Interactions of the Temporal Frequencies
The overall structure of the frequency forcing and response coefficients |𝑃𝜔 (𝜔1, 𝜔2) |
and |𝑅𝜔 (𝜔1, 𝜔2) | plotted in Figure 5.5 are again similar to the streamwise coeffi-
cients, with the exception that the single-banded structures in the streamwise direc-
tion now becomes multi-banded. These prominent discrete high-value lines located
in the horizontal, vertical, and diagonal bands with 𝜔1, 𝜔2, 𝜔3 ≈ 0 are due to the
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Figure 5.4: Heatmaps of the magnitude of (a - d) the spanwise forcing coefficients��𝑃𝑘𝑧 (𝑘𝑧1, 𝑘𝑧2)��, and (e - h) the spanwise response coefficients
��𝑅𝑘𝑧 (𝑘𝑧1, 𝑘𝑧2)�� in the

same format as Figure 5.3. The diagonal white dotted lines in (a, e) and the black
dashed lines in the inserts mark the location of 𝑘𝑧3 = 28 (𝜆+𝑧 = 124).
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discreteness in the streamwise wavenumber 𝑘𝑥 , an artifact of the finite simulation
domain length, as similarly demonstrated in Gómez et al. (2014). The frequency can
be related to the phase speed for a given 𝒌 via 𝜔 = 𝑐 · 𝑘𝑥; at a given wavespeed, 𝑐, an
increase in 𝑘𝑥 to the next discrete wavenumber, with an increment of 0.5 fixed by the
simulation domain length, will cause 𝜔 to increase by 0.5𝑐. Therefore, increments
in 𝜔 are largest for large scales with high wavespeeds, appearing as discrete lines,
and smaller for small scales with low wavespeeds, reflected as the smooth varying
background.

A more detailed analysis reveals that the 5 most prominent lines observed in Fig-
ure 5.5 for both 𝑃𝜔 and 𝑅𝜔 are located at 𝜔 ≈ 0, ±0.4, and ±0.8. These lines
correspond well with the energetic modes at 𝑘𝑥 = 0, 𝑘𝑥 = ±0.5 (with wavespeeds of
𝑐 = 𝜔/𝑘𝑥 ≈ 0.8 shown in Figure 4.6(a)) and 𝑘𝑥 = ±1 (with 𝑐 ≈ 0.8 shown in Fig-
ure 4.6(b)) respectively. Furthermore, by observing the relative intensities between
the smooth background and discrete lines across different 𝑦 locations, it can be seen
that the former is more prominent near the wall in Figures 5.5(b, f ) where the dis-
creteness is barely visible, while away from the wall in Figures 5.5(d, h) the opposite
is true. Combined with the tall 𝑦 extent for large scales and the concentration of
energy near the wall for small scales, as demonstrated in Figure 4.6, these confirm
that the smooth background mostly shows the triadic interactions between the small
scales, while the discrete lines are mostly the result of interactions involving the
large scales. Although the discreteness is an artifact of the finite simulation domain
length, interactions involving large scales are expected to be important regardless of
the domain length.

5.2.4 Constructive and Destructive Triadic Interactions
Both the forcing and response coefficients are complex numbers, with the magni-
tude providing information about the importance of a triadic interaction, while the
phase provides information about constructive and destructive interference. From
equations (5.10a)-(5.10c), it can be observed that the response coefficients sum up
to become the spectral turbulent kinetic energy of the response modes, which are
real positive quantities. Therefore, the imaginary parts of the coefficients are be-
ing canceled out by each other, while the real parts provide information about the
constructive and destructive contributions to the spectral TKE. A positive real part
of 𝑅(𝒌1, 𝒌2) indicates that the interaction between 𝒌1 and 𝒌2 causes an increase
in spectral TKE of the response mode at 𝒌3, while a negative real part indicates
a decrease of spectral TKE. To analyze the constructive and destructive interfer-
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Figure 5.5: Heatmaps of the magnitude of (a - d) the temporal forcing coefficients
|𝑃𝜔 (𝜔1, 𝜔2) |, and (e - h) the temporal response coefficients |𝑅𝜔 (𝜔1, 𝜔2) | in the
same format as Figure 5.3. The diagonal white dotted lines in (a, e) and the black
dashed lines in the inserts mark the location of 𝜔3 = 2.492 (𝜔+

3 = 0.0953).
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ence, we utilized the phase angle of the response coefficients: a phase angle within
(+𝜋/2,−𝜋/2) or the right half plane of the complex plane indicates a positive real
part with both positive or negative imaginary part; while a phase angle within
(+𝜋/2,+𝜋) ∪ (−𝜋,−𝜋/2) or the left half plane indicates a negative real part. Since
the sign of the imaginary part is of less interest, we utilize the absolute value of
the phase angles, where |∠𝑅 | ∈ [0, 𝜋/2) indicates constructive interference or in
other words, increase of spectral TKE, and |∠𝑅 | ∈ (𝜋/2, 𝜋] indicates destructive
interference or in other words, decrease of spectral TKE. In Figures 5.6, the absolute
value of the phase of 𝑅𝑘𝑥 , 𝑅𝑘𝑧 , and 𝑅𝜔 are plotted, with phase angles close to 0 in red
indicating constructive interference and phase angles close to 𝜋 in blue indicating
destructive interference.

Figure 5.6: Heatmaps of the absolute values of the phase angles of the response co-
efficients: (a)

��∠𝑅𝑘𝑥 (𝑘𝑥1, 𝑘𝑥2)��, (b)
��∠𝑅𝑘𝑧 (𝑘𝑧1, 𝑘𝑧2)��, and (c) |∠𝑅𝜔 (𝜔1, 𝜔2) |. Phase

angles close to 0 (red) indicate constructive interference, while phase angles close
to 𝜋 (blue) indicate destructive interference.
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It should be noted that the constructive and destructive interference studied here are
different from typical studies of energy transfer focusing on the turbulent transport
term. As noted in equation (2.23), a non-linear energy transfer into a mode at 𝒌3

by turbulent transport does not necessarily result in an increase in spectral TKE
due to the presence of other linear mechanisms. However, in this study, with both
the non-linear energy transfer and linear energy amplification mechanisms studied
together, constructive or destructive interference directly indicates an increase or
decrease of the spectral TKE, providing a different perspective compared to energy
transfer studies.

The overall structure of the phase plots can be seen as a red hour-glass structure
spanning from the bottom-left to the top-right, which is obvious across all three
subplots, and a blue hour-glass structure spanning from the top-left to bottom
right, which is obvious for 𝑅𝑘𝑥 and 𝑅𝜔, but exhibits more complex behavior for
𝑅𝑘𝑧 . To analyze this structure, we will focus on lines of constant 𝒌3, which are
lines with slopes of −1, parallel to the dashed lines marking the extreme values
of 𝒌3. Equation (5.10a) indicates that summing along this line of constant 𝑘𝑥3
gives the energy of all modes at 𝑘𝑥3. Within this line, the central region with
small 𝑘𝑥1 and 𝑘𝑥2, representing the interactions between the large scales, generally
contributes positively to the energy, while the corner regions, representing the
interactions between small scales, generally reduce energy. This is consistent with
the energy cascade, where turbulent kinetic energy is being generated at the large
scales, transferred to small scales through triadic interactions, and dissipated at
the small scales by viscosity. For the phase of 𝑅𝜔, the general structure behaves
similarly. However, the central region is more fuzzy while generally remaining
red, contributing positively towards the energy. This is likely due to the fact that,
unlike 𝑘𝑥 where only large scales contribute towards low 𝑘𝑥 , for 𝜔, both large scales
with high wavespeeds and small scale with low wavespeeds can contribute to low
𝜔. This phenomenon results in the coexistence of the high-value discrete lines and
the smooth varying background in the magnitude of 𝑅𝜔 discussed in the previous
section, and mostly likely contributes to the fuzziness in the central region. For the
phase of 𝑅𝑘𝑧 , the general structure remains similar, while more complex structures
exist that would require future studies.
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5.3 Quasi-linear and Generalized Quasi-linear Contributions to the Forcing
and Response

In Figure 5.3, we observed three regions of dominant contributions to the forcing
and response, all corresponding to triadic interactions involving the streamwise large
scales, consistent with the assumptions underlying QL and GQL analyses. It should
be emphasized that 𝑃𝑘𝑥 and 𝑅𝑘𝑥 are measurements of the triadic contributions to the
total forcing and response using data from the DNS, which is a different dynamical
system compared to QL/GQL. Nevertheless, as all are mathematical approximations
to the same physical system, the following analyses should be able to provide insights
into the types non-linear interactions retained or lost in QL and GQL.

We start by decomposing the velocity 𝒖 and non-linear forcing 𝒇 in a manner
reflecting the QL and GQL restrictions (e.g. Marston et al., 2016):

𝒖 = 𝒖̄ + 𝒖̃ + 𝒖′ , (5.17)

𝒇 = 𝒇︸︷︷︸
𝑘𝑥=0

+ 𝒇︸︷︷︸
0<|𝑘𝑥 |≤Λ

+ 𝒇 ′︸︷︷︸
|𝑘𝑥 |>Λ

. (5.18)

Here 𝒖̄, 𝒇 are the streamwise averages, i.e. all modes with 𝑘𝑥 = 0. 𝒖̃ and 𝒇 contain
the large scales with 𝑘𝑥 less than or equal to the cut-off Λ, i.e. 0 < |𝑘𝑥 | ≤ Λ, and
𝒖′, 𝒇 ′ contain the residual, i.e. small scales with |𝑘𝑥 | > Λ. Note that the spatio-
temporal mean profile𝑈 with 𝒌 = (𝑘𝑥 , 𝑘𝑧, 𝜔) = (0, 0, 0) appears as part of 𝒖̄ under
this decomposition.

The three terms may be grouped to reflect QL or GQL system formulations. In QL,
Λ = 0, such that 𝒖̄ represents the base flow and 𝒖′ the perturbation, while 𝒖̃ is zero.
For GQL, the base flow consists of all contributions with 𝑘𝑥 ≤ Λ, i.e. 𝒖̄ + 𝒖̃, and 𝒖′

is the perturbation.

Figure 5.7(a) shows the triadic interactions permitted by QL/GQL in a tabular form,
with the six possibilities for the velocity or the velocity gradient listed in the six
columns, and the resulting forcing or response listed in the three rows. These
regions of interactions are also plotted in Figure 5.7(b) in a 𝑘𝑥1 vs 𝑘𝑥2 plane similar
to Figure 5.3. In this figure, the color green indicates interactions resolved in both
QL/GQL and corresponds to three lines with 𝑘𝑥1, 𝑘𝑥2, or 𝑘𝑥3 = 0 in Figure 5.7(b).
The color blue indicates additional interactions included in GQL but not in QL,
and in the limiting cases for GQL with Λ = 0, for which GQL is equivalent to
QL, the blue regions disappear, and the triple decomposition collapses to a double
decomposition. The color red indicates interactions that are modeled or neglected
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in both QL/GQL. In the limiting case for GQL with Λ ≥ max(𝑘𝑥) = 127.5, the red
regions disappear, as all the non-linear interactions included in the DNS are also
included in GQL. Finally, the hashed cells in Figure 5.7(a) indicate non-resonant,
prohibited interactions; for example, the interaction of 𝒖̄ and 𝒖̄ (both 𝑘𝑥 = 0) can
contribute to 𝒇 , 𝒖̄ (𝑘𝑥 = 0), but not 𝒇 , 𝒖̃ nor 𝒇 ′, 𝒖′. From Figure 5.7(a), it can be
observed that all triadic interactions contributing to 𝒇 , 𝒖̄ are resolved in QL/GQL,
while for 𝒇 , 𝒖̃ and 𝒇 ′, 𝒖′ only part of the triadic interactions are resolved.

Figure 5.7: The regions of triadic interactions included in QL/GQL in (a) tabular
form and (b) graphical form for comparison with Figure 5.3. The color for the table
cells and figure are green for triadic interactions resolved in both QL and GQL; blue
for additional triadic interactions included in GQL but not in QL; and red for triadic
interactions modeled or neglected in both QL and GQL. Hashed cells in the table
indicate prohibited interactions. Six special red triangular regions in the center are
labeled 1-6, marking the regions that expands as Λ increases. The interaction type
of each triangular region is also marked in the corresponding cell in the table.

Upon close inspection of the six red triangular regions in the center (labeled 1-6 in
Figure 5.7(b)), it can be observed that the three boundaries of these triangles do not
all move inwards as Λ increases. As Λ changes, an inward-moving boundary turns
red regions into blue, indicating the inclusion of more triadic interactions in GQL.
On the other hand, an outward-moving boundary turns a previously blue region red,
indicating a loss of some previously included triadic interactions. The direction of
movement of the boundary of triangular regions 1-3 are sketched in Figure 5.8. As
Λ increases, only one boundary of each triangular region 1-6 moves inwards, and
these triangular regions, having side lengths of Λ, increase in size and move further
from the center. These triangular regions eventually reach the boundary of the
figure (maximum 𝑘𝑥 retained by the DNS), then start to decrease in size as portions
of them are now outside of the figure. When Λ reaches max(𝑘𝑥) = 127.5, they
move completely out of the figure and the GQL becomes equivalent to the DNS.



74

The important consequence of this is that as Λ increases, although more triadic
interactions are being included globally, a portion of the previously included ones
are now lost. Depending on the relative importance of the newly included and lost
interactions, the increase in Λ could cause non-monotonic performance changes
under certain conditions.

Figure 5.8: The direction of boundary movement for the red triangular regions 1-3
in the Figure 5.7 as Λ increases. Triangular regions 4-6 are the mirror images of 1-3
and are omitted in this sketch.

Comparing Figure 5.7(b) with Figure 5.3, it can be seen that the QL assumptions
do indeed restrict resolved interactions to those corresponding to large forcing and
response coefficients in the DNS. The blue regions in Figure 5.7(b), which are the
additional interactions resolved in GQL, also correspond to large contributions to
the overall forcing and response in Figure 5.3. The fractional contribution of GQL-
permitted interactions to the total DNS forcing and response for varying Λ can be
quantified with the following ratios:

𝜌 𝑓 (Λ) =

∑
𝐺𝑄𝐿 (Λ) 𝑃𝑘𝑥 (𝑘𝑥1, 𝑘𝑥2)∑
𝐺𝑄𝐿 (∞) 𝑃𝑘𝑥 (𝑘𝑥1, 𝑘𝑥2)

, (5.19)

𝜌𝑟 (Λ) =

∑
𝐺𝑄𝐿 (Λ) 𝑅𝑘𝑥 (𝑘𝑥1, 𝑘𝑥2)∑
𝐺𝑄𝐿 (∞) 𝑅𝑘𝑥 (𝑘𝑥1, 𝑘𝑥2)

, (5.20)

where
∑
𝐺𝑄𝐿 (Λ) indicates a summation in the 𝑘𝑥1, 𝑘𝑥2 regions resolved by GQL with

the parameter Λ (a summation over the green and blue regions in Figure 5.7(b)).
As Λ → ∞, the GQL assumptions admit the equivalent range of interactions to the
DNS, with 𝜌 𝑓 (Λ → ∞) = 𝜌𝑟 (Λ → ∞) = 1, and Λ = 0 indicates no blue region,
with GQL equivalent to QL, and the ratios describing the fractional energy captured
by QL.

The ratios 𝜌 𝑓 (Λ) and 𝜌𝑟 (Λ) are plotted in Figure 5.9. It can be seen that for QL
(Λ = 0), a small amount of forcing energy is captured while almost all the response
energy is already captured. This is due to the fact that almost all the response energy
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is concentrated at 𝑘𝑥3 = 0 shown in the insert of Figure 5.3(e), and it is expected for
QL to perform well for this flow. However, as discussed in the previous section, the
concentration at 𝑘𝑥3 = 0 is likely the result of a small simulation domain size. With
larger domains properly resolving the streamwise large scales, the concentration is
expected to be located at small but non-zero 𝑘𝑥3, which necessitates the use of GQL.
In addition, 𝜌 𝑓 (Λ) and 𝜌𝑟 (Λ) converge rapidly, due to the summation over regions
of 𝑃𝑘𝑥 and 𝑅𝑘𝑥 , despite requiring a large number of snapshots for the convergence
of 𝑃𝑘𝑥 and 𝑅𝑘𝑥 themselves. Small differences are observed in Figure 5.9 when 𝜌 𝑓
and 𝜌𝑟 are computed using the first temporal segment rather than the average of all
five temporal segments, and therefore 𝜌 𝑓 and 𝜌𝑟 can be approximated with a short
statistically steady DNS run.

Figure 5.9: Fraction of total DNS forcing and response energy captured by interac-
tions obeying GQL assumptions for various values of Λ. The black lines are 𝜌 𝑓 (Λ)
for the forcing and the red lines are 𝜌𝑟 (Λ) for the response. For both the forcing and
response, the dashed lines are results computed using the coefficients averaged over
all five temporal segments, while the dotted lines are the results computed using
only the first temporal segment. The insert is a zoomed in view of 𝜌𝑟 (Λ).

With the previous analysis of GQL regions for all 𝑘𝑥3 dominated by the mode at
𝑘𝑥3 = 0, we now perform the analysis again for specific values of 𝑘𝑥3. The two
energy ratios are redefined:

𝛾 𝑓 (Λ, 𝑘𝑥3) =

∑
𝐺𝑄𝐿 (Λ),𝑘𝑥1+𝑘𝑥2=±𝑘𝑥3 𝑃𝑘𝑥 (𝑘𝑥1, 𝑘𝑥2)∑
𝐺𝑄𝐿 (∞),𝑘𝑥1+𝑘𝑥2=±𝑘𝑥3 𝑃𝑘𝑥 (𝑘𝑥1, 𝑘𝑥2)

, (5.21)

𝛾𝑟 (Λ, 𝑘𝑥3) =

∑
𝐺𝑄𝐿 (Λ),𝑘𝑥1+𝑘𝑥2=±𝑘𝑥3 𝑅𝑘𝑥 (𝑘𝑥1, 𝑘𝑥2)∑
𝐺𝑄𝐿 (∞),𝑘𝑥1+𝑘𝑥2=±𝑘𝑥3 𝑅𝑘𝑥 (𝑘𝑥1, 𝑘𝑥2)

. (5.22)
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The summation
∑
𝐺𝑄𝐿 (Λ),𝑘𝑥1+𝑘𝑥2=±𝑘𝑥3 , is still the summation in the 𝑘𝑥1, 𝑘𝑥2 regions

resolved by GQL with the parameter Λ (green and blue regions), with the added
restriction of 𝑘𝑥1 + 𝑘𝑥2 = ±𝑘𝑥3 (along two lines with slopes of -1 corresponding
to constant ±𝑘𝑥3). The resulting ratios are plotted in Figure 5.10 for 𝑘𝑥3 = 0.5, a
representative large scale and in Figure 5.11 for 𝑘𝑥3 = 4 (𝜆+𝑥 ≈ 900), the peak of the
near wall cycle.

Figure 5.10: Fraction of total DNS forcing and response energy captured by in-
teractions obeying GQL assumptions for various values of Λ and restricted to
𝑘𝑥3 = 𝑘𝑥1 + 𝑘𝑥2 = 0.5, a representative large scale. The black lines are 𝛾 𝑓 (Λ, 0.5)
for the forcing and the red lines are 𝛾𝑟 (Λ, 0.5) for the response. For both the forcing
and response, the dashed lines are results computed using the coefficients averaged
over all 5 temporal segments, while the dotted lines are the results computed using
only the first temporal segment.

For 𝑘𝑥3 = 0.5 in Figure 5.10, it can be observed that at Λ = 0 (QL), very little energy
for both the forcing and response are captured. This is expected as 𝑘𝑥 = 0.5 is not
contained in the large scale base flow for Λ = 0, and the only triadic interactions
included are (𝑘𝑥1, 𝑘𝑥2) = (0, 0.5) and (0.5, 0), which constitutes a small fraction
of energy for 𝑘𝑥3 = 0.5. Both 𝛾 𝑓 (Λ, 0.5) and 𝛾𝑟 (Λ, 0.5) immediately jump above
0.8 starting from Λ = 0.5. For Λ ≥ 0.5, the 𝑘𝑥 = 0.5 modes are included in the
large-scale base flow, and almost all triadic interactions contributing to 𝑘𝑥3 = 0.5
are included except for the pairs (𝑘𝑥1, 𝑘𝑥2) = (Λ + 0.5,−Λ) and (−Λ,Λ + 0.5)
(the tips of triangles 2 and 4 in Figure 5.7(b)). As Λ increases, this neglected pair
of interactions moves towards less energetic regions and the energy ratios quickly
converge to 1, with some overshoots due to the missing of destructive interference.

For 𝑘𝑥3 = 4 in Figure 5.11, corresponding to the peak of the near wall cycle, more
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Figure 5.11: Fraction of total DNS forcing and response energy captured by in-
teractions obeying GQL assumptions for various values of Λ and restricted to
𝑘𝑥3 = 𝑘𝑥1 + 𝑘𝑥2 = 4 (𝜆+𝑥 ≈ 900), the peak of the near-wall cycle, in the same
format as the previous figure.

interesting behavior is observed. The ratios start off at a low value for Λ = 0 due
to the same reason as the previous case, then steadily increase till Λ = 2 before
decreasing till Λ = 4, and finally increase steadily till convergence around 1. We
first compute the range of triadic interactions not included for given Λ:

𝑘𝑥1 ∈


(−∞,−Λ) ∪ (Λ, 4 − Λ) ∪ (4 + Λ,∞) for Λ ∈ (0, 2)
(−∞,−Λ) ∪ [4 − Λ,Λ] ∪ (4 + Λ,∞) for Λ ∈ [2, 4)
(Λ,Λ + 4] ∪ [−Λ, 4 − Λ) for Λ ∈ [4,∞)

. (5.23)

It can be seen that for Λ ∈ (0, 2), all three ranges shrink in size as Λ increases,
indicating more triadic interactions are being steadily added while none are lost.
In addition, due to the small Λ, the included regions almost exclusively contribute
to constructive interference, resulting in monotonically increasing 𝛾 𝑓 and 𝛾𝑟 . For
Λ ∈ [2, 4) however, the triangle 3 in Figure 5.7(b) is now one of the regions not
included for 𝑘𝑥3 = 4. As Λ increases, this red region increases in size, losing
triadic interactions and causing 𝛾 𝑓 and 𝛾𝑟 to decrease. Finally, for Λ ≥ 4, 𝑘𝑥3 = 4
is now included in the base flow as one of the large scales, although the ranges
of not included 𝑘𝑥1 remain constant in size (going across triangles 2 and 4 in
Figure 5.7(b)), they get pushed out to less energetic regions, resulting in increasing
𝛾 𝑓 and 𝛾𝑟 , eventually converging to 1. This phenomenon is, in fact, the standard
behavior for most (if not all) 𝑘𝑥3 ≥ 1.5, where the ratios increase for Λ ∈ (0, 𝑘𝑥3/2),
decrease for Λ ∈ [𝑘𝑥3/2, 𝑘𝑥3) and increase again for Λ ∈ [𝑘𝑥3,∞). 𝑘𝑥3 = 0.5
and 1 do not behave like this due to the non-existence of the first two ranges of Λ.
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However, it should be noted that the non-monotonic behavior is mainly located in
regions with 𝑘𝑥3 > Λ, which means it mainly affects the unresolved small scales,
and may or may not manifest itself in the resolved large scales.

With these studies, it can be observed that including a small number of 𝑘𝑥 wavenum-
bers in the base flow using GQL is very effective at capturing the important triadic
interactions for the forcing and even more effective for the response. However, the
increase in Λ does not guarantee a monotonic performance increase of GQL, due
to the morphing of the neglected regions of triadic interactions. Finally, we will
emphasize again that all the above analyses are performed using data from the DNS,
a different dynamical system compared to QL/GQL. In QL/GQL, the modes will
equilibrate at different amplitudes, shapes, and potentially phases due to the different
dynamics compared to the DNS. Therefore, capturing triadic interaction shown to
be important by the DNS data is not a sufficient condition, yet it is beneficial and
likely a necessary condition for the success of reduced models.

5.4 Conclusion and Future Directions
In this chapter, we developed a new method to characterize spatio-temporal, resonant
triadic interactions, which arise due to the quadratic non-linearity in the Navier-
Stokes equations viewed from the Fourier domain. We anticipate that this work
will be useful in identifying improved modeling of the nonlinearity, especially in
quasi-linear, generalized quasi-linear, and resolvent analyses.

We proposed forcing and response coefficients to quantify the contribution from each
pair of interacting wavenumber-frequency triplets to the resulting non-linear forcing
and velocity response. The response coefficients, although similar to traditional
bispectrum analyses, include the linear resolvent operator, providing a new and
more complete description of the effect of the triadic interactions on the resulting
turbulent kinetic energy at each wavenumber-frequency triplet.

The coefficients show the importance of interactions involving large-scale structures.
For the large scales, we observed that it is mainly driven by the interactions between
large scales, while interactions between small scales are non-negligible energy ex-
traction mechanisms, consistent with the energy cascade. For the small scales, it
is revealed that the long-range interactions between large scales and the small scale
gradients contribute significantly, consistent with the coherence revealed by ampli-
tude modulation studies which relate large-scale fluctuations to the modulation of
near-wall structures. Finally, the phases of the coefficients are also utilized to reveal
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the constructive and destructive energy contributions by the triadic interactions.

Further, the subset of the total interactions that are permitted under QL and GQL
reductions correspond well with regions of high amplitude forcing and response co-
efficients, and increasing the number of GQL-large scales, Λ, expands the permitted
interactions to increase the total forcing and response energy captured. This analy-
sis, performed only on DNS data, reinforces the modeling assumptions underlying
QL and GQL approaches, albeit without analyzing the dynamics of QL/GQL.

We emphasize that 𝜌 𝑓 , 𝜌𝑟 and 𝛾 𝑓 , 𝛾𝑟 are measurements of the contribution of the
interactions permitted under QL/GQL reductions to the total forcing and response
calculated by DNS of the full NSE. As such, it gives an indication of a possible
reason for the success of QL and GQL simulations in replicating features of wall
turbulence, without consideration of the different dynamics associated with the
restricted systems. Detailed analysis of changes in the neglected triadic interactions
as Λ changes in GQL is also performed. Due to the morphing of the neglected
regions of triadic interactions as Λ increases, certain triadic interactions can be lost
while others are being included. The relative importance between the lost and newly
included triadic interactions could cause non-monotonic performance in GQL as Λ
increases. This is shown to have a strong effect on the unresolved small scales and
may even result in complex behaviors for the resolved large scales.

For future work, it would be useful to conduct the analysis on DNS of channels
with longer streamwise domains so that the large scales can be properly resolved.
In addition, the application of this method to more complex flows would be of
great interest and could assist in the understanding of the underlying non-linear
mechanisms behind less understood flows. This method can also be applied to
a QL/GQL dataset and compare the resulting triadic interactions with the results
reported here to further the understanding of the underlying effect of the truncation of
permitted interactions under QL/GQL. Finally, the method can be further extended
to study two-point correlations in 𝑦 instead of integrating in 𝑦. However, the two
additional dimensions will lead to difficulties in computation and more so in data
visualization.
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C h a p t e r 6

TRIADIC CONTRIBUTIONS TO THE NEAR WALL CYCLE

In the previous chapter, we performed the analyses using 2-dimensional coefficients
𝑃𝑘𝑥 , 𝑃𝑘𝑧 , 𝑃𝜔, 𝑅𝑘𝑥 , 𝑅𝑘𝑧 , and 𝑅𝜔, where the interactions in 𝑘𝑥 , 𝑘𝑧, and 𝜔 are analyzed
separately. In this chapter, we will analyze individual triadic interactions that all
contribute to a single 𝒌3, a representative triplet of the near-wall cycle. We start with
a brief discussion of the selection of 𝒌3, followed by three-dimensional analyses of
the forcing and response coefficients that reveal relationships between interactions in
the streamwise and temporal directions. Finally, three individual triadic interactions
are selected to demonstrate the effect of the low-rank linear resolvent operator.

6.1 Triadic Contributions to a Single 𝒌3 Representative of the Near-wall Cycle
In this chapter, we focus on analyzing the triadic contributions to a single Fourier
mode at 𝒌3. The wavenumbers 𝑘𝑥3 = 4 and 𝑘𝑧3 = 28 are selected to represent the
near-wall cycle. They are the peaks in the pre-multiplied time-averaged streamwise
power spectra in 𝑘𝑥 − 𝑦 and 𝑘𝑧 − 𝑦 planes, and are marked with + markers in
Figures 4.2(a - b). 𝜔3 = 2.492 is then selected for being the most energetic
wavenumber at 𝑘𝑥3 = 4, 𝑘𝑧3 = 28. This resulting mode of 𝒌3 = [4, 28, 2.492]
has a wavespeed of 𝑐3 = 𝜔3/𝑘𝑥3 = 0.62, and corresponds to 𝜆+𝑥 = 865, 𝜆+𝑧 = 124,
𝜔+

3 = 0.0953, and 𝑐+3 = 𝜔+
3 /𝑘

+
𝑥3 = 13 in inner scales.

Following previous notations, the velocity Fourier modes corrected for the effect
of the window function at 𝒌3 are denoted as 𝒖̃(𝒌3, 𝑦), and the forcing Fourier
modes are denoted as 𝒇 (𝒌3, 𝑦). The Fourier modes themselves, obtained from
finite time temporal segments, have variations in both phase and amplitude across
different temporal segments (or different realizations). To improve the convergence,
we will examine the energy of the forcing and velocity Fourier modes averaged
across the different temporal segments, E

{
| 𝒇 (𝒌3, 𝑦) |2

}
and E

{
|𝒖̃(𝒌3, 𝑦) |2

}
, or in

other words the spectral TKE as a function of 𝑦. This process of averaging over
multiple temporal segments is the Welch’s method to estimate the PSD (Welch,
1967), as similarly employed in the works of Towne et al. (2018), Nogueira et al.
(2021) and Morra et al. (2021). The energy of the forcing and velocity Fourier
modes, E

{
| 𝒇 (𝒌3, 𝑦) |2

}
and E

{
|𝒖̃(𝒌3, 𝑦) |2

}
, are plotted in Figure 6.1 together with

E
{
|H (𝒌3, 𝑦) 𝒇 (𝒌3, 𝑦) |2

}
for comparison. The agreement between 𝒖̃(𝒌3, 𝑦) and
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H(𝒌3, 𝑦) 𝒇 (𝒌3, 𝑦), is first demonstrated in Chapter 4 Figure 4.7 in an 𝑦-integrated
sense for all 𝒌3. Excellent agreement is observed for low 𝜔3 modes, and good
agreement for high𝜔3 modes except those with very little energy. In this section, we
further demonstrate this excellent agreement across all 𝑦 locations, for the selected
𝒌3 representing the near-wall cycle, using the bottom row of Figure 6.1, where
very close alignment can be observed between the black lines for E

{
|𝒖̃(𝒌3, 𝑦) |2

}
and red lines for E

{
|H (𝒌3, 𝑦) 𝒇 (𝒌3, 𝑦) |2

}
. Although only the results averaged

over all temporal segments are plotted in Figure 6.1, all five individual temporal
segments at this 𝒌3 exhibit similar levels of close agreement between 𝒖̃(𝒌3, 𝑦) and
H(𝒌3, 𝑦) 𝒇 (𝒌3, 𝑦).

As shown in equation (2.19), the forcing Fourier mode at 𝒌3 is the sum of all
interactions between triadically compatible pairs of 𝒌1 and 𝒌2, with 𝒌1 + 𝒌2 = 𝒌3.
Here, we introduce the notation for the individual contributions to the forcing and
velocity Fourier modes by the interaction between 𝒌1 and 𝒌2:

𝒇 (𝒌1, 𝒌2, 𝑦) = −𝒖(𝒌1, 𝑦) · ∇𝒖(𝒌2, 𝑦), (6.1a)

𝒖̃(𝒌1, 𝒌2, 𝑦) = H(𝒌1 + 𝒌2, 𝑦) 𝒇 (𝒌1, 𝒌2, 𝑦), (6.1b)

and the energy of each term, averaged over all temporal segments, is defined as:

𝐸 𝑓 (𝒌1, 𝒌2) = E
{
⟨ 𝒇 (𝒌1, 𝒌2, 𝑦), 𝒇 (𝒌1, 𝒌2, 𝑦)⟩𝑦

}
, (6.2a)

𝐸𝑢 (𝒌1, 𝒌2) = E
{
⟨𝒖̃(𝒌1, 𝒌2, 𝑦), 𝒖̃(𝒌1, 𝒌2, 𝑦)⟩𝑦

}
, (6.2b)

with the inner product ⟨· , ·⟩𝑦 defined previously in equation (4.14). Utilizing the
convolution form of the non-linear forcing given in equation (2.19), it can be shown
that:

𝒇 (𝒌3, 𝑦) =
∑︁
𝒌1

𝒇 (𝒌1, 𝒌3 − 𝒌1, 𝑦), (6.3a)

𝒖̃(𝒌3, 𝑦) =
∑︁
𝒌1

𝒖̃(𝒌1, 𝒌3 − 𝒌1, 𝑦). (6.3b)

The relationships of these quantities are visually represented by the diagram in
Figure 6.2. In the blue box 1, all quantities are the DNS velocity Fourier modes and
their gradients. The different pairs of (𝒌1, 𝒌2) are all triadically compatible with
the selected 𝒌3 with 𝒌1 + 𝒌2 = 𝒌3. Each pair non-linearly interacts and generates
a forcing 𝒇 (𝒌1, 𝒌2, 𝑦), defined in equation (6.1a) and is located within the red box
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Figure 6.1: Spectral energy of Fourier modes for 𝒌3 = 𝒌1 + 𝒌2 = [4, 28, 2.492]
averaged over all temporal segments. The top row (a - c) are the three components
of E

{
| 𝒇 (𝒌3, 𝑦) |2

}
, the energy of the forcing Fourier modes. The black solid lines

in bottom row (d - f ) are the three components of E
{
|𝒖̃(𝒌3, 𝑦) |2

}
, the energy of the

velocity Fourier modes corrected for the effect of the window function, and the red
dashed lines are for E

{
|H (𝒌3, 𝑦) 𝒇 (𝒌3, 𝑦) |2

}
.
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Figure 6.2: Diagram for the triadic interactions showing individual contributions
toward the forcing and velocity Fourier modes by interactions between 𝒌1 and 𝒌2
that are triadically compatible with 𝒌3.

2. Equation (6.3a) indicates that the sum of everything in the red box 2 gives
𝒇 (𝒌3, 𝑦), the DNS forcing Fourier mode at 𝒌3. Multiplying 𝒇 (𝒌1, 𝒌2, 𝑦) by the
linear resolvent operator at 𝒌3 gives the triadic contributions to the velocities by
this pair of (𝒌1, 𝒌2), denoted as 𝒖̃(𝒌1, 𝒌2, 𝑦), and defined in equation (6.1b). And
finally, equation (6.3b) indicates that the sum of everything in black box 3 gives
𝒖̃(𝒌3, 𝑦), the DNS velocity Fourier mode at 𝒌3 corrected for the effect of the window
function.

6.2 3-dimensional Analyses of Forcing and Response Coefficients
In the previous chapter, the triadic interactions are studied using the two-dimensional
forcing and response coefficients: 𝑃𝑘𝑥 , 𝑃𝑘𝑧 , 𝑃𝜔, 𝑅𝑘𝑥 , 𝑅𝑘𝑧 , and 𝑅𝜔, where the
streamwise, spanwise, and temporal interactions are each studied separately. In this
section, with a fixed 𝒌3, the original 6-dimensional forcing and response coeffi-
cients 𝑃(𝒌1, 𝒌2) and 𝑅(𝒌1, 𝒌2) defined in equations (5.1) and (5.6) collapse into
3-dimensional quantities, which can be computed and stored with reasonable re-
sources, and can reveal additional information about the spatio-temporal nature of
the non-linear interactions.
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The magnitude of the forcing and response coefficients are plotted in Figure 6.3 with
log scale color bars. First of all, it can be observed that the majority of the high-
value markers reside towards the center, indicating that the large-scale structures
have dominant contributions as observed in the last chapter. However, the largest
magnitude in the figures are 2.2 × 10−10 for 𝑃, and 2.0 × 10−9 for 𝑅. These small
values are the result of the low energy for this 𝒌3 mode. Individual near wall cycle
modes are expected to have low energy levels, and the energy of this selected mode
of 𝒌3 = [4, 28, 2.492] is 1.3 × 10−8. As a result, the largest magnitude of 𝑅,
2.0× 10−9 is in fact 15% of the energy level, and is a major contributor towards this
representative mode of the near wall cycle. It should also be pointed out that this
chapter is directed towards studying the spatio-temporal nature of the forcing and
response coefficients and not for studying the most important triadic interactions in
the entire flow. As a result, this mode of 𝒌3 = [4, 28, 2.492], with low energy level,
is selected to represent the near wall cycle. For studying the most important triadic
interactions in the entire flow, a 𝒌3 mode representative of the large scale structures
should be selected. Results for triadic contributions towards a representative large
scale is included in Appendix B.1.

Additionally, it can be observed that most of the high-value markers reside near a
single plane with an almost constant 𝑐1 = 𝜔1/𝑘𝑥1. This is especially evident in
Figure 6.4, where both the forcing and response coefficients are summed in 𝑘𝑧1

and plotted as contour plots in the 𝑘𝑥1 − 𝜔1 plane. In Figure 6.4, three different
wavespeeds 𝑐1 are also plotted: the dash-dotted lines for 𝑐1 = 𝜔1/𝑘𝑥1 = 1, where
the wavespeed matches the center-line velocity; the dashed lines for 𝑐1 = 𝑐3 = 0.63,
the wavespeed of the selected 𝒌3; and the dotted lines for 𝑐1 = 0.3 (𝑐+1 = 6). It
can be observed that most of the energetic regions are bounded between 𝑐+1 = 6
and 𝑐1 = 1, centering roughly around 𝑐1 = 𝑐3 = 0.63. This indicates that the main
contributing triads are located roughly around 𝑐1 = 𝑐2 = 𝑐3. Note that although the
figures only show the lines with 𝑐1 = 𝑐3, they are identical to the 𝑐2 = 𝑐3 lines, as
it can be proved that 𝑐1 = 𝑐3 if and only if 𝑐2 = 𝑐3 using the triadic compatibility
constraint.

To understand the reason behind this phenomenon that triadic interactions located
closely around 𝑐1 = 𝑐2 = 𝑐3 contribute the most, we start by examining the energy
of the forcing and response generated by the triads 𝒌1 and 𝒌2 = 𝒌3 − 𝒌1. In
Figure 6.5(a), the energy 𝐸 𝑓 (𝒌1, 𝒌2) and 6.5(b), the energy 𝐸𝑢 (𝒌1, 𝒌2) is summed
in 𝑘𝑧1 and plotted in 𝑘𝑥1 −𝜔1 plane similar to Figure 6.4 with the same wavespeeds
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Figure 6.3: Magnitude of (a) 𝑃(𝒌1, 𝒌3 − 𝒌1), the forcing coefficients and (b)
𝑅(𝒌1, 𝒌3 − 𝒌1), the response coefficients as functions of 𝒌1 = [𝑘𝑥1, 𝑘𝑧1, 𝜔1] with
log scale color bars for 𝒌3 = 𝒌1 + 𝒌2 = [4, 28, 2.492] . The opacity of each marker
is also linearly proportional to log10 of the magnitudes. Points with magnitude less
than 1% of the peak values are not plotted. The + markers in both figures denote the
location of 𝒌3, and the blue planes mark the location of 𝑐1 = 𝜔1/𝑘𝑥1 = 𝑐3 = 0.62.
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Figure 6.4: Magnitude of (a)
∑
𝑘𝑧1 𝑃(𝒌1, 𝒌3 − 𝒌1), the forcing coefficients summed

in 𝑘𝑧1 and plotted as functions of 𝑘𝑥1 and 𝜔1 for 𝒌3 = [4, 28, 2.492], and (b)∑
𝑘𝑧1 𝑅(𝒌1, 𝒌3 − 𝒌1), the response coefficients. The black dash-dotted lines in

both figures mark the wavespeed 𝑐1 = 𝜔/𝑘𝑥 = 1; the black dashed lines for
𝑐1 = 𝑐2 = 𝑐3 = 0.63, the wavespeed of the selected 𝒌3; and the black dotted lines
for 𝑐1 = 0.3 (𝑐+1 = 6). The + markers in both figures denote the locations of 𝒌3.
Subplot (a) includes an additional set of red lines, with the red dash-dotted line for
𝑐2 = 1 and red dotted line for 𝑐2 = 0.3 (𝑐+2 = 6).

marked. In Figure 6.5(c), 𝐸𝑢 (𝒌), the 𝑦-integrated turbulent kinetic energy of the
DNS velocity Fourier modes, with definition given in equation (4.13), is summed in
𝑘𝑧 and plotted in 𝑘𝑥 −𝜔 plane. Comparing the three figures, it can be observed that
while the energetic regions of the DNS velocity Fourier modes are located much
closer to 𝑐 = 1, the energetic regions of the triadically generated forcing 𝐸 𝑓 (𝒌1, 𝒌2)
are located much closer to 𝑐1 = 𝑐2 = 𝑐3, and the triadically generated response
𝐸𝑢 (𝒌1, 𝒌2) almost exactly on 𝑐1 = 𝑐2 = 𝑐3.

However, the triadically generated forcing 𝒇 (𝒌1, 𝒌2, 𝑦) is the product between the
DNS velocity Fourier modes at 𝒌1 and the gradient of DNS velocity Fourier modes
at 𝒌2. In Figure 6.6, three sets of contours are plotted together with two sets of axes.
In Figure 6.7, a set of exaggerated illustrations are plotted to highlight the features of
Figure 6.6. First of all, each point in the Figures 6.6 and 6.7 represents a particular
triadic interaction that contributes to the selected 𝒌3, with 𝑘𝑥1 and 𝜔1 given on the
bottom and left axes, and 𝑘𝑥2 and 𝜔2 given on the top and right axes. The top and
right axes for 𝑘𝑥2 and 𝜔2 are flipped and shifted so that the triadic compatibility
constraint is satisfied for all points in the figures. For example, in Figure 6.7(a), the
point with [𝑘𝑥1, 𝜔1] = [0, 0], [𝑘𝑥2, 𝜔2] = [𝑘𝑥3, 𝜔3], representing the origin of the
𝑘𝑥1 −𝜔1 axes, is marked with the black X, and the point with [𝑘𝑥1, 𝜔1] = [𝑘𝑥3, 𝜔3],
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Figure 6.5: Contour plots of (a)
∑
𝑘𝑧1 𝐸 𝑓 (𝒌1, 𝒌3 − 𝒌1), the forcing energy and (b)∑

𝑘𝑧1 𝐸𝑢 (𝒌1, 𝒌3 − 𝒌1), the response energy generated by the interactions between
𝒌1 and 𝒌3 − 𝒌1 summed in 𝑘𝑧1 and plotted as a function of 𝑘𝑥1 and 𝜔1 for 𝒌3 =

[4, 28, 2.492]. Subplot (c) is the contour of
∑
𝑘𝑧
𝐸𝑢 (𝒌), the 𝑦 integrated kinetic

energy of the DNS Fourier modes summed in 𝑘𝑧 and plotted as a function of 𝑘𝑥 and
𝜔. The three lines mark the same wavespeeds as Figure 6.4: dash-dotted lines for
𝑐1 = 1, dashed lines for 𝑐1 = 𝑐2 = 𝑐3 = 0.63, and dotted lines for 𝑐+1 = 6.

[𝑘𝑥2, 𝜔2] = [0, 0], representing the origin of the 𝑘𝑥2 − 𝜔2 axes, is marked with the
red X. Both points lie on the line with 𝑐1 = 𝑐2 = 𝑐3 plotted in blue dotted line and
are triadically compatible with 𝒌3. The shift in the 𝑘𝑥2, 𝜔2 axes are marked with
the arrows. In Figures 6.6 and 6.7(b), the black dashed contour lines are the energy
of the DNS velocity Fourier modes at 𝒌1, and the red dashed contour lines are the
energy at 𝒌2. They are both the same data as plotted in Figure 6.5(c), with the red
ones shifted to the right by 𝑘𝑥3 and to the top by 𝜔3 (the flipping of 𝑘𝑥2 and 𝜔2

together does not change the red contour since the energy is symmetric about the
origin). As seen from Figure 6.5(c), 𝐸𝑢 (𝒌) has a peak roughly aligned with 𝑐 = 1,
which are plotted in the illustration Figure 6.7(b) with the black and red dotted
lines. Finally, the blue dash-dotted contour lines in Figure 6.6 and the illustrating
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Figure 6.7(c) represent the energy of the triadically generated forcing 𝒇 (𝒌1, 𝒌2, 𝑦),
which is the same data from Figure 6.5(a), and can be seen to align closely to the
line of 𝑐1 = 𝑐2 = 𝑐3. For all three contour plots in Figure 6.6, the plotted contour
lines are 1% of the peak value of each data set.

From Figure 6.5(c), it can be observed that the contour lines are denser near the
middle and more sparse away from the center, suggesting that the energy of the
Fourier modes changes more rapidly near the center. Therefore, at the bottom left
corner of Figure 6.6, where it is closer to the center of the black contour (𝒌1 = 0),
and further from the center of the red contour (𝒌2 = 0), the peak in 𝐸 𝑓 (𝒌1, 𝒌2)
tends to align more with the black contours to take full advantage of larger energy
from 𝒖(𝒌1, 𝑦), while receiving little penalty from moving even further from the
center of the red contours. As a result, the blue contours for 𝐸 𝑓 (𝒌1, 𝒌2) can be
seen to align more with the black contours near the bottom left, and similarly align
more with the red contours near the top right. The amount of right and top shift
of red contour lines from the black is given by 𝑘𝑥3 and 𝜔3, or in other words
shifted along the line of 𝑐1 = 𝑐2 = 𝑐3. This results in the energy of the generated
forcing 𝐸 𝑓 (𝒌1, 𝒌3 − 𝒌1) having a peak much more closely aligned with the line of
𝑐1 = 𝑐2 = 𝑐3 as observed in Figure 6.5(a). Additionally, the response energy is
further tilted towards 𝑐1 = 𝑐2 = 𝑐3 as observed in Figure 6.5(b), which is due to
the effect of the linear resolvent operator, and would be interesting topics for future
studies.

Finally, it should be noted that although the forcing and response coefficients 𝑃 and
𝑅 in Figure 6.4 seem to be largely bounded by 𝑐1 = 1 and 𝑐+1 = 6, these two lines
are only meant to be considered as references instead of bounds. This is especially
true when around 𝑘𝑥1 = 0, where the interpretation of the wavespeed fails, and a
non-negligible amount of energy lies outside of the two lines. Additionally, the
presence of 𝑐2 as demonstrated in Figure 6.4(a) with the red lines also complicates
this matter, as it provides another set of references. Lastly, the large-scale modes
near 𝑘𝑥 = 0 are also the most energetic modes, resulting in a higher level of energy
overall, as evident by the non-negligible energy outside of the two reference lines in
Figure 6.5(c).

In conclusion, although the triadic compatibility constraint of 𝒌1 + 𝒌2 = 𝒌3 does
not impose any requirement on the relationship between wavespeeds 𝑐1, 𝑐2, and
𝑐3, the quadratic nature of the non-linear forcing causes triads with three similar
wavespeeds to contribute more towards both the forcing and response Fourier modes.
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Figure 6.6: Contour lines for the 𝑦-integrated energy of 𝒖(𝒌1, 𝑦) in black dashed
line, energy of 𝒖(𝒌2, 𝑦) in red dashed lines, and 𝐸 𝑓 (𝒌1, 𝒌2), the energy of the
triadically generated forcing from interactions between 𝒌1 and 𝒌2 in blue dotted
lines. All points in the figure have 𝑘𝑥1 and 𝜔1 given by the bottom and left axes, and
𝑘𝑥2 and 𝜔2 given by the top and right axes, all of which are triadically compatible
with 𝒌3 = [4, 28, 2.492].



90

Figure 6.7: Exaggerated illustrations of the features in Figure 6.6. Subplot (a)
illustrates the shift of the 𝑘𝑥2−𝜔2 axes along the line 𝑐1 = 𝑐2 = 𝑐3, and the origin of
the two sets of axes are marked with X. Subplot (b) illustrates the energy of the DNS
velocity Fourier modes at 𝒌1 and 𝒌2, plotted in the black and red contour lines, and
each aligned roughly with 𝑐1 = 1 (black dotted line) and 𝑐2 = 1 (red dotted line).
Subplot (c) illustrates the energy of the triadically generated forcing 𝐸 𝑓 (𝒌1, 𝒌2),
plotted in blue dotted lines, showing a close alignment with 𝑐1 = 𝑐2 = 𝑐3.
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This result is likely true for most (if not all) cases (with a representative large scale
mode shown in appendix B.1), with future work needed to verify this for other 𝒌3

triplets. In addition, the shape of the triadically generated forcing and the linear
resolvent operator might also play a role in this phenomenon and would be interesting
topics for future studies.

6.3 Effect of the Linear Resolvent Operator
In this section, we will analyze individual triadic interactions to examine the effect of
the linear resolvent operator. The resolvent operator at 𝒌3 can be decomposed using
the SVD in equation (2.17) to obtain the response and forcing resolvent modes at 𝒌3,
denoted as 𝜓𝑞 (𝒌3, 𝑦) and 𝜙𝑞 (𝒌3, 𝑦) respectively, and the singular values 𝜎𝑞 (𝒌3),
which show the amplification by the resolvent operator at each mode. The non-linear
weights 𝜒𝑞 (𝒌3) obtained by projecting the forcing Fourier modes 𝒇 (𝒌3, 𝑦) onto the
resolvent forcing modes 𝜙𝑞 (𝒌3, 𝑦) are defined as:

𝜒𝑞 (𝒌3) =
〈
𝜙𝑞 (𝒌3, 𝑦), 𝒇 (𝒌3, 𝑦)

〉
𝑦
. (6.4)

Similarly, individual triadic contributions to the forcing, 𝒇 (𝒌1, 𝒌2, 𝑦), can also be
projected and 𝜒𝑞 (𝒌1, 𝒌2) defined as:

𝜒𝑞 (𝒌1, 𝒌2) =
〈
𝜙𝑞 (𝒌1 + 𝒌2, 𝑦), 𝒇 (𝒌1, 𝒌2, 𝑦)

〉
𝑦
. (6.5)

The Fourier forcing and response modes can therefore be reconstructed using the
following as a result of the orthonormality of the response and forcing resolvent
modes:

𝒇 (𝒌3, 𝑦) =
∑︁
𝑞

𝜒𝑞 (𝒌3)𝜙𝑞 (𝒌3, 𝑦), (6.6a)

𝒖̃(𝒌3, 𝑦) =
∑︁
𝑞

𝜒𝑞 (𝒌3)𝜎𝑞 (𝒌3)𝜓𝑞 (𝒌3, 𝑦). (6.6b)

And similarly, for the individual triadic contributions to the forcing and response,
the reconstruction is given by:

𝒇 (𝒌1, 𝒌2, 𝑦) =
∑︁
𝑞

𝜒𝑞 (𝒌1, 𝒌2)𝜙𝑞 (𝒌1 + 𝒌2, 𝑦), (6.7a)

𝒖̃(𝒌1, 𝒌2, 𝑦) =
∑︁
𝑞

𝜒𝑞 (𝒌1, 𝒌2)𝜎𝑞 (𝒌1 + 𝒌2)𝜓𝑞 (𝒌1 + 𝒌2, 𝑦). (6.7b)

Finally, the following property can also be obtained from equation (6.3a):

𝜒𝑞 (𝒌3) =
∑︁
𝒌1

𝜒𝑞 (𝒌1, 𝒌3 − 𝒌1). (6.8)
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It can be seen that 𝜒𝑞 (𝒌3) describes the amount of the 𝑞-th resolvent forcing mode
contained in the DNS forcing Fourier mode at 𝒌3, while 𝜒𝑞 (𝒌1, 𝒌3 − 𝒌1) is the
amount contributed towards the 𝑞-th resolvent forcing mode by the interaction
between 𝒌1 and 𝒌2 = 𝒌3 − 𝒌1. Similarly 𝜎𝑞 (𝒌3)𝜒𝑞 (𝒌3) describes the amount of the
𝑞-th resolvent response mode contained in the DNS velocity Fourier mode at 𝒌3,
while 𝜎𝑞 (𝒌3)𝜒𝑞 (𝒌1, 𝒌3 − 𝒌1) is the amount contributed towards the 𝑞-th resolvent
response mode by the interaction between 𝒌1 and 𝒌2.

It should be noted that velocity and forcing Fourier modes 𝒇 (𝒌3, 𝑦) and 𝒖̃(𝒌3, 𝑦),
and the resulting triadically generated forcing and response modes 𝒇 (𝒌1, 𝒌2, 𝑦) and
𝒖̃(𝒌1, 𝒌2, 𝑦) all have variations across different temporal segments. As a result, both
𝜒𝑞 (𝒌3) and 𝜒𝑞 (𝒌1, 𝒌2) also vary across different temporal segments. Therefore, we
will be analyzing the power spectral density of these quantities, such asE

{��𝜒𝑞 (𝒌3)
��2}

and E
{��𝜒𝑞 (𝒌1, 𝒌2)

��2}, which are averaged across all available temporal segments.
This is similar to the analysis performed in Towne et al. (2018) and Morra et al.
(2021), where the cross spectral density is used to describe the non-linear weights.

Substituting equations (6.6a)-(6.7b) into the definitions of𝑃(𝒌1, 𝒌2) in equation (5.1)
and 𝑅(𝒌1, 𝒌2) in equation (5.6), and using the orthonormality of the resolvent modes,
we can obtain:

𝑃(𝒌1, 𝒌2) =
∑︁
𝑞

E
{
𝜒∗𝑞 (𝒌1 + 𝒌2)𝜒𝑞 (𝒌1, 𝒌2)

}
, (6.9a)

𝑅(𝒌1, 𝒌2) =
∑︁
𝑞

𝜎2
𝑞 (𝒌1 + 𝒌2)E

{
𝜒∗𝑞 (𝒌1 + 𝒌2)𝜒𝑞 (𝒌1, 𝒌2)

}
, (6.9b)

note that 𝜎𝑞 can be moved outside of the expected value operator as these are quan-
tities computed from the deterministic resolvent operator that remains unchanged.
From these, we clearly see the effect of the resolvent operator included in the defini-
tion of 𝑅(𝒌1, 𝒌2) shown as the weight 𝜎2

𝑞 for each 𝑞. The linear resolvent operator
amplifies the different forcing modes differently, and the effect is captured in the
response coefficients 𝑅(𝒌1, 𝒌2). The energy of the forcing and response generated
by the interactions between 𝒌1 and 𝒌2, defined in equations (6.2a) and (6.2b) can
also be rewritten in terms of 𝜎𝑞 and 𝜒𝑞:

𝐸 𝑓 (𝒌1, 𝒌2) =
∑︁
𝑞

E
{��𝜒𝑞 (𝒌1, 𝒌2)

��2} , (6.10a)

𝐸𝑢 (𝒌1, 𝒌2) =
∑︁
𝑞

𝜎2
𝑞 (𝒌1 + 𝒌2)E

{��𝜒𝑞 (𝒌1, 𝒌2)
��2} . (6.10b)
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To analyze the effect of the linear resolvent operator, we start by examining the sin-
gular values 𝜎𝑞 (𝒌3) of the resolvent, the non-linear weights E

{��𝜒𝑞 (𝒌3)
��2}, and their

product E
{��𝜎𝑞 (𝒌3)𝜒𝑞 (𝒌3)

��2} in Figure 6.8. It can be observed from Figure 6.8(a)
that the first two singular values are larger than the rest, showing that the linear
resolvent operator predominately amplifies the first two modes and is low-rank at
this 𝒌3. Figure 6.8(b) shows that the non-linear weights 𝜒𝑞 (𝒌3) are roughly the same
order of magnitude throughout, with the first few modes on the smaller side. This
shows that the first few modes contribute only a small portion of the forcing Fourier
mode at this 𝒌3. However, due to the strong amplification of the linear resolvent
operator, these first few modes contribute significantly towards the velocity Fourier
modes, as evident in Figure 6.8(c), where it is shown that the first two modes have
the largest

��𝜎𝑞𝜒𝑞 ��. In all, this shows that the forcing Fourier mode receives contribu-
tions from a wide range of resolvent forcing modes, while the velocity Fourier mode
is dominated mainly by the first few resolvent response modes due to the low-rank
nature of the resolvent. This result is consistent with the work of Morra et al. (2021),
where it is shown that the forcing has significant projection onto the sub-optimal
resolvent forcing modes. In fact, the authors showed that the projections onto the
first few optimal forcing modes are smaller than the rest, as also observed here. On
the other hand, the bulk of the velocity responses is shown to be well approximated
using a rank-2 approximation with the first two resolvent modes, which can also be
observed in this study.

Next, we dissect the forcing and velocity Fourier modes into contributions from in-
dividual pairs of 𝒌1 and 𝒌2 that are triadically compatible with 𝒌3 = [4, 28, 2.492].
In this section, three triads are selected for demonstration purposes to showcase the
effect of the linear resolvent operator, with their 𝒌1, 𝒌2, |𝑃(𝒌1, 𝒌1) |, |𝑅(𝒌1, 𝒌1) |,
𝐸 𝑓 (𝒌1, 𝒌1), 𝐸𝑢 (𝒌1, 𝒌1) listed in table 6.1. Triad 1 is selected for generating both
strong forcing and response. Triad 2 generates a relatively large response from
a small forcing, and triad 3, being the opposite, generates a small response even
though it has a large forcing.

The triadically generated forcing and velocity responses for the three triads listed
in table 6.1 are plotted with blue, red, and yellow respectively in Figure 6.9
for the energy of each component. The non-linear weights E

{��𝜒𝑞 (𝒌3)
��2}, and

E
{��𝜎𝑞 (𝒌3)𝜒𝑞 (𝒌3)

��2} are plotted in Figure 6.10 using the same color scheme.

Starting with triad 1, which has the highest 𝐸𝑢 (𝒌1, 𝒌2) and 𝐸 𝑓 (𝒌1, 𝒌2) in all triads
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Figure 6.8: Plots of (a) the resolvent singular values 𝜎𝑞 (𝒌3), (b) the power spectral
density of the non-linear weights 𝜒𝑞 (𝒌3), obtained by taking the inner product
between the resolvent forcing modes and the DNS forcing Fourier mode, and (c) the
product of the two as a function or the resolvent mode number 𝑞.

Table 6.1: Three selected triads that contribute to 𝒌3 = 𝒌1 + 𝒌2 = [4, 28, 2.492],
with the magnitude of the forcing and response coefficients |𝑃(𝒌1, 𝒌2) |, |𝑅(𝒌1, 𝒌2) |
and the energy of the triadically generated forcing and response 𝐸 𝑓 (𝒌1, 𝒌2),
𝐸𝑢 (𝒌1, 𝒌2).

Triad 𝒌1 𝒌2 |𝑃(𝒌1, 𝒌2) | |𝑅(𝒌1, 𝒌2) | 𝐸 𝑓 (𝒌1, 𝒌2) 𝐸𝑢 (𝒌1, 𝒌2)
1 [−0.5, 2, −0.415] [4.5, 26, 2.907] 1.2 × 10−10 1.2 × 10−9 7.5 × 10−11 6.4 × 10−9

2 [0.5, −4, 0.415] [3.5, 32, 2.077] 1.5 × 10−11 1.9 × 10−9 2.2 × 10−11 2.0 × 10−9

3 [−0.5, 4, −0.415] [4.5, 24, 2.907] 1.4 × 10−10 4.3 × 10−10 3.6 × 10−11 1.2 × 10−9

contributing to 𝒌3 = 𝒌1+𝒌2 = [4, 28, 2.492], it can be seen from Figure 6.9 that this
triad indeed results in a very strong forcing 𝒇 (𝒌1, 𝒌2, 𝑦) and response 𝒖̃(𝒌1, 𝒌2, 𝑦).
In addition, this triad has large values of 𝜒𝑞 (𝒌1, 𝒌2) and 𝜎𝑞 (𝒌1 + 𝒌2)𝜒𝑞 (𝒌1, 𝒌2) for
the low mode numbers 𝑞, which shows significant contributions to both the forcing
and response Fourier modes. Large 𝜎𝑞 (𝒌1 + 𝒌2)𝜒𝑞 (𝒌1, 𝒌2) for modes 𝑞 = 1, 2,
combined with large values of 𝜎𝑞 (𝒌3)𝜒𝑞 (𝒌3) seen in Figure 6.8(c) also results in
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Figure 6.9: Energy of the forcing E
{
| 𝒇 (𝒌1, 𝒌2, 𝑦) |2

}
(top row) and velocity re-

sponses E
{
|𝒖̃(𝒌1, 𝒌2, 𝑦) |2

}
(bottom row) generated by the triadic interactions be-

tween 𝒌1 and 𝒌2 averaged over all temporal segments. Blue solid lines are for triad
1 in table 6.1, red dashed lines for triad 2, and yellow dash-dotted lines for triad 3.
All 3 triads contribute partially to the DNS forcing and velocity Fourier modes at
𝒌3 = 𝒌1 + 𝒌2 = [4, 28, 2.492].
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Figure 6.10: Plots of (a) non-linear weights E
{��𝜒𝑞 (𝒌1, 𝒌2)

��2} of triadic interactions
between 𝒌1 and 𝒌2, and (b) the non-linear weights multiplied by the resolvent
singular values E

{��𝜎𝑞 (𝒌1 + 𝒌2)𝜒𝑞 (𝒌1, 𝒌2)
��2} as a function of the resolvent mode

number 𝑞. Blue markers are for triad 1 in table 6.1, red markers for triad 2, and
yellow markers for triad 3.

large 𝑅 values, indicating a significant contribution to the velocity Fourier modes.

On the other hand, the comparison between triads 2 and 3 highlights the effect of
the linear resolvent operator. Triad 2 has a 𝐸 𝑓 that is slightly smaller than triad
3, showing that triad 2 generates a weaker forcing than triad 3, evident in the top
row of Figure 6.9, where the red lines (triad 2) have smaller amplitudes than the
yellow lines (triad 3) in general. In addition, triad 2 also has a 𝑃 that is a few
times smaller, indicating a smaller contribution towards the forcing Fourier mode.
However, triad 2 has larger 𝐸𝑢, showing a stronger response seen in the bottom row
of Figure 6.9, and also a much larger 𝑅, showing more contributions towards the
velocity Fourier mode. This effect of generating a stronger response with a weaker
forcing is the result of the linear resolvent operator. Observing Figure 6.10(a), it
can be seen that triad 2 (red) has much larger 𝜒𝑞 for resolvent modes 1 and 2, where
large amplification from the resolvent operator is present (large 𝜎𝑞 in Figure 6.8).
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This becomes more evident in Figure 6.10(b), where triad 2 has a much larger 𝜎𝑞𝜒𝑞
than triad 3, resulting in a strong velocity response. The large values for 𝑞 = 1, 2
in both Figure 6.10(b) and Figure 6.8(c) resulted in the large 𝑅 value for triad 2,
as 𝑅 is the product of the two as seen in equation (6.9b). In summary, although
triad 2 generates a weaker forcing, it makes up for it by having a shape in 𝑦 that
projects strongly onto the first two resolvent modes, therefore taking full advantage
of the strong resolvent amplification, and generates a stronger velocity response than
triad 3. This ties back to the previous observations for the full response and forcing
modes at 𝒌3 and the work of Morra et al. (2021). The full forcing is shown to
project significantly onto sub-optimal modes, while the full response is relatively
low-rank. By performing separate analysis on different triads, we have highlighted
that the triadically generated forcing and response also behave similarly. Although
some triadically generated forcing projects significantly onto sub-optimal resolvent
forcing modes, the response is mainly concentrated on the first 2 modes.

6.4 Conclusion and Future Directions
In this chapter, by examining the triadic contributions to a single 𝒌3 = [4, 28, 2.492],
a representative triplet for the near wall cycle, we demonstrated two important
mechanisms. First of all, although no relationships are imposed on the wavespeeds
𝑐1, 𝑐2, and 𝑐3 by the triadic compatibility constraint, triadic interactions around
𝑐1 = 𝑐2 = 𝑐3 tend to contribute more mainly due to the quadratic nature of the non-
linear forcing. This allows for a sparsification of the important triadic interactions
within the flow. Secondly, we highlighted the effect of the linear resolvent operator,
where the low-rank nature of the resolvent results in an amplification of certain
forcing shapes much more than others. As a result, certain triadic interactions can
take advantage of this strong amplification and generate a stronger response even
with a weak forcing. This also highlights the different perspectives offered by the
response coefficients 𝑅, which includes the action of the linear resolvent operator,
compared to the forcing coefficient 𝑃 and the more traditional bispectrum analyses
discussed in Chapter 5.

For future work, there are certainly more mechanisms behind that can be analyzed,
such as the role of the linear resolvent operator in contributing towards the con-
centration of 𝑅 near the plane with 𝑐1 = 𝑐2 = 𝑐3. It will also be valuable to
verify if these results presented here are generally applicable to all modes in the
channel flow besides the one studied here, and if they are applicable to different
types of flows. Finally, it would be valuable to explore the potential modeling and
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computational benefits that can result from this sparsification of important triadic
interactions within the flow. For example, this sparsity of important triadic inter-
actions in the temporal frequency could be useful for future GQL algorithms. For
the large scales, high energy modes and modes that take part in important triadic
interactions all have low 𝜔, while the small scales reside at higher frequencies. This
separation of frequency enables the small scales to treat the resolved large scales
as quasi-steady, only utilizing an updated large scale every few time steps. This
could lead to an algorithm where the large scales, with fully non-linear equations,
use a larger time step (resolving only lower frequencies), and the small scales, with
linear equations, use smaller time steps to resolve the necessary high frequencies,
essentially performing a GQL reduction in time in addition to GQL in space.
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C h a p t e r 7

CONCLUSIONS AND FUTURE WORK

This thesis has contributed to both the linear and non-linear analyses of mainly the
large-scale structures in wall-bounded turbulence. This chapter summarizes the key
contributions and directions for future research.

First, the resolvent analysis was applied to a flow over spanwise periodic roughness
in Chapter 2, to model the streamwise constant large-scale structures manifested as
counter-rotating rolls within this flow. Building on the work of Fan et al. (2024) and
Chavarin and Luhar (2020), we enhanced the resolvent with the eddy viscosity and a
crude model for the boundary geometry. To our knowledge, this is the first analysis to
incorporate both eddy viscosity and boundary geometry models into the resolvent,
and the streamwise constant modes have also not been widely studied using the
resolvent analysis. We utilized the experimental data to examine both the predictive
and data compression capabilities of the resolvent and illustrated the improvements
by the additional models. Starting with just the streamwise velocity data, the standard
resolvent modes are able to approximately predict the location, shape, and direction
of the counter-rotating large-scale structures seen in the spanwise and wall-normal
velocities while under-predicting the magnitude. The inclusion of the eddy viscosity
improves the magnitude prediction and generates modes that can more efficiently
represent all three components of the velocity data. Experimental data for all three
velocity components are then utilized in the modeling, to study the data compression
capabilities. Utilizing 0.18% of the original degree of freedom, the resolvent modes
with eddy viscosity are able to represent the structures of the counter-rotating rolls.
The 2D resolvent combining both eddy viscosity and a crude boundary geometry
is able to further improve the agreement with the experimental data. This study
provides a low-order model for the streamwise constant structures in the flow and
can be used as a basis for future studies to explore other mechanisms in the flow such
as the meandering of the secondary waves and the effect of the spanwise wavelength
of the surface.

Next, we developed a novel framework to quantitatively analyze the triadic non-
linear contributions to both the forcing and the response in a turbulent channel in
Chapter 5. Building upon previous studies that focused on the transfer of energy
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between modes, we incorporated the linear resolvent operator into this study to
provide the missing link from energy transfer into (or out of) a mode to the changes
in the spectral turbulent kinetic energy of this mode. This provides a new and more
complete description of the effect of triadic interactions on the resulting turbulent
kinetic energy at each wavenumber-frequency triplet. The coefficients highlight the
importance of interactions involving large-scale structures, which is shown to be
mainly driven by the interactions between large scales, while interactions between
small scales are also non-negligible energy extraction mechanisms. For the small
scales, it is revealed that the triadic interactions involving large scales contribute sig-
nificantly, consistent with the coherence revealed by amplitude modulation studies.
The importance of the large scales provides a natural connection to the modeling
assumptions of the QL and GQL analyses. A detailed study of the regions of tri-
adic interactions permitted under QL and GQL reductions revealed that they are
efficiently capturing important triadic interactions in the flow, and the inclusion of
small amounts of wavenumbers into the GQL large-scale base flow quickly captures
most of the important triadic interactions. Additionally, a detailed analysis of re-
gions of neglected triadic interactions in GQL is also performed. It is revealed that
as Λ increases, although more triadic interactions are included, certain interactions
can still be lost. The relative importance between the lost and newly included tri-
adic interactions could cause non-monotonic performance for the small scales, and
may also have an effect on the resolved large scales in GQL. For future research,
the methods presented here can be applied to more complex flows and could assist
in the understanding of the underlying non-linear mechanisms behind less under-
stood flows. It can also be used with QL and GQL analyses to further quantify the
underlying effect of the truncation of permitted interactions under QL/GQL.

Finally, in Chapter 6, by performing spatio-temporal analyses of the triadic con-
tributions to a single mode representative of the near wall cycle, we demonstrated
the spatio-temporal nature of the triadic interactions and the effect of the resolvent
operator. In this study, it is shown that although no relationships are imposed on the
wavespeeds between the three triplets in a triad, the important triadic interactions
are localized in temporal frequencies around a plane where all three wavespeeds
are the same. This is mainly due to the quadratic nature of the non-linear forcing
and allows for a sparsification of the important triadic interactions within the flow.
It is valuable for future work to explore the potential modeling and computational
benefits that can result from this. We also demonstrated the effect of the linear
resolvent operator. It is observed that although the forcing has significant projection
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onto sub-optimal resolvent modes, the velocity response is still dominated by the
optimal resolvent response modes due to the linear amplification by the low-rank
nature of the resolvent. As a result, certain triadic interactions are demonstrated
to be able to utilize this strong amplification and generate a stronger response even
with a weak forcing. This again underscores the different perspectives offered by the
inclusion of the linear resolvent operator into the analyses of the non-linear triadic
interactions.

Overall, this thesis presented methods that enable useful low-cost linear modeling
of large-scale structures, and tools for detailed quantitative analysis of triadic non-
linear interactions. We hope this will provide useful tools for future modeling and
computational research, especially in identifying improved modeling of the nonlin-
earity, and future research on extending the capabilities of quasi-linear, generalized
quasi-linear, and resolvent analyses.
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A p p e n d i x A

ADDITIONAL DERIVATIONS

A.1 Derivation of the Spectral Turbulence Kinetic Energy (TKE) Equation
In Chapter 3, we define the spectral turbulence kinetic energy (TKE) as 𝑒(𝒌, 𝑦) =
|𝑢(𝒌, 𝑦) |2+|𝑣(𝒌, 𝑦) |2+|𝑤(𝒌, 𝑦) |2, which is the energy of a Fourier modes at given 𝒌.
Due to the Hermitian symmetry of the Fourier modes, we have 𝑒(𝒌, 𝑦) = 𝑒(−𝒌, 𝑦).
Starting with the Fourier transformed NSE:[
−𝑖𝜔 + 𝑖𝑘𝑥𝑈 (𝑦) + 𝑘2

𝑅𝑒
− 1
𝑅𝑒

𝑑2

𝑑𝑦2

]
𝑢(𝒌, 𝑦) +𝑈′(𝑦)𝑣(𝒌, 𝑦) + 𝑖𝑘𝑥 𝑝(𝒌, 𝑦) = 𝑓𝑥 (𝒌, 𝑦),

(A.1)[
−𝑖𝜔 + 𝑖𝑘𝑥𝑈 (𝑦) + 𝑘2

𝑅𝑒
− 1
𝑅𝑒

𝑑2

𝑑𝑦2

]
𝑣(𝒌, 𝑦) + 𝑑

𝑑𝑦
𝑝(𝒌, 𝑦) = 𝑓𝑦 (𝒌, 𝑦),

(A.2)[
−𝑖𝜔 + 𝑖𝑘𝑥𝑈 (𝑦) + 𝑘2

𝑅𝑒
− 1
𝑅𝑒

𝑑2

𝑑𝑦2

]
𝑤(𝒌, 𝑦) + 𝑖𝑘𝑧 𝑝(𝒌, 𝑦) = 𝑓𝑧 (𝒌, 𝑦),

(A.3)

with𝑈′(𝑦) = 𝑑𝑈 (𝑦)
𝑑𝑦

. Multiply the three equations with 𝑢∗(𝒌, 𝑦), 𝑣∗(𝒌, 𝑦), 𝑤∗(𝒌, 𝑦),
take the sum, and utilize continuity to obtain:[

−𝑖𝜔 + 𝑖𝑘𝑥𝑈 (𝑦) + 𝑘2

𝑅𝑒

]
𝑒(𝒌, 𝑦) + 𝑢∗(𝒌, 𝑦)𝑣(𝒌, 𝑦)𝑈′(𝑦) + 𝑑

𝑑𝑦
[𝑣∗(𝒌, 𝑦)𝑝(𝒌, 𝑦)]

− 1
𝑅𝑒

[
𝑢∗𝑖 (𝒌, 𝑦)

𝑑2

𝑑𝑦2𝑢𝑖 (𝒌, 𝑦)
]
= 𝑢∗𝑖 (𝒌, 𝑦) 𝑓𝑖 (𝒌, 𝑦), (A.4)

where the summation notation is used with the subscript 𝑖. We then add it with the
equation for 𝑒(−𝒌, 𝑦), and utilized 𝑒(𝒌, 𝑦) = 𝑒(−𝒌, 𝑦) and the symmetry of Fourier
modes 𝑢∗(𝒌, 𝑦) = 𝑢(−𝒌, 𝑦) to obtain:

Re
{
𝑢∗(𝒌, 𝑦)𝑣(𝒌, 𝑦)𝑈′(𝑦)

}
︸                             ︷︷                             ︸

Production

+ 𝑘2

𝑅𝑒
𝑒(𝒌, 𝑦) + 1

𝑅𝑒

𝑑

𝑑𝑦
𝑢∗𝑖 (𝒌, 𝑦)

𝑑

𝑑𝑦
𝑢𝑖 (𝒌, 𝑦)︸                                              ︷︷                                              ︸

Viscous Dissipation

+Re
{
𝑑

𝑑𝑦
[𝑣∗(𝒌, 𝑦)𝑝(𝒌, 𝑦)]

}
︸                             ︷︷                             ︸

Pressure Transport

− 1
2

1
𝑅𝑒

𝑑2

𝑑𝑦2 𝑒(𝒌, 𝑦)︸               ︷︷               ︸
Viscous Transport

= Re
{
𝑢∗𝑖 (𝒌, 𝑦) 𝑓𝑖 (𝒌, 𝑦)

}
︸                      ︷︷                      ︸

Turbulent Transport

, (A.5)
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where Re {·} indicates the real part. This resembles the form in Cho et al. (2018),
which is written for the modes Fourier transformed in 𝑧 only, while we provide the
results for the modes Fourier transformed in 𝑥, 𝑧, 𝑡.

A.2 Importance of Linear Phase Response for Temporal Filtering
In this section, we will show that phase distortion in the pass band can be avoided
with a linear phase low pass filter. Since the stop band frequencies have significantly
lower amplitude response, it is sufficient to limit the analysis to only the pass band
of the filter, with a transfer function 𝐴(𝜔)𝑒𝑖𝜙(𝜔) , where 𝐴(𝜔) is the amplitude, and
𝜙(𝜔) = −𝑘𝜔 is the linear phase response of the filter.

Denote a pre-filtered signal containing frequencies only in the pass band as 𝑞(𝑡),
with Fourier coefficient 𝑞(𝜔) and the filtered signal 𝑞 𝑓 (𝑡) and 𝑞 𝑓 (𝜔), the filtered
signal is related to the unfiltered by the filter transfer function:

𝑞 𝑓 (𝜔) = 𝐴(𝜔)𝑞(𝜔)𝑒𝑖𝜙(𝜔) = 𝐴(𝜔)𝑞(𝜔)𝑒−𝑖𝑘𝜔. (A.6)

Utilizing the approximation of 𝐴(𝜔) ≈ 1 in the filter pass band and the Fourier
transform pair, we obtain:

𝑞 𝑓 (𝑡) =
∫

𝑞 𝑓 (𝜔)𝑒𝑖𝜔𝑡𝑑𝜔 ≈
∫

𝑞(𝜔)𝑒𝑖𝜔𝑡−𝑖𝑘𝜔𝑑𝜔 = 𝑞(𝑡 − 𝑘), (A.7)

which shows that the filtered signal is a time delayed copy of the original signal
with no phase distortion in the pass band. This constant time delay can be easily
corrected in post-processing, and the next section shows that the time delay does
not affect the computation of the interaction coefficients. More rigorous analyses of
linear-phase filters can be found in digital filter textbooks such as Parks and Burrus,
1987.

A.3 Validity of the Application of the Welch Method
In this section, we will (non-rigorously) show that the Welch method can be correctly
applied to the computation of 𝑃(𝒌1, 𝒌2) and 𝑅(𝒌1, 𝒌2). For simplicity, we will
neglect all spatial coordinates as those do not affect the temporal Fourier analysis,
and redefine 𝑃 and 𝑅 for this analysis as:

𝑃(𝜔1, 𝜔2) = 𝑓 ∗(𝜔1 + 𝜔2)𝑢̂1(𝜔1)𝑢̂2(𝜔2), (A.8)

𝑅(𝜔1, 𝜔2) = 𝑢̂∗1(𝜔1 + 𝜔2)H (𝜔1 + 𝜔2)𝑢̂1(𝜔1)𝑢̂2(𝜔2), (A.9)

where 𝑢̂1(𝜔) is the Fourier coefficient of 𝑢1(𝑡), a proxy for the velocity, 𝑢̂2(𝜔) is
the Fourier coefficient of 𝑢2(𝑡), a proxy for the velocity gradient, and 𝑓 (𝜔) is the
Fourier coefficient of 𝑓 (𝑡) = 𝑢1(𝑡)𝑢2(𝑡).
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The three signals are then shifted in time by a constant Δ𝑡, resulting in their Fourier
coefficients shifted in phase:

𝑢′1(𝑡) = 𝑢1(𝑡 + Δ𝑡) =⇒ 𝑢̂′1(𝜔) = 𝑢̂1(𝜔)𝑒𝑖𝜔Δ𝑡 , (A.10)

with 𝑢2 and 𝑓 following the same relation. 𝑃′(𝜔1, 𝜔2) can therefore be defined for
the time shifted signals:

𝑃′(𝜔1, 𝜔2) = 𝑓 ′∗(𝜔1 + 𝜔2)𝑢̂′1(𝜔1)𝑢̂′2(𝜔2)
=

[
𝑓 (𝜔1 + 𝜔2)𝑒𝑖(𝜔1+𝜔2)Δ𝑡 ]∗ [

𝑢̂1(𝜔1)𝑒𝑖𝜔1Δ𝑡
] [
𝑢̂2(𝜔2)𝑒𝑖𝜔2Δ𝑡

]
= 𝑃(𝜔1, 𝜔2) (A.11)

which shows that 𝑃(𝜔1, 𝜔2) is invariant with respect to any time shifts of the signals.
With the resolvent operatorH(𝜔) also invariant with respect to time shifts, a similar
analysis can be applied to 𝑅(𝜔1, 𝜔2) as well, reaching the same conclusion.

Since the two coefficients are invariant with respect to time shifts, the full time series
can be segmented, the coefficients computed for each segment, before taking the
average across multiple segments for improved convergence. More rigorously, we
are assuming wide-sense stationarity extended to the third order statistics, where the
triple correlation depends only on the time differences, similar to the auto-correlation
in second order statistics.
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A p p e n d i x B

ADDITIONAL RESULTS

B.1 Triadic Contributions to a Representative Large Scale
In Chapter 6, we presented the results of triadic contributions to a single 𝒌3 repre-
sentative of the near wall cycle and showed that the active triadic interactions are
very localized around the plane with 𝑐1 = 𝑐2 = 𝑐3. In this section, we will show the
same results for a 𝒌3 representative of a large-scale structure.

In this section, the selected triplet is 𝒌3 = [0.5, 4, 0.415]. 𝑘𝑥 = 0.5 is selected as it is
the largest streamwise mode that is not streamwise constant. 𝑘𝑧 = 4 and 𝜔 = 0.415
are selected for being the most energetic mode with 𝑘𝑥 = 0.5. The resulting
magnitude of the forcing and response coefficients are plotted in Figure B.1 with log
scale color bars in the same format as Figure 6.3. In Figure B.2, both the forcing and
response coefficients are summed in 𝑘𝑧1 and plotted as contour plots in the 𝑘𝑥1 −𝜔1

plane in the same format as Figure 6.4. In Figure B.2, three different wavespeeds 𝑐1

are also plotted: the dash-dotted lines for 𝑐1 = 𝜔1/𝑘𝑥1 = 1, where the wavespeed
matches the center-line velocity; the dashed lines for 𝑐1 = 𝑐2 = 𝑐3 = 0.83, the
wavespeed of the selected 𝒌3; and the dotted lines for 𝑐1 = 0.3 (𝑐+1 = 6). Similar to
the case for the NWC in Chapter 6, from the two figures, it can be observed that the
main contributing triads are also concentrated roughly around 𝑐1 = 𝑐2 = 𝑐3.
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Figure B.1: Magnitude of (a) 𝑃(𝒌1, 𝒌3 − 𝒌1), the forcing coefficients and (b)
𝑅(𝒌1, 𝒌3 − 𝒌1), the response coefficients as functions of 𝒌1 = [𝑘𝑥1, 𝑘𝑧1, 𝜔1] with
log scale color bars for 𝒌3 = 𝒌1+ 𝒌2 = [0.5, 4, 0.415] . The opacity of each marker
is also linearly proportional to log10 of the magnitudes. Points with magnitude less
than 1% of the peak values are not plotted. The + markers in both figures denote the
location of 𝒌3, and the blue planes mark the location of 𝑐1 = 𝜔1/𝑘𝑥1 = 𝑐3 = 0.83.
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Figure B.2: Magnitude of (a)
∑
𝑘𝑧1 𝑃(𝒌1, 𝒌3 − 𝒌1), the forcing coefficients summed

in 𝑘𝑧1 and plotted as functions of 𝑘𝑥1 and 𝜔1 for 𝒌3 = [0.5, 4, 0.415], and (b)∑
𝑘𝑧1 𝑅(𝒌1, 𝒌3− 𝒌1), the response coefficients. The dash-dotted lines in both figures

mark the wavespeed 𝑐1 = 𝜔/𝑘𝑥 = 1; the dashed lines for 𝑐1 = 𝑐2 = 𝑐3 = 0.83, the
wavespeed of the selected 𝒌3; and the dotted lines for 𝑐1 = 0.3 (𝑐+1 = 6). The +
markers in both figures denote the locations of 𝒌3.
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A p p e n d i x C

VARIATIONS OF FORCING AND RESPONSE COEFFICIENTS

In Chapter 5, we presented the two-dimensional forcing and response coefficients
𝑃𝑘𝑥 , 𝑃𝑘𝑧 , 𝑃𝜔, 𝑅𝑘𝑥 , 𝑅𝑘𝑧 , and 𝑅𝜔 computed by taking the average over all temporal
segments. In this appendix, we will analyze the variation of these coefficients
over the different temporal segments to determine the robustness of the identified
features.

For each of the two-dimensional coefficients, we start by defining the coefficients for
the 𝑖𝑡ℎ temporal segment with a superscript 𝑖. For example, the streamwise response
coefficient at the 𝑖𝑡ℎ temporal segment is denoted as 𝑅𝑖

𝑘𝑥
. Therefore, 𝑅𝑘𝑥 defined

in equation (5.7a) can be rewritten as the average of the results from all temporal
segments:

𝑅𝑘𝑥 (𝑘𝑥1, 𝑘𝑥2) =
1
𝑁𝑠𝑒𝑔

𝑁𝑠𝑒𝑔∑︁
𝑖=1

𝑅𝑖𝑘𝑥 (𝑘𝑥1, 𝑘𝑥2), (C.1)

where 𝑁𝑠𝑒𝑔 = 5 is the number of available temporal segments.

For each of the 2D coefficients, we will first plot the results from each temporal
segment and compare with the averaged result for both the magnitudes and the
phases in formats similar to Figures 5.3-5.5 and Figure 5.6.

Next, to quantify the variations of the magnitude, we define 𝜖 , the standard deviation
of the magnitude of the coefficient normalized by the average magnitude, to provide
a relative quantification of the variations over different temporal segments. For
example, for 𝑅𝑘𝑥 , 𝜖𝑅𝑘𝑥

is defined as:

𝜖𝑅𝑘𝑥
(𝑘𝑥1, 𝑘𝑥2) =

𝑠𝑡𝑑

(���𝑅𝑖𝑘𝑥 ���)
𝑚𝑒𝑎𝑛

(���𝑅𝑖
𝑘𝑥

���) . (C.2)

This can be defined for all six two-dimensional forcing and response coefficients. A
small magnitude of 𝜖 (much smaller than 1) indicates small variation relative to the
mean, or in other words, the identified features in the forcing or response coefficients
are robust. A large magnitude of 𝜖 (∼ 1 or larger that 1) indicates a variation level
comparable to the mean, which is the result of high variations in the magnitude of
the forcing or response coefficients, and would require further analysis. Similarly,
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the deviation of the phase can be quantified using 𝛼, the standard deviation of the
phase across the five temporal segments:

𝛼𝑅𝑘𝑥
(𝑘𝑥1, 𝑘𝑥2) = 𝑠𝑡𝑑

(���∠𝑅𝑖𝑘𝑥 ���) (C.3)

C.1 Magnitude Variations of the Forcing Coefficients
We start by comparing the magnitude of the forcing coefficients for the five temporal
segments and the averaged coefficient in Figure C.1-C.3. In these three figures,
subplots (a) - (e) are the results from individual temporal segments 1 - 5, and subplots
(f ) are the results of the average over all five temporal segments. In Figures C.4-C.6,
the normalized standard deviations, 𝜖𝑃𝑘𝑥

, 𝜖𝑃𝑘𝑧
, and 𝜖𝑃𝜔

are plotted for the three
forcing coefficients. In each figure, subplot (a) is the result for integrating over the
entire 𝑦 range, while subplots (b)-(d) are the results for three different 𝑦 ranges, same
as the results presented in Chapter 5. In all three figures, 𝜖 are plotted in log scale,
sharing the same colorbar from 10−2 (small relative variance) to 1 (large relative
variance).

From the six set of figures, it can be observed that the magnitude of all three
forcing coefficients exhibits almost identical structures with only small variations
in the numerical values across all five temporal segments. One of the two notable
exceptions is the teardrop shaped region at high 𝑘𝑧2 and 𝑘𝑧3 values for 𝑃𝑘𝑧 , which
can be observed in Figures C.2 and C.5. This region is previously identified as a
region not well converged, and the observations here provide additional evidence.
Additionally, the high wavenumber region in 𝑃𝑘𝑥 for 𝑦+ ∈ (200, 550) displays high
relative variations as observed in Figure C.4 (d). This region corresponds to the
small magnitude region of 𝑃𝑘𝑥 as shown in Figures 5.3 (d), and the normalization
with this small magnitude causes the observed high 𝜖𝑃𝑘𝑥

. Apart from these two
exceptions, the overall structures of the forcing coefficients are robust and consistent
across the different temporal segments, and the main conclusions regarding the
importance of triadic interactions involving large scale structures remain valid.

C.2 Magnitude Variations of the Response Coefficients
Next, the magnitude of the response coefficients for the five temporal segments and
the averaged coefficients for the streamwise response coefficients 𝑅𝑘𝑥 , the spanwise
response coefficients 𝑅𝑘𝑧 , and the temporal response coefficients 𝑅𝜔 are compared
in Figures C.7 - C.9. Similarly, in the three figures, subplots (a) - (e) are the
results from individual temporal segments 1 - 5, and subplots (f ) are the results of
the average over all five temporal segments. Additionally, the normalized standard
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Figure C.1: Comparison of the magnitude of the streamwise forcing coefficient
��𝑃𝑘𝑥 ��

between (a-e) the five individual temporal segments and (f ) the average over all five
temporal segments. The figure formats are the same as Figure 5.3, with 𝑘𝑥1 on the
vertical axis and 𝑘𝑥2 on the horizontal axis. All six subplots share the same log
scale colorbar at the bottom of the figure.
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Figure C.2: Comparison of the magnitude of the spanwise forcing coefficient
��𝑃𝑘𝑧 ��

between (a-e) the five individual temporal segments and (f ) the average over all five
temporal segments. The figure formats are the same as Figure 5.4, with 𝑘𝑧1 on the
vertical axis and 𝑘𝑧2 on the horizontal axis. All six subplots share the same log scale
colorbar at the bottom of the figure.
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Figure C.3: Comparison of the magnitude of the temporal forcing coefficient |𝑃𝜔 |
between (a-e) the five individual temporal segments and (f ) the average over all five
temporal segments. The figure formats are the same as Figure 5.5, with 𝜔1 on the
vertical axis and 𝜔2 on the horizontal axis. All six subplots share the same log scale
colorbar at the bottom of the figure.
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Figure C.4: Heatmaps of 𝜖𝑃𝑘𝑥
, the standard deviation of

��𝑃𝑘𝑥 (𝑘𝑥1, 𝑘𝑥2)�� normalized
by the average of

��𝑃𝑘𝑥 ��. Subplots (a - d) share the same logarithmic colorbar, and
the 𝑦-integration limits for the inner product in equation (4.14) are: (a) all 𝑦+;
(b) 𝑦+ ∈ (0, 30); (c) 𝑦+ ∈ (30, 200); and (d) 𝑦+ ∈ (200, 550). The streamwise
wavenumber for the velocity fields, 𝑘𝑥1, is on the vertical axis; 𝑘𝑥2 for the velocity
gradient is on the horizontal axis; 𝑘𝑥3 = 𝑘𝑥1 + 𝑘𝑥2 for the resulting forcing and
response is constant along lines with slopes of −1, same as the figures presented in
Chapter 5.

deviation, 𝜖𝑅𝑘𝑥
, 𝜖𝑅𝑘𝑧

, and 𝜖𝑅𝜔
are plotted in Figure C.10-C.12 for the magnitudes of

the response coefficients.

From Figures C.7 - C.9, it can be observed that the overall structures of the figures
are relatively robust across the different temporal segments, with the high magnitude
regions located at the same locations throughout all temporal segments. However,
the normalized standard deviations show that the variations of the numerical values
are non-negligible. Nevertheless, since all conclusions in Chapter 5 are drawn from
the overall distribution of the high magnitude regions of the response coefficients,
which are shown to be robust across different temporal segments, these conclusions
remain valid despite the observed variations.
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Figure C.5: Heatmaps of 𝜖𝑃𝑘𝑧
, the standard deviation of

��𝑃𝑘𝑧 (𝑘𝑧1, 𝑘𝑧2)�� normalized
by the average of

��𝑃𝑘𝑧 �� in the same format as Figure C.4.

C.3 Phase Variations of the Response Coefficients
Finally, the phase of the response coefficients are compared between the results from
the five individual temporal segments and the results from the average of all five seg-
ments in Figures C.13-C.15, and the standard deviations of the phase angles across
all five temporal segments are plotted in Figure C.16. From these figures, it can be
observed that the overall structures of the phase of the response coefficients remain
robust across different temporal segments. Additionally, the strongly constructive
and strongly destructive regions have small standard deviations.

Between the constructive and destructive regions, fuzzy transition regions can be
observed. These transition regions have relatively high standard deviations and
some salt-and-pepper like variations. The fuzziness in these transition regions are
reduced by the averaging across all five temporal segments as observed in subplots
(f ) of Figures C.13-C.15. The results in the transition regions might not be fully
converged, and future studies focusing on these transition regions would require
more data to ensure the convergence and robustness of features in the transition
region.
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Figure C.6: Heatmaps of 𝜖𝑃𝜔
, the standard deviation of |𝑃𝜔 (𝜔1, 𝜔2) | normalized

by the average of |𝑃𝜔 | in the same format as Figure C.4.
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Figure C.7: Comparison of the magnitude of the streamwise response coefficient��𝑅𝑘𝑥 �� between (a-e) the five individual temporal segments and (f ) the average over
all five temporal segments. The figure formats are the same as Figure 5.3, with 𝑘𝑥1
on the vertical axis and 𝑘𝑥2 on the horizontal axis. All six subplots share the same
log scale colorbar at the bottom of the figure.
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Figure C.8: Comparison of the magnitude of the spanwise response coefficient
��𝑅𝑘𝑧 ��

between (a-e) the five individual temporal segments and (f ) the average over all five
temporal segments. The figure formats are the same as Figure 5.4, with 𝑘𝑧1 on the
vertical axis and 𝑘𝑧2 on the horizontal axis. All six subplots share the same log scale
colorbar at the bottom of the figure.
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Figure C.9: Comparison of the magnitude of the temporal response coefficient |𝑅𝜔 |
between (a-e) the five individual temporal segments and (f ) the average over all five
temporal segments. The figure formats are the same as Figure 5.5, with 𝜔1 on the
vertical axis and 𝜔2 on the horizontal axis. All six subplots share the same log scale
colorbar at the bottom of the figure.
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Figure C.10: Heatmaps of 𝜖𝑅𝑘𝑥
, the standard deviation of

��𝑅𝑘𝑥 (𝑘𝑥1, 𝑘𝑥2)�� normalized
by the average of

��𝑅𝑘𝑥 ��. Subplots (a - d) share the same logarithmic colorbar, and
the 𝑦-integration limits for the inner product in equation (4.14) are: (a) all 𝑦+;
(b) 𝑦+ ∈ (0, 30); (c) 𝑦+ ∈ (30, 200); and (d) 𝑦+ ∈ (200, 550). The streamwise
wavenumber for the velocity fields, 𝑘𝑥1, is on the vertical axis; 𝑘𝑥2 for the velocity
gradient is on the horizontal axis; 𝑘𝑥3 = 𝑘𝑥1 + 𝑘𝑥2 for the resulting forcing and
response is constant along lines with slopes of −1, same as the figures presented in
Chapter 5.



128

Figure C.11: Heatmaps of 𝜖𝑅𝑘𝑧
, the standard deviation of

��𝑅𝑘𝑧 (𝑘𝑧1, 𝑘𝑧2)�� normalized
by the average of

��𝑅𝑘𝑧 �� in the same format as Figure C.10.

Figure C.12: Heatmaps of 𝜖𝑅𝜔
, the standard deviation of |𝑅𝜔 (𝜔1, 𝜔2) | normalized

by the average of |𝑅𝜔 | in the same format as Figure C.10.
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Figure C.13: Comparison of the phase of the streamwise response coefficient ∠𝑅𝑘𝑥
between (a-e) the five individual temporal segments and (f ) the average over all five
temporal segments. The figure formats are the same as Figure 5.6, with 𝑘𝑥1 on the
vertical axis and 𝑘𝑥2 on the horizontal axis. All six subplots share the same linear
scale colorbar at the bottom of the figure spanning from 0 (constructive interference)
to 𝜋 (destructive interference).
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Figure C.14: Comparison of the phase of the spanwise response coefficient ∠𝑅𝑘𝑧
between (a-e) the five individual temporal segments and (f ) the average over all five
temporal segments. The figure formats are the same as Figure 5.6, with 𝑘𝑧1 on the
vertical axis and 𝑘𝑧2 on the horizontal axis. All six subplots share the same linear
scale colorbar at the bottom of the figure spanning from 0 (constructive interference)
to 𝜋 (destructive interference).
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Figure C.15: Comparison of the phase of the temporal frequency response coefficient
∠𝑅𝜔 between (a-e) the five individual temporal segments and (f ) the average over
all five temporal segments. The figure formats are the same as Figure 5.6, with
𝜔1 on the vertical axis and 𝜔2 on the horizontal axis. All six subplots share the
same linear scale colorbar at the bottom of the figure spanning from 0 (constructive
interference) to 𝜋 (destructive interference).
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Figure C.16: Standard deviation of the phase of the response coefficients across the
five temporal segments: (a) 𝛼𝑅𝑘𝑥

, (b) 𝛼𝑅𝑘𝑧
, and (c) 𝛼𝑅𝜔

,



133

A p p e n d i x D

NUMERICAL ALGORITHMS

The DNS data sizes in Fourier space are 𝑁𝑘𝑥 𝑁𝑘𝑧 , 𝑁𝜔 for the streamwise, spanwise
wavenumbers and temporal frequencies, and the number of temporal segments is
𝑁𝑠𝑒𝑔. In physical space, the data sizes are 𝑁𝑥 , 𝑁𝑦, 𝑁𝑧, 𝑁𝑡 for the three spatial
coordinates and time. An additional subscripts 𝑝 indicates that the dimension is
distributed across the more than 100 CPU cores utilized for the computations. Ad-
ditionally, nine weight matrices 𝑾 are utilized for the computations: three different
𝑦 integration ranges for each of the three velocity components.

The full data set is too big to completely fit in available memory; therefore an
outermost sequential loop is required, so that the code reads and operates only on a
partial data set within a given iteration. Internally, parallel loops are required within
the outermost sequential loop to utilize all the available CPU cores.

The computation of 𝒉(𝒌, 𝑦) defined in equation (5.12), involving the resolvent
operator, and a Fourier transform in time, requires all data in 𝑦 and 𝑡. Therefore,
the outermost loop of algorithm 1 is selected to be 𝑘𝑧, with internal parallelization
on 𝑘𝑥 . For the computation of 𝑉 (𝒌), defined in equation (4.12) and 𝑅𝑘𝑥 , 𝑅𝑘𝑧 , 𝑅𝜔
using equations (5.14a)-(5.14c), Fourier transforms in 𝑥, 𝑧 and 𝑡 are utilized and
therefore leaving 𝑦 as the only available dimension for the outermost loop. However,
these computations also utilize the first derivatives in 𝑦, and we elect to pre-compute
and store the 𝑦 derivatives to use later in these computations. The algorithms 2-6
for 𝑉 (𝒌), and 𝑅𝑘𝑥 , 𝑅𝑘𝑧 , 𝑅𝜔, internally switches between different dimensions for
parallelization, with high-level overviews given below.

In these overviews, “master” is the master core, a single CPU core that assigns
tasks to “slaves”, which are all other CPU cores. The data dimensions, for example
[𝑁𝑘𝑥 ,𝑝×𝑁𝑦×𝑁𝑡]×2 indicates the presence of 2 variables with size [𝑁𝑘𝑥 ,𝑝×𝑁𝑦×𝑁𝑡],
and 𝑁𝑘𝑥 ,𝑝 indicates that the total 𝑁𝑘𝑥 streamwise wavenumbers are distributed across
all available CPU cores.
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Algorithm 1: Computing 𝒉(𝒌)
1 for 𝑖𝑘𝑧 = 1 : 𝑁𝑘𝑧 do
2 Master reads 𝑣(𝑡), 𝜔2 (𝑡) for current 𝑘𝑧
3 Master distributes data in 𝑘𝑥 to all salves ⊲ [𝑁𝑘𝑥 , 𝑝 × 𝑁𝑦 × 𝑁𝑡 ] × 2

4 for 𝑖𝑘𝑥 = 1 : 𝑁𝑘𝑥 , 𝑝 do ⊲ Parallel Loop

5 Compute Δ,L𝑂𝑆 ,L𝑆𝑄 for current (𝑘𝑥 , 𝑘𝑧)
6 Compute 𝜕𝑣

𝜕𝑦
(𝑡), 𝑢(𝑡), 𝑤(𝑡) ⊲ [𝑁𝑦 × 𝑁𝑡 ] × 3

7 Segment, apply window function 𝑤(𝑡), FFT in 𝑡, truncate 𝜔→ 𝒖̂

⊲ [𝑁𝑦 × 𝑁𝜔 × 𝑁𝑠𝑒𝑔 ] × 3

8 Segment, apply window function d
d𝑡𝑤(𝑡), FFT in 𝑡, truncate 𝜔→ 𝒔̂

⊲ [𝑁𝑦 × 𝑁𝜔 × 𝑁𝑠𝑒𝑔 ] × 3

9 for 𝑖𝜔 = 1 : 𝑁𝜔 do
10 Compute H ′ (𝒌) for current 𝒌
11 for 𝑖𝑠𝑒𝑔 = 1 : 𝑁𝑠𝑒𝑔 do
12 Compute 𝒖̃ = 𝒖̂ − 𝑨(𝑘𝑥 , 𝑘𝑧)H ′ (𝒌)𝑩(𝑘𝑥 , 𝑘𝑧)𝒔
13 Compute 𝐸𝑢 (𝒌) = 𝑢̃∗𝑾𝑢̃, 𝐸𝑣 (𝒌), 𝐸𝑤 (𝒌) ⊲ [𝑁𝑘𝑥 , 𝑝 × 𝑁𝜔 × 𝑁𝑠𝑒𝑔 ] × 3

14 Compute 𝒉(𝒌) = 𝒖̃∗ (𝒌)𝑾𝑨(𝑘𝑥 , 𝑘𝑧)H ′ (𝒌)𝑩(𝑘𝑥 , 𝑘𝑧) with 9 different 𝑾
⊲ [3𝑁𝑦 × 𝑁𝑘𝑥 , 𝑝 × 𝑁𝜔 × 𝑁𝑠𝑒𝑔 ] × 9

15 end
16 end
17 end

18 Master collects data in 𝑘𝑥 from slaves
19 Master saves 𝒉(𝒌), with each (𝑦, 𝑠𝑒𝑔) in a separate file ⊲ [𝑁𝑘𝑥 × 𝑁𝑘𝑧 × 3 × 𝑁𝜔 ] × 9

20 Master saves 𝐸𝑢 (𝒌), 𝐸𝑣 (𝒌), 𝐸𝑤 (𝒌), with each 𝑠𝑒𝑔 in a separate file
⊲ [𝑁𝑘𝑥 × 𝑁𝜔 × 𝑁𝑘𝑧 ] × 3

21 end
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Algorithm 2: Computing 𝑉 (𝒌)
1 for 𝑖𝑦 = 1 : 𝑁𝑦 do
2 Master reads 𝑣(𝑡), 𝜔2 (𝑡), 𝜕𝒖𝜕𝑦 (𝑡) for current 𝑦
3 Master distributes data in 𝑡 to each slave ⊲ [𝑁𝑘𝑥 × 𝑁𝑘𝑧 × 𝑁𝑡,𝑝 ] × 5

4 for 𝑖𝑡 = 1 : 𝑁𝑡 , 𝑝 do ⊲ Parallel Loop

5 Compute 𝑢, 𝑤 at current (𝑦, 𝑡), 1D mean subtract for 𝑢 ⊲ [𝑁𝑘𝑥 × 𝑁𝑘𝑧 ] × 2

6 Compute 𝒇 at current (𝑦, 𝑡), 1D mean subtract for 𝑓𝑥 ⊲ [𝑁𝑘𝑥 × 𝑁𝑘𝑧 × 𝑁𝑡,𝑝 ] × 3

7 end

8 Exchange 𝒇 from partial 𝑡 to partial 𝑘𝑧 ⊲ [𝑁𝑘𝑥 × 𝑁𝑘𝑧 , 𝑝 × 𝑁𝑡 ] × 3

9 for 𝑖𝑘𝑧 = 1 : 𝑁𝑘𝑧 , 𝑝 do ⊲ Parallel Loop

10 Segment, apply window function 𝑤(𝑡), FFT in 𝑡, truncate 𝜔→ 𝒇̂

⊲ [𝑁𝑘𝑥 × 𝑁𝑘𝑧 , 𝑝 × 𝑁𝜔 × 𝑁𝑠𝑒𝑔 ] × 3

11 end

12 for 𝑖𝑠𝑒𝑔 = 1 : 𝑁𝑠𝑒𝑔 do
13 Exchange 𝒇 from partial 𝑘𝑧 to partial 𝜔 ⊲ [𝑁𝑘𝑥 × 𝑁𝑘𝑧 × 𝑁𝜔,𝑝 ] × 3

14 Read 𝒉𝑢, 𝒉𝑣 , 𝒉𝑤 at current (𝑦, 𝑠𝑒𝑔) ⊲ [𝑁𝑘𝑥 × 𝑁𝑘𝑧 × 3 × 𝑁𝜔,𝑝 ] × 3

15 for 𝑖𝜔 = 1 : 𝑁𝜔,𝑝 do ⊲ Parallel Loop

16 Compute 𝑉𝑢, 𝑉𝑣 , 𝑉𝑤 ⊲ point-wise multiplication

17 end
18 end

19 Cumulatively sum 𝑉𝑢, 𝑉𝑣 , 𝑉𝑤 in 𝑦 ⊲ [𝑁𝑘𝑥 × 𝑁𝑘𝑧 × 𝑁𝜔,𝑝 × 𝑁𝑠𝑒𝑔 ] × 3

⊲ Weight matrix already in 𝒉

20 end

21 Save data

Algorithm 3: Computing 𝑅𝑘𝑥 , 𝑅𝑘𝑧 and 𝑅𝜔
1 for 𝑖𝑦 = 1 : 𝑁𝑦 do
2 Master reads 𝑣(𝑡), 𝜔2 (𝑡), 𝜕𝒖𝜕𝑦 (𝑡) for current 𝑦
3 Master distributes data in 𝑡 to each slave ⊲ [𝑁𝑘𝑥 × 𝑁𝑘𝑧 × 𝑁𝑡,𝑝 ] × 5

4 for 𝑖𝑡 = 1 : 𝑁𝑡 , 𝑝 do ⊲ Parallel Loop

5 Compute 𝑢(𝑡), 𝑤(𝑡) at current 𝑦, 1D mean subtract for 𝑢 ⊲ [𝑁𝑘𝑥 × 𝑁𝑘𝑧 × 𝑁𝑡,𝑝 ] × 2

6 end
7 Master reads 𝒉 at current 𝑦, and distributes data in 𝜔 to each slave

⊲ [𝑁𝑘𝑥 × 𝑁𝑘𝑧 × 3 × 𝑁𝜔,𝑝 × 𝑁𝑠𝑒𝑔 × 9]

8 Compute 𝑅𝑘𝑥 using subroutine compute_Rkx
9 Compute 𝑅𝑘𝑧 using subroutine compute_Rkz

10 Compute 𝑅𝜔 using subroutine compute_Rom
11 end
12 Cumulatively sum 𝑅𝑘𝑥 , 𝑅𝑘𝑧 , 𝑅𝜔 in 𝑦 ⊲ Weight matrix already in 𝒉

13 Save data
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Algorithm 4: subroutine compute_Rkx for computing 𝑅𝑘𝑥 at a single 𝑦 plane
Inputs: 𝒖, 𝜕𝒖

𝜕𝑦
, size [𝑁𝑘𝑥 × 𝑁𝑘𝑧 × 𝑁𝑡 , 𝑝] × 6

Inputs: 𝒉, size [𝑁𝑘𝑥 × 𝑁𝑘𝑧 × 3 × 𝑁𝜔,𝑝 × 𝑁𝑠𝑒𝑔 × 9]

1 for 𝑖𝑡 = 1 : 𝑁𝑡 , 𝑝 do ⊲ Parallel Loop

2 Compute 𝜕𝒖
𝜕𝑧

for current (𝑦, 𝑡)
3 Zeropad and IFFT in 𝑧 for 𝒖, 𝜕𝒖

𝜕𝑦
, 𝜕𝒖
𝜕𝑧

⊲ [𝑁𝑧 × 𝑁𝑡,𝑝 × 𝑁𝑘𝑥 ] × 9

4 end

5 Exchange 𝒖, 𝜕𝒖
𝜕𝑦
, 𝜕𝒖
𝜕𝑧

from partial 𝑡 to partial 𝑧 ⊲ [𝑁𝑧,𝑝 × 𝑁𝑡 × 𝑁𝑘𝑥 ] × 9

6 for 𝑖𝑘𝑥3 = 1 : 𝑁𝑘𝑥 do

7 Extract 𝒉 at current 𝑘𝑥3 ⊲ [𝑁𝑘𝑧 × 3 × 𝑁𝜔,𝑝 × 𝑁𝑠𝑒𝑔 × 9]

8 for 𝑖𝑠𝑒𝑔 = 1 : 𝑁𝑠𝑒𝑔 do
9 for 𝑖𝜔 = 1 : 𝑁𝜔 do ⊲ Parallel Loop

10 Zeropad and IFFT in 𝑧 for 𝒉 ⊲ [𝑁𝑧 × 𝑁𝜔,𝑝 × 𝑁𝑠𝑒𝑔 ] × 3

11 end
12 Exchange 𝒉 from partial 𝜔 to partial 𝑧 ⊲ [𝑁𝑧,𝑝 × 𝑁𝜔 × 𝑁𝑠𝑒𝑔 × 9] × 3

13 end

14 for 𝑖𝑘𝑥1 = 1 : 𝑁𝑘𝑥 do ⊲ Operate on partial 𝑧 data

15 𝑘𝑥2 = 𝑘𝑥3 − 𝑘𝑥1, skip loop if 𝑘𝑥2 out of range
16 Compute 𝒇 (𝑘𝑥1, 𝑘𝑥3, 𝑧, 𝑡) ⊲ [𝑁𝑧,𝑝 × 𝑁𝑡 ] × 3

⊲ negative 𝑘𝑥 obtained with complex conjugate

17 Mean subtract 𝑓𝑥 if 𝑘𝑥3 = 0 ⊲ average in 𝑧, 𝑡 and subtract

18 Segment, apply window function 𝑤(𝑡), FFT in 𝑡, truncate 𝜔→ 𝒇 (𝑘𝑥1, 𝑘𝑥3, 𝑧, 𝜔)
⊲ [𝑁𝑧,𝑝 × 𝑁𝜔 × 𝑁𝑠𝑒𝑔 ] × 3

19 Pointwise multiply 𝒇 with 𝒉 and sum in 𝑧, 𝜔3 ⊲ [𝑁𝑘𝑥1 × 𝑁𝑘𝑥2 × 𝑁𝑠𝑒𝑔 × 27]

20 end
21 end

22 Sum in 𝑧 over all processors with MPI_REDUCE
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Algorithm 5: subroutine compute_Rkz for computing 𝑅𝑘𝑧 at a single 𝑦 plane
Inputs: 𝒖, 𝜕𝒖

𝜕𝑦
, size [𝑁𝑘𝑥 × 𝑁𝑘𝑧 × 𝑁𝑡 , 𝑝] × 6

Inputs: 𝒉, size [𝑁𝑘𝑥 × 𝑁𝑘𝑧 × 3 × 𝑁𝜔,𝑝 × 𝑁𝑠𝑒𝑔 × 9]

1 for 𝑖𝑡 = 1 : 𝑁𝑡 , 𝑝 do ⊲ Parallel Loop

2 Compute 𝜕𝒖
𝜕𝑥

for current (𝑦, 𝑡)
3 Zeropad and IFFT in 𝑥 for 𝒖, 𝜕𝒖

𝜕𝑦
, 𝜕𝒖
𝜕𝑥

⊲ [𝑁𝑥 × 𝑁𝑡,𝑝 × 𝑁𝑘𝑧 ] × 9

4 end

5 Exchange 𝒖, 𝜕𝒖
𝜕𝑦
, 𝜕𝒖
𝜕𝑥

from partial 𝑡 to partial 𝑥 ⊲ [𝑁𝑥,𝑝 × 𝑁𝑡 × 𝑁𝑘𝑧 ] × 9

6 for 𝑖𝑘𝑧3 = 1 : 𝑁𝑘𝑧 do

7 Extract 𝒉 at current 𝑘𝑧3 ⊲ [𝑁𝑘𝑥 × 3 × 𝑁𝜔,𝑝 × 𝑁𝑠𝑒𝑔 × 9]

8 Reorganize 𝒉 to get both positive and negative 𝑘𝑥3 using hermitian symmetry

9 for 𝑖𝑠𝑒𝑔 = 1 : 𝑁𝑠𝑒𝑔 do
10 for 𝑖𝜔 = 1 : 𝑁𝜔 do ⊲ Parallel Loop

11 Zeropad and IFFT in 𝑥 for 𝒉 ⊲ [𝑁𝑥 × 𝑁𝜔,𝑝 × 𝑁𝑠𝑒𝑔 ] × 3

12 end
13 Exchange 𝒉 from partial 𝜔 to partial 𝑥 ⊲ [𝑁𝑥,𝑝 × 𝑁𝜔 × 𝑁𝑠𝑒𝑔 × 9] × 3

14 end

15 for 𝑖𝑘𝑧1 = 1 : 𝑁𝑘𝑧 do ⊲ Operate on partial 𝑥 data

16 𝑘𝑧2 = 𝑘𝑧3 − 𝑘𝑧1, skip loop if 𝑘𝑧2 out of range
17 Compute 𝒇 (𝑘𝑧1, 𝑘𝑧3, 𝑥, 𝑡) ⊲ [𝑁𝑥,𝑝 × 𝑁𝑡 ] × 3

⊲ negative 𝑘𝑧 obtained with complex conjugate

18 Mean subtract 𝑓𝑥 if 𝑘𝑧3 = 0 ⊲ average in 𝑥, 𝑡 and subtract

19 Segment, apply window function 𝑤(𝑡), FFT in 𝑡, truncate 𝜔→ 𝒇 (𝑘𝑧1, 𝑘𝑧3, 𝑥, 𝜔)
⊲ [𝑁𝑥,𝑝 × 𝑁𝜔 × 𝑁𝑠𝑒𝑔 ] × 3

20 Pointwise multiply 𝒇 with 𝒉 and sum in 𝑥, 𝜔3 ⊲ [𝑁𝑘𝑧1 × 𝑁𝑘𝑧2 × 𝑁𝑠𝑒𝑔 × 27]

21 end
22 end

23 Sum in 𝑥 over all processors with MPI_REDUCE
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Algorithm 6: subroutine compute_Rom for computing 𝑅𝜔 at a single 𝑦 plane
Inputs: 𝒖, 𝜕𝒖

𝜕𝑦
, size [𝑁𝑘𝑥 × 𝑁𝑘𝑧 × 𝑁𝑡 , 𝑝] × 6

Inputs: 𝒉, size [𝑁𝑘𝑥 × 𝑁𝑘𝑧 × 3 × 𝑁𝜔,𝑝 × 𝑁𝑠𝑒𝑔 × 9]

1 for 𝑖𝑡 = 1 : 𝑁𝑡 , 𝑝 do ⊲ Parallel Loop

2 Compute 𝜕𝒖
𝜕𝑥
, 𝜕𝒖
𝜕𝑧

for current (𝑦, 𝑡)
3 2D Zeropad and 2D IFFT in 𝑥, 𝑧 for 𝒖, 𝜕𝒖

𝜕𝑥
, 𝜕𝒖
𝜕𝑦
, 𝜕𝒖
𝜕𝑧

⊲ [𝑁𝑥 × 𝑁𝑧 × 𝑁𝑡,𝑝 ] × 12

4 end

5 Exchange 𝒖, 𝜕𝒖
𝜕𝑥
, 𝜕𝒖
𝜕𝑦
, 𝜕𝒖
𝜕𝑧

from partial 𝑡 to partial 𝑧 ⊲ [𝑁𝑥 × 𝑁𝑧,𝑝 × 𝑁𝑡 ] × 12

6 Segment, apply window function
√
𝑤(𝑡), FFT in 𝑡, truncate 𝜔 for 𝒖, 𝜕𝒖

𝜕𝑥
, 𝜕𝒖
𝜕𝑦
, 𝜕𝒖
𝜕𝑧

⊲ [𝑁𝑥 × 𝑁𝑧,𝑝 × 𝑁𝜔 × 𝑁𝑠𝑒𝑔 ] × 12

7 for 𝑖𝑠𝑒𝑔 = 1 : 𝑁𝑠𝑒𝑔 do
8 for 𝑖𝜔 = 1 : 𝑁𝜔,𝑝 do ⊲ Parallel Loop

9 Zeropad and IFFT in 𝑧 for 𝒉 ⊲ [𝑁𝑘𝑥 × 𝑁𝑧 × 𝑁𝜔,𝑝 × 9] × 3

10 end
11 Exchange 𝒉 from partial 𝜔 to partial 𝑧 ⊲ [𝑁𝑘𝑥 × 𝑁𝑧,𝑝 × 𝑁𝜔 × 9] × 3

12 Reorganize 𝒉 to get both positive and negative 𝑘𝑥 using hermitian symmetry

13 for 𝑖𝜔3 = 1 : 𝑁𝜔 do ⊲ Operate on partial 𝑧 data

14 Extract 𝒉 at current 𝜔3 ⊲ [𝑁𝑘𝑥 × 𝑁𝑧,𝑝 × 9] × 3

15 Zeropad and IFFT in 𝑥 for 𝒉 ⊲ [𝑁𝑥 × 𝑁𝑧,𝑝 × 9] × 3

16 for 𝑖𝜔1 = 1 : 𝑁𝜔 do
17 𝜔2 = 𝜔3 − 𝜔1, skip loop if 𝜔2 out of range
18 Compute 𝑓 (𝑥, 𝑧, 𝜔1, 𝜔3) ⊲ [𝑁𝑥 × 𝑁𝑧,𝑝 ] × 3

19 Mean subtract 𝑓𝑥 if 𝜔3 = 0 ⊲ average in 𝑥, 𝑧 and subtract

20 Pointwise multiply 𝒇 with 𝒉 and sum in 𝑥, 𝑧 ⊲ [𝑁𝜔1 × 𝑁𝜔3 × 𝑁𝑠𝑒𝑔 × 27]

21 end
22 end
23 end

24 Sum in 𝑧 over all processors with MPI_REDUCE
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